
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

ANNA BEATRIZ LUCENA LIRA

SEM CONFLITO NO CACHE: OBSERVAÇÕES DE UMA

PLATAFORMA DE COMÉRCIO ELETÔNICO MULTI-TENANT

CAMPINA GRANDE - PB

2023

ANNA BEATRIZ LUCENA LIRA

SEM CONFLITO NO CACHE: OBSERVAÇÕES DE UMA

PLATAFORMA DE COMÉRCIO ELETÔNICO MULTI-TENANT

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

Orientador : Thiago Emmanuel Pereira da Cunha Silva

CAMPINA GRANDE - PB

2023

ANNA BEATRIZ LUCENA LIRA

SEM CONFLITO NO CACHE: OBSERVAÇÕES DE UMA

PLATAFORMA DE COMÉRCIO ELETÔNICO MULTI-TENANT

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

BANCA EXAMINADORA:

Thiago Emmanuel Pereira da Cunha Silva

Orientador – UASC/CEEI/UFCG

Reinaldo Cezar de Morais Gomes

Examinador – UASC/CEEI/UFCG

Francisco Vilar Brasileiro

Professor da Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 17 de NOVEMBRO de 2023.

CAMPINA GRANDE - PB

RESUMO

O armazenamento em cache é uma técnica clássica para aumentar o desempenho do sistema,

reduzindo a latência percebida pelo cliente e a carga do servidor. No entanto, projetar e configurar

cuidadosamente o cache é uma tarefa desafiaforal. Inclui a escolha do tamanho da capacidade, da

política de remoção de itens, entre outros aspectos. Esta tarefa é ainda mais complexa em sistemas

multi-inquilinos, nos quais cada inquilino opera de forma independente e apresenta demandas

diferentes ao longo do tempo. Por essa razão, a configuração eficaz e a gestão do cache requerem

uma compreensão das características da carga de trabalho, incluindo níveis de carga, padrões de

acesso e localidade temporal. Este artigo concentra-se na caracterização da carga de trabalho de um

cache multi-inquilino em uma grande plataforma de comércio eletrônico. Encontramos uma

diversidade significativa entre inquilinos em relação a padrões de carga, utilidade do cache e

localidade temporal. Com base nisso, destacamos estratégias para otimizar a gestão de sistemas de

cache multi-inquilino, adotando políticas de admissão e ajuste dinâmico de capacidade

(escalonamento). A implementação dessas estratégias em um ambiente de produção constituirá uma

fase subsequente desta investigação.

NO CLASH ON CACHE: OBSERVATIONS FROM A

MULTI-TENANT ECOMMERCE PLATFORM

ABSTRACT

Caching is a classic technique for boosting system performance by reducing client-perceived latency

and server load. However, carefully designing and configuring the cache is a challenging task. It

includes choosing capacity size and eviction policy, among others. This task is more challenging in

multi-tenant systems, where each tenant operates independently and exhibits different demands

over time. For this reason, effective cache configuration and management require an understanding

of workload characteristics, including load levels, patterns of access, and temporal locality. This paper

focuses on the workload characterization of a multi-tenant cache of a large ecommerce platform. We

find a significant diversity of tenants regarding load patterns, cache usability, and temporal locality.

Based on this, we highlight strategies to optimize the management of multi-tenant cache systems by

adopting admission policies and dynamic capacity adjustment (scaling). Implementing these

strategies within a production environment will constitute a subsequent phase in this investigation.

No clash on cache: observations from a multi-tenant ecommerce
platform

Anna Beatriz Lucena Lira

anna.lira@ccc.ufcg.edu.br

Federal University of Campina Grande

Campina Grande, Paraíba, Brazil

Thiago Emmanuel Pereira da Cunha Silva

temmanuel@computacao.ufcg.edu.br

Federal University of Campina Grande

Campina Grande, Paraíba, Brazil

ABSTRACT
Caching is a classic technique for boosting system performance by

reducing client-perceived latency and server load. However, care-

fully designing and configuring the cache is a challenging task. It

includes choosing capacity size and eviction policy, among others.

This task is more challenging in multi-tenant systems, where each

tenant operates independently and exhibits different demands over

time. For this reason, effective cache configuration andmanagement

require an understanding of workload characteristics, including

load levels, patterns of access, and temporal locality. This paper

focuses on the workload characterization of a multi-tenant cache of

a large ecommerce platform. We find a significant diversity of ten-

ants regarding load patterns, cache usability, and temporal locality.

Based on this, we highlight strategies to optimize the management

of multi-tenant cache systems by adopting admission policies and

dynamic capacity adjustment (scaling). Implementing these strate-

gies within a production environment will constitute a subsequent

phase in this investigation.

KEYWORDS
Web Service. Cache. Workload. Tenant.

1 INTRODUCTION
Caching is a classic that never dies. From computer organization to

cloud-based web systems, caching reduces client-perceived latency

and service load.

To fulfill its potential as a performance booster, cache systems

need to be carefully designed and configured. This includes choos-

ing parameters, such as cache capacity size and eviction algorithms.

Failures in configuration lead to direct impacts on the quality of ser-

vice (usually observed in miss/hit ratio indicators) or resource waste

(i.e., when the cache capacity is over-provisioned and additional

capacity does not improve performance).

Effective cache configuration requires understanding workload

characteristics. A typical starting point is to estimate the load level.

The number of servers used in a large cache service depends on

this load-level information.

However applicable, knowing load levels alone cannot define

other cache parameters, such as capacity. This is because many re-

quests sent to the cache might be related to a few cached items, thus

reducing the need for more cache capacity. Also, it is well-known

that cache usage is made in phases, and most of the operations in a

Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023
.

phase are related to a subset of the cached items (the working set).

All these temporal locality aspects affect cache capacity rightsizing.

Practitioners are well aware of the importance of considering this

advice. However, one factor deviates practice from good practice:

multi-tenancy.

To illustrate, consider multi-tenant ecommerce platforms, the

case study of this paper. In these platforms, each tenant is an en-

terprise independent from the others; each tenant has its clients

and products. However independent, the tenant’s ecommerce sites

run on shared resources and services (including caches) owned

and managed by the platform. Managing multi-tenant caches is

more complex than managing single-tenant ones because all the

tenants are unlikely to behave equally. And, as we described, cache

services are sensitive to load characteristics. There might be tenants

that sell more than others. There must be tenants with large and

small product inventories. There must be tenants with seasonal

and sporadic selling patterns. All these characteristics affect cache

management.

To uncover these factors and highlight the challenges of multi-

tenant caching, we collected and analyzed one of the web cache

services from a large-scale ecommmerce platform
1
. The observed

cache service supports a few thousand tenants from different time

zones for a 10 hours observation period.

We found that diversity is the norm. Aggregated loads vary up

to three times, reaching more than 150,000 requests per minute.

Also, aggregate load follows the same overall platform traffic trend

(high traffic until late at night and lower traffic at dawn). However,

we have a completely different picture when we analyze tenants in

isolation. Some tenants exhibit stable load, others show a periodic

load pattern, while some show peak periods (even at unexpected

hours). Also, the load is highly concentrated among tenants: the

10% more loaded tenants account for almost 80% of the aggregated

load.

We also analyzed cache friendliness. A cache-friendly workload

shows a high repetition degree of access to cache items; this is

good for cache because the higher the repetition, the higher the

chances of cache hits (mainly when repeated accesses occur in a

short interval). At one side of the spectrum, a workload with no

repetition leads only to cache misses. We found that many tenants

exhibit low repetition. Half of the tenants show up to 40%; a direct

implication is that these tenants cannot have more than the 40%

of hit ratio, regardless of the cache configuration and capacity.

Repetition also varies over time. While some tenants sustain low

or high repetition during the observed period, others change their

behavior as time passes.

1
https://vtex.com

Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023 Lira and Silva

We found diversity again when we analyzed temporal locality.

While the top-1 most loaded (in the full trace) tenant has 5.1%

of requests made in a selected minute, the top-2 tenant has 0.1%

requests made on a same minute interval. In addition, there is a

high variation in temporal locality across time. For example, across

the 10-hour observation, the number of requests for top-1 tenant

goes from 0.36 to 1 (normalized).

The remainder of this paper is organized as follows. In Section 2,

we describe the procedure for collecting data from the ecommerce

platform in production. Section 3 describes the context and metrics

applied in the workload characterization presented in section 4.

In addition, Section 5 describes the implications of the observed

workload characteristics for cache management. Section 6 presents

the conclusions and future work of this research. Acknowledgments

are presented in the Section 7. Finally, the references.

2 WORKLOAD
This section describes the workload. Section 2.1 overviews the

system that the studied cache service is in, giving a brief description

of what kind of data is managed. Section 2.2 describes the non-

intrusive instrumentation for data collection on production servers.

Also, Section 2.3 explains the data used in the analysis, giving details

about what compounds.

2.1 System Overview
The data was collected from a prominent Brazilian ecommerce

business-to-business provider. This provider offers tools and ser-

vices to support other international ecommerce enterprises in cre-

ating and operating their online stores.

The system within which the cache service examined in this

research operates is responsible for themanagement of product data

for numerous catalog enterprises. The macro system is responsible

for product management, comprehending from pricing to product

data storage. The system that generates the data that we studied in

this work is responsible for product data management, and we can

call it a Catalog system. Figure 1 shows an overview of the system.

Each stored product has associated data, including text fields (e.g.

titles, descriptions, product identifier, and enterprise identifier),

as well as references to the product images. The Catalog system

comprises Load Balancers and services responsible for managing

these products. The database service that serves this system is a

type of index for the product data.

The cache service under investigation is implemented as a cluster

of NGINX[1] servers, and its primary role is to store the response

data generated by all the systems (e.g. Catalog) within the aforemen-

tioned macro system that communicates with the database service.

Each response stored in this service contains the requested product

data. It utilizes a key-value format. A key is generated by applying

a hash function to the URI that uniquely identifies a request. The

stored value is the retrieved product information.

2.2 Data Collection
As mentioned in Section 2.1, the cache service under examination

is responsible for managing response data generated by all the

services within the system previously described.

The collected data consists of logs generated by requests for prod-

uct data from various enterprises. Each request can be redirected

to different services of the macro system. As previously mentioned,

the data collection focuses on data generated from requests to the

Catalog system.

The typical path these requests follow is that they are initially

routed to the APIs, passing by the cache service before querying the

database. The response data generated from these database query

requests are stored in the cache, and the NGINX nodes produce

corresponding log entries when this data is captured and sent to a

Search Engine.

The log entries encompass various fields that provide informa-

tion about the requested product data and describe the request

parameters. These fields include request details such as the URI,

among others. Additionally, the log entries contain information

related to the cache service itself, which includes details like the

cache status, the specific NGINX node that responded to the request,

the timestamp, and the time wait.

The Search Engine under consideration operates within a high-

traffic production environment, where data collection must be con-

ducted without causing disruption or performance degradation. To

achieve this, data was collected using a 10% sample of all logs. This

sampling process was achieved by collecting a continuous 10% slice

of the logs within each 5-minute interval.

The data collection process was initiated by executing a script

within the same network as the Search Engine. The sampling pa-

rameters were configured directly within this script. The script

collected sampled data at 5-minute intervals over ten hours, specif-

ically from 21:00 to 7:00 GMT-3. The script collects a 5-minute

interval log, compresses it, and sends it to Cloud Storage. Figure 2

presents a brief overview of how this collection was executed.

2.3 About the Data
In the collected workload time interval, it was possible to get 60.9

million request log entries, signifying a substantial volume of re-

quests and cache service information. As previously mentioned, a

request signifies a query for product data associated with a particu-

lar tenant. So, these logs correspond to requests for approximately

25 million different product data belonging to approximately five

thousand businesses. Notably, each tenant exhibits unique and sig-

nificant access patterns, which section 4 will explore further.

Figure 3 presents the normalized number of incoming requests

received per minute throughout the data collection period, illus-

trating the variations and trends in request rates.

As aforementioned, each entry collected during the data collec-

tion process includes information regarding the requested data and

details about the cache service. To streamline and facilitate our

analysis, we have chosen to focus on three key fields which are

critical for our research. These fields include tenant identification,

product identification, and the request timestamp. Table 1 shows

the data description. Note that, in this work, product and item are

considered the same.

3 BACKGROUND
Caching systems for multi-tenant ecommerce platforms present

configuration and management challenges. This is because each

No clash on cache: observations from a multi-tenant ecommerce platform Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023

Figure 1: Simplified architecture of Catalog system developed by a big ecommerce provider and how it uses the studied cache
layer.

Figure 2: Diagram describing the communication between
the cache service, search engine, and the collector script.

tenant has different peculiarities in its trading, considering that each

tenant is an independently operating enterprise. For example, there

is variation among tenants in terms of request volume, product

Figure 3: Normalized incoming request rates per minute,
highlighting request rate variations and trends over the data
collection period.

Table 1: Selected fields used in this work.

Column Description

Timestamp Time instant that the request was sent

Tenant ID Hashed enterprise identifier which offers the item

Item ID Hashed requested item identified

inventory, and selling patterns. This results in a system operating

at a high load level.

Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023 Lira and Silva

As a result of these different behaviors, it is expected to generalize

system configurations and management because it is a complex task

to observe the particularities of each tenant. For this reason, there

is high resource usage in this type of system, and this often leads to

over-provisioning. For example, an overestimated capacity supports

the demand of all the tenants and also supports peak demand from

tenants at specific times. This leads to under-utilization of resources

at times of low load level. Keeping resources idle is a costly practice

that does not bring benefits because they are allocated and do not

contribute to the quality of the service. Therefore, the need arises

to configure the cache effectively.

Careful design and configuration Web caching services require

steps beyond the architecture shown in Figure 1. This involves defin-

ing the cache capacity, the item expiration time, the eviction policy,

and the admission policy. Once configured, one way of evaluating

the Cache Quality of Service is to look at the Hit Ratio, defined as

|𝐻𝐼𝑇𝑆 |
|𝑅 | , where HITS corresponds to the multiset of requests with

Hit status and R corresponds to the multiset of all requests.

For an efficient configuration, we need to know the cache de-

mand. However, measuring the demand for cache resources is not

a simple task due to several factors. Firstly, requests to the system

can vary widely in terms of frequency. In addition, access patterns

can change over time due to various factors, such as changes in user

behavior. Seasonality also plays a role, with some data being more

in demand at specific times. For auxiliary cache configuration, some

aspects can be observed to understand the workload necessities.

For example, it is important to look for:

Request Arrival The Request Arrival refers to all requests for

items arriving in the cache system.

Concentration Of Access Refers to the aggregate counts of

accesses to an item.

Footprint The Footprint metric serves as a measure of the data

accessed within a specified time window [8]. It is quantified

by counting the number of distinct requested items in a

time window. If we denote T as a given time window and

F as the set of items requested, the footprint is defined as

Footprint(𝑇) = |𝐹 |. This metric is essential for analyzing

system capacity utilization, as it allows us to see how many

items are requested in a given period. It also shares a close

relationship with the working set size (WSS) theory, which

helps to understand an application’s memory requirements.

Item Repetition Ratio The ItemRepetition Ratio (IRR) stands

as a metric for evaluating temporal data access patterns

within an application in a time window [4]. Mathematically,

IRR is defined as the quotient of the multiset of repeated

requests for items (P) and the total of requests for items (R)

within a specified time window, expressed as IRR =
|𝑃 |
|𝑅 | . The

IRR is an upper bound for the cache hit ratio within a practi-

cal caching system over a designated temporal scope. This

implies that achieving an IRR-based cache hit ratio signifies

an optimal level of cache performance, given the observed

access patterns.

Temporal Locality Temporal locality refers to the tendency

of the same document to be referenced frequently within

short intervals. It differs from concentration, which refers

to the aggregate reference counts for items, regardless of

the referencing order. Some metrics can be used to mea-

sure temporal locality, for example, the LRU stack-depth

and Inter-Reference Time. In this work, we will focus on

Inter-Reference Time.

Inter-Reference Time Inter-Reference Time represents the

time between references to the same item [2]. We calcu-

lated the mean of the Inter-Reference Time and called

it of MIRT. MIRT sets itself apart from LRU stack-depth

analysis by focusing on the timing of data access rather

than the order within a stack. While LRU stack-depth pro-

vides insight into the sequence in which a specific number

of requests occurred within a particular interval, MIRT’s

primary objective is to define and analyze these time in-

tervals.

Another aspect of cache configuration is the item expiration

time. This determines how long the data remains valid before it

needs to be updated because the company can change its inventory.

In our case, this involves a business rule, so we won’t go into ways

of better configuring this expiry time.

If only existing admission is on the cache, we need an infinite

capacity on the system because the tenant’s inventory can be in-

creased, so the footprint can grow infinitely. To control that, cache

systems use an eviction policy. When the cache system is entirely

fulfilled, these algorithms select which item must be removed to a

new item to be cached. Some algorithms are related in literature,

such as FIFO, ARC [6], LARC[5] LRU, and Others. For the cache

studied in this research, the LRU policy is used, which is the most

widely used policy in the literature and real systems. Using the

LRU policy, each time an item is accessed, it is marked as the most

recently used. When the cache is full, and a new item needs to be

stored, the LRU eviction algorithm removes the item that was least

recently used.

Another form to improve the cache system is to adopt an ad-

mission control policy. These strategies are complementary to the

replacement ones. Instead of deciding which items must leave the

cache when it is full, an admission control policy decides whether

an item should enter the cache. An effective admission policy helps

ensure that only the most relevant and frequently accessed data is

cached, optimizing the use of these resources. By default, the exam-

ined cache does not implement admission policies, presenting an

opportunity for enhancing the system’s performance. Consequently,

we will assess the load to discern potential strategies conducive to

implementing an admission policy within this cache.

The following section will present analyses that address the

workload of the multi-tenant caching system for the data trace

collected. This will be important for identifying ways to improve

the configuration and management of the system. It is important to

note that the metrics presented in Section 4 were normalized using

a min-max function.

4 WORKLOAD CHARACTERIZATION
This section presents a detailed analysis of the referencing behavior

of items in multi-tenant caching systems.

Section 4.1 focuses on observing the demand for requests the

caching system receives. It shows that the demand for web services

varies throughout the day, with peaks after working hours and

No clash on cache: observations from a multi-tenant ecommerce platform Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023

again in the early morning hours. It also describes the disparity in

the number of requests received per tenant.

Section 4.2 explores the irregular popularity of the items stored

in the system, identifying "hot" and infrequently accessed items.

The crucial observation is that 80% of all requests are directed at

only half of the distinct items in the system.

Subsection 4.3 highlights footprint as an essential metric for

measuring the volume of data accessed in a specific time interval.

In addition, it reveals temporal variations in footprint as well as

variations in footprint per tenant.

Subsection 4.4 presents IRR as a way of evaluating item access

patterns. The main point is that IRR shows temporal fluctuations,

emphasizing the need for periodic evaluation and adaptive cache

management strategies. The IRR also varies between tenants.

Subsection 4.5 evaluates the temporal locality - the frequency

with which a document is accessed in short time intervals - of the

data by analyzing the Inter-Reference Time.

4.1 Request Arrival
The initial analysis centers on the volume of requests entering

the system over ten hours, as detailed in Table 2. The table pro-

vides statistical metrics derived from the load, normalized using

min-max normalization (ranging from 0 to 1). In this normalized

scale, an activity level of 1 signifies the highest activity level ob-

served, while 0 represents the lowest. The findings reveal a mean

of 0.41 and a median of 0.37, indicating that both metrics deviate

significantly from the maximum value. This suggests a distribution

pattern wherein a substantial proportion of observations exhibit

relatively low activity levels compared to the peak request rate. The

peak of request occurs in the evening, after working hours, it is

common for demand for web services to be high. While there is a

tendency for demand to fall at daybreak, demand for services rises

again in the early hours of the morning [7].

In addition to this trends observed, we can identify seasonality

in the number of requests per minute. This refers to patterns that

repeat at fixed minute intervals, which may be related to cyclical be-

havior in a business. We also find random fluctuations or variations

that the trend or seasonality cannot explain.

Figure 4: Seasonality found in the load by decomposition
of additive time series. Recurring patterns over minutes are
probably linked to business cycles.

Table 2: Statistical measures of the number of requests per
minute using min-max normalization.

Mean Median Max Min Std. Dev

0.41 0.37 1 0 0.20

In addition to variation in the number of requests over time for

the whole load, a notable disparity in tenant requests becomes evi-

dent. A mere 10% of tenants account for approximately 78.42% of all

recorded requests. Figure 5 illustrates the cumulative request count

for each tenant, ranked accordingly. This visual representation

shows the significant disparity in tenant request distribution.

Figure 5: The cumulative request distribution, ranked by
tenant. There is a significant disparity in the distribution of
tenant requests.

Indeed, the request quantity for each tenant also displays tem-

poral variability. This introduces a layer of complexity in resource

allocation. The dynamic nature of request patterns over time means

that a tenant’s demand for resources can fluctuate, potentially lead-

ing to periods of increased demand or sudden spikes in traffic. This

may indicate that system management could be more dynamic,

sensitive to tenants’ needs, and avoiding overprovisioning or un-

derprovisioning. Figure 6 illustrates, for a sample of tenants, the

variation in the number of requests over time. Some tenants exhibit

peaks in requests, indicating periods of significantly higher demand

than their usual levels. This may result from seasonal events, special

promotions, or product launches.

Conversely, some tenants maintain relatively constant activity

over time, with no significant fluctuations in request quantity. This

suggests a more stable and predictable traffic profile associated with

a regular customer base. Furthermore, some tenants may display

intermittent request patterns, alternating between intense activ-

ity periods and relatively calm moments. This oscillation may be

influenced by peak shopping times or specific marketing actions.

Understanding these diverse behaviors is essential for an efficient

allocation of resources. Tenants with request peaks may require

more substantial cache allocations during these periods of high

demand. Conversely, tenants with more stable request patterns

may benefit from more conservative allocations.

Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023 Lira and Silva

Figure 6: The request variation over time for a selected sam-
ple of the biggest tenant by number of requests. Some show
request peaks, suggesting periods of increased demand, possi-
bly due to seasonal events, promotions, or product launches.

In order to quantify this variable behavior of the tenants, we

calculated the standard deviation of the number of requests by

tenants.

When examining the standard deviation between tenants per

minute, we observe a low variability in requests within a one-

minute interval. Using the K-Means clustering algorithm,we grouped

the standard deviations of the tenants into three groups (Low,

Medium, and high variability). Figure 7 shows the count of ten-

ants per group. Most tenants show low variability, and some can

be considered outliers in group 3. In general, tenants with a high

standard deviation may need more proactive support to deal with

variations in demand. For tenants with low variability in the data,

we can use a more conservative allocation of resources.

Figure 7: Number of tenants in each group. Many tenants
have a low standard deviation, indicating consistency in the
request pattern in relation to the average.

4.2 Concentration Of Access
Looking for requested items and evaluating the frequency of access,

we can see a significant discrepancy in popularity. Some can be

classified as "hot" items with a high access volume. These items are

characterized by their great popularity and constant demand. In

contrast, other items are rarely accessed and, in some cases, not

accessed.

Figure 8: Cumulative frequency of access by item. 80% of all
requests are directed at only half of the distinct items.

Figure 8 shows the non-uniform pattern in item referencing be-

havior. A substantial majority, precisely 80% of all requests, are

directed at only half of the distinct items in the system. This phe-

nomenon suggests the existence of a subset of items that are highly

requested, while other items show considerably less repetition. This

concentration phenomenon is a common characteristic in weblogs,

Braun and Claffy [3] have reported in an earlier study.

This implies that not all items warrant being cached. Items with

low repetition, i.e., those requested infrequently, may not justify

allocating precious cache resources. By retaining these items in

the cache, valuable resources may be directed to elements that do

not provide a commensurate benefit regarding system efficiency.

In this case, an admission control policy could be a good strategy

for deciding whether an item should enter the cache.

4.3 Footprint
As mentioned in previous sections, the footprint value depends on

the size of the window range chosen. For our trace, with a window

T of 10 hours and F the set of items requested in this interval, the

footprint is approximately 25 million items.

When we look at the footprint per tenant, with T of 10 hours and

F of the set of tenant’s requested items, we see that many tenants

have a low footprint while others have a large one. Figure 9 illus-

trates the distribution of Footprints among tenants for the T of 10

hours, highlighting a significant concentration of lower Footprint

values. In summary, the 75% of tenants with the smallest footprint

represent a portion of only around 10% of the total footprint. Fur-

thermore, Figure 9 also shows tenants with a large Footprint. These

tenants can take up a large slice of cached storage.

Also, we can correlate the number of requests and footprint. The

Pearson correlation coefficient between the number of requests

and footprint is 0.88. This indicates a strong positive correlation.

This suggests that, in general, as the number of requests increases,

the footprint also tends to increase and is very close to the value 1,

No clash on cache: observations from a multi-tenant ecommerce platform Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023

suggesting that this linear association is strong. Correlation does

not imply causality. Even if there is a strong correlation between

the number of requests and the footprint, we cannot conclude that

one causes the other.

Figure 9: Normalized Distribution footprint per tenant. Some
tenants show a big footprint. These tenants can occupy a big
slice of the cache storage.

The tenant’s specific footprint evolves over time, influenced by

their different workload patterns, such as changes in the number

of orders. As mentioned, variations in T can lead to changes in the

Footprint value. Figure 10 further illustrates this dynamic, showing

the variations in footprint per hour for selecting the six largest

tenants. This emphasizes that a tenant’s footprint can change over

time.

To measure the variation in tenant footprint per window, we

calculated the standard deviation of the footprint and grouped it

by K-Means Algorithm. Figure 11 shows it. Most of the tenants

showed low variation. However, a notable observation is the con-

siderable disparity between the maximum and average values of

deviation. The maximum is one hundred and four times higher than

the average. This substantial difference suggests the presence of

atypical tenants characterized by significant footprint variations.

In addition, the minimum standard deviation value of 0 is expected

since some tenants may have only a single product or only one

order in the collected workload, resulting in no variability in their

footprints.

Approximately 15% of shopkeepers have standard deviations

higher than the average. This finding implies that some tenants’

footprints show substantial variations over time, contributing to

the higher standard deviation values. These tenants probably have

distinct and fluctuating data access patterns that significantly affect

their Footprint metrics. Observing the footprint in time windows

can help us understand the storage space requirements of each

tenant in the system.

4.4 Item Repetition Ratio
A notable observation is the variation in IRR values across different

tenants. This implies that sure tenants are more adept at taking

advantage of the benefits of caching, while others may not exhibit

behaviors favorable to caching. Figure 12 shows many tenants

Figure 10: Footprint over time for a selected sample of the
biggest tenant by number of requests. Underscores that a
tenant‘s Footprint can change over time.

Figure 11: Percentage of tenants by a group based on foot-
print standard deviation, using the K-means algorithm. This
grouping distribution reinforces the correlation between
footprint and number of requests.

have low IRR. For example, around 50% of tenants have IRR less

than or equal to 40%. With low repetition, these tenants could be

candidates for not having items in the cache since their requests

in a time window are for different items, not contributing to the

cache hit.

By decreasing the window grain for adjacent 1-hour windows,

we observe some IRR behaviors over time, as shown in figure 13.

Some tenants show high IRR with slight variation, others low IRR

with little variation, and others show considerable variation in

IRR between windows. We calculated the standard deviation of

the tenants’ IRR over the windows to quantify these variations.

Figure 14 shows the percentage of tenants by a group based on

standard deviation, using the K-means algorithm. We observe that,

for most tenants, the standard deviation of the IRR is relatively

low, which may indicate that tenants have similar access patterns

in adjacent windows. This shows that, before entering the cache

system, analyzing the tenants’ IRR could be a strategy for allowing

them in or not. For example, if the tenant’s IRR is high and has little

Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023 Lira and Silva

Figure 12: Cumulative distribution of IRR. Some tenants are
better at capitalizing on caching advantages, while others
may not demonstrate cache-friendly behavior, occupying
memory and worsening performance.

Figure 13: IRR over time for a selected sample of the biggest
tenant by number of requests. Shows the many different
patterns and variations by hour.

variation, it is a good candidate for cache entry. On the other hand,

if the IRR is low and with little variation, it is a candidate for not

entering the cache at any time.

In addition to the tenants with a slightly variable IRR, we also

observed some that showed temporal oscillation. This dynamic

behavior emphasizes the importance of evaluating the adequacy

of the cache at specific time intervals. This approach makes it

possible to discern tenants whose caching behavior may fluctuate

over time, thus requiring adaptive cache management strategies for

optimal performance. In this case, the system should ideally have

a mechanism for calculating IRR periodically that plays a central

role in fine-tuning cache capacity by selecting which tenant should

or should not be in the cache at a given time.

4.5 Temporal Locality
This section will look at Inter-Reference Time. This helps us under-

stand the tendency of the same item to be referenced frequently

within short intervals. In general, we observe that the pattern of

Figure 14: Percentage of tenants by a group based on IRR
standard deviation, using the K-means algorithm. Around
50% of the tenants have a low standard deviation, while the
other half have a more significant variation in the IRR.

temporal locality changes over time. This shows that tenants’ and

items’ cache requests are variable over time. This further reinforces

the need for dynamic management.

Many items have Mean Inter-Reference Time (MIRT) lower or

equal to 150 minutes, specifically 57.20% of them. This indicates

that the items are accessed with a relatively high frequency in a

relatively short time. Table 3 also reinforces this by showing that

the measures of central tendency (mean and median) are low. This

is an indication of good cache usage by the items. On the other

hand, 42.80% of the items have a Mean Inter-Reference Time longer

than 150 minutes. This indicates that many items are idle during

specific periods, taking up space in the cache.

Figure 15: Percentage of items byMean Inter-Reference Time
(binwidth = 25). Most have MIRT lower or equal to 150 min-
utes. This points to the fact that the items are frequently
accessed within a relatively short period.

Observing theMIRT of all items over ten consecutive windows of

data can provide insights into the evolution of access patterns over

time by observing how the frequency of access to items changes

No clash on cache: observations from a multi-tenant ecommerce platform Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023

Table 3: Statistical measures of MIRT for full workload.

Mean Median Max Min

0.26 0.19 1 0

Figure 16: Percentage of items by MIRT for each 1-hour win-
dow to all items (binwidth = 5). Shows the dynamic trend in
item access patterns.

over different periods. Figure 16 shows the dynamic trend in item

access patterns.

During the first few hours, the number of access is high, and the

average number of hits is concentrated mainly between 10 and 15

minutes. After that, the number of accesses decreases and becomes

increasingly dispersed, although the bigger number of hits is still

concentrated between 10 and 15 minutes.

5 PERFORMANCE IMPLICATIONS AND
ISSUES

The observed load levels and access patterns notably influence the

cache management and resource allocation in a multi-tenant envi-

ronment. This section delves into the ramifications of the varied be-

haviors exhibited by tenants, highlighting possible strategies to op-

timize cache performance and mitigate resource over-provisioning.

5.1 Items with low frequency of access: A Case
for Exclusion from Cache

Items with low repetition may not justify their inclusion in the

cache. Allocating cache resources to items with sporadic access

may lead to sub-optimal resource utilization. For example, for the

cache system studied, 50% of the items stored correspond to only

20% of the requests. This means that they have a low frequency

of access while they may occupy fifty percent of the resources. In

this case, adopting admission control policies like Lazy Adaptive

Cache Replacement [5] and CacheSack [9], that do not allow items

with potentially low access to enter can be efficient strategies for

cache management. These policies can maintain or improve system

performance while demanding less allocation space.

5.2 Item Repetition Ratio as a Filter for Tenants
As Section 4 indicates, some tenants consistently exhibit a low Item

Repetition Ratio. In such cases, for better cache utilization, items

from these tenants may not be included in cache at any time. To

control that, the IRR can work as a filter metric for tenant admission

policy in the production environment.

We calculated the optimal hit ratio value for the entire workload,

this value is approximately 59%. Based on that, we systematically

performed an exclusion analysis of tenants with IRR values below

specific thresholds to observe the optimal capacity that permits

the cache reach the mentioned optimal hit ratio. This methodical

approach produced convincing results, showing a notable increase

in cache efficiency. When tenants with 20% or fewer IRR values

were excluded, the optimal cache capacity was reduced to 90%

of the original capacity, resulting in an optimal hit ratio of 61%.

Similarly, imposing a stricter criterion of 30% IRR led to an optimal

capacity of 78% of the original, culminating in a higher hit rate of

64%. Adopting a less conservative stance and excluding tenants

with IRR values of 50% or less further improved the efficiency of

the cache, producing an optimal capacity of 49% of the original

capacity and a commendable hit rate of 71%.

Figure 17: Optimal hit ratio by Optimal Capacity for each
one of workloads. Each line is one type of workload (i.e. the
line IRR >= 20 means that only tenants with IRR above or
equal to 20 are on the workload). This suggests that some
tenants with low IRR can be removed to reduce the capacity
while maintaining the same level of performance.

These empirical findings imply that finding an IRR threshold can

be an efficient way of controlling tenant admission to the cache

system. Therefore, we can see capacity savings and a marked en-

hancement in hit ratios. This approach can not only optimize cache

performance but also guarantee a heightened quality of service.

One potential strategy to manage cache usage by tenants in-

volves analyzing Item Response Rate (IRR) and related metrics.

This approach employs predefined threshold values to make deci-

sions regarding whether to cache items from specific tenants. The

primary objective is to optimize cache utilization by accommodat-

ing tenants with favorable IRR patterns while restricting cache

storage for those with lower IRR. This approach can operate within

defined time intervals, allowing tenants with temporarily low IRR

to eventually regain cache access.

Trabalho de Conclusão de Curso, Bacharelado em Ciência da Computação, 2023 Lira and Silva

Another strategy is to identify tenants with undesirable charac-

teristics and permanently exclude them from cache storage using

URI identification and NGINX features. This approach aims to pro-

vide a directly and long-term control over cache access, ensuring

that certain tenants do not impact cache performance negatively.

These strategies collectively contribute to improving system per-

formance and resource allocation.

5.3 Cache Resource Scaling
The dynamic nature of the Number of Requests, footprint, and Item

Repetition Ratio for certain tenants highlights the need for dynamic

capacity management of cache resources. This approach is akin to

auto-scaling in virtual machines (VMs) or container orchestration

platforms like Kubernetes. Just as auto-scaling adapts the number

of VM instances or containers in response to real-time demand,

cache resources must be flexible to accommodate evolving access

patterns.

For example, during peak hours or promotional events, there

may be a sudden increase in access to various items. This surge in

demand requires a temporary boost in cache resources to maintain

optimal performance. Conversely, maintaining the same cache ca-

pacity during off-peak periods is inefficient, as access frequency

decreases. In such scenarios, dynamically scaling down the cache

capacity can free up resources for more critical tasks. This dynamic

resource allocation strategy not only optimizes cache performance

but also enhances system efficiency and cost-effectiveness, aligning

it with contemporary cloud-native computing paradigms.

6 CONCLUSION AND FUTUREWORK
This paper has provided an analysis of the workload characteristics

in a multi-tenant cache environment using data from a prominent

web cache service in a large-scale ecommerce platform. The findings

have revealed a significant imbalance in request distribution among

tenants, with approximately 80% of requests directed towards 10%

of them. Moreover, we observed distinct access behavior patterns,

ranging from steady loads to periodic spikes in request volumes.

Furthermore, the study highlighted that many requests concen-

trated on a few items, while others experienced sporadic access.

Additionally, it was evident that some tenants demonstrated low

cache-friendliness, resulting in a cache hit ratio decrease due to

infrequent item retrievals.

The cache-friendliness is mainly related to tenants’ request pat-

terns and product inventory. Was realized important request pat-

terns in tenants’ workloads: Some tenants are more searched than

others, and this implies a more significant number of requests to

the system; can present seasonal request patterns, others sporadic

patterns; can present peaks and/or valleys in request patterns, or

can present stable patterns over time. In addition, there are tenants

with an extensive number of products, which can mean that they

need more storage space than others.

These load characteristics are important points for formulating

effective cache management policies. What would be the impact

of adopting a policy of partitioning resources between tenants to

prevent large tenants from impacting smaller ones? What if we

adopted a policy of admitting items? Raising the grain, what if we

adopted a tenant admission policy? Also, what if we could set up a

cache with dynamic capacity modification for adequate demand?

These management strategies will be our following objects of

study. If they are indeed effective strategies, we will focus our

efforts on implementing them in the production environment from

an engineering point of view. In doing so, we aim to contribute to

the overall efficiency and effectiveness of multi-tenant systems in

real applications.

7 ACKNOWLEDGMENTS
First, I would like to thank my advisor, Thiago Emmanuel, for

his guidance and unwavering support throughout this research.

I am also deeply appreciative of my research group, particularly

Ruan Alves and João Henrique, with whom I worked closely and

who were already engaged in this cache universe. I extend my

thanks to all the members of the Distributed Systems Laboratory,

the laboratory that welcomed me and encourage my appreciation

for science every day. I would like to thank Cleide for being the

heart of the lab and for always being there for everyone.

I am immensely grateful to my family, who supports me through-

out my academic journey. In particular, Flávia Lucena, Maria Júlia

Lucena, Maria Eduarda Lucena, Josiete Lucena, and Eliete Lucena,

your encouragement meant the world to me. I would also like to ex-

press my gratitude to my friends, especially the remarkable women

scientists whom I am fortunate to call my friends. Sheila Paiva,

Helen Cavalcanti, Andrielly Lucena, Leandra Oliveira, Narallynne

Maciel, may we continue to champion the presence of women in

science. Last but not least, I cannot forget to thank Mimi, the feline

companion who kept me company during days of study and work.

This work has been funded by MCTIC/CNPq-FAPESQ/PB (EDI-

TALNº 010/2021) and byVTEXBRASIL (EMBRAPII PCEE1911.0140).

REFERENCES
[1] Nginx documentation. https://nginx.org/en/docs/. Accessed: 2023-11-05.

[2] Arlitt, M. F., and Williamson, C. L. Internet web servers: workload char-

acterization and performance implications. IEEE/ACM Trans. Netw. 5, 5 (1997),
631–645.

[3] Braun, H.-W., and Claffy, K. C. Web traffic characterization: an assessment of

the impact of caching documents from ncsa’s web server. Computer Networks and
ISDN systems 28, 1-2 (1995), 37–51.

[4] Gu, R., Li, S., Dai, H., Wang, H., Luo, Y., Fan, B., Basat, R. B., Wang, K., Song,

Z., Chen, S., Wang, B., Huang, Y., and Chen, G. Adaptive online cache capacity

optimization via lightweight working set size estimation at scale. In 2023 USENIX
Annual Technical Conference, USENIX ATC 2023, Boston, MA, USA, July 10-12, 2023
(2023), J. Lawall and D. Williams, Eds., USENIX Association, pp. 467–484.

[5] Huang, S., Wei, Q., Feng, D., Chen, J., and Chen, C. Improving flash-based disk

cache with lazy adaptive replacement. ACM Trans. Storage 12, 2 (2016), 8:1–8:24.
[6] Megiddo, N., and Modha, D. S. ARC: A self-tuning, low overhead replacement

cache. In Proceedings of the FAST ’03 Conference on File and Storage Technologies,
March 31 - April 2, 2003, Cathedral Hill Hotel, San Francisco, California, USA (2003),

J. Chase, Ed., USENIX.

[7] Vallamsetty, U., Kant, K., and Mohapatra, P. Characterization of e-commerce

traffic. Electronic Commerce Research 3, 1 (2003), 167–192.
[8] Xiang, X., Ding, C., Luo, H., and Bao, B. HOTL: a higher order theory of locality.

In Architectural Support for Programming Languages and Operating Systems, ASP-
LOS 2013, Houston, TX, USA, March 16-20, 2013 (2013), V. Sarkar and R. Bodík, Eds.,
ACM, pp. 343–356.

[9] Yang, T., Pollen, S., Uysal, M., Merchant, A., Wolfmeister, H., and Khalid,

J. Cachesack: Theory and experience of google’s admission optimization for

datacenter flash caches. ACM Trans. Storage 19, 2 (2023), 13:1–13:24.

https://nginx.org/en/docs/

	Abstract
	1 Introduction
	2 Workload
	2.1 System Overview
	2.2 Data Collection
	2.3 About the Data

	3 Background
	4 Workload Characterization
	4.1 Request Arrival
	4.2 Concentration Of Access
	4.3 Footprint
	4.4 Item Repetition Ratio
	4.5 Temporal Locality

	5 Performance Implications and Issues
	5.1 Items with low frequency of access: A Case for Exclusion from Cache
	5.2 Item Repetition Ratio as a Filter for Tenants
	5.3 Cache Resource Scaling

	6 Conclusion and Future Work
	7 Acknowledgments
	References

