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On Some Aspects of Gravitomagnetism in Scalar-Tensor Theories of Gravity
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We discuss the gravitomagnetism in the context of scalar-tensor theories of gravity. We obtain the equation of

motion of a particle in terms of gravitoelectric and gravitomagnetic fields. We discuss the gravitomagnetic time

delay and the Lense-Thirring effect in the context of scalar-tensor theories of gravity. In the particular case of

Brans-Dicke Theory, we compare the results obtained with those predicted by general relativity and show that

within the accuracy of experiments designed to measure these effects, both theories predict essentially the same

results.

I. INTRODUCTION

The conjecture that mass currents should generate a field

called, by analogy with eletromagnetism, the gravitomagnetic

field, goes back to the beginnings of general relativity[1]. In-

deed, according to general relativity, moving or rotating mat-

ter should produce a contribution to the gravitational field

that is the analogue of the magnetic field of a moving charge

or magnetic dipole. This field would be expected to mani-

fest itself in a number of effects, such as the Lense-Thirring

precession[2], the gravitomagnetic time delay[3], change in

the phase of electromagnetic waves[4], among others.

Effects of general relativiy associated with the rotation of

massive bodies may be better understood by using a formal

analogy with electromagnetism. The idea is that mass currents

generate a field called, by analogy with electromagnetism, the

gravitomagnetic field[1].

There are indirect evidences of the existence of gravito-

magnetism in an astrophysical context and in the weak field

and slow motion approximation valid throughout the Solar

System[5, 6]. Recently, interest in the subject has been

boosted by the concrete possibility that gravitomagnetic ef-

fects might be measured with the current technology of laser

ranged satellites (LAGEOS and LAGEOS II)[7]. The first ac-

curate measurement of the Lense-Thirring effect, with an error

estimate of 10%, was performed using the current technology

of laser ranged satellites (LAGEOS and LAGEOS II).[8] It

is important to mention the Relativity Gyroscope Experiment

(Gravity Probe B)[9], a space mission launched on April 2004

whose aim is to detect gravitomagnetism effects directly. It

is expected that these experimental programs will open new

possibilities of testing general relativity and other metric the-

ories of gravity [10, 11]. The Gravity Probe B experiment,

an ongoing space mission using orbiting gyroscopes, plans

to measure the Lense-Thirring effect with an error of about

1%. Certainly, these experimental programs will open new

possibilities of testing general relativity against other metric

theories of gravity, in particular the scalar-tensor theory.

Scalar-tensor theories of gravity was proposed some years

ago by Jordan[12], and Brans and Dicke[13, 14]. Later they

were extended in a more general framework[15, 16]. They

represent a generalization of the simplest scalar-tensor theory

of gravity which is the Brans-Dicke theory[13]. In general

scalar-tensor theories of gravity, the gravitational field is not

described only by the usual tensor field gµν of general rela-

tivity. In addition to this, we have one or several long range

scalar fields which also mediate gravitational interaction.

Scalar-tensor theories of gravity has been a subject of re-

newed interest. Certainly, one motivation for this is the be-

lieve that, at least at sufficiently high energy scales, gravity

becomes scalar- tensorial in nature[17] and therefore these

theories are important in the very early Universe. On the

other hand two important theoretical developments have been

achieved like, for example, in unification models based on su-

perstrings which naturally associate long range scalar partners

to the usual tensor gravity of Einstein[18]. Another motiva-

tion for the investigation of scalar-tensor theories is that infla-

tionary cosmology in this framework seems to solve the fine-

tuning problem and in this way give us a mechanism of ter-

minating inflationary eras[19]. Apart from the solution of this

problem, the scalar-tensor theories by themselves have direct

implications for cosmology and for experimental tests of the

gravitational interaction[20] and have importance in the early

Universe.

Our aim in to obtain the gravitoelectric and gravitomagnetic

fields in the context of scalar-tensor theories, write down the

equations of motion of a particle in terms of these fields and

then compare the results with those predicted by general rela-

tivity. In particular, we will compare the results oobtained in

the framework of Brans-Dicke theory with the corresponding

ones in general relativity. To get this result we will use the

fact that, in the weak field approximation, solutions of scalar-

tensor theories are simply related to the solutions of gen-

eral relativity equations for the same matter distribution[21],

which is a result extended from the method developed by Bar-

ros and Romero[22] to obtain the solutions in Brans-Dicke

theory from the corresponding solutions in general relativity,

for the same matter distribution, in the framework of the weak

field approximation.

This paper is organized as follows. In Section II, we give

a brief introduction to the basic ideas of gravitomagnetism in

general relativity. Then, in Section III, we show how general

relativity and scalar-tensor theories of gravity are related in

the weak field approximation. The gravitomagnetic field in

scalar-tensor theories is defined in Section IV. We consider

the Lense-Thirring effect and the gravitomagnetic time delay

in scalar-tensor theories in Sections V and VI, respectively.

Section VII is devoted to some remarks.
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II. THE GRAVITOMAGNETIC FIELD IN GENERAL

RELATIVITY

Let us recall that in the weak field approximation of general

relativity we assume that the metric tensor gµν deviates only

slightly from the flat spacetime metric tensor. In other words,

we assume that gµν = ηµν +hµν, where ηµν = diag(−1,1,1,1)
denotes Minkowski metric tensor and hµν is a small per-

turbation term. Then, by keeping only first-order terms

in hµν and adopting the usual harmonic coordinate gauge(
h

µ
υ − 1

2
δ

µ
νh

)
,µ = 0, the Einstein equations become

¤hµν = −16πG

c4
Tµν (1)

where h
µ

ν = h
µ
ν − 1

2
δ

µ
νh and h denotes the trace of h

µ
ν.

We now assume a perfect fluid matter configuration and

slow motion. If ρ denotes the mass density and vi the velocity

components, then (1) yields

¤h00 = −16πG

c2
ρ (2)

¤h0i =
16πG

c3
ρvi (3)

where terms such as p and viv j/c4 have been neglected. Let us

now specialize the equations above to the case of a stationary

gravitational field of a slowly rotating body. Then, far from

the source we have

∇2

(
c2h00

4

)
≡ ∇2Φg = −4πGρ (4)

∇2h0i =
16πG

c3
ρvi (5)

from which it follows that

Φg =
GM

r
(6)

−→
h = −2G(

−→
J ×−→r )

c3r3
≡−2

−→
A g

c2
(7)

where h0i are the components of the vector
−→
h , M and

−→
J are

the total mass and angular momentum of the source, respec-

tively. In close analogy with electrodynamics we define the

gravitoelectric field to be
−→
Eg = −−→

∇ Φg and the gravitomag-

netic field to be
−→
B g =

−→
∇ ×−→

A g. It is interesting to see that

the condition h
µν

,µ = 0 leads to
−→
∇ ·−→A g = 0 (analogous to the

Coulomb gauge of electromagnetism).

Let us note that for the case of a slowly rotating sphere with

angular momentum
−→
J = (0,0,J), we obtain from (7) in spher-

ical coordinates

h0ϕ = h0ϕ = −2JG

rc3
sin2 θ (8)

Recalling that the Kerr metric in Boyer-Lindquist coordinates

in the weak field and slow motion limit is given by[23]

ds2 = −
(

1− 2MG

rc2

)
c2dt2 +

(
1+

2MG

rc2

)
dr2

+r2(dθ2 + sin2 θdϕ2)− 4JG

rc3
sin2 θcdtdϕ (9)

we see that h0ϕ is the g0ϕ component of (9).

It is worth noting that one can easily show by using the

geodesic equation

d2xµ

ds2
+Γ

µ

αβ

dxα

ds

dxβ

ds
= 0 (10)

in the slow motion and weak field approximation, that

d2−→r
dt2

∼=
(
−→
Eg +

2

c

d−→r
dt

×−→
B g

)
, (11)

where the gravitoelectric field is given by
−→
E g = −−→

∇ Φg and

the gravitomagnetic field can be written as

−→
B g =

−→
∇ ×−→

A g =
G

c

[
3r̂(r̂ ·−→J )−−→

J

r3

]
. (12)

With these conditions, the spacetime metric has the form

ds2 = −c2

(
1−2

Φg

c2

)
dt2 − 4

c

(−→
A g ·d−→x

)
dt

+

(
1+2

Φg

c2

)
δi jdxidx j. (13)

The Lagrangian for the motion of a test particle of mass m

is L = −mcds/dt. To first order in Φ and
−→
A it becomes

L = −mc2

(
1− v2

c2

) 1
2

+mγ

(
1+

v2

c2

)
Φg −

2m

c
γ−→v ·−→A g,

(14)

where γ = 1/
√

1− v2/c2. In the weak gravitational field, we

assume that the particle has a small velocity. Then, we obtain

from (14) that

L = −mc2

(
1− v2

c2

) 1
2

+mΦg −
2m

c

−→v ·−→A g, (15)

which is analogous to the electromagnetic case. Thus, the

equation of motion,
−→
F = d−→p /dt, with −→p = γm−→v , takes a

Lorentz force law form

−→
Fg = −m

−→
Eg −2m

−→v
c
×−→

Bg. (16)

From the above result we see that both the gravitoelectric

and the gravitomagnetic field are essentially local physical en-

tities. It turns out, however, that nonlocal properties of gravit-

omagnetism may appear, for example, when we consider the

spacetime generated by a spinning cosmic string[24].
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III. THE WEAK FIELD APPROXIMATION

SCALAR-TENSOR THEORIES OF GRAVITY

Let us consider the action describing the class of scalar-

tensor theories[15, 16]. In the so-called Einstein(conformal)

frame, the action reads as

S =
1

16πG

∫
d4x

√−g [R−2gµν∂µφ∂νφ]

+

∫
d4x

√−gA2(φ)

[
1

2
gµν∂µφ∂νφ−V (φ)

]
, (17)

where gµν is a pure rank-2 metric tensor, R is the curvature

scalar associated to it and G is some “bare” gravitational cou-

pling constant. The second term in the r.h.s. of eq.(17) is the

matter action representing a model of a real Higgs scalar field

Φ and V (Φ) is the symmetry breaking potential. Action (17)

can obtained from the original action[15, 16] by a conformal

transformation(see, for instance, [25])

g̃µν = A2(φ)gµν , (18)

where g̃µν is the physical metric and contains both scalar and

tensor degrees of freedom and A2(φ) is an arbitrary function

of the scalar field.

In the Einstein frame, the field equations are written as fol-

lows:

Rµν = 2∂µφ∂νφ+8πG(Tµν −
1

2
gµνT )

¤gφ = −4πGα(φ)T (19)

where α(φ) ≡ ∂ lnA(φ)
∂φ

, which can be interpreted as the (field-

dependent) coupling strenght between matter and the scalar

field and the energy-momentum tensor is obtained from

Tµν ≡
2√−g

δSm

δgµν
. (20)

In what follows, we will consider the solution in the weak-

field approximation. Therefore, we will expand eqs. (19) to

first order in GA2(φ0) in such a way that

gµν = ηµν +hµν

φ = φ0 +φ(1) (21)

A(φ) = A(φ0)[1+α(φ0)φ(1)]

T
µ

ν = T
µ

(0)ν +T
µ

(1)ν,

where φ0 denotes a determined value of the scalar field.

In this approximation,

T
µ

(0)ν = A2(φ0)T̃
µ

(0)ν, (22)

is the energy-momentum tensor in the framework of scalar-

tensor theories, while T̃
µ

(0)ν is the energy-momentum tensor in

general relativity.

In the linearised regime, eqs. (19) can be written as

∇2hµν = 16πG(T(0)µν −
1

2
ηµνT(0)), (23)

and

∇2φ(1) = 4πGα(φ0)T(0). (24)

Thus, the linearised Einstein’s equation in (23) for a given

source is obtained multiplying by the factor A2(φ) the solution

in general relativity for the same source, with G changed by

G0 = 1
1+α2(φ0)

G. Therefore, in the weak field approximation,

the solution in scalar-tensor theories is given by

g̃µν = A2(φ0)[1+2α(φ0)φ(1)](ηµν +hµν). (25)

This relation between G and G0 was derived taking into ac-

count the corresponding one in Brans-Dicke theory, in which

case this relation is valid for α2 = 1
2ω+3

.

IV. GRAVITOMAGNETISM IN SCALAR-TENSOR

THEORIES OF GRAVITY

Let us consider the metric of the spacetime in the context

of scalar-tensor theories. From (25) and (13), we have

ds2
ST = A2(φ0)[1+2α(φ0)φ(1)][−c2

(
1−2

Φg(G0)

c2

)
dt2

−4

c

(−→
A g(G0) ·d−→x

)
dt

+

(
1+2

Φg(G0)

c2

)
δi jdxidx j]. (26)

This line element can be written as

ds2
ST = −c2

(
1−2

Φg(G0)

c2
− εG0

)
dt2 − 4

c

(−→
A g(G0) ·d−→x

)
dt

+

(
1+2

Φg(G0)

c2
− εG0

)
δi jdxidx j, (27)

where ε = A2(φ0)[1+2α(φ0)φ(1)].
Now, if we define

2
Φ1

c2
= 2

Φg(G0)

c2
+ εG0, (28)

2
Φ2

c2
= 2

Φg(G0)

c2
− εG0, (29)

the metric will be given by

ds2
ST = −c2

(
1−2

Φ1

c2

)
dt2 − 4

c

(−→
A (G0) ·d−→x

)
dt

+

(
1+2

Φ2

c2

)
δi jdxidx j. (30)

In close analogy to the general relativity approach, we will

have the Lagrangian of a particle of mass m

LST = −mc2

(
1− v2

c2

) 1
2

+mγΦ1 +mγ
v2

c2
Φ2

−2m

c
γ−→v ·−→A (G0). (31)
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However, since that v
c
≪ 1, the Lagrangian can be simplified

to

LST = −mc2

(
1− v2

c2

) 1
2

+mΦ1 −
2m

c
γ−→v ·−→A (G0). (32)

Again, we immediately arrive at the equation of motion

−→
F ST = −m

−→
E g −2m

−→v
c
×−→

B g(G0), (33)

where

−→
E g = −−→

∇ Φ1, (34)

and

−→
B g(G0) =

−→
∇ ×−→

A g(G0) =
G0

c

[
3r̂(r̂ ·−→J )−−→

J

r3

]
. (35)

Note that the previous relation can be written as

−→
B g(G0) =

(
1

1+α2(φ0)

)
−→
B , (36)

where which means that the gravitomagnetic in the two theo-

ries are related by a factor which depends on the scalar field.

It is interesting to note that the gravitoelectric field is ex-

actly the same of the general relativity case. In the case of

Brans-Dicke theory, the scalar field produced by a stationary

particle of mass M is given in[13] by ε = 2M/c2r(2ω + 3).
Therefore, from (28), it follows that Φ1 = GM/r. On the

other hand, the difference between the two theories, in this

approximation, lies in the gravitomagnetic field due to the fac-

tor 2ω+3
2ω+4

. Therefore, if we consider that ω > 40000 [26], we

conclude that there is no difference between the magnitude of

the gravitomagnetic field when calculated in the framework of

general relativity and Brans-Dicke theory.

V. THE LENSE-THIRRING EFFECT IN SCALAR-TENSOR

THEORIES

As is well known, the Lense-Thirring effect consists in a

precession of gyroscopes relative to distant stars, or, equiva-

lently, a dragging of inertial frames, an effect caused by the

gravitomagnetic field. Denoting the angular momentum and

the angular velocity of the precession by
−→
S and

−→
Ω , then the

torque acting on the gyroscope predicted by general relativity

is given by

−→
τ =

1

2

−→
S ×

(
−2

c

−→
B g

)
=

d
−→
S

dt
=
−→
Ω ×−→

S (37)

with

−→
Ω =

1

c

−→
B g = G

(
3r̂(r̂ ·−→J )−−→

J

c2r3

)
(38)

Thus in the case of scalar-tensor theories, eq.(38) becomes

−→
Ω ST =

1

c

−→
B BD

g = G0

(
3r̂(r̂ ·−→J )−−→

J

c2r3

)
(39)

To compare the value of Ω predicted by general relativity

with ΩST , in the particular situation where the Brans-Dicke

theory is under consideration, we must ascribe values for ω,

the scalar field coupling constant. According to the latest ex-

perimental results the current value for ω greather than 40000.

On the other hand, for a polar orbit at about 650 km altitude

the axis of a gyroscope is predicted to undergo a precession

rate of 42 milliarcsec per year. The expected accuracy of the

experiment under these conditions (Gravity Probe B) is about

0.5 milliarcsec per year. Since G0 =
(

2ω+3
2ω+4

)
G the predicted

value of Brans-Dicke theory is

ΩBD =
80003

80004
Ω ≃ 41.9995 milliarcsec per year.

VI. THE GRAVITOMAGNETIC TIME DELAY IN

SCALAR-TENSOR THEORIES

The time delay of light is considered a classical test of

general relativity and its measurement was first proposed by

Shapiro [27]. It can be shown that this effect can be separated

into two parts: the Shapiro time delay and the gravitomagnetic

time delay, the latter due to the gravitomagnetic field. Assum-

ing again the weak field and slow motion approximation of

general relativity one can show that the gravitational time de-

lay ∆ of a light signal travelling between two points P1 and P2

is given by

∆ =
1

2c

∫ P2

P1

hµυ(x)kµkνdl (40)

where kµ = (1, k̂), k̂ denotes the light propagation unit vec-

tor and dl = |d−→r | is the Euclidean length element along the

straight line that joins P1 to P2. Now from (4), (7) and (40) it

follows that ∆ = ∆ge +∆gm, where

∆ge =
2

c3

∫ P2

P1

Φgdl (41)

is the Shapiro delay and

∆gm = − 2

c3

∫ P2

P1

−→
A g ·d−→r (42)

is the gravitomagnetic time delay.

Clearly, the above equations keep exactly the same form

when we go from general relativity to scalar-tensor theories,

the only change needed is the substitution Φg → ΦST
g and

−→
A g

→−→
A ST

g . Thus we have

∆ST
ge =

(
1

1+α2(φ0)

)
∆ge (43)
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∆ST
gm =

(
1

1+α2(φ0)

)
∆gm (44)

At this point two comments are in order. Firstly, it should be

noted that analogously to the general relativity approach the

gravitomagnetic echo delay vanishes. Secondly, if the light

rays travel along a closed loop around a rotating body (this

can be arranged with the help of mirrors), then the time delay

due to the gravitomagnetic field depends on the direction the

rays go around the loop. Similarly to the general relativity

case, the total time diference between two opposite-oriented

paths is given by

δtST = − 4

c3

∮ −→
A ST

g ·d−→r = − 4

c3

(
1

1+α2(φ0)

)∮ −→
A g ·d−→r

Note that if we consider Brans-Dicke theory, we get the

same results obtained recently[28]. In this case the results

obtained in the framework of scalar-tensor theories of gravity

is 0.9995 of the corresponding ones in general relativity.

VII. FINAL REMARKS

We have examined the equation of motion of a particle in

gravitoelectric and gravitomagnetic fields in scalar-tensor the-

ories of gravity. It has been verified that the gravitomagnetic

force predicted by these theories differs of the corresponding

force in general relativity by the correction factor 1
1+α2(φ0)

. As

a consequence, the Lense-Thirring effect will be qualitatively

different in the two theories. From the quantitative point of

view the difference is very small as we can see in the Brans-

Dicke case[28]. The two effects associated with the so-called

gravitomagnetism, namely, the Lense-Thirring effect and the

gravitomagnetic time delay in scalar-tensor theories of grav-

ity are quantitatively of the same magnitude as we can see by

considering the particular case of Brans-Dicke[28]. Following

the same line of reasoning employed in this article it can eas-

ily be shown that the equations for the gravitomagnetic time

delay in different images due to gravitational lensing in scalar-

tensor theories may be obtained again from the corresponding

equations in general relativity by using the correction factor
1

1+α2(φ0)
.

In which concerns the particular case of scalar-tensor the-

ories of gravity, namely, in Brans-Dicke theory, it is worth

calling attention to the fact that Solar System experiments set

strict limits in the value of the parameter of this theory, given

by ω > 40000, which means that α2(φ0) < 10−5[26]. There-

fore we see that within the precision of the experiment one

cannot distinguish one theory from another at least in the con-

text of the Brans-Dicke theory of gravity.
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