

CCPgEE/CCT-UFPb

COORDENAÇÃO DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA CENTRO DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE FEDERAL DA PARAÍBA

ESTUDOS SOBRE A PRECISÃO DO FLUXO DE CARGA LINEARIZADO E SUA APLICAÇÃO NA ANÁLISE DE CONTINGÊNCIAS

ANTONIO DO NASCIMENTO EPAMINONDAS 1986

CAMPINA GRANDE - PB

ANTONIO DO NASCIMENTO EPAMINONDAS

ESTUDOS SOBRE A PRECISÃO DO FLUXO DE CARGA LINEARIZADO E SUA APLICAÇÃO NA ANALISE DE CONTIGENCIAS

Dissertação apresentada à Coordenação dos Cursos de Pós-Graduação em Engenharia Elètrica da Universidade Federal da Paraiba, em cumprimento parcial ás exigências para obtenção do Grau de Mestre em Engenharia Elètrica

AREA DE CONCENTRAÇÃO : Processamento da energia

ORIENTADOR : WASHINGTON EVANGELISTA DE MACEDO CO-ORIENTADOR : DAGOBERTO LOURENÇO RIBEIRO

CAMPINA GRANDE

ABRIL - 1986

E63e Epaminondas, Antonio do Nascimento Estudos sobre a precisao do fluxo de carga linearizado e sua aplicacao na analise de contingencias / Antonio do Nascimento Epaminondas. - Campina Grande, 1986. 121 f. : i1. Dissertacao (Mestrado em Engenharia Eletrica) -Universidade Federal da Paraiba, Centro de Ciencias e Tecnologia. 1. Fluxo Eletrico 2. Carga 3. Potencia Linearizada - 4. Sistemas de Potencia - 5. Processamento da Energia 6. Engenharia Eletrica 7. Dissertacao I. Macedo, Washington Evangelista de II. Ribeiro, Dagoberto Lourenco III. Universidade Federal da Paraiba - Campina Grande (PB) IV. Título CDU 621.3.013.1(043)

ESTUDOS SOBRE A PRECISÃO DO FLUXO DE CARGA LINEARIZADO E SUA APLICAÇÃO NA ANÁLISE DE CONTINGÊNCIAS

ANTONIO DO NASCIMENTO EPAMINONDAS

DISSERTAÇÃO APROVADA EM 01/04/86

11/ hi auch

WASHINGTON EVANGELISTA DE MACEDO Orientador

DAGOBERTO LOURENÇO RIBEIRO

Co-Orientador

MANDELL CARVALHO JUNIOR AFONSO DE

Componente da Banca

Sanda ohman A

SREERAMULU RAGHURAM NAIDU Componente da Banca

> CAMPINA GRANDE - PB ABRIL - 1986

A minha esposa e filhos

Eliane

Vanessa, Fabricio e Patricia

AGRADECIMENTOS

A Fundação Universidade Federal do Mato Grosso pela oportunidade de realização deste trabalho através de seu programa de capacitação de docentes.

Ao professor Washington Evangelista de Macedo pelo apoio e orientação.

Ao professor Dagoberto Lourenço Ribeiro pela co-orientação e valiosa colaboração na revisão dos originais e pelas sugestões na organização final do texto.

Ao professor Benemar Alencar de Souza pelo auxilio na implementação computacional das subrotinas para solução de sistemas explorando a esparsidade.

Ao professor Manoel Afonso de Carvalho Jr. pelas discussões durante a anàlise dos resultados e sugestões no direcionamento do trabalho.

Estendo meus agradecimentos aos demais professores, funcionários dos orgãos de apoio e amigos pela colaboração e incentivo na realização deste trabalho.

RESUMO

O presente trabalho tem como objetivos o desenvolvimento e implementação computacional de programas para o estudo de fluxo de carga, incluindo a análise de contingências, com base nos principais modelos de fluxo de potência linearizado, a análise da precisão destes modelos e estudar a utilização de microcomputadores na simulação estática de sistemas de potência.

INDICE

		PAGINA
1	INTRODUÇÃO	02
. 2	FLUXO DE CARGA LINEARIZADO	06
2.1	Introdução	06
2.2	Equações do fluxo de carga na forma geral	06
2.3	Equações do fluxo de carga linearizado	11
2.4	Solução das equações do fluxo	
	de carga linearizado	18
*		
2.4.1	Solução por processos interativos	18
2.4.2	Solução por métodos diretos	19
2.5	Inclusão das perdas no MODELO DC	20
2.5.1	MODELO DC com perdas estimadas	21

• 2	2.5.2	MODELO DC DUPLO	21
2	2.5.3	MODELO DC DUPLO com perdas estimadas	23
• •	2.6	Formas alternativas para linearização	24
	3	IMPLEMENTAÇÃO COMPUTACIONAL	28
	3.1	Introdução	28
	3.2	Caracteristicas gerais	28
	ł		
	3.3	Caracteristicas proprias	30
5	3.3.1	Do MODELO DC	30
3	3.3.2	Do MODELO DC DUPLO	31
	3.3.3	Do MODELO DC com perdas estimadas	32
3	3.3.4	Do MODELO DC DUPLO com perdas estimadas	32
	3.3.5	Do MODELO DC por processo interativo	32
	3.4	Area de memòria requerida	34
	3.5	Implementação em microcomputador	34

.

* *

4	DESEMPENHO DO FLUXO DE CARGA LINEARIZADO	42
4.1	Introdução	42
4.2	Quanto à precisão dos resultados	43
4.2.1	Sistema teste de 14 barras	43
4.2.2	Sistema teste de 30 barras	48
4.2.3	Sistema regional de 248 barras	53
4.3	Quanto ao tempo de processamento	69
5	ANALISE DE CONTIGENCIAS	70
5.1	Introdução	70
5.2	Mètodo da compensação	71
5.3	Verificação do desempenho do método da com- pensação	78
6	CONCLUSOES	82
6.1	Sobre os modelos linearizados	82
6.2	Sobre a simulação em microcomputadores	83
6.3	Sobre a anàlise de contingências	84

. .

.

-

APENDICES

A	METODO I	DA BIFATOP	RAÇÃO		 		85
В	DADOS DO	DS SISTEMA	\s		 ••••	••••	93
B.1	IEEE 14	BUS TEST	SYSTEM		 •••••	•••	94
B.2	IEEE 30	BUS TEST	SYSTEM		 •••••	•••	97
B.3	SISTEMA	REGIONAL	DE 248	BARRAS	 		101

REFERENCIAS BIB	LIOGRAFICAS 12:	2
-----------------	-----------------	---

INDICE DE FIGURAS

FIGURA		PAGINA
2.1 -	Rede genèrica	07
2.2 -	Modelo "pi" equivalente	10
2.3 -	Curva Px0 para os modelos AC e DC	16
2.4 -	Formas alternativas de linearização para	26
	$P_{kl} = g_{kl}(1 - \cos\theta_{kl}) - b_{kl} \sin\theta_{kl}$	
2.5 -	(a) Quadrado dos residuos x abertura angular	27
	(b) Soma dos quadrados dos residuos x rela-	
	ção r/x	27
3.1 -	Fluxograma para o MODELO DC	37
3.2 -	Fluxograma para o MODELO DC DUPLO	38
3.3 -	Fluxograma para o MODELO DC com perdas estima-	
	das	39
3.4 -	Fluxograma para o MODELO DC DUPLO com perdas	
	estimadas	40

FIGURA

PAGINA

3.5 - Fluxograma para solução do MODELO DC pelo mê-	
todo interativo de Gauss-Seidel	. 41
4.1 - Frequência da relação r/x para o sistem	a
teste de 14 barras	. 44
4.2 - Frequência da abertura angular para o sistem	а
teste de 14 barras	. 45
4.3 - Frequência dos fluxos de potência para o sis	-
tema teste de 14 barras	. 45
4.4 - Comparação entre o MODELO DC e os resultado	5
do PECO/AC para o sistema teste de 14 barras.	46
4.5 - Comparação entre o MODELO DC DUPLO e os resul	- 6
tados do PECO/AC para o sistema teste de 1	4
barras	. 46
4.6 - Comparação entre o MODELO DC com inclusão d	Э
perdas e os resultados do PECO/AC para o sis	-
tema teste de 14 barras	. 47
4.7 - Comparação entre o MODELO DC DUPLO com inclu	_
4.7 Comparação entre o nobelo do Dorno com incia	
são de perdas estimadas e os resultados d	S
PECO/AC para o sistema teste de 14 barras	. 47
4.8 - Frequência da relação r/x para o sistema test	9
de 30 barras.	. 48

FIGURA

PAGINA

4.9 - I	Frequência da abertura angular para o sistema	
t	teste de 30 barras	49
4.10 - H	Frequência dos fluxos de potência para o sis-	
t	tema teste de 30 barras	49
4.11 - 0	Comparação entre o MODELO DC e o resultados	
ć	do PECO/AC para o sistema de 30 barras	51
4.12 - 0	Comparação entre o MODELO DC DUPLO e os re-	
Ë	sultados do PECO/AC para o sistema teste de	
3	30 barras	51
4.13 - 0	Comparação entre o MODELO DC com inclusão de	
I	perdas e os resultados do PECO/AC para o sis-	
t	tema teste de 30 barras	52
4.14 - 0	Comparação entre o MODELO DC DUPLO com inclu-	
£	são de perdas estimadas e os resultados do	
F	ECO/AC para o sistema teste de 30 barras	52
4.15 - H	Frequencia da relação r/x para o sistema	
. 1	regional de 248 barras.	54
4.16 - H	Frequência da abertura angular para o sistema	
1	regional de 248 barras	54
4.17 - H	Frequência dos fluxos de potência no sistema	
2	regional de 248 barras	55

4.19 - Comparação entre o MODELO DC e os resultados do PECO/AC para o sistema regional de 248 barras.

> (a) Fluxos de 0 a 50 MW 57 (b) Fluxos de 50 a 100 MW 57

4.20 - Comparação entre o MODELO DC e os resultados do PECO/AC para o sistema regional de 248 barras.

(a) Fluxos de 100 a 500 MW 58
(b) Fluxos superiores a 500 MW 58

 4.21 - Comparação entre o MODELO DC DUPLO e os resultados do PECO/AC para o sistema regional de 248 barras considerando todos os fluxos. .. 59

4.22 - Comparação entre o MODELO DC DUPLO e os resultados do PECO/AC para o sistema regional de 248 barras.

> (a -) Fluxos de 0 a 50 MW 60 (b) Fluxos de 50 a 100 MW 60

4.23 - Comparação entre o MODELO DC DUPLO e os resultados do PECO/AC para o sistema regional de 248 barras.

> (a) Fluxos de 100 a 500 MW 61 (b) Fluxos superiores a 500 MW 61

al

	4.24 -	Comparação entre o MODELO DC com inclsão de	
		perdas e os resultados do PECO/AC para o	
		sistema regional de 248 barras considerando	
		todos os fluxos	63
	4.25 -	Comparação entre o MODELO DC com inclusão de	
		perdas e os resultados do PECO/AC para o	
		sistema regional de 248 barras.	÷.
•		(a) Fluxos de 0 a 50 MW (b) Fluxos de 50 a 100 MW	64 64
	4.26 -	Comparação entre o MODELO DC com inclusão de	
		perdas e os resultados do PECO/AC para o	
		sistema regional de 248 barras.	
		(a) Fluxos de 100 a 500 MW (b) Fluxos superiores a 500 MW	65 65
	4.27 -	Comparação entre o MODELO DC DUPLO com in-	
		clusão de perdas e os resultados do PECO/AC	
*		para o sistema regional de 248 barras consi-	
		derando todos os fluxos	66
	4.28 -	Comparação entre o MODELO DC DUPLO com inclu-	
	* .	são de perdas e os resultados do PECO/AC para	
		o sistema regional de 248 barras.	
		(a) Fluxos de 0 a 50 MW (b) Fluxos de 50 a 100 MW	67 67

PAGINA

FIGURA

4.29 - Comparação entre o MODELO DC DUPLO com inclu-	-
são de perdas e os resultados do PECO/AC para	a
o sistema regional de 248 barras.	
(a) Fluxos de 100 a 500 MW (b) Fluxos superiores a 500 MW	68 68
5.1 - Mètodo da compensação	. 72
5.2 - Método da compensação para múltiplas altera	a-
ções na rede	75
5.3 - Desempenho do método da compensação	79
(a) Para o sistema teste de 14 barras (b) Para o sistema teste de 30 barras	
5.4 - Desempenho do método da compensação para o	
sistema regional de 248 barras	80

1 INTRODUÇÃO

1.1 Considerações gerais

O estudo de fluxo de carga em sistemas de potência tem sido feito hà vàrios anos atravès da modelagem estàtica do sistema, representando-o por um conjunto de equações e inequações algèbricas ^[12]. Podendo a solução destas equações, não-lineares, ser obtida utilizando-se métodos numéricos apropriados tais como: Gauss, Gauss-Seidel e Newton-Raphson, que embora sejam diferentes em sua formulação e apresentem variações em sua eficiência, conduzem a resultados bastantes precisos.

A precisão a que se refere o parágrafo anterior é a precisão numérica dos métodos para um determinado conjunto de dados (informações sobre as gerações, cargas, parâmetros das linhas de transmissão, etc.), uma vez que os resultados do fluxo de carga são bastante sensiveis a variações nos dados fornecidos^[7], as informações obtidas podem ter pouco significado se os valores utilizados na simulação não forem uma boa estimativa de seus valores reais, como ocorre, por exemplo, no planejamento de sistemas a longo prazo quando as informações sobre o comportamento de algumas cargas são insuficientes para uma estimativa razoàvel de seus valores em uma data futura.

Devido à natureza não linear das equações do modelo tradicional (MODELO AC), os métodos numéricos para sua solução baseiam-se em processos iterativos, tornando-o muito lento na simulação de sistemas para certas aplicações, tais como: controle em tempo real, planejamento de redes de transmissão^[3], estudo de confiabilidade^[11], etc., onde è necessàrio simular um mesmo sistema vàrias vezes em um pequeno espaço de tempo, ou simular um grande número de casos considerando-varias configurações de um mesmo sistema, para averiguar as consequências de adições ou retiradas de elementos da rede (análise de contingência). Surge, portanto, a necessidade de se desenvolver modelos de rápida solução. Para atingir este objetivo, mesmo as técnicas de - solução mais rápidas aplicadas ao modelo tradicional, não o tornaram tão rápido quanto era desejado. Mostrou-se necessária a adoção de algumas hipóteses simplificadoras, baseadas em propriedades físicas do sistema de potência; visando a linearização do modelo tradicional, tornando possivel a sua simulação através de um conjunto de equações lineares de fàcil solução.

2

O modelo linearizado (MODELO DC) considera apenas as potências ativas e as fases das tensões nas barras e, portanto, não pode substituir por completo o modelo tradicional, notadamente nos estudos em que o conhecimento de variáveis como o módulo das tensões, os fluxos de potência reativa, derivações dos transformadores, etc., sejam indispensáveis.

Por se tratar de um modelo simplificado, os resultados obtidos com o MODELO DC apresentam desvios em relação aos calculados com o MODELO AC. Todavia, observa-se que estes desvios são menores para as ligações mais sobrecarregadas, e estas são as ligações de maior interesse quando se pretende verificar as condicões de segunrança do sistema, como ocorre frequentemente nos estudos de expansão e na monitoração da segurança atravês de centros de supervisão e controle.

1.2 OBJETIVOS

Os principais objetivos deste trabalho são:

 Implementar programas computacionais utilizando os principais modelos de fluxo de potência linearizado.

4

- Comparar a precisão dos resultados obtidos com a utilização dos modelos linearizados com aqueles obtidos com o modelo tradicional.
- Implementar um programa computacional de anàlise de contigências, usando modelos de fluxo de potência linearizado e simulando as contigências com base no Teorema da Compensação.
- Analisar a utilização de microcomputadores para simulação de redes elétricas através dos modelos linearizados.

1.3 ORGANIZAÇÃO DOS CAPITULOS

No capitulō inicial é feita uma descrição dos objetivos e das aplicações dos modelos linearizados na simulação de sistemas de potência.

No capitulo 2 são desenvolvidos os modelos de fluxo de potência linearizado, apresentando em detalhes as simplificações feitas no modelo tradicional para se obter o modelo linearizado. São também apresentadas e discutidas três formas de linearização do modelo tradicional.

5

No capitulo 3 são apresentadas considerações sobre a implementação computacional dos modelos.

No capitulo 4 são apresentados e discutidos os resultados da aplicação dos modelos na simulação de sistemas testes e de um sistema real.

No capitulo 5 é apresentado o método de análise de contingências baseado no Teorema da Compensação e analisado seu desempenho para contingências simples e múltiplas.

As conclusões são apresentadas no capitulo 6.

2. FLUXO DE CARGA LINEARIZADO

2.1 Introdução

Neste capitulo apresenta-se inicialmente a formulação das equações gerais para o estudo do fluxo de carga. Em seguida adotam-se algumas hipóteses simplificadoras para a linearização destas equações e a consequente obtenção do modelo em corrente continua (MODELO DC). Após a linearização, propoê-se a inclusão das perdas no modelo linearizado visando tornà-lo mais próximo do sistema real, não linear. Finalmente, são apresentadas formas alternativas para a linearização do modelo original.

2.2 Equações do fluxo de carga na forma geral

O problema do fluxo de carga consiste na determinação do estado de um sistema de potência em regime permanente. Usualmente, o estado do sistema é obtido a partir da solução das equações do circuito representativo do sistema em sua forma nodal. As variàveis de interesse no problema são as tensões nodais, em módulo e fase, com relação a uma referência geralmente a terra.

Para efeito de obtenção das equações do fluxo de carga, considere-se a rede genérica apresentada na figura 2.1, onde \hat{y}_{kl} é a admitância entre os nos <u>k</u> e <u>l</u>, e \hat{y}_{ko} é a admitância do ramo entre o no <u>k</u> e a referência.

Figura 2.1 - Rede genèrica

A corrente injetada em um nò \underline{k} , \hat{I}_k , è igual a soma de todas as correntes dos ramos ligados ao nò \underline{k} . Portanto:

$$\hat{\mathbf{I}}_{k} = \hat{\mathbf{I}}_{ko} + \hat{\mathbf{I}}_{k1} + \hat{\mathbf{I}}_{k2} + \dots + \hat{\mathbf{I}}_{kn}$$

$$\hat{\mathbf{I}}_{k} = \hat{\mathbf{V}}_{k}\hat{\mathbf{y}}_{ko} + (\hat{\mathbf{V}}_{k}\hat{-}\hat{\mathbf{V}}_{1})\hat{\mathbf{y}}_{k1} + (\hat{\mathbf{V}}_{k}\hat{-}\hat{\mathbf{V}}_{2})\hat{\mathbf{y}}_{k2} + \dots + (\hat{\mathbf{V}}_{k}\hat{-}\hat{\mathbf{V}}_{n})\hat{\mathbf{y}}_{kn}$$

$$\hat{\mathbf{I}}_{k} = -\hat{\mathbf{y}}_{k1}\hat{\mathbf{V}}_{1} - \hat{\mathbf{y}}_{k2}\hat{\mathbf{V}}_{2} + \dots + (\hat{\mathbf{y}}_{ko}\hat{+}\hat{\mathbf{y}}_{k1}\hat{+}\dots + \hat{\mathbf{y}}_{kn})\hat{\mathbf{V}}_{k} + \dots - \hat{\mathbf{y}}_{kn}\hat{\mathbf{V}}_{n}$$

7

$$\hat{I}_{k} = \sum_{l=1}^{n} \hat{Y}_{kl} \hat{V}_{l}$$
 (2.1)

Onde:

$$Y_{kk} = (\hat{y}_{k0} + \hat{y}_{k1} + ... + \hat{y}_{kn})$$
 (2.2a)
 $\hat{Y}_{k1} = -\hat{y}_{k1}$ (2.2b)

8

A equação 2.1 pode ser escrita na forma matricial

$$\overline{I} = [Y] \overline{V}$$
 (2.3)
Onde:

 \bar{I} - Vetor das injeções de corrente cujas componentes são $\hat{I}_{\mathbf{k}}.$

 \overline{V} - Vetor das tensões nodais de componentes \overline{V}_k .

 $[Y] - Matriz admitância nodal, cujos elementos diagonais <math>\hat{Y}_{kk}$ são obtidos pela soma das admitâncias de todos os ramos incidentes no nò <u>k</u>, e os elementos não diagonais, \hat{Y}_{kl} , obtidos pelo negativo da admitância do ramo que liga os nòs <u>k</u> e <u>l</u>.

Usualmente são especificadas as potências injetadas nas barras, \hat{S}_k , ao invês das correntes, \hat{I}_k e, assim, a partir da relação $\hat{S}_k^* = \hat{V}_k^* \hat{I}_k$ a equação 2.1 pode ser escrita da seguinte forma:

$$\hat{s}_{k}^{*} = \hat{v}_{k}^{*} \sum_{l=1}^{n} \hat{y}_{kl} \hat{v}_{l}$$
 (2.4)

Explicitando a potência injetada em suas compenentes retangulares, tem-se:

$$P_{k} - jQ_{k} = \hat{V}_{k}^{*} \sum_{l=1}^{n} \hat{Y}_{kl} \hat{V}_{l}$$
 (2.5)

)

Esta é uma das equações básicas para o estudo do fluxo de carga, e nela, os valores de P_k e Q_k serão positivos quando forem potências injetadas na barra, e negativas quando forem potências absorvidas.

A equação 2.5, por ser complexa, pode ser decomposta em duas equações reais envolvendo quatro grandezas associadas a cada barra: P_k , Q_k , $V_k = |\hat{V}_k|$ e a fase da tensão, Θ_k . A sua solução, portanto, só é possível se duas destas quatro variáveis forem fixadas. Usualmente, as barra são classificadas em função das variáveis que nela são fixadas: BARRA DE CARGA (PQ) - São fixadas a potência ativa e reativa liquida (geração menos a carga) injetada na barra (nó), ficando o módulo, V_k , e a fase, Θ_k , da tensão como icôgnitas.

BARRA DE TENSÃO CONTROLADA (PV) - São especificadas o mòdulo da tensão, V_k , e a potência ativa gerada, Pg_k , restando como icògnitas a fase da tensão e a potência reativa gerada na barra.

BARRA DE BALANÇO ("SWING") - Nesta são fixadas o módulo e a fase da tensão (tomada como referência), ficando como icógnitas a potência, ativa e reativa, a ser gerada na barra. A existência de uma barra deste tipo è necessària para solucionar as equações do fluxo de carga, uma vez que as perdas no sistema também são uma icògnita, não sendo possivel ,portanto, especificar a potência gerada em todas as barras.

Após a solução do sistema de equações resultante da aplicação da equação 2.5 a todas as barras do sistema, o fluxo de potência em todas as linhas (ramos) pode ser determinado a partir das tensões nodais. Para isto, considere-se o modelo "pi" para as linhas e transformadores mostrado na figura 2.2.

Figura 2.2 Modelo "pi" equivalente

A corrente \hat{I}_{kl} calculada em <u>k</u> e considerada positiva no sentido de <u>k</u> para <u>l</u>, è dada por:

$$\hat{t}_{k1} = (\hat{v}_k - \hat{v}_1) \hat{y}_{k1} + \hat{v}_k \hat{y}_k^{sh}$$
 (2.6)

O fluxo de potência na linha k-l calculado em \underline{k} e considerado positivo no sentido de \underline{k} para \underline{l} é, portanto, igual a :

$$\hat{S}_{kl} = P_{kl} + jQ_{kl} = \hat{V}_k \hat{I}_{kl} = \hat{V}_k (\hat{V}_k^* - \hat{V}_l^*) \hat{g}_{kl} + \hat{V}_k \hat{V}_k^* \hat{g}_k^{sh} \quad (2.7)$$

O fluxo de potência de <u>l</u> para <u>k</u> è obtido de maneira anàloga;

$$\hat{\mathbf{I}}_{1k} = (\hat{\mathbf{v}}_{1} - \hat{\mathbf{v}}_{k}) \hat{\mathbf{y}}_{1k} + \hat{\mathbf{v}}_{1} \hat{\mathbf{y}}_{1}^{\mathrm{sh}}$$
(2.8)
$$\hat{\mathbf{S}}_{1k} = \mathbf{P}_{1k} + \mathbf{j}\mathbf{Q}_{1k} = \hat{\mathbf{v}}_{1} \hat{\mathbf{I}}_{1k}^{*} = \hat{\mathbf{v}}_{1} (\hat{\mathbf{v}}_{1}^{*} - \hat{\mathbf{v}}_{k}^{*}) \hat{\mathbf{y}}_{1k} + \hat{\mathbf{v}}_{1} \hat{\mathbf{v}}_{1}^{*} \hat{\mathbf{y}}_{1}^{\mathrm{sh}}$$
(2.9)

As perdas na linha k-l são calculadas a partir de: $\hat{s}_{kl}^{p} = \hat{s}_{kl} + \hat{s}_{lk}$ (2.10)

Substituindo as equações 2.7 e 2.9 em 2.10 e sabendo que no modelo "pi" $\hat{y}_k^{sh} = \hat{y}_l^{sh}$, resulta:

$$\hat{s}_{kl}^{p} = (\hat{v}_{k} - \hat{v}_{l})(\hat{v}_{k}^{*} - \hat{v}_{l}^{*})\hat{g}_{kl} + (\hat{v}_{k}\hat{v}_{k}^{*} + \hat{v}_{l}\hat{v}_{l}^{*})\hat{g}_{k}^{sh}$$
(2.11)

As equações 2.5 e 2.7 constituem o conjunto de equações fundamentais para o estudo formal do fluxo de carga em sistemas de potência, e será referido neste trabalho como MODELO AC.

2.3 Equações do fluxo de carga linearizado (MODELO DC)

As equações do fluxo de carga desenvolvidas na seção anterior envolvem os elementos da matriz admitância nodal e para efeito da linearização è conveniente escrevêlas em função dos parâmetros do modelo "pi-equivalente" representado na figura 2.2, o que serà feito a seguir.

A admitância série do circuito "pi" em função da resistência e da reatância série, é dada por:

$$\hat{\mathbf{y}}_{kl} = \mathbf{g}_{kl} + \mathbf{j}\mathbf{b}_{kl} = \frac{1}{\hat{\mathbf{z}}_{kl}} = \frac{\mathbf{r}_{kl}}{\mathbf{r}_{kl}^2 + \mathbf{x}_{kl}^2} - \mathbf{j} \frac{\mathbf{x}_{kl}}{\mathbf{r}_{kl}^2 + \mathbf{x}_{kl}^2}$$
 (2.12)

Ou seja, a condutância g $_{kl}$ e a susceptância série b $_{kl}$ são dadas, respectivamente, pelas expressões:

$$g_{kl} = \frac{r_{kl}}{r_{kl}^2 + x_{kl}^2}$$
(2.13)

$$b_{kl} = \frac{-x_{kl}}{r_{kl}^2 + x_{kl}^2}$$
(2.14)

e a admitância em paralelo em função da metade da susceptância da linha é:

$$\hat{y}_{ko} = j b_{kl}^{sh}$$
 (2.15)

Escrevendo os elementos da matriz admitância nodal em função destes parâmetros, obtem-se:

$$\hat{Y}_{kk} = j b_k^{sh} + \sum_{\substack{l=1\\l \neq k}}^{n} (j b_{kl}^{sh} + g_{kl} + j b_{kl})$$
 (2.16)

$$\hat{Y}_{kl} = -(g_{kl} + jb_{kl})$$
 (2.17)

Fazendo $\hat{V}_k = V_k e^{j\Theta k}$, substituindo as equações 2.16 e

12

2.17 nas equações 2.5 e 2.7, determina-se as expressões para:

Potência injetada nas barras;

$$P_{k} = V_{k} \sum_{\substack{l=1 \\ l \neq k}}^{n} (V_{k} g_{kl} - V_{l} g_{kl} \cos \theta_{kl} - V_{l} b_{kl} \sin \theta_{kl}) \quad (2.18)$$

$$Q_{k} = -b_{k}^{sh} V_{k}^{2} + V_{k} \sum_{\substack{l=1 \\ l \neq k}}^{n} (-V_{k} b_{kl} - V_{k} b_{kl}^{sh} + V_{l} b_{kl} \cos \theta_{kl} - V_{l} g_{kl} \sin \theta_{kl}) \quad (2.19)$$

Fluxo de potência na linha k-1;

$$P_{kl} = V_{k}^{2}g_{kl} - V_{k}V_{l}g_{kl}\cos\theta_{kl} - V_{k}V_{l}b_{kl}\sin\theta_{kl}$$
(2.20)
$$Q_{kl} = -V_{k}^{2}(b_{kl}+b_{kl}^{sh}) + V_{k}V_{l}b_{kl}\cos\theta_{kl} - V_{k}V_{l}g_{kl}\sin\theta_{kl}$$
(2.21)

Perdas na linha k-l;

$$P_{kl}^{p} = g_{kl} (V_{k}^{2} + V_{l}^{2} - 2V_{k}V_{l}\cos\theta_{kl})$$
 (2.23)

$$Q_{kl}^{p} = -b_{kl}^{sh} (V_{k}^{2} + V_{l}^{2}) - b_{kl} (V_{k}^{2} + V_{l}^{2} - 2V_{k}V_{l}\cos\theta_{kl}) \quad (2.24)$$

Onde: $\theta_{kl} = \theta_k - \theta_l$ - Abertura angular da ligação k-l.

As equações acima correspondem às equações do fluxo de carga em função dos parâmetros do modelo "pi"-equivalente, e constituem um conjunto de equações não lineares envolvendo as variàveis V_k , $V_l \in \Theta_{kl}$.

A linearização das equações do fluxo de carga é obtida aplicando-se as seguintes hipóteses simplificadoras: 1 - As perdas ativas do sistema podem ser desprezadas.

- 2 Todas as barras são de tensão controlada (PV) e os môdulos das tensões são especificados em 1 pu.
- 3 As aberturas angulares nas linhas são tais que é possivel aproximar-se sen $\theta_{kl} = \theta_{kl} = \theta_k \theta_l$.
- 4 A reatância e a resistência das linhas de transmissão são tais que: x_{kl} >> r_{kl} .

Se os termos correspondentes às perdas ativas, equação 2.22, forem desprezados nas expressões 2.18 e 2.20, ter-se-à:

$$P_{k} = \sum_{\substack{l=1\\l \neq k}}^{n} -V_{k}V_{l}b_{kl} \operatorname{sen}\theta_{kl}$$
(2.25)

$$P_{kl} = -V_k V_l b_{kl} \operatorname{sen} \theta_{kl}$$
 (2.26)

Com as hipòteses 2 e 3, as equações acima são reduzidas á forma;

$$P_{k} = \sum_{\substack{l=1\\l \neq k}}^{n} -b_{kl}(\theta_{k} - \theta_{l})$$
 (2.27)

$$P_{kl} = -b_{kl}(\theta_k - \theta_l) - (2.28)$$

A equação 2.27 pode ser escrita na forma matricial como:

$$\bar{\mathbf{P}} = [\mathbf{B}] \,\bar{\boldsymbol{\Theta}} \tag{2.29}$$

Onde:

- P Vetor das injeções de potência ativa, P_k.
 - $\bar{\Theta}$ Vetor das fases das tensões nodais, Θ_k .
 - [B] Matriz susceptância nodal, cujos elementos são: $B_{kk} = \sum_{r=0}^{n} -b_{kl}$ (2.30a)

$$\begin{array}{c}
l=1\\ l\neq k\\
B_{kl} = b_{kl} \quad (2.30b)
\end{array}$$

Considerando a hipòtese 4, a equação 2.14 pode ser aproximada para:

$$b_{kl} = \frac{-x_{kl}}{r_{kl}^2 + x_{kl}^2} \cong \frac{-1}{x_{kl}}$$
 (2.31)

e a equação 2.27 se reduz a;

$$P_{kl} = \frac{\Theta_k - \Theta_l}{x_{kl}}$$
 (2.32)

O sistema de equações 2.29 corresponde ao modelo linearizado para a rede e ao que se convencionou chamar de MODELO EM CORRENTE CONTINUA, (MODELO DC), decorrente da analogia que pode ser feita entre a equação 2.32 e a lei de Ohm, sendo P_{kl} a corrente, x_{kl} a resistência e $(\theta_k - \theta_l)$ a tensão.

A matriz [B] definida por 2.30a e 2.30b è singular, pois, qualquer uma de suas linhas (ou colunas) pode ser obtida por uma combinação linear das demais. Para proceder a solução do sistema 2.29 è necessário a adoção de uma referência na rede, abandonando-se a referência usual que é a terra, e eliminando-se da matriz [B] a linha e a coluna correspondentes à barra adotada como referência, possibilitando, portanto, a sua inversão para determinar as fases das tensões nas barra a partir de:

$$\bar{\Theta} = [B]^{-1} \bar{P}$$

(2.33)

16

Obtendo-se os fluxos nas linhas, em seguida, através da equação 2.32.

Este modelo simplificado, proporciona a simulação do sistema através de um conjunto de equações lineares, cuja solução è bem mais ràpida que o processo iterativo requerido pelas equações não lineares do modelo tradicional, (2.5). Alèm da redução do esfôrço computacional para simulação do sistema, o MODELO DC apresenta outra vantagem decorrente da linearização do MODELO AC. Considere-se a figura 2.3.

A curva 1 representa a potência que flui através de uma linha de reatância x_{kl} com uma abertura angular $(\theta_k - \theta_l)$ segundo o MODELO AC. A curva 2 representa o fluxo na linha segundo o MODELO DC.

Observe-se que, para um nivel de carga P_1 ambos os modelos fornecem uma solução. Já para um nivel de carga mais elevado P_2 ($P_2 > P_{max}$), o MODELO AC não apresentará solução e a simulação terminará com a não convergência do método, sem que seja fornecida qualquer informação sôbre a linha cuja capacidade de transmissão está sendo excedida. O MODELO DC, por sua vez, apresentará uma solução, que embora esteja fora da realidade, fornece, pelo menos, uma estimativa do excesso de potência ativa que passa pela linha.

O MODELO DC possibilita ainda, que a simulação de modificações na topologia da rede (retiradas ou adições de linhas), que implicam em alterações na matriz [B], seja feita diretamente, com baixo custo computacional, atravês de métodos que fornecam a nova solução em função da matriz inversa, ou seus fatores, do sistema original e da solução do caso base, tornando-o particularmente adequado para o estudo de contigências. 2.4 Solução das equações do fluxo de carga linearizado

A solução do sistema de equações 2.29 pode ser obtida através de processos iterativos ou de métodos de solução direta.

2.4.1 Por processos iterativos

Dentre os vários métodos iterativos existentes para a solução de sistemas de equações lineares, o método de Gauss-Seidel apresenta-se como o mais difundido pela simplicidade de sua formulação e por ser de fácil implementação computacional. A aplicação deste método na solução do sistema 2.29 será mostrado a seguir.

Inicialmente, é preciso escrever as equações do sistema $\overline{P}=[B]\overline{\Theta}$ numa forma recursiva. Isolando-se a equação de cada no:

$$P_{k} = \sum_{\substack{l=1\\l \neq k}}^{n} -b_{kl} (\Theta_{k} - \Theta_{l})$$

expandindo-se o somatório e resolvendo para θ_k :

$$\Theta_{k} = \frac{P_{k} - \sum_{\substack{l=1\\l \neq k}}^{n} b_{kl} \Theta_{l}}{\sum_{\substack{l=1\\l \neq k}}^{n} -b_{kl}}$$

A solução do sistema , $\overline{\Theta}$, è obtida executando-se os seguintes passos:

- 1 Estima-se uma solução inicial $\bar{\Theta}^{(i)}$, i=0.
- 2 Para cada nò, calcula-se o valor de Θ_k através da equação 2.34. Sendo este novo valor utilizado no cálculo de Θ_k para os nós seguintes.
- 3 Apòs o càlculo em todos os nòs, esta nova solução, $\bar{\Theta}^{(i+1)}$, è comparada com a solução anterior $\bar{\Theta}^{(i)}$, calculando-se as correções efetuadas em cada nò: $\Theta_k^{(i+1)} - \Theta_k^{(i)}$. Se a maior destas correções for menor que uma tolerância prè-determinada, $\bar{\Theta}^{(i+1)}$ è tomado como a solução. Caso contràrio, os passos 2 e 3 devem ser repetidos atè que esta condição

A velocidade de convergencia deste processo pode ser aumentada adicionando-se a $\overline{\Theta}^{(i)}$ as correções, $\Theta_k^{(i+1)}-\Theta_k^{(i)}$, multiplicadas por um fator de aceleração $\alpha > 1$. Devendo este fator ser escolhido em função da ordem do sistema a ser resolvido^[2].

2.4.2 Por métodos de solução direta

seja satisfeita.

Os métodos de solução direta baseiam-se na eliminação de Gauss para determinar a inversa da matriz dos coefi-
cientes, [B], ou na sua decomposição em fatores triangulares. Sendo a solução do sistema obtida multiplicando-se a matriz inversa, ou seus fatores, pelo vetor independente.

Para sistemas com pequeno número de barras è possivel inverter a matriz [B], de forma que a solução do sistema 2.29 pode ser obtida diretamente da equação 2.33. Para sistemas com grandes dimensões, torna-se inviàvel determinar explicitamente a matriz [B]⁻¹, pois esta em geral è cheia, ao contràrio da matriz [B] que è altamente esparsa. Nestes casos è conveniente utilizar técnicas de esparsidade, pelas quais apenas os elementos não nulos são armazenado e processados, e obter a solução do sistema 2.29 atravès de métodos de fatoração da matriz [B]. No presente trabalho foi utilizado o método da bifatoração^[15] apresentado no apêndice A.

2.5 Inclusão das perdas no MODELO DC

Em redes de grandes dimensões, as perdas no sistema de transmissão podem assumir uma parcela significativa da potência gerada na barra de referência. Em consequência, os fluxos calculados pelo MODELO DC para as linhas que se ligam diretamente, ou estão próximas, á barra de balanço diferem substancialmente daqueles calculados pelo MODELO AC, devido a não consideração das perdas do sistema e da consequente redução da geração nesta barra. O desempenho do MODELO DC pode ser melhorado com a inclusão das perdas, de forma aproximada, com um pequeno esfôrço de cálculo adicional, como descrito nas seções seguintes.

2.5.1 MODELO DC com perdas estimadas

Neste modelo, o vetor de injeções nodais è definido como:

$$\bar{P} = \bar{P}_{g} - (1 + E/100) \bar{P}_{c}$$
 (2.35)

P - Vetor da potência liquida injetada.

Onde:

 \bar{P}_{g} - Vetor de geração.

 \bar{P}_{c} - Vetor de carga.

E - Valor estimado para as perdas em percentagem da carga total do sistema.

Ou seja, o montante estimado para as perdas do sistema è distribuido nas barras proporcionalmente ao valor da carga em cada uma delas. Com este procedimento, de baixo custo computacional, os resultados fornecidos por este modelo são mais significativos que aqueles obtidos com o MODELO DC sem inclusão das perdas.

2.5.2 MODELO DC DUPLO

. Com as mesmas hipóteses simplificadoras feitas para

obtenção do MODELO DC, porêm sem desprezar as perdas, a equação 2.18 pode ser reescrita na forma:

$$P_{k} - \sum_{\substack{l=1 \\ l \neq k}}^{n} g_{kl} (1 - \cos \theta_{kl}) = \sum_{\substack{l=1 \\ l \neq k}}^{n} - b_{kl} \theta_{kl}$$
 (2.36)

Considerando os dois primeiros termos da expansão de Taylor para a função cosseno, o termo cos θ_{kl} pode ser aproximado para:

$$\cos\theta_{kl} \cong 1 - \theta_{kl}^2/2 \tag{2.37}$$

que levado a equação 2.36 resulta:

$$P_{k} - (1/2) \sum_{\substack{l=1\\l \neq k}}^{n} g_{kl} \Theta_{kl}^{2} = \sum_{\substack{l=1\\l \neq k}}^{n} -b_{kl} \Theta_{kl}$$
(2.38)

A equação acima é idêntica á equação 2.27 obtida para o MODELO DC, exceto que o termo correspondente as perdas aparece explicitamente no primeiro membro, que é dado pela potência ativa injetada na barra <u>k</u> menos a metade das perdas ativas de todas as linhas que estão ligadas a esta barra.

Para solução do sistema de equações, não lineares, definido por 2.38 pode ser adotado um procedimento dividido em três passos ou iterações:

1 - Utilizar o MODELO DC para determinar uma solução temporária $\bar{\theta}$ ' resolvendo o sistema;

 $\bar{P} = [B] \bar{\Theta}'$

(2.39)

2 - A partir da solução temporária $\overline{\Theta}'$, calcular as novas injeções nas barras, \overline{P}' , considerando as perdas;

$$P'_{k} = P_{k} - (1/2) \sum_{\substack{l=1\\l \neq k}}^{n} g_{kl} \Theta_{kl}^{,2}$$
 (2.40)

3 - Obter a solução final, $\bar{\Theta},$ resolvendo o sistema:

 $\bar{P}' = [B] \bar{\Theta}$

(2.41)

A denominação MODELO DC DUPLO decorre do fato do MODELO DC ser executado duas vezes, passos 1 e 3.

O cálculo das cargas adicionais, utilizando a solução temporária $\bar{\Theta}$, consiste em uma forma mais precisa para inclusão das perdas no modelo linearizado, e os resultados obtidos apresentam uma melhoria significativa em comparação com aqueles do MODELO DC sem perdas, e são tambem melhores que o do MODELO DC COM PERDAS ESTIMADAS.

2.5.3 MODELO DC DUPLO com perdas estimadas

A formulação deste modelo é idêntica á do MODELO DC DUPLO, exceto que no primeiro passo para a solução do sistema de equações 2.39, utiliza-se o MODELO DC com uma estimativa das perdas para obter a solução temporária $\overline{\Theta}$, como descrito na seção 2.5.1.

Os resultados obtidos com este modelo apresentam uma pequena melhoria em relação áqueles do MODELO DC DUPLO.

2.6 Formas alternativas para linearização

Considere a ligação k-l mostrada na figura 2.4a. O fluxo de potência de <u>k</u> para <u>l</u> considerando as tensões terminais iguais a 1 pu è, pela equação 2.20, dado por:

$$P_{kl} = g_{kl} (1 - \cos\theta_{kl}) - b_{kl} \sin\theta_{kl}$$
 (2.42)

O gràfico de $P_{kl} \times \Theta_{kl}$ è a curva não linear mostrada na figura 2.4b, onde tambem são apresentadas três formas possiveis de linearização da equação 2.42.

LINEARIZAÇÃO - 1

Reta tangente no ponto de origem com inclinação:

$$\frac{dP_{kl}}{d\Theta_{kl}} = -b_{kl} = \frac{x_{kl}}{r_{kl}^2 + x_{kl}^2}$$
(2.43)

LINEARIZAÇÃO - 2_

Reta secante passando pela origem com inclinação:

$$\frac{dP_{kl}}{d\Theta_{kl}} = \frac{1}{x_{kl}}$$
(2.44)

LINEARIZAÇÃO - 3

Reta secante passando pela origem com iclinação igual a da tangente no ponto de inflexão da curva:

$$\frac{dP_{kl}}{d\Theta_{kl}} = \left(\begin{array}{cc} 2 & 2 & 1/2 \\ g_{kl} + b_{kl} \end{array} \right)^2 = \left| \begin{array}{c} \hat{y}_{kl} \end{array} \right|$$
(2.45)

Esta è uma inclinação intermediária entre as duas apresentadas anteriormente.

A figura 2.5a mostra o quadrado dos residuos para cada tipo de linearização em função da abertura angular Θ_{kl} , para uma linha com a relação r/x igual a 1, sendo esta uma situação extrema para as linhas em sistemas de EAT e UAT.

Pela figura 2.5a vê-se que todas as linearizações apresentam maiores erros para valores negativos de θ_{kl} e a LINEARIZAÇÃO-1 é uma melhor aproximação tanto para valores negativos de θ_{kl} como para valores positivos.

A figura 2.5b mostra a soma dos quadrados dos residuos (SQR) calculada para $-30^{\circ} < \Theta_{kl} < +30^{\circ}$ em função da relação r/x da linha. Verifica-se que a LINEARIZAÇÃO-1 apresenta sempre a menor soma dos quadrados de seus residuos e, portanto, é uma melhor aproximação que as linearizações 2 e 3.

3. IMPLEMENTAÇÃO COMPUTACIONAL

3.1 Introdução

Neste capitulo descreve-se a implementação computacional dos programas desenvolvidos para a solução do fluxo de carga linearizado pelos quatro métodos apresentados no capitulo anterior.

Inicialmente são apresentadas as caracteristicas comuns a todos os programas. Os aspectos particulares a cada um deles serão descritos em separado.

3.2 Caracteristicas gerais

A programação dos quatro métodos apresentados no capitulo anterior envolve caracteristicas comuns a todos eles tanto na entrada e manipulação dos dados quanto na própria resolução do sistema de equações algébricas. A enumeração destas caracteristicas é feita a seguir: determinados no caso base.

No caso de alterações na configuração do sistema, a retirada ou adição de um novo elemento é representada por injeções nodais extras, calculadas pelo método da compensação, definindo-se um novo vetor de injeções. A solução para a rede modificada é obtida por substituição direta. O fluxograma para este método é apresentado na figura 3.1.

3.3.2 Do MODELO DC DUPLO

A inclusão das perdas no método DC é feita partindo-se da potência liquida injetada nas barras, (\bar{P}) , e obtendo-se a solução do sistema \bar{P} =[B] $\bar{\Theta}$, que é considerada como uma solução inicial. A partir deste estado inicial, a potência dissipada em cada elemento é calculada e a metade de seu valor é adicionada em seus nos terminais como cargas ficticias, definindo-se um novo vetor de injeções nodais (\bar{P}') . O estado da rede é obtido por substituição deste novo vetor.

Desejando-se uma nova solução em virtude de alterações das cargas ou geração nas barras, bem como modificações na rede, esta será obtida considerando que as perdas no sistema permanecem constantes, computando-se as injeções modificadas diretamente no vetor (\bar{P} ') e fazendo a substituição direta. A figura 3.2 mostra o fluxograma para este método. 3.3.3 Do MODELO DC com perdas estimadas

A implementação deste método è idêntica a do método DC simples, exceto que a potência liquida injetada nas barras é calculada considerando as cargas acrescidas do valor percentual estimado para as perdas do sistema. Seu fluxograma é mostrado na figura 3.3.

3.3.4 Do MODELO DC DUPLO com perdas estimadas

O fluxograma para este mètodo è apresentado na figura 3.4 e sua implementação è semelhante a do mètodo DC duplo, sendo o cálculo da potência dissipada em cada elemento feito a partir do estado da rede calculado com a potência absorvida pelas cargas, nelas incluido o percentual estimado para as perdas, como no item anterior.

3.3.5 Do MODELO DC por processo interativo

O método de gauss-seidel, descrito na seção 2.4.1, foi implementado segundo o fluxograma apresentado na figura 3.5.

Observa-se que para alterações das injeções nas

barras ou na topologia da rede, todo o processo iterativo para a solução do sistema de equações precisa ser repetido em cada caso. Isto torna o programa pouco eficiente em algumas aplicações para as quais o modelo linearizado foi originalmente desenvolvido.

Pode-se apontar, pelo menos, uma outra restrição ao uso do processo interativo. Em alguns casos, é necessário um grande número de iterações (aumentando o tempo de processamento) para que a convergência seja alcançada, a depender da ordem do sistema e da tolerância especificada.

A tabela abaixo mostra o desenpenho deste processo na solução de sistemas de 14, 30 e 248 barras.

Num. de barras	Média resid. pot. ativa	Número de iterações	Tempo de pro- cessamento (s)
14	0.422x10-3	23	1.36
30	0.782x10-3	71	3.18
248	0.172x10-2	244	47.15

Tendo em vista a reduzida eficiência deste programa, ele não foi utilizado nos estudos subsequentes deste trabalho.

3.4 Area de memória requerida

Os programas implementados possuem a capacidade de processar sistemas de até 500 barras e 1000 linhas, requerendo para tanto as áreas de memória apresentadas na tabela abaixo.

PROGRAMA	Area requerida em Kbytes	
MODELO DC	163,720	
MODELO DC DUPLO	166,592	
MODELO DC com perdas estimadas	163,720	
MODELO DC DUPLO com perdas estimadas	166 ,592	

3.5 Implementação em microcomputador

Os programas desenvolvidos nas seções anteriores foram implementados com pleno êxito no microcomputador NEXUS-1600 da Scopus (compativel com o IBM-PC) possuindo a seguinte configuração:

- Frequência de "clock": 4,77 MHz
- 256 Kbytes de memória
- 2 acionadores de discos flexiveis de 5 1/4"
- Dotado do processador de ponto flutuante 8087
- Impressora de matriz de pontos de 200 cps.

A solução obtida no microcomputador apresentou uma excelente precisão númérica (exatidão nos cálculos) e melhor que aqueles fornecidos, utilizando-se os mesmos programas, pelo computador IBM/4341. Como mostra a tabela abaixo para o MODELO DC simples.

Ciatana	Mèdia dos residuos na potência ativa por barra (MW)		
515tema	IBM/4341	NEXUS 1600	
14 Barras	0.122x10-5	0.180 <mark>x1</mark> 0-6	
30 Barras	0.231x10-5	0.234x10-6	
244 Barras	0.108x10-4	0.685x10-6	

O tempo de processamento dos programas para simulação dos sistemas de 14, 30 e 248 barras através do modelo linearizado, utilizando o NEXUS 1600 estão relacionados na tabela abaixo.

	SISTEMA				
Modelo	14 barras	30 barras	248 barras		
DC simples	11.82 s	21.15 s	2 min 56.97 s		
DC DUPLO	11.91 s	21.65 s	2 min 58.17 s		
DC c/perdas estimadas	11.89 s	21.28 s	2 min 57.08 s		
DC DUPLO com perdas estim.	11.97 s	22.08 s	2 min 59.12 s		

A primeira vista os tempos apresentados podem parecer muito grande, entretanto, deve-se lembrar a grande quantidade de dados que são necessários para a simulação dos sistemas e que a maior parte do tempo è empregada na leitura dos mesmos, e no armazenamento dos resultados em disquete, devido a baixa velocidade de acesso dos acionadores.

De maneira geral, dada a facilidade de manuseio e a comodidade oferecida pelos microcomputadores, um tempo de processamento desta ordem è perfeitamente aceitàvel.

Figura 3.1 - Fluxograma para o MODELO DC

Figura 3.2 - Fluxograma para o MODELO DC DUPLO

Figura 3.3 - Fluxograma para o MODELO DC com perdas estimadas

Figura 3.5 - Fluxograma para solução do MODELO DC pelo metodo interativo de Gauss-Seidel.

4 DESEMPENHO DO FLUXO DE CARGA LINEARIZADO

4.1 Introdução

Este capitulo tem como objetivo avaliar o desempenho dos modelos linearizados, compararando seus resultados com aqueles obtidos pelo programa de fluxo de potência da Philadelphia Eletric Power Company (PECO).

Para cada sistema testado são apresentados, inicialmente, os histogramas da frequência da relação r/x e da abertura angular θ_{kl} para verificar a validade das considerações feitas para linearização das equações do fluxo de carga. Em seguida, o histograma da frequência do fluxo de potência nas linhas mostra a ordem de grandeza dos fluxos presentes no sistema.

A precisão dos resultados fornecidos pelos quatro modelos linearizados é avaliada calculando-se o erro percentual entre os fluxos fornecidos por cada modelo e aqueles obtidos pelo modelo AC do programa da PECO. Os erros são percentuais em relação ao fluxo na barra emitente do caso AC, e sua frequência, numa faixa pré-fixada, disposta em forma de histograma para análise da precisão de cada modelo com relação ao MODELO AC, bem como o desempenho relativo entre eles.

4.2 Quanto à precisão dos resultados

4.2.1 Sistema teste de 14 barras

Este sistema de 14 barras e 20 linhas tem seus dados apresentados no apêndice B.1 e as figuras 4.1, 4.2 e 4.3 mostram a frequência da relação r/x, a frequência da abertura angular θ_{kl} e a frequência dos fluxos de potência nas linhas, respectivamente.

A figura 4.1 mostra que a maioria das linhas do sistema possui uma relação r/x superior a 0.2, portanto a hipótese de que x>>r não é perfeitamente válida. A figura 4.2 mostra que todas as aberturas angulares são inferiores a 14[°], portanto o erro introduzido pela aproximação senx²x é inferior a 1% tornando esta hipótese perfeitamente aceitável. A figura 4.3 mostra que o sistema em pauta é um sistema de fluxos baixos, já que 95% de suas linhas transportam uma potência inferior a 80 MW.

A frequência de erros na simulação do sistema utilizando os modelos linearizados são apresentadas nas figuras 4.4, 4.5, 4.6 e 4.7.

Observa-se que os modelos DC simples, DC DUPLO e DC

DUPLO com estimativa de perdas, apresentam erros inferiores a 6% no cálculo de 75% dos fluxos presentes no sistema, sendo o modelo DC DUPLO o mais preciso como mostra a figura 4.5. Neste, 70% dos fluxos são calculados com erros inferiores a 4%, e a introdução da estimativa de perdas não trouxe nenhuma melhora ao modelo DC DUPLO como mostra a figura 4.7.

A figura 4.6 mostra que a introdução das perdas por estimativa no modelo DC aumenta o número de fluxos calculados com erros inferiores a 2%. Entretanto, os erros são mais distribuidos na faixa 0-30%, com um aumento na faixa 20-30%, apresentando, portanto, um desempenho inferior aos outros modelos.

Figura 4.1 - Frequência da relação r/x para o sistema teste de 14 barras.

Figura 4.4 - Comparação entre o MODELO DC e os resultados do PECO/AC para o sistema teste de 14 barras.

Figura 4.5 - Comparação entre o MODELO DC DUPLO e os resultados do PECO/AC para o sistema teste de 14 barras.

4.2.2 Sistema teste de 30 barras

Os dados deste sistema de 30 barras e 41 linhas são apresentados no apêndice B.2.

As figuras 4.8, 4.9 e 4.10 apresentam algumas caracteristicas gerais do sistema. A figura 4.8 mostra que grande parte das linhas possui uma relação r/x elevada, tornando a aproximação $b_{kl} = 1/x_{kl}$ pouco confiàvel, e a figura 4.9 mostra que todas as abeturas angulares são inferiores a 8°, logo a aproximação senx=x é plenamente aceitàvel para este sistema.

Figura 4.9 - Frequência da abertura angular para o sistema teste de 30 barras.

Figura 4.10 - Frequência dos fluxos de potência para o sistema teste de 30 barras.

A simulação do sistema com o modelo DC simples apresentou, como mostra a figura 4.11, cerca de 88% dos fluxos calculados com erros inferiores a 6%, ficando a maior parte deles na faixa 0-2%, sendo, portanto, razoáveis os seus resultados.

O modelo DC duplo e o modelo DC duplo com inclusão das perdas estimadas na primeira iteração apresentaram bons resultados como mostram as figuras 4.12 e 4.14. Nestes, cerca de 93% dos fluxos apresentam erros inferiores a 6% e mais de 90% possuem erros menores que 4%. Coube ao modelo DC duplo com inclusão das perdas estimadas o melhor desempenho, por apresentar a maior frequência de erro, 66%, na faixa 0-2%, enquanto o modelo DC com inclusão de perdas de forma estimada apresentou-se como sendo o menos preciso como mostra a figura 4.13.

Figura 4.14 - Comparação entre o MODELO DC DUPLO com inclusão de perdas estimadas e os resultados do PECO/AC para o sistema teste de 30 barras.

4.2.3 Sistema regional de 248 barras

Este sistema è parte integrante do sistema elètrico brasileiro e atende aos estados da região nordeste, cobrindo uma vasta área territorial, caracterizando-se por possuir seus principais centros de geração muito distantes dos grande centros consumidores.

A configuração utilizada para exame é aquela que foi projetada para o ano de 1985 cujos dados encontram-se relacionados no apêndice B.3.

As figuras 4.15 e 4.16 mostram a frequência da relação r/x e da abertura angular θ_{kl} , respectivamente. Como se vê, quase a totalidade das linhas possuem uma baixa relação r/x e apresentam uma abertura angular inferior a 14[°], tornando perfeitamente aceitáveis as hipóteses $b_{kl} \cong 1/x_{kl}$ e senx \cong x, adotadas na linearização do modelo AC.

A figura 4.17 mostra que o sistema possui fluxos de potência de ordem elevada, portanto è conveniente analisar não sò o desempenho de cada modelo linearizado através do histograma da frequência de erros para todos os fluxos no sistema, como também analisar seu desempenho para faixas intermediárias de fluxo.

A frequência de erros na simulação do sistema com o modelo DC sem perdas, considerando todos os fluxos, é mostrada na figura 4.18. Observa-se que cerca de 82% dos fluxos são calculados com erros menores que 8%, mantendo aproximadamente a mesma precisão em todas as faixas de fluxos analisadas, figuras 4.19a, 4.19b, 4.20a e 4.20b.

O modelo DC duplo apresenta resultados satisfatòrios como mostra a figura 4.21, onde mais de 90% dos fluxos foram determinados com erros menores de 8%, sendo melhor seu desempenho nas faixas mais elevadas de fluxos: na figura 4.23a, 94.4% dos erros são inferiores a 8% e na figura 4.23b, todos os erros são menores que 4%.

Figura 4.18 - Comparação entre o MODELO DC e os resultados do PECO/AC para o sistema regional de 248 barras considerando todos os fluxos.

(a) Fluxos de 0 a 50 MW (b) Fluxos de 50 a 100 MW

Figura 4.20 - Comparação entre o MODELO DC e os resultados do PECO/AC para o sistema regional de 248 barras.

> (а) Fluxos de 100 a 500 MW (Ъ) Fluxos superiores a 500 MW

Figura 4.21 - Comparação entre o MODELO DC DUPLO e os resultados do PECO/AC para o sistema regional de 248 barras considerando todos os fluxos.

Figura 4.22 - Comparação entre o MODELO DC DUPLO e os resultados do PECO/AC para o sistema regional de 248 barras.

> (a) Fluxos de 0 a 50 MW (b) Fluxos de 50 a 100 MW

Figura 4.23 - Comparação entre o MODELO DC DUPLO e os resultados do PECO/AC para o sistema regional de 248 barras.

> (a) Fluxos de 100 a 500 MW (b') Fluxos superiores a 500 MW

•

Os resultados obtidos com o modelo DC com inclusão de perdas quando todos os fluxos são analisados, figura 4.24, mostram que 84% dos erros são menores que 8%, apenas um pouco maior que os 82% obtidos com o modelo DC simples, entretanto este percentual aumenta para faixas de fluxos mais elevadas, como mostram as figuras 4.25b, 4.26a e 4.26b, sendo: 84.6% para os fluxos na faixa 50-100 MW; 91% para a faixa 100-500 MW e para os fluxos superiores a 500 MW todos os erros são inferiores a 4%, apresentando, portanto, melhores resultados que o modelo DC simples.

A simulação com o modelo DC duplo com inclusão de perdas na primeira iteração, forneceu resultados muito próximos aos obtidos com o modelo DC duplo, como mostram os histogramas apresentados nas figuras 4.27, 4.28a, 4.28b, 4.29a e 4.29b, apresentando um desempenhdo apenas um pouco melhor que este, por aumentar o número de erros inferiores a 2% para todas as faixas de fluxos consideradas.

Figura 4.24 - Comparação entre o MODELO DC com inclsão de perdas e os resultados do PECO/AC para o sistema regional de 248 barras considerando todos os fluxos.

(a) Fluxos de 0 a 50 MW (b) Fluxos de 50 a 100 MW

Figura 4.27 - Comparação entre o MODELO DC DUPLO com inclsão de perdas e os resultados do PECO/AC para o sistema regional de 248 barras considerando todos os fluxos.

.

- Figura 4.28 Comparação entre o MODELO DC DUPLO com inclusão de perdas e os resultados do PECO/AC para o sistema regional de 248 barras.
 - (a) Fluxos de O a 50 MW (b) Fluxos de 50 a 100 MW

4.3 Quanto ao tempo de execução

O tempo de execução dos programas descritos no capitulo 3, utilizando o computador IBM/4341 é mostrado na tabela abaixo.

	S	5 I S T E M A	
Modelo	14 barras	30 barras	248 barras
DC simples	1.13 s	2.09 s	17.18 s
DC DUPLO	1.26 s	2.16 s	18.50 s
DC c/perdas estimadas	1.20 s	2.12 s	17.64 s
DC DUPLO com perdas estim.	1.27 s	2.25 s	18.60 s
AC do progr. da PECO	2.73 s	3.37 s	23.09 s

Observa-se que o tempo de execução dos programas com os modelos linearizados são menores que o tempo de simulação utilizando o programa da PECO para a solução completa (modelo AC). Todavia, não há uma redução substancial no tempo de execução. Este fato parece a primeira vista contradizer as expectativas quanto a rapidez do fluxo de carga linearizado. Entretanto, deve-se mencionar que os programas desenvolvidos foram dotados de recursos extras para o tratamento dos dados de entrada e confecção dos relatórios de saída, e que em muitas aplicações do fluxo DC estes recursos não são necessários. A eliminação dos esforços adicionais de classificação dos dados de entrada, renumeração das barras e a emissão de relatórios simplificados, fará com que a diferença entre o tempo de simulação com os modelos linearizados e o modelo AC seja mais acentuada.

5. ANALISE DE CONTIGENCIAS

5.1 Introdução

A anàlise de contigência consiste em determinar os fluxos de potência no sistema em regime permanente quando a sua configuração è alterada pela remoção ou adição de algum equipamento, ou linha de transmissão. O seu objetivo é a verificação dos limites de operação do sistema para que em caso de violação novas decisões sejam tomadas.

Nos estudos de planejamento, onde é feita a análise do sistema em regime de contingência para várias configurações, necessita-se de um processo rápido para determinação do novo ponto de operação do sistema. A obtenção deste novo ponto de operação pode ser feita partindo-se do estado inicial da rede já obtido e na seção seguinte será apresentado um método com esta característica considerando o modelo linearizado para as equações do fluxo de carga.

5.2 Método da compensação^[5]

O teorema da compensação estabelece que qualquer alteração no valor da admitância de um ramo de um circuito elétrico pode ser representada por uma fonte de corrente de valor apropriado conectada entre os nós terminais da admitância.

Para a aplicação deste teorema ao estudo de contingências, condidere-se o ramo genérico i-j de uma rede modelada pela equação $[B]\overline{\Theta}=\overline{P}$ mostrada na figura 5.1a. Qualquer alteração no valor da susceptância do ramo i-j pode ser feita conectando-se em paralelo a ele um elemento ficticio de susceptância b_{ij} de tal forma que a associação deles resulte no valor desejado para a susceptância do ramo como mostrado na figura 5.1b.

Note-se que a introdução do elemento ficticio altera os elementos da matriz [B], o que exigiria a sua reinversão ou refatoração para a determinação do novo estado da rede. Entretanto, ao se representar a introdução deste elemento por fontes de corrente, como mostrado na figura 5.1c, apenas o vetor de injeções nodais sofre modificações e a solução para a rede modificada pode ser obtida com um menor esfôrço a partir dos fatores da matriz [B] determinados na configuração bàsica.

(Ъ)

(a) Situação inicial (b) Situação final (c) Situação final compensada

O calculo das injeções a serem introduzidas nos nos terminais do elemento considerado é feito a partir do circuto equivalente da rede mostrada em 5.1c cuja equação é:

$$[B] \overline{\Theta}^{m} = \overline{P} + \overline{P}^{C}$$
(5.1)

Onde, [B] - matriz susceptância da rede

 $\bar{\theta}^{m}$ - solução da rede modificada

 \bar{P} - Vetor de injeções nodais na situação inicial \bar{P}^{C} - injeções compensadoras

Da equação 5.1

 $\overline{\Theta}^{m} = [B]^{-1}\overline{P} + [B]^{-1}\overline{P}^{c}$

Sendo a solução no caso básico dado por $\bar{\Theta} = [B]^{-1}\bar{P}$ tem-se $\bar{\Theta}^{m} = \bar{\Theta} + [B]^{-1}\bar{P}^{c}$ (5.2)

O vetor P^C è definido como:

 $\bar{\mathbf{P}}^{\mathbf{C}} = \begin{bmatrix} 0 \dots \mathbf{P}_{\mathbf{i}}^{\mathbf{C}} \dots \mathbf{P}_{\mathbf{j}}^{\mathbf{C}} \end{bmatrix}^{\mathbf{t}}$

ou de outra forma

$$\bar{P}^{c} = P_{i}^{c} [0 \dots +1 \dots -1 \dots 0]^{t}$$

i j

assim,

$$[B]^{-1} \bar{P}^{c} = P_{i}^{c}[B]^{-1} [0 \dots +1 \dots -1 \dots 0]^{t}$$
$$= P^{c} \bar{X}^{ij}$$
(5.3)

Onde \bar{X}^{ij} è um vetor cujos elementos são a diferença entre

os elementos das colunas <u>i</u> e <u>j</u> da inversa da matriz [B]. Este vetor pode ser determinado através da solução do sistema:

[B]
$$\bar{X}^{ij} = [0 \dots +1 \dots -1 \dots 0]^{t}$$

i j

A solução deste sistema, e a consequente obtenção de $\bar{X}^{i\,j}$, è enormemente simplificada uma vez que já se conhecem os fatores da matriz [B] utilizados na solução do caso básico.

Substituindo a eq. 5.3 na eq. 5.2

$$\bar{\Theta}^{m} = \bar{\Theta} + P_{i}^{c} \bar{X}^{ij} \qquad (5.4)$$

Explicitando a i-ésima e j-ésima linhas da equação 5.4 resulta

$$\Theta_{i}^{m} = \Theta_{i} + P_{i}^{c} X_{i}^{ij} \qquad (5.5a)$$

$$\Theta_{j}^{m} = \Theta_{j} + P_{i}^{c} X_{j}^{ij} \qquad (5.5b)$$

Subtraindo a eq. 5.5b da eq. 5.5a temos

$$(\Theta_{i}^{m} - \Theta_{j}^{m}) = (\Theta_{i} - \Theta_{j}) + P_{i}^{c} (X_{i}^{ij} - X_{j}^{ij})$$
 (5.6)

Substituindo $(\Theta_i^m - \Theta_j^m) = -P_i^C / \Delta b_{ij}$ na eq.5.6 e resolvendo-a para P_i^C obtèm-se

$$P_{i}^{c} = -(\theta_{i} - \theta_{j}) / d_{ij}$$
 (5.7)

Onde,

$$d_{ij} = 1/\Delta b_{ij} + (X_{i}^{ij} - X_{j}^{ij})$$

Substituindo a eq. 5.7 na eq. 5.4

$$\bar{\Theta}^{m} = \bar{\Theta} - (\Theta_{i} - \Theta_{j}) \cdot d_{ij}^{-1} \bar{X}^{ij} \qquad (5.8)$$

A equação 5.8 mostra que a solução para a rede modificada ($\overline{\Theta}^{m}$) pode ser obtida diretamente da solução do caso básico ($\overline{\Theta}$) e da diferença entre as colunas <u>i</u> e <u>j</u> da inversa da matriz [B].

Pode-se estender este método para o caso onde ocorrem alterações simultâneas em mais de um elemento da rede. Considere-se o caso em que a susceptância do ramo i-j e a do ramo k-l são modificadas simultaneamente, como mostrado na fig 5.2 na situação final com as injeções compensadoras indicadas.

Nesta situação o vetor de injeções compensadoras é dado por:

$$P^{c} = P_{i}^{c} [0 \dots +1 \dots -1 \dots 0]^{t} + P_{k}^{c} [0 \dots +1 \dots -1 \dots 0]^{t} (5.9) k 1$$

Substituindo a eq. 5.9 na eq. 5.1 e seguindo o mesmo processo que conduziu à eq. 5.4, obtèm-se

$$\bar{\Theta}^{m} = \bar{\Theta} + P_{i}^{c} \bar{X}^{ij} + P_{k}^{c} \bar{X}^{kl}$$

$$(5.10)$$

Explicitando as linhas i, j, k e l da equação 5.10

θ ^m	Ξ	θ _i	+	$\mathtt{P}_{\mathtt{i}}^{\mathtt{c}}$	X ^{ij} +	P_k^c	x_i^{kl}		(5.11a)
$\Theta_{\mathtt{j}}^{\mathtt{m}}$	=	$\boldsymbol{\Theta}_{\mathbf{j}}$	+	P_{i}^{c}	X ^{ij} +	P_k^c	x_j^{kl}	•	(5.11b)
θ ^m k	=	θ _k	+	$\mathtt{P^c_i}$	X_k^{ij+}	P_k^c	$\mathbf{x}_{\mathbf{k}}^{\mathbf{kl}}$		(5.11c	•),
θ ^m _l	Ξ	θ	+	P_{i}^{c}	$X_1^{ij_+}$	P_k^c	x_1^{kl}		(5.11d)

Subtraindo a equação 5.11b da equação 5.11a e sabendo que $P_i^c = -\Delta b_{ij}(\Theta_i^m - \Theta_j^m)$ obtem-se

$$P_{i}^{c} d_{ij} + P_{k}^{c} a_{kl} = -(\theta_{i} - \theta_{j})$$
 (5.12)

Onde: $d_{ij} = 1/\Delta b_{ij} + (X_i^{ij} - X_j^{ij})$ $a_{kl} = X_i^{kl} - X_j^{kl}$

Fazendo o mesmo para as equações 5.11c e 5.11d com $P_k^c = -\Delta b_{kl}(\theta_k^m - \theta_l^m)$ tem-se,

$$P_{i}^{c} a_{ij} + P_{k}^{c} d_{kl} = -(\Theta_{k} - \Theta_{l})$$
 (5.13)

77

Sendo:

$$d_{kl} = 1/\Delta b_{kl} + (X_{k}^{kl} - X_{l}^{kl})$$

$$a_{ij} = X_{k}^{ij} - X_{l}^{ij}$$

As equações 5.12 e 5.13 podem ser escritas na forma matricial

$$\begin{bmatrix} d_{ij} & a_{kl} \\ & & \\ a_{ij} & d_{kl} \end{bmatrix} \begin{bmatrix} P_i^c \\ P_k^c \\ P_k^c \end{bmatrix} = \begin{bmatrix} -(\Theta_i - \Theta_j) \\ -(\Theta_k - \Theta_l) \end{bmatrix}$$
(5.14)

As injeções $P_i^c \in P_k^c$ podem ser obtidas solucionando-se o sistema de equações 5.14 e seus valores levados à equação 5.10 para obtenção do novo estado da rede.

Este processo pode ser resumido nos seguintes passos:

1 - Solucionar o sistema de equações $[B]\bar{X}^{ij}=\bar{b}$ sendo o vetor \bar{b} definido como:

 $b_k = +1 \quad p/k = i$ = -1 p/k = j= 0 $p/k \neq i \in k \neq j$

o que permite obter a diferença entre as colunas <u>i</u> e <u>j</u> da inversa da matriz [B]. Este passo deve ser repetido para tantos ramos quanto se deseje alterar simultâneamente.

2 - Determinar as injeções compensadoras nos nos

terminais dos ramos modificados, através da solução do sistema de ordem <u>m</u>, onde <u>m</u> é o número de alterações simultâneas. A matriz dos coeficientes è determinada através de operações elementares entre as componentes dos vetores obtidos no passo anterior, e o vetor segundo membro a partir da solução no caso base.

3 - Obter a nova solução, substituindo as injeções encontradas no passo anterior na equação para a rêde modificada do tipo 5.10.

5.3 Verificação do desempenho do método da compensação

O desempenho do método pode ser avaliado pelo tempo de processamento requerido para a determinação do novo estado da rede, uma vez que a área de armazenamento adcional para sua implementação é insignificante quando comparada à área total necessária para a solução do fluxo de carga linearizado.

O método foi aplicado na obtenção do estado final da rêde, após a ocorrência de 2, 4, 6, 8 e 10 alterações simultâneas, nos sistemas testes de 14 e 30 barras e no sistema regional de 248 barras cujos dados são apresentados no apêndice B. O tempo de processamento para estes casos, utlizando o microcomputador NEXUS 1600, são mostrados nas figuras 5.3a, 5.3b e 5.4.

(1) Utilizando a refatoração da matriz [B]
(2) Utilizando o método da compensação
(a) Para o sistema teste de 14 barras

- (b) Para o sistema teste de 30 barras

Figura 5.4 Desempenho do método da compensação para o sistema regional de 248 barras.

(1) Utilizando a refatoração da matriz [B]
(2) Utilizando o método da compensação

Na solução das equações do fluxo de carga linearizado para sistemas de potência com grande número de barras e elevado grau de esparsidade, o maior esfôço de calculo é dirigido à fatoração da matriz susceptância, concluida a sua fatoração, a solução para determinado vetor de injeções nodais pode ser obtido com um esfôrço bastante reduzido. Portanto, no caso de alterações simples na rede, onde as injeções compensadoras são obtidas diretamente como mostra a equação 5.7, o método da compensação é bastante vantajo-

so. Entretanto quando hà alterações simultâneas, a determinação das injeções envolve a solução de um sistema de equações que, embora seja de ordem bem inferior ao número de barras do sistema e sua matriz de coeficientes seja simètrica, o esfôrço necessário cresce com o cubo do número de alterações e torna o método da compensação menos eficiente como mostra as figuras 5.3a, 5.3b, 5.4a e 5.4b.

6. CONCLUSOES

Este capitulo relaciona as principais conclusões obtidas no decorrer deste trabalho.

6.1 Sobre os modelos linearizados:

- O MODELO DC sem inclusão de perdas é o menos preciso enquanto que o MODELO DC DUPLO com inclusão de perdas na primeira iteração é o mais preciso.
- O MODELO DC DUPLO incluindo a estimativa de perdas na primeira iteração, apresenta-se como uma alternativa bastante atrativa para diversos tipos de estudos onde o tempo de simulação seja fator determinante e não se exija uma grande precisão nos cálculos da distribuição dos fluxos de potência no sistema.
- Em todos os modelo analisados, a incidência de erros maiores está concentrada nas linhas com baixo fluxo, que em geral não necessitam de grande atenção.

 Na solução dos modelos linearizados, os métodos diretos são mais eficientes que os métodos iterativos com respeito a precisão e ao tempo de simulação.

6.2 Sobre a simulação em microcomputadores:

Objetivando analisar a utilização de microcomputadores na simulação estàtica de sistemas de potência, os programas foram implementados no computador IBM/4341 e no microcomputador NEXUS 1600 da Scopus (compativel com IBM-PC). Podendo-se concluir:

- A precisão numérica do microcomputador utilizado, dotado de processador de ponto flutante 8087, é superior a do computador IBM/4341.
 - O tempo de simulação no microcomputador é relativamente pequeno. E importante notar que mesmo este tempo sendo superior ao tempo de processamento em máquinas do tipo IBM/4341, isto tornase irrelevante devido a natural facilidade de acesso aos microcomputadores.

Atualmente os microcomputadores possuem uma capacidade de memòria suficiente para muitas aplicações. No equipamento examinado, de 256 Kbytes, foram implementados programas para a simulação de até 500 barras e 1000 linhas. Do exposto, fica evidenciado que a utilização de microcomputadores do tipo IBM-PC, e seus compativeis, na simulação de sistemas de potência apresenta-se como uma alternativa tecnicamente adequada e bastante econômica.

6.3 Sobre os métodos para análise de contigências:

Complementando o trabalho foram desenvolvidos dois sub-programas de anàlise de contigências: um deles efetuando-se a refatoração da matriz susceptância e o outro com base no teorema da compensação. Dos resultados obtidos com os dois métodos conclui-se que:

Ambos apresentam os mesmos resultados numéricos.

Para o caso de contigências simples ou para um pequeno número de alteracções simultâneas na rede, que é o caso mais frequente, o método da compensação apresenta um tempo de processamento inferior ao método que utiliza a refatoração da matriz susceptância.

APENDICE - A

METODO DA BIFATORAÇÃO

Um sistema de <u>n</u> equações pode ser expresso em notação matricial como:

 $[A] \bar{X} = \bar{b}$

(A.1)

onde:

[A] - Matriz dos coeficientes de ordem <u>n x n</u>

X - Vetor das <u>n</u> icògnitas dos sistema

b - Vetor segundo membro de ordem <u>n</u>

Podendo sua solução ser obtida diretamente de:

 $\bar{X} = (A)^{-1} \bar{b}$

(A.2)

Embora a iversão da matriz [A] possibilite a solução do sistema para vários vetores segundo membro, o que é necessário em muitas aplicações práticas, a sua determinação requer um número de operações de aproximadamente \underline{n}^3 , o que torna este processo desaconsehável, notadamente para sistemas de ordem elevada. Dois métodos tem sido usualmente aplicados na solução de sistemas para diferentes vetores segundo membro, sem a determinação da inversa da matriz dos coeficientes. Em um destes métodos a matriz [A] è fatorada no produto de duas matrizes triangulares por um processo comumente conhecido como "decomposição triangular". No outro método, a matriz inversa è fatorada no produto de <u>n</u> matrizes conhecido como "fatores da inversa", em ambos, o número de operações necessárias são reduzidas a $n^3/3$.

O método da bifatoração combina as principais características destes dois métodos, e consiste na determinação de <u>2n</u> matrizes elementares $[L]^{(k)}$ e $[R]^{(k)}$, de forma a reduzir a matriz original $[A]=[A]^{(0)}$, através de <u>n</u> transformações do tipo $[L]^{(k)}[A]^{(k-1)}[R]^{(k)}$, em uma matriz identidade de ordem <u>n</u>, como mostrado abaixo.

 $[A]^{(0)} = [A]$ $[A]^{(1)} = [L]^{(1)}[A]^{(0)}[R]^{(1)}$ $[A]^{(2)} = [L]^{(2)}[A]^{(1)}[R]^{(2)}$

 $[A]^{(n)} = [L]^{(n)} [A]^{(n-1)} [R]^{(n)} = [I]$

As transformações sucessivas sofridas pela matriz [A] podem ser sintetizadas pela equação:

 $[L]^{(n)}[L]^{(n-1)}..[L]^{(2)}[L]^{(1)}[A][R]^{(1)}[R]^{(2)}...[R]^{(n-1)}[R]^{(n)}$ = [1] (A.3) Pré-multiplicando sucessivamente a equação A.3 pela inversa de $[L]^{(n)}, [L]^{(n-1)}, \dots, [L]^{(2)} [L]^{(1)}, resulta:$ $[A][R]^{(1)}[R]^{(2)} \dots [R]^{(n-1)}[R]^{(n)} = ([L]^{(1)})^{-1} ([L]^{(2)})^{-1} \dots (L]^{(n-1)} (L]^{(n-1)})^{-1} (L]^{(n-1)} (L]^{(n-1)} (L]^{(n-1)})^{-1} (L]^{(n-1)} (L]^{(n-1)}, \dots, (L]^{(2)} e [L]^{(1)} de forma consecutiva, tem-se:$ $[A][R]^{(1)}[R]^{(2)} \dots [R]^{(n-1)}[R]^{(n)}[L]^{(n)}[L]^{(n-1)} \dots [L]^{(2)}[L]^{(1)}$ = [I] (A.5)

Pré-multiplicando a equação A.5 por [A]⁻¹, tem-se finalmente que:

 $[R]^{(1)}[R]^{(2)}...[R]^{(n-1)}[R]^{(n)}[L]^{(n)}[L]^{(n-1)}...[L]^{(2)}[L]^{(1)}$ = [A]⁻¹ (A.6)

Ou seja, a inversa da matriz dos coeficientes è determinada implicitamente pelo produto das <u>2n</u> matrizes elementares na sequência indicada pela equação A.6. Portanto, a solução do sistema de equações [A]X=b pode ser expressa como:

 $\bar{\mathbf{X}} = [\mathbf{A}]^{-1} \bar{\mathbf{b}}$ $\bar{\mathbf{X}} = [\mathbf{R}]^{(1)} [\mathbf{R}]^{(2)} . [\mathbf{R}]^{(n-1)} [\mathbf{R}]^{(n)} [\mathbf{L}]^{(n-1)} . [\mathbf{L}]^{(2)} [\mathbf{L}]^{(1)} \bar{\mathbf{b}}$

Desta forma, a determinação do vetor \bar{X} pode ser feita a partir do produto sucessivo de uma matriz elementar por um vetor, sendo este cálculo enormemente simplificado já que nestas matrizes os elementos não nulos, ou constituem uma linha ou uma coluna ou são iguais a <u>1</u>.

As matrizes elementares $[L]^{(k)}$ e $[R]^{(k)}$, bem como a matriz transformada $[A]^{(k)}$ são calculadas a partir da matriz $[A]^{(k-1)}$, sendo $[A]^{(0)}=[A]$ a matriz dos coeficientes original, pelo procedimento definido abaixo.

MATRIZ TRANSFORMADA [A] (K):

MATRIZ ELEMENTAR [L] (K):

As matrizes [L]^(k) são bastante esparsas e diferem da matriz identidade apenas pela coluna k:

Onde:

 $l_{kk}^{(k)} = 1 / a_{kk}^{(k-1)}$ $l_{ik}^{(k)} = - a_{ik}^{(k-1)} / a_{ik}^{(k-1)} \quad i = (k+1), \dots, n.$

MATRIZES ELEMENTARES [R] (K)

As matrizes [R]^(k) são também esparsas e diferem da matriz identidade apenas pela linha k:

onde
$$r_{kj}^{(k)} = -a_{kj}^{(k-1)} / a_{kk}^{(k-1)}$$
 $j = (k+1), ..., n.$

Note que todos os termos diagonais, inclusive o da linha k, são iguais a 1 portanto, [R]⁽ⁿ⁾ = [I].

No caso da matriz dos coeficientes ser simétrica, tem-se:

 $a_{ik}^{(k-1)} = a_{ki}^{(k-1)}$ portanto,

$$r_{ik}^{(k)} = l_{ki}^{(k)}$$
 e, $a_{ij}^{(k)} = a_{ji}^{(k)}$

O que indica que, exceto para os elementos da diagonal, a linha k da matriz $[R]^{(k)}$ é igual a coluna k de $[L]^{(k)}$. Como os termos diagonais de $[R]^{(k)}$ são todos iguais a 1 e não precisam ser calculados, é suficiente apenas determinar os elementos da matriz $[L]^{(k)}$, o que reduz o número de operações e a área de armazenamento necessária a práticamente a metade.. E, como o processo preserva a simetria da matriz dos coeficientes em cada passo da redução, o método torna-se especialmente vantajoso para solução de matrizes esparsas com esta caracteristica, ficando a manutenção da esparsidade dependente do critério de ordenação escolhido [4].

No caso em que a matriz dos coeficientes não possui simetria, é mais vantajoso sob o aspecto computacional, decompor as matrizes elementares [L]^(k) no produto de uma matriz diagonal [D]^(k) por uma matriz modificada [C]^(k):

$$[L]^{(k)} = [C]^{(k)} [D]^{(k)}$$

Sendo todos os elementos da diagonal de [D]^(k) iguais a 1, exceto o termo:

$$d_{kk}^{(k)} = 1 / a_{kk}^{(k-1)} = l_{kk}^{(k)}$$

E, a matriz modificada [C]^(k) de estrutura idêntica a [L]^(k) sendo a coluna k è definida por:

 $\begin{bmatrix} 0 & \dots & 0 & 1 & c_{k+1,k}^{(k)} & c_{k+2,k}^{(k)} & \dots & c_{n,k}^{(k)} \end{bmatrix}^{t}$ com: $c_{ik}^{(k)} = -a_{ik}^{(k-1)} = 1_{ik}^{(k)} / 1_{kk}^{(k)} \quad i = (k+1), \dots, n.$

E apresentado a seguir a implementação computacional dêste método de forma simplificada, podendo ser encontrada na referência^[15] uma implementação mais elaborada, levando em consideração a esparsidade e utilizando uma estratégia de ordenação adequada a maior parte das aplicações.

SUB-ROTINA PARA SOLUCIONAR EQUACOES ALGEBRICAS SI-MULTANEAS COM COEFICIENTES REAIS UTILIZANDO O METO-DO DA BIFATORACAO, A SUA CHAMADA E A SEGUINTE:

CALL BIFATO (N, A, B)

SENDO:

С

C C

C

С

CCCC

С

С

C

C

CCCCC

C

C

- N NUMERO DE EQUACOES A RESOLVER
- A VETOR REAL DE DUPLA INDEXACAO E DIMENSAO N CON-TENDO OS COEFICIENTES DAS ICOGNITAS
- B VETOR REAL DE INDEXACAO SIMPLES E DE DIMENSAO N CONTENDO OS TERMOS INDEPENDENTES

APOS RETORNAR DE "BIFATO", "A" CONTEM OS ELEMENTOS DAS MATRIZES ELEMENTARES L(K) E R(K), E "B" CONTEM A SOLUCAO DO SISTEMA.

A INSTRUCAO: CALL BISUBS (N, A, B)

FORNECE A SOLUCAO PARA UM NOVO VETOR SEGUNDO MEMBRO SEM A NECESSIDADE DE OBTER NOVA FATORACAO DE "A"

	SUBROUTINE BIFATO (N, A, B)
	DIMENSION A(N,N), B(N)
	KMAX = N-1
	DO 3 K = 1. KMAX
	A(K,K) = 1./A(K,K)
G	FATORES L(K)
	IMIN = K + 1
	DO 1 I = IMIN. N
1	A(I,K) = - A(I,K) * A(K,K)
	MATRIZ REDUZIDA A(K)
-	DO 2 I = IMIN, N
*	DO 2 J = IMIN, N
2.	A(I,J) = A(I,J) + A(I,K) * A(K,J)
C	FATORES R(K)
	DO $3 J = IMIN, N$
3	A(K,J) = -A(K,J) * A(K,K)
	A(N,N) = 1./A(N,N)
	ENTRY BISUBS (N, A, B)
	KMAX = N - 1
C	PRODUTO $L(N)L(N-1)L(2)L(1)B$
	DO 5 K = 1, KMAX
	IMIN = K + 1
	DO 4 I = IMIN, N
4	B(I) = A(I,K) * B(K) + B(I)
5	B(K) = A(K,K) * B(K)
	B(N) = A(N,N) * B(N)
C	PRODUTO $R(1)R(2)R(N-1)B$
	DO 6 K = KMAX, 1, -1
	IMIN = K + 1
	DO 6 I = IMIN, N
6	B(K) = B(K) + A(K,I) * B(I)
	RETURN
•	END
APENDICE-B

DADOS DOS SISTEMAS UTILIZADOS PARA TESTE

Neste apêndice são apresentados os dados dos sistemas de 14, 30, e 248 barras, que foram utilizados para a análise do desempenho dos métodos do fluxo de carga linearizado. Os dados são apresentados da seguinte maneira:

- (i) Dados de barra
- (ii) Dados de linha
- (iii) Dados dos transformadores
 - (iv) Capacitores/reatores em derivação
 - (v) Dados das barras de tensão controlada

B.1 SISTEMA TESTE DE 14 BARRAS

DADOS DE BARRA

BADDA	GE	RAÇÃO	CAI	RGA
NUM.	ATIVA MW	REATIVA MVAR	ATIVA MW	REATIVA MVAR
1	0.00	0.00	0.00	0.00
2	40.00	0.00	21 70	12 70
3	0.00	0.00	21.70	12.70
4	0.00	0.00	47 80	-3 90
5	0.00	0.00	7 60	1 60
6	0.00	0.00	11 20	7 50
7	0.00	0.00	0.00	0.00
8 .	0.00	0.00	0.00	0.00
9	0.00	0.00	29.50	16.60
10	0.00	0.00	9.00	5,80
11	0.00	0.00	3.50	1.80
12	0.00	0.00	6.10	1.60
13	0.00	0.00	13.50	5.80
14	0.00	0.00	14.90	5.00

DADOS DE LINHA

L	INHA NUM.	EN'	rri Ari	E AS RAS		IMPEDANCIA	DA LINHA	SUSCEPTANCIA (PU)
						R (PU)	X (PU)	
	1	1	-	2		0.01938	0.05917	0.05280
	2	2		3		0.04699	0.19797	0.04380
	3	2		4	8	0.05811	0.17632	0.03740
	4	1	-	5		0.05403	0.22304	0.04920
	5	2	-	5		0.05695	0.17388	0.03400
	6	3	-	4		0.06701	0.17103	0.03460
2.82	7	4	-	5		0.01335	0.04211	0.01280
	8	5		6		0.00000	0.25202	0.00000
	9	4	-	7		0.00000	0.20912	0.00000
	10	7	-	8		0.00000	0.17615	0.00000
	11	4	-	9		0.00000	0.55618	0.00000
	12	7	-	9		0.00000	0.11001	0.00000
	13	9	-	10		0.03181	0.08450	0.00000
	14	6	-	11		0.09498	0.19890	0.00000
	15	6	-	12		0.12291	0.25581	0.00000
	16	6		13		0.06615	0.13027	0.00000
	17	9	-	14		0.12711	0.27038	0.00000
	18	10	-	11		0.08205	0.19207	0.00000
	19	12	-	13		0.22092	0.19988	0.00000
14	20	13	-	14		0.17093	0.34802	0.00000

DADOS DOS TRANSFORMADORES

TRANSFOMADOR	ENTRE	AS	*
NUMERO	BARR	AS	TAP
1	5 -	6	0.932
2	4 -	7	0.978
3	4 -	9	0.969

CAPACITORES/RETORES EM DERIVAÇÃO

BARRA	CAPACITOR	REATOR
NUM.	(MVAR)	(MVAR)
9	19.00	

BARRAS DE TENSÃO CONTROLADA

BARRA	MODULO DA		LIMITES DA	POT. REATIVA (MVAR)
NOM.	(PU)	*	MIŅIMO	MAXIMO
2	1.0450		-40.0	50.0
3	1.0100		0.0	40.0
6	1.0700		-6.0	24.0
8	1.0900		-6.0	24.0

B.2 SISTEMA TESTE DE 30 BARRAS

DADOS DE BARRA ----------GERAÇÃO CARGA BARRA -----ATIVA NUM. REATIVA AVITA REATIVA MW MVAR MVAR MW ------_ _ _ _ _ - -- -- -- --0.00 0.00 1 0.00 0.00 2 57.56 0.00 21.70 12.70 3 1.20 0.00 0.00 2.40 1.60 4 0.00 0.00 7.60 94.20 5 24.56 0.00 19.00 0.00 6 0.00 0.00 0.00 7 0.00 22.80 10.90 0.00 30.00 0.00 30.00 8 35.00 0.00 0.00 0.00 9 0.00 10 2.00 0.00 0.00 5.80 11 17.93 0.00 0.00 0.00 12 0.00 0.00 11.20 7.50 0.00 0.00 0.00 13 16.91 1.60 14 0.00 0.00 6.20 8.20 2.50 0.00 15 0.00 1.80 16 0.00 0.00 3.50 9.00 5.80 17 0.00 0.00 0.00 0.00 3.20 0.90 18 3.40 19 0.00 0.00 9.50 2.20 0.70 20 0.00 0.00 17.50 -11.20 21 0.00 0.00 0.00 0.00 22 0.00 0.00 3.20 1.60 23 0.00 0.00 6.70 0.00 0.00 8.70 24 0.00 0.00 25 0.00 0.00 2.30 0.00 3.50 26 0.00 0.00 0.00 0.00 0.00 27 0.00 0.00 28 0.00 0.00 0.90 29 0.00 2.40 0.00 1.90 30 0.00 0.00 10.60

DADOS DE LINHA

LINHA	ENTRE AS	IMPEDANCIA	DA LINHA	SUSCEPTANCIA
NOT1.	DANNAS	R (PU)	X (PU)	([0)
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\34\\35\\36\\37\\38\\39\\40\\41\end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01920 0.04520 0.05700 0.01320 0.04720 0.05810 0.01190 0.02670 0.02670 0.02670 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03400 0.03240 0.03400 0.03400 0.03240 0.03400 0.03240 0.03240 0.03400 0.03240 0.03240 0.03400 0.03240 0.03400 0.03240 0.03240 0.03400 0.03240 0.03240 0.03240 0.03400 0.03240 0.03240 0.03240 0.03400 0.03240 0.03240 0.03240 0.03240 0.03400 0.03240 0.03240 0.03400 0.03240 0.03240 0.03400 0.00000	0.05750 0.18520 0.17370 0.03790 0.19830 0.17630 0.04140 0.11600 0.08200 0.04200 0.20800 0.20800 0.20800 0.11000 0.25600 0.14000 0.25590 0.13040 0.19970 0.19970 0.19230 0.19970 0.19970 0.19970 0.21850 0.20800 0.20900 0.20800 0.20900 0.20800 0.20900 0.20800 0.20900 0.20800 0.20900 0.20900 0.08450 0.07490 0.2360 0.20200 0.17900 0.27000 0.32920 0.38000 0.20870 0.39600 0.41530 0.60270 0.45330 0.20000 0.05990	0.05280 0.04080 0.03680 0.00840 0.03740 0.00900 0.02040 0.01700 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

DADOS DOS TRANSFORMADORES

TRANSFOMADOR	ENT	TRE	AS	
NUMERO	BA	ARR	AS	TAP
1	6	-	· 9	1.015
2	6	-	10	0.963
3	4		12	1.013
4	28	-	27	0.958

CAPACITORES/RETORES EM DERIVAÇÃO

BARRA	CAPACITOR	REATOR
NUM.	(MVAR)	(MVAR)
10	19.00	
24	4.00	

BARRAS DE TENSÃO CONTROLADA

BARRA	MODULO DA	LIMITES DA	POT. REATIVA (MVAR)
NUM.	(PU)	MAXIMO	MINIMO
2	1.0340	-20.0	60.0
• 5	1.0060	-15.0	62.5
8	1.0230	-15.0	50.0
11	1.0910	-10.0	40.0
13	1.0880	-15.0	45.0

B.3 SISTEMA REGIONAL DE 248 BARRAS

DADOS DE BARRA

DADDA	G	ERAÇÃO	CARGA	
NUM.	ATIVA MW	REATIVA MVAR	ATIVA MW	REATIVA MVAR
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 9 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ \end{array} $	0.00 0.00 75.00 75.00 75.00 0.00 80.00 80.00 210.00 210.00 210.00 210.00 400.00 50.00 245.00 270.00 270.00 3.0	0.00 0.00 -2.00 -2.00 -2.00 -4.20 -4.20 -4.20 0.00 4.69 4.69 4.69 4.69 4.69 4.69 0.00 18.40 18.40 18.40 18.40 18.40 18.40 18.40 18.40 18.40 18.40 18.40 9.96 9.974 -11.40 -11.40 -11.40 30.00 29.90 29.90 29.90 29.90 29.90 29.90 29.90 29.90 29.90 29.90 29.90 29.90 29.90 29.90 29.90 1.19 -1.19 -1.19 -1.19 -1.19	0.00 0.00	0.00 0.00

-1	r's	Q
+	S	~

DADDA	GER	AÇÃO		. (CARGA .
NUM.	ATIVA MW	REATIVA MVAR		ATIVA MW	REATIVA MVAR
49	0.00	9.30		0.00	0.00
50	0.00	9.30		0.00	0.00
51	0.00	9.30		0.00	0.00
52	0.00	9.30		0.00	0.00
5 3 [.]	0.00	10.70		0.00	0.00
54	0.00	16.80		0.00	0.00
55	0.00	16.80		0.00	0.00
56	0.00	16.80		0.00	0.00
57	0.00	16.80		0.00	0.00
58	0.00	16.80		0.00	0.00
59	0.00	-0.10		0.00	0.00
60	0.00	-0.10	1	0.00	0.00
61	0.00	0.00	1	0.00	0.00
62	0.00	0.00		0.00	0.00
63	0.00	0.00		0.00	0.00
64	0.00	0.00		0.00	0.00
65	0.00	0.00		0.00	0.00
66	0.00	0.00		0.00	0.00
67	0.00	0.00		0.00	0.00
.68	0.00	0.00		0.00	0.00
69	0.00	0.00		0.00	0.00
70	0.00	0.00		18.00	8.70
71	0.00	0.00		60.70	29.40
72	0.00	0.00		0.00	0.00
73	0.00	0.00		0.00	0.00
74	0.00	0.00		0.00	0.00
75	0.00	0.00		86.40	28.40
76	0.00	0.00		0.00	0.00
77 '	0.00	0.00		0.00	0.00
78	0.00	0.00		0.00	0.00
79	0.00	0.00		0.00	0.00
80	0.00	0.00		0.00	0.00
81	0.00	0.00		0.00	0.00
82	0.00	0.00		. 0.00.	0.00
83	0.00	0.00		0.00	0.00
84	0.00	0.00		0.00	0.00
85	0.00	0.00		0.00	0.00
86	0.00 -	0.00		0.00	0.00
87	0.00	0.00		0.00	0.00
88	0.00	0.00		11.20	8.39
89	0.00	0.00		0.00	0.00
90	0.00	0.00		30.00	9.90
91	0.00	0.00		0.00	0.00
92	0.00	0.00		16.00	7.70
93	0.00	0.00		0.00	0.00
94	0.00	0.00	200	0.00	0.00
95	0.00	0.00		190.00	62.40
96	0.00	0.00		30.00	9.90
100 (100 (100 (100 (100 (100 (100 (100				The second se	

4	64	
1	υ	4
-		-

	GE	RAÇÃO	 CA	RGA
NUM.	ATIVA MW	REATIVA MVAR	ATIVA MW	REATIVA MVAR
$\begin{array}{r} 98\\ 99\\ 100\\ 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ 110\\ 111\\ 112\\ 113\\ 114\\ 115\\ 116\\ 117\\ 118\\ 119\\ 120\\ 121\\ 122\\ 123\\ 124\\ 125\\ 126\\ 127\\ 128\\ 129\\ 130\\ 131\\ 132\\ 133\\ 134\\ 135\\ 136\\ 137\\ 138\\ 139\\ 140\\ 141\\ \end{array}$	$ \begin{array}{c} 0.00 \\ $	$\begin{array}{c} 43.10\\ 0.00$	$\begin{array}{c} 40.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 145.00\\ 430.00\\ 0.00\\ 0.00\\ 12.10\\ 11.00\\ 12.10\\ 11.00\\ 12.10\\ 11.00\\ 12.10\\ 11.00\\ 12.90\\ 13.50\\ 12.90\\ 11.30\\ 11.70\\ 29.30\\ 903.00\\ 112.00\\ 0.00\\ $	$\begin{array}{c} 13.10\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 28.10\\ 19.10\\ 29.60\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 9.06\\ 8.24\\ 8.96\\ 10.20\\ 9.69\\ 8.24\\ 8.96\\ 10.20\\ 9.69\\ 8.24\\ 8.96\\ 10.20\\ 9.69\\ 8.49\\ 8.80\\ 14.40\\ 343.00\\ 36.80\\ 0.00\\ $
142 143 144 145	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
$ 143 \\ 144 \\ 145 \\ 146 $	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.0 0.0 0.0

.

1	0	5

	GER	AÇAO	C	ARGA .
NUM.	ATIVA MW	REATIVA MVAR	ATIVA MW	REATIVA MVAR
147	0.00	0.00	0.00	0.00
148	0.00	0.00	0.00	0.00
149	0.00	0.00	0.00	0.00
150	0.00	0.00	0.00	0.00
151	0.00	0.00	28.20	13.70
152	0.00	0.00	74.10	35.90
153	0.00	0.00	17 90	0.00
154	0.00	0.00	17.00	15 10
156	0.00	0.00	100 00	32 90
157	0.00	0.00	9 40	3.10
158	0.00	0.00	11.20	3.70
159	0.00	13.80	35.60	11.70
160 📣	0.00	0.00	373.00	123.00
161	0.00	0.00	38.20	18.50
162	0.00	0.00	24.20	11.70
163	0.00	0.00	41.20	20.00
164	0.00	0.00	37.10	18.00
165	0.00	0.00	33.00	16.00
166	0.00	0.00	19.30	9.30
167	0.00	0.00	63.60	30.80
168	0.00	0.00	29.00	14.00
169	0.00	0.00	140.00	46.20
171	0.00	24.70	175 00	57 60
172	0.00	0.00	66 50	21 90
173	0.00	0.00	6.60	2.20
174	0.00	40.00	147.00	48.30
175	0.00	0.00	125.00	41.20
176	0.00	0.00	136.00	44.80
177	0.00	0.00	240.00	78.80
178	0.00	0.00	298.00	98.10
179	0.00	0.00	15.30	5.00
180	0.00	0.00	· 2.40 ·	0.80
181	0.00	0.00	18.60	6.10
182	0.00	0.00	160.00	52.70
183	0.00	0.00	93.00	45.00
104	0.00	0.00	149.00	72 30
186	0.00	0.00	84 00	40 70
187	0.00	0.00	80.00	38.70
188	0.00	0.00	0.00	0.00
189	0.00	0.00	144.00	47.40
190	0.00	0.00	224.00	73.80
191	0.00	0.00	87.00	42.10
192	0.00	0.00	129.00	62.30
193	0.00	0.00	10.20	4.90
194	0.00	0.00	26.80	13.00
195	0.00	0.00	44.20	21.40

	GEF	AÇÃO	CAL	RGA
NUM.	ATIVA MW	REATIVA MVAR	ATIVA MW	REATIVA MVAR
$196 \\ 197 \\ 198 \\ 199 \\ 200 \\ 201 \\ 202 \\ 203 \\ 204 \\ 205 \\ 206 \\ 207 \\ 208 \\ 209 \\ 210 \\ 211 \\ 212 \\ 213 \\ 214 \\ 215 \\ 216 \\ 217 \\ 218 \\ 219 \\ 220 \\ 221 \\ 222 \\ 223 \\ 224 \\ 225 \\ 226 \\ 227 \\ 228 \\ 229 \\ 230 \\ 231 \\ 232 \\ 233 \\ 234 \\ 235 \\ 236 $	MW 0.00 0.	MVAR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 179.00 0.00 0.00 9.79 -1.81 20.00 0	MW 133.00 0.00 0.00 1.80 0.00	MVAR 0.00
237 238 239 240 241 242 243	0.00 0.00 0.00 0.00 0.00 0.00	$ \begin{array}{r} -3.45 \\ 14.90 \\ 0.00 \\ 15.30 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} $	33.00 0.00 0.00 0.00 0.00 0.00	10.80 0.00 0.00 0.00 0.00 0.00
	BARRA NUM. 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 221 222 233 224 225 226 227 228 229 230 231 232 231 232 233 234 235 236 237 238 239 240 241 235 236 237 238 239 240 241 235 236 237 238 239 240 241 235 236 237 238 239 240 241 235 236 237 238 239 240 241 235 236 237 238 239 240 241 235 236 237 238 239 240 241 235 236 237 238 239 230 231 232 234 235 236 237 238 239 230 231 232 234 235 236 237 238 239 230 231 232 234 235 236 237 238 239 230 231 232 24 235 236 237 238 239 230 231 232 234 235 236 237 238 239 230 231 232 234 235 236 237 238 239 231 232 234 235 236 237 238 239 230 231 232 232 234 235 236 237 238 239 231 232 234 235 236 237 238 239 230 231 232 237 238 239 230 231 232 237 238 239 230 231 232 237 238 239 230 231 232 239 230 231 232 237 238 239 240 241 242 237 238 239 240 241 242 242 241 242 242 241 242 242 241 242 242	BARRA NUM. ATIVA MW 196 0.00 197 0.00 198 0.00 200 0.00 201 0.00 202 0.00 203 0.00 204 0.00 205 0.00 208 0.00 209 0.00 210 0.00 213 0.00 214 0.00 215 0.00 216 0.00 217 0.00 218 0.00 220 0.00 221 0.00 225 0.00 226 0.00 227 0.00 228 0.00 230 0.00 231 0.00 232 0.00 233 0.00 234 0.00 235 0.00 236 0.00 <td>BARRA TIVA REATIVA NUM. ATIVA REATIVA MW MVAR 196 0.00 0.00 197 0.00 0.00 198 0.00 0.00 200 0.00 0.00 201 0.00 0.00 202 0.00 0.00 203 0.00 19.80 204 0.00 0.00 205 0.00 0.00 206 0.00 0.00 207 0.00 0.00 208 0.00 0.00 210 0.00 179.00 211 0.00 0.00 212 0.00 9.79 213 0.00 -1.81 214 0.00 20.00 218 0.00 0.00 220 0.00 0.00 223 0.00 0.00 224 0.00 0.00 225</td> <td>BARRA ATIVA REATIVA ATIVA MW MW 196 0.00 0.00 133.00 197 0.00 0.00 0.00 198 0.00 0.00 0.00 200 0.00 0.00 0.00 201 0.00 0.00 0.00 202 0.00 0.00 0.00 203 0.00 19.80 0.00 204 0.00 0.00 0.00 205 0.00 0.00 0.00 206 0.00 0.00 0.00 207 0.00 0.00 0.00 206 0.00 0.00 0.00 207 0.00 0.00 0.00 208 0.00 0.00 0.00 210 0.00 179.00 0.00 211 0.00 0.00 0.00 213 0.00 0.00 0.00 214 0.00 0.00 <t< td=""></t<></td>	BARRA TIVA REATIVA NUM. ATIVA REATIVA MW MVAR 196 0.00 0.00 197 0.00 0.00 198 0.00 0.00 200 0.00 0.00 201 0.00 0.00 202 0.00 0.00 203 0.00 19.80 204 0.00 0.00 205 0.00 0.00 206 0.00 0.00 207 0.00 0.00 208 0.00 0.00 210 0.00 179.00 211 0.00 0.00 212 0.00 9.79 213 0.00 -1.81 214 0.00 20.00 218 0.00 0.00 220 0.00 0.00 223 0.00 0.00 224 0.00 0.00 225	BARRA ATIVA REATIVA ATIVA MW MW 196 0.00 0.00 133.00 197 0.00 0.00 0.00 198 0.00 0.00 0.00 200 0.00 0.00 0.00 201 0.00 0.00 0.00 202 0.00 0.00 0.00 203 0.00 19.80 0.00 204 0.00 0.00 0.00 205 0.00 0.00 0.00 206 0.00 0.00 0.00 207 0.00 0.00 0.00 206 0.00 0.00 0.00 207 0.00 0.00 0.00 208 0.00 0.00 0.00 210 0.00 179.00 0.00 211 0.00 0.00 0.00 213 0.00 0.00 0.00 214 0.00 0.00 <t< td=""></t<>

.

BARRA	GERAÇÃO		CARGA	
NUM.	ATIVA MW	REATIVA MVAR	ATIVA MW	REATIVA MVAR
245	0.00	43.50	0.00	0.00
246	0.00	14.90	33.00	10.80
247	0.00	0.00	33.00	10.80
248	0.00	0.00	0.00	0.00

DADOS DE LINHA

LINHA ·	ENTRE AS	IMPEDANCI	A DA LINHA	SUSCEPTANCIA
Nom.	DANINAS	R (PU)	X (PU)	(FO)
1	72 - 1	0.00000	0.21230	0.00000
2	72 - 2	0.00000	0.21230	0.00000
3	72 - 3	0.00000	0.20860	0.00000
4	72 - 4	0.00000	0.19560	0.00000
5	72 - 5	0.00000	0.19560	0.00000
6	72 - 6	0.00000	0.19850	0.00000
7	72 - 7	0.00000	0.15670	0.00000
8	72 - 8	0.00000	0.15670	0.00000
9	72 - 9	0.00000	0.16740	0.00000
10	72 - 10	0.00000	0.06030	0.00000
11	72 - 11	0.00000	0.06030	0.00000
12	72 - 12	0.00000	0.06030	0.00000
13	72 - 13	0.00000	0.06030	0.00000
14	14 - 137	0.00000	0.02670	0.00000
15	137 - 15	0.00000	0.02670	0.00000
16	16 - 137	0.00000	0.02670	0.00000
17	17 - 137	0.00000	0.02670	0.00000
18	18 - 137	0.00000	0.02670	0.00000
19	19 - 137	0.00000	0.02670	0.00000
20	20 - 139	0.00000	0.06000	0.00000
21	21 - 139	0.00000	0.06000	0.00000
22	22 - 139	0.00000	0.06000	0.00000
23	23 - 139	0.00000	0.06000	0.00000
24	24 - 139	0.00000	0.06000	0.00000
20	20 - 139	0.00000	0.06000	0.00000
20	20 - 13	0.00000	0.11670	0.00000
21	21 - 13	0.00000	0.11670	0.00000
20	20 - 73	0.00000	0.11670	0.00000
20	20 - 120	0.00000	0.04360	0.00000
30	30 - 130	0.00000	0.04360	0.00000
32	31 - 130 32 - 130	0.00000	0.04360	0.00000
32	32 - 130	0.00000	0.04360	0.00000
34	31 - 130	0.00000	0.04360	0.00000
35	35 - 138	0.00000	0.04360	0.00000
36	36 - 86	0.00000	0.21280	0.00000

DAIUNO		A DA LINHA	SUSCEPTANCIA
	R (PU)	X (PU)	(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mathbf{R} (\mathbf{PU}) \\ \hline \\ 0.00000 $	X (PU) 0.21280 0.17140 0.17140 0.03430 0.03430 0.03430 0.03430 0.03430 0.03430 0.03430 0.03430 0.03430 0.03430 0.03430 0.03430 0.03430 0.13750 0.13750 0.13750 0.13750 0.13750 0.13750 0.13750 0.13750 0.137600 0.17600 0.29560 0.29560 0.13470 0.13470 0.13470 0.13470 0.13090 0.33630 0.33550 0.21130	$\begin{array}{c} 0.00000\\ 0.0000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.0000$

•

*

π.	n	0
	U	39
•••	~	

LINHA	ENTRE AS	IMPEDANCIA	DA LINHA	SUSCEPTANCIA
	DAIMAS	R (PU)	X (PÜ)	(10)
$\begin{array}{c} 87\\ 88\\ 89\\ 90\\ 91\\ 92\\ 93\\ 94\\ 95\\ 96\\ 97\\ 98\\ 99\\ 100\\ 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ 110\\ 111\\ 112\\ 113\\ 114\\ 115\\ 116\\ 117\\ 118\\ 119\\ 120\\ 121\\ 122\\ 123\\ 124\\ 125\\ 126\\ 127\\ 128\\ 129\\ 130\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} \text{R} (10) \\ 0.03110 \\ 0.03160 \\ 0.02190 \\ 0.02190 \\ 0.04180 \\ 0.04210 \\ 0.04220 \\ 0.02420 \\ 0.02490 \\ 0.02490 \\ 0.02490 \\ 0.02490 \\ 0.03110 \\ 0.03110 \\ 0.03110 \\ 0.03110 \\ 0.03110 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.002280 \\ 0.02280 \\ 0.02280 \\ 0.02280 \\ 0.00880 \\ 0.002280 \\ 0.00880 \\ 0.002280 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.01560 \\ 0.01530 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01560 \\ 0.01940 \\ 0.01940 \\ 0.01940 \\ 0.00000 \\ 0.00$	(F0) 0.16310 0.16460 0.16760 0.16710 0.21920 0.21720 0.21720 0.21840 0.16150 0.13010 0.16350 0.16350 0.16350 0.16350 0.16350 0.16350 0.16350 0.16350 0.1170 0.01170 0.02170 0.04210 0.02870 0.02870 0.02870 0.021790 0.21790 0.21790 0.21790 0.24240 0.11030	0.28670 0.28659 0.60299 0.60578 0.36291 0.38573 0.38544 0.49770 0.22590 0.26739 0.26739 0.26739 0.26739 0.26739 0.26739 0.00000 0.00000 0.00000 0.00000 0.00000 0.07709 0.07709 0.07780 0.07709 0.07780 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.34060 0.00000 0.00000 0.00000 0.34060 0.00000 0.00000 0.34060 0.00000 0.00000 0.00000 0.00000 0.37932 0.39000 0.37932 0.53415 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.37932 0.53415 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.37932 0.53415 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.37932 0.53415 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.37932 0.53415 0.000000 0.000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.000000
131 132 133 134	79 - 82 79 - 82 79 - 82 79 - 82 79 - 157	0.02940 0.02940 0.02940 0.00000	0.16770 0.16360 0.16360 1.46000	0.29100 0.28520 0.28660 0.00000
135 136	79 - 157 80 - 81	0.00000 0.01330	1.46000 0.07020	0.00000 0.11483

-1	i	ñ
1	1	U

.

.

1	1	1	
1	1	Т	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				 		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LIN	AH	ENTRE AS	IMPEDANCIA	DA LINHA	SUSCEPTANCIA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Diffitino	R (PU)	X (PU)	
22997 -980.037100.207300.3652023097 -990.018800.097300.1668323197 -1280.000000.180700.0000023297 -1290.000000.180700.0000023397 -1720.000000.135000.00000	187 188 188 199 191 192 193 193 193 193 193 193 193 193 193 193 200 201 202 203 204 205 206 207 208 209 201 201 202 203 204 205 206 207 208 209 201 202 203 204 205 206 207 208 209 201 211 212 212 212 212 212 212 2	7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 8 8 9 0 1 2 3 8 8 9 0 1 2 3 8 8 9 0 1 2 3 8 8 9 0 1 2 3 8 8 8 8 9 0 1 2 3 8 8 9 0 1 2 3 8 8 9 0 1 2 3 8 9 0 1 2 3 8 1 8 8 9 0 1 2 3 8 1 8 8 8 9 0 1 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8	92 - 168 92 - 237 93 - 94 93 - 94 93 - 94 93 - 95 93 - 95 93 - 95 93 - 95 93 - 97 93 - 144 93 - 169 94 - 96 94 - 101 94 - 102 94 - 103 94 - 102 94 - 102 94 - 101 94 - 102 94 - 101 94 - 102 94 - 103 94 - 103 95 - 170 95 - 170 95 - 170 95 - 170 95 - 171 96 - 131 96 - 131 96 - 131 96 - 131 96 - 132 96 - 133 96 - 131 96 - 132 96 - 133 96 - 171 96 - 238 97 - 98 97 - 98 97 - 98 97 - 98 97 - 129 97 - 172	0.00000 0.00000 0.00000 0.02910 0.02910 0.02910 0.02910 0.01690 0.01690 0.01700 0.03460 0.03400 0.00000 0.00000 0.00260 0.00260 0.00260 0.00260 0.00260 0.00260 0.00260 0.00260 0.00260 0.00260 0.00260 0.00260 0.00260 0.00260 0.00260 0.00260 0.00260 0.00260 0.00000	0.13000 0.06000 0.16930 0.16170 0.16170 0.16170 0.08750 0.08750 0.08780 0.18010 0.17840 0.09000 0.13000 0.13000 0.01340 0.01330 0.06540 0.02780 0.02780 0.02780 0.02780 0.03260 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.28500 0.28280 0.28220 0.15534 0.14615 0.15522 0.31357 0.31368 0.00000 0.00000 0.00000 0.02217 0.02356 0.02355 0.11507 0.11507 0.04882 0.04882 0.04882 0.04882 0.05755 0.01880 0.00000

. .

LINHA	ENTRE AS	IMPEDANCI	A DA LINHA	SUSCEPTANCIA
NUM.	BARRAS	R (PU)	X (PU)	(PU)
$\begin{array}{c} 237\\ 238\\ 239\\ 240\\ 241\\ 242\\ 243\\ 244\\ 245\\ 246\\ 247\\ 248\\ 249\\ 250\\ 251\\ 252\\ 253\\ 254\\ 255\\ 256\\ 257\\ 258\\ 259\\ 260\\ 261\\ 262\\ 263\\ 264\\ 265\\ 266\\ 267\\ 268\\ 269\\ 270\\ 271\\ 272\\ 273\\ 274\\ 275\\ 276\\ 277\\ 278\\ 279\\ 280\\ 281\\ 282\\ 283\\ 284\\ \end{array}$	98 - 174 99 - 100 99 - 100 99 - 175 99 - 175 100 - 176 100 - 176 100 - 176 101 - 177 101 - 177 101 - 177 102 - 178 102 - 178 102 - 178 102 - 178 102 - 178 102 - 178 102 - 178 104 - 182 105 - 107 106 - 107 106 - 108 106 - 108 106 - 108 106 - 183 106 - 183 107 - 109 107 - 109 107 - 109 107 - 223 107 - 223 108 - 185 108 - 185 108 - 185 108 - 185 108 - 185 108 - 185 109 - 110 109 - 112 109 - 113 109 - 115 109 - 115 109 - 115 109 - 146 109 - 146 100 - 140 100 - 14	0.00000 0.00970 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03750 0.03750 0.04200 0.01060 0.01060 0.01060 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.001470 0.01470 0.01470 0.01470 0.01470 0.00190 0.00190 0.00440 0.00440 0.00440 0.00440 0.00440 0.00440 0.00440 0.00440 0.00440 0.00440 0.00440 0.00440 0.00400	0.13000 0.05010 0.05010 0.14960 0.14960 0.13500 0.22110 0.05530 0.05530 0.05530 0.05530 0.02560 0.02560 0.02560 0.07520 0.29330 0.29330 0.31670 0.13000 0.13000 0.13000 0.08130 0.04610 0.02560 0.01640 0.02390 0.02300 0.02300 0.02300 0.02300 0.02300 0.02300 0.02300 0.02300 0.02300 0.02300 0.02300 0.02300 0.02300 0.02300 0.02300 0.02300 0.02300 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0000 0.00000 0.000000 0.0	0.00000 0.08594 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.09609 0.09609 0.09609 0.09609 0.09609 0.09609 0.09609 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05020 0.04240 0.04240 0.04260 0.0425 0.00000 0.00000
285	109 - 186 109 - 224	0.00000	0.04480	0.00000

1	1	9
+	+	2

٦.	1	E
+	+	2

LINHA	ENTRE AS	IMPEDANCI	A DA LINHA	SUSCEPTANCIA
NOM.	DARRAS	R (PU)	X (PU)	(PU)
387	172 - 239	0.00000	0.06500	0.00000
388	175 - 214	0.00000	0.06740	0.00000
389	175 - 214	0.00000	0.06740	0.00000
390	176 - 215	0.00000	0.06500	0.00000
391	176 - 215	0.00000	0.06500	0.00000
392	177 - 216	0.00000	0.06500	0.00000
393	177 - 216	0.00000	0.06500	0.00000
394	178 - 217	0.00000	0.06500	0.00000
395	178 - 217	0.00000	0.06500	0.00000
396	178 - 217	0.00000	0.06500	0.00000
397	179 - 218	0.00000	0.19250	0.00000
398	180 - 219	0.00000	0.75510	0.00000
399	181 - 220	0.00000	0.07880	0.00000
400	182 - 221	0.00000	0.06500	0.00000
401	182 - 221	0.00000	0.06500	0.00000
402	183 - 222	0.00000	0.06500	0.00000
403	184 - 191	0.15370	0.44560	0.00760
404	184 - 191	0.15370	0.44560	0.00760
405	184 - 223	0.00000	0.18000	0.00000
406	184 - 223	0.00000	0.18000	0.00000
407	184 - 223	0.00000	0.13670	0.00000
408	187 - 225	0.00000	0.06500	0.00000
409	187 - 225	0.00000	0.06500	0.00000
410	189 - 190	0.02800	0.08130	0:00139
411	189 - 190	0.02800	0.08130	0.00139
412	189 - 241	0.00000	0.36800	0.00000
413	190 - 191	0.07330	0.21260	0.00362
414	190 - 191	0.07330	0.21260	0.00362
415	190 - 228	0.00000	0.06500	0.00000
416	191 - 229	0.00000	0.06610	0.00000
417	191 - 242	0.00000	0.06610	0.00000
418	192 - 230	0.00000	0.06500	0.00000
419	192 - 230	0.00000	0.06500	0.00000
420	193 - 231	0.00000	0.24930	0.00000
421	194 - 232	0.00000	0.15120	0.00000
422	194 - 232	0.00000	0.15120	0.00000

DADOS DOS TRANSFORMADORES

-

TRANSFOMADOR	ENTRE AS	
NUMERO	BARRAS	TAP
1	72 - 1	0.980
2	72 - 2	0.980
3	72 - 3	0.980
4 ·	72 - 4	0.980
. 5 .	72 - 5	0.980
6	72 - 6	0.980

TAP	
0.980	
0.980	
0.980	
0.980	
0.980	

RANSFOMADOR NUMERO	ENTRE AS BARRAS	TAP
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	72 - 7 72 - 8 72 - 9 72 - 10 72 - 11 72 - 12 72 - 13 14 - 137 137 - 15 61 - 72 63 - 154 65 - 173 103 - 66 72 - 137 72 - 137 151 - 72 195 - 75 195 - 75 195 - 75 195 - 75 76 - 139 76 - 139 76 - 139 76 - 139 76 - 139 76 - 155 78 - 201 79 - 157 79 - 157 80 - 158 80 - 158 80 - 158 81 - 159 81 - 159 81 - 159 81 - 159 82 - 160 82 - 160 82 - 160 82 - 160 82 - 161 84 - 162 84 - 162 85 - 163 85 - 163 85 - 163 85 - 165 88 - 166 88 - 166 88 - 166	0.980 0.980 0.980 0.980 0.980 0.980 0.980 1.000 1.000 0.980 0.980 0.950 1.029 0.950 1.029 0.979 0.979 0.979 0.995 1.037 1.037 0.945 0.945 1.012 1.012 1.012 0.945 1.012 1.012 0.920 1.041 1.041 1.020 1.020 1.020 1.021 0.992 0.991 0.991 0.991 0.991 0.991 0.9346 0.9346 0.934 0.934 0.934 0.934 0.934 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.997

TRANSFOMADOR

-

TRANSFOMADOR NUMERO	ENTRE AS BARRAS	ТАР
TRANSFOMADOR NUMERO 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	ENTRE AS BARRAS 89 - 167 89 - 167 89 - 167 90 - 141 91 - 142 91 - 236 92 - 143 92 - 168 92 - 168 92 - 237 93 - 169 93 - 169 94 - 145 94 - 170 95 - 170 95 - 170 95 - 170 95 - 170 96 - 171 96 - 171 96 - 171 96 - 238 96 - 246 96 - 247 97 - 172 97 - 172 98 - 174 98 - 174 99 - 175 100 - 176 100 - 176 100 - 176 100 - 177 101 - 177 101 - 177 102 - 178 102 - 178 102 - 178	TAP 0.987 0.987 0.987 0.968 0.969 1.000 1.000 1.000 1.000 1.100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.000 1.000 1.000 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.969 0.969 0.958 0.958 0.958
101 102 103 104 105 106 107 108	$102 - 178 \\ 104 - 182 \\ 104 - 182 \\ 106 - 183 \\ 106 - 183 \\ 107 - 223 \\ 107 - 200 \\ 107 - 200 \\ 107 - 200 \\ 107 - 200 \\ 107 - 200 \\ 107 $	0.958 0.955 0.955 0.942 0.942 1.046 1.046 1.046

TRANSFOMADOR NUMERO	ENTRE AS BARRAS	TAP
$ \begin{array}{r} 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 129 \\ 130 \\ 131 \\ 132 \\ 133 \\ 134 \\ 135 \\ 136 \\ 137 \\ 138 \\ 139 \\ 140 \\ 141 \\ \end{array} $	108 - 185 108 - 185 109 - 146 109 - 146 109 - 146 109 - 146 109 - 146 109 - 186 109 - 186 110 - 187 110 - 187 110 - 187 111 - 196 111 - 196 112 - 189 112 - 227 112 - 227 113 - 190 113 - 190 113 - 190 113 - 190 113 - 190 114 - 191 115 - 192 115 - 192 115 - 192 116 - 135 116 - 231 117 - 136 117 - 194 117 - 194 126 - 245	$\begin{array}{c} 0.949\\ 0.949\\ 0.949\\ 1.000\\ 1.000\\ 1.000\\ 0.969\\ 0.969\\ 0.984\\ 0.984\\ 1.000\\ 1.000\\ 1.000\\ 0.942\\ 0.942\\ 0.942\\ 0.942\\ 0.914\\ 0.931\\ 0.931\\ 0.931\\ 0.931\\ 1.020\\ 1.020\\ 1.020\\ 1.020\\ 0.972\\ 0.972\\ 0.972\\ 0.972\\ 0.972\\ 0.972\\ 0.945\\ 0.944\\ 1.100\\ 1.000\\ 1.000\\ 1.000\\ 1.053\\ 1.053\\ 1.053\\ 1.000\end{array}$
142 143 144	196 - 134 152 - 198 152 - 198	1.000 1.071 1.071
144	102 100	1.011

CAPACITORES/RETORES EM DERIVAÇÃO

	BARRA		CA	PACITOR	REATOR	
2	NUM.		(MVAR)	(MVAR)	
_	78				30.00	
	79				30.00	
	82	× . 20			40.00	
	83				20.00	
	84		λ.		20.00	
	85				 10.00	
	86	•		1 Sec. 14	20.00	

BARRA NUM.	CAPACITOR (MVAR)	REATOR (MVAR)
95 126	50.00 100.00	
138		150.00
139		250.00
140		200.00
142		350.00
143		400.00
144		300.00
147		300.00
148		163.00
150		272.00
152	20.40	
160	81.60	
163	20.40	
170	20.40	
171	20.40	
172	18.40	
175	31.20	
176	20.40	
178	20.40	
183	20.40	
185	61.20	
191	40.80	
192	20.40	
194	30.60	
198	10.20	
202		10.00
203	21.60	
204	21 60	
215	14.40	
216	21.60	
217	21.60	
223	28.80	
227	21 60	
242	21.60	
244	21.60	
248	14.40	

BARRAS DE TENSÃO CONTROLADA

BARRA	MODULO DA	LIMITES DA POT	. REATIVA (MVAR)
M011.	(PU)	MINIMO	MAXIMO
NUM. NUM. 4 5 7 8 10 11 12 15 16 17 18 20 21 22 23 24 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 47 48 49 50 51 51 61 51 61 31 32 33 34 35 36 37 38 39 40 41 422 43 44 46 47 48 49 50 51 51 51 51 51 51 71 72 728 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 47 48 49 50 51	TENSAO (PU) 1.0400 1.0400 1.0400 1.0400 1.0490 1.0400 1.0200 1.0200 1.0200 1.0200	MININO -1000.0 -500.0	MAXIMO 1000.0
52 53 54 55 56 57 58 59	1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200	-500.0 -500.0 -500.0 -500.0 -500.0 -500.0 -500.0 -500.0	500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0
60	1.0000	-500.0	500.0

•

BARRA	MODULO DA	LIMITES DA	POT.	REATIVA (MVAR)
NUM.	(PU)	MINIMO		OMIXAM
98	1.0000	-1000.0		1000.0
117	1.0100	-1000.0		1000.0
159	1.0200	0.0		20.0
170	1.0100	0.0		60.0
174	1.0200	0.0		40.0
203	1.0100	-1000.0	*	1000.0
210	1.0800	-150.0		300.0
212	1.0300	-15.0		30.0
213	1.0300	-12.0		20.0
214	1.0350	-12.0		20.0
220	1.0300	-6.0	•	10.0
224	1.0700	-150.0		300.0
227	1.0400	-15.0		20.0
229	1.0300	-15.0		30.0
235	1.0260	-100.0		200.0
236	1.0200	-140.0		200.0
237	1.0200	-140.0		200.0
238	1.0100	-15.0		30.0
241	1.0500	-15.0		20.0
245	1.0300	-75.0		150.0
246	1.0100	-15.0		30.0

REFERENCIAS BIBLIOGRAFICAS

- [1] ALSAÇ, O. Et alii. Sparsity oriented compensation methods for modified newtwork solutions. <u>IEEE</u> <u>Transaction PAS</u>. New York, 102 (5): 1050-60, maio 1972.
- [2] BONAPARTE, J E. & MASLIN W. W. Simplified load flow, AIEE transactions, volume 76, pp 385-394, 1957.
- [3] BAPTISTA, M. M. Utilização de indices de desempenho no planejamento de redes de transmissão de energia elètrica. <u>5^o Congr. Bras. Automática / 1^o Congr. Lat.</u> <u>Americ. Automática. Campina Grande, vol. 1, pp 219-24,</u> 1984.
- [4] BRAMELLER, A. Et alii. <u>Sparsity its practical</u> <u>applications to power system</u>, pp 40-47, Pitman publishing, 1976.

[5] BRAMELLER, A. Op. Cit, pp 101-104.

- [6] BRAMELLER, A. Op. Cit, pp 107-110.
- [7] DOPAZO, J. F. & VANSLYCK, L. S. <u>Conventinal load flow</u> <u>not suited for real time power system monitoring</u>. Proceedings of 8th IEE PICA Conference, june, 1973.
- [8] ELETROBRAS, Precisão do modelo linearizado de fluxo de potência para a simulação do sistema elétrico brasileiro, Rio de janeiro, 1980.
- [9] KNIGHT, U. G. Power system engineering and mathematics, pp 36-41. Pergamon press, 1972.
- [10] MONTICELLI, A. <u>Mètodos de anàlise e sintese aplicados</u> <u>ao planejamento a longo prazo de sistemas de trans-</u> <u>missão de energia elétrica</u>, UNICAMP, 1979.
- [11] ROBBA, E. J. Et alii. Metodologia de avaliação estatistica da confiabilidade de sistemas elètricos. <u>VI_SNPTE</u>, 1981.
- [12] STAGG, G. W. & EL-ABIAD, A. H. Computer methods in power_system_analysis. McGraw-Hill, 1968.
- [13] SULLIVAN, R. L. <u>Power system planning</u>, pp 223-237, McGraw-Hill, 1977.

- [14] TINNEY, W. F. Compensation methods for network solutions by optimal ordered triangular factorization. <u>IEEE Transactions PAS</u>. New York, 91 (1): 123-27, 1972.
- [15] ZOLLENKOPF, K. Bi-factorisation basic computational algorithm and programing techniques, In <u>Large sparse</u> <u>sets or linear equations</u>. pp 75-96. Academic Press, 1971.