
UNIVERSIDADE FEDERAL DE C A M P I N A GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

C O O R D E N A Ç Ã O DE PÓS-GRADUAÇÃO EM CIÊNCIA DA C O M P U T A Ç Ã O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Tese

Uma Abordagem Automatizada para Testar Ferramentas de Refatoramento

Gustavo Araújo Soares

Campina Grande, Paraíba. Brasil

©Gustavo Araujo Soares, março de 2014

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Uma Abordagem Automatizada para Testar

Ferramentas de Refatoramento

j

Gustavo Araújo Soares

Tese submetida à Coordenação do Curso de Pós-Graduação em Ciência

da Computação da Universidade Federal de Campina Grande - Campus

I como parte dos requisitos necessários para obtenção do grau de Doutor

em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

Rohit Gheyi

(Orientador)

Campina Grande, Paraíba. Brasil

©Gustavo Araújo Soares, 10/03/2014

"UMA ABORDAGEM AUTOMATIZADA PARA TESTAR FERRAMENTAS DE

REFATORAMENTO"

GUSTAVO ARAUJO SOARES

TESE APROVADA COM DISTINÇÃO EM 27/02/2014

Examinador(a)

PAULO HENRIQUE MONTEIRO BORBA, Ph.D, UFPE
Examinador(a)

PATRICIA DUARTE DE LIMA MACHADO, Ph.D, UFCG

Examinador(a)

TIAGO $ M A MASSONI, Dr., UFCG
Examinador(a)

CAMPINA GRANDE - PB

Resumo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Refatoramento é uma transformação aplicada a um programa para melhorar suas qualidades

internas sem alterar seu comportamento observável. Apesar de trazer benefícios, como fa-

cilitar a manutenção, refatorar também envolver riscos, como introduzir erros de compilação

ou mudanças comportamentais. Para ajudar o desenvolvedor nesse processo, surgiram as fer-

ramentas de refatoramento. Elas checam condições necessárias para garantir a preservação

do comportamento, e quando estas condições são satisfeitas, aplicam a transformação. No

entanto, c difícil identificar o conjunto mínimo e completo de condições para cada refatora-

mento. Se uma condição não é implementada, a ferramenta pode alterar o comportamento

do programa. Por outro lado, desenvolvedores podem implementar condições que não só

previnem mudanças comportamentais, mas também impedem a aplicação de transformações

que preservam comportamento, diminuindo a aplicabilidade da ferramenta. Estas condições

são conhecidas como condições muito fortes. Nesse trabalho, propomos uma técnica para

testar ferramentas de refatoramento para Java com o objetivo de avaliar se o conjunto de

condições implementadas é mínimo e completo. Primeiro, geramos automaticamente um

conjunto de programas para serem refatorados. Para isso, propomos um gerador de pro-

gramas Java, J D O L L Y , que gera exaustivamente programas para um determinado escopo de

elementos. Para cada programa gerado, aplicamos o refatoramento utilizando a ferramenta

em teste. Para detectar falhas nas transformações, utilizamos o S A F E R E F A C T O R , uma fer-

ramenta que propomos para detectar mudanças comportamentais. Por outro lado, quando as

transformações são rejeitadas pela ferramenta, propomos uma abordagem de teste diferen-

cial para detectar condições fortes. A técnica compara o resultado da ferramenta em teste

com os resultados dc outras ferramentas. Por fim, as falhas detectadas são classificadas em

tipos distintos de faltas. Nós avaliamos a eficiência da nossa técnica testando três ferra-

mentas: Eclipse 3 .7 , NetBeans 7 . 0 . 1 , e duas versões do JastAdd Refactoring Tools (JRRTv I

e JRRTv2). Foram testados até 1 0 implementações de refatoramento em cada ferramenta.

No total, nossa técnica identificou 34 faltas relacionadas a condições não implementadas no

Eclipse. 5 1 faltas no NetBeans, 24 faltas no JRRTv 1, e 11 faltas no JRRTv2. Além disso,

foram encontradas 1 7 e 7 condições muito fortes no Eclipse e JRRTv 1, respectivamente.

i

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Refactoring is a transformation applied to the program to improve its internal structure with-

out changing its external behavior. Although it brings benefits, such as making it easier to

maintain the code, it also involves risks, such as introducing compilation errors or behavioral

changes. To help developers in this process, there are refactoring engines. They check con-

ditions needed to guarantee behavioral preservation, and when these conditions are satisfied,

they apply the desired transformation. However, identifying and implementing the complete

and minimal set of conditions for each refactoring are non-trivial tasks. In practice, tool de-

velopers may not be aware of all conditions. When some condition is not implemented, the

tool may change the program's behavior. On the other hand, they may also implement con-

ditions that not only prevent behavioral changes, but also prevent behavior-preserving trans-

formations, reducing the applicability of these tools. In this case, we say they implemented

an overly strong condition. In this work, we propose a technique for automated testing of

Java refactoring engines to identify problems related to missing conditions and overly strong

ones. First, we automatically generate programs to be refactored, as test inputs. To do so,

we propose a Java program generator, J D O L L Y , that exhaustively generates programs for a

given scope of Java elements. Then, for each generated program, the desired refactoring is

applied by using the engine under tests. To detect failures in the applied transformations, we

use S A F E R E F A C T O R , a tool that we proposed for detecting behavioral changes. On the other

hand, when the transformations are rejected by the engine, we propose an differential testing

technique to identify overly strong conditions. It compares the results of the engine under

tests with results of other engines. The final step of the technique is to classify the detected

failures into distinct faults. We evaluated the effectiveness of the technique by testing up to

10 refactorings implemented by three tools: Eclipse 3.7, NetBeans 7.0.1, and two versions of

JastAdd Refactoring Tools (JRRTvl and JRRTv2). Our technique identified 34 faults related

to missing conditions in Eclipse, 51 ones in NetBeans, 24 ones in JRRTvl , and 1 1 ones in

JRRTv2. In addition, it detected 17 and 7 overly strong conditions in Eclipse and JRRTvl ,

respectively.

ii

Agradecimentos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Gostaria de agradecer, primeiramente, a Deus por estar ao meu lado em todas as etapas da

minha vida. Esse doutorado também não seria possível sem a contribuição de algumas pes-

soas. Em primeiro lugar, eu tive muita sorte de ter Rohit Gheyi como meu orientador nesses

quatro anos de doutorado na UFCG. Mesmo com pouco tempo como professor, não acredito

que eu poderia ter tido orientador melhor. Rohit tem ideias brilhantes e sempre acredita que

o trabalho pode ser melhorado. Ele sempre buscou me ensinar todas as habilidades para se

tornar um pesquisador completo, desde a escolha do problema à arte de escrever e apresen-

tar bem. E isso não foi uma tarefa fácil, mas ele sempre acreditou no meu potencial e me

incentivou a chegar a lugares que nem eu imaginaria que poderia chegar. Obrigado, Rohit.

por tudo o que você fez por mim, e por ter se tornado um grande amigo!

Eu gostaria de agradecer também a Emerson Murphy-Hill, por ter me orientado durante

meu doutorado sanduíche na North Carolina State University. Apesar do curto período, seus

conselhos foram fundamentais não só para a pesquisa que eu desenvolvi lá mas também para

me tornar um pesquisador mais completo. Emerson chegou a fazer um "pair writing" (algo

como pair programming para artigo) comigo na época de escrita de artigo. Além disso, pude

assistir suas aulas sobre "aspectos humanos na engenharia de software", o que me ajudou

a abrir mais meu leque de conhecimentos. Agradeço também a todos os membros do seu

grupo que me acolheram muito bem em Raleigh: Xi Ge, Jim Witschey, Brittany Johnson, e

Yoonki Songo. Não posso deixar de agradecer também ao programa Ciência Sem Fronteiras

por ter viabilizado os recursos financeiros para essa viagem, e a Sérgio Soares por ter me

ajudado no processo para receber o recursos.

Agradeço a Sumit Gulwani, por ter me orientado no meu estágio em pesquisa na Mi-

crosoft Research. Foi um prazer trabalhar com uma pessoa brilhante como Sumit. Nunca

vou me esquecer de sua paixão e dedicação pelo trabalho e a vontade de usar seu conhec-

imento em computação para ajudar as pessoas. Serei eternamente grato pela oportunidade

que ele me deu e por tudo que ele conseguiu me ensinar em tão pouco tempo. Agradeço

também aos amigos que fiz na Microsoft: João Moreira, Rafael Auler, Ana Riekstin, Dilecp

Kini, Vu Le. Rohit Sinha. Iury Dewar. Gabor Simkó, e Nora Bálint. Foi uma experiência

fantástica.

iii

Gostaria de agradecer também aos membros da minha banca de doutorado pelas con-

tribuições neste trabalho: Alessandro Garcia, Paulo Borba, Patrícia Machado, e Tiago Mas-

soni. Agradeço ao Max Schaefer por disponibilizar o JRRT e ajudar na classificação dos

bugs encontrados. Agradeço aos membros da banca do simpósio de doutorado do SPLASH

2012. pelos seus comentários sobre meu trabalho: Michel Ernst, Cristina V. Lopes, Matthew

B. Dwyer, Hridesh Rajan, Milind Kulkarni, e Andrew P. Black.

Gostaria dc agradecer também a todas as pessoas que fizeram da UFCG c de Camp-

ina Grande um lugar especial para mim. Agradeço aos meus amigos: João Arthur Brunet.

Melina Mongiovi. Catuxe Varjão, Elthon Oliveira, Larissa Braz, Alan Moraes, Marco Ros-

ner, Jemerson Damásio, Paulo Ditarso, Marcus Carvalho, Nazareno Andrade, Laerte Xavier,

e todos os outros amigos que fiz aqui. Agradeço também a UFCG, aos professores e aos

funcionários do DSC/COP1N. Agradeço a todos os membros do grupo Software Productiv-

ity Group, tanto na UFCG, quanto na UFPE, aonde participei várias vezes de workshops que

ajudaram a melhorar meu trabalho. Agradeço ao CNPq, Capes, e ao Instituto Nacional de

Engenharia de Software por apoiarem meu trabalho.

Agradeço a minha namorada, Yohanna Klafke, por estar ao meu lado nessa jornada, pela

compreensão nesses últimos dois anos de muito trabalho, e por sempre ter me apoiado e

incentivado a ir mais longe. Queria agradecer também a toda minha família. Especialmente

aos meus pais, Ronaldo e Graça, e meus irmãos. Meus pais sempre foram para mim um

modelo de dedicação, honestidade, e desejo pelo conhecimento. Me incentivaram na minha

carreira acadêmica desde o primeiro momento que eu pensei em seguí-la. E de lá para cá,

sempre me apoiaram. Nada disso seria possível sem eles. Eu dedico essa tese ao meus pais.

iv

Contents

1 Introduction 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.1 Problem 2

1.1.1 Missing conditions 2

1.1.2 Overly strong conditions 5

1.1.3 Research questions 6

1.2 Solution

1.3 Evaluation 8

1.4 Summary of contributions 9

1.5 Organization 10

2 Background 11

2.1 Program refactoring 11

2.1.1 Example 11

2.1.2 Refactoring engines 15

2.1.3 Behavioral preservation I

2.1.4 Refactoring verification 19

2.2 Testing overview 22

2.2.1 Test case 22

2.2.2 Oracle 23

2.2.3 Test coverage criteria 24

2.2.4 Testing refactoring engines 24

2.3 Alloy Overview 32

2.4 Concluding remarks 34

v

CONTENTSzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA vi

3 JDOLLY: A Java program generator 35 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.1 Overview 35

3.2 Java metamodel 36

3.2.1 Abstract syntax 36

3.2.2 Well-formedness rules 38

3.3 Program generation 39

3.4 Generating more specific programs 40

3.5 Evaluation 40

3.5.1 Definition 40

3.5.2 Planning 41

3.5.3 Operation 44

3.5.4 Discussion 45

3.5.5 Answers to the research questions 46

3.5.6 Threats to validity 47

3.6 Concluding remarks 47

4 SAFEREFACTOR 49

4.1 Overview 49

4.2 Evaluation 52

4.2.1 Compared techniques 52

4.2.2 Definition 53

4.2.3 Planning 55

4.2.4 Operation 56

4.2.5 Discussion 61

4.2.6 Threats to validity 67

4.3 Concluding remarks 70

5 A technique for testing of refactoring engines 72

5.1 Overview 72

5.2 Test input generation

5.3 Refactoring application

5.4 Test oracles

CONTENTSzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA vii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.4.1 Missing conditions 74

5.4.2 Overly strong conditions 74

5.5 Failure classification 76

5.5.1 Missing conditions 76

5.5.2 Overly strong conditions 80

5.6 Evaluation: missing conditions 80

5.6.1 Planning 80

5.6.2 Operation 83

5.6.3 Discussion 86

5.6.4 Threats to Validity 89

5.7 Evaluation: overly strong conditions 91

5.7.1 Threats to Validity 98

5.8 Concluding remarks 99

6 Related Work 100

6.1 Refactoring verification and testing 100

6.2 Automated Testing 103

6.3 Empirical studies on refactoring 104

6.4 Concluding remarks 106

7 Conclusions 108

7.1 Future work 110

A Java metamodel specification in Alloy 125

B Algorithms for checking refactoring scope and granularity 132

List of Figures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.1 Pull Up Field from Eclipse, (a) developer selects the desired refactoring; (b)

developer configures additional parameters, and confirms the refactoring by

pressing the Finish button 16

2.2 Eclipse 3.7 preview of the desired refactoring 16

2.3 Rule for applying a refactoring in ROOL [8] 20

2.4 Test cases created by JRRT developers to evaluate the Pull Up Method refac-

toring implementation 25

2.5 Programs representing Java Inheritance Graphs 29

2.6 A UML class diagram and its representation in Alloy 33

3.1 The Java metamodel specified in J D O L L Y 37

3.2 Translation of an Alloy solution to a Java program, (a) A solution of the Java

metamodel generated by Alloy Analyzer; (b) the translation of the solution

into a concrete Java program 39

3.3 Programs representing the generation of Java Inheritance Graphs by UDITA

and J D O L L Y for the scope of two elements 46

3.4 Isomorphic programs generated by J D O L L Y 46

4.1 Safe Refactor's technique; 1) The tool identifies the methods with same sig-

nature before and after the transformation; 2) It generates a test suite for the

identified methods using Randoop; 3) It runs the tests on the source program;

4) It runs the tests on the target program; 5) Finally, Safe Refactor evaluates

the results: if they are different, the tool reports a behavioral change. Other-

wise, the developer can increase confidence that the programs have the same

behavior 50

viii

LIST OF FIGURES ix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.1 Automated behavioral testing of refactoring engineszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 73

List of Tables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 .1 Industrial Java refactoring engines [8 8] 1 5

2 . 2 Refactorings supported by Eclipse 1 7

3.1 Comparison of J D O L L Y and UDITA; Prog.: Number of generated programs;

Comp.: number of compilable programs; Isomor: number of isomorphic

programs; Unique: number of unique programs; NG: number of unique pro-

grams that were not generated 4 5

4 .1 Results of analyzing 4 0 versions of JHotDraw; LOC = non-blank, non-

comment lines of code before and after the changes; Granu.: granularity

of the transformation; Scope: scope of the transformation; Refact. = Is it a

refactoring?; #Tests = number of tests used to evaluate the transformation;

Cov. (%) = statement coverage on the target program; MH = Murphy-Hill. . 5 8

4 . 2 Results of analyzing 2 0 versions of Apache Common Collections; LOC

= non-blank, non-comment lines of code before and after the changes;

Granu.: granularity of the transformation; Scope: scope of the transforma-

tion; Refact. = Is it a refactoring?; #Tests = number of tests used to evaluate

the transformation; Cov. (%) = statement coverage on the target program;

MH = Murphy-Hill 5 9

4 . 3 Summary of false positives, false negatives, true positives, and true negatives. 6 0

4 . 4 False positives of S A F E R E F A C T O R ; Problem = description of the reason of

the false positive; Versions = ids of the versions related to the false positives. 6 2

5.1 Filters for classifying behavioral changes 7 9

x

LIST OF TABLESzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA xi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.2 Summary of evaluated refactorings; Scope = Package (P) - Class (C) - Field

(F) - Method (M) 81

5.3 Summary of the main constraints 82

5.4 Summary of the additional constraints 83

5.5 Summary of faults reported 84

5.6 Overall experimental results; GP = number of generated programs; CP =

number of compilable programs (%); Time = total time to test the refactoring

in hours; Fail. = number of detected failures; Bug = number of identified faults. 85

5.7 Summary of evaluated refactoring implementations 92

5.8 Summary of the experiment; Program = number of programs generated

by JDolly; Rejected Transformation = number of transformations rejected

by the implementation; Rejected B. Pres. Transformation = number of

behavior-preserving transformations that were rejected; Overly strong con-

dition = number of overly strong conditions classified by our technique. . . 94

5.9 Summary of overly strong conditions of Eclipse 3.7 and JRRTv 1 96

Chapter 1

Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

During the life cycle of a software, its maintenance and evolution are inevitable. After its

release, clients demand new requirements and revealed faults need to be fixed. The more

the software is modified, the more complex its code become, making it more difficult to

be maintained. To avoid that, developers need to restructure the code, improving its inter-

nal structure, while preserving its external functionalities; a kind of maintenance known as

perfective [1]. The process of changing the internal structure of a program to improve its

internal qualities but preserving its external behavior is known aszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA refactoring. This term was

coined by Opdyke and Johnson [54; 53], and latter, popularized in practice by Fowler [19],

Fowler [19] proposes to perform refactorings by applying small changes intercalated with

compilation checks and tests to guarantee successful compilation and behavioral preserva-

tion. While compilation checks guarantees the absence of compilation errors after the trans-

formation, tests evaluate whether the behavior of the program is preserved. In other words,

refactorings must not only produce well-formed programs, but also the versions of the pro-

grams before and after refactoring must have the same external behavior.

To help developers in this activity, Don Roberts proposed the first refactoring tool, Refac-

toring Browser, which automates a number of refactorings for Smalltalk [65]. A refactoring

tool automates the process of checking conditions that must be satisfied in order to apply

the transformation. For instance, to pull up a methodzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA m to a superclass, we must check

whether m conflicts with the signature of other methods in that superclass. Currently, most

Java Integrated Development Environments (IDEs), such as Eclipse [16], NetBeans [85],

JBuilder 118], IntelliJ [35], automate some refactorings.

I

1.1 Problem 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.1 Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Defining and implementing the minimal set of conditions needed for each refactoring are

non-trivial tasks. One can prove the correctness of this set for a language with a simple and

formal semantics. For instance, Proietti and Pettorossi [58] propose a formal semantics for

Prolog and prove some transformation rules. However, a number of popular languages, such

as Java, C, and C#, have a complex semantics without a complete formal definition consider-

ing all elements of the language, which makes it difficult to prove refactoring correctness. In

this work, we focus on problems for specifying and implementing refactorings for Java pro-

grams. Java is one of the most popular languages,1 and was used by Fowler [19] to illustrate

all refactorings presented in his catalog. Moreover, modern IDEs for Java, such as Eclipse

and NetBeans, contain a number of automated refactorings.

1.1.1 Missing conditions

In practice, refactoring tool developers may not be aware of all refactoring conditions. If

some condition is missing, the refactoring engine may perform transformations that intro-

duce compilation errors or behavioral changes. For instance, consider the Java program

illustrated in Listing 1.1. The methodzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA B . t e s t () yields 1. If we use Eclipse 3.7 to perform

the Pull Up Method refactoring on m () , the tool will move method m from class B to class

A, and update super to t h i s . This transformation introduced a behavioral change: t e s t

yields 2 instead of 1. Since m is invoked on an instance of B, the call to k using t h i s is

dispatched to the implementation of k in B.

Formal methods

Researches have tried to handle the problem of missing conditions by formally specifying

refactorings considering a subset of the language [8; 13; 86; 75; 71 ; 74; 68; 84; 51]. They

provide guidelines and techniques that can be useful for developing refactoring engines.

Previous approaches include analyses of some of the various aspects of a language, such as:

accessibility, types, name binding, data flow, and control flow. For instance, Borba et al. [8]

propose a set of refactorings for a subset of Java with copy semantics, a language called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'http: / /' 1 angpop. com/

/./ Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 3

Refinement Object-Oriented Language (ROOL). For each ref'actoring, they propose a set

of conditions that guarantee behavioral preservation. They prove the refactoring correctness

with respect to a formal semantics for a subset of Java. However, they have not considered all

Java constructs, such as overloading and field hiding. Considering the whole Java language,

the proposed conditions may not be enough.

Listing 1.1: Pulling upzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA B . kzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA () by using Eclipse 3.7 or JRRTv 1 changes program behavior,

p u b l i c c l a s s A {

int k () {

re turn 1 ;

1

1

p u b l i c c l a s s B e x t e n d s A {

int k () {

r e t u r n 2 ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

}

int m() !

r e t u r n s u p e r . k () ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

}

p u b l i c in t t e s t () {

r e t u r n m() ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

!

Recently, Schafer and Moor [68] specified and implemented a number of refactorings

for Java, and proposed a tool called JastAdd Refactoring Tools (JRRT) [68]. For each refac-

toring, as correctness criteria, they proposed some invariants that should be preserved to

guarantee behavioral preservation. For instance, the Rename Method refactoring should pre-

serve name binding. However, the same problem illustrated in Listing 1.1 occurs when we

apply this transformation by using JRRTv l2. Proving refactoring correctness for the entire

language constitutes a challenge [70].

2 The JRRT version from May 18th. 2010

/. / Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 4

Testing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Although we cannot prove the absence of faults by using software tests, testing approaches

have been useful in detecting faults in refactoring engines related to missing conditions.

Daniel et al. [14] propose an approach ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA bounded-exhaustive testing [42] to automate this

process. While manual testing requires manually identifying and writing each test case,

bounded-exhaustive testing exhaustively tests all inputs for a given bound. They used a

program generator (ASTGen) to generate programs as test inputs. To evaluate the engines'

outputs, they implemented test oracles. These oracles check for compilation errors, and try

to detect behavioral changes by applying static analysis. For instance, they apply the inverse

refactoring to the output program and expect that the result be equal to the input program.

Although the approach proposed by Daniel et al. [14] identified a number of faults, we

can point out some limitations in their program generator and test oracles. First, most of

the faults that they identified are related to compilation errors in users' code. They identi-

fied only one fault related to behavioral changes. Second, ASTGen allows users to directly

implement how the program will be generated. However, for some Java constructions, imple-

menting how they will be combined does require some effort. Therefore, it may be difficult

to generate a large variability of programs, potentially leaving many hidden faults. Later,

Gligoric et al. [22] proposed (UDITA), a Java-like language that extends ASTGen allowing

users to specify what is to be generated (instead of how to generate), and uses the Java Path

Finder (JPF) model checker as a basis for searching for all possible combinations. By using

UDITA, they found 4 new faults related to compilation errors in Eclipse.

In my Master 's thesis [82], we propose S A F E R E F A C T O R . It analyzes a transformation,

and generates tests for checking behavioral changes. We describe it along with the evaluation

of 24 specific transformations applied to small examples and real open source projects (such

as JHotDraw and JUnit). S A F E R E F A C T O R detected a number of behavioral changes. Ad-

ditionally, we proposed an approach and its implementation (J D O L L Y) for generating Java

programs by using Alloy [32], a formal specification language, and ASTGen. It uses Alloy

for generating the structural parts of the programs and ASTGen to generate the methods'

bodies of the programs. We also proposed an approach for testing refactoring engines by

using J D O L L Y and S A F E R E F A C T O R . A S a result, S A F E R E F A C T O R was useful for finding

50 faults in Eclipse 3.4.2 that lead to compilation errors and behavioral changes in users'

1.1 Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

code.

By combining Alloy with ASTGen our technique increased the variability of generated

programs, which was useful for finding more faults. However, it also required users to learn

two technologies (Alloy and ASTGen) to specify the program generation. Users also need

to synchronize the generation of the structural parts of the programs with the generation of

the method bodies. Additionally, we lack evaluation to answer some questions about such

a testing approach. First, can we generate programs with more expressivity to test refactor-

ings? For example, the programs generated by J D O L L Y do not contain packages, a common

construct in Java programs. Steimann and Thies [8 4 1 show some faults in refactoring en-

gines in the presence of packages. Second, is this testing approach good enough for finding

faults in other refactoring engines? For example, JRRT developers used ASTGen to test their

implementations but did not find any fault [7 1] . Finally, in spite of S A F E R E F A C T O R having

being useful for catching a number of behavioral changes, we still need further evaluation to

understand in which scenarios it can detect behavioral changes and in which ones it cannot.

These testing approaches may find a number of transformations that introduce compi-

lation errors and behavioral changes. Some of these transformations may be related to the

same fault in the refactoring engine. An important step is to analyze each one of these trans-

formations to report the distinct faults found. Jagannath et al.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA [3 4] propose an approach to

classify the faults related to compilation errors by the template of the compiler error message.

However, there is no approach for classifying faults related to behavioral changes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.1.2 Overly strong conditions

So far, we have discussed about how difficult is to check whether the implemented conditions

guarantee behavioral preservation. But we should also check whether these conditions not

only avoid behavioral changes but prevent useful behavior preserving transformations. Due

to the complexity of a large language as Java, developers may not realize that some condition

will prevent some behavior-preserving transformation, reducing the applicability of the tool.

Additionally, some conditions may be too difficult to implement, which may lead developers

to implement less precise approximations. When a condition prevent behavior preserving

transformations, we call it as a overly strong condition.

For example, consider the Java program in Listing 1.2. The classzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA A declares the method

1.1 Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k (l o n g) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, and the class B declares methods n and t e s t . Suppose we would like to rename

n to k. If we apply this transformation by using Eclipse 3.7, the tool will not apply the

transformation showing a warning message. However, we can apply this transformation

by using JRRTvl . It performs an additional change to make the transformation behavior-

preserving by adding a super access to the method invocation k (2) inside t e s t .

Listing 1.2: Eclipse 3.7 prevents renaming B.n to B.k but JRRTvl correctly applies the

transformation.

1 public c la s s A {

2 public long k(long 1) (

3 return 1 ;

4)

5)

6 public c lass B extends A (

7 public long n (i n t i) (

8 return 2 ;

9 1

10 public long t e s t () {

11 return k (2) ;

12)

13)

To the best of our knowledge, there is no automated testing approach to detect and clas-

sify overly strong conditions.

1.1.3 Research questions

Given the problems shown in Sections 1.1.1 and 1.1.2, we focus on the following research

question:

• R Q 1 : How can we automate Java program generation for generating test inputs useful

for detecting faults in Java refactoring engines?

• R Q 2 : How can we automatically evaluate a refactoring engine output to detect faults

related to overly weak and overly strong conditions?

• R Q 3 : What is the effectiveness of S A F E R E F A C T O R ?

1.2 Solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

• RQ4: How can we classify transformations that lead to behavioral changes and overly

strong conditions into distinct faults?

1.2 Solution

In this work, we propose a technique for automated testing of Java refactoring engines. Its

goal is to identify missing conditions that lead to compilation errors or behavioral changes

in sequential (non-concurrent) Java programs and overly strong conditions that prevent

behavior-preserving transformations in sequential Java programs.

First, we automatically generate programs to be refactored, as test inputs. To do so, we

propose a Java program generator called J D O L L Y . It exhaustively generates programs for a

given scope of Java declarations (packages, classes, fields, and methods). It contains a subset

of the Java metamodel specified in Alloy [32]. It also employs the Alloy Analyzer [33],

a tool for the analysis of Alloy models, to generate solutions for this metamodel. Each

solution is translated into a Java program. Differently from our previous technique [82],

which combines the Alloy Analyzer with ASTGen for generating programs, J D O L L Y can

generate entire programs using only the Alloy analyzer as enabling technology for finding

all possible programs for a given scope. This difference avoids the need for developers to

learn two different technologies to specify the program generation.

For each generated program, the desired refactoring is applied by using the refactoring

engine under test. Then, the technique uses the following oracles to evaluate the output.

To detect failures in the applied transformations, we use S A F E R E F A C T O R , a tool that we

proposed for checking behavioral changes. On the other hand, when the transformations are

rejected by the engine, we propose a differential testing technique based on S A F E R E F A C T O R

to identify overly strong conditions. For the same input program, it compares the result of

the engine under tests with results of other engines. Although, in my Master 's thesis [82], we

had already used S A F E R E F A C T O R for detecting faults related to missing conditions, here we

combine it with differential testing to also detect faults related to overly strong conditions.

Manually inspecting all failures detect by our technique may require a lot of effort. The

final step of the technique is to classify these failures into distinct faults. To classify failures

related to compilation errors, we use an approach [34] that classifies the failures by using

1.3 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

the template of the compiler error message. We uses a similar approach to classify failures

related to overly strong conditions, splitting them by the template of the warning message.

On the other hand, to classify failures related to behavioral changes, we classify them based

on the structural characteristics of the transformations. In contrast, the technique proposed

in my Master 's thesis [82] does not classify the failures into distinct faults.

1.3 Evaluation

We have conducted experiments1 to evaluate our technique for testing of refactoring engines,

and its components, J D O L L Y and S A F E R E F A C T O R , with respect to our research questions.

We evaluated our technique with respect to effectiveness on finding faults due to missing

conditions. We used it to test three refactoring engines: Eclipse JDT 3.7, NetBeans 7.0.1, and

two versions of the JastAdd Refactoring Tools (JRRTv 1 and JRRTv2) [71; 74; 68]. We tested

up to 10 refactorings implemented by each engine. We assessed 153,444 transformations,

and identified 57 faults related to compilation errors, and 63 faults related to behavioral

changes. We reported all faults to the tools' developers, who have confirmed 90 out of 120

so far. Moreover, they have already fixed 35 faults reported by us.

We also conduct an experiment to evaluate the technique with respect to effectiveness

in identifying overly strong conditions. We used the technique to test three Java refactoring

engines (Eclipse JDT 3.7, NetBeans 7.0.1, and JRRTv 1). For each engine, we tested up 10

refactoring implementations in a sample of 42,757 transformations. We found that 16% and

1% of transformations rejected by Eclipse and JRRT, respectively, are behavior-preserving.

The implementations have overly strong conditions avoiding correct transformations to be

applied. Our technique automatically categorized them in 17 and 7 kinds of overly strong

conditions of Eclipse and JRRT, respectively. We reported all faults to the tools' developers.

So far, they have accepted 1 1 faults and fixed 3 of them.

With respect to J D O L L Y , we perform an experiment to compare J D O L L Y and

UD1TA [22] with respect to effectiveness and efficiency in generating Java inheritance

graphs. Our results shows that J D O L L Y exhaustively generates solutions for a given scope.

3 All exper imental data are available at:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA h t t p : / / w w w . d s c . u f c g . e d u . b r / ~ g s o a r e s /

t h e s i s - e x p e r i m e n t s . h t m l

http://www.dsc.ufcg.edu.br/~gsoares/

1.4 Summary of contributions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

On the other hand, UDITA failed to generate some solutions. Additionally, J D O L L Y was

faster than UDITA but generated more isomorphic (structurally equivalent) solutions, which

is not desired since two or more programs with the same structure do not increase the change

of finding new faults.

In regard to S A F E R E F A C T O R , we performed an empirical study to evaluate its effective-

ness in detecting behavioral changes on a sample of 6 0 transformations gathered from two

repositories of open source Java projects. We compared S A F E R E F A C T O R ' S results with the

results of a manual analysis and the results of an automated approach for detecting refactor-

ings by analyzing commit messages [6 1]. In this study, S A F E R E F A C T O R had 7 0 % accuracy.

In Section 4 . 2 , we its discuss advantages and limitations when testing real Java programs.

1.4 Summary of contributions

The main contributions of this thesis can be summarized as follows:

• We propose an automated technique for testing of Java refactoring engines with respect

to missing conditions and overly strong ones. We report on the results of experiments

to show the effectiveness of our technique reporting 1 2 0 missing conditions and 2 4

overly strong ones to refactoring engine developers [7 7 ; 8 1 ; 7 9 ; 7 6 ; 8 3] ;

• We propose and implement a technique (J D O L L Y) for generating Java programs that

allows users to use Alloy constraints to guide the program generation. We show that

J D O L L Y is useful for generating test inputs for testing of refactoring engines. Our

results also suggest that J D O L L Y exhaustively generates programs for a given scope.

On the other hand, UDITA 122] failed to generate all programs for a given scope [7 7 ;

7 6 ; 8 3] ;

• We report on the results of an experiment to show that S A F E R E F A C T O R has 7 0 % accu-

racy in detecting transformations that preserve programs behavior and transformations

that do not [7 8] .

1.5 Organization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 1 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.5 Organization

This thesis is organized as follows. In Chapter 2 , we provide some background on program

refactoring, testing, and Alloy. In Chapter 3 , we present J D O L L Y , our Java program gener-

ator, and its evaluation. In Chapter 4 , we give an overview of S A F E R E F A C T O R , and present

an evaluation of S A F E R E F A C T O R on 6 0 transformations of real Java programs. Then, in

Section 5 , we describe our technique for testing of Java refactoring engines. Moreover, we

show its evaluation by testing real Java refactoring engines. Chapter 6 presents the related

work, and Chapter 7 summarizes the contributions of the thesis and future work. Finally,

Appendix B shows some algorithms used in the experiment shown in Section 4 . 2 .

Chapter 2

Background zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter, we present the background needed for the understanding of this work. First,

we explain refactoring, and show an overview of the state-of-the-art in this area (Section 2.1).

Then, we present some important concepts related to testing, and introduce testing of refac-

toring engines (Section 2.2). Finally, in Section 2.3, we give an overview of Alloy [32], a

formal specification language, which we use to build J D O L L Y , our program generator.

2.1 Program refactoring

The term refactoring was coined by Opdyke, in his PhD thesis [531. Then, it was popularised

by Fowler [19]. He delines refactoring as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"It is a change made to the internal structure of a software to make it easier to

understand and cheaper to modify without changing its observable behavior."

Fowler also delines refactoring as a verb [19]:

"// is to restructure software by applying a series of refactorings without chang-

ing its observable behavior."

2.1.1 Example

In this section, we give a refactoring example. First, we show the process of identifying

which part of the code should be refactored, and then, we show the appropriated refac-zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 1

2. /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Program refactoring 1 2

Coring to be applied. To this example, consider superclasszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Employee and its subclasses

Engineer and A n a l y s t shown in Listing 2.1.

Listing 2.1: Program containing duplicated code.

1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA p u b l i c c l a s s Employee {

2

3 }

4 p u b l i c c l a s s E n g i n e e r e x t e n d s Employee {

5 p r i v a t e doub le s a l a r y ;

6 p u b l i c d o u b l e g e t S a 1 a ry () {

7 r e t u r n s a l a r y ;

8 }

9

10)

11 p u b l i c c l a s s A n a l y s t e x t e n d s Employee {

12 p r i v a t e d o u b l e s a l a r y ;

13 p u b l i c doub le g e t S a 1 a r y () {

14 r e t u r n s a l a r y ;

15)

16

17 } zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Bad Smells

First, we should identify the code that should be refactored. To help the developer in this

process. Beck [19] categorized 21 cases where there are points in the code indicating that it

should be improved. Beck refer to these signs as bad Smells.

The first bad smell that he presents is the duplicated code. When the same code appears

in different parts of the program, the maintenance of it may become difficult, since it is

needed to apply the change to all duplications of the code. Therefore, it is better to find a

way to remove duplicated code. For instance, by looking at the code shown in Listing 2.1,

we notice that method g e t S a l a r y and field s a l a r y are declared in the two subclasses.

We thus should refactor that code to avoid this duplication.

2. /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Program refactoring 1 3

Other examples of bad smells are: long methods, large classes, and long parameter

list! 19; 88]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Choosing and applying refactorings

Fowler [19; 621 defined a refactoring catalog. For each refactoring, he shows the motivation

and the process to apply it. To remove the duplicated code of our example, we will apply

two refactorings presented in Fowler's catalog.

First, we use the Pull Up Field refactoring to move the fields to the superclass.

Fowler [19] defines the following steps to apply this refactoring:

1. Inspect the declaration of the candidate fields to assert that they are initialized in the

same way;

2. If the fields do not have the same name, rename them so that they have the name you

want;

3. Compile and test;

4. Create a new field in the super class. If the fields are private, you should declare it as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p r o t e c t e d so that the subclass can access it;

5. Remove the fields from the subclasses;

6. Compile and test.

We apply the refactorings by using small steps intercalated with compilation check and

tests to guarantee that the transformation preserves the external behavior of the program.

Listing 2.2 shows the program after the performed refactoring. Notice that it was needed,

as indicated in step 4 of Fowler's catalog, to change the access modifier of the field from

p r i v a t e to p r o t e c t e d to allow its access from the subclasses.

Listing 2.2: Program after applying the Pull Up Field refactoring.

1 p u b l i c c l a s s E m p l o y e e {

2 p r o t e c t e d doub le s a l a r y ;

3

2. /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ProgramzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA refactoring 1 4

4)

5zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA p u b l i c c l a s s E n g i n e e r e x t e n d s Employee

6 p u b l i c d o u b l e g e t S a l a r y O {

7 r e t u r n s a l a r y ;

8 }

9

10 }

11 p u b l i c c l a s s A n a l y s t e x t e n d s Employee {

12 p u b l i c d o u b l e g e t S a l a r y O {

13 r e t u r n s a l a r y ;

14 }

15

16 |

After removing the duplicated fields, we can apply the Pull Up Method refactoring [19]

to move thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA g e t S a l a r y methods to the superclass. We can apply this refactoring since

both implementations of the method have the same behavior. Listing 2.3 shows the resulting

program after applying the two refactorings.

Listing 2.3: Program after applying the Pull Up Method refactoring.

1 p u b l i c c l a s s Employee {

2 p r o t e c t e d d o u b l e s a l a r y ;

3 p u b l i c d o u b l e g e t S a l a r y O {

4 r e t u r n s a l a r y ;

5 }

6

7 1

8 p u b l i c c l a s s E n g i n e e r e x t e n d s Employee { . . . }

9 p u b l i c c l a s s A n a l y s t e x t e n d s Employee { . . . }

Manually applying refactoring is time consuming and error prone. Fowler [19] suggests

to use small steps intercalated with compilation checks and tests as a safer approach to apply

refactorings. Besides that, there are tools that automate this process. In the next section, we

show an overview of these tools.

2. /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Program refactoring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.1.2 Refactoring engines

The first Refactoring engine, Refactoring Browser [65], was proposed by Roberts in his PhD

thesis. It implements a number of refactorings for the Smalltalk [23] language. Refactoring

has become more popular, and so most of the current IDEs have implemented refactorings to

support developers. Table 2.1 shows some IDEs that provide Java refactoring engines [88]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C o d e C u i d e

Ec l i p se

Id ea

Ja v a Re f a c t o r

JBu i l d e r

JFac t o r

JRe f a c t o r y

N e t Be an s

T r a n s m o g r i f y

XRe f a c t o r y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Company

O m n i c o r e

I n t e l i j

Bo r l a n d

I n s t a l l a t i o n s

Su n

M i c r o s y s t e m s

X r e f - T e c h

IDE

IDE

IDE

Pl u g i n f o r j Ed i t

IDE

Pl u g i n f o r Jb u i l d e r a n d

V i s u a l A g e

Pl u g i n f o r El i x i r , JBu i l d e r

a n d N e t Be an s

IDE

Pl u g i n f o r JBu i l d e r a n d

Fo r t e4 Jav a

Pl u g i n f o r Em ac s , j Ed i t

a n d XEm ac s

w w w . o m n i c o r e . c o m

w w w . e c l i p s e . o r g

w w w . i n t e l l i j . c o m

p l u g i n s . j e d i t . o r g / p l u g i n s / ?

Ja v a Re f a c t o r

w w w . b o r l a n d . c o m / j b u i l d e r

w w w . i n s t a t i a t i o n s . c o m / j f a c t o r

j r e f a c t o r y . s o u r c e f o r g e . n e t

w w w . n e t b e a n s . o r g

t r a n s m o g r i f y . s o u r c e f o r g e . n e t

w w w . x r e f - t e c h . c o m

Table 2 . 1 : Industrial Java refactoring engines [88].

A refactoring engine allows developers to select the refactoring to be applied and the

parameters for configuration. The tool automatically checks the refactoring conditions to

guarantee behavioral preservation. For instance, when we apply the Rename Method, the

tool checks whether there are other methods with the same name of the refactored method.

If all conditions are satisfied, the tool performs the desired transformation. To exemplify the

process, we show the application of the Pull Up Field refactoring shown in Section 2.1.1 by

using Eclipse. The developer selects the field that will be refactored, and choose Pull Up

from the Refactor menu (Figure 2.1(a)). Eclipse shows a window where the developer can

choose additional parameters to apply the refactoring (Figure 2.1(b)).

In addition, Eclipse allows the developer to see the preview of the transformation by

pressing the next button (Figure 2.1(b)), which allows the developer to manually inspect

the correctness of the transformation. Figure 2.2 shows the Eclipse preview containing the

changes that will be applied.

http://www.omnicore.com
http://www.eclipse.org
http://www.intellij.com
http://plugins.jedit.org/plugins/
http://www.borland.com/jbuilder
http://www.instatiations.com/jfactor
http://jrefactory.sourceforge.net
http://www.netbeans.org
http://transmogrify.sourceforge.net
http://www.xref-tech.com

2. /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Program refactoring 1 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ren am e. . .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA XXR

Move. . .

Ex t r act In t er l ace. . .

Ex t r act Su p er cl ass. . .

Use Su p er t yp e Wh er e Possi b l e. . .

Ex t r act Class. . .

En cap su l at e Fi el d . . .

In t er Cen en c Typ e A r g u m en t s . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a)

(b)

Figure 2.1: Pull Up Field from Eclipse, (a) developer selects the desired refactoring; (b)

developer configures additional parameters, and confirms the refactoring by pressing the

Finish button. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

<F> O Refaaormg

Pull Up

T r c ' c l o v v i r s c r i n g e s £*'C r e c e s s ; r v t o p c r * o m :- e r c U c i c n r g .

C n a - g e szyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ro be p er l

t n p t o y M . j Jv a

C r g r e c i j a v a

etiCTO'inr.cxarrc'e. 'src

A- ia iysi Java

O t g i n a i 5 O J ^ C

p;;bi i t c A a s s A n a . y s t i d s L* p ". o y e e {

p r i v a t e dOLioI t * S Q i O r y ;

r r t u r n sa ' . U' - y; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
>

Re f a ct o ' e d So u r ce

p u b l i c c l a s s A n o ' . y s t e x t e n d s I m p

I ~ :• • . v g c T Sc T . Q - y O {

r e t u * * n sozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'.Qfy;

Figure 2.2: Eclipse 3.7 preview of the desired refactoring.

2. /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Program refactoring 1 7

Eclipse was one of the first IDEs to implement refactorings. In its first version, re-

leased in the end of 2001, it included the following refactorings: Rename, Move, and Extract

Method [20]. The refactorings implemented by Eclipse 3.7 can be seen in Table 2.2. Murphy

et al. [48] conducted a survey on Java software development by using Eclipse. They analyzed

the use of the Eclipse refactorings by 41 developers. The five most used refactorings were:

Rename, Move, Extract Method, Pull Up Method, e Add Parameter. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Refactorings supported by Eclipse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Mo ve (class, m et h o d)

m e t h o d , f i e * : ;

Chang e M et h o d

Si g n at u r e

Cx t r act Local Var i ab l e Ex t r act Co n st an t In l i ne (m e t h o d , var i ab le) Con ver t A n o n y m o u s C- ass

t o Nest ed

Ex t r act Superclass Ex t r act In t er f ace

Push Do w n (m e t h o d , f i el d) Pu l l Up (m et h o d , f ie d) Ex t r act Class

Con ver t M em b er Type t c

Top Level

Use Super Type Wh er e

Possib le

In t r o d u ce Par am et er

Ob j ect

In t r o d u ce In d i r ect i o n In t r o d u ce Fact o r y In t r o d u ce Par am et er En cap su l at e Field

Gener al i z e Decl ar ed Type In f er Gener ic Type

A r g u m en t s

Table 2.2: Refactorings supported by Eclipse. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.1.3 Behavioral preservation

According to the refactoring definition shown in Section 2.1, two programs are equivalent

when they have the same external behavior. In his PhD thesis, Opdyke formally specified

23 primitive refactorings and other three complex refactorings. Each primitive refactoring

contains a set of conditions that guarantee behavioral preservation. For instance, Opdyke

defines the following conditions to the Pull Up Field refactoring shown in Section 2.1.1:

1. The field should be defined in the same way in all subclasses;

2. The field should not be defined in the superclass.

Notice that if the second condition is violated, it will produce a program with a compi-

lation error due to name conflicts. On the other hand, if the first condition is violated, the

program will still compile but it may have different behavior since the value of one of the

fields will be changed.

2. /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Program refactoring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18

The conditions proposed by Opdyke are based on seven properties defined by him. Ac-

cording to him, these properties assure the correctness of the transformations. They are:

1. Unique superclass. Each class in the resulting program must have at most one super-

class;

2. Distinct class names. All classes in the resulting program must have distinct names;

3. Distinct member names. Each class in the resulting program must have distinct vari-

ables and function names;

4. Inherited member variables not redefined. A member variable inherited from a super-

class is not redefined in any of its subclasses;

5. Compatible signatures in member function redefinition. Redefinitions of methods have

the same signatures as the redefined method;

6. Compatible signatures in member function redefinition. In the resulting program, every

expression that is assigned to a variable must have the same type or a subtype of the

variable's type;

7. Semantically equivalence references and operations. The resulting program must have

the same output set of the original program for a given set of inputs.

The first six properties are related to preservation of well-formedness of the programs.

We can check that by compiling the program after the transformation: if there is any compi-

lation error, it means that the transformation was not correctly applied.

On the other hand, the last property is related to semantics preservation of the program,

and thus, compiling the program is not enough to check it. The program can still compile

but with a different external behavior of the original one.

Opdyke [53] defines semantics equivalence between programs as follows: "let the exter-

nal interface of the program be the main function. If the main function is called twice (once

before and once after a refactoring) with the same set of inputs, the resulting set of output

values must be the same (p. 40)". This definition of equivalence notion allows a refactoring

to change the internal structure of the program as long as the mapping between input and

2. /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Program refactoring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA19

outputs of the main function be preserved. This definition can be seen as an application of

the notion of data refinement [28; 30].

Another way to deal with behavioral preservation is through testing. Roberts [65] defines

that a refactoring is correct if after the transformation, the program still is in conformance

with its specification. His equivalence notion is based on testing. According to him, a refac-

toring is correct if a program that passes the tests still passes them after the transformation.

Fowler [19] uses the same equivalence notion.

Additionally, in some application domain, guaranteeing that for a set of inputs, the pro-

gram has the same outputs after the transformation is not enough to state the transformation

preserved behavior [45]. For instance, in real-time systems, it should also be considered the

time to execute the program as part of its behavior. Also, in embedded systems, the memory

space and energy consumption may be used as part of the program's behavior. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.1.4 Refactoring verification

As shown in Section 1.1, even small transformations may be incorrectly applied by refactor-

ing engines. The ideal solution would be formally specify the conditions for each refactoring

and prove them with respect to a formal semantics.

Proving refactoring correctness with respect to a formal semantics is a challenge [70].

Some approaches have contributed in this direction. Borba et al. [8] propose a set of refactor-

ings for a subset of Java with copy semantics, a language called Refinement Object-Oriented

Language (ROOL). They prove the refactoring correctness based on a formal semantics. To

illustrate this process, next we show a refactoring proposed by them. The following rule

formalizes the Pull Up Field refactoring when applied from the left hand side to the right

hand side and Push Down Field when applied from the opposite direction (Figure 2.3). Each

refactoring consists of two templates of ROOL programs. The refactoring can be applied

as long as the programs match the templates, that is, if all variables in the templates can be

assigned to the concrete values.

Each refactoring may also contain meta-variables. For instance, cds, ads, e ops are

meta-variables that define sets of classes, fields, and operations, respectively. Moreover,

the c meta-variable represents the main function. Their equivalence notion are based on

comparing the main function with respect to the two versions of the program, in a similar

2. /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Program refactoring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

way of the notion proposed by Opdyke [53]. The (->) arrow before the condition indicates

that it is required when applying the rule from the left to the right. The (<-) arrow indicates a

condition when applying it from the opposite direction. Additionally, the arrow (<->) indicates

a condition needed when applying from both directions. In this example, we can see that to

move a field to the superclass, there cannot be another field in the super class with the same

name.

Figure 2.3: Rule for applying a refactoring in ROOL [8],

ROOL Refactoring (Move a field to the superclass)

c l a s s B e x t e n d s .4 c l a s s B e x t e n d s A

ads p u b a : T\ ads

ops ops

e n d e n d

c l a s s C e x t e n d s B
cds.c c l a s s C e x t e n d s B

p u b a : T: ads' ads'

ops' ops'

e n d e n d

restrições

(—>) The field with name a is not declared in the subclasses of B in cds;

(«—) D.a, for any D < B and D C, does not appear in cds, c, ops, or ops'.

Silva et al. [75] extended these previous laws for a sequential object-oriented language

with reference semantics (rCOS). They prove the correctness of each one of the laws with

respect to rCOS semantics. Some of these laws can be used in the Java context. Yet, they

have not considered all Java constructs, such as overloading and field hiding.

Schafer et al. [711 propose a Rename Class, Method and Field refactoring implementa-

tions. They state that a renaming must preserve name bindings, that is, each name should

refer to the same entity before and after the transformation. Furthermore, Schafer et al. [74;

68] present a number of Java refactoring implementations. They translate a Java program

to an enriched language that is easier to specify and check conditions, and apply the trans-

formation. As correctness criteria, besides using name binding preservation, they used other

2. /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ProgramzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA refactoring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21

invariants such as control flow and data flow preservation.

Steimann and Thies [84] show that by changing access modifierszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA (p u b l i c ,

p r o t e c t e d , package, p r i v a t e) in Java one can introduce compilation errors and be-

havioral changes. They propose a constraint-based approach to specify Java accessibility,

which favors checking refactoring conditions and computing the changes of access modi-

fiers needed to preserve the program behavior.

Another approach for checking refactorings - generalization-related refactorings such as

Extract Interface and Pull Up Method - is proposed by Tip et al. [86]. Their work proposes

an approach that uses type constraints to verify conditions of those refactorings, determin-

ing which part of the code they may modify. Using type constraints, they also propose the

refactoring Infer Generic Type Arguments [21], which adapts a program to use the Generics

feature of Java 5, and a refactoring to migration of legacy library classes [31. These refac-

torings are implemented in the Eclipse J D T Their technique allows sound refactorings with

respect to type constraints. However, a refactoring may have conditions related to other con-

structs. Additionally, Schafer et al. [69] propose refactorings for concurrent programs. They

have proved the correctness of them with respect to some concurrency properties based on

the Java memory model.

Dig and Johnson [15] analyzed refactorings in the context of software reuse. They anal-

ysed changes applied to three frameworks and one library largely used. As a result, they

found that more than 80% of the changes made to API that lead to incompatibilities with

clients are refactorings. Henkel e Diwan [29] proposed an approach and a tool for evolving

an API by using refactorings. Their tool allows recording the applied refactorings to the API

to automatically update the client code based on these refactorings.

Some studies have been contributing to popularize refactorings in aspect-oriented pro-

gramming. Monteiro and Fernandes [471 proposed a catalog of 27 aspect-oriented refactor-

ings. These refactorings aim at introducing aspects and improve the design of them. Cole

and Borba [I0 | formally specify aspect-oriented programming laws (each law defines a bidi-

rectional semantics-preserving transformation) for AspectJ. By composing them, they derive

AspectJ refactorings. Each law formally states conditions. They proved one of them sound

with respect to a formal semantics for a subset of Java and AspectJ [111. They can be very

useful for implementing aspect-aware refactoring tools. Wloka et al. [921 propose a tool sup-

2.2 Testing overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA22 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

port for extending currentlyzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 0 0 refactoring implementations for considering aspects. They

developed an impact analysis tool for detecting change effects on pointcuts to generate point-

cut updates. Binkley et al. [7] present a human guided automated approach to refactor 0 0

programs to the AO. Hannemann et al. 127] introduce a role-based refactoring approach to

help programmers modularize crosscutting concerns in aspects. These works contribute for

improving tool support for refactoring aspect-oriented programs.

2.2 Testing overview

Software testing is the primary method that industry uses to evaluate the software under

development [2]. Testing can be defined as an evaluation of the software by observing its

execution. There are three common concepts in software testing: failure, fault, and error.

According to Binder [6], a fault is a static defect in the software; a system error is an incorrect

internal state (the manifestation of some fault); and a failure is an external, incorrect behavior

with respect to the expected behavior.

To specify a test, we can use two different techniques: black box testing and white box

testing [2], In the former, the goal is to evaluate whether the program satisfies some func-

tional or non-functional requirement. We thus do not need the program's source code to

specify a black box test. On the other hand, white box testing requires the source code in

order to select parts of the code to be tested. This thesis focuses on black box testing in the

sense that we do not need to look inside the refactoring engines' code to specify the tests.

We just need the engine's API. The remainder of this section presents other software testing

concepts that are important to the understanding of this thesis.

2.2.1 Test case

The main challenge on software testing is to determine a set of test cases (named test suite)

for the software to be tested. A test case is composed of a set of inputs, expected results, and

prefix and postfix values [2].

The inputs are values needed to complete some execution of the software under test.

On the other hand, the expected result specifies the result that is expected to be produced

after executing the test if the program satisfies the requirement. Prefix values are any inputs

2.2 Testing overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA23 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

needed to set up the software into the appropriate state to receive the inputs. And, postfix

values are any inputs that needed to be sent to the software after the test.

For instance, test cases can be createdzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA by using JUnit [43], a framework for automating

unit tests. The framework provides the a s s e r t E q u a l s method, which compares the value

returned by the method under test with the expected value. If the values are different, the

test fails, and a red bar is shown in JUnit's GUI. On the other hand, if the values are equal,

it shows a green bar. Listing 2.4 shows a unit test for the g e t S a l a r y () method from

class A n a l y s t . In this test, we instantiate an object of type A n a l y s t , set a value for field

s a l a r y , and compare this value with the value returned by the g e t S a l a r y method.

Listing 2.4: Unit test for method getSalaryO from class Analyst.

1 p u b l i c void te s t G e S a 1 a ry () {

2 A n a l y s t a n a l y s t = new A n a l y s t () ;

3 a n a l y s t . s e t S a l a r y (3 0 0 0) ;

4 double e x pec ted V a I u e = 3 0 0 0 ;

5 double v a l u e = a n a l y s t . g e t S a l a r y () ;

6 a s s e r t E q u a l s (e x p e c t e d V a l u e , v a l u e) ;

7)

2.2.2 Oracle

A test case passes when the software under test produces the expected result. The pass/no

pass evaluation is made by comparing the actual result with the expected one by a trusted

mechanism, known as test oracle or just oracle [5; 91].

In many cases this oracle consists of a manual observation of the test input and output,

which can be time consuming, tedious and error prone. However, it can also be automated,

or partially automated. For instance, the comparison can be manually done by using the

programmer's knowledge or automatically done by checking a formal specification. In List-

ing 2.4, the oracle is partially automated. The developer manually specifies the expected

value, and it is automatically checked by using the JUnit framework.

2.2 Testing overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24

2.2.3 Test coverage criteria zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Usually, the number of inputs for a software is so large as to effectively infinite. For instance,

potential inputs to a Java compiler are not just all Java programs, but all strings. The only

limitation is the size of the file that can be read by the parser. Since we cannot test a software

against all inputs, we use test coverage criteria to decide which inputs to use.

Test coverage criterion can be defined as a rule or a collection of rules that impose test

requirements on a test set. A test requirement is a specific element of a software artifact

that a test case must satisfy or cover [2]. To check how good a test suite is. we can measure

it against a criterion in terms of coverage. Coverage is important because sometimes it is

expensive or even infeasible to achieve some criteria, so we want at least achieve some test

coverage level. There are many test coverage criteria that can be used to evaluate a test suite.

For instance, for white box testing, we can measure: statement coverage, branch coverage,

all-defs and all-uses coverage.

Test coverage criteria can be viewed as defining ways of splitting the input space accord-

ing to test requirements, in the sense that any collection of value that satisfies the same test

requirement will be equally useful [2]. Therefore, the input space is partitioned into regions

that are assumed to contain equally useful inputs from a testing perspective.

We can use a syntactic description such as a grammar to model the input space, and define

some criteria based on this description. For instance, we can define Java BNF grammar to

describe the inputs for a Java compiler, and then generate valid (correct syntax) or invalid

(incorrect syntax) programs to test the compiler. Additionally, there are coverage criteria

with respect to syntactic descriptions that can be used to evaluate the test suite. For instance,

considering a BNF grammar, a terminal symbol coverage evaluates the terminal symbols

in the grammar that are covered by the test suite. Also, production coverage evaluates the

productions in the grammar that are covered by the test suite.

2.2.4 Testing refactoring engines

A test case for a refactoring engine consists of an input program, as test input, and an ex-

pected output, which can be an output program, or an expected transformation rejection

when some condition is violated.

2.2 Testing overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

For instance, Figure 2.4 shows two test cases created by JRRT developers to evaluate their

Pull Up Method refactoring implementation. The firstzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA (t e s t l) contains an input program

with the classes Super and A, which extends Super and contains the m method. It also

contains an expected output program contains the same classes Super and A but with the

m method in the Super class. After performing this test, if the engine produces an output

different from the expected one, the test will fail. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

j Pl u g - i n D e v e l o o m e r t - Re f a c t o r i n g l SO Sl O / t e s t s / Pu ' l Up M e t h o d T e s t s j ava - Ecl i p se

• *Pul lupN'et t - odTests.java 23

pub .- .c v o i d L e s l i e {

l es l Su ccC

" c l a s s Supo'- { } " ,

"c ' . asszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA A ex Lends Sup

p- og- an.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA fron£lcnes(

"c ' . ass Supe- { v o i dzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA *0 C }]"

"c ' . ass A ex t en d s Supe- " (} ')) ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

{ vo id <) { } J") ,

O

p u b H c vot d L e s t 2 C {

LesLI a i ' . (

" c ' l ass Su p e" { } " ,

"c ' . ass A ex t en d s Supe- ' { v o i d r i () { } }",

" c ' i o ss IS ex t en d s Supe- { . n i . »0 { - clu - n 2 3 ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
}

Writable 5 r i a r . . . s e r :

Figure 2.4: Test cases created by JRRT developers to evaluate the Pull Up Method refactoring

implementation.

On the other hand, the second test case (t e s t 2) shows a situation where the refactoring

engine should not apply the transformation. The input program has two subclasses, A and B.

They contain a method m, but with different signatures and bodies. Therefore, the refactoring

should not be applied.

Manually creating test cases for refactoring engines, besides time consuming, is diffi-

2.2 Testing overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA26 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

cult since developers need to create complex inputs (programs) and reason about behavioral

preservation for creating expected outputs. This may lead to a test suite with a low level of

production coverage, potentially leaving many hidden faults.

Daniel et al. [14] proposed an approach for automated testing of refactoring engines.

They used a program generator (ASTGen) to generate programs as test inputs. ASTGen al-

lows users to directly implement how the programs will be generated. To illustrate it, next

we show how ASTGen generates Java fields. Suppose we want to generate field declara-

tions for integers or booleans with any access modifier. To do so, ASTGen provides the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F i e l d D e c l a r a t i o n G e n generator (Listing 2.5).

Listing 2.5: Simplified version of the field generator of ASTGen.

1 c l a s s F i e l d D e c l a r a t i o n G e n e x t e n d s ASTNodeGenBase< F i e 1 d Dec 1 a r a t i o n >

!

2 I G e n e r a t o r < M o d i f i e r > m o d i f i e r G e n ;

3 I G e n e r a t o r <Type> typeGen ;

4 I G e n e r a t o r < I d e n t i f i e r > idGen ;

5

6 . . . (c o n s t r u c t o r s and o t h e r m e t h o d s)

7

8 F i e l d D e c l a r a t i o n g e n e r a t e C u r r e n t () {

9 F i e l d D e c l a r a t i o n g e n e r a t e d = new F i e l d D e c l a r a t i o n () ;

10 g e n e r a t e d . s e t M o d i f i e r (m o d i f i e r G e n . c u r r e n t O) ;

11 g e n e r a t e d . s e t T y p e (t y p e G e n . c u r r e n t O) ;

12 g e n e r a t e d , s e t i d e n t i f i e r (i d G e n . c u r r e n t ()) ;

13 r e t u r n g e n e r a t e d ;

14 }

15 }

The class F i e l d D e c l a r a t i o n G e n extends ASTNodeGenBase, base class to

create AST nodes. Each node is represented by using the Eclipse Core API1.

The F i e l d D e c l a r a t i o n node has three child nodes: M o d i f i e r (access modi-

'Java Model Tutorial:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA h t t p : / / h e l p . e c l i p s e . o r g / h e l p 3 2 / i n d e x . j s p 7 t o p i c - / o r g .

e c l i p s e . i d t . d o c . i s v / g u i d e / j d t _ i n t _ r a o d e l . h t m

http://help.eclipse.org/help32/index.jsp7topic-/org

2.2 Testing overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 2 7

fier),zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Type (type declared by the field), I d e n t i f i e r (name of the field). The

F i e l d D e c l a r a t i o n G e n generator consists of three generators responsible for generat-

ing variations for these child nodes: modif ierGen, typeGen, idGen. In each iteration,

the g e n e r a t e C u r r e n t () creates a field declaration by combining these three generators.

To initialize the F i e l d D e c l a r a t i o n G e n generator, we need first to instantiate gen-

erators modif ierGen, typeGen, idGen, as shown in Listing 2.6.

Listing 2.6: Instantiating generators that compose the FieldDeclarationGen generator.

1 I G e n e r a t o r < Modi fier > m o d i f i e r G e n =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA new C h a i n < M o d i f i e r >(p u b l i c ,

p r i v a t e . p r o t e c t e d . d e f a u l t) ;

2 I G e n e r a t o r <Type> typeGen = new Cha in<Type >(int . b o o l e a n) ;

3 I G e n e r a t o r < I d e n t i f i e r > idGen = new C h a i n < I d e n t i f i e r > (x) ;

In this way, the declared field can have accessibility p u b l i c , p r i v a t e , p r o t e c t e d ,

or d e f a u l t . It will have the type i n t or boolean, and the name x. We pass these genera-

tors as parameters to instantiate the F i e l d D e c l a r a t i o n G e n generator (see Listing 2.7).

By using these parameters, the generator produces eight field declarations.

Listing 2.7: Instantiating the FieldDeclarationGen generator.

1 F i e l d D e c l a r a t i o n G e n f i e l d D e c l G e n =

2 new F i e l d D e c l a r a t i o n G e n (m o d i f i e r G e n , t y p e G e n , i d G e n) ;

Besides using ASTGen, Daniel et al [14] implemented 6 test oracles to evaluate engine

outputs:

• DoesCrash. It checks if the refactoring engine throws an uncaught exception during

the test;

• DoesNotCompile. It checks if the program compiles after the transformation;

• WarningStatus. It checks if the refactoring engine throws a warning message as out-

put. This oracle is useful when the tester intentionally creates programs that do not

satisfies the refactoring conditions, and want to check if the engine correctly identities

and avoids these transformations;

2.2 Testing overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 2 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

• InverseOracle. In this oracle, they apply the refactoring under test, then they perform

the inverse refactoring, that is, the opposite transformation, to the output program, and

check if the resulting program is equal to the original one. For instance, to test if the

engine correctly renames class A to B, they perform this transformation, then perform

the inverse transformation, renaming B to A, and checks if the resulting program is

equal to the original one. To compare the programs, they have implemented an AST

comparator;

• CustomOracle. They have implemented some refactoring-specific oracles. These

oracles checks properties of some refactorings. For instance, when you rename a field,

the resulting program should not have the old field name anywhere in the AST;

• DifferentialOracle. This oracle performs the refactoring under testing by using two

or more refactoring engines and compares the results. If they are different, a human

inspect the two output programs to check whether the differences are related to some

fault in one of the engines.

Although they have identified a number of faults in Eclipse and NetBeans that introduce

compilation errors on the user's code, they have found only one fault related to behavioral

change.

Additionally, writing ASTGen generators requires a considerable effort since the devel-

opers need to implement how the programs will be generated. Later, Gligoric et al. [2 2 1

proposed UDITA, which follows a filtering approach, that is, the generator automatically

searches for all possible combinations of Java constructs to generate programs. Moreover,

the tester can specify constraints to filter the program generation. The more constraints the

tester specifies, the fewer programs it will generate. UDITA uses the Java Path Finder (JPF)

model checker as a basis for searching for all possible combinations.

Gligoric et al. [2 2] previously specified a Java inheritance graph generation in UDITA.

Figure 2 . 5 presents Java programs that illustrate different inheritance graphs that can be

generated for a scope of two elements. Each inheritance graph needs to satisfy two invariants:

1. Directed Acyclic Graph (DAG). We cannot have directed cycles in Java inheritances;

2.2 Testing overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA29

2.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA A class has at most one supertype class, and all supertypes of an interface are inter-

faces. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPr og r am zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i
class A {}

class B ex t en d s A {}

2
i n t e r f ace A {}

class B i m p l e m e n t s A {}

3
i n t e r f ace A {}

i n t e r f ace B ex t en d s A {}

Figure 2.5: Programs representing Java Inheritance Graphs.

UDITA allows users to specify the generation by using a Java language extended with

non-deterministic choices. Next, we describe the inheritance graph specification presented

by Gligoric et al. [22]. In Listing 2.8, we show the Java inheritance graph representation in

UDITA. The class IG represents the graph, and contains fields that represent a list of nodes

and the size of the graph. It also contains a class representing a node, which has an array

of nodes as supertypes and a b o o l e a n flag to mark the node as a class (otherwise it is

an interface). In Listings 2.9 and 2.10, we present invariants for the Java inheritance graph

specified in UDITA. It returns true when these properties hold.

Listing 2.8: Java inheritance graph representation in UDITA

1 c l a s s IG {

2 Node [] nodes ;

3 i n t s i z e ;

4 s t a t i c c l a s s Node {

5 Node |] s u p e r t y p e s ;

6 b o o l e a n i sC 1 a s s ;

7 I

8)

Listing 2.9: Java inheritance graph invariants in UDITA

1 boo lean isDAG(IG i g) {

2 Se t<Node> v i s i t e d = new H a s h S e t < N o d e > () ;

2.2 Testing overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 Se t<Node> pa th =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA new HashSet <Node >() ;

4 if (i g . n o d e s == nu l lzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA II i g . s i z e != ig . nodes . l e n g t h)

5 r e t u r n f a l s e ;

6 for (Node n i g . n o d e s)

7 ifzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA (! v i s i t e d , c o n t a i n s (n))

8 if (! i s A c y c l i c (n , p a t h , v i s i t e d)) r e t u r n f a l s e ;

9 r e t u r n t r u e ;

10)

I I

12 boo lean i s Ac y c 1 i c (Node n o d e , Se t<Node> p a t h , Se t<Node> v i s i t e d))

13 ifzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA (p a t h . c o n t a i n s (n o d e)) r e t u r n f a l s e ;

14 p a t h . a d d (n o d e) ;

15 v i s i t e d . a d d (n o d e) ;

16 for (i n t i = 0; i < s u p e r t y p e s . l e n g t h ; i + +) {

17 Node s = s u p e r t y p e s [i] ;

18 / / two supertypes cannot be the same

19 for (i n t j = 0 ; j < i ; j + +)

20 if (s == s u p e r t y p e s [j]) r e t u r n f a l s e ;

21 / / check property on every supertype of this node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

22 i f (! i s Ac y c 1 i c (s , p a t h , v i s i t e d)) r e t u r n f a l s e ;

23 }

24 pa th . remove (node) ;

25 r e t u r n t rue ;

26 }

Listing 2.10: Well-formedness rules for Java inheritance specified in UD1TA

1 boo lean i s J a v a I n h e r i t a n e e (IG i g) {

2 for (Node n : i g . n o d e s) {

3 b o o l e a n d o e s E x t e n d = f a l s e ;

4 for (Node s n . s u p e r t y p e s)

5 i f (s . i s C 1 a s s) {

6 / / interface must not extend any class

1 i f (! n . i s C 1 a s s)

2.2 Testing overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8 r e t u r n f a l s e ;

9 i f (! d o e s E x t e n d) {

10 doesExtend = t r u e ;

I I // class must not extend more than one class

12 } else {

13 r e t u r n f a l s e ;

14

1?

16

17 }

To generate all graphs from predicates, we need to specify bounds on possible values for

each elements in the graph representation, which are the array sizes, and the fieldzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA i s C l a s s .

UDITA uses non-deterministic choices based on JPF for this purpose. For example, when we

run the command k = g e t l n t (1 , N) , JPF introduces N branches in a non-deterministic

execution, where in the branch /' (for 1 < / < AO k has value /'. JPF explores the combinations

of all possible choices for primitive types. UDITA extends JPF, introducing new algorithms

to explore combinations of choices for objects in a new object pool abstraction. Listing 2.1 1

presents the code to initialize the Java inheritance graph generation in UDITA. The method

i n i t i a l i z e performs 3 steps. First, it sets the graph size (the number of nodes). Then

creates a pool of Node objects of this size, and finally iterates over all objects in the pool

to initialize their supertypes pointing to other objects in the pool. The class Ob j e c t P o o l

has two methods: getNew, which returns a new object from the pool, and getAny, which

returns an arbitrary object.

Listing 2.11: Initialization of Java inheritance graph generation in UDITA

1 IG i n i t i a l i z e (i n t N) {

2 IG i g = new I G () ;

3 i g . s i z e = N ;

4 Objec tPoo l <Node> pool = new Objec tPool <Node>(N) ;

5 ig . nodes = new N o d e [N] ;

6 f o r (i n t i = 0; i < N ; i + +) i g . n o d e s [i] = poo l .ge tNew () ;

7 for (Node n : nodes) {

2.3 Alloy Overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA32 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8 i n t num = g e 1 1 n t (0 , N - 1) ;

9 n . s u p e r t y p e s = new Node [n u m] ;

10 f o r (i n t j = 0; j < num; j + +)

H n . supe r ty pes [j] = pool . getAny () ;

12 n . i s C l a s s = ge tBoolean () ;

13 }

14 r e t u r n ig ;

15 }

16

17 s t a t i c v o i d m a i n F i 11 (i n t N) {

18 IG ig = i n i t i a l i z e (N) ;

19 assume (isDAG (i g)) ;

20 assume) i s J a v a l n h e r i t a n c e (i g)) ;

21 p r i n t l n (i g) ;

22 }

2.3 Alloy Overview

An Alloy model or specification is a sequence of paragraphs of two kinds: signatures and

constraints. Each signature denotes a set of objects associated to other objects by relations

declared in the signatures. Each signature paragraph represents a type, and may declare a set

of relations along with their types and other constraints on their included values.

We use as example part of the Java metamodel encoded in Alloy. A Java class is a type,

and may extend another class. Additionally, it may declare fields and methods, as specified

in the U M L class diagram, as shown in Figure 2.6(a). Figure 2.6(b) presents its specifica-

tion in Alloy. A l l classes and associations in the U M L class diagram are analogous to the

Alloy signatures and their relations, respectively. InzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Class, thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA s e t in relation f i e l d s

and relation methods imposes no constraint on multiplicity. There are other multiplicity

qualifiers, such as lone, denoting partial functions. I f we omit the qualifier, the relation

becomes a total function. In Alloy, one signature can extend another, establishing that the

extended signature (subsignature) is a subset of the parent signature. For example, a Class

2.3 Alloy Overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Type

^methods T f ields 0 *
Mett : :l

^methods
Class

fields 0 *
Field Mett : :l

" s.
0..*

Class

>
Field

" s.
0..* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ \ 0 . . 1

extend zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a)

sig Type {)

sig Class extends Type {

extend: lone Class,

methods: set Method,

fields: set Fiel

1

sig Method {)

sig Field))

(b)

Figure 2.6: A U M L class diagram and its representation in Alloy.

i

i

is a subsignature ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Type. i

I

A number of well-formedness constraints can be specified for Java. For instance, a class

cannot extend itself. In Alloy, we can declare facts which package formulas that always hold.

The C l a s s C a n n o t E x t e n d l t s e l f fact specifies this constraint.
i

1 fact ClassCannotExtendltself {
2 all c: Class I c ! in c.Aextend

3 1

ThezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA a l l keyword represents the universal quantifier, and the i n keyword denotes the

set membership operator in the previous fragment. The operators A and ! represent the

transitive closure and negation operators, respectively. The dot operator (.) is a generalized

definition of the relational jo in operator. For example, the expression c . e x t e n d yields the

superclass of c.

In Alloy, predicates are used to package reusable formulas and specify operations. The

following Alloy fragment declares the predicate someClassHasNoField, stating that

there is a class without fields. The some keyword represents the existential quantifier. The

no keyword, when applied to an expression, denotes that the expression is empty.

1 pred someClassHasNoField [] (

2 some c: Class I no c.licld

3 }

UFCGJBIBUOTECAIBC

2.4 Concluding remarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA34 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The Alloy Analyzer tool [33] allows us to perform analysis on an Alloy specification; for

example, in order to find a solution for a model in a pre-defined scope. A scope defines the

maximum number of objects allowed for each signature during analysis, assigning a bound

to the number of objects of each type. The simulations performed by the Alloy Analyzer tool

are sound and complete, up to a given scope.

Alloy commands are used for analysis purposes. Next, we declare azyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA run command

that is applied to a predicate, specifying a scope for all declared signatures. For desired

solutions containing as many as three of each type, class, field and method, and at least one

of the classes with no fields, the Alloy Analyzer searches for all combinations that satisfy

the signature and fact constraints, in addition to thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA someClassHasNoField predicate.

1 run someClassHasNoField for 3

2.4 Concluding remarks

In this chapter, we presented the theoretical basis needed for the understanding of this the-

sis. First, we showed an overview on program refactoring, along with the state-of-the-art

approaches on refactoring verification.

Next, we introduced important concepts on software testing, such as test case, oracle,

and coverage criteria. We also present the approach proposed by Daniel et al [] for testing

of refactoring engines, and their program generator, ASTGen. We also presented UDITA an

extension of ASTGen. In Chapter 3 we present a comparison between our program generator,

J D O L L Y , and UDITA. Finally, we presented an overview of Alloy and Al loy Analyzer, which

we used to propose our program generator, J D O L L Y .

Chapter 3

J D O L L Y : A Java program generator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter, we present J D O L L Y 1 , a Java program generator that exhaustively generates

programs, up to a given scope of Java constructs (e.g. packages, classes, methods, fields).

The Alloy specification language (Section 2.3) is employed as the formal infrastructure for

generating programs; a metamodel for Java is encoded in Alloy, and the Alloy Analyzer finds

instances of this model, which are translated into programs by J D O L L Y , for user-specified

constraints.

Next we present an overview of the technique (Section 3.1). Then we show the encoding

of a subset of the Java metamodel in Alloy. We then describe how to translate each Alloy

solution to Java (Section 3.3), and explain how to use J D O L L Y for generating more specific

Java programs in Section 3.4. In Section 3.5, we describe an experiment to compare J D O L L Y

with another Java program generator, UDITA [22]. Finally, we present the concluding re-

marks (Section 3.6).

3.1 Overview

J D O L L Y is a Java program generator. It contains a subset of the Java metamodel specified in

Alloy [32]. It employs the Alloy Analyzer, a tool for analysis of Alloy models, to generate

solutions (instances) for this metamodel. It then translates each solution into a Java program.

J D O L L Y exhaustively generates all Java programs specified by its metamodel for a given

scope. The user defines this scope by specifying the maximum number of elements for each

' i t can be downloaded from: http://www.dsc.ufc«.edu.brrspg/jdolly

35

http://www.dsc

3.2 Java metamodel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA36 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Java construct presented in the metamodel. For instance, the user can specify the maximum

number of classes to three. By doing so, J D O L L Y w i l l generate all programs with up to three

classes. Furthermore, the user can specify specific constraints for the program generation.

For example, when testing a refactoring that pulls up a method to a superclass, the input

programs must contain at least a subclass declaring a method that is subject to be pulled up.

The user can specify these constraints in Alloy.

3.2 Java metamodel

In this section, we describe the subset of the Java metamodel that we specified. I f we consider

the entire Java language, we can create a large number of different programs even for a small

scope of elements, which may make it too expensive to exhaustive generate programs even

for a small scope. Additionally, some Java constructs and well-formedness rules may require

considerable effort to be specified in Alloy due to restrictions of the language. For instance.

Alloy does not allow recursive predicates. Our goal is to specify a subset of the Java language

that can be useful for finding real faults in refactoring engines. To do so, we studied faults

previously identified by researchers [84; 72; 14] in order to understand which constructs are

relevant to this context.

3.2.1 Abstract syntax

We illustrate a U M L class diagram representing the subset of the Java metamodel encoded

in Alloy in Figure 3.1. From Java, we have considered two primitive types: int and long. By

using these primitive types, we can evaluate the refactoring engines in the presence of method

overloading and implicit cast. We believe that i f we have included other primitive types,

such as float, it would not make much difference with respect to method overloading and

implicit casting, but it would increase the number of programs, making it more expensive to

generate all programs. A class is the only non-primitive type - currently, we do not consider

interfaces. A Java class has an identifier, field and method declarations, and extends another

class. Moreover, each class is located in a package. I f a class is not explicitly related to a

package, the default package is assumed.

Each field is associated with one identifier, one type, and at most one modifier, such as

3.2 Java metamodel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA37 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Accessib i l i t y

7K&
r - 0..1

private publ ic protected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3.1: The Java metamodel specified in JDOLLY. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p u b l i c , p r o t e c t e d , or p r i v a t e . When it does not have a modifier, its accessibility is

package. Similarly, a method declaration contains a return type, an identifier, a number of

parameters, and a body. Moreover, it may contain an access modifier. We have considered

methods with at most one parameter, which is useful for generating programs containing

overloading. For instance, a method can have no parameter and another method with the

same name can have one parameter, or both methods can have one parameter but with dif-

ferent types. Moreover, by generating methods with parameter we can generate programs

to test refactorings that operate over parameters, such as the Remove Parameter refactor-

ing. Although adding more parameters can be useful for finding more faults, it also would

significantly increase the number of combinations for generating programs.

In Java, a method body contains a sequence of statements, whose last statement must

be a return for every non-void method. Currently, a method body contains just a sin-

gle return statement. So, the simplest return statement returns a literal value based on

the return type. Return statements can also contain field accesses or method invocations.

Field accesses include: f, A.f, t h i s . f , super, f and new A () . f - the latter is a

C o n s t r u c t o r F i e l d A c c e s s . L i t e r a l V a l u e represents the simplest kind of state-

ment, extending the signature Body. F i e l d A c c e s s and M e t h o d l n v o c a t i o n contain

the identifier of the accessed field and method with a single qualifier at most, respectively. I f

3.2 Java metamodel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA38 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a method with a single parameter is called J D O L L Y always passes a constant value, such as

2, as argument to the call.

3.2.2 Well-formedness rules

The Java language contains a number of well-formedness rules to evaluate whether

a program is valid. We specified these rules within Alloy facts. For example a

Java class cannot have two fields with the same identifier, as declared in the fact zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

noClassTwoFieldsSameld.

1 fact noClassTwoFieldsSameld {

2 allc: Class I all 11.12: c.fields I

3 f l ! = f2 => f 1 .id ! = f2.id

4 }

Similarly, a Java class cannot contain two methods with the same name and parameter

type, as presented in the fact noClassTwoMethodsSameSignature.

1 fact noClassTwoMethodsSameSignature {

2 all c: Class I all m 1 ,m2: c.methods I

3 ml ! = m2 =•

4 (ml.id ! - m2.id or m 1 .paramType ! = m2.paramType)

5 }

Some well-formedness may require a lot of effort to specify in Alloy. For example, we

cannot have a method invocation to an undefined method. To analyze the binding between a

method invocation and a method declaration, we may need to evaluate i f the method declara-

tion is in the same class, hierarchy, and package of the method invocation, its access modifier

(public, protected, package, private), its parameters, and the kind of the method invocation

(e.g. using super, this, qualified this). We could try to specify these rules exactly how they

are, avoiding uncompilable programs, or specifying approximations that may result in un-

compilable programs. Although the first option guarantees that all generated programs wi l l

compile, it requires more effort, and may lead to over constraining the model, leading the tool

to miss some compilable programs. On the other hand, the second option requires less effort

but produces uncompilable programs. We chose the second option because we can discard

3.3 Program generation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA39 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Package Classic! Mc rhod field

aid J j iiu_ J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 package Package

2 p u b l i c Classic!

3 i n t f i e l d l d =

4 p r o t e c t e d i n t

methodld ()

5 r e t u r n 2;

6 }

7 I

(a)

(b)

Figure 3.2: Translation of an Alloy solution to a Java program, (a) A solution of the Java

metamodel generated by Alloy Analyzer; (b) the translation of the solution into a concrete

Java program.

the uncompilable input programs while testing a refactoring engine. Appendix A presents

the complete specification of the abstract syntax and well-formedness rules for J D O L L Y .

3.3 Program generation

The previous Alloy model is then used to generate Java programs. We specify thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA run

command; specifically with the generate predicate. By default, the scope of at most three

objects is used for each signature. Then we use the Alloy Analyzer API to execute the run

command, generating all solutions for the given scope.

1 pred generate [1 {}

2 run generate for 3

The Alloy Analyzer finds for solutions such as the instance depicted in Figure 3.2(a). The

graph contains the Class object, which is associated with objects Package, C l a s s l d ,

Method, and F i e l d . Moreover, object F i e l d is associated with F i e l d l d and I n t _ ,

and Method is associated with L i t e r a l V a l u e , Methodld, P r o t e c t e d , and I n t _ .

For simplicity, we distinguish class from field identifiers. For example, Figure 3.2(b) shows

the counterpart in Java of the Alloy solution.

3.4 Generating more specific programs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The Alloy Analyzer does not automatically convert an Alloy instance into a Java pro-

gram. In fact, we use its API to generatezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA every possible solution 2. To complete the gener-

ation step, we reused the syntax tree available in Eclipse J D T [17] for generating programs

from those solutions. For example, the Alloy objectszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Class and Package are mapped to a

T y p e D e c l a r a t i o n and a PackageDeclaration, respectively. The imports are auto-

matically calculated from each Alloy instance generated; they are included in each program.

3.4 Generating more specific programs

With J D O L L Y , we can specify different scopes to limit program generation. For instance,

i f we are not interested in fields, we can specify the scope of zero. Besides, the generation

can be further constrained. In a context in which programs are needed with at least one

class (C2) extending another one (CI), and C2 declares at least a method (Ml), the following

Alloy fragment specifies generate. This particular specification is useful for testing the

Pull Up Method refactoring. considering Ml. For each instance, we pass the value given to

Ml to the refactoring engine.

1 one sig C I , C2 extends Class {}

2 one sig M1 extends Method {}

3 pred generate!] {

4 CI in C2extend

5 M1 in C2methods

6 }

3.5 Evaluation

In this section, we present an experiment comparing J D O L L Y against UDITA [2 2] .

3.5.1 Definition

In previous work. Gligoric et al. [22] uses an Java inheritance graph generation to show that

UDITA is more expressive and easier to use than ASTGen. In Section 2.2.4 we present an

2 Accessing Alloy 4 using Java API: http://alloy.mit.edu/alloy4/api.html

http://alloy.mit.edu/alloy4/api.html

3.5 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

UDITA specification to generate Java inheritance graphs.

We carried out a similar comparison on the differences between J D O L L Y and UDITA.

The goal of this experiment is to analyze two tools (J D O L L Y and UDITA) for the purpose

of evaluation with respect to test input generation from the point of view of researchers in

the context of Java inheritance graph generation. For instance, In particular, our experiment

addresses the following research questions:

• Q l . Do the tools exhaustively generate inheritance graphs for a given scope?

Since we do not know all inheritance graphs that can be generated, we compare all

graphs generated by J D O L L Y against the ones generated by UDITA in order to detect

missing graphs in each one of the tools' results.

• Q2. Do the tools generate isomorphic inheritance graphs?

A tool may generate more than one structurally equivalent (isomorphic) solution. In

the context of test input generation, generating isomorphic inputs does not increase the

chances of finding new faults, and makes the test input generation slower. Therefore,

the less isomorphic graphs generated by each approach, the better. We measure the

number of isomorphic and non-isomorphic graphs for each tool.

3.5.2 Planning

Next, we describe how we selected the subjects and how we instrument the experiment.

Selection of subjects

To compare J D O L L Y against UDITA, we chose to generate a Java inheritance graph by using

both tools. We chose to use a Java inheritance graph because it has non-trivial invariants and

it is directly related to generating Java programs. Additionally, it was previously used to

describe UDITA and compare it with ASTGen [22]. Each inheritance graph needs to satisfy

two invariants:

1. Directed Acyclic Graph (DAG). We cannot have directed cycles in Java inheritances;

2. A class has at most one supertype class, and all supertypes of an interface are inter-

faces.

3.5 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA42

Experiment Design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

For each approach, we perform the Java inheritance graph generation by using scopes from 1

to 4. This scope is similar to the scope of previous programs that revealed faults in refactoring

engines [84; 72; 14].

Instrumentation

To perform the UDITA generation, we downloaded the Java inheritance graph specification

from UDITA website\ In Section 2.2.4, we present a simplified version of this specification.

We created a J D O L L Y version containing the metamodel of the Java graph inheritance.

Next, we describe this metamodel. First, we specified the signatureszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA IG and Node to repre-

sent the inheritance graph as shown in Listing A . l .

Listing 3.1: Java inheritance graph representation in JDolly

1 s ig lG{

2 nodes: set Node

3 }

4 abstract sig Node]

5 supertypes : set Node,

6 isClass : one Bool

7 }

Then, we specified Alloy facts that represent the invariants of the Java inheritance graph

as shown Listing 3.5.

Listing 3.2: invariants for the Java inheritance graph in JDolly

1 fact DAG {

2 no n:Node I n in n.Asupertypes

3 1

4 fact Javalnheritance (

5 all n:Node I isTrue[nisClass] =>

6 lone nl:Node I nl in nsupertypes and isTruefnl -isClass]

7 all tr.Node I isFalse|nisClass] =>

3http://mir.cs.Illinois.edu/udita/

http://mir.cs.Illinois.edu/udita/

3.5 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA43 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8 nonl :Node ln l in nsupertypes and isTrue[nl isClass]

9 !

Finally, we initialize the generation by running thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Run command on the Show predicate

as illustrated in Listing 3.6. We specified a constraint in the Show predicate to specify that

all generated nodes must be in the inheritance graph.

Listing 3.3: Running Java graph generation by using the Al loy Analyzer,

pred show[] {

Node in IGnodes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

}

run show for exactly 1 IG, exactly 4 Node

We implemented a graph comparator to compare the graphs generated by both tools. The

comparator abstracts the name of the nodes, so that i f two graphs have the same structure but

different names, the comparator says that they are isomorphic.

To check whether the tools exhaustively generates solutions for a given scope, we check

if each graph generated by J D O L L Y was also generated by UDITA, and the other way around,

by using our graph comparator. To check i f the tools generate isomorphic graphs, we use our

graph comparator to compare each graph generated by the tool against all the other graphs

generated by it.

In J D O L L Y , we specify the Java inheritance graph generation by using Alloy. First,

we specified the signatures IG and Node to represent the inheritance graph as shown in

Listing A . l .

Listing 3.4: Java inheritance graph representation in JDolly

sig IG {

nodes: set Node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

!

abstract sig Node)

supertypes : set Node,

isClass : one Bool zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

}

3.5 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA44 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Then, we specified Alloy facts that represent the invariants of the Java inheritance graph

as shown Listing 3.5.

Listing 3.5: Java inheritance graph representation in JDolly

1 fact DAG {

2 no n:Node I n in n.Asupertypes

3)

4 fact Javalnheritance j

5 all n:Node I isTrue[nisClass]

6 lone n 1 :Node I n 1 in nsupertypes & & isTrue[n 1 -isClass]

7 all n:Node I isFalse[n-isClass] =>

8 non l :Node ln l in nsupertypes & & isTrue[nl isClass]

9)

Finally, we initialize the generation by running thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Run command on the Show predicate

as illustrated in Listing 3.6. We specified a constraint in the Show predicate to specify that

all generated nodes must be in the inheritance graph.

Listing 3.6: Running Java graph generation by using the Alloy Analyzer.

1 pred show|] {

2 Node in IG-nodes

3 1

4 run show for exactly 1 IG, exactly 4 Node

3.5.3 Operation

We performed the Java inheritance graph generation on a MacBook Pro Intel Core i5 2.4GHz

with 8GB of R A M . Table 3.1 summarizes the results of the experiment. In contrast with

J D O L L Y , UDITA did not generate 2, 7 and 37 non-isomorphic programs in scopes 2, 3

and 4, respectively. For example, Figure 3.3 shows the programs that represent the Java

inheritance graphs generated by J D O L L Y and UDITA for a scope of two elements. UDITA

did not generate the program 5, which contains two classes, and program 6, which has two

classes, one extending the other one. On the other hand, J D O L L Y generated much more

isomorphic programs than UDITA.

3.5 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA45 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 3.1: Comparison of J D O L L Y and UDITA; Prog.: Number of generated programs;

Comp.: number of compilable programs; Isomor: number of isomorphic programs; Unique:

number of unique programs; NG: number of unique programs that were not generated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
JDol ly UDITA

Scope Prog. I somor. Uni que NG Prog. I somor. Uni que NG

1 2 0 2 C
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2
0 2

1

0

2 6 0 6 0 4 0 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?

3 29 5 24 0 18 1 17 7

4 2 30 8 1 149 0 123 11 112 3 7

3.5.4 Discussion

One of the reasons why UDITA did not generate all programs may be an incorrect specifica-

tion of the constraints for the Java inheritance. By looking at the code that we downloaded

from UDITA website, we noticed slightly differences with respect to the simplified code

presented in Listings 2.8, 2.9, 2.10, and 2.1 1. For instance, in thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA i s J a v a l n h e r i t a n c e

predicate (Listing 2.10), before checking i f the node is a class (line 5), there is another state-

ment i f (i s C l a s s) ; . This statement would have no effect in Java because there is no

command to be executed in this i f statement. However, when we remove this statement,

and run UDITA again, it generates all six programs for the scope of 2; in fact, it generates

seven programs (one isomorphic program). We also evaluated to replace this i f statement

to System, out . p r i n t I n (i s C l a s s) . When we added this statement to print this vari-

able, UDITA generated only four programs (the same ones that it generated in the original

version), missing two graphs. This may be a fault in the current implementation of UDITA.

In our experiment, both tools generated isomorphic inheritance graphs. J D O L L Y uses the

Alloy Analyzer for generating programs, which uses SAT solvers for searching solutions for

the Alloy models. These solvers contain algorithms for avoiding generating several isomor-

phic solutions. UDITA also implements an algorithm for this purpose. On the other hand, in

ASTGen, the tester would be in charge of this task.

Figure 3.4 shows two programs representing isomorphic graphs generated by J D O L L Y

for a scope of three elements. These programs have the same structure but different identi-

fiers. Although J D O L L Y generated other four isomorphic programs for this scope, it avoided

a number of other isomorphic programs. Notice that it generated 24 distinct programs (see

Table 3.1). Each one of these programs has tree elements. By permuting the identifiers of

3.5 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA46

n JDolly UDITA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i interface A (}
class B {}

interface A {}
class B {}

2 interface A ()
class B implements A {}

interface A {}
class B implements A {}

3 interface A {}
interface B {}

interface A {}
interface B {}

4 interface A {)
interface B extends A{}

interface A {}
interface B extends A{}

5 class A 1}
class BO

6 class A f;
class B extends A (]•

Figure 3.3: Programs representing the generation of Java Inheritance Graphs by UDITA and

J D O L L Y for the scope of two elements.

1 i n t e r f a c e A j) 1 i n t e r f a c e B ()

2 i n t e r f a c e B ex tends A {) 2 i n t e r f a c e C ex tends B {}

3 i n t e r f a c e C extends B { } 3 i n t e r f a c e A ex tends C { }

Figure 3.4: Isomorphic programs generated by J D O L L Y .

these elements, we can have 6 programs with the same structure. Considering all 24 pro-

grams, J D O L L Y could have generated 144 programs (120 isomorphic ones). It is important

to avoid isomorphic programs because they do not increase the chances of linding faults in

refactoring engines and slow the program generation.

Alloy logic presented, as expected, a higher level of abstraction than Java-like code of

UDITA. For example, while we specified the DAG invariant in one line by using Alloy,

Gligoric et al. [22] needed about 20 lines to specify it in UDITA.

3.5.5 Answers to the research questions

Next, we discuss these results with respect to our research questions.

3.6 Concluding remarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA47

Do the tools exhaustively generate inheritance graphs for a given scope? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

No. J D O L L Y generated all inheritance graphs, but UD1TA failed to generate some graphs

for the scope of two, three, and four. In bounded-exhaustive testing, failing to generate some

test input may lead to leave some fault uncaught, reducing the effectiveness of the approach.

Do the tools generate isomorphic inheritance graphs?

Yes. In our experiment, both tools generated isomorphic inheritance graphs. J D O L L Y ,

though, generated more than UDITA. For instance, with a scope of four, while 35% of the

graphs generated by J D O L L Y were isomorphic, in UDITA, only 9% of the graphs were iso-

morphic. Our results suggest that UDITA handles isomorphism better than J D O L L Y .

3.5.6 Threats to validity

With respect to construct validity, we compare the results of both tools to evaluate whether

they exhaustively generates inheritance graphs. Therefore, i f none of the tools exhaustively

generates these graphs, our results wi l l be incorrect. Finally, we compare both tools with re-

spect to Java inheritance graphs. Our results are not representative of all program generation

allowed on both tools.

3.6 Concluding remarks

In this chapter, we presented J D O L L Y , a Java program generator that uses Alloy and the

Alloy Analyzer as basis for generating programs. It allows users to exhaustively generate

Java programs by specifying the scope of the program generation and constraints on what

programs should be generated. Our goal was to define a subset of the language expressive

enough for finding faults in refactoring engines, but not too large to make it too complex

and expensive. We studied previously faults in refactoring engines found in literature. We

used this knowledge to specify a Java metamodel that includes relevant constructs to test

refactoring engines.

We compared J D O L L Y against a state-of-the-art program generator, UDITA. Our results

suggest that while J D O L L Y exhaustively generates programs, UDITA may fail to generate

3.6 Concluding remarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA48 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

some programs in a given scope. On the other hand, J D O L L Y generates more isomorphic

programs than U D I T A , which may slow down the program generation. In our experiment,

though, J D O L L Y was faster than U D I T A .

Chapter 4

S A F E R E F A C T O R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter, we present S A F E R E F A C T O R [80], a tool for checking behavioral changes in

program transformations. In Section 4.1, we show its overview. Next, we show an empirical

study to evaluate the effectiveness of S A F E R E F A C T O R 4.2. Finally, we show the concluding

remarks (Section 4.3).

4.1 Overview

S A F E R E F A C T O R [80] checks whether a transformation introduce behavioral changes. First,

the tool checks for compilation errors in the resulting program, and reports those errors; i f no

errors are found, it analyzes the transformation and generates a number of tests suited for de-

tecting behavioral changes. S A F E R E F A C T O R identifies the methods with matching signature

(methods with exactly the same modifier, return type, qualified name, parameter types and

exceptions thrown) before and after the transformation. Next, it applies Randoop [56], a Java

unit test generator, to produce a test suite for those methods. Randoop randomly generates

tests for a set of methods given a time limit. Finally, it runs the tests before and after the

transformation, and evaluates the results. I f results are different, the tool reports a behavioral

change, and displays the set of unsuccessful tests. Figure 4.1 illustrates this process.

To illustrate S A F E R E F A C T O R , take classzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA A and its subclass B as illustrated in Listing 4.1.

A declares the k method, and B declares methods k, m, and t a r g e t . The latter yields 1.

Suppose we want to apply the Pull Up Method refactoring to move m from B to A. This

method contains a reference to A . k using the super access. The use of either Eclipse JDT

49

4.1 Overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D e v e i o p c r

H > Run t est sui t ezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA P) Program - » v Co m m o n

Test su i t e " ^Changes W m et hod s

^ " I - J

Figure 4.1: Sale Refactor's technique; I) The tool identilies the methods with same signature

before and after the transformation; 2) It generates a test suite for the identified methods

using Randoop; 3) It runs the tests on the source program; 4) It runs the tests on the target

program; 5) Finally, Safe Refactor evaluates the results: i f they are different, the tool reports

a behavioral change. Otherwise, the deveiopcr can increase confidence that the programs

have the same behavior.

3.7 or JRRTv 1 to perform this refactoring wi l l produce the program presented in Listing 4.2 1 .

MethodzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA m is moved from B to A , and super is updated to t h i s ; a compilation error is

avoided with this change. Nevertheless, a behavioral change was introduced: t a r g e t yields

2 instead of 1. Since m is invoked on an instance of B, the call to k using t h i s is dispatched

on to the implementation of k in B.

Assuming the programs in Listings 4.1 and 4.2 as input, S A F E R E F A C T O R first identilies

the methods with matching signatures on both versions: A . k, B . k, and B . t a r g e t . Next,

it generates 78 unit tests for these methods within a time limit of two seconds. Finally, it runs

the test suite on both versions and evaluates the results. A number of tests (64) passed in the

source program, but did not pass in the refactored program; so S A F E R E F A C T O R reports a

behavioral change. Next, we show one of the generated tests that reveal behavioral changes.

The test passes in the source program since the value returned by B . t a r g e t is 1; however,

it fails in the target program since the value returned by B . t a r g e t is 2.

'The same problem happens when we omit the keyword this

4.1 Overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 51

Listing 4.2: After Refactor-

ing.Applying Pull Up Method in

Listing 4.1: Before Refactoring Eclipse JDT 3.7 or JRRTvl leads to

1 p u b l i c c lass A { a behavioral change due to incorrect

2 i n t k () { change of super to this.

3 r e t u r n 1 ; i p u b l i c c lass A {

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2 i n t k () (

5) 3 r e t u r n 1 ;

6 p u b l i c c lass B extends A { 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!

7 i n t k () { 5 i n t m() {

8 r e t u r n 2; 6 r e t u r n t h i s . k () ;

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA} 7 }

10 i n t m() { 8 }

1 1 r e t u r n s u p e r . k () : 9 p u b l i c c lass B extends A (

12 1 10 i n t k () {

13 p u b l i c i n t t a r g e t () { i 1 r e t u r n 2;

14 r e t u r n m() ; 12 I

15 } 13 p u b l i c i n t t a r g e t () {

16 } 14 r e t u r n m () ;

15

16 }

1 p u b l i c v o i d t e s t () {

2 B b = new B () ;

3 i n t x = b . t a r g e t () ;

4 a s s e r t T r u e (x == 1) ;

5)

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA52

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Previously, we evaluated S A F E R E F A C T O R in 8 transformations applied to real Java pro-

grams [79]. Although these transformations were classified as refactorings by the developers

that performed them, S A F E R E F A C T O R found that one of them changed program's behavior.

These results suggest that S A F E R E F A C T O R can find behavioral changes in real software, but

do not give evidences on how effective the tool is.

In this section, we evaluate2
 S A F E R E F A C T O R in 60 transformations gathered from source

code repositories. We previously did not know whether these transformations are behavior

preserving. To evaluate the correctness of S A F E R E F A C T O R ' S results, we compare it against

other two approaches for identifying refactorings: a manual inspection proposed by Murphy-

Hil l et al. [49; 50]; and an approach based on commit-message analysis [61; 60].

The remaining of this section is organized as follows: the following subsection describes

the approaches compared with S A F E R E F A C T O R (S e c t i o n 4.2.1). Then, we present the exper-

iment definition (Section 4.2.2), and show the experiment planning (Section 4.2.3). Next,

we describe the experiment operation, and show the results (Section 4.2.4). Then, we inter-

pret and discuss them in Section 4.2.5. Finally, we describe some threats to validity (Sec-

tion 4.2.6).

4.2.1 Compared techniques

Manual Analyses Overview

The manual analysis is based on the methodology of Murphy-Hil l et al. [49; 50], which

compares the code before each commit against its counterpart after the commit. For brevity,

we wi l l simply call this approach 'Murphy-Hi l l ' . For each commit, two evaluators sit to-

gether and use the standard Eclipse diff tool to compare files before the commit to the files

after the commit. Reading through each file, the evaluators attempt to logically group fine-

grained code changes together, classifying each change as either a refactoring (such as "Ex-

tract Method") or a non-refactoring (such as ' A d d null Check"). The evaluators also attempt

to group together logical changes across files by re-comparing files as necessary. Forexam-

2 Al l experimental data are available at: h t t p : / / w w w . d s c . u f c g . e c l u . b r / ~ g s o a r e s /

t h e s i s e x p e r i m e n t s . h t m l

http://www.dsc.ufcg.eclu.br/~gsoares/

4.2 Evaluât ion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA53 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

pie, i f the evaluators noticed that a change to one file deleted a piece of code, they would

have initially classified that change as a non-refactoring, but i f later the evaluators found that

the code had actually been moved to another file, the evaluators would re-classify the two

changes together as a single refactoring. I f the two evaluators did not agree on whether a

change was a refactoring, to reach agreement they would discuss under what circumstances

it might possibly change the behavior of the program.

By assessing the transformations performed during a commit, this approach is able to

determine whether a commit contained only refactorings, no refactorings, or a mix of refac-

torings and non-refactorings.3

Commit Message Analyses Overview

Ratzinger et al. [60; 61] proposed an approach to detect whether a transformation is a refac-

toring by analyzing a commit message. I f the message contains a number of words that are

related to refactoring activities, the transformation is considered a refactoring. We imple-

mented their approach in Algorithm I .

The implemented analyzer is based on Ratzinger et. al.'s algorithm [60; 611, which we

wi l l simply call 'Ratzinger'.

4.2.2 Definition

The goal of this experiment is to analyze three approaches (S A F E R E F A C T O R , Ratzinger, and

Murphy-Hil l) for the purpose of evaluation with respect to identifying bevahior-preserving

transformations from the point of view of researchers in the context of open-source Java

project repositories. In particular, our experiment addresses the following research questions:

• Q l . Do the approaches identify all behavior-preserving transformations?

For each approach, we measure the true positive rate (also called recall). tPos (true

positive) and fPos (false positive) represent the correctly and incorrectly behavior-

3One difference between the present study and the previous study [49] was that in the previous study they

included a "pure whitespace" category: in the present study, we consider "pure whitespace". "Java comments

changes", and "non-Java files changes" to be a refactoring, to maintain consistency with the definition of

refactoring used by SAFEREFACTOR.

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA54

AlgorithmzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 1 Ratzinger

Require: message <= commit message

Ensure: Indicates whether a transformation is a refactoring

keywords <= {refactor. restruct, clean, not used, unused, reformat, import, remove, re-

moved, replace, split, reorg, rename, move)

if 'needs refactoring' € message then

return FALSE

end if

for k 6 keywords do

if k € message then

return TRUE

end if

end for

return FALSE

preserving transformations, respectively. tNeg (true negative) and fNeg (false neg-

ative) represent correctly and incorrectly identified non-behavior-preserving transfor-

mations, respectively. Recall is defined as follows [52]:

#tPos
recall = — (4.)

#t.Pos + #fNeg

• Q2. Do the approaches correctly identify behavior-preserving transformations?

For each approach, we measure the false positive rate (precision). It is defined as

follows [52]:

precision = —— ——— (4.2)
#lPos + #fPos

• Q3. Are the overall results of the approaches correct?

We measure the accuracy of each approach by dividing the total correctly identified

behavior-preserving and non-behavior-preserving transformations by the total number

of samples. It is defined as follows [52]:

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA55

#tPos + #tNeq
accuracyzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA = (4 3)

•' iff Pos + if: f Pos + ir-tNeg + #fNeg ^
V

4.2.3 Planning

In this section, we describe the subjects used in the experiment, the experiment design, and

its instrumentation.

Selection of subjects

We analyze two Java open-source projects. JHotDraw is a framework for development of

graphical editors. Its SVN repository contains 650 versions. The second SVN repository is

from the Apache Common Collections (we wi l l simply call •Collections'), which is an API

build upon the JDK Collections Framework to provide new interfaces, implementations and

utilities.

We randomly select 40 out of 650 versions from the JHotDraw repository (four devel-

opers were responsible for these changes) and 20 out of 466 versions from the Collections

repository (six developers were responsible for these changes). For each randomly selected

version, we take its previous version to analyze whether they have the same behavior. For

instance, we evaluate Version 134 of JHotDraw and the previous one (133).

Tables 5.8 and 4.2 indicate the version analyzed, number of lines of code of the selected

version and its previous version, and characterize the scope and granularity of the transfor-

mation. We evaluate transformations with different granularities (low and high level) and

scope (local and global).

Experiment design

In our experiment, we evaluate one factor (approaches for detecting behavior-preserving

transformations) with three treatments (S A F E R E F A C T O R , Murphy-Hil l , Ratzinger). We

choose a paired comparison design for the experiment, that is, the subjects are applied to

all treatments. Therefore, we perform the approaches under evaluation in the 60 pairs of

versions. The results can be "Yes" (behavior-preserving transformation) and "No" (non-

behavior-preserving transformation).

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA56

Instrumentation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We invited Murphy-Hil l and one of his collaborators to perform his approach. We auto-

mate the experiment for checking S A F E R E F A C T O R and Ratzinger results4. The Ratzinger

approach was implemented in Algorithm 1.

We use S A F E R E F A C T O R 1.1.4 with default configuration but using a time limit of

120 seconds, and setting Randoop to avoid generating non-deterministic test cases. We

chose the time limit based on previous experiences of Randoop in real subjects [79; 56;

66]. Additionally, S A F E R E F A C T O R may have different results each time it is executed due

to the randomly generation of the test suite. So, we execute it up to three times in each

version. I f none of the executions linds a behavioral change, we classify the version as

behavior-preserving transformation. Otherwise, we classify it as non-behavior-preserving

transformation. We use Emma 2.0.5312 s to collect the statement coverage of the test suite

generated by S A F E R E F A C T O R in the resulting program. Additionally, we collect additional

metrics for the subjects: non-blank, non-comment lines of code, scope, and granularity. The

algorithms to collect refactoring scope and granularity are presented in B.

Since we previously do not know which versions contain behavior-preserving transfor-

mations, we the results of all approaches in all transformations to derive a Baseline. For

instance, i f the Murphy-Hil l approach yielded "Yes" and S A F E R E F A C T O R returned "No",

the first author would checked whether the test case showing the behavioral change reported

by S A F E R E F A C T O R was correct. I f so, the correct result was "No". So, we establish a Base-

line to check the results of each approach, and calculate their recall, precision, and accuracy.

4.2.4 Operation

Before performing the experiment, we implemented a script to download 60 pairs of versions

and log commit information: versionjd, date, author, and commit message. We named each

pair of versions with suffix _BEFORE and _AFTER to indicate the program before and after

the change. The versions that were non-Eclipse projects were made Eclipse projects so that

the Murphy-Hil l approach could use the Eclipse diff tool. Murphy-Hil l and his collaborators

4The automated experiment containing SAFEREFACTOR and Ratzinger approaches, and additional infor-

mation are available at: http://www.dsc.ufcg.edu.brrspg/jss_experiments.html
5http://em ma.sourceforge.net/

http://www.dsc
http://em
http://ma.sourceforge.net/

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA57 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

scheduled two meetings to analyze the subjects following the Murphy-Hil l approach. The

automated analyses of S A F E R E F A C T O R and Ratzinger were performed on a MacBook Pro

Core i5 2.4GHz and 4 GB R A M , running Mac OS 10.7.4.

Additionally, for S A F E R E F A C T O R we also downloaded all dependencies of JHot-

Draw. S A F E R E F A C T O R compiles each version and than generates tests to detect behavioral

changes. We also manually create buildFiles to compile the JHotDraw subjects. As software

evolves, it may modify the original build file due to changes in the project structure, compiler

version or used libraries. For JHotDraw's subjects, we needed 4 buildFiles. and used JDK

1.5 and 1.6. We do not have information which JDK they used. For each subject, we used

S A F E R E F A C T O R with a specific buildFile. The Apache Common Collections subjects were

compiled with JDK 1.6. Moreover, we performed the test generation of Randoop, and the

test execution using JDK 1.6 on both samples.

Tables 5.8 and 4.2 present the results of our evaluation for JHotDraw and Collections,

respectively. Column Version indicates the version analyzed, and Column Baseline shows

whether the pair is indeed a refactoring. This column was derived based on all results, as

explained in Section 4.2.3. The following columns represent the results of each approach. In

the bottom of the table, it is shown the precision, recall, and accuracy of each approach with

respect to Column Baseline.

We have identified 14 and I 1 refactorings (Baseline) in JHotDraw and Collections, re-

spectively. In 17 out of 60 pairs, all approaches have the same result. While some versions

fixed bugs, such as Versions 134. 176, and 518, or introduced new features, for instance

Version 572952, others are refactorings (see Baseline of Tables 5.8 and 4.2). Some versions

did not change any Java file (Versions 251. 274, 275, 300, 304, 405, 697, 609497. 923339,

1095934) or changed just Java comments (Versions 156,814123,814128, 966327, 1023771,

1023897, 1299210, 1300075). In this study, we regard them as refactorings (behavior-

preserving transformations).

The Murphy-Hil l approach detected all refactorings of JHotDraw and Collections, which

means a recall of 1 on both samples. However, it classifies four uncompilable versions

as refactoring: one in JHotDraw (Version 357) and three in Collections (Versions 814997.

815022. 815042). This is the main reason why the manual inspection performed by the

Murphy-Hill approach is not considered as the Baseline alone. So, 14 out of the 15 detected

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA58 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm i l h i I M ahatr 1 MH izyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA SAFEREFACTOR

Ve r s t o n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B e f o re Af t e r

Gre nu .
Refact . Refact . Refact . Refac t » Test s Cov. (%

1 3 4 2 0 4 2 2 2 0 4 2 2 » o w Local No No No Yes 4 4 9 2 4

1 5 1 2 8 1 0 3 2 8 1 0 8 Low No No No No 4 7 7 8 4 8

1 5 6 2 8 1 2 1 2 8 1 2 1 Low - O 0 Ù Yes tes Yes Yes 4 7 7 8 4 8

1 7 3 2 8 1 0 1 2 8 0 5 2 Gl ob a l V Yes No Yes 4 5 4 2 0

1 7 4 2 8 0 5 2 2 8 0 5 3 Gl ob a l yes No Yes Yes l ï - 2 3

1 7 6 2 8 0 5 5 2 8 0 5 5 LOW Local No No No ' . 4 3 6 3 3

1 7 9 2 8 0 6 5 2 S0 6 5 Low Local Yes Yes Yes 3 1 9 9 4 1

1 9 3 2 8 2 9 1 2 8 2 9 8 Low Gl ob a l Yes No Yes Yes 2 1 0 8 35

2 5 1 2 8 3 9 8 2 8 3 9 8 Low Local Yes No Yes Yes 5 1 6 2 4 S

2 6 7 2 8 3 9 8 2 8 4 0 9 No \ No Yes 5 4 3 3 4 8

2 7 4 3 2 4 0 8 3 2 4 0 8 Low Loca Yes ' . : Yes Yes 4 1 8 0

2 7 5 3 2 4 0 8 3 2 4 0 8 Low Local Yes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% Yes Yes - : c 3

2 9 4 3 9 2 4 9 3 9 0 8 1 - gh Loca V No '. Co m p i l a t i o n Erro

3 OC 3 9 1 6 1 3 9 1 6 1 LU H Local Yes ' . : Yes 3 1 4 14

3 0 2 3 8 9 9 3 3 9 1 6 1 - gl- Local No No N, Co m p i l a t i o n Erro

104 3 9 1 6 1 3 9 1 6 1 Low .cca ' es NO Yes l ies 15

3 1 8 3 9 1 6 0 3 9 1 7 3 Low Local No No No Yes 2 3 5 6 -

3 2 2 3 9 3 7 7 3 9 4 8 0 High Local No No ' . : Yes i:
3 2 4 3 9 4 7 2 3 9 5 5 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Gl ob a l No No No No - a : 10

3 4 4 5 1 3 3 9 5 1 5 9 6 Higf Gl ob a l No No \ 0 Yes 1 0 2 2 13

3 5 7 5 2 9 9 1 5 2 6 3 6 . .Cv. Gl ob a l No No Yes Co m p i l a t i o n Erro

3 8 4 5 2 5 9 4 5 2 6 0 1 Low Loca No No Yes 2 1 6 7 2 4

4 0 5 5 3 7 0 8 5 3 7 0 8 Low Loca Yes No Yes Yes 1 8 1 6 1 0

4 0 9 5 3 7 1 2 5 3 7 2 1 High Gl ob a l So NO Yes 1 6 8 7 1 0

4 5 8 6 4 9 3 9 6 4 9 4 0 Low _o.:. : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ No No No 1 5 4 9 12

5 0 1 6 9 3 0 0 6 9 4 0 4 High G oba Yes NO Yes Yes 2 6 0 0 2 9

5 0 3 6 9 5 7 0 6 9 5 6 6 High Gl ob a l Yes NO fes : 2 1

7 1 5 7 8 7 1 9 7 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Gl ob a l • .- No N V. 1 1 1 4 9

5 2 6 7 2 0 2 7 7 2 0 5 3 High Gl ob a l NO NO No No 1 9 4 2 7

5 4 9 7 2 2 4 5 7 2 2 8 6 Low Gl ob a l V NO No No is-'-r 12

5 9 0 7 4 2 3 5 7 1 9 4 3 High _o: ä Yes ' .. Yes Yes 2 5 5 7

5 9 6 7 2 4 0 2 7 2 5 5 3 High Gl ob a l No V V 8 2 3 2S

6 0 9 7 2 7 5 2 7 2 7 5 4 High Gl ob a l No NO No Yes 2 4 1 7 3 1

6 4 9 7 5 6 6 4 7 5 6 6 4 Low Local No ' . No 1 7 5 2 2 7

6 5 0 7 5 6 6 4 7 6 2 2 0 H gh Gl ob a l \.-. No Yes 1 7 5 5 2 7

6 6 0 7 6 4 6 9 7 9 1 3 5 High Gl ob a l v . No No ' . . 9 6 6 2 7

6 9 7 7 9 7 0 8 7 9 7 0 8 Low Local Yes '. Yes Yes 1 4 1 8 2 1

7 0 0 7 9 7 3 1 7 9 7 4 1 _zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA .:• Gl ob a l No No V 1 2 8 2 2 3

7 0 4 7 9 7 4 6 7 9 7 4 6 Low Local No •. ' . Yes 2 3 3 4 2 8

7 4 3 8 0 2 0 8 8 0 2 1 3 , .•. Local No - , No •f. 1 1 7 5 2 3

Pre ci si on 0 3C 0 .9 3 C 5 0

• ^ 1 o : .00 0 93

Accuracy | : 6b : 98 : 65

Table 4.1: Results of analyzing 40 versions of JHotDraw; LOC = non-blank, non-comment

lines of code before and after the changes; Granu.: granularity of the transformation; Scope:

scope of the transformation; Refact. = Is it a refactoring?; #Tests = number of tests used to

evaluate the transformation; Cov. (%) = statement coverage on the target program; M H =

Murphy-Hil l .

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA59 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G r a n u . Scop©

1 minai» 1 U É j i — E 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Refact . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

! • zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASAFEREFACTOR

G r a n u . Scop©
Refact . Refact .

E 9
Refact . Refact <f Test s Cov. (%| B e f o re Af t e r

G r a n u . Scop©
Refact . Refact .

E 9
Refact . Refact <f Test s Cov. (%|

5 7 2 9 5 2 2 6 3 5 0 2 6 4 2 8 Hi gh Gl ob a l No So No Yes 8 7 9

6 0 9 4 9 7 2 6 4 2 8 2 6 4 2 8 Low Local Yes No Yes Yes 2 2 5 9 4 2

6 3 7 4 8 9 2 6 4 2 8 2 6 4 5 4 Hi gh Local No No No No 3 1 5 8 4 4

6 5 6 9 6 0 2 6 5 0 1 2 6 5 1 4 Low Local No No No Yes 3 4 8 7 4 7

7 1 1 1 4 0 2 6 5 3 6 2 6 5 3 9 Low Local No No Yes 1 2 4 7 3 6

8 1 4 1 2 3 2 6 5 5 8 2 6 5 5 8 Low Gl ob a l Yes No Yes • 'es 2 9 7 2 4 4

8 1 4 1 2 8 2 6 5 5 8 2 6 5 5 8 Low Gl ob a l Yes No 2 7 4 1 4 4

8 1 4 9 9 7 2 6 5 5 8 2 6 7 6 1 Gl ob a l No No No Co m p i l a t i o n Error

8 1 5 0 2 2 2 0 2 2 1 2 0 2 2 2 Low Local No Yes Yes No Co m p i l a t i o n Error

8 1 5 0 4 2 2 0 2 5 8 2 0 2 5 5 Low Local zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'. '• c s res No Co m p i l a t i o n Error

9 2 3 3 3 9 2 0 9 0 1 2 0 9 0 1 Low „ y c a * e = Yes Yes 2 7 1 2 4 9

9 5 6 2 7 9 2 0 9 0 1 2 0 8 4 8 High Local , j Nt No 2 7 0 9 4 9

9 6 6 3 2 7 2 0 9 2 6 2 1 5 1 3 Low Gl ob a l Yes \ 0 res Yes 2 5 6 / 4 9

1 0 2 3 7 7 1 2 1 5 5 1 2 1 5 5 1 Low Gl ob a l Yes No Yes 2 2 0 1 4 4

1 0 2 3 8 9 7 2 1 5 5 1 2 1 5 5 1 Low Gl ob a l Yes No Yes Yes 2C ! : 4 4

1 0 9 5 9 3 4 2 1 6 0 8 2 1 6 0 8 Low Loca Yes »es Yes 3 1 8 0 5 1

1 1 4 8 8 0 1 2 1 6 1 8 2 1 6 2 8 High Gl ob a l Yes Yes
. . . .

Yes 3 2 3 7 5 0

1 2 9 9 2 1 0 2 1 6 2 7 2 1 6 2 7 Low Gl ob a l tes YeS Yes 1 8 8 6 4 9

1 3 0 0 0 7 5 2 1 6 3 2 2 1 6 3 2 Low Local Yes Yes Yes 1 8 1 3 4 8

1 3 1 1 9 0 4 2 1 6 3 6 2 1 8 9 3 Global No No No Yes 2 0 7 2 - : •

1 0 . 6 0 ; 73 0 .7 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
EsaJL 1 0 . 2 7 : 0 0 : 0 0

B . • • 1 -.J 1 0 . 5 0 0 .8 5 0 .8 0

Table 4.2: Results of analyzing 20 versions of Apache Common Collections; LOC = non-

blank, non-comment lines of code before and after the changes; Granu.: granularity of the

transformation; Scope: scope of the transformation; Refact. = Is it a refactoring?; #Tests =

number of tests used to evaluate the transformation; Cov. (%) = statement coverage on the

target program: M H = Murphy-Hil l .

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ratzinger | Murphy-HIII | SAFtHEFACTew zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 1 17

2 1 0 1

4 2 5 2 1

3 2 3 1 1 8

6 0 6 0 6 0

0 16 1 .00 0 9 6

0 5 7 0 8 6 0 .5 9

0 6 0 0 .9 3 0 .7 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 4.3: Summary of false positives, false negatives, true positives, and true negatives.

refactorings were correct in JHotDraw (precision of0.93)and 11 out of the 14 detected refac-

torings in Collections were correct (precision of 0.79). The Murphy-Hil l analysis correctly

classified 39 out of 40 versions in JHotDraw and 17 out of 20 versions in Collections, leading

to an accuracy of 0.98 and 0.85, respectively.

S A F E R E F A C T O R identified all refactorings but one (Version 503), leading to a recall

of 0.93 in JHotDraw sample. However, it also classified 13 non-refactoring as rcfactoring,

which gives it a precision of 0.5. S A F E R E F A C T O R correctly classified 26 out of the 40 pairs

of JHotDraw (Accuracy of 0.65). On the other hand, it had an accuracy of 0.8 in Collections,

which means that it was correct in 16 out of the 20 versions. S A F E R E F A C T O R identified

11 out of the I 1 refactorings (recall of 1). However, it incorrectly classified 4 versions as

refactoring (precision of 0.73).

Finally, the Ratzinger approach correctly classified 26 out of the 40 versions of JHot-

Draw (accuracy of 0.65) and 10 out of 20 versions of Collections (accuracy of 0.5). The

approach detected 1 (Version 156) out of 14 refactorings in the JHotDraw sample, and 3 out

of 11 refactorings in Collections, having recall values of 0.07 and 0.27, respectively. The

approach also incorrectly classified three versions as refactoring: Version 173 of JHotDraw

(precision of 0.5) and Versions 815022 and 815042 of Collections (precision of 0.6). Ta-

ble 4.3 summarizes the approaches' results with respect to false positives, false negatives,

true positives, and true negatives. It also shows the overall recall, precision, and accuracy of

each approach.

Performing the evaluated approaches involves different time costs. The Murphy-Hill

approach took around 15 minutes to evaluate each subject. However, in some subjects con-

taining larger changes, the approach took up to 30 minutes and was not able to check all

changed files. Ratzinger automatically evaluate the commit message in less than a second.

False Posi t i ve

f a l se Nega t i ve

True Posi t i ve

True Negat i ve

To t a l

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 61

S A F E R E F A C T O R took around 4 minutes to analyze each subject. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4.2.5 Discussion

In this section, we interpret and discuss the results. First, we present the main advantages and

disadvantages of each approach. Then, we summarize the answers of the research questions

(Section 4.2.5).

M u r p h y - H i l l

The manual analysis presented the best results in terms of accuracy, recall, and precision, in

our evaluation. An evaluator can carefully review the code to understand the syntax and the

semantic changes to check whether they preserve behavior. Although a manual process can

be error-prone, the Murphy-Hil l et al. approach [49; 50] double checked the results by using

two experienced evaluators. Moreover, they systematically decompose the transformation in

minor changes making it easier to understand them. They also used a diff tool to help them

analyze the transformation.

On the other hand, it is time consuming to analyze all changes in large transformations.

For instance, Collections Versions 1148801, 814997, 815042, and 966327 were so large

that the reviewers could not inspect all the changes. Furthermore, it is not trivial to iden-

tify whether the code compiles by manually inspecting the transformation. The approach

classified four versions that do not compile as refactoring.

In Version 357 of JHotDraw, among other changes, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A b s t r a c t D o c u m e n t O r i e n t e d A p p l i c a t i o n class was moved from folder

o r g / j h o t d r a w / a p p to folder o r g / j h o t d r a w / a p p l i c a t i o n . Although this

seems to be a move package refactoring, it fixes a compilation error because the class begins

with the statement package org . j h o t d r a w . a p p l i c a t i o n ; in both versions. Also,

the commit message describes the transformation as fixing broken repository, which suggest

that the transformation is not a refactoring. S A F E R E F A C T O R detected compilation errors in

this version.

Finally, the manual analysis classified 15 versions as having a mix of refactorings and

non-refactorings. The S A F E R E F A C T O R and Ratzinger approaches are not able to identify

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA62 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 Test i ng o f GUI co d e 3 1 8 . 3 2 2 , 3 4 4 . 3 8 4 , 4 0 9 , 6 0 9 , 6 5 0 , 7 0 4 , 7 4 3

2 Tests d o no t cover i m p a c t ed m e t h o d s 1 7 3 , 2 6 7 , 3 2 2 . 3 4 4 , 6 4 9 . 6 5 0

3 Test s d o no t cover i m p a c t ed b ranches 1 3 4 . 3 2 2 , 7 1 1 1 4 0

4 Weak JUni t assert i ons 6 5 0

5 Canno t ap p l y regressi on t es t i n g 5 7 2 9 5 2 , 6 5 6 9 6 0 , 1 3 1 1 9 0 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 4.4: False positives of S A F E R E F A C T O R ; Problem = description of the reason of the

false positive; Versions = ids of the versions related to the false positives.

which refactorings are applied.

SzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAFEREFACTOR

Although the manual analysis had the best results, it is a time-consuming activity to manually

analyze all versions. It also depends on experienced evaluators. S A F E R E F A C T O R has the

advantage of automating this process, making an entire repository analysis feasible. In this

study, the main problem of S A F E R E F A C T O R was the high number of false positives in the

JHotDraw sample, that is, non-refactorings that were classified as refactoring, which leaded

to the precision of only 0.5. In the Collections sample, its precision was close to manual

analysis (0.73 to 0.79), though. Next, we discuss about the false positives, false negatives,

and also the true negatives of S A F E R E F A C T O R .

False Positives

S A F E R E F A C T O R had 13 and 4 false positives in the JHotDraw and Collections samples,

respectively. We manually analyzed each one and classified them as shown in Table 4.4.

Most of the false positives were related to testing of GUI code. Application code may inter-

act with the user (such as creating a dialog box) in a variety of different situations. In JHot-

Draw, some generated tests needed manual intervention to cover the functionality under test.

S A F E R E F A C T O R ignored them during evaluation. Moreover, Randoop did not generate tests

for methods that require events from the Java AWT framework, for instancezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA MouseEvent,

since Randoop could not generate this type of dependence.

Recently, a new feature was added to Randoop to allow specifying a map-

ping from current method calls to a replacement call [66]. For instance.

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA63 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA javax . swing . JOptionPane . showMessageDialog method, which usually

presents a dialog box, can be replaced with a call that simply prints out the message and

returns. In this way, it can be used to remove dialog boxes that require a response. We plan

to incorporate this feature into S A F E R E F A C T O R ' S approach in the near future.

S A F E R E F A C T O R also generated false positives because the tests generated by Randoop

within a time l imit did not cover methods changed by the transformation. For instance, while

in Versions 173, 267, 649, one changed method was not covered by the tests, in Versions 322

and 650, two and three changed methods were not covered, respectively. S A F E R E F A C T O R

passes to Randoop the list of all methods in common for both versions of a pair. The time

limit passed to Randoop to generate the tests may have been insufficient to produce a test

for these methods. The average statement coverage of the tests was 22.68% and 45.12% in

JHotDraw and Collections, respectively. As future work, we intend to improve S A F E R E F A C -

T O R by identifying the methods impacted by a transformation. In this way, we can focus on

generating tests for those methods.

Moreover, Randoop uses primitive. String and return values as input to the called meth-

ods. Stil l , some methods may present additional dependencies. For instance, parameters

from class libraries may not be tested by Randoop i f the library is not also under test.

Additionally, in Versions 134, 322, and 711140, Randoop produced tests that call the

changed methods, but the tests did not cover the branches affected by the change. In those

cases, the arguments produced by Randoop to the methods under test were not sufficient

to exercise every behavior possible. The Randoop team recently incorporated the option of

using any constant that appears in the source code as input to the methods under test [66|.

Moreover, it allows users to specify primitives or String values as input to specific methods.

We plan to investigate whether applying them may reduce S A F E R E F A C T O R ' S false positives.

On the other hand, in Version 650 there were two changes that were covered by the tests,

but the assertion established in the tests were not sufficient to detect the change. For instance,

the ComplexColorWheellmageProducer . g e t C o l o r A t method returns an array of

floating-point values. Version 650 fixes the value returned by this method, but the test gen-

erated by Randoop only checks whether the value returned was not null. I f Randoop could

generate asserts to check the values of the array, the behavioral change would be detected.

The other change affects one private attribute. Recently, Robinson et al. [661 introduced

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

an enhancement to Randoop that allows the user to define a set of observer methods to the

attributes, and check their results - an observer method is a method with no side effects.

Therefore, instead of having a single assertion at the end of a generated test, there may be

many assertions at the end, one for each applicable observer method. As future work, we

wi l l investigate how to automatically compute the observer methods and pass to Randoop to

check whether this option improves its effectiveness.

Finally, 3 out of the 4 false positives of Collections were due to addition or removal of

methods not used in other parts of the program. I f the transformation removes a method, it

invalidates every unit test that directly calls the absent method. Likewise, i f a method and

its unit test is added, this unit test would not compile in the original version. Because of

that, S A F E R E F A C T O R identifies the common methods of the program, and tests them in the

two versions of the pair, comparing their results. The tests indirectly exercise the change

cause by an added/removed method, as long as this method affects the common methods.

Opdyke compares the observable behavior of two programs with respect to thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA main method

(a method in common). I f it is called twice (source and target programs) with the same

set of inputs, the resulting set of output values must be the same [5 3] . S A F E R E F A C T O R

checks the observable behavior with respect to randomly generated sequences of methods

and constructor invocations. They only contain calls to methods in common. Therefore,

S A F E R E F A C T O R can produce false positives due to different equivalence notion in the API

context when features are removed or added, since their code may not be used in other parts

of the program but only by clients of the API .

False Negatives

In Version 5 0 3 of JHotDraw, S A F E R E F A C T O R showed a false negative. By manu-

ally inspecting the results we identified that the behavioral change was due to a non-

deterministic behavior of JHotDraw. The test generated by Randoop contained a statement

a s s e r t E q u a l s that indirectly checks the value returned by the t o S t r i n g method of an

object of class DrawingPageable. This class does not implement t o S t r i n g . There-

fore, it was returned the default value of t o S t r i n g , which prints a unique identifier based

on the hashcode. The hashcode may change each time the program is executed, which was

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA65 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

the cause of the non-deterministic result.

Nondeterministic results tend to fall into simple patterns, such as the default return value

ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA t o S t r i n g . To avoid that, Randoop has the option of executing the tests twice and

removing the tests that return different results [6 6] . We also implemented this option in

S A F E R E F A C T O R , which was used in the experiment. However, it was not sufficient to elim-

inate all cases of non-deterministic results, such as the one in Version 5 0 3 .

True Negatives

In this section, we discuss some of the non-behavioral transformations detected by

S A F E R E F A C T O R . In Version 6 3 7 4 8 9 of the Collections API , an overridden method was

changed, while Version 9 5 6 2 7 9 changes a t o S t r i n g method. Any overridden method

may have a very different behavior from the original, which favors its detection by S A F E R -

E F A C T O R .

In JHotDraw, Version 151 changes the field value inside a constructor, which is de-

tected by an assertion generated by Randoop. In some transformations, the target pro-

gram raised an exception. In Versions 176, 5 1 8 and 5 2 6 , S A F E R E F A C T O R identified a

N u l l P o i n t e r E x c e p t i o n in the target program inside a method body and constructors.

In Version 3 2 4 , the transformation removed an interface from a class. The resulting code

yields a C l a s s C a s t E x c e p t i o n identified by S A F E R E F A C T O R . Version 5 9 6 removed a

System. e x i t from a method body.

On the other hand, the behavioral changes found by S A F E R E F A C T O R in Versions 4 5 8 ,

5 4 9 , 6 6 0 , 7 0 0 were due to non-deterministic results of JHotDraw. JHotDraw contains global

variables that lead to different results of the tests depending of the other that they are exe-

cuted. S A F E R E F A C T O R currently executes the tests generated by Randoop in batch through

an Ant script. As future work, we plan to implement in S A F E R E F A C T O R an option to exe-

cute the tests in the same order in the source and target versions to avoid non-deterministic

results because of the order of the tests.

In our experiments, S A F E R E F A C T O R had better results evaluating a repository of a data

structure library (Collections) than one of a G U I application (JHotDraw). The first one was

easier to evaluate since it does not have G U I . does not produced non-deterministic results,

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA66 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

and require simpler arguments to exercise its behavior. On the order hand, APIs are less

likely to have behavioral changes during its evolution [66].

Ratzinger

The Ratzinger approach has the advantage of being the simplest and fastest approach for

identifying behavior-preserving transformations. However, in our experiment, many of the

commit messages do not contain keywords related to refactoring, which led this approach

to a recall of only 0.27 in the Collections sample and 0.07 in the JHotDraw sample. Only 4

out of 25 refactoring revisions in both repositories contain some of the refactoring keywords

established by the approach.

Additionally, 3 out of 7 refactorings identilied by the approach were false positives. In

Version 173 of JHotDraw, the commit message indicates that developers removed unused

imports and local variables, which suggests the commit was a refactoring. However, by

manually inspecting the changes, we checked that one of the removed local variable assign-

ments contains a method call that changes U I components. S A F E R E F A C T O R also classified

this transformation as refactoring since the tests generated by Randoop did not detect this

behavioral change in the GUI . This approach also classified Versions 815022 and 815042 as

refactoring, but S A F E R E F A C T O R detected that these versions do not compile, so they cannot

be classified as refactorings.

It is not simple to predict refactorings by just inspecting the commit message. The results

confirm Murphy-Hil l et al. findings [49; 50], which suggest that simply looking at commit

messages is not a reliable way of identifying refactorings. Nevertheless, in some situations,

i f the company recommend strict patterns when writing a commit message, this approach

may be useful.

Answers to the research questions

From the evaluation results, we make the following observations:

• Q l , Do the approaches identify all behavior-preserving transformations?

We found evidence that Murphy-Hil l approach is capable of detecting all behavior-

preserving transformations since it achieved a recall of 1.0. With respect to the auto-

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA67

mated approaches. S A F E R E F A C T O R had an excellent recall of 0.96, but it may miss

behavioral changes not detected by the tests or incorrectly detect behavioral changes

in non-deterministic programs. On the other hand, our results show evidence that

Ratzinger approach may miss a number of behavior-preserving transformations since

it had an overall recall of only 0.16. Many of the evaluated behavior-preserving trans-

formations were not documented in the commit messages in the way it is expected by

this approach (see Section 4.2.5); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

• Q2. Do the approaches correctly identify behavior-preserving transformations?

No. Our results show evidence that the Murphy-Hill approach is the most precise

among the evaluated approaches (precision of 0.86). However it may incorrectly clas-

sify transformations that contain compilation errors as behavior-preserving transfor-

mations. It is difficult to manually reason whether a program compiles. With respect to

the automated approaches, the results indicate that S A F E R E F A C T O R (0.59) is slightly

more precise than Ratzinger (0.57). Some of the non-behavior-preserving transfor-

mations evaluated contain commit messages related to refactorings that were applied

among other changes, leading the Ratzinger approach to incorrectly classify them as

behavior-preserving transformations;

• Q3. Are the overall results of the approaches correct?

The results indicate the Murphy-Hill approach is very accurate. In our experiment, it

only failed in 4 out of the 60 subjects (accuracy of 0.93). Also, the results show evi-

dence that S A F E R E F A C T O R is more accurate (0.70) than Ratzinger's approach (0.60).

Although close in terms of accuracy, S A F E R E F A C T O R and Ratzinger have different

limitations. While the former had a total of 17 false positives, the latter had just 3. On

the other hand, the former had just one false negative, while the latter had 21.

4.2.6 Threats to validity

There are several limitations to this study. Next we describe some threats to the validity of

our evaluation.

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA68

Construct validity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

To evaluate the correctness of the results of each approach, we created the baseline (see

Column Baseline of Tables 5.8 and 4.2) by comparing the approaches' results since we did

not previously know which versions contain behavior-preserving transformations. Therefore,

if all approaches present incorrect results, our baseline may also be incorrect.

Another threat was our assumption that changes to non-Java hies are refactorings. This

may not be true in some cases, such as when a library that the code depends upon is upgraded.

With respect to S A F E R E F A C T O R , it does not evaluate developer intention to refactor. but

whether a transformation changes behavior.

Internal validity

The time l imit used in S A F E R E F A C T O R for generating tests may have influence on the de-

tection of non-refactorings. To determine this parameter in our experiment, we compared

the test coverage achieved by different values of time limit. In general, achieving 100% test

coverage in real applications is often an unreachable goal; S A F E R E F A C T O R only analyzes

the methods in common of both programs. For each subject, we evaluated one of the selected

pairs, and analyzed the statement coverage of the test suite generated by S A F E R E F A C T O R on

the source and the target programs. After increasing the time limit to more than 120 seconds,

the coverage did not present significant variation. So. the value of time limit chosen was 120

seconds. We follow the same approach used in previous evaluations on Randoop 166].

In 17 changes classified as refactoring by S A F E R E F A C T O R , our manual analysis showed

different change classifications. Some of these changes were not covered by S A F E R E F A C -

T O R ' S test suite. In transformations that only modify a few methods. S A F E R E F A C T O R con-

siders most methods in common. When this set is large the time limit given to Randoop

(120s) may not be sufficient to generate a test case exposing the behavioral change. As a

future work, we intend to improve S A F E R E F A C T O R by generating tests only for the meth-

ods impacted by the transformation [641. In this way, we can use S A F E R E F A C T O R using a

smaller time limit.

We used the default value for mostly Randoop parameters. By changing them, we may

improve S A F E R E F A C T O R results. Moreover, since S A F E R E F A C T O R randomly generates a

4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA69 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

test suite, there might be different results each time we run the tool. To improve the confi-

dence, we ran S A F E R E F A C T O R three times to analyze each transformation. I f S A F E R E F A C -

T O R does not find a behavioral change in all runs, we consider that the transformation to

be behavior-preserving. Otherwise, it is classified as a non-behavior-preserving transforma-

tion. The tests generated by Randoop had coverage lower than 10% in some versions of

JHotDraw. By manually inspecting the tests, we check that they contain calls to JHotDraw's

methods that callzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA System, e x i t () , which ends the test execution. As future work, we

plan to improve the test execution by avoiding some method calls.

We manually created the buildFiles for JHotDraw, and downloaded the dependencies. We

made sure the compilation errors found by S A F E R E F A C T O R were not related to any missed

dependency. We do not have information on the SVN indicating the JDK version used to

build the program. By changing the JDK, results may change. Moreover, we run tests using

JDK 1.6.

The Murphy-Hil l approach was performed by two experienced evaluators. One one them

was the author of the approach. They also have an extensive background in refactoring.

The accuracy of this approach may change according to the level of Java expertise of the

inspectors.

External validity

We evaluated only two open-source Java projects (JHotDraw and Apache Collections) due

to the costs of manual analyses. Our results, therefore, are not representative of all Java

projects. To maximize the external validity we evaluated two kinds of software: a GUI

application (JHotDraw) and an API (Apache Common Collections).

Randoop does not deal with concurrency. In those situations, S A F E R E F A C T O R may yield

non-deterministic results. Also, S A F E R E F A C T O R does not take into account characteristics

of some specific domains. For instance, currently, it does not detect the difference in the

standard output (System.out.println) message. Neither could the tool generate tests that exer-

cise some changes related to the graphical interface (GUI) of JHotDraw. These changes may

be non-trivial to be tested by using JUnit tests.

Moreover, some changes (Versions 743 and 549) improve the robustness of JHotDraw.

Randoop could not generate test cases that produce invalid conditions of JHotDraw to iden-

4.3 Concluding remarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

tify these behavioral changes. Also, it seems that some of the bug fixes need complex sce-

narios to expose behavioral changes. For instance, Version 2 6 7 introduces a work-around in

one method to avoid a bug in the JDK. Since we may have tested it using a new JDK, prob-

ably, the transformation does not change program's behavior. In Version 7 0 0 , developers

change some instructions to assign a copy of the array instead of the array itself. Although

this change fixed the array exposure, Randoop could not detect any behavioral change.

Similarly, the manual analysis presents a number of limitations as well. Manually in-

specting code leaves room for human error. We only selected changes from two projects

(JHotDraw and Collections), which may not be representative of other software projects. In

other software domains, it may be harder to understand the logic of the software and define

whether the change preserves behavior. Moreover, Java semantics is complex. Even for-

mal refactoring tools may fail to identify whether a transformation preserves behavior [7 7 1 .

We tried to mitigate this by having two experienced evaluators simultaneously analyzing the

source code. Finally, during our manual analysis, we encountered six very large changes that

we were unable to manually inspect completely; in these cases we spent about 3 0 minutes

manually cataloging refactorings, but did not find any semantics changes in doing so. Had we

spent significantly more time inspecting, we may have encountered some non-refactorings.

This illustrates that manual inspection, while theoretically quite accurate, is practically diffi-

cult to perform thoroughly.

4.3 Concluding remarks

In this chapter, we presented S A F E R E F A C T O R , a tool for detecting behavioral changes. Its

key idea is to compare the behavior of two versions of a program against the same tests. To

do so, it identifies the methods in common before and after the transformation, generates tests

for them, and run these tests against both programs. I f the results are the same, it improves

the confidence that both programs have same behavior. Otherwise, it detects a behavioral

change.

We performed an experiment to compare S A F E R E F A C T O R and other two approaches

(Murphy-Hill and Ratzinger) with respect to effectiveness in detecting behavioral changes.

Our results suggest that S A F E R E F A C T O R has 7 0 % accuracy. The evaluation in Section 4 .2

4.3 Concluding remarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

shows some limitations of S A F E R E F A C T O R . For instance, it produced false positives when

testing G U I code and false negatives when testing non-deterministic code. These limitations

do not affect the use of S A F E R E F A C T O R in our technique for testing of refactoring engines

since we use it against simple transformations that are deterministic and do not have GUI

code.

Chapter 5

A technique for testing of refactoring

engines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter, we present our technique for automated testing of Java Refactoring Engines.

It focuses on identifying problems related with missing conditions and strong conditions.

The key elements of the technique are J D O L L Y (Chapter 3) and S A F E R E E A C T O R (Chap-

ter 4).

The remainder of this chapter is organized as follows. Section 5.1 shows an overview of

our technique. Then, each step of our technique is described from Section 5.2 to Section 5.5.

Sections 5.6 and 5.7 describe our experiments to evaluate the technique. Finally, Section 5.8

shows the concluding remarks.

5.1 Overview

We propose an automated approach for testing of Java refactoring engines. The approach

performs four major steps. First, a program generator automatically yields programs as

test inputs for a refactoring (Section 5.2). Second, the refactoring under test is automatically

applied to each generated program (Section 5.3). Then, the output is evaluated by test oracles

in terms of missing conditions and overly strong conditions (Section 5.4). In the end, we may

have detected a number of failures, which are categorized in Step 4 (Section 5.5). The whole

process is depicted in Figure 5.1.

72

5.2 Test input generation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA73 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Input

J D l l y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Sp ec i f i c a t i o n f o r p r o g r a m g e n e r a t i o n Re f ac t o r i n g e n g i n e

Pr o g r a m Ge n e r a t i o n Ru n t est o r ac l es

, 0

Report

I I

Out put

Figure 5.1: Automated behavioral testing of refactoring engines. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.2 Test input generation

We automatically generate programs as test inputs for the refactoring engines. To perform

the test input generation, we propose a Java program generator called J D O L L Y . We show a

detailed description of J D O L L Y in Chapter 3.

5.3 Refactoring application

The second step of our technique is to apply the refactoring under test to each generated

program. This step can be performed manually (by using the IDE directly) or by the use

of an API offered by the IDE infrastructure. Each refactoring checks a set of conditions,

and, given the fulfillment of these conditions, the transformation is applied; otherwise, the

refactoring is rejected, and a warning message is shown.

5.4 Test oracles

An important problem in automated testing of refactoring engines is automated checking

of outputs. In practice, developers manually write the expected output, which can be a

refactored program or a warning message when a condition is violated. Next, we show our

automated oracles to detect missing conditions and overly strong ones.

5.4 Test oracles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 74 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.4.1 Missing conditions

We propose S A F E R E F A C T O R (Chapter 4), a tool for checking behavioral changes, as oracle

for detecting missing conditions. For each pair of input and output programs produced by the

technique, S A F E R E F A C T O R checks for behavioral changes. I f it detects behavioral changes,

we classify the transformation as a failure.

For instance, Listing 4.1 shows a Java program generated by J D O L L Y , and Listing 4.2

shows the output program after applying a Pull Up Method refactoring by using Eclipse.

Since S A F E R E F A C T O R detects behavioral changes in this transformation, we classify it as

a failure. In Section 5.5.1 we show how to classify failures due to behavioral changes into

distinct faults.

5.4.2 Overly strong conditions

We propose an oracle to detect overly strong conditions based on differential testing [81].

When the refactoring implementation under test rejects a transformation, we apply the same

transformation by using one or more other refactoring implementations. I f one implemen-

tation applies the transformation, and S A F E R E F A C T O R does not find behavioral changes,

we establish that the implementation under test contains an overly strong condition since it

rejected a behavior-preserving transformation.

For example, consider the A class and its subclasszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA B in Listing 5.1. A declares the

k (long) method, and B declares methods n and t e s t . Suppose we would like to re-

name n to k. I f we apply this transformation using Eclipse, it shows the warning message:

Method "A.k(long)" will be shadowed by the renamed declaration "B.k(int)".

Eclipse has a functionality that allows us to preview the transformation. In the previous

example. Listing 5.2 presents the preview of the resulting program. Notice that after the

transformation, the t e s t method yields 2 0, but in the original version it yields 10. This

transformation does not preserve behavior. This is the reason why Eclipse showed a warning

message.

However, we can apply this transformation using JRRT. The resulting program is pre-

sented in Listing 5.3. Notice that this transformation is different from Eclipse. JRRT per-

forms an additional change to make the transformation behavior-preserving. JRRT identifies

5.4 Test oracles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 75

that the call tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA k inside t e s t must refer to A. k instead of B . k after the transformation. So,

it adds a super access to the method invocation k (2) inside t e s t . Therefore, the result-

ing program in Listing 5.3 correctly refactors the original program in Listing 5.1. NetBeans

can also perform the transformation. It yields a target program presented in Listing 5.2.

However, the transformation performed by NetBeans does not preserve behavior.

Listing 5.1: Original \ersion.

1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA pub l i c c l a s s A (

2 p u b l i c long k (I o n g a) {

3 r e t u r n 10;

4 1

5)

6 publ i c c l a s s B extends A j

7 p u b l i c long n (i n t a) {

8 r e t u r n 20 ;

9 1

10 p u b l i c long t e s t () (

11 r e t u r n k (2) ;

12)

13 1

Listing 5.2: NetBeans target version.

1 publ i c c l a s s A |

2 p u b l i c long k (I o n g a) {

3 r e t u r n 10;

4 1

5 1

6 pub l i c c l a s s B extends A (

7 p u b l i c long k (i n t a) (

8 r e t u r n 20 ;

9)

10 p u b l i c long t e s t () |

11 r e t u r n k (2) ;

12)

13 1

file:///ersion

5.5 Failure classification zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA76

Listing 5.3: JRRT target's version. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I pub l i c c l a s s A { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 p u b l i c long k (long a) {

3 r e t u r n 10;

4

5)

6 pub l i c c l a s s B extends A {

7 p u b l i c long n (i n t a) (

s r e t u r n 20 :

9

in p u b l i c long t c s t () j

r e t u r n s u p e r . k (2) ;

12

3)

We compare the results of Eclipse, NetBeans, and JRRT. While the former rejected the

transformation, NetBeans and JRRT applied it. S A F E R E F A C T O R evaluates the transforma-

tions applied by JRRT and NetBeans. It does not lind behavioral changes in the transforma-

tion applied by JRRT. We conclude that Eclipse rejected a behavior-preserving transforma-

tion due to an overly strong condition since JRRT was able to correctly apply it. Moreover,

it detects a fault (missing condition) in the transformation applied by NetBeans.

5.5 Failure classification

Our technique may produce a large number of failures since it automatically produces a

number of test inputs. The process to manually classify the failures into distinct faults may

demand a considerable effort. In the following subsections, we present techniques to auto-

mate the classification of failures into distinct faults.

5.5.1 Missing conditions

Missing conditions may produce two main types of failures: the ones that introduce com-

pilation errors in user's code; and the failures that introduce behavioral changes in user's

code.

5.5 Failure classification zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Compilation errors

Jagannath et al. [34] propose an approach to split failures based on oracle messages (Oracle-

based Test Clustering - OTC). They used it to classify refactoring engine failures that intro-

duce compilation errors in the output program. The failures are grouped by the template of

the compiler error message, so that each group contains a distinct fault. We adopt the same

approach to classify this kind of failure.

For instance, Listings 5.4 shows a program generated by J D O L L Y . I f we apply the Re-

name Field refactoring by using JRRTv 1, the tool wi l l produce the output program shown in

Listing 5.5, which contains the compilation error: "The lield A.k is not visible". Listings 5.6

shows another program generated by J D O L L Y . The only different between it and the previ-

ous program (Listings 5.4) is the addition of the C class. I f we apply the same Rename Field

refactoring, JRRTv 1 wi l l produce an output program (Listings 5.7) with the same kind of

compilation error. Our technique groups both transformations together by using the template

of the compilation error: "The field [F] is not visible".

Listing 5.5: After Refactoring. Apply-

Listing 5.4: Before Refactoring ing Rename Field in JRRTv 1 leads to a

1 p a c k a g e p 1 ; compilation error.

2 p u b l i c c l a s s A (1 p a c k a g e p 1 ;

3 p r o t e c t e d i n t n = 1 ; 2 p u b l i c c l a s s A {

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA! 3 p r o t e c t e d i n t k = — 31;

5 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!

6 p a c k a g e p2 ; 5

7 i m p o r t p i . * ; 6 p a c k a g e p2 ;

8 p u b l i c c l a s s B e x t e n d s A { 7 i m p o r t p i . * ;

9 i n t k = 2 ; 8 p u b l i c c l a s s B e x t e n d s

10 p u b l i c l o n g m () { i n t k=17 ;

1 i r e t u r n t h i s . n ; 10 p u b l i c l ong m () {

12 1 ! i r e t u r n ((A) t h is) . k

13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA} 12 1

13 1

5.5 Failure classification zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA78

Listing 5.6: Before Refactoring

1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA p a c k a g e p 1 ;

2 p u b l i c c l a s s A {

3 p r o t e c t e d i n t n = 1 ;

4)

5

6 p a c k a g e p2;

7 i m p o r t p i . * ;

8 p u b l i c c l a s s B e x t e n d s A {

9 i n t k = 2 :

10 p u b l i c l o n g m() {

1 1 r e t u r n t h i s . n ;

12 |

13)

14

15 p a c k a g e p2 ;

16 p u b l i c c l a s s C {

17 I

Listing 5.7: After Refactoring. Apply-

_ ing Rename Field in JRRTvl leads to a

compilation error.

1 p a c k a g e p 1 ;

2 p u b l i c c l a s s A {

3 p r o t e c t e d i n t k=—31;

4 1

5

6 p a c k a g e p2;

7 i m p o r t p i . * ;

8 p u b l i c c l a s s B e x t e n d s A j

9 i n t k = 1 7 :

10 p u b l i c l o n g m () (

11 r e t u r n ((A) t h i s) . k ;

12 |

13)

14

15 p a c k a g e p2;

16 p u b l i c c l a s s C {

17 1

5.5 Failure classification zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 7 9

Table 5.1 : Filters for classifying behavioral changes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Filter Descript ion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

En ao l es/ d i sab i es o v er r i d i n g
A f t e r a r e f ac t o r n q , a m e t h o d co m es t o oe (or n o l o n g er is)

o ver r i d d en

Enab es/ d sao les cver f cad nq
A f t e r a r e f ac t o r n q , a m e t h o d co m es t o oe f o r n o l o n q er i s;

over o ad ed

En ao l es/ d i sab es r i e d h d i n g
A f t e r a r e f ac t o r n q , a f iela co m es t o b e (o r n o l o n q er s) i i d d e n oy

an o t h er f i e l d d ec l ar at o n

Sh ad o w s c ass d e c o r a t i o n

Ch an g es su p er (t h i s o r i m p l i c i t t h i s ;

t o t h i s o r i m p l i c i t t h i s (su p er ;

Mat n ' .d ns s u p er w h le Chang n g

h i er ar ch y

Ch an g es access b i i t y

A f t e r a r e f ac t o r n g , a c ass d ec l ar at i o n co m es t o oe sh ad o w ed oy

an o t h er déclarât o n

I ' a m e t h o d cal l o r f i e l d access nas t h i s o r i m p l i c i t t h i s (su p er ; as

t a r g e t , en d a* t er a r e f ac t o r i n g t h i s r e f e ' en ce 'S r ep l aced oy su p er

(t h i s o r i m p l i c i t t h i s) , m o r d er t o < eep t h e l i n k t o t n e sam e

p r ev ous o b j ec t

A r ef er en ce t o su p er s r r o v e d u p or d o w n '.ne h i er ar ch y d u r n g

r e f ac t o n n g

Th e r e f ac t o r n g ch an g es t h e access m o d f i er o ' a g ; v en f i e l d o r

m e t h o d

Th e o r i g i n al p rog ram * s n o r m ah y ex ecu t ed b y t h e t est su t e b u t

t h e r e f ac t o r ed o n e t h r o w s so m e ex cep t i o n s

A f t e r a r e f ac t o n n g , an i m p i c; t cast b e t w een p r i r r i t ve t yp es is (or

n o o n g er is} ap p l i ed w h er e i t d i d n o t t ak e (o r t o o k) p i ace

o r i g na ly

Tn e r e f ac t o r ed p r o g r am cr ashes

EnaDles/ d i sab !es i m p ci t cast zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Behavioral changes

We do not use the OTC approach for classifying failures related to behavioral changes since

we did not identify any information from our oracle (S A E E R E F A C T O R) that could be used to

split the failures. We propose an approach to classify behavioral changes by splitting each

detected change based on the characteristics of each pair of input and output programs. Our

approach is based on a set of filters; a filter checks whether the programs follow a specific

structural pattern. For example, there are filters for transformations that enable or disable

overloading/overriding of a method in the output program, relatively to the input program.

A l l filters are presented in Table 5 . 1 . We defined these filters by analyzing faults found

through the use of our approach, in addition to other reported faults.

The filters may be applied in any order. The fault category of a behavior-changing trans-

formation is then designated by the filters matched by its input and output programs. When

a transformation does not match any of these filters, conventional debugging is demanded

from refactoring engine developers. For instance, the failure in the Pull Up Method on ei-

ther Eclipse JDT 3.7 or JRRTvl showed in Listing 5.2 matches the filter named "Changes

super(this) to this(super)" from Table 5 . 1 , in which a problem with replacing a reference to

s u p e r with t h i s is detected.

The set of filters is not complete. Currently, they focus on the Java constructs supported

by J D O L L Y . New filters can be proposed based on additional faults found by refactoring

5.6 Evaluation: missing conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 0

engine developers. Currently, the classification of behavioral changing transformations is

carried out manually. The process consists in analyzing each pair of programs, and testing

every filter for matches. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.5.2 Overly strong conditions

We also use OTC to categorize the overly strong condition failures. Our hypothesis is that

each condition has a particular warning message. Therefore, to split the failures, we use the

template of the warning message thrown by a refactoring engine when a condition is not

satisfied.

For example, when we apply the Rename Method refactoring of Eclipse to the program

shown in Listing 5.1, the tool yields the following warning messages, respectively: Method

"A.k(long)" will be shadowed by the renamed declaration "B.k(int)". Our approach ignores

the parts inside quotes, which contain names of packages, classes, methods, and fields. I f

there is another message that has the same template, the rejected transformations are auto-

matically classified in the same category of overly strong condition.

5.6 Evaluation: missing conditions

The goal of this experiment is to analyze our technique for the purpose of evaluation with

respect to effectiveness in identifying faults related to missing conditions from the point of

view of refactoring engine developers in the context of academic and industrial Java refac-

toring engines. In particular, our experiment addresses the following research question:

• Q l . Can the technique identify faults related to missing conditions?

To address our research questions, we assess the effects of each technique by using the

following metric:

• Number of distinct faults correctly detected by the technique.

5.6.1 Planning

In the following subsections, we describe the subjects used in the experiment, the experiment

design, and its instrumentation.

5.6 Evaluation: missing conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 1

Table 5.2: Summary of evaluated refactorings; Scope = Package (P) - Class (C) - Field (F) -

Method (M) .

M K M V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Scope

p - C - F - M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAft*. jnrr Net Bean zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ren am e cl ass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - 3 - 0 - 3 X X X

Re n am e m e t h o d 2 - 3 - 0 - 3 X X X

Ren am e t e d 2 - 3 - 2 - 1 X X X

Pu sh d o w n m e t h o d 2 - 3 - 0 - 4 X X X

Pu sh d o w n l e d 2 - 3 - 2 - 1 X X X

Pu l t p m e t h o d 2 - 3 - 0 - 4 X X X

Pu l l UD f i e l d 2 - 3 - 2 - 1 X X X

En cap su l at e f i e l d 2 - 3 - 1 - 3 X X X

M o v e m e t h o d 2 - 3 - 1 - 3 X X
i

A c d p a r o m e t e - 2 - 3 - 0 - 3 X X X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Selection of subjects

We evaluated Java refactorings implemented by Eclipse JDT 3.7 (10 refactorings), JRRTvl

and JRRTv2' (10 refactorings), and NetBeans 7.0.1 (9 refactorings). Table 5.2 summarizes

all evaluated refactorings.

Eclipse is the most used Java IDE [48], and contains a number of automated refactorings

(currently, more than 25). The evaluated refactorings focus on a representative set of program

structures. Moreover, a survey carried out by Murphy et al. [481 shows the Eclipse JDT

refactorings that Java developers use most: Rename, Move Method, Extract Method, Pull

Up Method, and Add Parameter. Four of these are evaluated in this experiment. NetBeans

is also a popular Java IDE. The Move Method refactoring was not supported by NetBeans

by the time that this experiment was performed. A number of related approaches [14; 84;

71] have studied the correctness of their transformations.

JRRT implements a number of refactorings [71; 74; 68]. They aim at outperforming the

refactoring implementations of Eclipse in terms of overly strong and too weak conditions.

Some refactorings may have invariants to be preserved. For instance, their Rename Method

refactoring implementation is based on the name binding invariant: each name should refer

to the same entity before and after the transformation. They proposed other invariants such as

control flow and data flow preservation. To alleviate the problem of overly strong conditions,

their implementations may also perform additional changes, such as the one presented in the

'The JRRT version from July 9th. 2011

5.6 Evaluation: missing conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 2

Table 5.3: Summary of the main constraints.
1 Rtfactoriwj lmpl<in<Bt>tK> i J MainComtraint 1 Additional Constraint» zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Renam e C ass so m e Class l l . 2, I)
Re n a r e M e t h o d so m e i v e n o d | 2 , Î, s;

Ren ar r e F eld so m e Fi el d ! (2 , 3 . 9 ;

Push Do w n M e t h o d s o m e c C ass J som eSu b d ass.cJ an d s o m e N ' e n o d l e , !v '•>)

Push D o w n T e d so m e c:C ass so m eSu b ci ass[c] an d so m eFt el d [c] U, <,)

Pj l i Jp M e n o d s o m e c Class s o t i ePa r en t Lc] an d s o m eM e t h o d [c j | i , V
Pu 1 Up Re d so m e c Class | scn~eP3 r en t ;cj an d s o m e r e d ;cj 12, 4)

En cap su l at e Field so m e Field 15. b. 7!

Mo ve M e t h o d so m e c:C ass | som eTar ge:ClassFiel c".cj an d so m eM et h o d T cM o v e [c j U. 2 j

A c d Ps- ar e t e- so m e [Vet n o d | 1 . 2, 1)

transformation from Listing 5.1 to Listing 5.3.

We evaluated two versions of JRRT [71; 74; 68]. First, we evaluated with our technique

the refactorings implemented by JRRTvl . Later, a new version with improvements and

bug fixes was released (which we call JRRTv2); this new version was also subject to our

analysis in order to evaluate whether our technique could be useful for identifying new faults

during the evolution of the tool. The same refactorings from Eclipse JDT were tested in both

versions of JRRT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Experiment design and instrumentation

The scope column in Table 5.2 indicates the maximum number of packages, classes, fields,

and methods passed as parameter to J D O L L Y . For each refactoring, we specified main con-

straints for guiding J D O L L Y to generate programs with certain characteristics needed to

apply the refactoring. Table 5.3 shows these constraints; they prevent the generation of pro-

grams to which the refactoring under test is not applicable. For each refactoring, we used the

same set of generated programs to evaluate Eclipse JDT, JRRTvl , JRRTv2, and NetBeans.

Exhaustively generating programs, even for a given scope, often causes state space ex-

plosion. In order to minimize the number of generated programs to a small, focused set, we

have also defined additional constraints. These constraints were built on data about refac-

toring faults gathered in the literature, enforcing properties such as overriding, overloading,

inheritance, field hiding, and accessibility. For each refactoring (column Additional Con-

straints in Table 5.3), we declare Alloy facts with additional constraints. These are fully

described in Table 5.4. I f a developer has the available resources to analyze the entire scope,

then it w i l l not be required to specify additional constraints.

5.6 Evaluation: missing conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS3

Table 5.4: Summary of the additional constraints. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

• AdditionalzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Co n s t r a i n t D es c r i p t i o n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 so r n eOver r i d i n c r j o r

so m eOver l o ad i n g . [l n t , l n l]

o ver r i d t n g oi o ver t o ad i n g (nüm ber o r * p s ' d r ^ et er s

p assed ctv a t y o n i en t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 s o m e f a l l g r f l _ A i ied^ t o n e r n t f h o d b o d y L*\ SV^ a m e t b o d OF d i t e ^ n g d f t ef d

i so m el n h er i l an cef .) A t t east u n e case o f m h en t an ce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
» bOrneF- eldh ieinq l l A: l easl o n e t ät e o f f ietd h i d t n g

so m eGet t t i t J A I iedb t u n e g e l l e r r n e t h o d

6 w i r * T e 4 u r . M « h o c t f : A t eabt j " ? n i e t h o d b o d y w i t h d s i m p l e t d l l t o d s p e t i n t r n e t h o d

so m ePu b l i cFi e i d u A l tedbt one p u b i k Heid

S sOi r i eM t l h u d sVv ' i t h Sd i f eNu ' n Pd f d i n e t e t i i A t i edst t w o m et h o d s w i t h t h e idr?- ** n u m b er of Par am et er s

so m ePn m i t i veRel d sf J At l eci i t t w o p r i m i t i v e f ieids

Each refactoring may possibly include parameters. For instance, a method can be re-

named, or a field may be encapsulated. In those cases, we declare a singleton subsignature

for each parameter, similar to what we have done withzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA C I , C 2 in Section 3.4, and use it in

both the main and the additional constraints.

5.6.2 Operation

We performed the evaluation on a 2.5 GHz dual-core PC with 1 GB of R A M . We used the

S A F E R E F A C T O R command-line version with a time limit of one second, which is enough for

testing the small generated programs. Cobertura- was used to collect the statement coverage

of the test suite as generated by S A F E R E F A C T O R in the resulting program.

J D O L L Y generated 153,444 programs to evaluate all refactorings. Even though Eclipse

JDT, JRRT and NetBeans have their own test suites, our technique identified 120 (likely)

distinct faults related to missing conditions. Table 5.5 summarizes the faults reported to

Eclipse JDT, NetBeans and JRRT.

From our catalog, most faults were accepted (87). Some faults have not been dealt with

by Eclipse JDT and NetBeans developers prior to this writing (22). A l l faults accepted by

JRRT developers in JRRTvl (20) were fixed in JRRTv2. We have also evaluated their new

version (JRRTv2) after fixing the faults from JRRTvl , and reported 11 faults. They did not

consider 4 faults due to the closed world assumption (CWA) adopted by them, as we discuss

in Section 5.7.1. More importantly, they incorporated our test cases into their test suite1.

http://cobertura.sourceforge.net
3http://code.google.corn/p/jrrt/source/checkout

http://cobertura.sourceforge.net
http://code.google.corn/p/jrrt/source/checkout

5.6 Evaluation: missing conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 4

Table 5.5: Summary of faults reported. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Submit ted Accepted Duplicated Not • Fault Not Answered Fined 1

Eclipse 34 34 16 0 0 2

JRRTvl 24 20 0 0 2C

JRRTv2 11 6 0 5 0 6

NetBeans 51 27 0 2 22 7

Total zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA120 87 16 11 22 35

Eclipse JDT and NetBeans teams have fixed 2 and 7 faults 4, respectively, which should be

included in the next version of the IDEs. Developers have already confirmed 34 and 27 faults

in Eclipse JDT and NetBeans, respectively. However, 16 faults were considered duplicated

in Eclipse JDT.

It took from lh36m to 50h24m to evaluate each refactoring. This includes the time

required to generate and compile the input programs, apply the transformations, compile the

resulting programs, run S A F E R E F A C T O R , and collect the statement coverage. The required

amount of time depends not only on the number of programs to be refactored, but also on the

number of transformations to be carried out. For example, it took 6h54m to test the Rename

Method refactoring on Eclipse JDT, whereas it took 13h36m to test the same refactoring in

JRRTv2, with the same inputs. Time also depends on the static analysis performed by each

refactoring to check conditions. Table 5.8 summarizes the experimental results.

The results include the number of programs generated by J D O L L Y , the percentage of

compilable programs, the time for testing, and the number of detected failures (encompassing

compilation errors and behavioral changes). It also shows the number of faults identified by

our approach in each refactoring. Table 5.8 indicates, for each refactoring, the mean value

of the statement coverage from the refactored program.

Compilation Errors

Our technique detected 16 faults in Eclipse JDT, 11 faults in JRRTvl , 1 fault in JRRTv2,

and 29 faults in NetBeans; all related to compilation errors. Our technique for classifying

failures (Section 5.5.1) takes a few seconds to automatically classify all compilation error

failures of a refactoring. For instance, our technique detected 1,267 compilation failures in

the Push Down Method refactoring implementation of Eclipse JDT. The described approach

4The id of all faults are available at: h t t p : / / w w w . d s c . u f c g . e d u . b r / ~ s p g / s a f e r e f a c t o r /

e x p e r i m e n t s . h t m l

5.6 Evaluation: missing conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA85

Table 5.6: Overall experimental results; GP = number of generated programs; CP = number

of compilable programs (%); Time = total time to test the refactoring in hours; Fail. = number

of detected failures; Bug = number of identified faults.

B B S S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
GP

E5E 371 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
JRRTvl JRRTv2 Net Be an* Eclipse JRRTvl JRRTv2 Net Beans

V . ! 1 !»
Ed. JRRTvl JRRTv2 NeiB

Fail.
Eel. JRRTvl JRRTv2

~ Fail. Bu | Fail. F a l Bu K Fail. Bu i Fal l Fa Bug Bug Fail. Bug
Eel. JRRTvl JRRTv2

Rt f l i mt class 15,322 74zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.3 6.7 23 16.3 22.84 1,016 3 0 0 0 0 3,352 4 U S 0 0 0 0 15 1 54 63 67 56

Re-ii~e met toe 11,203 79.5 6.9 8 7 13.6 23.2 559 1 0 0 0 0 1.731 2 0 0 0 0 482 2 1,231 2 83 B4 90 86

19,424 79.2 29.3 22.4 30.4 50.41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA] 520 2 0 0 326 3 0 0 167 1 0 0 1,667 1 100 100 10C 100

Push t iowrzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA m* !'i32 20 ,5" •- 9 11.6 I E 5 31 ? 1,267 2 1,989 2 0 0 13.321 4 853 5 258 4 715 3 1,485 6 90 30 93 ••"

^Lsh dowr> helc 11,936 6 37 4.6 13.7 342 1 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0 0 6889 a 92 0 0 0 0 270 2 100 100 100 100

Pi. u3me:hoc I .M 1 72 73 63 C 9 13 5 30? 2 « 9 2 0 0 3.C49 3 202 3 78 2 10 1,073 90 M 92 89

hi uo helc 10,927 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 8.6 5 3 7.7 12.1 518 1 80 2 0 0 1,128 4 546 4 0 0 0 0 239 2 100 99 100 100

Encapsulate rielc; 2.003 92.8 2,5 16 2 3 5.7 238 1 0 0 0 0 23« 0 0 344 1 437 £39 1 66 81 86 76

wa v e metioc 22,905 G 3 10.3 4.5 5 9 214 2 1,398 3 9 1 3.586 3 1.759 3 6.944 3 82 82 86

Acc p*f jmete- 30,186 63 34.C9 24 0! 25.05 , ; K 1,663 2 0 3 0 0 5,824 4 • 2 378 2 0 0 2.186 2 87 BJ 90

Total 153,444 68 9 124,2 112.15 111 65 223.7 S.134 16 4,236 11 9 1 32,856 29 7,662 18 2,964 13 8,152 10 B.605 22

classified them into two groups: some transformations produced the message "The method

[M] from the type [T] is not visible", while others produced the message 'Wo enclosing

instance of the type [T] is accessible in scope". Consequently, two faults were catalogued.

Even though all evaluated refactorings implemented by Eclipse JDT and NetBeans con-

tain at least one fault related to compilation errors, our approach did not find faults related

to compilation errors in 50% and 90% of the refactorings of JRRTvl and JRRTv2, respec-

tively. In Eclipse JDT, the Rename Class refactoring contains three faults; from JRRTvl and

JRRTv2. the Move Method refactoring showed more faults than the other refactorings. In

NetBeans, three refactorings contain four faults each. Notice that the Rename Field, Pull

Up Field and Move Method implemented by JRRTvl have more faults than the similar im-

plementation of Eclipse JDT. After fixing them. JRRTv2 presented fewer faults than Eclipse

JDT.

Behavioral Changes

We identified 18, 13, 10 and 22 faults in Eclipse JDT, JRRTvl , JRRTv2 and NetBeans,

respectively, all related to behavioral changes. We manually classified these faults by using

our proposed set of filters (Section 5.5.1). For each refactoring type, it took approximately

two hours to manually classify behavioral changes. As future work, we intend to implement

tools to automate this process. For instance. Listings 5.1 and 5.2 show a fault of the Pull Up

Method refactoring implemented in the Eclipse JDT, categorized as "Change super to this".

5.6 Evaluation: missing conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.6.3 Discussion

Next we discuss some issues related to compilation error, behavior preservation and

J D O L L Y .

Compilation Errors

Changing the name, location, or accessibility of a declaration can lead to compilation errors.

A l l engines but JRRTv2 produced transformations that reduced the accessibility of an inher-

ited method, which is not allowed in Java. Most compilation errors were due to dereferences

of inaccessible or nonexistent declarations. For example, in Listing 5.8,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA m accesses the f

field of its super class. I f we apply the Pull Up Field refactoring of Eclipse JDT 3.7 to B . f ,

it yields the uncompilable program presented in Listing 5.9. After the transformation, B . f

hides A. f , and since it is private, it cannot be accessed from C. To prevent such errors, JRRT

statically checks whether every identifier refers to the same declaration as before. In that

case, however, JRRTvl introduced another compilation error by re-qualifying field access

super. f to ((A) super) . f, which has a syntax error. We reported this fault to JRRT

developers, and they fixed it. JRRTv2 correctly applies the transformation by re-qualifying

the super . f field access to ((A) t h i s) . f.

Moreover, JRRT refactorings translate the programs into a richer language, which pro-

vides a more straightforward specification. After this, the programs arc translated back into

Java. Although the implementation of the refactoring itself becomes simpler, it does re-

quire some effort to translate the program back from the enriched language into the base

language. Our technique detected some failures in JRRTvl that may be related to this step.

For instance, some of the refactored programs presented compilation errors due to method

invocations for non existing declarations, such as unknown () .

Although we only evaluated 9 refactorings from NetBeans, those refactorings contained

more faults related to compilation errors than Eclipse JDT and JRRT. It seems that NetBeans

does not implement a number of expected conditions. Since its refactorings present a lower

rate of rejections, it takes, in general, more time to evaluate NetBeans than the other tools.

5.6 Evaluation: missing conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 7

Listing 5.8: Before Refactoring. Listing 5.9: After Refactoring. Pull Up

1 Field implemented by Eclipse JDT 3.7

2 introduces a compilation error due to an

3 invisible field.

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp u b l i c c l a s s A { l p u b l i c c l a s s A j

5 l o n g f = 1 ; 2 l ong f = 1 ;

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA} 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!

7 p u b l i c c l a s s B e x t e n d s A { 4 p u b l i c c l a s s B e x t e n d s A {

S ! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA? p r i v a t e l o n g f = 2 ;

9 p u b l i c c l a s s C e x t e n d s B { 6 }

l(i p r i v a t e l o n g f = 2; 7 p u b l i c c l a s s C e x t e n d s B {

11 p u b l i c l o n g m () { 8 p u b l i e l o n g m () {

12 r e t u r n s u p e r . f ; 9 r e t u r n s u p e r . f ;

13 ! 10 1

14 } 1 1 }

Behavioral Changes

Some faults related to overloading and overriding have been known by Eclipse JDT de-

velopers for years. For instance, a fault related to the Add parameter refactoring has de-

manded the inclusion of additional conditions since 2004\ Nevertheless, it is difficult to

establish and check conditions to avoid these faults. While the Add Parameter fault is still

open, Eclipse JDT developers implemented simpler conditions for Rename Method, check-

ing whether there are other methods in the hierarchy with the same signature as that of the

refactored method. I f so, the engine warns the user that the transformation may introduce

behavioral changes. In this case, it is up to the user to analyze whether the transformation is

safe.

For each refactoring, we analyzed the statement coverage of the random test suite used

by S A F E R E F A C T O R over the program after refactoring; from these, we calculated the mean

value of the statement coverage (see Table 5.8). The minimum mean value of the statement

coverage of Eclipse JDT, JRRTvl , JRRTv2, and NetBeans in our evaluation was 54%, 63%,

5See Eclipse JDT Bug 58616

5.6 Evaluation: missing conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASS

67%, and 56%, respectively, for the Rename Class refactoring. These numbers can be par-

tially explained by the tests generated only for methods in common. Additionally, most of

the programs generated by J D O L L Y contain at most four methods, and fewer than 15 LOC.

I f a class or a method is renamed, and they are not referred to by methods with unchanged

signatures, the statement coverage decreases significantly. Since refactorings engines may

allow different transformations, and the test suite is randomly generated in S A F E R E F A C T O R ,

the mean value of the statement coverage may be different between engines.

The detected faults can be fixed either by modifying conditions or changing the trans-

formation itself. For instance, one fault reported to JRRT generates a program with the

following code fragment:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ((A) super) . This is an invalid Java expression. We can fix

this fault by modifying the transformation applied by JRRT, which rewrites a command with

the incorrect fragment. However, fixing faults may not be as straightforward as it appears

to be. For example, consider the transformation showed in Listings 5.8 and 5.9. We can

fix this fault by adding a condition avoiding this kind of transformation. However, adding

conditions may avoid useful behavior-preserving transformations. JRRTvl can apply this

transformation, and yet preserve program behavior by replacing the super field access to a

qualified this field access, ((A) t h i s) . f .

JDOLLY

During evaluation, we specified the scope of the program generation in J D O L L Y based on

previous examples of faults in refactorings. For instance, we used the scope of two packages

since Steimann and Thies [84] show accessibility problems when moving elements between

packages. Schafer et al. 173] show non-behavior-preserving transformations in programs

with up to three classes and four methods/fields. Since J D O L L Y exhaustively generates pro-

grams for a given scope, this approach has been useful for detecting faults that have not been

detected so far.

J D O L L Y generated uncompilable programs. The lowest percentage of compilable pro-

grams was in the Add Parameter (63%), and the highest was in the Encapsulate Field

(92.8%). Considering all generated programs, the percentage of compilable programs was

68.8%. For future work, we intend to specify more well-formedness constraints so as to

minimize uncompilable programs.

5.6 Evaluation: missing conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 9

Our Java metamodel does not include constructs such as thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA static modifier, inner classes,

interfaces, and richer method bodies. Therefore, the currently implementation of J D O L L Y

cannot reveal some previously identified faults in manual experiments [73]. We aim at im-

proving the expressiveness of the programs generated by J D O L L Y by adding more constructs

to our model. This wi l l increase the state space for the Alloy Analyzer to find solutions and,

consequently, the number of programs generated by J D O L L Y , which wi l l take longer to eval-

uate all transformations. We plan to investigate the possibility of generating a greater range

of programs, specifying as well a time limit, or limiting the number of generated programs.

As a result, we w i l l be able to evaluate refactorings by means of more sophisticated pro-

grams, though without considering the entire solution space.

Test data adequacy criteria provide measurements of test quality. Moreover, it may

provide explicit rules to determine when it is appropriate to end the testing phase [24;

93]. There are a number of notions of test data adequacy. For instance, test data adequacy can

be defined in terms of covering all productions in grammar-based testing. In our work, we

have used a similar test data adequacy criterion. J D O L L Y generates every possible program,

for a subset of the Java metamodel, within a given scope of constructs. As such, the generator

covers every terminal symbol and nonterminal production rule from the metamodel, which

are represented by signatures and relations from the underlying Alloy specification. In the

evaluation of the refactorings (Table 5.2), J D O L L Y generated programs covering from 7 1 %

to 85% of the 4 1 signatures and relations of the metamodel. Some signatures and relations

were not covered because we had specified a scope of 0 forzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA F i e l d . In other cases, some

additional constraints implied that some relations could not have values.

5.6.4 Threats to Validity

Next we identify some threats to validity from the evaluation performed.

Construct Validity

Some tool developers follow a closed world assumption (CWA) to evaluate the correctness of

the transformation. CWA means that what is not currently known by the refactoring engine

does not exist. Since we generate tests after the refactoring, the tool does not consider the

5.6 Evaluation: missing conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA90 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

generated tests when checking the refactoring conditions. In few cases, JRRT developers did

not accept the faults because the tool would have detected the behavioral change i f the tests

existed by the time of the refactoring.

Despite the different criteria, many other reported faults were accepted by JRRT, Eclipse

and NetBeans developers (see Table 5.5). Although our technique may produce false pos-

itives, it was considered useful by those developers in practice. In particular, the feedback

given by the JRRT team shows evidence that our technique is convenient in detecting faults

under both CWA and OWA criteria.

Internal Validity

Concerning J D O L L Y generation with Alloy, additional constraints may hide possibly de-

tectable faults. These constraints can be too restrictive with respect to the programs that can

be generated by J D O L L Y , which shows that one must be cautious when creating constraints

for J D O L L Y .

The results provided by S A F E R E F A C T O R deserve closer analysis. If, out of the programs

generated by J D O L L Y no compilation error or behavior change is detected, no definitive

conclusion can be drawn from the refactoring under test. Our technique cannot, based on the

absence of behavior changes, claim that a refactoring is correct. Nevertheless, developers

have stronger evidence that the refactoring is correctly implemented, in practice; we use a

test suite to evaluate the transformation.

S A F E R E F A C T O R only generates test suites that exercise methods with unchanged signa-

tures. Methods with changed signatures may be called by the unchanged methods, which

exercise a potential change of behavior. Otherwise, methods not called by others are not

considered, in our approach, part of the overall behavior of the system under test; changes

in these methods wi l l not affect the system behavior. A stronger notion of equivalence could

be used: testing every changed method of the system and creating a mapping between two

versions of the modilied versions, for comparing their results. We believe that this approach

would add considerable costs with limited benetits to testing refactoring engines.

5 . 7zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Evaluation: overly strong conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA91

External Validity

We believe that other refactoring engines can be tested as well with our technique. This exer-

cise can be accomplished by applying a test generator for the target language (a substitute for

Randoop) and adaptations to S A F E R E F A C T O R . Also, the target language's metamodel must

be provided to J D O L L Y ; or else we can use a different program generator. Therefore, refac-

toring engines targeted at other object-oriented programming languages can benefit from our

technique.

Regarding some refactoring transformations other than the ones evaluated in this exper-

iment, we have showed that our technique is applicable to any transformation, because it

does not rely on specific properties of the transformation. In order to generate programs that

exercise a specific refactoring, we may have to change the Alloy specification in J D O L L Y .

The technique for classifying behavioral change failures described in Section 5 .4 is l im-

ited, since the classification is not complete. We have only considered a subset of Java. Still ,

it is non-trivial to pinpoint a fault in a refactoring. Each refactoring engine may incorporate

different design choices. Our fault categorizer is an approximation, and it may help refactor-

ing engine developers with this task. For example, our approach may classify two distinct

faults under the same category. After fixing the identified faults, the developer should re-run

the technique to catch possibly missed faults. Moreover, our approach may identify two dis-

tinct faults that are, in fact, just one. Developers can easily detect whether two different test

cases are related to the same fault by fixing each fault and running all faults again after. In

spite of that, the technique reduced from thousands of failing test cases to 120 unique faults

to be checked by refactoring engine developers. This classification was useful when report-

ing a number of faults in refactorings in Eclipse JDT, NetBeans and JRRT. Tool developers

accepted a number of those faults.

5.7 Evaluation: overly strong conditions

The goal of this experiment is to analyze our technique for the purpose of evaluation with

respect to effectiveness in identifying overly strong conditions from the point of view of

refactoring engine developers in the context of academic and industrial Java refactoring en-

gines. In particular, our experiment addresses the following research question. Q l : Can the

nFr.rzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,IPJRUuTFfJW|

5 . 7zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Evaluation: overly strong conditions 9 2

Table 5.7: Summary of evaluated refactoring implementations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Refactoring Eclipse JRRT Netbeans zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Renam e class X X X

Renam e m et h o d X X X

Renam e f i el d X X X

Push d o w n m et h o d X X X

Push d o w n f i el d x X X

Pul l up m et h o d x X X

Pull up f i el d x X X

Encapsulat e f i el d x X

Mo ve m et h o d x X

Ad d p ar am et er X X

technique identify overly strong conditions in real Java refactoring engines?

In this section, we describe the subjects used in the experiment, the experiment design,

and its instrumentation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Selection of subjects

We tested 27 refactorings implementations for Java of three tools: Eclipse 3.7 (1 0 refactor-

ings), JRRTvl ' ' (1 0 refactorings), and NetBeans 7.0.1 (7 refactorings). Table 5.7 summarizes

all evaluated refactorings.

In our experiment, we evaluate 1 0 refactoring types (Table 5.7). We tested only 7 refac-

toring types in NetBeans. The Move Method refactoring is not supported. As future work,

we plan evaluate the Encapsulate Field and Add Parameter refactorings of NetBeans.

Experiment design and instrumentation

We used the S A F H R E F A C T O R command line version using the time l imit of 1 second to gen-

erate tests, which is enough for testing the small programs generated by J D O L L Y . We also

used the J D O L L Y command line version. For each generated input by JDolly, we compare

the outputs of these three tools.

6The JRRT version from May 18th. 2010

5.7 Evaluation: overly strong conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA93

Operation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We performed the experiment on a 2,7 GHz dual-core PC with 4 GB of R A M running Ubuntu

10.04. We evaluated Eclipse 3.4.2, NetBeans 6.9.1 and JRRT 1.0.

Our technique evaluated 27 refactoring implementations of Eclipse, NetBeans, and JRRT.

Based on the scope and the additional constraints used for each refactoring, J D O L L Y gen-

erated 42,774 programs 7. Eclipse and JRRT did not apply a number of transformations,

from which 32% and 16% were behavior-preserving, respectively. They reject them due to

overly strong conditions. We automatically classified these transformations in categories.

As a result, we identified 17 and 7 kinds of overly strong conditions in Eclipse and JRRT,

respectively. We did not find overly strong conditions in the refactorings implemented by

NetBeans.

Table 3 summarizes the experiment results. For each refactoring, we show the results of

each implementation (Eclipse, NetBeans, and JRRT). The number of programs generated by

J D O L L Y is shown in Column Program. Column Rejected Transformation shows the number

of transformations that were rejected by each implementation for not satisfying refactoring

conditions. The number of behavior-preserving transformations that were rejected due to an

overly strong condition of the implementation is shown in Column Rejected B. Pres. Trans-

formation. Finally, Column Overly Strong Condition shows the number of overly strong

conditions that were categorized by our technique.

Most transformations can be applied in NetBeans. It did not reject transformations ex-

cept for the Rename Class refactoring. A l l transformations rejected by it were also rejected

by Eclipse and JRRT. Therefore, we did not find problems related to overly strong conditions

in NetBeans. However, it performed a number of non-behavior-preserving transformations

that were rejected by Eclipse and JRRT. NetBeans contains a number of faults (missing con-

ditions), as we shown in Section 5.6. The focus of this experiment is not on identifying

missing conditions but in identifying overly strong conditions. Since NetBeans does not

contain some conditions, it allows not only non-behavior-transformations, but also a num-

ber of behavior-preserving transformations that cannot be applied by other tools. Since the

oracle of our technique is based on differential testing (Section 5.4), performing almost all

transformations using NetBeans was useful for identifying whether transformations rejected

' A l l experiment data are available at: http://dsc.ufcg.cdu.brrspg/papers.htrnl

http://dsc.ufcg.cdu.brrspg/papers.htrnl

5.7 Evaluation: overly strong conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA94 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 5.8: Summary of the experiment; Program = number of programs generated by JDolly;

Rejected Transformation = number of transformations rejected by the implementation; Re-

jected B. Pres. Transformation = number of behavior-preserving transformations that were

rejected; Overly strong condition = number of overly strong conditions classified by our

technique. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Rejected Transformat ion Rejected B. Pres. Transformat ion Over ly St rong Condi t ion
KeTOCTonrtg program • • • • • BHRHI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Eclipse Metbeans JRRT Eclipse Netbeans JKRÏ Eclipse Netbeans JRRT

Rename class 2037 1658 1212 1212 446 0 0 2 0 0

Rename method 68 3C 5995 0 1666 4802 0 4 1 9 4 0 1

Rename field 2647 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5;-' . 0 0 200 0 0 2 0 0

Push down method ÏS2 2 2056 0 2065 59 0 4 0 1 0 1

Push down fielc 3043 1551 0 1551 0 0 0 0 0 0

Pull uo method 5201 2907 0 3065 251 0 398 2 0 2

Pu 1 up fie d 4151 976 0 912 744 0 584 1 0 1

Encapsulate field 3754 472 2736 176 1536 1 1

Move method 6316 5083 4757 367 135 2 1

Add para m e t e 4973 737 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1189 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- 0 2 - 0

Total 42774 21759 1212 19153 7124 0 3112 17 0 7

by Eclipse and JRRT could, in fact, be applied.

Eclipse was the tool that rejected more transformations. It rejected 21,759 transforma-

tions, from which 32% are behavior-preserving. We found overly strong conditions in all

Eclipse's implementation but the Push Down Field refactoring. For instance, its Rename

Method refactoring implementation rejected 5,995 out of 6,830 transformations but 4,802 of

them could be applied without changing programs' behavior.

Renaming a method in the presence of features such as overloading and overriding may

lead to behavioral changes in some situations due to changes in name bindings [71]. Eclipse

developers may have implemented overly strong conditions for simplicity in order to avoid

non-behavior-preserving transformations. However, this overly strong condition also re-

jected a number of useful behavior-preserving transformations since overloading and over-

riding are commonly used by Java developers.

JRRT rejected 19,153 transformations. In 16% of them, the program's behavior could be

preserved. We found overly strong conditions in 6 out of 10 refactorings evaluated: Rename

Method, Push Down Method, Pull Up Method, Pull Up Field, Encapsulate Field, and Move

Method.

5.7 Evaluation: overly strong conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA95 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Discussion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Manually analyzing and classifying overly strong conditions in thousands of rejected trans-

formations is time-consuming and error-prone. To avoid that, our technique automatically

classifies them according to the template of the message shown by the implementation when

a transformation is rejected. We analyze all warning messages in transformations that are

behavior-preserving in at least another refactoring implementation. Our technique catego-

rized 17 kinds of overly strong conditions in Eclipse, and 7 ones in JRRT. Table 5.9 shows

the overly strong conditions identified in Eclipse and JRRT, respectively. Each line in the

table contains a warning message template. The brackets abstract the names of packages,

classes, methods, and fields, as described in Section 5.5.1.

We manually checked the overly strong conditions we found by randomly selecting a

sample of 10 transformations for each kind of overly strong conditions, and we did not

find false positives (a transformation that does not represent an overly strong condtion) or

false negatives (the same template of warning message representing different overly strong

conditions).

In five refactorings, we found less overly strong conditions in JRRT than Eclipse: Re-

name Class, Rename Method, Rename Field, Move Method, and Add parameter. Moreover,

in four refactorings (Push Down Method, Pull Up Method, Pull Up Field, and Encapsulate

Field), we found the same number of overly strong conditions in both tools. Finally, only in

the Push Down Field refactoring, we did not find overly strong conditions.

Our technique identified 8 kinds of overly strong conditions in Rename Class, Method,

and Field implementations of Eclipse, and only one in JRRT implementations. JRRT checks

whether name bindings are preserved. Each name should refer to the same entity before and

after the transformation [711. Moreover, JRRT implementations may also check whether it is

possible to re-qualify a name in order to preserve the name binding. This approach alleviates

the problem of overly strong conditions. Listing 5.3 shows an example in which JRRT re-

qualifies a name adding azyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA super access to avoid name binding changes. Eclipse follows a

different approach.

The overly strong condition found in the Rename Method refactoring of JRRT is related

to overriding. This implementation has the invariant that overriding must be preserved. We

also detected a condition in Eclipse related to that but NetBeans successfully applied a num-

5.7 Evaluation: overly strong conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA96 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 5.9: Summary of overly strong conditions of Eclipse 3.7 and JRRTv 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Overty strong conditions of Edipse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Renam e Class Renam e Fietd

Nam e con f l i ct w i t h t yp e [] In [] Prob cm n [] The r ef er ence t o [] w i l be sh ad o wed by a - enam ec d ecl ar an on

An o t h er l yp e n am ed [} is ref e* encec in [" P'ob lem m [] An o t h er nam e w izyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 1 sn aco w access t o t he ' en am ed e em en t

Renam e M e t h o d Push Do w n M e t h o d

[1 0 ' a t yoe n its h 'erarchy d e' i nes a m et h o d [] w i t h t n e sam e n u m b er o
f

p a'am et er s, t> ul d f l er en t p a r a m e t c t yp e nam es.
The v s b ' l i t v o*' m et h o d [] w 1 be changea t o pub l ic

P- ob em n [] t h e re*e*ence t o [] w i 1 oe sh ad owed by J ' en am ed dec ar at i o n Pu l l Up M e t h o d

Code m o d i f i cat i o n "nay n o : oe accurat e as af f ect ed 'esou r ce [] has co m p i l e

e- rors.
The vi si b i l i t y o* m et h o d [] w ' l l be changee t o pub l i c.

[] o* a t yo e n i t s h i er ar chy d e' i nes a m et h o d [] w i t h t i e sam e n u m b er o '

p ar am et er s and t i e sam e p a r a m c t c t yp e nam es.

Put) Up Field

M et h o d |] 'ef er enced in o n e o ' t h e m o ved el em en t s is not accessioie ' r o m

t yp e [)

Encapsu lat e Field

Fie d [] d ecar cd in t yp e {] has a d • f er ei t t yo c t h an its m ovec c o ^ n t c o a t

Mo ve M e t h o d

T i e m et h o d revocat ions t o [] can n o t be - o cat ec. smce t h e o r i g i n al m et h o d is

usee po ym o r p h i cn l l y .

New m et h o d [I o vcr ' i ces an cx st i ng m et h o c n i vp e []

Ad d Par am et er

T i e m et n o d [] f ' o m t h e t yp e [] is n o t v s'b e

The v s o l i t y o ' m et h o d ['_ w i l l be changed t o pub l i c. The se ect ec m et h o c over r des m et h o d [] d eclar ed n t yp e [[

Owrty strong conditions of JRRT

Renam e M e t h o d Push Do w n M e t h o d

o v e n d i n g has changed can n o t access m et h o d

Pu l l Up M e t h o d Pu l l Up Field

m et h o d ts used can n o t access var i ab le

can n o t access m et h o d Mo ve M e t h o d

Encap su lat e Field can n o t n l ne am b i g u o u s m et h o d ca 1

can n o t nser t m et h o d he- e

5.7 Evaluation: overly strong conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 7

ber of transformations that change overriding yet preserving program's behavior. In other

refactorings, such as Move Method and Add Parameter, J R R T does not check conditions

related to overriding.

Furthermore, we identilied overly strong conditions related to accessibility. Both, Eclipse

and JRRT, rejected transformations in the Push Down Method and Pull Up Method refactor-

ings due to inaccessible methods. However, these transformations were performed by Net-

Beans. Changing access modifiers is not simple. It may change the name binding leading to

behavioral changes [84]. Making these changes in ad-hoc way may be error-prone. Steimann

and Thies [84] propose a number of conditions for applying refactorings with respect to Java

accessibility. They show that these conditions are less strong than the ones implemented in

Eclipse. While Eclipse implements some heuristics for that, Schafer and de Moor [68] intend

to integrate these conditions to JRRT.

Eclipse and NetBeans contain test suites for evaluating their refactoring implementations.

For instance, the Eclipse test suite contains more than 2,600 unit tests. JRRT has a different

test suite. Schafer and de Moor [68] also evaluated JRRT over more than 1,000 unit tests

of Eclipse's test suite. They used them not only for evaluating correctness, but also for

identifying overly strong conditions [681. Schafer and de Moor checked whether all rejected

transformations of Eclipse could be applied by JRRT. They identified some overly strong

conditions in Eclipse. However, they also identilied overly strong conditions in JRRT in

the Add Parameter, the Move Method, and the Push Down refactorings. The overly strong

conditions were related to visibility adjustment. However, they do not propose an approach

to evaluate whether refactoring implementations have overly strong conditions. We can do it

by using J D O L L Y and S A E E R E B A C T O R .

In our evaluation, J D O L L Y generated small programs (up to 15 LOC) with up to two

packages, three classes, four methods, and two fields. These programs contain some common

features of Java such as inheritance, overloading, and overriding. Although simple, they were

useful for identifying 24 kinds of overly strong conditions in Eclipse and JRRT. The test suite

of Eclipse and JRRT also contain small programs. However, the programs have some Java

constructs such as interface, abstract classes and generics, that are currently not supported by

JDolly. By improving the expressivity of JDolly, our technique can be useful for identifying

other overly strong conditions.

5.7 Evaluation: overly strong conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA98

5.7.1 Threats to Validity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Next we identify some threats to validity from the evaluation performed.

Construct Validity

Construct validity refers to whether the overly strong conditions that we have detected are

indeed overly strong conditions in the refactoring engines. J R R T developers confirmed the

overly strong conditions that we found. We have not received feedback from Eclipse de-

velopers yet. Some conditions that we found may not be overly strong with respect to the

notion adopted by the developers. For instance, we found the "overriding has changed"

overly strong condition in the rename method from JRRT. Its developers follow a closed

world assumption. I f they followed an open world assumption, this condition could not be

considered overly strong since changing overriding could produce a behavioral change in

some client code.

Additionally, different refactoring engines may use different refactoring templates.

Therefore, comparing their outputs may not reveal overly strong conditions, just different

notions of a refactoring.

Internal Validity

Concerning J D O L L Y generation with Alloy, additional constraints may hide possibly de-

tectable overly strong conditions. These constraints can be too restrictive with respect to the

programs that can be generated by J D O L L Y , which shows that one must be cautious when

creating constraints for J D O L L Y .

External Validity

We believe that other refactoring engines can be tested as well with our technique. Regarding

some refactoring transformations other than the ones evaluated in this experiment, we have

showed that our technique is applicable to any transformation, because it does not rely on

specific properties of the transformation. In order to generate programs that exercise a spe-

cific refactoring, we may have to change the Alloy specification in J D O L L Y . Additionally, it

is needed to be at least two implementations of a same refactoring.

5.8 Concluding remarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA99 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.8 Concluding remarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter, we presented our technique for automated testing of refactoring engines. Its

goal is to identify missing conditions and overly strong ones. The technique has two main

components: J D O L L Y and S A F E R E F A C T O R .

We report on the results of an experiment to show the effectiveness of our technique.

By using the technique, we tested up to 10 refactoring implementations from 3 refactoring

engines: Eclipse J D T , NetBeans. and JRRT. As a result, we found 120 missing conditions

and 24 overly strong ones. We reported them to the tools' developers, who have already lixed

a number of them.

JRRT presented fewer faults than Eclipse and NetBeans, which suggests that the formal

techniques used can improve the correctness of refactoring engines. Even so, our technique

was useful for finding faults not only in its first version (JRRTvl) but also in its second

version (JRRTv2) when they had fixed the faults of JRRTv 1. We believe that our technique

can be used to systematically evaluate these tools during their life cycle.

Chapter 6

Related Work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter, we relate our work to a number of approaches for verifying and testing refac-

torings (Section 6.1), approaches for automated testing (Section 6.2), and some empirical

studies on refactorings (Section 6.3).

6.1 Refactoring verification and testing

Conditions are a key concept of research studies on the correctness of refactorings.

Opdyke [53] proposes a number of refactoring conditions to guarantee behavior preservation.

However, there was no formal proof of the correctness and completeness of these conditions.

In fact, later, Tokuda and Batory [87] showed that Opdyke's conditions were not sufficient to

ensure preservation of behavior. Proving refactorings with respect to a formal semantics is

a challenge [70]. Some approaches have been contributing in this direction. Borba et al. [8]

propose a set of refactorings for a subset of Java with copy semantics (ROOL). They prove

the refactoring correctness based on a formal semantics. Silva et al. [75] propose a set of

behavior-preserving transformation laws for a sequential object-oriented language with ref-

erence semantics (rCOS). They prove the correctness of each one of the laws with respect to

rCOS semantics. Some of these laws can be used in the Java context. Yet, they have not con-

sidered all Java constructs, such as overloading and Held hiding. Our testing approach still

applies formal verification techniques (first-order logic and Alloy Analyzer) that are com-

bined for a practical and less costly solution for increasing confidence when refactoring Java

programs.

100

6.1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Refactoring verification and testing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA101 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Steimann and Thies [84] show that by changing access modifiers (p u b l i c ,

p r o t e c t e d , p a c k a g e , p r i v a t e) in Java one can introduce compilation errors and be-

havioral changes. They propose a constraint-based approach to specify Java accessibility,

which favors checking refactoring conditions and computing the changes of access modi-

fiers needed to preserve the program behavior. We have also detected new faults related to

the Java access modifiers. Both approaches can be complementary for checking refactorings

that affect accessibility constraints.

Another specialized approach for specifying refactorings - generalization-related refac-

torings such as Extract Interface and Pull Up Method - is proposed by Tip et al. [86]. Their

work proposes an approach that uses type constraints to verify conditions of those refactor-

ings, determining which part of the code they may modify. Using type constraints, they also

propose the refactoring Infer Generic Type Arguments [2 1] , which adapts a program to use

the Generics feature of Java 5, and a refactoring to migration of legacy library classes [3].

These refactorings are implemented in the Eclipse JDT Their technique allows sound refac-

torings with respect to type constraints. However, a refactoring may have conditions related

to other constructs. Our general-purpose testing approach evaluates a refactoring indepen-

dently of program structures being affected by the refactoring. The faults detected by our

approach are related to missing conditions and overly strong ones.

Mens et al. [44] use graph rewriting for formalizing program refactorings. Two refactor-

ings are specified for a subset of Java, and the authors propose a static semantics for Java,

which is preserved by the two refactoring specifications. Graph-based verification is more

ambitious than testing, aiming at full structural analysis, although presenting limited scal-

ability. They have recognized that some refactorings, such as Move Method, which may

deal with nested structures, require complex graph manipulation. Such analysis becomes

considerably costly, which limits its results, in comparison with a more lightweight testing

approach.

Overbey and Johnson [55] propose a technique to check for behavior preservation. They

implement it in a library containing conditions for the most common refactorings. Refac-

toring engines for different languages can use their library to check refactoring conditions.

The preservation-checking algorithm is based on exploiting an isomorphism between graph

nodes and textual intervals. They evaluate their technique for 1 8 refactorings in refactoring

6.1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Refactoring verification and testing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA102 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

engines for Fortran 95, PHP 5 and BC. They do not evaluate them in terms of correctness but

in terms of expressivity and performance. Our approach can be useful for evaluating their

approach in terms of correctness and overly strong conditions.

Reichenbach et al. [63] propose the program metamorphosis approach for program refac-

toring. It breaks a coarse-grained transformation into small transformations. Although these

small transformations may not preserve behavior individually, they guarantee that the coarse-

grained transformation preserves behavior. Our approach can be used to increase confidence

that the set of small transformations, applied in sequence, indeed preserve behavior.

Daniel et al. [14] propose an approach for automated testing refactoring engines. They

used ASTGen to generate programs as input to refactoring engines. To evaluate the refac-

toring correctness, they implemented six oracles that evaluate the output of each transfor-

mation. For instance, one of them checks for compilation errors, while another applies the

inverse refactoring to the target program, and compares the result with the source program.

If they were syntactically different, the refactoring engine developer would manually check

whether they have the same behavior. They evaluated the technique by testing 21 refactor-

ings, and identified 21 faults in Eclipse JDT and 24 in NetBeans. In Eclipse JDT, 17 faults

were related to compilation errors, 3 were related to incomplete transformations (e.g. the

Encapsulate field did not encapsulate all field accesses), and one was related to behavioral

change. Later, Gligoric et at. [22] used the same approach to evaluate UDITA. They found 4

new compilation error faults in 6 refactorings (2 in Eclipse JDT and 2 in NetBeans). While

the oracles of previous approaches can only syntactically compare the programs to detect

behavioral changes, SAFEREFACTOR generates tests that do compare program behavior. We

found 63 faults related to behavioral changes. Moreover, both techniques found a similar

number of faults related to compilation errors.

L i and Thompson [41] propose an approach to test refactorings for Erlang using a tool

called Quvid QuickCheck. They evaluate a number of implementations of the Wrangler

refactoring engine. For each refactoring, they state a number of properties that it must satisfy,

which is still a challenge. I f a refactoring applies a transformation but does not satisfy a

property, they indicate a fault in the implementation. We evaluate behavior preservation by

using SAFEREFACTOR. We propose a similar approach for testing refactorings for Java.

Their approach applies refactorings to a number of real case studies and toy examples. In

6.2 Automated Testing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 103

contrast, we apply refactorings to a number of programs generated by J D O L L Y . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6.2 Automated Testing

Grammar-Based Test Generation (GBTB) is a well-known technique for automatically gen-

erating programs based on a formal grammar definition [9], Using this technique, a generator

is capable of building valid (or intentionally invalid) sentences of the target language. GBTB

has been successfully used, for instance, to generate programs for testing the correctness and

error messages in compilers [9; 4], J D O L L Y , by comparison, uses Alloy to specify the Java

metamodel using signatures and relations. By performing analysis using the Alloy Analyzer,

each Alloy solution is translated into a Java program. Moreover, we can guide J D O L L Y to

generate programs with properties that are specific to a given target domain (Section 3.4).

In contrast, context-free grammars are somewhat limited for this purpose, being usually ex-

tended by operational definitions or even by code snippets for adapting generation to the

desired class of test cases.

Recently. GBTB has been mixed with other advanced combinatorial techniques for gen-

erating programs of a language grammar. An approach that is very related to J D O L L Y ' S

generation technique has been described by Hoffman et al. [3 1] . It uses grammars instru-

mented by tags and code snippets written in Python that further constrain the generated test

cases. In the referred tool, YouGen, tags inject parameters to the generation. For instance,

parameters adjust the depth of a generation tree, limiting the derivation over recursive pro-

duction rules. This feature is analogous to J D O L L Y ' s scope. Also, while J D O L L Y makes use

of Alloy Analyzer's exhaustive search to generate a comprehensive set of programs, YouGen

uses combinatorial techniques, such as mixed-strength covering arrays. In both cases, they

evaluate all possible combinations. Their application contexts are in essence different, how-

ever: YouGen has been used for testing XML-based tools and network protocols, whereas

J D O L L Y is tailored for testing refactoring engines, using S A F E R E F A C T O R as a test oracle.

Still, both tools can be adapted for diverse application cases.

Korel and Yami [4 0] propose an approach to automated regression test generation [2 6] ,

They use TESTGEN, a test data generation system for Pascal programs. Similarly, a com-

ponent of our approach, S A F E R E F A C T O R , tests evaluate whether a transformation preserves

6.3 Empirical studies on refactoring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA104 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

behavior. It uses the Randoop test generator. They test the parts of the programs whose

functionality is unchanged after modifications. S A F E R E FACTOR automatically detects the

methods with unchanged signatures and generates tests for them. We are concerned with

testing refactorings in this article.

Concerning automated regression testing, a more recent contribution is provided by

BERT [36], a tool that focuses on detection of state changes from one version of a given

class to its next version, considering transformations of any category (not only refactoring).

The main distinction between the two approaches is their test oracle. S A F E R E F A C T O R uses

a simple oracle that compares outputs of methods with unchanged signatures for the same

input. I f any changed behavior is, directly or indirectly, exercised by one of these meth-

ods, there is a high probability that the test goes wrong, and a behavior change is detected.

BERT, on the other hand, does not consider changes in method signatures. It can be used

only when all signatures are preserved. They focus on identifying differences in several

structural aspects of the target program: return values of all methods, field values, and even

output (textual) results. I f a change is detected, there is an indication of a regression fault,

although this may be not the case (false positives). Since they evaluate any kind of transfor-

mation, developers have to analyze whether the behavioral changes have been intentionally

introduced.

Marinov and Khurshid [42; 12] propose TestEra. a framework for automated

specification-based testing of Java programs. It uses Alloy to specify the pre and post-

conditions of a method under test. Using this specification, it automatically generates the

test inputs and checks post-conditions. This approach is similar to J D O L L Y for generating

test inputs, but we generate programs as test inputs.

6.3 Empirical studies on refactoring

A number of studies have investigated refactoring tasks in software projects. Ratzinger et

al. [61] analyzed the relationship between refactoring and software defects. They proposed

an approach to automatically identify refactorings based on commit messages, which we de-

scribe in Section 4.2.1. Using evolution algorithms, they confirmed the hypothesis that the

number of software defects in the period decreases i f the number of refactorings increases as

6.3 Empirical studies on refactoring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA105 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

overall change type. To evaluate the effectiveness of the commit message analysis, they ran-

domly sampled 5 0 0 versions from 5 projects, and analyzed whether their analysis correctly

classify each version. In their experiment, the commit message analysis had only 4 false

positives 1 0 false negatives in 5 0 0 software versions, leading to a high precision and recall.

Murphy-Hil l et al. [5 0 ; 4 9] evaluated nine hypotheses about refactoring activities. They

used data automatically retrieved from users through Mylyn Monitor and Eclipse Usage

Collector. That data allowed Murphy-Hil l et al. to identify the frequency of each automated

refactoring. The most frequently applied refactorings are: Rename, Extract local variable,

Move, Extract method, and Change method signature. They confirmed assumptions such as

the fact that refactorings are frequent. Data gathered from Mylyn showed that 4 1 % of the

programming sessions contained refactorings.

Additionally, they evaluated the Ratzinger analysis. By using Ratzinger algorithm, they

classified the refactoring versions from Eclipse CVS repository. Then, they randomly se-

lected 2 0 versions from each set of refactoring versions and non-refactoring versions iden-

tified by Ratzinger, and applied to these 4 0 versions the manual inspection proposed by

them, which we describe in Section 4 . 2 . 1 . From the 2 0 versions labeled as refactoring

by Ratzinger, only 7 could be classified as refactoring versions. The others include non-

refactoring changes. On the other hand, the 2 0 versions classified as non-refactoring by

Ratzinger were correct. In this thesis, we compared the results of these two techniques

(Ratzinger and Murphy-Hil l) with S A F E R E F A C T O R ' S results (Section 4 . 2) . The Murphy-

Hil l approach was the most accurate among the refactoring technique we evaluated. How-

ever, it incorrectly classified versions containing compilation errors as refactoring versions.

Differently from the original work, our results show a low recall and precision of Ratzinger

approach, which we discuss in Section 4 . 2 .

K im et al. [3 7] investigate the relationship of API-level refactorings and bug fixes in three

open source projects. They use a tool [3 8] to infer systematic declaration changes as rules

and determine method-level matches (a previous version of Ref-Finder [5 7] that identifies 1 1

refactorings). They found that the number of bug fixes increases after API-level refactorings

while the time taken to fix them decreases after refactorings. Moreover, the study indicated

that refactorings are performed more often before major releases than after the releases.

Prete et al. [5 7] propose Ref-Finder. a tool that can detect 6 3 refactoring types from

6.4 Concluding remarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA106 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FowlerOs catalog [57]. It can detect all refactorings of the previous works, and it can de-

tect intra-method refactoring changes. A comprehensive comparison can be found in Prete

et al. [57]. Rachatasumrit and Kim [59] analyze the relationship between the types and lo-

cations of refactorings identified by Ref-Finder and the affecting changes and affected tests

identified by a change impact analyzer (FaultTracer). They evaluate their approach in three

open source projects (Meter, XMLSecurity, and A N T) and found that refactoring changes

are not very well tested. By selecting the test cases that only exercise the changes, we may

decrease the regression test cost.

Kim et al. [39] interview a subset of engineers who led the Windows refactoring effort

and analyzed Windows 7 version history data. They found that in practice developers may

allow non-behavior-preserving program transformations during refactoring activities. More-

over, developers indicate that refactoring involves substantial cost and risks. By analyzing

Windows 7 version history, the study indicated that refactored modules experienced higher

reduction in the number of inter-module dependencies and post-release defects than other

changed modules.

Gorg and WeiBgerber [25] proposed a technique to identify and rank refactoring candi-

dates using names, signatures, and clone detection results. Later, WeiBgerber and Diehl [901

evolved and evaluated this tool. WeiBgerber and Diehl [89] analyzed the version histories

of JEdit, JUnit, and A r g o U M L and reconstructed the refactorings performed using the tool

proposed before [25]. They also obtained bug reports from various sources. They related the

percentage of refactorings per day to the ratio of bugs opened within the next five days. They

found that the high ratio of refactoring is sometimes followed by an increasing ratio of bug

reports.

6.4 Concluding remarks

In this section, we presented the works most related to this thesis. With respect to approaches

based on formal methods, we propose a more practical approach that was useful for finding a

number of faults in real refactoring engines. The main novelties of our technique with respect

to other testing approach for refactoring engines are: (1) generating input programs by using

Alloy; (2) detecting behavioral changes with SAFEREFACTOR, (4) identifying overly strong

6.4 Concluding remarks ^ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

conditions; and (3) classifying behavioral changes and overly strong condit ions.

Chapter 7

Conclusions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this work, we propose a technique for testing of Java refactoring engines. Its main compo-

nents are J D O L L Y (Chapter 3), a Java program generator, and a test system for refactorings,

S A F E R E F A C T O R (Chapter 4). For each refactoring, the technique generates a number of

Java programs, followed by the application of the refactoring, with these programs as target.

It uses behavioral oracles to evaluate the outputs. I f the engine produces an output program,

it uses S A F E R E F A C T O R for detecting behavioral changes between the input and the output

programs. On the other hand, i f the engine rejects the transformation, it applies the same

refactoring by using other engines and compares the results of the executions. Finally, the

technique classifies failures into distinct faults. The failing transformations are classified by

kind of behavioral change or compilation error introduced by them, and rejected behavior-

preserving transformations are classified by kind of overly strong conditions. We propose a

Java program generator (J D O L L Y) to run the program generation step of our technique. It

uses Al loy [32] and the Alloy Analyzer [33] to create programs for a given scope of elements

(packages, classes, fields, and methods). We have evaluated our technique by testing three

refactoring engines: Eclipse JDT 3.7, NetBeans 7 . 0 . 1 , and two versions of JRRT (JRRTvl

and JRRTv2). For each refactoring engine, we tested up to 1 0 refactoring implementations,

and found 57 and 63 faults related to compilation errors and behavioral changes, respectively,

and 24 overly strong conditions.

Specifying the set of conditions needed for each refactorings is not simple. Even refactor-

ing engines written with correctness in mind, such as JRRT, still have faults and overly strong

conditions. We have shown some corner cases automatically detected by our technique. With

108

109 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

these results, we have demonstrated how the combination of J D O L L Y and S A F E R E F A C T O R

is powerful to detect missing conditions and overly strong ones. In the absence of formal

proofs, our technique can be useful for the improvement of previous solutions. We have

reported all faults to Eclipse JDT, NetBeans and JRRT, and a number of them have already

been accepted. Moreover, Eclipse JDT and NetBeans developers have fixed some of them,

and JRRT developers have already fixed all accepted faults. They have also included 21 test

cases that we generated in their test suite 1.

We show that our technique is general enough to test different kinds of refactorings from

different Java refactoring engines. We tested up to 1 0 refactoring implementations from

Eclipse JDT, NetBeans, and JRRT. These refactoring implementations target declarations of

classes, fields, and methods. Other refactorings that target these constructs, such as Remove

Parameter or Change Access Modifier, can be tested by using the current implementation

of the technique. On the other hand, we cannot test refactorings that target Java constructs

not specified in the current implementation of J D O L L Y . For instance, we cannot test the

Rename Local Variable and the Extract Method refactorings because the method bodies gen-

erated by J D O L L Y contain only a return statement. The metamodel implemented in J D O L L Y

also restricted the input programs that were generated to evaluate the tested refactoring im-

plementations. For instance, we could not test the Rename Field refactoring in the presence

of local variables since we did not generate programs containing local variable declarations.

To reduce these limitations, one can extend J D O L L Y increasing the expressivity of the

programs generated by it. It w i l l be necessary to specify new Java constructs and well-

formedness rules in Alloy. So far, it was possible to specify the current implementation of

the Java metamodel with reasonable effort. However, we cannot generalize these results.

Some Java constructs and well-formedness rules may be difficult to specify in Alloy due to

some restrictions of the language. For instance, Alloy does not allow recursive functions

directly. Therefore, we believe that we need further studies to evaluate the effort to extend

J D O L L Y . Even so, a version of J D O L L Y for C/CC++ (CDolly) has been used for finding

faults in refactoring engines for the C/C++ language2. This work gives evidences that our

'SVN path for our test cases included in JRRT test suite:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA h t t p : / / j r r t . q o o q l e c o d e . com/svn/

t r u n k / t e s t s / B r a z i l i a n T e s t s . J a v a

2CAutomaticTester website: : h t t p : //www.dsc . u f eg. edu . b r / ~ s p g / c a u t o m a t i c t e s t e r /

http://www.dsc

7. /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Future work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA110

approach is also useful for testing refactorings that target method statements. It also show

that the approach can be applied not only for Java but also for other languages, such as C.

Additionally, the more signatures and relations are added to the Alloy specification, the

more combinations can be generated by Alloy Analyzer, increasing the state space of so-

lutions. As a result, the time required for using our approach can increase from hours to

days. To make it more efficient, one can use optimization techniques that prune the program

generation. For example, Jagannath et al. [3 4] suggest that we can make small jumps in the

sequence of automated generated programs without losing effectiveness of the test suite.

With respect to S A F E R E F A C T O R , we evaluated its effectiveness in 6 0 transformations ap-

plied to real software. In our experiments, S A F E R E F A C T O R had 7 0 % accuracy. It produced

false positives when testing GUI code and false negative when testing non-deterministic

code. Additionally, in some transformations that affected only few methods, the time limit

used for generating tests was not enough to generate tests for these methods because S A F E R -

E F A C T O R identified a large set of common methods to test. To handle this limitation, Mon-

giovi et al. [4 6] extend S A F E R E F A C T O R including an impact analysis technique, which iden-

tifies the methods impacted by the change. By doing so, S A F E R E F A C T O R generates tests not

for all common methods but just for the ones impacted by the change. These limitations of

S A F E R E F A C T O R did not affect the use of it in our technique for testing of refactoring en-

gines since we use it against simple transformations that are deterministic and do not have

Finally, even generating just small programs, containing few classes, methods, and fields,

our technique identified more than 100 faults in refactoring engines. These results corrob-

orate with the small scope hypothesis [3 2] , which believes that, in practice, any failure is

likely to manifest itself on some small input, and thus testing all small inputs is enough to

reveal any failure.

We plan to evaluate our technique on other refactorings, such as Extract Method. To do

so, we need to extend J D O L L Y to generate programs containing richer method bodies. For

instance, we could change the relation of thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Method signature. Now, b must contain a

GUI code.

7.1 Future work

7.] Future work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

sequence of statements.

1 sig Method {

2 b:seq[Body]

3 }

Moreover, we can extend Body to represent other kinds of statements. For example, we

can create the following signature representing method invocation. Notice that we need a

new kind of I d to represent the variable name that invokes a method id.

1 sig InstanceMethodlnvocation extends Body (

2 id: one Varld,

3 method: one Methodld

4)

In this way, J D O L L Y can generate more elaborated method bodies, such as the one pre-

sented next.

1 p u b l i c v o i d m () {

2 A a = new A () ;

3 a . z (2) ;

4 a . y () ;

5 1

Currently, we manually classify the failures related to behavioral change into distinct

faults. This process is done by checking each transformation that introduces behavioral

change against a number of proposed filters (see Table 5.1). It may demand a considerable

effort to perform this task when there are a lot of failures. We plan to automate this step by

developing a static analysis to evaluate the non-behavior-preserving transformations against

the proposed filters.

Additionally, it is time-consuming to test the refactoring implementation with respect

to each test input generated. For instance, in a previous experiment (See Section 5.6), it

was needed around 12 hours to test the Push Down Method implementation of JRRTvF by

using 15 ,322 input programs generated by a program generator called J D O L L Y . From these

15 ,322 input programs, 2 , 2 4 7 were useful for producing test cases that expose faults. In

3The JRRT version from May 18th, 2010

7. /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Future work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA112

such cases, by reordering the test cases, we may increase the rate of fault detection, reducing

the time spent to find faults. In this way, developers can have an earlier feedback to start

debugging and fixing the faults. Test case prioritization techniqueszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA [67; 34] schedule test

cases in order to achieve some goal. Techniques for automated testing of refactoring engines

iteratively test the refactoring implementation against each input program generated by a

program generator. The order of the test cases is the order that the programs are generated.

Therefore, we can prioritize the test cases by changing the order that the input programs

are used by the technique to run the test cases. We have observed that failures detected

by using these programs can be classified into distinct faults based on characteristics of the

input programs, such as overriding, overloading, field hiding. Therefore, having used an

input program produced by the program generator and covered certain characteristics, we

may be gained in subsequent input programs by covering characteristics that have not been

covered yet. We thus can prioritize test cases based on the characteristic coverage of the

input programs.

Besides missing conditions and overly strong ones, refactoring engines may also have

faults related to incorrect or incomplete transformations. Daniel et al. [14| have implemented

oracles to check whether an implementation of the Encapsulate Field refactoring encapsu-

lates all accesses of a target field. They have found a fault in Eclipse related to that. Consider

class A shown in Listing 7.1. I f we apply the Encapsulate Field refactoring by using Eclipse

3 .7 , the tool w i l l produce the output program shown in Listing 7.2. Notice that setF (f)

should be setF (getF ()).

We plan to investigate the use of structural oracles to check whether the performed trans-

formation was incorrect or incomplete. In the same way Daniel et al. [14] implemented

checks for the Encapsulate Field Refactoring, we can implement some checks for other refac-

torings. Another approach would be to use a tool such as Ref-Finder [571. It performs static

analysis on both input and output programs, in order to discover the application of complex

refactorings. The tool identities 6 3 refactorings presented by Fowler [19]. Each refactoring

is represented by a set of logic predicates (a template), and the matching between program

and template is accomplished by a logic programming engine. By using Ref-Finder against

the transformations generated by our technique, we could identify transformations that do

not match a specific refactoring template.

7. /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Future work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA113

Listing 7.2: After Refactoring. Encap-

sulated Field by Eclipse JDT 3.7 does

not encapsulate the field read.

1 c l a s s A {

Listing 7.1: Before Refactoring 2 p r i v a t e i n t f

1 c l a s s A j 3 vo id m () {

2 i n t i : 4 s e t F (f) ;

3 v o i d m() { 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!

4 f = f ; 6 v o i d s e t F (i n t

5 1 7 t h i s . f = 1 ;

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA} 8 I

9 i n t g e t F () {

!() r e t u r n f ;

11

We also plan to perform a user study to compare J D O L L Y against UDITA in the context

of testing of refactoring engines. Our research question is: Is specifying program generation

in J D O L L Y easier than in UDITA? By performing a human study, we can measure the time

to specify the program generation, the size, and its correctness. Additionally, we can further

investigate both generators with respect to isomorphic programs and exhaustiveness.

Finally, S A F E R E F A C T O R produced false positives and negatives due to limitations of

Randoop, its test generator. We plan to compare Randoop against other tests generators

with respect their effectiveness. We also plan to investigate how to generate test cases in the

context of concurrence, so that we can extend our approach for concurrent programs.

Bibliography zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[1] ISO/IEC 14764:1999. Software engineering - software maintenance. ISO and IEC,

1999.

[2] Paul Ammann and Jeff Offutt.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Introduction to Software Testing. Cambridge University

Press, New York, NY, USA, 1 edition, 2008.

131 Ittai Balaban. Frank Tip, and Robert Fuhrer. Refactoring support for class library mi-

gration. In Proceedings of the 20th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA '05, pages 265-279,

New York, NY, USA, 2005. A C M .

[4] F. Bazzichi and I . Spadafora. An automatic generator for compiler testing. IEEE Trans-

actions on Software Engineering, 8:343-353, July 1982.

[5] Robert V. Binder. Testing object-oriented systems: models, patterns, and tools.

Addison-Wesley Longman Publishing Co., Inc., Boston, M A , USA, 1999.

[6] Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools

(ARP/AOD) 2 Vol. Set. Addison-Wesley Professional, 1st edition, 2009.

|7] Dave Binkley, Mariano Ceccato, Mark Harman, Filippo Ricca, and Paolo Tonella. Au-

tomated refactoring of object oriented code into aspects. In Proceedings of the 21st

IEEE International Conference on Software Maintenance, ICSM '05, pages 27-36.

IEEE Computer Society, 2005.

|81 Paulo Borba, Augusto Sampaio, Ana Cavalcanti, and Márcio Cornélio. Algebraic rea-

soning for object-oriented programming. Science of Computer Programming, 52:53-

100. August 2004.

114

BIBLIOGRAPHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA115 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[91 A. Celentano, S. Crespi Reghizzi, R Delia Vigna, C. Ghezzi, G. Granata, and F. Sa-

voretti. Compiler testing using a sentence generator. Software: Practice and Experi-

ence, 10(11):897-918, November 1980.

110] Leonardo Cole and Paulo Borba. Deriving refactorings for AspectJ. In Proceedings of

the 4th Aspect-Oriented Software Development, AOSD '05, pages 123-134, New York,

NY, USA, 2005. A C M .

[I I] Leonardo Cole, Paulo Borba, and Alexandre Mota. Proving aspect-oriented program-

ming laws. In Proceedings of the 4th Foundations of Aspect-Oriented Languages,

FOAL '05, pages 1-10. 2005.

[12] David Coppit, Jinlin Yang, Sarfraz Khurshid. Wei Le, and Kevin Sullivan. Software

assurance by bounded exhaustive testing. IEEE Transactions on Software Engineering,

31:328-339, Apr i l 2005.

[13] Márcio Cornélio. Refactorings as Formal Refinements. PhD thesis, Federal University

of Pernambuco, 2004.

[14] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated testing of

refactoring engines. In Proceedings of the 6th joint meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of

Software Engineering, ESEC-FSE '07. pages 185-194, New York. N Y USA, 2007.

A C M .

[15] Danny Dig and Ralph Johnson. The role of refactorings in API evolution. In Pro-

ceedings of the 21st IEEE International Conference on Software Maintenance, pages

389-398, Washington, DC, USA, 2005. IEEE Computer Society.

[16] Eclipse.org. Eclipse project. At http://www.eclipse.org, 2011.

[17] Eclipse.org. JDT core component. At http://www.eclipse.org/jdt/core/, 201 1.

[18] Embarcadero Technologies. JBuilder. At http://www.codegear.com/br/products/jbuilder,

2011.

http://Eclipse.org
http://www.eclipse.org
http://Eclipse.org
http://www.eclipse.org/jdt/core/
http://www.codegear.com/br/products/jbuilder

BIBLIOGRAPHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA116 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[19] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley.

1999.

[20] Robert Führer, Adam Kiezun, and Markus Keller. Refactoring in the eclipse JDT: Past,

present, and future. In Proceedings of the Workshop on Refactoring Tools, 2007.

[2 1 | Robert Fuhrer, Frank Tip. Adam Kiezun, Julian Dolby, and Markus Keller. Efficiently

refactoring Java applications to use generic libraries. In Proceedings of the 19th Euro-

pean Conference on Object-Oriented Programming, ECOOP '05, pages 71-96, Berlin,

Heidelberg, 2005. Springer-Verlag.

[22] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak, and

Darko Marinov. Test generation through programming in UDITA. In Proceedings of

the 32nd International Conference on Software Engineering - Volume 1, ICSE '10,

pages 225-234, New York, NY, USA, 2010. A C M .

[23] Adele Goldberg and David Robson. Smalltalk-80: the language and its implementa-

tion. Addison-Wesley Longman Publishing Co., Inc., Boston, M A , USA, 1983.

[24] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data selection.

S1GPLAN Notes, 10:493-510, Apri l 1975.

[25] Carsten Görg and Peter Weißgerber. Detecting and visualizing refactorings from

software archives. In Proceedings of the 13th International Workshop on Program

Comprehension, IWPC '05, pages 205-214, Washington, USA, 2005. IEEE Computer

Society.

[26] K. V. Hanford. Automatic generation of test cases. IBM Systems Journal, 9:242-257,

December 1970.

[27] Jan Hannemann, Gail C. Murphy, and Gregor Kiczales. Role-based refactoring of

crosscutting concerns. In Proceedings of the 4th Aspect-Oriented Software Develop-

ment, AOSD '05. pages 135-146, New York, NY, USA, 2005. A C M .

[28] J He, C A R Hoare, and J W Sanders. Data refinement refined. In Proc. of the European

symposium on programming on ESOP 86, pages 187-196, New York, NY, USA, 1986.

Springer-Verlag New York, Inc.

BIBLIOGRAPHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 117 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[29] Johannes Henkel and Amer Diwan. Catchup!: capturing and replaying refactorings to

support api evolution. In 27th international conference on Software engineering, pages

274-283. New York, NY, USA, 2005. A C M .

[30] C. A. R. Hoare. Proof of correctness of data representations, pages 385-396, 2002.

[31] Daniel Malcolm Hoffman, David Ly-Gagnon. Paul Strooper, and Hong-Yi Wang.

Grammar-based test generation with YouGen. Software: Practice and Experience,

41:427-447. Apri l 201 1.

[32] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The M I T

Press, 2006.

[33] Daniel Jackson, Ian Schechter, and Hya Shlyahter. Alcoa: the Alloy constraint analyzer.

In Proceedings of the 22nd International Conference on Software Engineering, ICSE

"00, pages 730-733, New York, NY, USA. 2000. A C M .

[34] Vilas Jagannath, Yun Young Lee, Brett Daniel, and Darko Marinov. Reducing the costs

of bounded-exhaustive testing. In Proceedings of the 12th International Conference on

Fundamental Approaches to Software Engineering: Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2009, FASE '09, pages 171-

185, Berlin, Heidelberg, 2009. Springer-Verlag.

[35] Jet Brains. IntelliJ Idea. At http:/Avww.intellij.com/idea/, 2011.

[36] Wei Jin, Alessandro Orso, and Tao Xie. Automated behavioral regression testing. In

Proceedings of the 23rd International Conference on Software Testing, Verification and

Validation, ICST '10, pages 137-146, Washington, DC, USA, 2010. IEEE Computer

Society.

[37] Miryung Kim, Dongxiang Cai, and Sunghun Kim. An empirical investigation into the

role of api-level refactorings during software evolution. In Proceedings of the 33rd

International Conference on Software Engineering, ICSE ' 1 1 , pages 151-160, New

York, NY, USA. 201 1. A C M .

BIBLIOGRAPHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA118 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[38] Miryung Kim, David Notkin, and Dan Grossman. Automatic inference of structural

changes for matching across program versions. In Proceedings of the 29th Interna-

tional Conference on Software Engineering, ICSE '07, pages 333-343, Washington,

DC, USA, 2007. IEEE Computer Society.

[39] Miryung K i m , Thomas Zimmermann, and Nachiappan Nagappan. A field study of

refactoring challenges and benefits. In Proceedings of the 20th Foundations of Software

Engineering, FSE '12, New York, NY, USA, 2012. A C M .

[40] Bogdan Korel and A l i M . Al-Yami. Automated regression test generation. In Proceed-

ings of the 4th International Symposium on Software Testing and Analysis, ISSTA '98,

pages 143-152, New York, NY, USA, 1998. A C M .

[411 Huiqing L i and Simon Thompson. Testing Erlang Refactorings with QuickCheck. In

Proceedings of the 19th International Symposium on Implementation and Application

of Functional Languages, volume 5083 of Lecture Notes in Computer Science, pages

19-36. Springer, 2008.

[421 Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for automated

testing of Java programs. In Proceedings of the 16th IEEE International Conference

on Automated Software Engineering, ASE ' 0 1 , pages 22-34, Washington, DC, USA,

2001. IEEE Computer Society.

[43] Vincent Massol and Ted Husted. J Unit in Action. Manning Publications Co., Green-

wich, CT, USA, 2003.

[44] Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising behaviour preserving pro-

gram transformations. In Proceedings of the 1st International Conference on Graph

Transformation, ICGT '02, pages 286-301, London, UK, 2002. Springer-Verlag.

[451 Tom Mens and Tom Tourwe. A survey of software refactoring. IEEE Transactions on

Software Engineering, 30:126-139, February 2004.

[46] Melina Mongiovi, Rohit Gheyi, Gustavo Soares, Leopoldo Teixeira, and Paulo Borba.

Making refactoring safer through impact analysis. Science of Computer Programming,

(0):- , 2013.

BIBLIOGRAPHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA119 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[47] Miguel Monteiro and Joao Fernandes. Towards a catalog of aspect-oriented refactor-

ings. In Proceedings of the 4th Aspect-Oriented Software Development, AOSD '05,

pages 11 1-122, New York, NY, USA. 2005. A C M .

[48] Gail C. Murphy, Mik Kersten, and Leah Findlater. How are Java software developers

using the Eclipse IDE? IEEE Software, 23:76-83, July 2006.

[49] Emerson Murphy-Hil l , Chris Parnin, and Andrew Black. How we refactor, and how we

know it. IEEE Transactions on Software Engineering, 38(1):5-18, January-February

2012.

[50] Emerson Murphy-Hil l , Chris Parnin, and Andrew P. Black. How we refactor, and

how we know it. In Proceedings of the 31st International Conference on Software

Engineering, ICSE '09, pages 287-296, Washington, DC, USA, 2009. IEEE Computer

Society.

[51] David A. Naumann, Augusto Sampaio, and Leila Silva. Refactoring and representation

independence for class hierarchies. Theoretical Computer Science, 433(0):60 - 97.

2012.

[52] David L. Olson and Dursun Delen. Advanced Data MiningzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Techniques. Springer, 2008.

[53] W. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of I l l i -

nois at Urbana-Champaign, 1992.

[54] Wil l iam Opdyke and Ralph Johnson. Refactoring: An aid in designing application

frameworks and evolving object-oriented systems. In Object-Oriented Programming

emphasizing Practical Applications, pages 145-160, 1990.

[551 Jeffrey L. Overbey and Ralph E. Johnson. Differential precondition checking: A

lightweight, reusable analysis for refactoring tools. In Proceedings of the 26th

IEEE/ACM International Conference on Automated Software Engineering, ASE ' 11 ,

pages 303-312, New York, NY, USA, 2011. A C M .

[56] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-

directed random test generation. In Proceedings of the 29th International Conference

BIBLIOGRAPHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 120

on Software Engineering,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ICSE '07, pages 75-84, Washington, DC, USA, 2007. IEEE

Computer Society.

[571 Kyle Prête. Napol Rachatasumrit, Nikita Sudan, and Miryung Kim. Template-based

reconstruction of complex refactorings. In Proceedings of the 26th IEEE International

Conference on Software Maintenance, ICSM ' 10, pages 1-10, Washington, DC, USA,

2010. IEEE Computer Society.

[581 Maurizio Proietti and Alberto Pettorossi. Semantics preserving transformation rules for

prolog. In Proceedings of the 1991 ACM SIGPLAN Symposium on Partial Evaluation

and Semantics-based Program Manipulation, PEPM ' 9 1 , pages 274-284, New York,

NY, USA, 1991. A C M .

[59] Napol Rachatasumrit and Miryung Kim. An empirical investigation into the impact of

refactoring on regression testing. In Proceedings of the 28th IEEE International Con-

ference on Software Maintenance, ICSM ' 12, Washington, US A, 2012. IEEE Computer

Society.

[60] Jacek Ratzinger. sPACE: Software Project Assessment in the Course of Evolution. PhD

thesis, Vienna University of Technology, 2007.

[611 Jacek Ratzinger, Thomas Sigmund, and Harald Gall. On the relation of refactorings and

software defect prediction. In Proceedings of the 5th Mining Software Repositories,

MSR '08, pages 35-38, 2008.

[621 Refactoring.com. Alpha list of refactorings. At

http://refactoring.com/catalog/index.html, 2010.

163] Christoph Reichenbach, Devin Coughlin, and Amer Diwan. Program metamorphosis.

In Proceedings of the 23rd European Conference on Object-Oriented Programming,

ECOOP '09, pages 394-418, Berlin, Heidelberg, 2009. Springer-Verlag.

[64] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara Ryder, and Ophelia Chesley. Chianti:

a tool for change impact analysis of Java programs. In Proceedings of the 19th ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-

plications. OOPSLA '04, pages 432-448, New York, NY, USA, 2004. A C M .

http://Refactoring.com
http://refactoring.com/catalog/index.html

BIBLIOGRAPHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 121 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[65] D. Roberts. Practical Analysis for Refactoring. PhD thesis. University of Illinois at

Urbana-Champaign, 1999.

[661 Brian Robinson, Michael Ernst, Jeff Perkins, Vinay Augustine, and Nuo L i . Scaling

up automated test generation: Automatically generating maintainable regression unit

tests for programs. In Proceedings of the 26th IEEE/ACM International Conference

on Automated Software Engineering, ASE ' 1 1 , pages 23-32, Washington, DC, USA,

201 1. IEEE Computer Society.

[67] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. Test case

prioritization: An empirical study. In Proceedings of the IEEE International Confer-

ence on Software Maintenance, ICSM '99, pages 179-, Washington, DC, USA, 1999.

IEEE Computer Society.

[68| Max Schafer and Oege de Moor. Specifying and implementing refactorings. In Pro-

ceedings of the 25th ACM International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA ' 10, pages 286-301, New York, NY,

USA, 2010. A C M .

[691 Max Schafer, Julian Dolby, Manu Sridharan, Emina Torlak, and Frank Tip. Correct

refactoring of concurrent Java code. In Proceedings of the 24th European Conference

on Object-Oriented Programming, ECOOP '10, pages 225-249, Berlin, Heidelberg,

2010. Springer-Verlag.

[701 Max Schafer, Torbjorn Ekman. and Oege de Moor. Challenge proposal: verification of

refactorings. In Proceedings of the 3rd Workshop on Programming Languages Meets

Program Verification, PLPV '09, pages 67-72, New York, NY, USA. 2008. A C M .

[71] Max Schafer, Torbjorn Ekman, and Oege de Moor. Sound and extensible renaming

for Java. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA '08, pages 277-294,

New York, NY, USA, 2008. A C M .

[72] Max Schafer, Torbjorn Ekman, and Oege de Moor. Sound and extensible renaming

for Java. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented

BIBLIOGRAPHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA122

Programming, Systems, Languages, and Applications,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA OOPSLA '08, pages 277-294,

New York, NY, USA, 2008. A C M .

[73] Max Schafer, Torbjorn Ekman, Ran Ettinger, and Mathieu Verbaere. Refactoring bugs.

At http://code.google.eom/p/jrrtywiki/RefactoringBugs, 2011.

[74] Max Schafer, Mathieu Verbaere, Torbjõrn Ekman, and Oege Moor. Stepping stones

over the refactoring rubicon. In Proceedings of the 23rd European Conference on

Object-Oriented Programming, ECOOP '09, pages 369-393, Berlin, Heidelberg, 2009.

Springer-Verlag.

[75] Leila Silva, Augusto Sampaio, and Zhiming Liu. Laws of object-orientation with refer-

ence semantics. In Proceedings of the 6th IEEE International Conference on Software

Engineering and Formal Methods, SEFM '08, pages 217-226, Washington, DC, USA,

2008. IEEE Computer Society.

[76] Gustavo Soares. Automated behavioral testing of refactoring engines. In Proceedings

of the 3rd Annual Conference on Systems, Programming, and Applications: Software

for Humanity, SPLASH '12, pages 105-106, New York, NY, USA, 2012. A C M .

[77] Gustavo Soares, Rohit Gheyi, and Tiago Massoni. Automated behavioral testing of

refactoring engines. IEEE Transactions on Software Engineering, 99(PrePrints), 2012.

[78] Gustavo Soares, Rohit Gheyi, Emerson Murphy-Hil l , and Brittany Johnson. Comparing

approaches to analyze refactoring activity on software repositories. Journal of Systems

and Software, 2012. .To appear.

[79] Gustavo Soares, Rohit Gheyi, Dalton Serey, and Tiago Massoni. Making program

refactoring safer. IEEE Software, 27:52-57, July 2010.

[80] Gustavo Soares, Rohit Gheyi, Dalton Serey, and Tiago Massoni. Making program

refactoring safer. IEEE Software, 27:52-57, 2010.

[811 Gustavo Soares, Melina Mongiovi, and Rohit Gheyi. Identifying overly strong condi-

tions in refactoring implementations. In Proceedings of the 27th IEEE International

Conference on Software Maintenance, ICSM ' 1 1 , pages 173-182, Washington, DC,

USA, 201 1. IEEE Computer Society.

http://code.google.eom/p/jrrtywiki/RefactoringBugs

BIBLIOGRAPHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA123 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1821 Gustavo Araújo Soares. Uma abordagem para aumentar a segurança em refatoramentos

de programas, 2010. Dissertação de Mestrado da Universidade Federal de Campina

Grande.

183] Gustavo Soares Soares. Automated behavioral testing of refactoring engines. In Pro-

ceedings of the 3rd Annual Conference on Systems, Programming, and Applications:

Software for Humanity, SPLASH ' 12, pages 49-52, New York, NY, USA, 2012. A C M .

[841 Friedrich Steimann and Andreas Thies. From public to private to absent: Refactoring

Java programs under constrained accessibility. In Proceedings of the 23rd European

Conference on Object-Oriented Programming, ECOOP "09, pages 419-443, Berlin,

Germany, 2009. Springer-Verlag.

[85] Sun Microsystems. NetBeans IDE. At http://www.netbcans.org/, 2011.

[86] Frank Tip, Adam Kiezun, and Dirk Báumer. Refactoring for generalization using

type constraints. In Proceedings of the 18th ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA '03, pages

13-26, New York, NY, USA, 2003. A C M .

[87] Lance Tokuda and Don Batory. Evolving object-oriented designs with refactorings.

Automated Software Engineering, 8:89-120, January 2001.

[88] Wil l iam C. Wake. Refactoring Workbook. Addison-Wesley, 2003.

[89] Peter WeiBgerber and Stephan Diehl. Are refactorings less error-prone than other

changes? In Proceedings of the 3rd Mining Software Repositories, MSR '06, pages

112-118, New York. NY, USA, 2006. A C M .

[90] Peter WeiBgerber and Stephan Diehl. Identifying refactorings from source-code

changes. In Proceedings of the 21st IEEE/ACM International Conference on Auto-

mated Software Engineering, ASE '06, pages 231-240, Washington, DC, USA, 2006.

IEEE Computer Society.

[91] Elaine J. Weyuker. On Testing Non-Testable Programs. The Computer Journal,

25(4):465-470, November 1982.

BIBLIOGRAPHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA124 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[92] Jan Wloka, Robert Hirschfeld, and Joachim Hansel. Tool-supported refactoring of

aspect-oriented programs. In Proceedings of the 7th Aspect-Oriented Software Devel-

opment, AOSD '08, pages 132-143, New York, NY, USA, 2008. A C M .

[93] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and

adequacy. ACM Computing Survey, 29:366-427, December 1997.

Appendix A

Java metamodel specification in Alloy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Next, we present the complete specification of a subset of the Java language in Alloy, which

was used by J D O L L Y for generating Java programs.

Listing A. I : A subset of the Java language specified in Alloy

1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA //ABSTRACT S YNTAX

2

3 abstract sig Id {}

4

5 sig Packagej}

6

7 sig Classld, MethodId,FieldId extends Id {}

8

9 abstract sig Accessibility {}

10

11 one sig public, private_, protected extends Accessibility {}

12

13 abstract sig Type {}

14

15 abstract sig PrimitiveType extends Type (}

16

17 one sig Int_, Long_ extends PrimitiveType {}

18

19 sig Class extends Type (

125

126 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

20 package: one Package,

21 id: one Classld,

22 extend: lone Class,

23 methods: set Method,

24 fields: set Field

25 }

26

27 fun classes[pack:Package]: set Class {

28 pack-~package

29 }

30

31 sig Field j

32 id : one Fieldld.

33 type: one Type,

34 acc : lone Accessibility

35)

36

37 sig Method {

38 id : one Methodld,

39 param: lone Type,

40 acc: lone Accessibility,

41 return: one Type,

42 b: one Body

43 }

44

45 abstract sig Body {}

46

47 sig Literal Value extends Body (}zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA //returns a literal value

48

49 abstract sig Qualifier { }

50

5 1 one sig qthis_, this_, super_ extends Qualifier {)

52

127 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

53

54 sig Methodlnvocation extends Body {

55 id : one Methodld,

56 q: lone Qualifier

57 }

58 fact {

59 / /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA call a declared method

60 all mkMethodlnvocation I some m:Method I mi-id = m i d

61 / / avoid recursive calls

62 all m:Method I all mb: Methodlnvocation I m b = mb => mb-id ^ m i d

63 }

64

65 //return newA()k();

66 sig ConstructorMethodlnvocation extends Body j

67 idClass : one Classld,

68 idMethod: one Methodld

69 }

70 fact {

71 // calls a method declared in the class

72 all ci: ConstructorMethodlnvocation I

73 some c:Class I

74 ciidClass = c i d & &

75 (some m:Method I m in cmethods & & mid = ciidMethod)

76

77 //avoid recursive calls

78 all m:Method I all mb: ConstructorMethodlnvocation I m b = mb > mb-idMethod / m i d

79 }

80

81 fun classFromClassId[idl:ClassIdl: set Class {

82 id l~ id

83)

84

85 fun heldFromFieldId[idl :Fieldld]: set Field {

128 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

86 i d l ' i d

87 }

88

89 / /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA return x;

90 //return thisx;

91 // return super-x;

92 //returnAthisx;

93 sig Fieldlnvocation extends Body {

94 idField : one Fieldld,

95 qField: lone Qualifier

96)

97

98 //return new A()x;

99 sig ConstructorFieldlnvocation extends Body {

100 idClass2 : one Classld,

101 idField: one Fieldld

102 }

103 fact {

104 //call field declared in the class

105 all ci: ConstructorFieldlnvocation I

106 somec:Classl

107 ciidClass2 = c i d & &

108 (some F.Field I f in clields & & f i d = ci idField)

109 }

110

1 I I

112

113 // WELL - FORMED RULES

114 fact JavaWellFormedRules (

115 noPackageContainsTwoClassesWithSameId[]

116 noCalltoUndefinedField[]

117 noSuperCallToNotlnheiitedFieldf]

118

129 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

119 noClassExtendsItself[]

120 allFieldsBelongToAClass[]

121 noClassContainsTwoFieldsWithSameld []

122 noClassContainsTwoMethodsWithSameSignature[]

123 noClassExtendsAnotherWithSameId[]

124 allBodiesBelongToAMethod[)

125 allMethodsBelongToAClass[]

126 noSuperCallToNotInheritedMethod[]

127 noCalltoUndefinedMethod[]

128 }

129 pred noPackageContainsTwoClassesWiihSameId[] {

130 all package: Package I all cl,c2:classes[package] I c l ^ c2 c 1 id ^ c2id

131 }

132

133 pred noClassExtendsItself[] j

134 no c:Class I c in c'extend

135 j

136

137 pred noClassExtendsAnotherWithSameld[] {

138 all c 1 :Class I no c2: c 1 -"extend I c l id = c2id

139 }

140

141 pred noClassContainsTwoFieldsWithSameld |] j

142 no c:Class I some disj fl,f2:Field I f l- id = 1'2-id & & fl + f2 in c-tields

143 |

144

145 pred noCalltoUndelinedMethod[] (

146 all mi:Methodlnvocation I

147 (# m i q = 0 II m i q = this_) =>

148 some cl,c2: Class, ml :cl methods, m2:c2methods I mi in ml b & & mi id = m2id & &

((c 1 = c2) II ((c2 in c 1 "extend) & & (m2-acc ^ private_)))

149

150 all mi:MethodInvocation I

130 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

151 (miq = qthis_) =>

152 some cl:Class, ml,m2:cl methods I mi in ml-b & & mi-id = m2-id

153)

154

155 pred noSuperCallToNotInheritedMethod[] {

156 all mi:Methodlnvocation I

157 m i q = super_ =>

158 some cl,c2: Class, ml :cl methods, m2:c2methods I mi in ml-b & & mi-id = m2id & &

c2 in cl "extend & & (m2acc / private_)

159)

160

161 pred noSuperCallToNotlnheritedField[] (

162 all tkFieldlnvocation I

163 ri-qField = super. =>

164 some disj cl,c2: Class, ml:cl-methods, f:c2fields I fi in ml-b & & fi-idField = f i d & & c2 in

cl "extend & & face ^ private_

165 }

166

167 pred noCalltoUndefinedFieldf] {

168 all mi:Fieldlnvocation I

169 (mi-qField = this_) =>

170 some cl,c2: Class, ml :c l methods, f:c2-fields I mi in ml-b & & mi-idField = f i d & & ((

c 1 = c2) II ((c2 in c 1 "extend) & & (face ^ private.)))

171

172 all mkFieldlnvoeation I

173 (mi-qField = qthis_) =>

174 some c 1 ,c2: Class, ml :cl methods, f:c2-fields I mi in ml-b & & mi-idField = f i d & & ((

cl = c2) II ((c2 in c l "extend) & & (face / private.)))

175

176 all mkFieldlnvoeation I

177 (#mi-qField = 0) =>

178 somecl,c2: Class, ml:cl-methods, f:c2-fields I mi in ml-b & & mi-idField = f i d & & ((

cl = c2) II ((c2 in cl "extend) & & (face / private.)))

131 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

179 }

180

181 pred allFieldsBelongToAClass [] {

182 all f:Field I one c:Class I f in c fields

183)

184

185 pred noClassContainsTwoMethodsWithSameSignature[] {

186 ail c: Class I all m l,m2:c methods I ml ̂ m2 => (ml id ^ m2id or ml param ^ m2param)

187 }

188

189 pred allMethodsBelongToACIass [] (

190 all m:Method I one c:Class I m in cmethods

191)

192

193 pred allBodiesBelongToAMethod 11)

194 Body in Method b

195 1

Appendix B

Algorithms for checking refactoring

scope and granularity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Next we formalize some algorithms used to collect data from repository. Algorithm 2 indi-

cates when a transformation is low or high-level. I f a transformation only changes inside a

method, it is considered low-level. Otherwise it is considered high-level,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA methods yields the

set of methods of a program, signature yields the method signature of all methods received

as parameter.

Algorithm 2 Refactoring Granularity

Require: source <= program before transformation

Require: target <= program after transformation

Ensure: Indicates whether a transformation is low or high-level

mSource <= methods(.w»rce)

mTarget <= melhods(target)

if s\gnalure(mSource) = signaturefmTarge/) then

return LOW

else

return HIGH

end if

Algorithm 3 establishes when a transformation is local or global. I f a transformation

only changes at most one package, it is considered local. Otherwise it is considered global.

132

133 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

packageszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA yields the set of packages of a program, name yields the name of a package, diff

is the shell command used to compare to directories.

Algorithm 3 Refactoring Scope

Require: source <^ program before transformation

Require: target <= program after transformation

Ensure: Indicates whether a transformation is local or global

count 0

for p e packages(.so»n:e) do

pTarget <= package(name(p),m/-ge/)

if d\ff(p,pTarget) ^ 0 then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

COUIU++

end if

end for

for /;zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA G packages(ffl/-ge/) do

pSource <= package(name(p), .w»/re)

if d\ff(p,pSource) ^ 0 then

COUIU++

end if

end for

if count < 1 then

return L O C A L

else

return G L O B A L

end if

