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RESUMO (ABSTRACT)

Os benchmarks são essenciais à investigação científica, uma vez que proporcionam uma forma fiável

de comparar abordagens inovadoras com o padrão académico. Especificamente, benchmarks são

amplamente utilizados em Java para avaliar novas versões da JVM e dos Coletores de Lixo (CL). À

medida que novas cargas de teste e CLs chegam à indústria, é fundamental expandir a nossa

compreensão da gestão dinâmica de memória, estudando como funcionam essas novas estratégias.

Este trabalho estuda o desempenho dos coletores de lixo modernos e estabelecidos na indústria

utilizando HyperAlloc, uma carga de trabalho do Heapothesys Benchmark da Amazon que prevê com

precisão o comportamento de alocação de memória e facilita as comparações entre algoritmos de CL.

A análise fornecida neste documento serve como guia sobre a adequação da Heapothesys para

avaliar os CLs modernos e fornece informações sobre os seus trade-offs de desempenho.
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ABSTRACT

Benchmarks are essential to scientiic research as they provide a

reliable way of comparing novel approaches with the academic stan-

dard. Speciically, benchmarks are widely used in Java to evaluate

new JVM versions and Garbage Collectors (GC). As new bench-

mark suites and collectors arrive in the industry, it is fundamental

to expand our comprehension of memory management by under-

standing how those novel strategies work. This work studies the

performance of modern garbage collectors established in the in-

dustry by using HyperAlloc, a workload of Amazon’s Heapothesys

Benchmark suite that precisely predicts memory allocation be-

havior and facilitates comparisons between GC algorithms. The

analysis provided in this paper serves as a guide on how suitable

Heapothesys is to evaluate modern collectors and provides insights

on their performance trade-ofs.
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1 INTRODUCTION

Benchmarks are a reliable and eicient way to compare new systems

implementations to the industry’s established standards. Systems

and optimization techniques can be evaluated using benchmarks,

such as compiler optimizations, garbage collectors (GC) algorithms,

search engines, and virtual machines. Then, it is standard to com-

pare the benchmarks results between diferent options and choose

the best for a speciic service. Choosing the best version, frame-

work, or garbage collector for a service can have huge implications

on resource utilization, thus impacting the cost of such service.

There are signiicant eforts in evaluating the suitability of bench-

marks. The ideal scenario for the industry is to map real-world ap-

plications into representative benchmarks, making it easy to choose
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a benchmark that suits one’s needs. Consequently, we need to char-

acterize the workloads in benchmarks suites available. For Java,

established suites such as DaCapo (BLACKBURN et al, 2006, [1]),

DaCapo Scala (SEWE et al, 2011, [2]), and SPECjvm2008 (SHIV et al,

2009, [3]) have been submitted to a comprehensive characterization

in the literature (LENGAUER et al, 2017 [4]). Nonetheless, since the

publication of these studies, there have been new benchmarks, Java

versions, and GCs, which now lack documented comparisons.

In this work, we extend the literature on Java benchmarking by

adding a comparative analysis with established GCs on the market

while using new assets like Amazon Corretto, a workload from the

Heapothesys benchmark suite, and Shenandoah GC. Amazon Cor-

retto is an OpenJDK distribution of Java supported by Amazon. This

JDK distribution is a promising alternative for AmazonWeb Service

users because of the long-term commitment of the Corretto team

to make it a default for their clients. The same team announced in

2020 the Heapothesys benchmark suite, a set of workloads that aims

to test fundamental application characteristics that afect garbage

collectors. Finally, Shenandoah is a concurrent compacting garbage

collector that promises consistently low pauses times and overall

improved performance over the default GCs currently on Java.

Our goal is to provide insights into the behavior of the GCs

analyzed in light of the metrics those GCs try to improve. We set

the scope of this work not to comprehend all possible scenarios en-

abled by Heapothesys, as there are multiple workloads with various

parameters to conigure. In the end, we analyzed the HyperAlloc

workload, a benchmark that dynamically tunes allocation behavior

to simulate fundamental application characteristics.

The paper is structured as follows: Section 2 introduces key

concepts on garbage collection in Java and the benchmarks used.

Next, Section 3 details our methodology and experimental tooling.

Section 4 discusses all results, while Section 5 presents previous

work on java memory management. Finally, Section 6 exposes our

conclusions.

2 CONTEXT

2.1 Garbage collection in Java

Garbage Collectors (GC) are responsible for dynamic memory man-

agement in modern programming languages. They are a fundamen-

tal tool of languages with managed environments such as Python,

Java, and Rust. In general, GC algorithms execute three fundamental

operations:

• Mark: determines the reachability of all objects in the JVM

heap;

• Sweep: removes unreachable objects detected in the previous

phase;
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• Compress: optimizes the heap space usage by compressing

the remaining objects.

Although all GCs can be summarized in these operations, each

GC algorithm implements a diferent strategy for memory man-

agement. One of the signiicant decisions one needs to make when

implementing a GC is how to use generations. Heap generations

are partitions that separate old and newly created objects. The ei-

ciency of this method is based on the observation that most objects

are short-lived, called the generational theory. Heap generations

need data structures and operations for moving objects between

them, potentially creating an overhead on the pause times. For that

reason, each GC algorithm chooses diferent numbers and sizes for

their generations, and some ignore this model entirely. Shenandoah,

for example, is a non-generational GC that aims to collect regions

of the heap with the most garbage, whether they are old or young

objects (FLOOD el at, 2016, [5]). To analyze the efects of the use of

generations, we will compare both generational (G1 and Parallel)

and non-generational (Shenandoah) GCs.

Another important aspect of garbage collections is choosing

which events stop application threads and balancing the maximum

and the total pause times. The maximum pause time is associated

with latency because it can be translated as the maximum time an

application will be unresponsive. While in this unresponsive state,

the application can not process requests arrived, thus impacting

latency. On the other hand, the total pause time accumulates all GC

pauses’ duration. The higher the total pause time, the worst is the

application throughput because the application spends less time

processing valuable work and more time blocked by GC threads.

Usually, GCs aim to optimize a speciic metric such as through-

put, latency, and responsiveness by controlling average, maximum,

and total pause time. Depending on the chosen metric, there are

diferent ways of executing the operations of marking, sweeping,

and compressing the heap. One approach is to execute a Stop The

World (STW) pause, block all application threads, and use the ma-

chine resources exclusively to speed up those operations. Another

strategy is to execute some of those operations concurrently with

the application. Furthermore, it is possible to mix STW pauses with

the concurrent approach. Each design choice has trade-ofs: priori-

tizing throughput may impact latency, or a particular generation

layout may lead to caveats with big objects.

As an example, we can briely analyze Parallel’s strategy. Paral-

lelGC parallelizes the collection on the Young region, where newly

created objects are stored, and stops all application threads when

doing it so. This decision leads to more frequent but shorter STW

pauses. In an interactive microservice running Parallel, requests

that hit the application when it was executing one of these fre-

quent STW pauses will be greatly impacted in latency. However,

the shorter pause times cause the total pause time to be lower than

most GCs. In summary, the application spends a signiicant per-

centage of the time doing valuable work (i.e., greater throughput),

but this strategy increases the variance of the requests’ latency.

2.2 Amazon’s Heapothesys Benchmark

Amazon’s Heapothesys is a benchmark suite for the JVM. The Ama-

zon Correto team designed it to test GCs, valuate new garbage

collection strategies, and detect peculiar behavior in latency and

other performance metrics. The Heapothesys suite has two work-

loads that serve diferent purposes: Extremem and HyperAlloc. The

irst mimics production-like behavior mixed with processes of allo-

cation and deallocation of heap space, while the second focuses on

the intricacies of allocation rate and heap occupancy. We focused

on the latter because it can accurately predict the allocation be-

havior, which enables comparisons of the predicted and observed

performances of the GCs.

Understanding the fundamental concepts behind the HyperAlloc

workload is essential to evaluating how the GCs performed on this

benchmark. Corretto’s team modeled HyperAlloc as a synthetic

workload focused on simulating rigid constraints of heap occu-

pancy and allocation rate. Those two constraints, or factors, are

directly responsible for collector stress. HyperAlloc tries to accu-

rately predict allocation behavior based on parameters that can be

tuned by the user, if necessary. That leads to a benchmark where

we can interpret the allocation rate as a factor, i.e., the predicted

allocation rate, and as a metric, i.e., the observed allocation rate.

GCs handle a predicted allocation rate diferently, some performing

better than others, as we will discuss later in the Results section.

3 METHODOLOGY

3.1 Experimental Design

This study aims to answer the following question: how do modern

Java GCs perform under the Heapothesys’ HyperAlloc workload?

To answer this question, we conducted benchmark experiments

to evaluate a set of modern GCs. Another goal of this study is to

create insights into the HyperAlloc behavior to assist future users

in tuning the available benchmarks and which metrics to evaluate.

Our experimental design consists of running the selected bench-

mark for three diferent GCs. We ran three repetitions for each GC

to increase conidence in our results. Our key metrics are related to

object allocation behavior and GC pauses, both of which we dive

deeper into in the Results section.

The chosen GCs were Parallel, Shenandoah, and G1. This set of

collectors provides a variety of memory management strategies to

evaluate. Parallel is known as the throughput collector, i.e., it aims

to maximize the percentage of time running application threads

instead of garbage collection threads. Shenandoah has the unique

feature of running concurrent compacting of the heap to achieve

the lowest maximum pause time. Finally, Garbage First (G1) is the

default GC for Java 11, making it a great base model to compare

the other two.

3.2 Experimental Setup

In all experiments, we used Amazon EC2 virtual machines running

on Amazon Linux 2. We chose the t2.large lavor (2vCPUs, 8 GB of

RAM, general-purpose SSD). We initialized a new virtual machine

for each repetition to guarantee that previous runs do not impact the

following ones. It is well-known in the literature that JVMwarm-up

efects can harm experiment validity, so, before each repetition, we

executed a warm-up run and discarded its results (BLACKBURN

et al, 2008 [6]). Each repetition lasts 600 seconds, as conigured by

a HyperAlloc parameter (-d 600). As for the JVM lags, we used a

512MB heap size (-Xms512m -Xmx512m) and additional lags for

GC logging.
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We had diiculty inding the deinitive Java version for this study

because diferent versions can drastically change how to analyze

logs or conigure the benchmarks. For instance, Shenandoah’s logs

in Java 8 do not follow the uniied GC logging system, but in Java 11

or greater, it does. Using Java 8 would allow us to directly compare

previous works like (LENGAUER et al, 2017 [4]). However, we prior-

itized the uniied GC logging system to guarantee a fair comparison

between GCs (especially Shenandoah) and a more straightforward

analysis pipeline; thus, we used Java 11. Speciically, we used Ama-

zon Correto 11, a distribution of the OpenJDK 11 maintained by

Amazon, which guarantees compatibility with the Heapothesys

suite and solves our logging problems.

3.3 Tooling

We built a benchmark coordinator to run the experiments. This

coordinator is composed of Terraform scripts that automate the

infrastructure and Ansible scripts that set up the machines and

execute the benchmarks. When the repetition ends, the coordinator

transfers the benchmarks’ output and GC logs from the VMs to the

machine that triggered the experiment.

Regarding the infrastructure automation, the user conigures

the number of machines and the EC2 machine coniguration (i.e.,

subnet, tags, lavor), then runs the łterraform applyž command.

These options allowed us to run benchmarks simultaneously in

isolated VMs, saving time when executing repetitions. Destroying

the whole infrastructure is as simple as running the łterraform

destroyž command.

The machine coordination can be divided into four phases: up-

date dependencies, build benchmarks, execute benchmarks, and

backup results. We used Ansible to execute the whole pipeline of

commands because it allows us to write a playbook of pre-deined

actions to conigure all virtual machines simultaneously. The user

can simply execute an łansible-playbookž command to run the

entire experiment with multiple repetitions.

First, the virtual machines need to have all Heapothesys and

GC dependencies. The most important dependencies are JDK tools

(i.e., jar, java, javac), which are not simple to conigure. We needed

to handle conlicts between java versions installed by other de-

pendencies (e.g., maven) and the speciic versions we wanted to

use. There is plenty of room for improvement in usability, but our

tooling solves the dependencies problems for multiple benchmarks

executions.

The last three phases of machine coordination are straightfor-

ward. The build phase compiles the benchmarks set to run. Next,

the execute phase runs the benchmark in the order set in the An-

sible coniguration ile. Finally, the backup phase saves all results

data in a local directory of the machine running the coordinator.

These features help test new conigurations and organize data of

multiple experiments.

4 RESULTS

The following sections describe the behavior of the garbage collec-

tion and heap usage for the experiment using three GCs (Shenan-

doah, G1GC, and ParallelGC) and Heapothesys’ HyperAlloc work-

load. We describe our insights on the GC behavior in the light of

the benchmark’s predeined goals (e.g., Parallel aims to improve

throughput, and Shenandoah tries to minimize GC pause time).

4.1 Allocation Behavior

Heapothesys’ HyperAlloc benchmark, as the name suggests, focuses

on achieving a speciic object allocation rate. Because of that, we

can trust that the benchmark will pressure the JVM in a very similar

fashion across all GCs tested. Then we can compare results in order

to get insights into GC behavior.

We used the average creation rate of objects and the total MBs

allocated to analyze how the benchmark impacted heap usage for

each GC. As discussed in Section 2, we diferentiate the observed

and the expected allocation rates. The expected is set and main-

tained by the benchmark, and the value for all experiments is the

workload’s default: 1024 MBs/sec. The observed allocation rate is

presented as the average creation rate, shown in 1. The goal of

HyperAlloc is to dynamically change its parameters to sustain a

high allocation rate based on the number of CPU cores and heap

size. For that reason, the higher the observed allocation rate and

the total allocated memory, the better.

Figure 1: The average creation rate of objects on the JVM

heap in MBs per second. Smaller values are explicitly shown

to facilitate comparison.

Knowing how to interpret those metrics, our experiments show

that G1 has problems sustaining a high creation rate. 1 shows that

G1 allocates less than 1Mb/sec. 2 also shows that G1 allocated 300x

less in total than the other alternatives. Parallel and Shenandoah

allocated over half a GB per second and more the 300 GB in total.

Shenandoah is known for working as intended regardless of heap

size, but Parallel also allocated more than 500 MBs/sec even with

the small heap size.
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Figure 2: The total amount of allocated heap in GB. G1 results

are explicitly shown to facilitate comparison.

One possibility for the G1 behavior is that the HyperAlloc bench-

mark, with the default coniguration, caused a common G1 caveat

known as allocating Humongous Objects. This problem occurs

when the application creates numerous objects with half (or more)

the GC region size. These Humongous Objects are allocated on

the Old Generation and, due to their size, leave a free and unused

space in the region they are allocated. This will increase the need

for costly defragmentations that, while executing, stop application

threads. HyperAlloc default object size has a random size between

128 bytes and 1 KB. The default G1 region size for a heap of 512MB

is 1MB. We should not have problems with Humongous objects by

these numbers, so we are left with two options: a new caveat for G1

or Hyperalloc dynamic object creation rate is unpredictable. One

way to investigate this in the future is to use an internal agent on

the JVM, like AnTracks, that monitors every object allocated and

enables an in-depth analysis.

4.2 Garbage Collection

The most analyzed metrics in JVM benchmarks are related to GC

pauses. These pauses can be responsible for signiicantly degrading

response time because they force the application into an unrespon-

sive state. We measure this unresponsiveness with the percentage

of time the application threads were executing freely instead of

running a collection, i.e., the application throughput. On the other

hand, the average pause time and the total number of pauses (GC

count) help measure a GC’s impact on response time. High pause

times and frequent collections increase the chances of impacting

the application processing.

Figure 3: Application throughput relative to GC pauses, i.e.,

percentage of time the application spent processing actual

transactions versus time spent in GC activity.

HyperAlloc throughput difers for each GC. Surprisingly, Parallel,

promoted as the throughput collector, presented the worst results.

G1 is 4% better than Parallel, and Shenandoah reaches nearly 100%

throughput. Parallel’s algorithm uses stop-the-world pauses and

concurrent threads to accelerate the GC collection and increase

throughput. However, that strategy only works if pause times or

the number of pauses is low, which was not the case for the Parallel

in our experiments, as shown in 4 and 5. The throughput of G1,

although slightly higher than Parallel’s, is still tiny considering that

G1 allocated orders of magnitude fewer objects than its competitors.

Parallel also presented the worst pause times, reaching 2x the

average for G1 and 10x for Shenandoah (4). This result alone is not

alarming because pause time is not a priority for Parallel; instead,

the throughput is. However, to compensate for a high average pause

time, it is necessary to lower the number of collections, which was

not low enough for Parallel to perform as well as the others (5).

G1 kept the average pause time close to 10ms thanks to its in-

telligent choosing of heap regions to evacuate. However, the GC

count for this collector was the worst, which explains why this G1

is only slightly better than Parallel in terms of throughput. The

results on allocation and GC pauses for G1 indicate that this GC

needs application-speciic tunning or a bigger heap size to perform

appropriately.

Meanwhile, Shenandoah had the best performance in all metrics.

Its strategy of minimizing STW pauses and doing most of the work

concurrently with the application proved to be the best for our sce-

nario. The results show that Shenandoah can withstand small heap

sizes and great allocations rates while maintaining high throughput
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Figure 4: Average GC pause time for each benchmark and

GC.

and low pause times. We can safely say that this GC is an excel-

lent out-of-the-box, i.e., with little to no coniguration, solution for

applications with strict constraints on the metrics analyzed.

Figure 5: The number of GC collections.

5 RELATED WORK

In 2017, LENGAUER et al [4], published łA Comprehensive Java

Benchmark Study on Memory and Garbage Collection Behavior

of DaCapo, DaCapo Scala, and SPECjvm2008ž. This work provides

a detailed view on how to conigure benchmarks (e.g., choosing

warm-up duration and heap size) and documents the efects of

those workloads on heap memory usage. Furthermore, the analy-

sis explains the performance diferences between G1 and Parallel

GCs. Lengauer et al. was a major inspiration for our work, as we

executed similar experiments and analysis. However, we made new

and promising additions: Shenandoah GC and Heapothesys bench-

marks. Another critical diference between our works is the use

of Anttracks for memory and GC monitoring. This tool, or one

with similar capabilities, is highly recommended for future works

because it enables collecting precise data on every allocated object,

thus helping diagnose GC problems.

Another work that evaluates GC performance is łSelecting a

GC for Java Applicationsž (TAVAKOLISOMEH et al, 2021, [7]). In

this study, the authors classiied applications in two types, CPU-

intensive or I/O-intensive, and for each type, they discovered the

best GC for metrics such as heap usage, throughput, and pause time.

The comparisons in Tavakolisomeh’s work helped us understand

trade-ofs between GC algorithms and possible causes for under-

performing. Although the authors included Shenandoah in their

experiments, they did not used the Heapothesys benchmark suite.

6 CONCLUSION

In this paper, we analyzed the behavior of G1, Parallel, and Shenan-

doah GCs when submitted to HyperAlloc, a workload from the

Heapothesys benchmark suite. Shenandoah was the leading GC in

all metrics explored. Its out-of-the-box coniguration can handle

HyperAlloc’s allocation-heavy default coniguration while main-

taining the expected pauses times and throughput. Both Parallel

and G1 underperformed on our tests, as they did not manage to

accomplish what their algorithms proposed. Parallel presented the

worst throughput of all tested GCs, and G1 had diiculty reach-

ing the expected allocation rate. Our results serve as a foundation

for future studies that may dive deeper into the conigurations of

Heapothesys benchmarks and optimization of modern GCs.
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