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Abstract

In this work, we take the Brans-Dicke theory as the fundamental

theory of gravity, considering that the spacetime is static and spheri-

cally symmetric, making no assumptions about the isotropy of internal

pressures of the source generating the gravitational field. We employ the

weak field approximation in order to derive formulae for the refractive

index associated with the adopted spacetime. Then, we calculate the

expression of the spacetime refractive index for the global monopole.
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1 Introduction

Einstein was the first to suggest the idea of the analogy between the grav-
itational field and a refractive medium [6]. Indeed, considering the General
Relativity theory, the gravitational field, in relation to the propagation of
light, can be interpreted as a medium with refractive index n [8, 9].

On the other hand, there are alternative theories of gravity [11]. One of
the most popular is the Brans-Dicke scalar-tensor theory [4], which is the more
simplest generalization of Einstein’s theory of gravity, with the gravitational
effects described by the spacetime metric gαβ and also by a scalar field φ. We
must note that the interest in the alternative theories of gravity occurs in many
cases because the high-energy theories, seeking the quantization of gravity or
its unification with the other interactions, generally make predictions that
diverge from General Relativity; the scalar-tensor theories, for instance, natu-
rally incorporate elements of string theory, such as a dilaton-like gravitational
scalar field [7].

In this work, let us obtain the expression of a refractive index n in the
context of the Brans-Dicke theory; this index simulates gravitational effects
of a static spherically symmetric spacetime possessing a source with non-zero
pressures. Then, as an application, we calculate n for the global monopole
spacetime [1, 5]. Such monopoles present Goldstone fields whose energy den-
sity decreases with r−2, so that the energy of the monopole varies linearly
with r. This suggests that global monopoles can produce appreciable gravita-
tional effects. A striking feature is that the curved spacetime generated by the
monopoles has a solid angle deficit in the hypersurfaces t = constant, being
the area of a sphere of radius r in this space different from 4πr2.

The paper is organized as follows: in Section 2, we get the solution of
Brans-Dicke equations for a static metric with spherical symmetry considering
the weak field approximation, given that the source of gravitational field has
radial and transverse internal pressures. In Section 3, we show the expression of
the spacetime refractive index. Then, in Section 4, we calculate the refractive
index associated with the global monopole spacetime. Finally, Section 5 is
devoted to our conclusions.

2 Static Spherically Symmetric Solution

The Brans-Dicke field equations are given by

Gαβ =
8π

φ
Tαβ +

ω

φ2
(φ,αφ,β −

1

2
gαβφ,µφ

,µ) +
1

φ
(φ,α;β − gαβ�φ), (1)
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�φ =
8πT

2ω + 3
, (2)

where ω is the scalar field coupling constant, T = T α
α and we use units in

which c = 1.
Let us consider the weak field approximation, in which gαβ = ηαβ + hαβ,

being ηαβ the flat spacetime metric and hαβ a small perturbation term, so that
we keep only first-order terms in hαβ. Besides, we take φ = φ0 + ε, where φ0

is constant and ε = ε(x) is also a small perturbation term with | ε/φ0 |≪ 1.
Thus, the field equations, using the Brans-Dicke gauge (hαβ −

1

2
δαβh);α =

ε,βφ
−1
0 and considering the static case, reduce to [2]

∇2hαβ = −16πφ−1
0

[
Tαβ −

ω + 1

2ω + 3
ηαβT

]
, (3)

∇2ε =
8πT

2ω + 3
, (4)

being h = hαα. And more, with the definition

h̄αβ = hαβ −
1

2
ηαβh− εφ−1

0 ηαβ, (5)

the equation (3) becomes

∇2h̄αβ = −16πG0Tαβ, (6)

with G0 =
(
2ω+3

2ω+4

)
G = φ−1

0 , where G is the Newton’s gravitational constant
[4].

Now, we consider a spherically symmetric weak field for which the energy-
momentum tensor is given by [3]

Tαβ =




ρ(r) 0 0 0
0 pr(r) 0 0
0 0 pt(r)r

2 0
0 0 0 pt(r)r

2 sin2 θ


 , (7)

where ρ is the energy density, pr and pt are the radial and transverse pres-
sures, respectively; at the origin, we have pr(0) = pt(0). Therefore, with the
conservation condition

T αβ
;β = 0, (8)

we obtain

T 1β
;β = ∂rpr(r) +

2 [pr(r)− pt(r)]

r
= 0, (9)

or
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pt(r) = pr(r) +
1

2
r∂rpr(r), (10)

because ηαβ = diag(−1, 1, r2, r2 sin2 θ) in spherical polar coordinates.
Also, one can define

h̄αβ =




F0(r) 0 0 0
0 Fr(r) 0 0
0 0 Ft(r)r

2 0
0 0 0 Ft(r)r

2 sin2 θ


 , (11)

with Fr(0) = Ft(0). Now, the Brans-Dicke gauge will be written as h̄αβ ;β = 0.
Thus, for similarity with the equations (7) and (8), we have immediately

Ft(r) = Fr(r) +
1

2
r∂rFr(r). (12)

To solve the field equations (6), we must have

∇2h̄αβ = h̄αβ;γ
;γ =




L0(r) 0 0 0
0 Lr(r) 0 0
0 0 Lt(r)r

2 0
0 0 0 Lt(r)r

2 sin2 θ


 , (13)

where

L0(r) =
1

r2
∂r(r

2∂rF0), (14)

Lr(r) =
1

r2
∂r(r

2∂rFr)− 4

(
Fr − Ft

r2

)
=

1

r4
∂r(r

4∂rFr), (15)

Lt(r) =
1

r2
∂r(r

2∂rFt) + 2

(
Fr − Ft

r2

)
. (16)

Then, using (6) and (7), we find

F0 = −16π

(
2ω + 3

2ω + 4

)
G

∫ [∫
ρr2dr

]
r−2dr, (17)

Fr = −16π

(
2ω + 3

2ω + 4

)
G

∫ [∫
prr

4dr

]
r−4dr. (18)

The function Ft can be easily obtained from (12) and (18). On the other hand,
ε can be obtained from (4). So, in agreement with (7), we have

1

r2
d

dr

[
r2
dε

dr

]
=

8π

2ω + 3
(−ρ+ pr + 2pt),
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and the solution

ε =
8π

2ω + 3

∫ [∫
(−ρ+ pr + 2pt)r

2dr

]
r−2dr. (19)

We obtain the formal solution of the Brans–Dicke field equations for a static
metric with spherical symmetry. Let us check the consistency of the solution
by getting the gravitational field produced by a point of mass M , for which

ρ =Mδ(−→r ), pr = pt = 0. (20)

In this case, according to (17), (18) and (12), we get

F0 = −16π

(
2ω + 3

2ω + 4

)
GM

∫ [∫
r2δ(−→r )dr

]
r−2dr, Fr = Ft = 0. (21)

Since δ(−→r ) =
δ(r)

4πr2
, it follows that

F0 =
4GM

r

(
2ω + 3

2ω + 4

)
. (22)

And also, from (19), the scalar field is

ε =
2M

(2ω + 3)r
. (23)

Then, considering the equations (5) and (21)-(23), we find

h00 =
2GM

r
, (24)

h11 = h00

(
ω + 1

ω + 2

)
, h22 = h11r

2, h33 = h11r
2 sin2 θ. (25)

This is the solution for a central body in the context of the Brans-Dicke theory
[4].

3 Refractive Index

For light propagation in a static spacetime, we define the 3x3 refractive index
tensor as [3]

nij = (1 +
1

2
h̄00)δij +

1

2
h̄ij, (26)

so that the refractive index is given by

n = nij k̂
ik̂j, (27)
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where ||k̂|| =
√
δij k̂ik̂j = 1 and the 3-vector k̂ indicates the direction of the

light propagation.
Now, written in terms of spherical polar coordinates, the condition δij k̂

ik̂j =
1 takes the form

k̂1k̂1 + r2k̂2k̂2 + r2 sin2 θk̂3k̂3 = 1. (28)

On the other hand, considering the equation (11), the calculation of nij leads
to

n11 = 1 +
1

2
F0 +

1

2
Fr, (29)

n22 =

(
1 +

1

2
F0 +

1

2
Ft

)
r2, (30)

n33 =

(
1 +

1

2
F0 +

1

2
Ft

)
r2 sin2 θ. (31)

Thus, with the aid of the equations (28)-(31), one can obtain the expression for
the refractive index when the metric is static and possesses spherical symmetry:

n = 1 +
1

2
F0 +

1

2

(
Frk̂

1k̂1 + Ftr
2k̂2k̂2 + Ftr

2 sin2 θk̂3k̂3
)
. (32)

As an application, we consider a beam of light propagating in the plane
ϕ = ϕ0. If the light rays go through a coordinate point r, making an angle
ψ with respect to the r̂ direction, then k̂ = cosψr̂ + sinψθ̂. In this case, the
refractive index reads

n(r, ψ) = 1 +
1

2
F0 +

1

2

(
Fr cos

2 ψ + Ft sin
2 ψ

)
. (33)

Using (12), we still obtain

n(r, ψ) = 1 +
1

2
(F0 + Fr) +

1

4
r∂rFr sin

2 ψ. (34)

4 Refractive Index Associated with Global Monopole

Spacetime

The energy-momentum tensor that expresses the global monopole configura-
tion is:

T µ
ν = diag

(
−
η2

r2
,−

η2

r2
, 0, 0

)
= diag(−ρ, pr, pt, pt), (35)

being η the energy scale of symmetry breaking. Hence, can be calculated from
(17) and (18) that

F0 = −16π

(
2ω + 3

2ω + 4

)
Gη2 ln

r

r0
, (36)
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Fr =
16π

3

(
2ω + 3

2ω + 4

)
Gη2 ln

r

r0
, (37)

where r0 is constant. Therefore, substituting (36) and (37) into the equation
(34), one obtains

n(r, ψ) = 1 +
16π

3

(
2ω + 3

2ω + 4

)
Gη2

[
sin2 ψ

4
− ln

r

r0

]
. (38)

If the global monopoles exist, they could be detected by means of effects such
as the gravitational lenses [10], so that the refractive index associated with
monopole spacetime would be given by (38).

In the limit ω → ∞, the equation (38) must be reduced for the expression
of the refractive index in General Relativity [11]. Thus, we have

nGR(r, ψ) = 1 +
16π

3
Gη2

[
sin2 ψ

4
− ln

r

r0

]
. (39)

The factor 2ω+3

2ω+4
is responsible by discrepancies between the predictions of the

two theories. It represents the contribution of the Brans-Dicke scalar field,
since that if ε 6= 0 in (19) then ω is finite.

5 Conclusion

We consider static metrics in the context of the Brans-Dicke theory, obtaining
the solution with spherical symmetry, including the effect of internal pressures
of the gravitational sources. Then, in the development of an analogy for the
gravitational field acting as an optical medium, we find an expression for the
refractive index, which also incorporated the effect of the Brans-Dicke scalar
field. After, as an application, it was exhibited the spacetime refractive index
for the global monopole; in the limit ω → ∞, the corresponding expression for
the refractive index in the General Relativity theory was obtained.

References

[1] M. Barriola and A. Vilenkin, Gravitational Field of a
Global Monopole, Phys. Rev. Lett., 63 (1989), 341 - 343.
http://dx.doi.org/10.1103/PhysRevLett.63.341

[2] A. Barros and C. Romero, Gravitomagnetic Time Delay and the Lense-
Thirring Effect in Brans-Dicke Theory of Gravity, Mod. Phys. Lett. A, 18
(2003), 2117 - 2124. http://dx.doi.org/10.1142/S0217732303011721
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