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Abstract

We discuss the gravitoelectromagnetic analogy in the Brans-Dicke

theory framework, exhibiting the field equations in a similar structure

to Maxwell’s equations. Moreover, in this formalism, we find the expres-

sion to the gravitoelectromagnetic force law. We compare the results

obtained with those predicted by General Relativity.

Subject Classification: 04.50.Kd, 04.25.Nx

Keywords: Gravitoelectromagnetism, Brans-Dicke theory, Weak field ap-
proximation

1 Introduction

In the framework of the General Relativity theory is possible, when one con-
siders weak field approximation and low rotation velocity of the source, the
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definition of similar potentials to the electromagnetic potentials [10, 11]. In
this sense, mass and mass currents generate fields called gravitoelectric and
gravitomagnetic, respectively. Really, gravitational effects associated with the
rotation of massive bodies, as the Lense-Thirring effect of frame dragging, can
be understood in terms of gravitomagnetism [5]; it is interesting to mention
that the Lense-Thirring effect was verified by the GP-B experiment with an
accuracy of 19% [6]. The gravitoelectromagnetic analogy is established more
deeply when the gravitational field equations are written in a similar form to
Maxwell’s equations, while a gravitoelectromagnetic force law is defined too
[3].

In turn, taking the Brans-Dicke theory [4] as the fundamental theory for
the description of gravitational phenomena, we will develop the formalism of
the gravitoelectromagnetism to obtain the field equations in a similar form
to Maxwell’s equations and the gravitoelectromagnetic force law. The studies
involving the scalar-tensorial theories of gravity, as Brans-Dicke theory, evalu-
ate the contribution of the scalar field φ in the gravitational activity, so that
several aspects are currently investigated [7, 1].

The paper is organized as follows. In Section 2, the gravitoelectric and
gravitomagnetic fields are defined and the field equations for gravitoelectro-
magnetism are presented. After, in Section 3, we obtain the gravitoelectro-
magnetic force law, comparing the expression with the General Relativity pre-
diction. Lastly, in Section 4, our conclusions are exposed.

2 The Field Equations for Gravitoelectromag-

netism

The Brans-Dicke weak field equations are given by [13]

�h̄µν = −
16πG

c4

(

2ω + 3

2ω + 4

)

Tµν , (1)

�ε =
8πT

c4(2ω + 3)
, (2)

where ω is the scalar field coupling constant, T = T α
α and G is the New-

ton’s gravitational constant. We consider that gµν = ηµν + hµν , where ηµν =
diag(−1, 1, 1, 1) denotes Minkowski metric tensor and hµν is a small perturba-
tion term, so that we keep only first-order terms in hµν . Besides, we take the
scalar field φ = φ0 + ε, where φ−1

0 =
(

2ω+3

2ω+4

)

G and ε = ε(x) is also a small
perturbation term with |ε/φ0| ≪ 1. In this approach, the Brans-Dicke gauge
h
µν

,µ = 0 is valid and still
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h̄µν = hµν −
1

2
ηµνh− εφ−1

0 ηµν , (3)

being h = hα
α.

Assuming a localized matter distribution with density ρ and velocity field
−→v , with the condition |−→v | << c, the relevant components of h̄µν are h00 and
h0i [13]. Now, we define [10]:

h00 =
4Φ

c2
, (4)

h0i = −
2Ai

c2
, (5)

being Φ the gravitoelectric potential and ~A the gravitomagnetic vector poten-
tial. In the stationary case, if the matter distribution is confined around the
origin of spatial coordinates, so far from the source we will have the solutions
[13]

Φ =

(

2ω + 3

2ω + 4

)

GM

r
, (6)

~A =

(

2ω + 3

2ω + 4

)

G( ~J × ~r)

cr3
, (7)

where r = |~r|, M and ~J are the mass and angular momentum of the source.

From gauge expression h
µν

,µ = 0 and equations (4) and (5), we obtain

1

c

∂Φ

∂t
+

1

2
∇ · ~A = 0, (8)

that is analogous to the Lorenz gauge of electromagnetism [8]. Then, in close

analogy with electrodynamics, let us define the gravitoelectric field ~E and the
gravitomagnetic field ~B as [3]

~E = −∇Φ−
1

2c

∂ ~A

∂t
, (9)

~B = ∇× ~A. (10)

From (9) and (10), one obtains immediately the equations

∇× ~E = −
1

2c

∂ ~B

∂t
, (11)

∇ · ~B = 0. (12)
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Furthermore, considering the equations (8)-(10) and the field equation (1) with
the energy-momentum tensor components T00 = ρc2 and T0i = −cji, where
~j = ρ~v is the mass current, we get

∇ · ~E = 4πG

(

2ω + 3

2ω + 4

)

ρ, (13)

∇× ~B =
8πG

c

(

2ω + 3

2ω + 4

)

~j +
2

c

∂ ~E

∂t
. (14)

These equations contain the continuity equation ∇ ·~j +
∂ρ

∂t
= 0.

The equations (11)-(14) represent the analog of the Maxwell equations in
the context of Brans-Dicke theory, when one regards the weak field approxi-
mation and a localized slowly rotating source. It is interesting to note that,
in the limit ω → ∞, the equations (11)-(14) are reduced to the expressions
obtained in General Relativity [3]. Indeed, it is well known that, in the weak
field approximation, when ω → ∞ the Brans-Dicke solution goes over to the
corresponding solution in Einstein’s General Relativity, although this is not
always true in the case of exact solutions [12, 2].

3 Gravitoelectromagnetic Force Law

Let us now to obtain the gravitoelectromagnetic force law. We start with the
calculus of the spacetime metric from equations (3)-(5). Then, we will have

h00 =
2Φ

c2
+

(

2ω + 3

2ω + 4

)

Gε, (15)

h0i = −
2Ai

c2
, (16)

hij = 0 (i 6= j), (17)

h11 = h22 = h33 =
2Φ

c2
−

(

2ω + 3

2ω + 4

)

Gε. (18)

Therefore, the line element has the form

ds2 = −c2
[

1−
2Φ

c2
−

(

2ω + 3

2ω + 4

)

Gε

]

dt2 −
4

c

(

~A · d~r
)

dt

+

[

1 +
2Φ

c2
−

(

2ω + 3

2ω + 4

)

Gε

]

δijdx
idxj. (19)

With the definitions

2
Λ

c2
=

2Φ

c2
+

(

2ω + 3

2ω + 4

)

Gε, (20)
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2
Ψ

c2
=

2Φ

c2
−

(

2ω + 3

2ω + 4

)

Gε, (21)

the equation (19) can be expressed as

ds2 = −c2
(

1− 2
Λ

c2

)

dt2 −
4

c

(

~A · d~r
)

dt+

(

1 + 2
Ψ

c2

)

δijdx
idxj. (22)

The Lagrangian for the motion of a test particle of mass m is L = −mc
ds

dt
.

Considering first-order terms in Λ, Ψ and ~A, we get

L = −mc2
(

1−
v2

c2

)
1

2

+mγΛ +mγ
v2

c2
Ψ−

2m

c
γ ~A · ~v, (23)

where γ = 1/
√

1− v2/c2. Now, in the weak gravitational field, we assume that
the material particle has a small velocity [9] and terms until second-order in
v

c
are maintained. Thus, taking into account all approximations, one obtains

L = −mc2
(

1−
v2

c2

)
1

2

+mΛ−
2m

c
~A · ~v, (24)

which is analogous to the electromagnetic Lagrangian [8]. Hence, being the

equation of motion
d~p

dt
= ~F , with the linear momentum ~p = γm~v, we will find

the expression

~F = −m

(

−∇Λ−
2

c

∂ ~A

∂t

)

−
2m

c
~v × (∇× ~A). (25)

From equations (10) and (20) it follows that

~F = −m

[

−∇

(

Φ +
c2

2

(

2ω + 3

2ω + 4

)

Gε

)

−
2

c

∂ ~A

∂t

]

−
2m

c
~v × ~B. (26)

For the stationary case, we have
∂ ~A

∂t
= 0. Then, equation (26) reduces to

~F = −m~E −
2m

c
~v × ~B +

mc2

2

(

2ω + 3

2ω + 4

)

G∇ε, (27)

where we utilize (9). It is interesting to mention that, in the approach to
gravitoelectromagnetism in General Relativity, the equation of motion takes
a Lorentz force law form, when one considers the stationary situation [3].
However, in Brans-Dicke theory context, this is not possible because of the
scalar field term in (27).
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4 Conclusion

It was found that, in the context of Brans-Dicke theory, is possible to write the
equations of the gravitational field in a similar way to Maxwell’s equations, by
considering weak field approximation and low rotating velocity of the source.
On the other hand, the equation of motion of a particle under the action of
gravitoelectric and gravitomagnetic fields does not have a Lorentz force law
form, even in the stationary case, because of a scalar field dependent term.
In the limit ω → ∞, the field equations (11)-(14) as well as the gravitoelec-
tromagnetic force (27) are reduced to the corresponding expressions in the
General Relativity scenery.
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