
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

JOSÉ JÚNIOR SILVA DA COSTA

EVALUATING PYTHON REPETITION STRUCTURES WITH NOVICES:

AN EYE TRACKING STUDY

CAMPINA GRANDE - PB

2024

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Evaluating Python Repetition Structures with

Novices: an eye tracking study

José Júnior Silva da Costa

Dissertação submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina Grande -

Campus I como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

Rohit Gheyi

(Orientador)

Campina Grande, Paraíba, Brasil

©José Júnior Silva da Costa, 08/03/2024

C837e

 Costa, José Júnior Silva da.

 Evaluating Python repetition structures with novices: an eye tracking
study / José Júnior Silva da Costa. – Campina Grande, 2024.
 74 f. : il. color.

 Dissertação (Mestrado em Ciência da Computação) – Universidade

Federal de Campina Grande, Centro de Engenharia Elétrica e
Informática, 2024.

 "Orientação: Prof. Dr. Rohit Gheyi”.
 Referências.

 1. Engenharia de Software. 2. Code Comprehension. 3. Eye

Tracking, 4. Repetition Structures. I. Gheyi, Rohit. II. Título.

 CDU 004.41(043)

 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA SEVERINA SUELI DA SILVA OLIVEIRA CRB-15/225

03/04/2024, 22:52 SEI/UFCG - 4275440 - Ata de Defesa

https://sei.ufcg.edu.br/sei/controlador_externo.php?acao=documento_conferir&codigo_verificador=4275440&codigo_crc=C953… 1/2

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
POS-GRADUACAO EM CIENCIA DA COMPUTACAO

Rua Aprígio Veloso, 882, Edifício Telmo Silva de Araújo, Bloco CG1, - Bairro Universitário, Campina
Grande/PB, CEP 58429-900

Telefone: 2101-1122 - (83) 2101-1123 - (83) 2101-1124
Site: http://computacao.ufcg.edu.br - E-mail: secretaria-copin@computacao.ufcg.edu.br /

copin@copin.ufcg.edu.br

REGISTRO DE PRESENÇA E ASSINATURAS

ATA Nº 011/2024 (DISSERTAÇÃO N° 725)

Aos oito (8) dias do mês de março do ano de dois mil e vinte e quatro (2024), às dezesseis horas
(16:00), de forma remota, através da plataforma do GOOGLE MEET, reuniu-se a Comissão Examinadora
composta pelos Professores ROHIT GHEYI, Dr., UFCG, Orientador, funcionando neste ato como
Presidente, MÁRCIO DE MEDEIROS RIBEIRO, Dr., UFAL, IVAN DO CARMO MACHADO, Dr.,
UFBA. Constituída a mencionada Comissão Examinadora pela Portaria Nº 010/2024 da Coordenação do
Programa de Pós-Graduação em Ciência da Computação, tendo em vista a deliberação do Colegiado do
Curso, tomada em reunião de 15 de Fevereiro de 2024 e com fundamento no Regulamento Geral dos
Cursos de Pós-Graduação da Universidade Federal de Campina Grande - UFCG, juntamente com o Sr(a)
JOSÉ JÚNIOR SILVA DA COSTA, candidato(a) ao grau de MESTRE em Ciência da Computação,
presentes ainda professores e alunos do referido centro e demais presentes. Abertos os trabalhos, o(a)
Senhor(a) Presidente da Comissão Examinadora anunciou que a reunião tinha por finalidade a
apresentação e julgamento da dissertação "EVALUATING PYTHON REPETITION STRUCTURES
WITH NOVICES: AN EYE TRACKING STUDY", elaborada pelo(a) candidato(a) acima designado, sob
a orientação do(s) Professor(es) ROHIT GHEYI, com o objetivo de atender as exigências do Regulamento
Geral dos Cursos de Pós-Graduação da Universidade Federal de Campina Grande - UFCG. A seguir,
concedeu a palavra, ao (a) candidato(a), o qual, após salientar a importância do assunto desenvolvido,
defendeu o conteúdo da dissertação. Concluída a exposição e defesa do(a) candidato(a), passou cada
membro da Comissão Examinadora a arguir o(a) mestrando sobre os vários aspectos que constituíram o
campo de estudo tratado na referida dissertação. Terminados os trabalhos de arguição, o(a) Senhor(a)
Presidente da Comissão Examinadora determinou a suspensão da sessão pelo tempo necessário ao
julgamento da dissertação. Reunidos, em caráter secreto, no mesmo recinto, os membros da Comissão
Examinadora passaram à apreciação da dissertação. Reaberta a sessão, o(a) Presidente da Comissão
Examinadora anunciou o resultado do julgamento, tendo assim, o(a) candidato(a) obtido o
Conceito APROVADO. Na sequência, o(a) Presidente da Comissão Examinadora anunciou o resultado do
julgamento, tendo a seguir encerrado a sessão, da qual lavrei a presente ata, que vai assinada por mim,
Lyana Silva e Cavalcante Nascimento, pelos membros da Comissão Examinadora e pelo(a) candidato(a).
Campina Grande, 8 de Março de 2024.

Documento assinado eletronicamente por ROHIT GHEYI, PROFESSOR(A) DO MAGISTERIO
SUPERIOR, em 12/03/2024, às 07:21, conforme horário oficial de Brasília, com fundamento no art.
8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por Ivan do Carmo Machado, Usuário Externo, em
12/03/2024, às 10:03, conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da
Portaria SEI nº 002, de 25 de outubro de 2018.

03/04/2024, 22:52 SEI/UFCG - 4275440 - Ata de Defesa

https://sei.ufcg.edu.br/sei/controlador_externo.php?acao=documento_conferir&codigo_verificador=4275440&codigo_crc=C953… 2/2

Documento assinado eletronicamente por LYANA SILVA E CAVALCANTE NASCIMENTO,
ASSISTENTE EM ADMINISTRACAO, em 12/03/2024, às 15:48, conforme horário oficial de
Brasília, com fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por José Júnior Silva da Costa, Usuário Externo, em
12/03/2024, às 15:50, conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da
Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por Márcio de Medeiros Ribeiro, Usuário Externo, em
12/03/2024, às 20:35, conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da
Portaria SEI nº 002, de 25 de outubro de 2018.

A autenticidade deste documento pode ser conferida no site https://sei.ufcg.edu.br/autenticidade,
informando o código verificador 4275440 e o código CRC C95335B3.

Referência: Processo nº 23096.015202/2024-15 SEI nº 4275440

Resumo

Ler e compreender o código são atividades cruciais durante o processo de evolução e

manutenção de software. Porém, existem vários fatores que podem afetar esse entendimento,

como a forma como o código está estruturado. Iteração, Recursão e Compreensão de Lista

(LC) são algumas dessas técnicas de estruturação. Entretanto, seu impacto no desempenho

dos desenvolvedores tem sido pouco investigado sob a perspectiva do esforço visual com

rastreamento ocular, inclusive no contexto de novatos. Portanto, este trabalho tem como

objetivo realizar um estudo com rastreamento ocular para investigar o impacto dessas difer-

entes estruturas na compreensão de código por novatos. Portanto, foi realizado um estudo

inicial controlado para resolver seis tarefas, utilizando o desenho do Quadrado Latino com

32 novatos em Python, medindo o tempo, o número de tentativas para resolver a tarefa e o

esforço visual através da duração da fixação, contagem de fixação e regressões. Foi utilizada

uma comparação com tarefas que possuem as seguintes estruturas: Recursão, estrutura de

repetição e LC. Na Área de Interesse (AOI), em relação às métricas analisadas, foram obser-

vados aumentos nas versões while, Recursão e LC em relação à versão for. No número

de regressões, o aumento chegou a 100% e 114,29% com LC e while, respectivamente,

indicando a necessidade de retornar mais vezes no código. O aumento no tempo chegou

a 95% com while. Através da análise dos padrões de leitura, na Recursão, percebeu-se

maior foco de atenção no caso base e na etapa recursiva. A necessidade de uma condição

de parada e contador explícito é uma hipótese para o pior desempenho com while. Houve

concordâncias e discrepâncias entre os participantes entre desempenho e percepção de di-

ficuldade dependendo da tarefa. Em geral, a versão for exigiu menos tempo, tentativas

e esforço visual, indicando melhor compreensão de algumas tarefas. Este estudo contribui

principalmente para aumentar a conscientização entre educadores sobre o impacto da Re-

cursão, Iteração e LC na compreensão do código para iniciantes em Python.

iv

Abstract

Reading and understanding code are crucial activities during the software evolution and

maintenance process. However, there are several factors that can affect this understanding,

such as the way the code is structured. Iteration, Recursion and List Comprehension (LC)

are some of these structuring techniques. However, its impact on developers’ performance

has been little investigated from the perspective of visual effort with eye tracking, including

in the context of novices. Therefore, this work aims to conduct a study with eye tracking to

investigate the impact of these different structures on novices’ code understanding. There-

fore, an initial controlled study was conducted to solve six tasks, using the Latin Square

design with 32 Python novices, measuring time, number of attempts to solve the task and

visual effort through of fixation duration, fixation count and regressions. A comparison was

used with tasks that have the following structures: Recursion, repetition structure and LC.

In the Area of Interest (AOI), regarding the metrics analyzed, increases were observed in the

while, Recursion and LC versions compared to the for version. In the number of regres-

sions, the increase reached 100% and 114.29% with LC and while, respectively, indicating

the need to return more times in the code. The increase in time reached 95% with while.

Through the analysis of reading patterns, in Recursion, greater focus of attention was noticed

in the base case and in the recursive step. The need for a stop condition and explicit counter

is a hypothesis for the worst performance with while. There were agreements and discrep-

ancies among participants between performance and perception of difficulty depending on

the task. In general, the for version required less time, attempts and visual effort, indicat-

ing a better understanding of some tasks. This study mainly contributes to raising awareness

among educators about the impact of Recursion, iteration and LC on code understanding for

Python novices.

v

Agradecimentos

Primeiramente, expresso minha gratidão a Deus por todas as bênçãos concedidas e por esta

preciosa oportunidade.

À minha família, meu agradecimento pelo amor e pelo constante apoio ao longo desta

jornada, oferecendo suporte e encorajamento em todos os momentos. Ao meu irmão José

Aldo, minha gratidão pelas valiosas orientações, pela paciência e pelo apoio desde o início.

Ao meu orientador, Rohit Gheyi, sou grato por sua orientação excepcional, sua paciência

e seu apoio ao longo deste percurso. Suas orientações me tornaram um profissional melhor.

Aos amigos e à comunidade da igreja, meu sincero obrigado por fazerem parte desta

trajetória e por compartilharem comigo momentos memoráveis.

À Universidade Federal de Campina Grande e à Coordenação da Pós-graduação em

Computação da UFCG (COPIN), expresso minha gratidão pelo apoio oferecido durante todo

este percurso.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), agradeço

pelo suporte financeiro fundamental que viabilizou a realização deste projeto acadêmico.

Meu obrigado.

vi

Contents

1 Introduction 1

1.1 Problem . 1

1.2 Motivating Example . 2

1.3 Solution . 3

1.4 Evaluation . 4

1.5 Conclusions . 4

1.6 Summary of contributions . 4

1.7 Organization . 5

2 Background 6

2.1 Repetition Structures in Python . 6

2.1.1 while structure . 6

2.1.2 for structure . 7

2.1.3 Recursion structure . 9

2.1.4 List Comprehension structure . 9

2.2 Eye tracking Technology . 10

2.2.1 Eye tracking methodology . 10

2.2.2 Eye tracking Metrics . 11

2.2.3 Visualization techniques . 12

2.3 Code comprehension with eye tracking . 14

2.3.1 Analysis of Reading Patterns . 14

2.3.2 Focus of Attention . 15

2.3.3 Identifying Comprehension Difficulties 16

2.3.4 Evaluating the Impact of Code Layout and Structure 17

vii

CONTENTS viii

2.3.5 Adapting Development Interfaces and Tools 18

2.3.6 Integration with Performance Metrics 19

3 Methodology 21

3.1 Pilot Study . 21

3.2 Experiment phases . 22

3.3 Subjects . 23

3.4 Treatments . 23

3.5 Programs . 24

3.6 Eye tracking system . 26

3.7 Planning of the experiment . 26

3.7.1 Sum from one to n, Recursion and for versions 27

3.7.2 Task Multiple of three, versions while and for 31

3.7.3 Task Quantity of 0 in list, LC and for versions 36

4 Evaluation 41

4.1 Definition . 41

4.2 Results and Discussion . 43

4.2.1 Task Sum list, while and for versions 43

4.2.2 Task Sum from one to n, Recursion and for versions 46

4.2.3 Task Quantity of 0 in the list, LC and for versions 48

4.2.4 Other Analyses . 49

4.3 Answers to the Research Questions . 50

4.3.1 RQ1 What is the impact of code structures on time? 50

4.3.2 RQ2 What is the impact of code structures on the number of attempts

used to solve the task? . 52

4.3.3 RQ3 What is the impact of code structures on the duration of fixes? 52

4.3.4 RQ4 What is the impact of code structures on the number of fixations? 53

4.3.5 RQ5 What is the impact of code structures on the number of regres-

sions? . 54

4.4 Threats to Validity . 54

4.4.1 Internal Validity . 55

CONTENTS ix

4.4.2 External Validity . 56

4.4.3 Construction Validity . 56

5 Related Work 57

5.1 Code Structure Comparison . 57

5.2 Approaches to Measuring Code Comprehension 59

6 Conclusions 62

6.1 Future work . 63

List of Figures

1.1 Comparison of the code to calculate the factorial of a number using the struc-

tures of (a) Recursion and (b) Iteration, adapted from GeeksforGeeks. . . . 2

1.2 Representation of fixations and transitions in code comparison to calculate

the factorial of a number using the structures of (a) Recursion and (b) Iteration. 3

2.1 Example of while repetition structure, found and adapted from the website

Geeksforgeeks. In it, (a) represents the syntax while (b) represents a code

snippet. 7

2.2 Example of repetition structure for, found and adapted from the website

Geeksforgeeks. 8

2.3 Example of repetition structure Recursion, found and adapted from the web-

site Geeksforgeeks. 9

2.4 Example of repetition structure LC, found and adapted from the website

Geeksforgeeks. 10

2.5 Example of fixations and regressions metrics 11

2.6 Example of gaze plot with red circles representing fixations that vary in size

according to their duration. 13

2.7 Example of heat map. 13

2.8 Example of gaze transitions with arrows indicating the direction of the tran-

sition. 14

2.9 Example of gaze transitions of developers on the code with an atom of con-

fusion. 15

2.10 Example of focus of attention of developers on the code with an atom of

confusion (left hand side) and without the atom (right hand side). 16

x

LIST OF FIGURES xi

2.11 Regular code implementation with AOIs investigated. 17

2.12 Gaze plot comparison of an expert and a novice. 18

2.13 Heatmap comparison of two interfaces, list interface and a tabular interface. 19

2.14 A screenshot of the Itrace layout. Display of artifacts side by side so that the

user can look between them. 20

3.1 Experiment structure, Programs (P) are distributed in Program Sets (SP),

where participants need to inform the code output (Output). 24

3.2 Code snippets used. 25

3.3 Comparison between the two code snippets Recursion and for and their

respective heat maps and fixations for the task Sum from one to n. 27

3.4 Task submissions in the Recursion and for versions. 29

3.5 Comparison between preference and performance of the for and Recursion

versions. 30

3.6 Gaze Transitions of task submissions Sum from one to n of version for,

First attempt. 32

3.7 Gaze Transitions of task submissions Sum from one to n of version for,

First attempt, Second attempt. 33

3.8 Comparison between the two code snippets while and for and their re-

spective heat maps and fixations for the task Amount of multiples of three in

a list. 34

3.9 Gaze Transitions of task submissions Amount of multiples of three in a list,

comparison between the two code snippets while and for. 35

3.10 Comparison between preference and performance of code versions while

and for. 37

3.11 Comparison between the two code snippets CL and for and their respective

heat maps and fixtures for the task Quantity of 0 in the list. 38

3.12 Gaze Transitions from task submissions Amount of 0 in list, comparison be-

tween the two code snippets CL and for. 39

3.13 Performance comparison in LC and for code versions of the task Quantity

of 0 in the list. 40

LIST OF FIGURES xii

4.1 Perception of difficulties with the Base and Treatment versions. 45

4.2 Task Sum list, for version. 46

4.3 Task Sum from one to n, Recursion version. 47

4.4 Task Sum from one to n, for version. 48

4.5 Task Quantity of 0 in the list, LC version. 48

4.6 Task Quantity of 0 in the list, for version. 49

4.7 for vs while, Recursion and LC distribution. 51

List of Tables

4.1 Comparative analysis between the code snippets used: Time. 50

4.2 Comparative analysis between the code snippets used: Number of submissions. 52

4.3 Comparative analysis between the code snippets used: Duration of fixations. 53

4.4 Comparative analysis between the code snippets used: Fixations. 54

4.5 Comparative analysis between the code snippets used: Regressions. 55

xiii

Chapter 1

Introduction

Code comprehension can be understood as the ability to understand and interpret the source

code of a computer program. This involves the ability to read, analyze and understand what

the code is doing and how it is structured. According to Xia et al. [73], code understanding,

also known as program comprehension, refers to the active process in which developers

acquire knowledge about a software system through investigating and exploring software

artifacts. This process involves reading the relevant code and/or documentation. It is crucial

for improving code, for identifying and fixing errors, for software maintenance and updating,

for team collaboration, code reuse, and performance.

Furthermore, reading code is an activity performed more frequently than writing [71].

Developers often spend more time reading code than writing it, which makes readability and

understanding crucial. For example, a recent large-scale study concluded that understanding

code takes an average of 58% of developers’ time and that the percentage of time spent by

novice programmers is greater than that of more experienced programmers [73].

1.1 Problem

Therefore, the different ways of structuring code can impact code understanding, especially

for novice programmers. In this way, an organized code that is easy to understand and main-

tain can contribute to a positive impact on the efficiency and consequently on the expenses

of software projects.

However, there is a need to better understand how developers read and understand code.

1

1.2 Motivating Example 2

There are still few studies comparing these different structures and their impact on code un-

derstanding. Some example studies investigate code understanding with MRI [62], and [70]

and [49]. Furthermore, the few that exist do not employ a method that allows us to under-

stand this impact in detail from the point of view of visual effort.

1.2 Motivating Example

In software development, several factors can influence code understanding. Clarity of im-

plementation, developer experience and familiarity with the concepts, among other good

programming practices, are examples of these. The choice of code structures can influence

the understanding of the code and generate discussions about which one to use. Iteration and

Recursion, although both approaches have advantages and disadvantages, have generated

discussions about which one to use depending on the problem in question.

Despite the contribution of the works already carried out, there is still much to be inves-

tigated on this topic, especially with regard to the use of more quantitative metrics, which

allows us a more precise and in-depth analysis in terms of understanding. Furthermore, there

is a need to investigate more dynamic aspects that go beyond time and accuracy or code

metrics, such as the use of visual metrics to understand the programmer’s effort.

def factorialUsingRecursion(n):

 if (n == 0):

 return 1;

 return n * factorialUsingRecursion(n - 1);

num = 3;

print(factorialUsingRecursion(num));

def factorialUsingIteration(n):

 res = 1;

 for i in range(2, n + 1):

 res *= i;

 return res;

num = 3;

print(factorialUsingIteration(num));

(a) (b)

1

2

3

4

5

6

1

2

3

4

5

6

7

Figure 1.1: Comparison of the code to calculate the factorial of a number using the structures

of (a) Recursion and (b) Iteration, adapted from GeeksforGeeks.

In Figure 1.1, two code examples are presented to solve the factorial of a number. The

code were found and adapted from the website Geeksforgeeks.1 On the left side, Fig-

ure 1.1(a), the version with iteration is presented, and on the right side Figure 1.1(b), the

1www.geeksforgeeks.org

1.3 Solution 3

def factorialUsingRecursion(n):

 if (n == 0):

 return 1;

 return n * factorialUsingRecursion(n - 1);

num = 3;

print(factorialUsingRecursion(num));

def factorialUsingIteration(n):

 res = 1;

 for i in range(2, n + 1):

 res *= i;

 return res;

num = 3;

print(factorialUsingIteration(num));

(a)
(b)

11

2

3

4

5

6

1

2

3

4

5

6

7

4

2
3

5

2
4

5
6

3 7

1

Figure 1.2: Representation of fixations and transitions in code comparison to calculate the

factorial of a number using the structures of (a) Recursion and (b) Iteration.

version with Recursion. Both codes display the same result when executed.

In Figure 1.2, an example of a sequence of fixations is presented, in which the red circles

vary in size according to the fixation time. In Figure 1.2(a) the version with Recursion is

presented, in which the participant fixated on seven different locations in the code, six of

which were in the area of interest, lines 1–4. In Figure 1.2(b) the version with Iteration is

presented, in which the participant fixated on five different locations, three of which were

in the area of interest, lines 1–5. In the Recursion version, there were more fixations and

regressions, along with long-term fixations.

Analyzing different repetition structures through the visual behavior of novices provides

important insights into the most critical and necessary points of attention for novices to

understand code. Eye tracking makes it possible to analyze visual effort, making it possible

to detect new insights that would not be possible with common metrics.

1.3 Solution

To address the gap of exploring more dynamic aspects that go beyond time and accuracy or

code metrics to understand the programmer’s effort, our study aims to explore the impact of

different code structures – specifically, Iteration, Recursion, and List Comprehension (LC) –

on the comprehension abilities of novice Python programmers. By leveraging eye-tracking

technology, we intend to provide a detailed analysis of the visual effort exerted by novices

when interacting with these structures. This approach is expected to yield valuable insights

into the cognitive processing of code, thereby informing both pedagogical strategies and

1.4 Evaluation 4

software development practices.

1.4 Evaluation

Our research methodology involves conducting a controlled study with 32 Python novices

using an eye-tracking camera to capture their movements. We intend to assign six program

tasks to the novices using the Latin Square design for task distribution. The study’s design

allows us to isolate and evaluate the effects of different code structures on comprehension.

We focus on measuring several key metrics, including time taken to solve tasks, number of

attempts, and varied indicators of visual effort such as fixation duration, fixations count, and

regressions count. These metrics provide a comprehensive view of the cognitive load and

visual effort associated with each code structure.

1.5 Conclusions

Our initial findings indicate significant differences in visual effort and comprehension effi-

ciency among the different code structures. Notably, tasks involving while loops, Recur-

sion, and LC showed an increase in visual effort compared to those using the for loop.

These results suggest a more complex cognitive process for certain structures, as evidenced

by increased times and higher frequencies of code revisiting. This research contributes sig-

nificantly to the field of software engineering education, particularly in understanding the

pedagogical implications of teaching various code structuring techniques. By highlighting

the specific challenges associated with Iteration, Recursion, and LC, especially for novices,

this study provides educators and developers with critical insights into optimizing teaching

methods and improving code comprehension among novice programmers.

1.6 Summary of contributions

The main contributions of this work consists of:

• A controlled experiment with 32 novices in Python aiming to evaluate the impact of

different code structures (Iteration, Recursion, and LC) on the comprehension abilities

1.7 Organization 5

of novice Python programmers (Chapter 3);

• We present and discuss the eye tracking method to evaluate Iteration, Recursion and

LC, especially for novices (Chapter 4).

1.7 Organization

This work is organized as follows: In Chapter 2, we provide a background. In Chapter 3, we

describe the methodology. In Chapter 4, we describe the evaluation of our technique, results

and discussion. In Chapter 5, we present the related works. In Chapter 6, we present the

conclusion of this work.

Chapter 2

Background

In this chapter, we provide a comprehensive background to enhance the reader’s understand-

ing of the fundamental concepts employed in our study. This chapter is divided into two main

sections focusing on Repetition Structures in Python (Section 2.1), Eye tracking Technology

(Section 2.2) and Code comprehension with eye tracking (Section 2.3).

2.1 Repetition Structures in Python

In this section, we present the four types of repetition structures in Python mentioned in this

work: while structure (Section 2.1.1), for structure (Section 2.1.2), Recursion structure

(Section 2.1.3), and List Comprehension structure (Section 2.1.4).

2.1.1 while structure

The while structure applies to situations where the number of repetitions is not predeter-

mined. Its dynamic nature allows it to continue executing as long as the specified condition

holds True, offering flexibility in adapting to changing circumstances during runtime.

The while structure in Python is similar to other programming languages such as in C

and Java, where a condition is tested, and if true, the instructions in the following set are

executed in a loop. These instructions potentially change the state of the condition, so the

condition is tested again and the set is potentially executed again. This process continues

until a certain condition occurs, and if the condition is initially False, the set will never be

6

2.1 Repetition Structures in Python 7

executed. If the condition does not become False, the loop continues and never ends [2].

In Figure 2.1, we present an example of repetition structure while, which was found

and adapted from the website Geeksforgeeks. On the left side, we can analyze the syntax,

and on the right side, a simple code example. In this example, the loop is performed three

times, while incrementing the counter variable. In this example, we can identify the main

characteristics of while loop structure.

count = 0
while (count < 3):

count = count + 1

while expression:

 statement(s)

(A) (B)

Figure 2.1: Example of while repetition structure, found and adapted from the website

Geeksforgeeks. In it, (a) represents the syntax while (b) represents a code snippet.

One potential problem using while loop is the risk of creating infinite repetitions. If the

loop condition is not carefully managed, it may never be evaluated to False, leading to con-

tinuous execution. Thus, the programmer must be cautious when initializing and updating

the loop variables to prevent this issue. This may also pose challenges to the understanding

of the structure since the programmer must be aware of the state of the variable.

However, in scenarios where the number of repetitions is predetermined, such as iterat-

ing over a fixed list of elements, alternative loop structures, such as for loop might offer

an alternative solution. Choosing the appropriate loop structure depends on the specific re-

quirements of the task at hand.

2.1.2 for structure

The for structure plays a crucial role in iterating over iterable structures. This loop struc-

ture is specifically designed for scenarios where the number of repetitions is predetermined,

making it particularly useful when iterating over fixed lists of elements such as lists, tuples,

dictionaries, or strings. The for loop uses values derived from iterable structures. The iter-

able serves as a source for a sequence of values, each linked to the loop variable. With each

2.1 Repetition Structures in Python 8

iteration, the set of instructions within the loop is executed after assigning the current value

to the loop variable [2].

In Figure 2.2 an example of a repetition structure for is presented, found and adapted

from the website Geeksforgeeks. On the left side we can analyze the syntax and on the right

side a simple code example. In this example, the loop is executed four times, while perform-

ing a print on each execution. In this example we can identify the main characteristics of

for.

https://www.geeksforgeeks.org/loops-in-python/

for iterator_var in sequence:

 statements(s)

n = 4
for i in range(0, n):

print(<=)

(A) (B)

Figure 2.2: Example of repetition structure for, found and adapted from the website Geeks-

forgeeks.

Similar to the while loop, the for loop presents its potential challenges that require

being cautious during implementation. One key consideration is to avoid modifying the

sequence being iterated over within the loop. Modifying the underlying sequence can result

in unexpected and unintended consequences, potentially leading undesired behavior in the

loop.

For instance, when we iterate over a list of elements using a for loop and modify that list

by adding or removing elements within the loop, it can disrupt the intended flow of iterations.

The loop may not behave as expected since the sequence it is iterating over is dynamically

changing, which can have an impact on developers’ code understanding.

Each loop structure has its advantages and is better suited to specific scenarios. The

choice between while and for depends on the nature and the characteristics of the sce-

nario. While structures such as while and for can have advantages, in some cases, recur-

sion structure can reduce redundant code, especially when dealing with repetitive patterns

and complex data structures.

2.1 Repetition Structures in Python 9

2.1.3 Recursion structure

Iteration involves controlled repetition, so a set of instructions need to be executed one by

one until a condition is satisfied. This is an approach that is considered easy to understand

and implement. On the other hand, Recursion involves calling a function by itself repeat-

edly, in which a set of instructions are executed until a certain condition is satisfied. This

is an approach considered more challenging to understand, requiring more abstract logical

reasoning, but in some contexts it can provide a clearer solution to complex problems.

In Figure 2.3 an example of a Recursion repetition structure is presented, found and

adapted from the website Geeksforgeeks. On the left side we can analyze the syntax and

on the right side a simple code example. In this example, recursion is used to calculate a

factorial of a value n, where the function calls itself at each execution, through the recursive

step, and each calculation performed waits for the result of the next calculation. When the

base case is satisfied, the value that satisfies each calculation is returned. In this example we

can identify the main characteristics of Recursion.

def recursive_factorial(n):

 if n == 1:

 return n

 else:

 return n *

recursive_factorial(n-1)

def func(): <--
 |
 | (recursive call)
 |
 func() ----

https://www.geeksforgeeks.org/recursion-in-python/

(A) (B)

Figure 2.3: Example of repetition structure Recursion, found and adapted from the website

Geeksforgeeks.

2.1.4 List Comprehension structure

One of the new features of the Python language is the possibility of generating tuple, list,

dictionary and set from loops in structures that are iterable. These runtime constructs are

called comprehensions [2].

In Figure 2.4 an example of an LC repetition structure is presented, found and adapted

2.2 Eye tracking Technology 10

from the website Geeksforgeeks. We can look at a simple code example. In this example, LC

is used to calculate the square of each value in the list numbers, while creating and saving

the new values, and at the end printing the list with the new values. Code with LC tends to

be summarized and present the main points of the code in one line. In this example we can

identify the main characteristics of LC.

numbers = [1, 2, 3]
squared = [x ** 2 for x in numbers]
print(squared)

https://www.geeksforgeeks.org/python-list-comprehension/
Figure 2.4: Example of repetition structure LC, found and adapted from the website Geeks-

forgeeks.

2.2 Eye tracking Technology

This section is divided into Eye tracking methodology (Section 2.2.1), metrics (Section 2.2.2)

and visualization techniques (Section 2.2.3).

2.2.1 Eye tracking methodology

Eye trackers help in the analysis of visual attention, recording eye movements, being able to

identify where the participant is looking, the duration and sequence of changes in attention

locations [57]. In Figure 1.1 two codes were presented, which perform the same calculation,

the factorial of a number and when executed they display the same result. The codes were

found and adapted from the website Geeksforgeeks. On the left side, Figure 1.1(a), we

can observe the version written with iteration, while on the right side Figure 1.1(b), we can

observe the version with Recursion.

For the analysis of code comprehension, in Figure 1.1, in addition to commonly used

metrics such as time and responses, it can be analyzed from other perspectives, such as

visual effort. Identifying the places where the most time and visual effort are spent in the

code, the most difficult places and most critical parts are examples of the possibilities using

eye tracking.

2.2 Eye tracking Technology 11

To analyze visual effort, the following metrics can be used: number of fixations, which

corresponds to the number of times the participant fixed their gaze on the screen for at least

200 milliseconds; the duration of fixations, which consists of the sum of the time spent at

all times in which the participant made a fixation; and the number of regressions, which

corresponds to the number of times the participant returns within the code snippet.

Some studies have been carried out with the aim of better understanding the im-

pact that code structures have on code comprehension [21; 68; 32]. However, these

works use subjective metrics such as interviewees’ opinions, preferences and classroom

evaluations. Some works use more quantitative metrics such as accuracy and time [16;

19].

(a) Fixations count: Five fixations (b) Fixations duration: 1600 ms

def factorialUsingIteration(n):

 res = 1;

 for i in range(2, n + 1):

 res *= i;

 return res;

num = 3;

print(factorialUsingIteration(num));

1

4

2
3

5

(c) Regressions count: One regression

100 ms

500 ms

500 ms200 ms

300 ms

Figure 2.5: Example of fixations and regressions metrics

2.2.2 Eye tracking Metrics

Eye tracking metrics can be divided into four categories: metrics based on fixation, metrics

based on saccade, metrics based on scanpath, and metrics based on pupil size and blink

rate [57]. The metrics based on fixation used in this work are briefly explained.

• Duration of fixations - While examining a scene, our eyes maintain stability for a

certain duration, enabling us to concentrate on specific elements. As soon as we see

a word or a piece of text, for instance, we try to interpret it, directing our attention

toward it until we understand it [35]. The position and duration of fixations have been

associated with the focus of attention [14]. For instance, longer fixations have been

associated with an increase in demands of attentiveness [12]. In Figure 2.5(b), an

example of the duration of fixations is presented.

2.2 Eye tracking Technology 12

• Number of fixations - It refers to our ability to fixate our eyes on different locations

to examine a scene. An increased number of fixations is indicative of an extended

processing time required to comprehend code as well as more attention to the code [7;

13]. A high number of fixations is associated with a greater visual effort to answer a

question [59]. In Figure 2.5(a), an example of the fixation count is shown.

• Eye movement Regressions - These regressions consist of backward eye movements

over the stimuli [11]. Thus, in the code, it can be understood and visually returning in

the code. Regressions can be used as a metric for visual effort [57]. In Figure 2.5(c),

an example of regression counting is presented.

2.2.3 Visualization techniques

The analysis of data generated from eye trackers allows for quantitative and qualitative visual

analysis. More recently, there has been an effort to propose methods for visualization of

the gaze patterns and behaviors of software developers [18]. Despite the variety of data

visualization techniques, studies commonly employ three main types: gaze plots, heatmaps,

and gaze transitions to obtain important insights.

Gaze plots provide a static view of the eye-gaze data and show the time sequence of

looking using the locations, orders, and duration of fixations on stimuli [58]. Figure 2.6

presents an example of a repetition structure for with a gaze plot. In this example, for

is used in a function to calculate the factorial of a number, and at the end prints the result

returned by the function. We can identify the places where the participant focused on the

code through the analysis of the fixations. For instance, a fixation is represented by a red dot.

The larger it gets, the more time the subjects spend focusing on that location.

Heatmaps consist of two-dimensional graphical representations of data that depict vari-

able values using colors. These representations are useful to assess the level of interest

elicited by different elements of the stimulus. For instance, in the code scenario, they can

represent the distribution of visual attention [9]. Through colors, this visualization represents

the intensity of a measure, such as the number of fixations received by a stimulus [58]. In

Figure 2.7, we present an example of a repetition structure for with the heatmap. In this

2.2 Eye tracking Technology 13

Figure 2.6: Example of gaze plot with red circles representing fixations that vary in size

according to their duration.

example, for is used to calculate the factorial of a number, and at the end prints the result.

In this example, we can identify the places where fixations are concentrated, that is, where

the participant focused on the code most of the time, and the redder the more time was spent

focusing on that place in the code.

Figure 2.7: Example of heat map.

Gaze transitions consist of eye movement transitions from one fixation to another, also

called saccades [55; 51]. Besides counting the number of transitions, researchers have

tracked the chronological order of these transitions to infer a path made by the eyes [58]. In

2.3 Code comprehension with eye tracking 14

Figure 2.8, we present an example of LC repetition structure with gaze transitions. In this

example, LC is used to find out how many zero values there are in a list and finally print the

result. In this example, we can identify the path that the participant visually took in the code.

We can identify that the participant goes back and forth several times between the list and

the line that is for.

Figure 2.8: Example of gaze transitions with arrows indicating the direction of the transition.

2.3 Code comprehension with eye tracking

Crosby and Stelovsky [15], one of the pioneering works in eye movement analysis for code

comprehension, explored the way in which subjects saw an algorithm, written in Pascal, and

the graphical representation of visual behavior.

Several studies have applied eye tracking in code comprehension [33; 36; 61], which

has been a promising area of research. Researchers have provided valuable insights into

how developers visually interact with the code and how much effort certain code structures

require from the developers. Controlled experiments have explored how eye tracking can be

used to analyze reading patterns, identify areas of focus, and understand the nuances of the

code comprehension process.

2.3.1 Analysis of Reading Patterns

A controlled experiment with eye trackers has captured developers’ eye movements while

they examine the code. Such data have allowed the analysis of fixation and saccade patterns.

For instance, Da Costa et al. [16; 63] investigated atoms of confusion, small snippets that

confuse developers [40]. In their study, they searched for gaze patterns in the paths followed

2.3 Code comprehension with eye tracking 15

during reading that indicate confusion, such as depicted in Figure 2.9, found in the study of

Da Costa et al. [16]. They observed transitions going forward and backward between ‘True

or True’ which may indicate that the subject has doubts about which expression should

be evaluated first without the parentheses.

Figure 2.9: Example of gaze transitions of developers on the code with an atom of confusion.

Other works have also investigated these reading patterns, for example, Blascheck and

Sharif [8] investigate how people read text in natural language compared to source code.

2.3.2 Focus of Attention

Eye movements focus the subject’s visual attention on the parts of a visual stimulus that

are processed by the brain, triggering the cognitive processes that are required to perform

tasks [35]. Understanding where the eyes concentrate during code analysis reveals crucial

information about the focus of attention. For example, identifying whether developers focus

more on flow control statements, variable declarations, or specific code sections can inform

reading strategies.

In another controlled experiment, Oliveira et al. [47] studied the focus of attention of

developers while they examined code in C in the presence of atoms of confusion. According

to the authors, the concentration of attention was primarily on a single focal area where

the atom is situated (left side of Figure 2.10, found in the study of Oliveira et al. [47]).

However, when they removed the atom, developers shifted their attention towards two main

regions, leading to a more dispersed distribution of attention across distinct parts (right side

of Figure 2.10, found in the study of Oliveira et al. [47]). Other eye tracking studies have

investigated attention on code comprehension activities as well, such as how the attention

allocation and its switching between code areas [4; 12]

2.3 Code comprehension with eye tracking 16

Figure 2.10: Example of focus of attention of developers on the code with an atom of con-

fusion (left hand side) and without the atom (right hand side).

2.3.3 Identifying Comprehension Difficulties

Eye tracking can be instrumental in identifying areas of code that pose comprehension diffi-

culties. If certain code lines result in inconsistent reading patterns, this may indicate critical

points that warrant closer examination.

Studies have already been carried out using eye tracking to carry out investigations in this

field. Bednarik and Tukiainen were pioneers in utilizing eye tracking as a tool for analyz-

ing cognitive processes during program comprehension [4]. Peitek et al. [50] explored the

feasibility of incorporating simultaneous eye tracking alongside fMRI measurements aiming

to enhance the explanatory power of fMRI measurements for programmers. Sorg et al. [66]

investigated critical parts of the code that may be associated with cognitive load. Using oc-

ular fixation resources, they qualitatively investigate the relationship with parts perceived as

challenging by users.

Jbara and Feitelson [34] investigated whether regularity in the code makes it more dif-

ficult to understand to programmers. Regularity consists of the repetition of code patterns

such as a certain pattern of nested control statements, where repeated instances of the pattern

2.3 Code comprehension with eye tracking 17

are usually successive, such as in Figure 2.11 found in the study of Jbara and Feitelson [34].

They found that the programmers tend to invest more effort on the initial repetitions, and less

and less on successive ones.

Figure 2.11: Regular code implementation with AOIs investigated.

2.3.4 Evaluating the Impact of Code Layout and Structure

Examining how code layout and structure affect eye movements provides insights into the

influence of layout on comprehension. This may include assessing how indentation, spacing,

and code block structuring impact reading efficiency.

Saddler et al. [54], using eye tracking, investigated reading behavior in terms of how posts

on the Stack Overflow forum are structured and discussed how observations can benefit the

way users structure their posts. They also investigated which elements developers read on

2.3 Code comprehension with eye tracking 18

pages and how specific attributes of posts, that is, code block count and paragraph count,

impact gaze behavior. Abid et al. [1] investigated, using eye tracking, the mental models

applied during program comprehension, specifically investigating bottom-up and top-down.

Studies using eye tracking have also compared the impact of layout on the understanding

of experts and novices. Sharafi et al. [58], investigated the effect of layout on understanding

the roles of design patterns in UML class diagrams, as shown in the Figure 2.12 found in the

study of Sharafi et al. [58].

Figure 2.12: Gaze plot comparison of an expert and a novice.

2.3.5 Adapting Development Interfaces and Tools

Based on eye tracking findings, it is possible to adapt development interfaces and tools to

better meet the needs of programmers. This may involve layout adjustments, design sugges-

tions, or the implementation of specific features to enhance the reading experience.

Rele and Duchowski [52] investigated two types of search results interfaces, measur-

ing performance and studying eye behavior using an eye tracker. The two interfaces used

were the list interface and a tabular interface (Figure 2.13 found in the study of Rele and

Duchowski [52]). The results showed no significant differences in performance between

the interfaces, but eye movement analysis provides some insights into the title, summary

2.3 Code comprehension with eye tracking 19

and URL. Other works has already investigated the use of eye tracking to assist developers,

which can be used in IDEs and even make code recommendations based on the developer’s

eye movements [72; 30; 56]. In Figure 2.14 found in the study of Walters et al. [72], we can

see a screenshot of the Itrace layout, where artifacts are shown side by side so that the user

can look between them.

(B) Tabular interface

(A) List interface

Figure 2.13: Heatmap comparison of two interfaces, list interface and a tabular interface.

2.3.6 Integration with Performance Metrics

By combining eye tracking data with traditional programming performance metrics, such

as task completion time and accuracy, a more comprehensive understanding of the code

comprehension process can be obtained.

Fritz et al. [26] for instance, investigated the use psychophysiological measurements to

determine whether a code comprehension task is perceived as easy or difficult. They com-

2.3 Code comprehension with eye tracking 20

Figure 2.14: A screenshot of the Itrace layout. Display of artifacts side by side so that the

user can look between them.

bined eye tracking with electroencephalographic and electrodermal activities.

However, one has to be careful when designing controlled experiments that involve hu-

man subjects and use performance metrics to measure code comprehension phenomenon,

since different factors can influence it. Feitellson [24; 25] discusses several factors concern-

ing the experimental subjects, the source code they work on, the tasks they are asked to

perform, and the metrics for their performance.

Chapter 3

Methodology

In this chapter, we present the methodology used to develop the work and achieve the ob-

jectives described in Section 4.1. This chapter is divided into pilot study (Section 3.1),

experiment phases (Section 3.2), subjects (Section 3.3), Treatments (Section 3.4), programs

(Section 3.5), and eye tracking system (Section 3.6).

3.1 Pilot Study

The participants were all native Brazilians. We used the vocabulary of the programs in

Brazilian Portuguese, thus avoiding obstacles in understanding the vocabulary of the pro-

grams. The names of the methods and variables were selected and discussed by the re-

searchers. Names such as “result” were used to receive the results of operations. We sought

to avoid names that made it too easy to carry out the operations, opting for more neutral

names such as “calculate”, with the aim of having the participant analyze the code.

We adjusted and refined the names of the methods and variables in the pilot studies, test-

ing how well the names presented the intention of the methods. The names were discussed

by the researchers to find the best options. The experiment was organized into five phases:

(1) Characterization, (2) Tutorial, (3) Warm-up, (4) Tasks and (5) Qualitative interview. The

experiment was estimated to take around 60 minutes for each participant to complete all

phases. The phases will be detailed below.

21

3.2 Experiment phases 22

3.2 Experiment phases

In the first phase, a brief explanation is made about the study, how and what data will be

captured. At this stage, each participant fills out a consent form agreeing to participate and

is aware that their identity will remain anonymous. They also fill out a characterization form

with questions about their experience with programming.

In the second phase, a tutorial is made explaining how to carry out the experiment. In

this phase, participants are presented with instructions about the eye tracking camera and

how the tasks should be carried out. After this, the camera is calibrated in the participant’s

eyes. For calibration, the participant must look at the locations on the screen indicated by

the camera software. At the end of the calibration, the camera software also reports when

the calibration was successful.

In the third phase, each participant warms up for the experiment by solving a simple

problem. During the warm-up, it is demonstrated how to respond to the code output aloud.

In addition, participants are also instructed to close their eyes for two seconds before and

after solving the problem, and how it will be signaled whether the answer is correct or in-

correct. After warming up, participants can become more comfortable with the setup of the

experiment and the equipment used.

In the fourth phase, the experiment is carried out with six programs. To avoid the learn-

ing effect, the Latin Square design [10] is used, which will be explained in more detail in

Section 3.4. In the fifth phase, the experiment ends with a semi-structured interview. This

interview investigates how the participant examines the programs and what their impressions

were. For each program three questions are asked:

• How did you find the program output? What strategy did you use?

• How do you evaluate the difficulty of the task: very easy, easy, neutral, difficult or very

difficult?

• What were the main difficulties involved, if any? Could you point them out in the

program?

To carry out the experiment, a fixed chair was used, which favors the accuracy of the

eye tracking equipment. However, given camera limitations, perfect data capture is impossi-

3.3 Subjects 23

ble. For mitigation, the data was plotted, discussed and a data correction was performed by

moving fixation blocks on the y-axis. This strategy will be discussed in Section 4.4.

3.3 Subjects

Initially, for the pilot study, six undergraduates were recruited. After some adjustments to

the experiment, four more were recruited, totaling six tests in the pilot study with 10 par-

ticipants. They reported having between 6 and 48 months of experience with programming

languages in general, including mainly Python, Java and C. Participants were recruited from

two different universities in one city in Brazil, invited mainly in person. Participants were

Portuguese speakers, enrolled in universities. The participants were mostly from the initial

periods, but there was a diversification, with three from the second semester, one from the

third, one from the fourth, one from the fifth, one from the seventh, one from the eighth, one

from the eleventh and one from the twelfth.

For the experiment, 34 novices were recruited, however, 32 participants were evaluated.

We consider undergraduate students to be novices. They reported having between 6 and

120 months of experience with programming languages in general. In some cases, partici-

pants had more experience because they had already been programming before starting their

undergraduate course. Participants were recruited from three different universities in two

cities in Brazil, invited mainly in person. Participants were Portuguese speakers, enrolled in

universities. Participants recruited were from different semesters.

3.4 Treatments

As illustrated in Figure 3.1, each participant analyzed six programs (P1-P6). To avoid a

learning effect, the Latin Square [10] design was used. Twelve different programs were de-

signed, which were divided into two sets of programs (SP1 and SP2). A participant analyzes

three programs from the SP1 set, namely for, for and for, and three programs from the

SP2 set, namely while, Recursion and LC. Another participant analyzes three programs

from the SP1 set, namely for, for and for, and three programs from the SP2 set, namely

while, Recursion and LC. Programs that are in the same set although have different codes

3.5 Programs 24

result in the same output. The programs with for, for and for, were designed to be

the baseline group (B), and the while, Recursion and LC programs to be the treatment

group (T). In all programs, participants must specify the correct output, but without multiple

answer options. Given the program’s input, the participant needs to perform tasks such as

calculating factorial, list sum, among others.

1

P1 SP1 Output For

P2 SP1 Output For

P3 SP1 Output For
B

P4 SP2 Output While

P5 SP2 Output Rec.

P6 SP2 Output LC
T

…
P1 SP2 Output While

P2 SP2 Output Rec.

P3 SP2 Output LC
T

P4 SP1 Output For

P5 SP1 Output For

P6 SP1 Output For
B

B T
T B

2
Square 1

3

B T
T B

4
Square 2

1

2

Figure 3.1: Experiment structure, Programs (P) are distributed in Program Sets (SP), where

participants need to inform the code output (Output).

3.5 Programs

Code snippets were selected through an analysis carried out manually in repositories intro-

ducing programming tasks. The Code snippets used are shown in Figure 3.2. The main

source of assignments was GeeksforGeeks, which is popular for learning and practicing pro-

gramming. For the experiment, tasks with small and complete code snippets were selected,

these snippets were adapted taking into account the needs of the experiment and the limita-

tions of the camera. For each program, the participant needed to respond to the correct output

in the open response model, i.e., no response options were provided. The methodology of

3.5 Programs 25

def calcular(numero):

 soma = 0

 for elemento in range(numero + 1):

 soma = soma + elemento

 return soma

numero = 4

resultado = calcular(numero)

print(resultado)

lista = [12, 3, 4]

resultado = 0

for elemento in range(0, len(lista)):

 if lista[elemento] % 3 == 0:

 resultado = resultado + 1

print(resultado)

lista = [12, 3, 4]

resultado = 0

contador = 0

while (contador < len(lista)):

 if lista[contador] % 3 == 0:

 resultado = resultado + 1

 contador = contador + 1

print(resultado)

lista = [12, 15, 3]

resultado = 0

contador = 0

while(contador < len(lista)):

 resultado = resultado + lista[contador]

 contador = contador + 1

print(resultado)

lista = [12, 15, 3]

resultado = 0

for elemento in range(0, len(lista)):

 resultado = resultado + lista[elemento]

print(resultado)

AOI

AOI

a) Sum list - while and for versions - CP1

(b) Multiples of three - while and for versions - CP2

def calcular(valor1, valor2):

 resultado = 1

 for elemento in range(valor2):

 resultado = resultado * valor1

 return resultado

resultado = calcular(2, 3)

print(resultado)

AOI def calcular(valor1, valor2):

 if valor2 == 0:

 return 1

 else:

 return valor1 * calcular(valor1, valor2 - 1)

resultado = calcular(2, 3)

print(resultado)

AOI

AOI def calcular(numero):

 if numero == 1:

 return 1

 else:

 return numero + calcular(numero - 1)

numero = 4

resultado = calcular(numero)

print(resultado)

(c) Sum from 1 to n - for and Recursion versions - CP1

(d) Potentiation - for and Recursion versions - CP2

numeros = [5, 7, 9]

lista = [elemento for elemento in numeros if elemento % 2 == 0]

resultado = len(lista)

print(resultado)

numeros = [2, 10, 0]

lista = [elemento for elemento in numeros if elemento == 0]

resultado = len(lista)

print(resultado)

AOI

numeros = [2, 10, 0]

resultado = 0

for elemento in numeros:

 if elemento == 0:

 resultado = resultado + 1

print(resultado)

numeros = [5, 7, 9]

resultado = 0

for elemento in numeros:

 if elemento % 2 == 0:

 resultado = resultado + 1

print(resultado)

AOI

AOI
AOI

(e) Quantity of 0 in the list - for and List Comprehension Versions - CP1

(f) Number of pairs - for and List Comprehension Versions - CP2

AOI

AOI

AOI

Figure 3.2: Code snippets used.

3.6 Eye tracking system 26

providing information about the code, such as finding the output, is used by 70% of studies

in the code understanding domain [47].

The evaluated programs had between 4-8 lines of code. The number of lines were limited

so that they would fit completely on the screen. Programs have been checked to remove

syntax errors. They were also organized in the PEP8 standard using the Python Syntax

Checker PEP8 tool. The Consolas font style was used, size 12, line spacing 1.5 inches

and eight blank spaces for indentation. Simple constructions that commonly occur in many

languages were used.

3.6 Eye tracking system

For the experiment, the Tobii Eye Tracker 4C equipment was used, which has a sample rate

of 90 Hz. Eye tracking calibration followed the device driver’s standard procedure with five

points. The eye tracking camera was mounted on a laptop screen with a resolution of 1366

x 720 pixels, height of 30.9 cm and width of 17.4 cm, at a distance of 50-60 cm from the

participant. Each task was presented in an image in full screen mode, but an Integrated

Development Environment (IDE) was not used, nor was the number of lines. An accuracy

error of 0.7 degrees was calculated, which translates into 0.6 lines of printing on the screen,

considering the font size and line spacing. The line spacings were designed to be large

enough to overcome the accuracy limitations of the eye tracker. To process the data, a Python

script was used, which made it possible to collect and analyze the metrics.

3.7 Planning of the experiment

To carry out the experiment, the programs, characterization form, consent form and a ques-

tionnaire for a semi-structured interview were used. To evaluate the programs that would be

used, code excerpts were tested with different levels of difficulty. Fixed standards for code

font size, font style, line spacing and indentation were also used. The questions on the forms

and questionnaire were also evaluated. The pilot study is described in more detail in the next

sections.

3.7 Planning of the experiment 27

3.7.1 Sum from one to n, Recursion and for versions

ForRecursion

(A) (B)

(C) (D)

Figure 3.3: Comparison between the two code snippets Recursion and for and their respec-

tive heat maps and fixations for the task Sum from one to n.

In Figure 3.3, the task Sum of one to n is presented, in the Recursion and for versions,

and their respective heat and fixation maps generated from the data of the eye tracking. The

heat map allows intuitive and informative visualization of participants’ attention behavior.

It highlights the areas of the stimulus that most attract attention and those that are least ex-

plored. With this, it is possible to identify which elements of the code are most interesting

to participants and which regions or elements may go unnoticed. In the heat map, the inten-

sity of red varies according to the number of fixations and their duration, making it possible

to make comparisons between versions of the same code that receive attention differently.

The fixing map presents a visualization of the distribution of fixings in the code. Instead of

showing the intensity of fixations with colors, as in a heat map, the fixation map indicates the

exact locations where participants’ eyes fixated. They help identify specific points of interest

or areas of focus in code stimuli that may go unnoticed in heatmaps.

3.7 Planning of the experiment 28

In the Recursion version, assessed by the participant as difficult, it took 4min52s and

three attempts, but the participant ended up giving up. In the heat map, a greater visual effort

is identified in the region of the Recursion call, in the recursive step. This can be confirmed

in the interview, in which the participant mentioned difficulties in calling the Recursion and

in its loop: “The issue of recursion, I didn’t understand how I was adding the value assigned

to the number with the calculation of the number - 1, for me, it would make a loop, just

adding the number minus 1.” In this case, a greater intensity of red in the recursive step

region is associated with difficulty for the participant in solving the task. In this way, the

participant looks at this region repeatedly, which contributes to an increase in the time and

number of fixations and gives clues about the reasons for the participant’s withdrawal.

In Figure 3.4, left side, three attempts by the participant are shown with their respective

visual behaviors for the task with Recursion. In the first attempt, 39s were spent. It is possible

to observe especially from the heat map that attention is focused in two main places: in the

base case and in the function call at the end of the code. The participant submitted the answer

incorrectly. The answer 10 was expected and the participant answered 1. In the second

attempt, 32s were spent and, in addition to the base case, visual attention is more intense on

the function call in the middle of the code, in the recursive step, resulting in the submission

of the answer incorrect 0. In the third submission, 3min40s were spent. Visual attention

focuses mainly on the function call in the middle of the code, in the recursive step, resulting

in an incorrect answer in which the participant responded that it was an infinite loop. Finally,

the participant gave up. This difficulty may be related to the fact that it is a function that

is called repeatedly, requiring dynamic memorization and having a more abstract resolution

format. This could justify the difficulty encountered in the recursive step region and in the

function loop.

In Figure 3.5, two code snippets are presented, one version with for and another with

Recursion, in addition to the participant’s preference and the reason for their preference. It

is possible to observe that the version with Recursion was preferred by both participants,

mainly because it seems clearer. The following reasons were presented: “I think recursion

makes execution cleaner” and “It’s simpler for me to understand, the same thing as before,

the definition within the range I I did not remember. Even though it has recursion”. However,

when analyzing performance, in the version with Recursion, the time spent was longer, and

3.7 Planning of the experiment 29

Recursion

First attempt
Answer: 1

39s

Second attempt
Answer: 0

32s

Third attempt
Answer: infinite loop

03:40s

Stopped

First attempt
Answer: 6

42s

Second attempt
Answer: 10

52s

For

Figure 3.4: Task submissions in the Recursion and for versions.

3.7 Planning of the experiment 30

there was a dropout. Although the preferred version was Recursion, the version with for

proved to be better in evaluating the metrics, thus, there was no agreement between the

preference and the participants’ performance in this task.

def calcular(numero):

 resultado = 1
 for elemento in range(1, numero + 1):
 resultado = resultado * elemento
 return resultado
resultado = calcular(3)
print(resultado)

def calcular(numero):

 if (numero == 0):
 return 1
 else:
 return numero * calcular(numero - 1)

resultado = calcular(3)
print(resultado)

(A) (B)

OR

Preferences

I prefer B. I think recursion makes the
execution cleaner.

I strongly prefer B. It's simpler for me to
understand, the same thing as last time, I
didn't remember the definition within the
range.

Performance Metrics

4min52s

Time Attempts

100
ms

120
ms

80
ms

50
ms

1
2

3
4

Fixations
Duration
152.4s

Fixations
count
442

Regressions
count
193

Visual Effort in AOI

100
ms

120
ms

80
ms

50
ms

1
2

3
4

Fixations
Duration
35.2s

Fixations
count
92

Regressions
count
44

Visual Effort in AOI

1min35s

Time Attempts

Figure 3.5: Comparison between preference and performance of the for and Recursion

versions.

Through the analysis of heat maps and fixations, relating them to the number of attempts,

it was possible to notice some effects in terms of visual attention. For example, the visual-

ization of some areas in the code are essential for its resolution, such as the base case and the

recursive step, and it is possible to see that the participant is aware of these locations by the

intensity of the red in the heat map. However, even looking at these locations, the participant

gave up.

3.7 Planning of the experiment 31

The for version, whose difficulty was rated as Neutral, took 1min35s and two attempts

to solve. In the heat map, Figure 3.3, visual attention is identified in the region where the sum

is performed, the instruction within for. The participant mentioned difficulties regarding

range(): “the range, it is a number + 1, I just put it as a number, I forgot to add + 1.”

As for submissions, in Figure 3.4, in version for, 42s were spent on the first submis-

sion. It is possible to observe that visual attention is concentrated in two main places, in the

declaration of the variable sum and in the region where the sum is performed, the instruction

within for. For this task, the participant gave the incorrect answer 6 when 10 was expected.

In the second submission, 52s were spent. Visual attention appears stronger in the region

where the sum is performed, the instruction within for, but now it is expanded towards the

function call and range(), and the participant responded correctly 10.

In Figure 3.6, Gaze Transitions of the for version are shown, which are gaze transitions

in the task. As the difficulty in range() was mentioned, it is possible to observe that in the

second submission, the participant seems to pay more attention to the mentioned part of the

code, with several small transitions going back and forth to the instruction inside for,

especially between 5s and 20s.

3.7.2 Task Multiple of three, versions while and for

In Figure 3.8, the task Multiple of three is presented, in versions while and for, and their

respective heat and fixation maps generated from the eye tracking data. In the for version,

it took 37s and one attempt. In the heatmap, greater visual effort is identified in two main

regions, in the region of the list declaration and in the module of 3 in the comparison within

if. This can be confirmed in the interview, in which the participant mentioned the strategy

used to solve the task: “Reading the code, it asks for the result, I went back to the result up

there, I entered for and the rest of the division by 3, the only one in the list that divided

by 3 does not give 0 is the last one, result plus 1.” In this case, a greater intensity of red is

associated with the main regions used by the participant to solve the task.

In Figure 3.9, right hand side, Gaze Transitions of the task with version for are shown.

As mentioned by the participant in the interview about the strategy used to solve the task, it

is possible to observe several small transitions in the if line, and long transitions between

the if and list declaration regions.

3.7 Planning of the experiment 32

First attempt
Answer: 6

42s

0 5 10 15

15 20 25 30

30 35 39 42

Segunda tentativa
Resposta 10

52s

0 5 10 15

15 20 25 30

30 35 40 45

45 50 52

Figure 3.6: Gaze Transitions of task submissions Sum from one to n of version for, First

attempt.

3.7 Planning of the experiment 33

First attempt
Answer: 6

42s

0 5 10 15

15 20 25 30

30 35 39 42

Second attempt
Answer: 10

52s

0 5 10 15

15 20 25 30

30 35 40 45

45 50 52

Figure 3.7: Gaze Transitions of task submissions Sum from one to n of version for, First

attempt, Second attempt.

3.7 Planning of the experiment 34

ForWhile

(A) (B)

(C) (D)

Figure 3.8: Comparison between the two code snippets while and for and their respective

heat maps and fixations for the task Amount of multiples of three in a list.

In Figure 3.10, two code snippets are presented, one version with while and another

with for, in addition to the participant’s preference and the reason for their preference.

It is possible to observe that there was no unanimity in preference. The for version was

preferred by the participant, mainly because it looks cleaner, less code, fewer variables and

allocation. The following reasons were presented: “I think the code is cleaner, less code,

easier to execute. Fewer characters to read, this also saves a lot on reading the code.”, when

asked why the preference for a cleaner code, the following answer was given “Because I

think it makes it a little easier too in terms of visualization, as well as execution must also be

much faster than executing code with a greater number of variables, you will have to do more

allocation, something like that.” When analyzing performance, on average, the tasks with

version for required less time to be resolved. For this comparison, there was an agreement

between the participants’ preferences and their respective performances.

In the while version, Figure 3.8 left side, 1min:19s and one attempt were spent. In the

heat map, greater visual effort is also identified in two main regions, in the region of the list

declaration and in the module of 3 in the comparison within if. This can be confirmed in

the interview, in which the participant mentioned the strategy used to solve the task: “Trying

3.7 Planning of the experiment 35

While

For

0 5 10 15 20

20 25 30 35 40

40 45 50 55 60

60 65 70 75 79

0 5 10 15 20

20 25 30 35 37

Figure 3.9: Gaze Transitions of task submissions Amount of multiples of three in a list,

comparison between the two code snippets while and for.

3.7 Planning of the experiment 36

to do the module, the only one that didn’t have module 3 was 4, so there would be his module

left , which adds another 1 and the result would be 2. At most it would give 3, the while

would give 3 loops.” Also in this case, a greater intensity of red is associated with the main

regions used by the participant to solve the task.

In Figure 3.9, left side, Gaze Transitions of the task with version while are shown. As

mentioned by the participant in the interview about the strategy used to solve the task, it

is also possible to observe several small transitions in the if region, and longer transitions

between the if and declaration regions.

In Figure 3.10, the participant who preferred the while version mentioned difficulty

remembering how range works in for. Thus, he presented the following reasons for his

preference “The way I learned within while, I understood it better than range(0, len(lista)).”,

when asked why he was able to understand better, the following answer was given “It’s

clearer for me to have defined it above, because I didn’t remember how to do this 0, I had

to think a little, it’s been a long time since I programmed in Python, so it reminds me what

does 0, a definition of the number in front meant, within the range.” When analyzing perfor-

mance, on average, tasks with version while needed more time to solve. For this compar-

ison, there was also an agreement between the participants’ preferences and their respective

performances.

3.7.3 Task Quantity of 0 in list, LC and for versions

In Figure 3.11, the task Quantity of 0 in the list is presented, in the CL and for versions, and

their respective heat and fixation maps generated from the data of the eye tracking. In the CL

version, 41s and one attempt were spent. In the heat map, greater visual effort is identified

in the len(lista) and if regions. This can be confirmed in the interview, in which the

participant mentioned the difficulty: “Easy. Because the condition there is directing directly

to this condition there, it only returns if it is 0, which in this case is the only element within

the list of numbers.” In this case, a greater intensity of red is associated with the main region

used by the participant to solve the task.

In Figure 3.12, left side, Gaze Transitions of the task with the CL version are shown. As

mentioned by the participant in the interview regarding the difficulty in solving the task, it is

possible to observe several small transitions in the len(lista) region, and long transitions

3.7 Planning of the experiment 37

Visual Effort in AOI

lista = [12, 15, 3]

resultado = 0

contador = 0

while(contador < len(lista)):

 resultado = resultado +

lista[contador]

 contador = contador + 1

print(resultado)

lista = [12, 15, 3]

resultado = 0

for elemento in range(0, len(lista)):

 resultado = resultado + lista[elemento]

print(resultado)

(A)

(B)

OR

Preferences

I strongly prefer B. I think it's cleaner
code, less code, easier execution. Fewer
characters to read, this also saves a lot
on reading the code. Why do you prefer
leaner code? Because I think this also
makes it a little easier in terms of
visualization, as execution should also be
much faster than executing code with a
greater number of variables, you will
have to do more allocation, something
like that

I strongly prefer A. The way I learned it
inside "while", I understood it better than
range(0, len(lista)). Why can you
understand better? It's clearer for me to
have defined it at the top, because I didn't
remember how to do this 0, I had to think
a little, it's been a long time since I
programmed in Python, to remind me
what the 0, the definition of the number in
front, meant , within the range

Performance Metrics

1min19s

Time Attempts

100
ms

120
ms

80
ms

50
ms

1
2

3
4

Fixations
Duration
28.5s

Fixations
count
80

Regressions
count
30

100
ms

120
ms

80
ms

50
ms

1
2

3
4

Fixations
Duration
11.7s

Fixations
count
35

Regressions
count

9

Visual Effort in AOI

37s

Time Attempts

while
e
for

Figure 3.10: Comparison between preference and performance of code versions while and

for.

3.7 Planning of the experiment 38

ForLC

(A) (B)

(C) (D)

Figure 3.11: Comparison between the two code snippets CL and for and their respective

heat maps and fixtures for the task Quantity of 0 in the list.

between this region and the if region.

In Figure 3.13, the metrics time, attempts and visual effort in the AOI are presented,

related to the LC version and for. When analyzing performance, it was observed that the

task implemented with the for loop showed a reduction in time, number of fixations and

duration of fixations to be solved, compared to the LC version.

In version for, Figure 3.11, 31s and one attempt were spent. In the heatmap, greater

visual effort is identified in two main regions, in the list declaration region and in the compar-

ison within if. This can be confirmed in the interview, in which the participant mentioned

the strategy used: “I read the entire code and it asks for the result, but it only enters if if the

result is 0, it is only 0 in the last position of the list.” Also in this case, a greater intensity of

red is associated with the main regions used by the participant to solve the task.

In Figure 3.12, right side, Gaze Transitions of the task with version for are shown. As

mentioned by the participant in the interview regarding the strategy for solving the task, it is

possible to observe several small transitions in the if region, and longer transitions between

the if region and the list declaration.

3.7 Planning of the experiment 39

LC
41s

For
31s

0 5 10 15

15 20 25 30

30 35 40 41

0 5 10 15

15 20 25 30

30 31

Figure 3.12: Gaze Transitions from task submissions Amount of 0 in list, comparison be-

tween the two code snippets CL and for.

3.7 Planning of the experiment 40

Performance Metrics

41s

Time Attempts

100
ms

120
ms

80
ms

50
ms

1
2

3
4

Fixations
Duration
15.7s

Fixations
count
45

Regressions
count
10

Visual Effort in AOI

100
ms

120
ms

80
ms

50
ms

1
2

3
4

Fixations
Duration

8.7s

Fixations
count
32

Regressions
count
10

Visual Effort in AOI

31s

Time Attempts

Figure 3.13: Performance comparison in LC and for code versions of the task Quantity of

0 in the list.

Chapter 4

Evaluation

In this section, we describe the evaluation of our approach. In Section 4.1, we present the

goal of our evaluation along with our research questions and metrics. In Section 4.2, we

present the main results obtained and discuss our results. In Section 4.3, we answer our

research questions and finally, in Section 4.4, we describe the threats to validity.

4.1 Definition

In this section, we present the objective of our study following the Goal-Question-Metric

approach [3]. We compare programs with Recursion techniques, repetition structure and

LC with the purpose of understanding how these techniques impact code comprehension

in relation to time, number of attempts and visual metrics (duration fixation count, fixation

count, regression count) from the point of view of Python novices in the context of tasks

adapted from introductory programming courses. Therefore, this work seeks to contribute

to a deeper understanding of the impact of different ways of structuring the code on the

understanding of novices. In particular, this work seeks to carry out a controlled experiment

with Python novices seeking to answer five research questions. For each of the questions,

the null hypothesis is that there is no difference in terms of the metrics used, between the

versions of the programs with for and the versions with while, Recursion and LC.

We address the following Research Questions (RQs):

• RQ1 What is the impact of code structures on the time to solve

the task? Similarly to previous studies, which used the task res-

41

4.1 Definition 42

olution time metric to investigate code understanding [16; 17; 19;

60], to answer this question, the time the participant spent reading the code

was measured, understand, and report the correct output of the program, given input

into the complete code itself. Additionally, the time that novices spend in specific

areas within the code, the AOIs, is measured. Time was measured using the eye

tracking camera system.

• RQ2 What is the impact of code structures on the number of attempts made to

solve the task? Based on previous studies, which used the correctness of the task as

a way of investigating code understanding [16], to answer this question, the number

of submissions made by the participants was counted, from the beginning of the task

until the moment in which they responded correctly to exit the program or chose to

give up the task.

• RQ3 What is the impact of code structures on the duration of fix-

ations? The position and duration of fixations have been associ-

ated with the focus of attention [14]. Similar to previous studies [17;

16], to answer this question, the duration of fixations in the full code and in the

AOI was measured. In Figure 2.5(b), an example of the duration of fixations is

presented.

• RQ4 What is the impact of code structures on the number of fixations? A high

number of fixations is associated with a greater visual effort to answer a question [59].

To answer this question, the number of fixations in the complete code and in the AOI

was measured. In Figure 2.5(a), an example of the fixation count is shown.

• RQ5 What is the impact of code structures on the number of regressions? Re-

turning eye movements to stimuli are called regressions [11]. Regressions can be used

as a metric for visual effort [57]. Therefore, to answer this question, the number of

4.2 Results and Discussion 43

regressions in the complete code and in the AOI was measured. In Figure 2.5(c), an

example of regression counting is presented.

4.2 Results and Discussion

In this section, we present the results obtained in the study carried out with 32 subjects. The

tasks were analyzed with a main focus on AOI. Pilot studies were not considered for analysis

of quantitative results. The experiment was conducted with 34 participants. In the end, the

participant who had the least experience was removed, resulting in the removal of the Latin

Square, ending with 32 participants. The experiment followed the same methodology used

in the pilot study. The pilot study is described in more detail in Section 3.1.

4.2.1 Task Sum list, while and for versions

In Figure 4.2, we depict the task Sum from one to n, in the while and for versions, and

their respective heatmap and fixation maps generated from the data of the eye tracking. The

heat map allows intuitive and informative visualization of participants’ attention behavior.

It highlights the areas of the stimulus that most attract attention and those that are least ex-

plored. With this, it is possible to identify which elements of the code are most interesting

to participants and which regions or elements may go unnoticed. In the heat map, the inten-

sity of red varies according to the number of fixations and their duration, making it possible

to make comparisons between versions of the same code that receive attention differently.

The fixing map presents a visualization of the distribution of fixings in the code. Instead of

showing the intensity of fixations with colors, as in a heat map, the fixation map indicates

the exact locations where participants’ eyes fixated. They help identify specific points of

interest or areas of focus in code stimuli that may go unnoticed in heatmaps. In the task with

While version, the participant used 198.99s, 2 attempts, 207 fixations, 61.01s in fixation du-

ration, 78 regressions and gave up. In the task with For version, the participant used 42.74s,

1 attempt, 35 fixations, 9.51s in fixation duration, 14 regressions and solved the task.

It is possible to observe that the most interesting regions of the code for the participant

who performed the task with the While version and gave up, are mainly in the regions where

result, counter and list[counter] are located. This can also be identified in the participant’s

4.2 Results and Discussion 44

comment regarding their strategy to solve the task:“There was the list, right, as long as the

counter is smaller than the size of the list, result + list, the counter I think it was, in that part

I got lost a little bit, when counter arrived + 1, which was just to avoid repeating, I just took

it and went to the result, + list (counter), I thought about the size of the list, but I thought 0,

1, 2, I hadn’t realized it was the size, 0, 1, 2, I thought 2. Then on the other attempt, I went by

the number of numbers, by the size.” It is possible to observe that the most interesting regions

of the code for the participant who performed the task with the For version are mainly in the

regions where list and len[lista] are located. This can also be identified in the participant’s

comment regarding his strategy to solve the task: “I saw that it was a list with three numbers,

and the result was equal to 0 first, then when I saw the (for element in range), when I saw

that the result would be the result that was initially + the list elements in this case, 12, 15.3,

as I know that 12+15+3 is 30, I said 30.”

To analyze the participants’ perception of the difficulty of the programs, a five-point scale

was used, shown in Figure 4.1. For each program, there were two versions and participants

had to rate the difficulty they encountered in solving it on a scale of very easy, easy, neutral,

difficult, or very difficult to solve. In general, it was possible to observe that the participants’

perception of the difficulty between the programs presented was that the for version seemed

easier than the other versions.

Some of the main reasons given by the subjects for preferring the for version were less

variable, it does not use a counter and there is no need to increment the counter, “because

as it already has a list with a fixed size, which is passed within for, automatically won’t

need the counter, so it will reduce the number of variables, so much so that it will be a

global variable, right, I won’t have a counter as a global variable, right, and I won’t have

to be incrementing it locally within for , it’s smaller, I have the feeling that the complexity

is smaller and easier to understand”, “Because it’s a simpler code to write”, a cleaner and

smaller code, “I’m very used to for than with while, because I think it’s a cleaner code,

that doesn’t need to break, doesn’t need to use a counter or anything”, “... while has all

that counter stuff, I can get lost easier”, “Because you don’t need a counter...”, “...we have

a specific size of for, we know how many times it will run, so it’s much easier to put it in

for, but putting it in a while and having to worry about updating the counter and in for

it already does this naturally”

4.2 Results and Discussion 45

Base Version

Treatment Version

Figure 4.1: Perception of difficulties with the Base and Treatment versions.

4.2 Results and Discussion 46

As for the while version, one of the main reasons given by the subjects for their pref-

erence was that it was more explanatory and readable, “while also explains more what it is

doing than for, in this specific for”, “I find while easier to read than for”.

List sum: 30

(a) Fixation map while

red 300

Time: 198.99s
Attempt: 2 attempts

Fixations: 207
Fixations Duration: 61.01s

Regressions: 78

Metrics
Time: 42.74s

Attempt: 1 attempt
Fixations: 35

Fixations Duration: 9.51s
Regressions: 14

Metrics

(b) Fixation map for

(c) Heatmap while (d) Heatmap for

Figure 4.2: Task Sum list, for version.

In general, it was possible to observe that tasks with the for version compared to the

while version required less time, number of attempts, number of fixations, duration of fix-

ations and regressions, and some of the main reasons given by the subjects for preferring the

for version were less variable, it does not use a counter and there is no need to increment

the counter, which may indicate an effort in lower overall in terms of understanding. How-

ever, the structure with for also presents its challenges in Python, such as signs of confusion

regarding the use of the range() function, as it is necessary to identify where the number

of repetitions begins and ends.

4.2.2 Task Sum from one to n, Recursion and for versions

In Figure 4.3, Gaze Transitions from the Recursion version are presented, which are gaze

transitions in the task. In this task, the participant used 238.59s, three attempts, 336 fixations,

91.15s in fixation time, 146 regressions and gave up. As mentioned about the difficulty:

“Neutral. It does not have a great degree of complexity, but due to the fact that it calls the

4.2 Results and Discussion 47

function within the function itself, the reasoning of thought that has to be carried out to be

able to reach it, it is as if it were entering the layer inside the layer and returning, enter

inside the layer and return, at least now in a short period of time I couldn’t reason to solve it

the right way”, it is possible to observe several transitions going back and forth between the

base case and the recursive step.

Sum from 1 to n: 10

Figure 4.3: Task Sum from one to n, Recursion version.

In Figure 4.4, Gaze Transitions of the for version are shown. In this task, the participant

used 21.05s, one attempt, 24 fixations, 6.18s in fixation time, 9 regressions and solved the

task. As mentioned about the main difficulty: “Understanding what for was doing. Third

line, the declaration of for would be the most difficult”, it is possible to observe several

transitions going back and forth between the structure of for and the sum variable.

In general, it was possible to observe that the tasks with the for version required less

time, fewer attempts and less visual effort than with the Recursion version, which may in-

dicate less effort overall in terms of understanding. This difficulty with recursion may be

related to the fact that it is a function that is called repeatedly, requiring dynamic memo-

rization and having a more abstract resolution format. However, it is worth remembering

that the structure with for also presents its challenges in Python, such as signs of confusion

regarding size due to the use of the range() function, as it is necessary to add more one to

the final value to reach all values.

4.2 Results and Discussion 48

Figure 4.4: Task Sum from one to n, for version.

4.2.3 Task Quantity of 0 in the list, LC and for versions

In Figure 4.5, Gaze Transitions of the LC version are shown. In this task, the participant

used 25.15s, one attempt, 29 fixations, 8.98s in fixation time, 14 regressions and gave up the

task. As mentioned about the main difficulty: "It was this little bit here list = element for

element in numbers if element = 2", it is possible to observe several transitions going back

and forth between the elements of this line.

Figure 4.5: Task Quantity of 0 in the list, LC version.

In Figure 4.6, Gaze Transitions of the for version are shown. In this task, the participant

used 47.47s, one attempt, 41 fixations, 11.77s in fixation time, 18 regressions and solved the

task. As mentioned about the strategy used: “I saw that the result was = 0, and 0 was one of

the items in the list of numbers and from what I understood the element would analyze each

4.2 Results and Discussion 49

number in the list, the element would become equal to each number of that list, as 0 was an

element of that list, then the element inevitably when the last number was counted would be

= 0, therefore the result 0 + 1, that is, 1”, it is possible to observe several transitions going

back and forth between the elements of that list line.

Figure 4.6: Task Quantity of 0 in the list, for version.

In general, it was possible to observe that the tasks with the for version compared to

the LC version required less time, attempts, fixations, duration of fixations and regressions

to be solved, which may indicate less effort in the general in terms of understanding. The

structure with LC presents its challenges in Python, such as signs of confusion regarding the

fact that the definition is longer, and is not well known by beginner developers.

4.2.4 Other Analyses

In this section, we present the distribution of the data obtained. The metrics time, number

of attempts to solve the task and visual effort through of fixation duration, fixation count

and regressions in relation to the comparisons between the for, while, Recursion and LC

versions.

In Figure 4.7, it is possible to analyze the distribution of data and its density in each

comparison between Base (B) which represents the version for and Treatment (T) which

represents the versions while, Recursion and LC. It is possible to observe that although

4.3 Answers to the Research Questions 50

Comparison Code AOI

Comparison 1
for (s) while (s) Impact (%) PV for (s) while (s) Impact (%) PV

30.54 48.76 ↑59.54 0.30 15.77 31.69 ↑95.0 0.13

Comparison 2
for (s) Recursion (s) Impact (%) PV for (s) Recursion

(s) Impact (%) PV

54.88 62.08 ↑13.1 0.31 44.68 50.71 ↑13.49 0.57

Comparison 3
for (s) LC (s) Impact (%) PV for (s) LC (s) Impact (%) PV

20.76 32.22 ↑55.2 0.01 12.72 20.68 ↑62.5 0.02

All
for while, LC

Recursion Impact (%) PV for while, LC
Recursion Impact (%) PV

26.88 48.54 ↑80.5 0.01 16.03 30.91 ↑92.7 0.01

RQ1: Tempo

Table 4.1: Comparative analysis between the code snippets used: Time.

there are outliers and more extreme values, the data density in the Quartiles and the median

are similar and often appear a little higher in T compared to B.

4.3 Answers to the Research Questions

Next, we present a summary of the answers to our research questions.

4.3.1 RQ1 What is the impact of code structures on time?

To answer this question, the average time spent on the AOI and on the code as a whole were

analyzed, which are presented in Table 4.1. In the AOI region, the for version proved to

be better than the while, Recursion and LC versions. Compared to for, overall, increases

were observed with the while, Recursion and LC versions that ranged from 13.49% and

P-Value (PV) 0.57 to 95% and PV 0.13 in the Comparison 2 and Comparison 1 respectively.

As for the complete code, the for version proved to be better than the while, Recursion

and LC versions. Increases were observed with the while, Recursion and LC versions that

ranged from 13.1% to 59.54% in the Comparison 2 and Comparison 1 respectively.

4.3 Answers to the Research Questions 51

for vs while distribution.

for vs Recursion distribution.

for vs LC distribution

for vs while, Recursion and LC distribution.

Regressions count
in AOI

Fixations count
in AOI

Fixation duration
in AOI in secsSubmissionsTime in AOI

in secs

Regressions count
in AOI

Fixations count
in AOI

Fixation duration
in AOI in secsSubmissionsTime in AOI

in secs

Regressions count
in AOI

Fixations count
in AOI

Fixation duration
in AOI in secsSubmissionsTime in AOI

in secs

Regressions count
in AOI

Fixations count
in AOI

Fixation duration
in AOI in secsSubmissionsTime in AOI

in secs

Figure 4.7: for vs while, Recursion and LC distribution.

4.3 Answers to the Research Questions 52

Comparison Code

Comparison 1
for while Impact (%) PV

1 1.12 ↑12 0.06

Comparison 2
for Recursion Impact (%) PV

1.47 1.52 ↑3.4 0.75

Comparison 3
for LC Impact (%) PV

1.1 1.37 ↑24.5 0.06

All
for while, LC

Recursion Impact (%) PV

1.14 1.32 ↑15.79 0.03

RQ2: Número de tentativas

Table 4.2: Comparative analysis between the code snippets used: Number of submissions.

4.3.2 RQ2 What is the impact of code structures on the number of at-

tempts used to solve the task?

To answer this question, the average number of submissions were analyzed, which are pre-

sented in Table 4.2. The for version was better than the while, Recursion and LC versions.

Compared to for, overall, increases were observed with the while, Recursion and LC ver-

sions that ranged from 3.4% and PV 0.75 to 24.5% and PV 0.06 in the Comparison 2 and

Comparison 3 respectively.

4.3.3 RQ3 What is the impact of code structures on the duration of

fixes?

To answer this question, the average duration of fixations in the full code and in the AOI

were analyzed, which are presented in Table 4.3. In the AOI region, the for version was

better than the while, Recursion and LC versions. Compared to for, overall, increases

were observed with the while, Recursion and LC versions that ranged from 29.76% and

PV 0.43 to 97.22% and PV 0.13 in the Comparison 2 and Comparison 1, respectively.

As for the complete code, the for version was better than the while, Recursion and LC

versions in three tasks, but it was worse than while and LC in two tasks. Overall, increases

4.3 Answers to the Research Questions 53

Comparison Code AOI

Comparison 1
for (s) while (s) Impact (%) PV for (s) while (s) Impact (%) PV

13.87 20.39 ↑47.02 0.19 7.20 14.2 ↑97.22 0.13

Comparison 2
for (s) Recursion

(s) Impact (%) PV for (s) Recursion (s) Impact (%) PV

27 31.31 ↑15.93 0.33 21.06 27.33 ↑29.76 0.43

Comparison 3
for (s) LC (s) Impact (%) PV for (s) LC (s) Impact (%) PV

8.98 13.57 ↑51.00 0.06 5.74 10.39 ↑80.96 0.06

All
for while, LC

Recursion Impact (%) PV for while, LC
Recursion Impact (%) PV

12.59 20.9 ↑65.92 0.02 7.31 14.79 ↑232.87 0.02

RQ3: Duração das fixações

Table 4.3: Comparative analysis between the code snippets used: Duration of fixations.

were observed with the while, Recursion and LC versions that ranged from 15.93% to 51%

in the comparison 2 and Comparison 3, respectively.

4.3.4 RQ4 What is the impact of code structures on the number of fix-

ations?

To answer this question, the average number of fixations in the complete code and in the AOI

were analyzed, which are presented in Table 4.4. In the AOI region, the for version was

better than the while, Recursion and LC versions. Compared to for, overall, increases

were observed with the while, Recursion and LC versions that ranged from 22.86% and

PV 0.34 to 95.45% and PV 0.12 in the Comparison 2 and Comparison 1, respectively.

As for the complete code, the for version was better than the while, Recursion and LC

versions in three tasks, but it was worse than while and LC in two tasks. Overall, increases

were observed with the while, Recursion and LC versions that ranged from 25.97% to

59.49% in the Comparison 2 and Comparison 1, respectively.

4.4 Threats to Validity 54

Comparison Code AOI

Comparison 1
for while Impact (%) PV for while Impact (%) PV

39.5 63 ↑59.49 0.21 22 43 ↑95.45 0.12

Comparison 2
for Recursion Impact (%) PV for Recursion Impact (%) PV

77 97 ↑25.97 0.28 70 86 ↑22.86 0.34

Comparison 3
for LC Impact (%) PV for LC Impact (%) PV

28 44 ↑57.14 0.06 19.5 31.5 ↑61.54 0.08

All
for while, LC

Recursion Impact (%) PV for while, LC
Recursion Impact (%) PV

38 63 ↑65.79 0.02 24 48 ↑100 0.02

RQ4: Número de Fixações

Table 4.4: Comparative analysis between the code snippets used: Fixations.

4.3.5 RQ5 What is the impact of code structures on the number of re-

gressions?

To answer this question, the average number of regressions in the complete code and in the

AOI were analyzed, which are presented in Table 4.5. In the AOI region, the for version was

better than the while, Recursion and LC versions. Compared to for, in general, increases

were observed with the while, Recursion and LC versions that ranged from 23.08% and

PV 0.35 to 114.29% and PV 0.15 in the Comparison 2 and Comparison 1, respectively.

As for the complete code, the for version was better than the while, Recursion and

LC versions. Overall, increases were observed with the while, Recursion and LC versions

that ranged from 48.57% to 90% in the Comparison 1 and Comparison 3, respectively.

4.4 Threats to Validity

In this section, threats to internal validity will be discussed in Section 4.4.1, external validity

in Section 4.4.2, and construct validity in Section 4.4.3.

4.4 Threats to Validity 55

Comparison Code AOI

Comparison 1
for while Impact (%) PV for while Impact (%) PV

17.5 26 ↑48.57 0.19 7 15 ↑114.29 0.15

Comparison 2
for Recursion Impact (%) PV for Recursion Impact (%) PV

30 45 ↑50 0.21 26 32 ↑23.08 0.35

Comparison 3
for LC Impact (%) PV for LC Impact (%) PV

10 19 ↑90 0.09 5 10 ↑100 0.10

All
for while, LC

Recursion Impact (%) PV for while, LC
Recursion Impact (%) PV

15 26.5 ↑76.67 0.02 9 17.5 ↑94.44 0.03

RQ5: Número de regressões

Table 4.5: Comparative analysis between the code snippets used: Regressions.

4.4.1 Internal Validity

The experiment was conducted in different locations, which may have influenced the partic-

ipants’ visual attention. For mitigation, the locations were organized to have similar condi-

tions of light, comfort, temperature and stillness.

The presence of a researcher on site may affect participants’ visual attention or perfor-

mance. For mitigation, we sought to avoid interactions during each task.

Eye tracking equipment has limitations, even with calibration and recalibrations, adjust-

ments to the captured points were necessary. For some participants, the heat map and fixa-

tions showed a red color and fixations in white areas, places with no code. For these cases, a

small adjustment was necessary. All fixations for a given program received the same adjust-

ment. The adjustments to the y-coordinate were between 10 and 17, the x-coordinate was not

adjusted. This adjustment of points can influence the interpretation; these adjustments were

discussed by the researchers. However, the threat of adjusting the points would be preferable

to the threat of analyzing the data with points that were not touching the code.

A fixed chair was used in the experiment, to avoid compromising data collection by

the eye tracking camera. For each participant, approximately one hour was allocated, and

six tasks were assigned to each participant and at the end an interview. Which may have

influenced visual effort. Therefore, simple and short programs were designed.

4.4 Threats to Validity 56

The result may have been influenced by the order in which students learned the con-

cepts. Aiming to mitigate this potential bias, the experiment was conducted in three different

educational institutions, located in two different cities. Furthermore, the Latin Square was

implemented.

4.4.2 External Validity

Short programs were used to make it possible to view the entire screen. Which may restrict

generalization to larger programs. The study focused on Python novices, which may restrict

generalization to more experienced Python developers. Other eye-tracking studies have also

focused on novices to understand code comprehension.

The study focused on Python, which may restrict generalization to other programming

languages. For mitigation, common constructions in other languages were used. The pro-

grams were designed with indicators in Portuguese, as the participants were Brazilian.

The answers to the elaborated tasks were numerical values and had to respond to the

program output aloud. This task may not generalize to other tasks, such as adding a resource

for example.

The names of methods and variables can influence participants’ understanding and visual

effort. Confusing names can make it difficult, just as certain names can make it significantly

easier. For mitigation, the names were refined and discussed among researchers.

4.4.3 Construction Validity

Code understanding has often been measured through response time and correctness. Time,

response correction, and visual effort were also combined to investigate code comprehension.

When inviting participants, you need to make them aware that their eyes are being

tracked. Which can influence where or how much they look at certain locations on the

screen. To minimize this threat, the precise objectives of the study are not stated, avoiding

assumptions.

Chapter 5

Related Work

In this section, related works will be presented. In Section 5.1, works that focus on com-

paring different structures and investigating participants’ understanding will be presented.

In Section 5.2, some approaches to measuring code comprehension in this context will be

presented.

5.1 Code Structure Comparison

Endres et al. [21] conducted a study with 162 undergraduate students comparing different

iterative, recursive, and tail-recursive code structures through task correctness. First, the au-

thors performed a task-specific analysis and then investigated differences in students’ most

common errors by program structure. They found that students were more likely to produce

wrong answers with incorrect types or structures for recursive and tail recursive versions of

programs. They investigated correlations between programming performance and other fac-

tors such as experience, gender, ethnicity and others, among which programming experience

proved to be the most significant factor. Similarly, in the present study, different code struc-

tures were also investigated in the context of novices with respect to time spent, comments

and the number of attempts. Furthermore, they were triangulated with visual effort, which

made it possible to identify significant relationships between these factors and the visual

effort expended by the participants.

Sulov [68] empirically compared and investigated the preference of novice students with

respect to the Iteration and Recursion code structures. The study investigated the resolution

57

5.1 Code Structure Comparison 58

of tasks in the C language with 130 students undergoing an introduction to programming.

The authors investigated students’ preference and success rate when dealing with program-

ming tasks, which could be solved with iteration or recursion. The results showed that pro-

gramming novices prefer Iteration to Recursion in most cases. The results also showed that

as students gain more experience and move from abstract theory to real software, they do

not always identify possible cases in which Recursion should be preferred. Our work in-

vestigated 32 students in introductory programming with respect to preference, success rate,

task solving time and comprehension while the novices dealt with programming tasks with

Iteration, Recursion and List Comprehension. The language used was Python. It was no-

ticed that little experience can cause a discrepancy between the declared preference and the

performance presented in the tasks.

Turbak et al. [69] describe an experience report, they investigate the teaching of Recur-

sion prior to the teaching of loops and Iteration. The study measured the number of visits

during office hours and student performance on problem sets and exams in the course. They

argue that there are strong theoretical, practical, and pedagogical reasons to teach Recur-

sion before loops in a Computer Science course, regardless of the programming paradigm

that is taught. Some arguments are raised in the work, among them are: Recursion is more

fundamental than the loop, Recursion requires fewer prerequisites than loop and deep ideas

take time to be absorbed. They observed that students seemed to leave their course with

better problem-solving skills than they had before. They believe this is largely due to the

fact that they now place more emphasis on the divide, conquer, and paste strategy. In our

work, we also investigated how programming novices solve problems with Recursion and

Iteration. By measuring the number of attempts, it was noticed that Recursion in general re-

quired more attempts than Iteration (for) and obtained a greater number of dropouts, while

the time spent was similar, but worse for Recursion.

Haberman and Averbuch [32] conducted a study focusing on students’ difficulties with

Recursion in relation to the base cases. Some findings of the study revealed that students

face difficulties in identifying problem-based cases. They tend to deal with redundant base

cases, ignore boundary values and degenerate cases, avoid considering values outside the

proper range, and in some cases even fail to define any base cases when designing recursive

algorithms. Furthermore, students encounter difficulties when evaluating recursive algo-

5.2 Approaches to Measuring Code Comprehension 59

rithms that deal with base cases that are difficult to identify initially. Similarly, in our work,

base cases were also investigated, including through eye tracking, which made it possible

to identify that the base case is one of the locations in the Recursion code most viewed by

participants.

Esteero et al. [22] investigated what CS2 students chose when asked to solve a problem

that could be solved with Recursion or Iteration and how this choice relates to the correctness

of their code. They sought to provide an answer to this question through an analysis of

students’ exam answers to a problem about finding the deepest common ancestors in trees.

They found that 19% of students chose to use Iteration, 51% chose Recursion, and 16%

chose the combination of Iteration and Recursion. Regarding correctness, students who

chose Iteration performed better than those who chose Recursion and the combination of

both. Similarly, in our work, participants’ preferences and their respective performance on

the tasks were investigated using the number of attempted responses in addition to time and

visual effort. It was identified that, in the context of novices, there are signs of disagreement

between preference and real performance.

Mccauley et al. [39] examined the computing education research literature, presenting

their findings on the challenges students face in learning Recursion, the mental models stu-

dents develop as they learn Recursion. We revisited more than 35 publications documenting

research results related to teaching and learning recursive programming and many of these

studies compare the effectiveness of introducing Iteration before Recursion and vice versa.

In our work, eye tracking was used, which allowed a thorough analysis from the point of

view of visual effort, in addition, List Comprehension was introduced into the comparison.

5.2 Approaches to Measuring Code Comprehension

Researchers have been looking for new ways to investigate code understanding using more

objective metrics, going beyond comparing preferences. For example, Da Costa et al. [17]

compared two code structures with #ifdef annotations, one with disciplined annotations, and

one with undisciplined annotations. They assessed whether disciplining #ifdef annotations

correlates with improvements in code comprehension and eye strain using an eye tracker. A

controlled experiment was conducted with 64 individuals, most of whom were new to the C

5.2 Approaches to Measuring Code Comprehension 60

programming language. Statistically significant differences were observed in relation to the

analyzed metrics (time, duration of fixations, number of fixations and number of regressions)

in the code regions changed by each refactoring.

Another study conducted by Da Costa et al. [16] conducted a controlled experiment com-

paring two code structures, one with the presence of small clutter patterns called atoms and

the other without the presence of these patterns. The study included 32 Python novices and

measured their time, number of attempts, and visual effort using an eye tracker. The authors

also conducted interviews and investigated participants’ difficulties with the programs. In

our work, a similar design was used in terms of metrics and use of eye tracking, however, in

a different context, comparing Recursion, Iteration and List Comprehension structures.

De Oliveira et al. [19] conducted an experiment with 30 students and software profes-

sionals, using eye tracking to assess whether developers understand code with the presence of

confusion atoms. To do this, task completion time and response accuracy were measured and

the distribution of visual attention was analyzed. The authors compared code snippets from

real open source C/C++ systems from different domains containing three types of atoms.

Their findings reinforce that atoms hinder developers’ performance and understanding. In

our work, a similar design was used in terms of metrics and use of eye tracking, however,

in a different context and exploring fixation duration, fixation count and regression count,

comparing Recursion, Iteration and List Comprehension structures. in the Python language.

Sharif and Maletic [60] presented an empirical study to determine whether identifier

naming conventions (camelCase and under_score) affect code comprehension. Time, cor-

rectness of responses, and visual effort were measured using eye tracking. They found a

significant improvement in time and visual effort with the underscore style. Another study

conducted by Sharafi et al. [59] reported the results of an experiment involving 15 male and

nine female participants to study the impact of gender on participants’ visual effort, time,

and recall accuracy. camelCase and underscore identifiers when reading the code. No statis-

tically significant differences were observed regarding metrics. In our work, in addition to

these metrics, the number of submissions was also measured.

Siegmund et al. [62] conducted work in which they explored whether functional magnetic

resonance imaging (fMRI), which is well established in cognitive neuroscience, would be vi-

able to more directly measure program understanding. To do this, the researchers carried out

5.2 Approaches to Measuring Code Comprehension 61

a controlled experiment, in which 17 participants were observed inside an fMRI scanner,

while the participants understood small snippets of code, which were compared with the lo-

cation of syntax errors. They found a clear and distinct activation pattern of five brain regions

related to working memory, attention and language processing, which are processes that fit

well with program comprehension knowledge. In our work, an eye tracking camera was

used; this tool has also demonstrated great potential for analyzing code comprehension. A

controlled study was conducted, using a camera attached to the notebook while participants

solved small snippets of code. The data generated by the camera made it possible to project

graphics such as heat maps, fixations and paths taken by the eyes, which allowed an analysis

of code understanding from the point of view of visual effort.

Chapter 6

Conclusions

In this work, a controlled experiment with eye tracking was carried out to evaluate the impact

of Recursion, Iteration and LC on the code comprehension of Python novices. The versions

were compared across six tasks measuring the impact on time, number of attempts, and

visual effort of 32 participants. Performance metrics were triangulated with semi-structured

interviews carried out with participants and the results of their preferences.

Regarding the impact of the Recursion, Iteration and LC structures on the time spent in

the AOI, compared to for, in general, an increase was observed with the while, Recursion

and LC versions that ranged from 13.49% up to 95% in Recursion and while, respec-

tively. Therefore, for the tasks evaluated, with respect to time, the for version proved to

be preferable. Regarding the number of attempts, compared to for, an increase of 24.5%

was observed in the number of submissions with the LC version, showing evidence that this

version is associated with greater confusion among participants.

With regard to visual effort, an impact was also observed. In the AOI region, regarding

the duration of fixations, compared to for, in general, increases were observed with the

while, Recursion and LC versions that varied from 29.76% to 97.22% with Recursion

and while, respectively, indicating that there was a need to look longer. Regarding the

number of fixations, compared to for, in general, increases were observed with the while,

Recursion and LC versions that varied from 22.86% to 95.45% with Recursion and while,

respectively, indicating that there was a need to focus on more places. Regarding the number

of regressions, compared with for, in general, increases were observed with the while,

Recursion and LC versions that varied from 23.08% to 114.29% with Recursion and while,

62

6.1 Future work 63

respectively, indicating the need to return more times in the code. Therefore, in general,

the for version was associated with less visual effort on the part of novices for the tasks

evaluated.

The analysis of code reading patterns also presented important clues. Through the anal-

ysis of reading patterns, in Recursion, greater focus of attention was noticed in the base case

and in the recursive step. The need for a stop condition and explicit counter is a hypothesis

for the worst performance with while. There were agreements and discrepancies among

participants between performance and perception of difficulty depending on the task. In gen-

eral, the for version required less time in the AOI along with less visual effort, indicating a

better understanding of some tasks.

This study contributes to educating educators about the impact of Recursion, Iteration

and LC on the code understanding of Python novices. These implications can impact the

way of teaching, promoting greater code understanding by novices with less visual effort.

Furthermore, it raises the awareness of researchers to use eye tracking as a research tool that

shows nuances that metrics based solely on code analysis may not be able to capture.

6.1 Future work

As the next steps of the research, we intend to evaluate Python constructions in more tasks,

for example, other arithmetic operations, tasks that use more conditional statements, string

manipulations, file manipulations, among others. The application of the structures in other

types of tasks and contexts will contribute to obtaining other perspectives and other insights

regarding the use of Python constructions.

Since there are several Python constructions, we can evaluate other constructions such

as conditional statements (if, else, elif), List, Tuple, Dictionary, Exception Treatment (try,

except, finally), classes and objects, among others. We intend to carry out a controlled

experiment with a larger number of Python beginners, which will contribute to obtaining

tests and statistical differences in addition to other insights based on more qualitative data.

Since there are similarities between programming languages, we can also evaluate struc-

tures that present similarities in different programming languages such as Java, JavaScript,

Swift, among others. Varying the language can impact the size of the code snippets. We

6.1 Future work 64

also aim to explore larger code snippets with more advanced tools that allow scrolling the

content such as iTrace [31], in addition to tools that support source code edits in eye-tracking

studies such as iTrace-Atom [23]. Varying the language and size of code snippets can give us

a better understanding of the impact of certain code constructions on code comprehension.

For a better qualitative analysis, we can carry out interviews with students, as well as

interviews with teachers. We can triangulate the interviews with the data obtained through

quantitative metrics. This will allow a better understanding of the reading patterns used to

solve the tasks, in addition to a better understanding of the reasons why the subjects did or

did not understand the structures. In addition, we can employ rigorous qualitative method

analysis such as grounded theory as proposed by Strauss and Corbin [67]. Grounded theory

allows one to understand a phenomenon, such as code comprehension, however, without

preconceived theories. The theory has to emerge fro the data.

Another way to improve the analysis of quantitative data is to triangulate it with other

forms of analysis. We can use other types of equipment that make it possible to obtain other

types of data, for example, the neural part, heartbeats using smartwatches and smartbands

while the subjects solve the tasks. This will allow other analyses, through data triangulation.

Such combinations of psycho-physiological measures has been employed before to assess

task difficulty in software development [26].

We can also assist in the development of more modern tools that have IDEs coupled with

eye tracking cameras and can identify patterns that are difficult to understand and automat-

ically modify the code snippet. In this way, novices would be helped in an automatic way,

enabling a better understanding.

We can also evaluate the same study with professionals, and thus, compare the results

found with novices, in terms of visual metrics, time, submissions and answers given in in-

terviews. This will allow us to identify and analyze the similarities and differences between

the reading patterns used by professionals and novices.

We are also planning to extend our evaluation to code snippets from various domains uti-

lizing eye-tracking technology. Specifically, our objective is to investigate whether code [46;

45; 44; 48; 37; 5; 6], configurable systems [41; 42; 38; 43], testing [65; 64], model [27;

28; 29] refactorings, and the application of quick fixes [20; 53] improve quality. This ap-

proach will allow us to assess the impact of these practices on the overall quality of software

6.1 Future work 65

development processes and outcomes.

Bibliography

[1] Nahla J. Abid, Jonathan I. Maletic, and Bonita Sharif. Using developer eye movements

to externalize the mental model used in code summarization tasks. In Proceedings

of the 11th ACM Symposium on Eye Tracking Research and Applications, ETRA ’19.

ACM, June 2019.

[2] Duane A Bailey. Python structures. 2013.

[3] Victor Basili, G. Caldiera, and H. Rombach. The Goal Question Metric Approach.

Encyclopedia of software engineering, pages 528–532, 1994.

[4] Roman Bednarik and Markku Tukiainen. An Eye-tracking Methodology for Charac-

terizing Program Comprehension Processes. In Proceedings of the Symposium on Eye

Tracking Research & Applications, ETRA’06, pages 125–132, 2006.

[5] Ana Carla Bibiano, Wesley K. G. Assunção, Daniel Coutinho, Kleber Santos, Vinícius

Soares, Rohit Gheyi, Alessandro Garcia, Baldoino Fonseca, Márcio Ribeiro, Daniel

Oliveira, Caio Barbosa, João Lucas Marques, and Anderson Oliveira. Look ahead!

revealing complete composite refactorings and their smelliness effects. In International

Conference on Software Maintenance and Evolution, pages 298–308. IEEE, 2021.

[6] Ana Carla Bibiano, Vinícius Soares, Daniel Coutinho, Eduardo Fernandes, João Lucas

Correia, Kleber Santos, Anderson Oliveira, Alessandro Garcia, Rohit Gheyi, Baldoino

Fonseca, Márcio Ribeiro, Caio Barbosa, and Daniel Oliveira. How does incomplete

composite refactoring affect internal quality attributes? In International Conference on

Program Comprehension, pages 149–159. ACM, 2020.

[7] Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan Maletic, Christopher Morrell, and

66

BIBLIOGRAPHY 67

Bonita Sharif. The Impact of Identifier Style on Effort and Comprehension. Empirical

Software Engineering, 18(2):219–276, 2013.

[8] Tanja Blascheck and Bonita Sharif. Visually analyzing eye movements on natural lan-

guage texts and source code snippets. In Proceedings of the 11th ACM Symposium

on Eye Tracking Research and Applications, ETRA ’19, New York, NY, USA, 2019.

Association for Computing Machinery.

[9] Agnieszka Aga Bojko. Informative or misleading? heatmaps deconstructed. In Inter-

national conference on human-computer interaction, pages 30–39. Springer, 2009.

[10] George EP Box, J Stuart Hunter, and William G Hunter. Statistics for experimenters.

In Wiley series in probability and statistics. Wiley Hoboken, NJ, 2005.

[11] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H Paterson,

Carsten Schulte, Bonita Sharif, and Sascha Tamm. Eye movements in code reading:

Relaxing the linear order. In 2015 IEEE 23rd International Conference on Program

Comprehension, pages 255–265. IEEE, 2015.

[12] Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. Analysis of Code Reading

to Gain More Insight in Program Comprehension. In Proceedings of the Koli Calling

International Conference on Computing Education Research, Koli Calling’11, pages

1–9, 2011.

[13] Martha Crosby, Jean Scholtz, and Susan Wiedenbeck. The Roles Beacons Play in

Comprehension for Novice and Expert Programmers. In Workshop of the Psychology

of Programming Interest Group, PPIG’02, page 5, 2002.

[14] Martha E Crosby, Jean Scholtz, and Susan Wiedenbeck. The roles beacons play in

comprehension for novice and expert programmers. In PPIG, page 5, 2002.

[15] Martha E Crosby and Jan Stelovsky. How do we read algorithms? a case study. Com-

puter, 23(1):25–35, 1990.

[16] José Aldo Silva da Costa, Rohit Gheyi, Fernando Castor, Pablo Roberto Fernandes

de Oliveira, Márcio Ribeiro, and Baldoino Fonseca. Seeing confusion through a new

BIBLIOGRAPHY 68

lens: on the impact of atoms of confusion on novices’ code comprehension. Empirical

Software Engineering, 28(4):81, 2023.

[17] José Aldo Silva da Costa, Rohit Gheyi, Márcio Ribeiro, Sven Apel, Vander Alves,

Baldoino Fonseca, Flávio Medeiros, and Alessandro Garcia. Evaluating refactorings

for disciplining# ifdef annotations: An eye tracking study with novices. Empirical

Software Engineering, 26(5):92, 2021.

[18] Daniel Kyle Davis and Feng Zhu. Analysis of software developers’ coding behavior:

A survey of visualization analysis techniques using eye trackers. Computers in Human

Behavior Reports, 7:100213, 2022.

[19] Benedito de Oliveira, Márcio Ribeiro, José Aldo Silva da Costa, Rohit Gheyi, Guil-

herme Amaral, Rafael de Mello, Anderson Oliveira, Alessandro Garcia, Rodrigo

Bonifácio, and Baldoino Fonseca. Atoms of confusion: The eyes do not lie. In Pro-

ceedings of the XXXIV Brazilian Symposium on Software Engineering, pages 243–252,

2020.

[20] Reudismam Rolim de Sousa, Gustavo Soares, Rohit Gheyi, Titus Barik, and Loris

D’Antoni. Learning quick fixes from code repositories. In Brazilian Symposium on

Software Engineering, pages 74–83. ACM, 2021.

[21] Madeline Endres, Westley Weimer, and Amir Kamil. An analysis of iterative and re-

cursive problem performance. In Proceedings of the 52nd ACM Technical Symposium

on Computer Science Education, pages 321–327, 2021.

[22] Ramy Esteero, Mohammed Khan, Mohamed Mohamed, Larry Yueli Zhang, and Daniel

Zingaro. Recursion or iteration: Does it matter what students choose? In Proceedings

of the 49th ACM technical symposium on computer science education, pages 1011–

1016, 2018.

[23] Sarah Fakhoury, Devjeet Roy, Harry Pines, Tyler Cleveland, Cole S Peterson, Venera

Arnaoudova, Bonita Sharif, and Jonathan Maletic. gazel: supporting source code edits

in eye-tracking studies. In 2021 IEEE/ACM 43rd International Conference on Software

Engineering: Companion Proceedings (ICSE-Companion), pages 69–72. IEEE, 2021.

BIBLIOGRAPHY 69

[24] Dror G Feitelson. Considerations and pitfalls in controlled experiments on code com-

prehension. In 2021 IEEE/ACM 29th International Conference on Program Compre-

hension (ICPC), pages 106–117. IEEE, 2021.

[25] Dror G Feitelson. Considerations and pitfalls for reducing threats to the validity of

controlled experiments on code comprehension. Empirical Software Engineering,

27(6):123, 2022.

[26] Thomas Fritz, Andrew Begel, Sebastian Müller, Serap Yigit-Elliott, and Manuela

Züger. Using psycho-physiological measures to assess task difficulty in software de-

velopment. In Proceedings of the International Conference on Software Engineering,

ICSE’14, pages 402–413, 2014.

[27] Rohit Gheyi and Paulo Borba. Refactoring alloy specifications. Elsevier’s Electronic

Notes in Theoretical Computer Science, 95:227–243, 2004.

[28] Rohit Gheyi, Tiago Massoni, and Paulo Borba. An abstract equivalence notion for ob-

ject models. Elsevier’s Electronic Notes in Theoretical Computer Science, Proceedings

of Brazilian Symposium on Formal Methods 2004, 130:3–21, 2005.

[29] Rohit Gheyi, Tiago Massoni, and Paulo Borba. Automatically checking feature model

refactorings. Journal of Universal Computer Science (JUCS), 17:684–711, 2011.

[30] Drew Guarnera, Corey Bryant, Ashwin Mishra, Jonathan Maletic, and Bonita Sharif.

iTrace: Eye tracking infrastructure for development environments. In Proceedings of

the Symposium on Eye Tracking Research & Applications, ETRA’18. ACM, 2018.

[31] Drew T Guarnera, Corey A Bryant, Ashwin Mishra, Jonathan I Maletic, and Bonita

Sharif. itrace: Eye tracking infrastructure for development environments. In Proceed-

ings of the 2018 ACM Symposium on Eye Tracking Research & Applications, pages

1–3, 2018.

[32] Bruria Haberman and Haim Averbuch. The case of base cases: Why are they so difficult

to recognize? student difficulties with recursion. In Proceedings of the 7th annual

conference on innovation and technology in computer science education, pages 84–88,

2002.

BIBLIOGRAPHY 70

[33] Alexander Homann, Lisa Grabinger, Florian Hauser, and Jürgen Mottok. An eye track-

ing study on misra c coding guidelines. In Proceedings of the 5th European Conference

on Software Engineering Education, ECSEE 2023. ACM, June 2023.

[34] Ahmad Jbara and Dror G Feitelson. How programmers read regular code: a controlled

experiment using eye tracking. Empirical software engineering, 22:1440–1477, 2017.

[35] Marcel A Just and Patricia A Carpenter. A Theory of Reading: From Eye Fixations to

Comprehension. Psychological review, 87(4):329, 1980.

[36] Philipp Kather, Rodrigo Duran, and Jan Vahrenhold. Through (tracking) their eyes:

Abstraction and complexity in program comprehension. ACM Transactions on Com-

puting Education, 22(2):1–33, November 2021.

[37] Rodrigo Lima, Jairo Souza, Baldoino Fonseca, Leopoldo Teixeira, Rohit Gheyi, Márcio

Ribeiro, Alessandro F. Garcia, and Rafael Maiani de Mello. Understanding and detect-

ing harmful code. In Brazilian Symposium on Software Engineering, pages 223–232.

ACM, 2020.

[38] Romero Malaquias, Márcio Ribeiro, Rodrigo Bonifácio, Eduardo Monteiro, Flávio

Medeiros, Alessandro Garcia, and Rohit Gheyi. The discipline of preprocessor-based

annotations does #ifdef TAG n’t #endif matter. In Proceedings of the 25th Interna-

tional Conference on Program Comprehension, ICPC 2017, Buenos Aires, Argentina,

May 22-23, 2017, pages 297–307, 2017.

[39] Renée McCauley, Scott Grissom, Sue Fitzgerald, and Laurie Murphy. Teaching and

learning recursive programming: a review of the research literature. Computer Science

Education, 25(1):37–66, 2015.

[40] Flávio Medeiros, Gabriel Lima, Guilherme Amaral, Sven Apel, Christian Kästner, Már-

cio Ribeiro, and Rohit Gheyi. Investigating misunderstanding code patterns in C open-

source software projects. Empirical Software Engineering, 24:1693–1726, 2019.

[41] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner, Bruno

Ferreira, Luiz Carvalho, and Baldoino Fonseca. Discipline matters: Refactoring of

BIBLIOGRAPHY 71

preprocessor directives in the #ifdef hell. IEEE Transactions on Software Engineering,

44(5):453–469, 2018.

[42] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Larissa Braz, Christian Kästner, Sven

Apel, and Kleber Santos. An empirical study on configuration-related code weaknesses.

In Brazilian Symposium on Software Engineering, pages 193–202. ACM, 2020.

[43] Flávio Medeiros, Iran Rodrigues, Márcio Ribeiro, Leopoldo Teixeira, and Rohit Gheyi.

An empirical study on configuration-related issues: investigating undeclared and un-

used identifiers. In Proceedings of the 2015 ACM SIGPLAN International Conference

on Generative Programming: Concepts and Experiences, GPCE 2015, pages 35–44,

2015.

[44] Melina Mongiovi, Rohit Gheyi, Gustavo Soares, Márcio Ribeiro, Paulo Borba, and

Leopoldo Teixeira. Detecting overly strong preconditions in refactoring engines. IEEE

Transactions on Software Engineering, 44(5):429–452, 2018.

[45] Melina Mongiovi, Rohit Gheyi, Gustavo Soares, Leopoldo Teixeira, and Paulo Borba.

Making refactoring safer through impact analysis. Science of Computer Programming,

93:39–64, 2014.

[46] Melina Mongiovi, Gustavo Wagner, Rohit Gheyi, Gustavo Soares, and Marcio Ribeiro.

Scaling testing of refactoring tools. In International Conference on Software Mainte-

nance and Evolution, 2014.

[47] Delano Oliveira, Reydne Bruno, Fernanda Madeiral, and Fernando Castor. Evaluating

code readability and legibility: An examination of human-centric studies. In 2020 IEEE

International Conference on Software Maintenance and Evolution (ICSME), pages

348–359. IEEE, 2020.

[48] Jonhnanthan Oliveira, Rohit Gheyi, Melina Mongiovi, Gustavo Soares, Márcio Ribeiro,

and Alessandro Garcia. Revisiting the refactoring mechanics. Information & Software

Technology, 110:136–138, 2019.

[49] Norman Peitek, Sven Apel, Chris Parnin, André Brechmann, and Janet Siegmund. Pro-

gram comprehension and code complexity metrics: An fmri study. In 2021 IEEE/ACM

BIBLIOGRAPHY 72

43rd International Conference on Software Engineering (ICSE), pages 524–536. IEEE,

2021.

[50] Norman Peitek, Janet Siegmund, Chris Parnin, Sven Apel, Johannes C Hofmeister, and

André Brechmann. Simultaneous measurement of program comprehension with fmri

and eye tracking: A case study. In Proceedings of the 12th ACM/IEEE international

symposium on empirical software engineering and measurement, pages 1–10, 2018.

[51] Keith Rayner. Eye movements in reading and information processing. Psychological

bulletin, 85(3):618, 1978.

[52] Rachana S Rele and Andrew T Duchowski. Using eye tracking to evaluate alternative

search results interfaces. In Proceedings of the human factors and ergonomics soci-

ety annual meeting, volume 49, pages 1459–1463. SAGE Publications Sage CA: Los

Angeles, CA, 2005.

[53] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gul-

wani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. Learning syntactic program

transformations from examples. In Proceedings of the 39th International Conference

on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pages

404–415, 2017.

[54] Jonathan A. Saddler, Cole S. Peterson, Sanjana Sama, Shruthi Nagaraj, Olga Baysal,

Latifa Guerrouj, and Bonita Sharif. Studying developer reading behavior on stack over-

flow during api summarization tasks. In 2020 IEEE 27th International Conference on

Software Analysis, Evolution and Reengineering (SANER), pages 195–205, 2020.

[55] Dario Salvucci and Joseph Goldberg. Identifying Fixations and Saccades in Eye-

tracking Protocols. In Proceedings of the Symposium on Eye Tracking Research &

Applications, ETRA’00, pages 71–78, 2000.

[56] Timothy R Shaffer, Jenna L Wise, Braden M Walters, Sebastian C Müller, Michael

Falcone, and Bonita Sharif. itrace: Enabling eye tracking on software artifacts within

the ide to support software engineering tasks. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering, pages 954–957, 2015.

BIBLIOGRAPHY 73

[57] Zohreh Sharafi, Timothy Shaffer, Bonita Sharif, and Yann-Gaël Guéhéneuc. Eye-

tracking metrics in software engineering. In 2015 Asia-Pacific Software Engineering

Conference (APSEC), pages 96–103. IEEE, 2015.

[58] Zohreh Sharafi, Bonita Sharif, Yann-Gaël Guéhéneuc, Andrew Begel, Roman Bed-

narik, and Martha Crosby. A Practical Guide on Conducting Eye Tracking Studies in

Software Engineering. Empirical Software Engineering, 25(5):3128–3174, 2020.

[59] Zohreh Sharafi, Zéphyrin Soh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Women

and men—different but equal: On the impact of identifier style on source code read-

ing. In 2012 20th IEEE International Conference on Program Comprehension (ICPC),

pages 27–36. IEEE, 2012.

[60] Bonita Sharif and Jonathan I Maletic. An eye tracking study on camelcase and un-

der_score identifier styles. In 2010 IEEE 18th International Conference on Program

Comprehension, pages 196–205. IEEE, 2010.

[61] Janet Siegmund. Program comprehension: Past, present, and future. In 2016 IEEE

23rd International Conference on Software Analysis, Evolution, and Reengineering

(SANER). IEEE, March 2016.

[62] Janet Siegmund, Christian Kástner, Sven Apel, Chris Parnin, Anja Bethmann, Thomas

Leich, Gunter Saake, and André Brechmann. Understanding understanding source code

with functional magnetic resonance imaging. In Proceedings of the 36th international

conference on software engineering, pages 378–389, 2014.

[63] José Aldo Silva Da Costa and Rohit Gheyi. Evaluating the code comprehension of

novices with eye tracking. In Proceedings of the XXII Brazilian Symposium on Software

Quality, pages 332–341, 2023.

[64] Elvys Soares, Márcio Ribeiro, Guilherme Amaral, Rohit Gheyi, Leo Fernandes,

Alessandro Garcia, Baldoino Fonseca, and André L. M. Santos. Refactoring test smells:

A perspective from open-source developers. In Brazilian Symposium on Systematic and

Automated Software Testing, pages 50–59. ACM, 2020.

BIBLIOGRAPHY 74

[65] Elvys Soares, Márcio Ribeiro, Rohit Gheyi, Guilherme Amaral, and André Santos.

Refactoring test smells with JUnit 5: Why should developers keep up-to-date? IEEE

Transactions on Software Engineering, 2022.

[66] Thierry Sorg, Amine Abbad-Andaloussi, and Barbara Weber. Towards a fine-grained

analysis of cognitive load during program comprehension. In 2022 IEEE Interna-

tional Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,

March 2022.

[67] Anselm Strauss and Juliet Corbin. Basics of Qualitative Research Techniques. Thou-

sand Oaks, CA: Sage publications, 1998.

[68] Vladimir Sulov. Iteration vs recursion in introduction to programming classes: an

empirical study. Cybernetics and Information Technologies, 16(4):63–72, 2016.

[69] Franklyn Turbak, Constance Royden, Jennifer Stephan, and Jean Herbst. Teaching

recursion before loops in cs1. Journal of Computing in Small Colleges, 14(4):86–101,

1999.

[70] Rachel Turner, Michael Falcone, Bonita Sharif, and Alina Lazar. An eye-tracking

study assessing the comprehension of c++ and python source code. In Proceedings of

the Symposium on Eye Tracking Research and Applications, pages 231–234, 2014.

[71] Guido Van Rossum, Barry Warsaw, and Nick Coghlan. Pep 8–style guide for python

code. Python. org, 1565:28, 2001.

[72] Braden Walters, Michael Falcone, Alexander Shibble, and Bonita Sharif. Towards

an eye-tracking enabled ide for software traceability tasks. In 2013 7th International

Workshop on Traceability in Emerging Forms of Software Engineering (TEFSE), pages

51–54. IEEE, 2013.

[73] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shanping

Li. Measuring program comprehension: A large-scale field study with professionals.

IEEE Transactions on Software Engineering, 44(10):951–976, 2017.

