UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

 CENTRO DE TECNOLOGIA E RECURSOS NATURAISPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL UNIDADE ACADÊMICA DE ENGENHARIA CIVIL ÁREA DE ENGENHARIA DE RECURSOS HÍDRICOS

PREVISÃO DE VAZÃO EM UMA BACIA DO SEMI-ÁRIDO USANDO PREVISÕES CLIMÁTICAS NUMÉRICAS DE PRECIPITAÇÃO

Klécia Forte de Oliveira

Campina Grande - PB
2006

Klécia Forte de Oliveira

PREVISÃO DE VAZÃO EM UMA BACIA DO SEMI-ÁRIDO USANDO PREVISÕES CLIMÁTICAS NUMÉRICAS DE PRECIPITAÇÃO

Dissertação submetida ao Programa de Pós-Graduação de Engenharia Civil e Ambiental da Universidade Federal de Campina Grande, como parte dos requisitos necessários para a obtenção do Título de Mestre em Engenharia Civil e Ambiental, área de Engenharia de Recursos Hídricos.

Orientadores: Carlos de Oliveira Galvão

Paulo Nobre

048p	Oliveira, Klécia Forte de
Previsão de vazão em uma bacia do semi-árido usando	
	previsões climáticas numéricas de precipitação/Klécia Forte
de Oliveira. Campina Grande: 2006.	
77f: il.	
Inclui bibliografia	
Dissertação (Mestrado em Engenharia Civil e Ambiental).	
	Universidade Federal de Campina Grande, Centro de
Tecnologia e Recursos Naturais.	
ORientadores: Carlos de Oliveira Galvão e Paulo Nobre.	
1. Previsão de vazão. 2. Previsões climáticas. 3. Semi-	
árido.	

Klécia Forte de Oliveira

PREVISÃO DE VAZÃO EM UMA BACIA DO SEMI-ÁRIDO USANDO PREVISÕES CLIMÁTICAS NUMÉRICAS DE PRECIPITAÇÃO

BANCA EXAMINADORA

caulos Gatu)

> Prof. Dr. Carlos de Oliveira Galvão
> Universidade Federal de Campina Grande

Universidade Federal de Campina Grande

Universidade Federal do Rio Grande do Sul

Aprovada em 26 de maio de 2006

Agradecimentos

A minha família.

A Gustavo que me acompanhou.
A Chico e Ana Cláudia, que corrigiram o texto. Aos meus orientadores, Carlos e Paulo.

Aos colegas e amigos dos laboratórios de Hidráulica I e II.
Ao Preclinne/CT-HIDRO/FINEP pelo aprendizado.
Ao SegHidro/CT-INFO/MCT pelo apoio financeiro e experiência propiciada. A FUNCEME, na pessoa do Sr. David Moncunnil, pelo acesso aos dados do modelo atmosférico.

À Agência Executiva de Gestão das Águas do Estado da Paraíba, por ceder dados de precipitação observada.

Ao CNPq pelo apoio financeiro em parte da pesquisa.

Abstract

Resumo

Previsões climáticas numéricas de precipitação, resultantes do aninhamento de um modelo regional em um modelo de circulação geral da atmosfera, são usadas para prever vazões na bacia do rio Piancó. A região está localizada no semi-árido paraibano, no norte do Nordeste, apresentando grande variabilidade climática e comprovada previsibilidade sazonal. A previsão de precipitação foi gerada a partir de valores observados de TSM, num conjunto de dez simulações de distintas condições iniciais. Em razão da identificação de erros sistemáticos, aplicou-se um método de correção aos valores previstos, baseado nas médias e desvios das climatologias observada e do modelo. As precipitações previstas diárias são usadas como entrada para um modelo chuva-vazão concentrado, em escala diária. Em seguida, as precipitações previstas são acumuladas à escala mensal e corrigidas, sendo usadas como entrada para um modelo chuva-vazão concentrado, em escala mensal. Os resultados mostram que a previsão em conjunto fornece melhores ajustes à precipitação observada. A agregação das precipitações previstas diárias à escala mensal não resultou em melhores correlações entre previsão e observação. Considerando a escala sazonal, as vazões foram previstas corretamente em 65,5\% dos anos analisados, quando categorizadas (se baixas, médias ou altas).

Abstract

Numerical climate forecasts, produced by a regional model nested in an atmospheric general circulation model, are used to forecast runoff in Piancó river basin. This basin is located in the Brazilian semi-arid region (in the State of Paraíba), in northeastearn Brazil, that presents high climate variability and high seasonal predictability. An ensemble of ten simulations of rainfall forecasts, forced with observed SSTs, was used in this study. Due to the presence of systematic errors, a method of correction was applied to the precipitation forecasts, based on the mean and deviations of model's and observations' climatologies. The daily precipitation forecasts are used as input for a lumped hydrological model, at daily scale. After that, the precipitation forecasts are accumulated at the monthly scale and corrected, and used as input for a lumped hydrological model. The results show that the ensemble of forecasts produces better adjustments to the observed precipitation records. The aggregation of daily precipitation forecasts at the monthly scale did not result in better correlations between forecasted and observed data. Regarding to the seasonal scale, the outflows had been forecast correctly in $65,5 \%$ of the analyzed years, when categorized (if low, average or high).

Sumário

Resumo vi
Abstract vii
Lista de Figuras x
Lista de Tabelas xii
Lista de Siglas e Abreviaturas xii
1 - Introdução 1
2 - Sobre a utilização de previsões de precipitação para previsão de vazões 3
2.1 - Previsibilidade sazonal sobre o NEB 3
2.2 - Modelos atmosféricos 5
2.3 - Acoplamento entre modelos atmosféricos e hidrológicos 9
3 - Estudo de caso: a bacia do rio Piancó 12
3.1 - Caracterização 12
3.2 - Precipitação observada 13
3.2.1 - Precipitação média sobre a bacia 15
3.2.2 - Consistência dos dados observados de precipitação 17
3.3 - Vazão observada 18
3.3.1 - Análise dos dados observados de vazão 19
4 - Metodologia 22
4.1 - Previsão de precipitação 22
4.1.1 - Sobre os dados de previsão 22
4.1.2 - Correção dos dados previstos 23
4.1.3 - Análise da qualidade da previsão de precipitação 25
4.2 - Modelo chuva-vazão 26
4.2.1 - O modelo Tank diário 26
4.2.2 - O modelo Tank mensal 28
4.3 - Geração de vazões 29
4.3.1 - Simulações 29
4.3.2 - Análise da qualidade da previsão de vazão 30
5 - Resultados e Discussão 31
5.1 -Previsão de precipitação 31
5.1.1 - Correção da precipitação diária 31
5.1.2 - Correção da precipitação mensal 39
5.1.3 - Precipitação nos postos 40
5.2 - Calibração e validação do modelo chuva-vazão 43
5.2.1 - Calibração 43
5.2.2 - Validação 49
5.3 -Previsão de vazão 57
5.3.1 - Previsão de vazão usando o modelo Tank diário 58
5.3.2 - Previsão de vazão usando o modelo Tank mensal 67
5.3.3 - Síntese 70
6 - Conclusões e Recomendações 71
7 - Referências Bibliográficas 73
Anexos 77

Lista de Figuras

Figura 3.1 - Esquema da localização da bacia do rio Piancó
Figura 3.2 - Curvas de nível na região da bacia do rio Piancó
Figura 3.3 - Bacia do rio Piancó - postos pluviométricos usados
Figura 3.4 - Precipitação média mensal na bacia do rio Piancó
Figura 3.5 - Vazões médias mensais do rio Piancó na seção do posto Piancó
12

13
14 16 19

Figura 3.6 - Vazão observada diária ($\mathrm{em} \mathrm{m}^{3} / \mathrm{s}$) nos anos de 1965 e 1966
Figura 4.1 - Área abrangida pelo modelo regional 23

Figura 4.2 - Esquema de interpolação
Figura 4.3 - Valores climatológicos de precipitação na bacia do rio Piancó 24

Figura 4.4 - Esquema do modelo Tank diário
Figura 4.5 - Esquema do modelo Tank mensal
Figura 4.6 - Esquema das vazões simuladas 30

Figura 5.1 - Valores de precipitação diária para o ano de 1984 32

Figura 5.2 - Funções densidade de probabilidade das precipitações médias diárias sobre a bacia34

Figura 5.3 - Valores mensais de precipitação 35
Figura 5.4 - Valores mensais observados de precipitação e climatologia mensal (Cli) 37

Figura 5.5 - Valores sazonais de precipitação - as linhas em cinza correspondem aos limites de variação dos membros de previsão corrigida

Figura 5.6 - Valores sazonais de precipitação para os postos Itaporanga e Serra Grande

Figura 5.7 - Valores diários de Qobs e Qsim - Classificação do ano e coeficiente de correlação (R) entre Qobs e Qsim

Figura 5.8 - Valores mensais de Qbs e Qsim - Classificação do ano e coeficiente de correlação (R) entre Qobs e Qsim

Figura 5.9 - Valores anuais de Qobs e Qsim - os anos assinalados apresentam falhas na observação da vazão

Figura 5.10 - Valores diários de Qobs e Qsim - Classificação do ano e coeficiente de correlação (R) entre Qobs e Qsim

Figura 5.11 - Valores mensais de Qobs e Qsim - Classificação do ano e coeficiente
de correlação (R) entre Qobs e Qsim 54

Figura 5.12 - Valores anuais de Qobs e Qsim - os anos assinalados apresentam
falhas na observação da vazão 57
Figura 5.13 - Valores diários de Qobs; Qs,po e Média Qs,pc 59
Figura 5.14 - Valores mensais de Qobs; Qs,po e Média Qs,pc 64Figura 5.15 - Valores sazonais de vazão - as linhas tracejadas correspondem aoslimites de variação dos membros de Qs,pc67

Figura 5.16 - Valores sazonais de vazão - as linhas tracejadas correspondem aos limites de variação dos membros de Qs,pc

Lista de Tabelas

Tabela 3.1 - Informações dos postos pluviométricos utilizados neste estudo 15
Tabela 3.2 - Classificação dos anos segundo a precipitação anual observada 16
Tabela 3.3 - Precipitação nos postos vizinhos ao posto Conceição em 15/06/1965 17
Tabela 3.4 - Precipitação total anual 18
Tabela 3. 5 - Correlação entre a precipitação sazonal média sobre a bacia e a precipitação sazonal em cada posto pluviométrico 18
Tabela 3.6 - Informações do posto fluviométrico Piancó 19
Tabela 3.7 - Classificação dos anos segundo a vazão média anual 21
Tabela 4.1 - Parâmetros do modelo Tank mensal 29
Tabela 5.1 - Bias calculado entre os membros de Pp e Pc e Pobs 31
Tabela 5.2 - Correlação (R) calculada entre os membros de Pp e Pc e Pobs 32
Tabela 5.3 - Classes de ocorrência dos valores diários de Pobs; Pp,m e Pc,m 33
Tabela 5.4 - Correlação (R) calculada entre os membros de Pp e Pc e Pobs 34
Tabela 5.5 - Valores de correlação mensal entre Pobs e Pc,m e classificação dos anos 37
Tabela 5.6 - Correlação (R) calculada entre os membros de Pp e Pc e Pobs 38
Tabela 5.7 - Correlação (R) calculada entre os membros de Pc e Pobs 39
Tabela 5.8 - Valores de correlação mensal e classificação dos anos segundo o total precipitado anual 39
Tabela 5.9 - Correlação (R) calculada entre os membros de Pc e Pobs 40
Tabela 5.10 - Erro médio absoluto entre a precipitação prevista e a observada 40
Tabela 5.11 - Estatísticas sazonais entre a precipitação observada e prevista 42
Tabela 5.12 - Parâmetros do modelo Tank 44
Tabela 5.13 - Valores de bias calculados entre Qsim e Qobs diários 44
Tabela 5.14 - Valores de bias calculados entre Qsim e Qobs diários 50
Tabela 5.15 - Bias calculado entre os membros de Qs,pc; Média Qs,pc; Qs,po e Qobs 58
Tabela 5.16 - Correlação (R) calculada entre os membros de Qs,pc; Média Qs,pc; Qs,po e Qobs 58
Tabela 5.17 - Correlação (R) calculada entre os membros de Qs,pc; Média Qs,pc; Qs,po e Qobs 63
Tabela 5.18 - Correlações entre os valores mensais de Média Qs,pc; Qs,po e Qobs 63
Tabela 5.19 - Correlação (R) calculada entre os valores sazonais dos membros de Qs,pc; Qs,po e Qobs 66
Tabela 5.20 - Classificação dos anos segundo a vazão média sazonal 67
Tabela 5.21 - Correlação (R) calculada entre os membros de Qs,pc; Qs,po e Qobs 68
Tabela 5.22 - Bias calculado entre os membros de Qs,pc; Qs,po e Qobs 68
Tabela 5.23 - Correlações entre os valores mensais de Média Qs,pc e Qobs 68
Tabela 5.24 - Correlação (R) calculada entre os membros de Qs,pc, Qs,po e Qobs 69
Tabela 5.25 - Erro médio absoluto entre a vazão observada e vazões simuladas 70

Lista de Siglas e Abreviaturas

AESA	Agência Executiva de Gestão das Águas do Estado da Paraíba
ANA	Agência Nacional de Águas
CPTEC	Centro de Previsão de Tempo e Estudos Climáticos
ECHAM	European Community-Hamburg
ECMWF	European Centre for Medium-Range Weather Forecasts
ENOS	El Niño-Oscilação Sul
FUNCEME	Fundação Cearense de Meteorologia e Recursos Hídricos
INPE	Instituto Nacional de Pesquisas Espaciais
MCGA	Modelo de Circulação Geral da Atmosfera
MR	Modelo Regional
NCEP	National Centers for Environmental Prediction
NEB	Nordeste do Brasil
RSM	Regional Spectral Model
SIMOC	Sistema de Modelagem Estatística dos Oceanos
SUDENE	Superintendência do Desenvolvimento do Nordeste
TSM	Temperatura da Superfície do Mar
ZCIT	Zona de Convergência Intertropical

F\#B \%

$$
\begin{aligned}
& \text { \& ; 1, } \\
& \begin{array}{llllllll}
& & \& & \text { F\#B } & & & & 8 \\
: & R & & -6 & & : & \# & 0
\end{array} \\
& \text { A } \\
& \text { F\#B } \\
& \text { B \% } \\
& \text { A } 3 \\
& \text { \& } \\
& \text { \& - } \\
& \text { B) }{ }^{\prime} \\
& \text { \& } \quad ; 1,0 \text {; } \\
& \text { F\#B } \\
& \text { A } \% \\
& \text { F\#B } \\
& \text { \& } \\
& \text { C } \\
& 0 \text { F } \\
& \text { F\#B } \\
& \text { B) }{ }^{\prime} \quad \text {) 3F1) } \\
& \text { A B) } \\
& \text { \& - } \\
& \text { B) } \% 8 \\
& \text { \& } \\
& 1^{*} \quad!!!\% A B \quad \text { () } \\
& \text { \# } 4 \text { \%8 } \\
& \text { \& - } 0 \# \text { - ; } 0 \quad!!+\% \quad 7 \quad 6 \\
& \text {; 1, E } \\
& 0 \text { A } \\
& \text { \& } \\
& 7 \\
& \text { \& } 0 \mathrm{~A} \quad: \quad< \\
& \text { F\#B } \\
& \text { \& } 017 \\
& \text { H } \\
& \text { ((\% } \\
& 8 \\
& \text { F\#B }
\end{aligned}
$$

; 1, 0
A B) '
0 A
\&
0 A

$0 \quad!!/ \%$
\&I F\#N\#0 A8\&
6
;
,
\&
0

	$\&$			
	$\&$	$\&$	0	
	$\&$		-	

\&
downscaling
\#)

\#

> . $+0+L$,
> 3 L

> \& $0 S$
> 2
> \#
> \&
> (D! ! ! 01
> \& $\quad \$ 00 \% 3$
> $<$
> L \#@1; 1 ,
> (((\% A
> -
> \&

$$
\begin{array}{cc}
.-\infty \$ & 3 \\
0 ; & 0
\end{array}
$$

0

. + + \$ L 3
\&
\& <
03
6
$6 \quad 0 \quad$ F $\quad+0$
0
$F \quad+0 \quad L)$
\&
\&

\$	0) !	\$	0)
(D+	JQD/	;	(Q	\$D+ +	\#
(D\$	D+ Q\$)	(Q+	/ QQ	\#
(D/	Q\$! !	;	(Q ${ }_{\text {S }}$	Q! $/$;
(DD	J! Q!	\#	(Q)	JJ/ /)
(DJ	+D()	(QD	! D ($)$
(DQ	(! Q	;	(Q	D+(\$Q	\#
(D	Q $+1 /$;	(QQ	Q J \$+	;
(J!	/ Q +	\#	(Q	! \$Q \$\$)
(J	+ J+)	($!$! ! J	\#
(J	Q! +D	;	(1	D+! DJ	\#
(J+	(\$J)	;	$1(\$$	JJ)
(J\$	\$! J JD)	($/$	($/+!$!)
(J /	/ \$/)	((D	J (D ! !	;
(JD	JQ +	;	$1(\mathrm{~J}$	Q \$ Q	;
(JJ	(J)	((Q	+\$! Q	\#
(JQ	J!/ D+	\#	$1(1$	J/J!J	;
(J	QD+ J	;	! ! !	(! J !	;
(Q)	J\$! Q+	;	! !	D! Q +J	\#
(Q	D/ \$	\#			

\# 1) 2

8

F $\quad+0 \$ \mathrm{~L} 3$
\&

88
6
\&
\& F
$+0 \%$
(J $\quad(1(0 ;$ F $\quad+0$ $=\quad=\quad \%$

8
0

F $\quad+0$ L
\&
\&
\&

		\$)
	N	\$! (+
,	>	D	! (\$(
,	\#	J	! JJ!
)	\&	J	! Q Q
\#		J	! Q
S		J	! (!J
S	-	Q	! Q +
$>$		D	! (! !
B		/	$!(!J$
;	A	D	! J !
3		D	! QDD
3	S	J	! Q /
\wedge	7	!	! QO
\#	,		! D/ (
F		+	! QD!
_C		Q ((

\# \# 9
A
3
$=\quad(\mathrm{D}+$
F $\quad+\infty \quad 7$
\&
0 U
$\begin{array}{llll}\text { I } & \mathrm{H} & \mathrm{V} ; & 0 \\ \& & \mathrm{~F}\end{array}$
$+\infty \quad 70 \mathrm{~A} \quad 8$
\&
0

. $\quad{ }^{1}+0 \$ \%$
\&

7

■, @\& \#. \# !

3
\&
3
\# \# \$:
\&
\&
$<$
\&
\$0 0 \%
; 11X !! " X
\#
!! \% 3

0 A
5

37

+ + \$' $1 \$ 1$
$<$
MD S
E \%
‘ " \%

$$
=\quad 1,1 *{ }_{1,1}+\quad 1,2 *{ }_{1,2}+\quad{ }_{2,1} *{ }_{2,1}+{ }_{2,2}^{*} *{ }_{2,2}
$$

A

7
\&
$\$ 00$

$$
\text { . } \$ 0<0
$$

$\$ 0<18$
$1,1=\frac{(2-)}{(2-1)} * \frac{(2-)}{(2-1)}$
$2,1=\frac{(-1)}{(2-1)} * \frac{(2-)}{2-1}$
$1,2=\frac{(2-)}{(2-1)} * \frac{(-1)}{2-1}$
$2,2=\frac{(-1)}{(2-1)} * \frac{(-1)}{2-1}$
\&
! ! / \%
\&
0

0
\&
<8
\&

\&

6
\&
\$0+
8
7
$=0 \mathrm{~S}$
$<3 \%$
2. E' et al0 !!/ \%

$$
\begin{aligned}
& \text { \& } 30 \mathrm{~A} \\
& \text { \& } \quad=\quad \%)<3 \quad<B+!\quad 8 \\
& +101 \quad 5 \quad 8 \\
& \mathrm{~b}</ \mathrm{l} \text { c /doA }
\end{aligned}
$$

!!! 0

A

> \&

P\% σ

$0 N$	0 8

8
A
\&
2
\&
bias0
A
\& \%
\&
\%
\& $\%$
\&
18 \&
\$0\$ ${ }^{\circ}$ 日 \# -
H 4 ($/ \%$
E \%
$<$
6
8

$$
\text { <" \% } 8
$$

2
\& 78
0 A

$$
\begin{aligned}
\& & \& \\
= & <\operatorname{cov}(, \quad) \\
\sigma * \sigma &
\end{aligned}
$$

$$
\$ 0 \$ \%
$$

$$
\text { A } \operatorname{cov}(, \quad) \quad: \quad \sigma * \sigma
$$

$$
\begin{aligned}
& \text {; \# \$: > } \\
& 8 \text { \& } \\
& \text { \& } \\
& \text { \& } \\
& \text { E \% } \\
& \text { \& } \\
& \text { F } \\
& \text { \& } \\
& \text { \& } \\
& \text { \& } 03 \\
& \text { \& } \\
& 0 \\
& \text { \& } \\
& \text { \& } \\
& \text { \& } \\
& 8 \\
& < \\
& \text { \& } \\
& 03 \\
& \text { \& } \\
& 0 \\
& \text {) } \\
& \text { \& } \\
& \text { E \% } \\
& \text { bias \% \& } \\
& 0 \text { A bias } 180 \text { \$0+ } \% \\
& \text { - \% } \\
& \text { H } 4 \text { (} / \text { \% } \\
& \text { \& - } \\
& \text { \& } \\
& \text { \& } \\
& \text { \$0+\% } \\
& \text { \& }
\end{aligned}
$$

$$
\begin{aligned}
& 0 \text { A } \\
& 18 \text { \& } \$ 00 \% \text { - } 0 \\
& =*(-) \\
& \text { \$0 \% } \\
& \text { A } \\
& \text { A } \\
& \text { \% } \\
& 0 \\
& \text { \% } \\
& 0 \\
& \text {.- } \quad \$ 0 \$ 18 \\
& \text { F } 4 \\
& \text {) } \\
& 3 \\
& \text { \& } \\
& \begin{array}{llllll}
& \& & & & F & 4 \\
& \& & \& & +0 & & \\
& & & & E
\end{array} \\
& \text { \& } \quad+0+\% \\
& \text { (D+ (} \\
& 7 \\
& \text { +D } \\
& 1(1+ \\
& \text { \& } \\
& \text { \& } \\
& 0 \\
& \text { \& } \\
& \text { \& } \\
& \text { F } \\
& 30 \mathrm{~A} \\
& 8 \\
& 60
\end{aligned}
$$

> .- $\$ 0$ L 18
> F 4
> (((\%
> $\begin{array}{rllll}+0+\% & & & \\ 0 & F & \$ 0 & 7\end{array}$
> \&
> 8
> 30. 3
> e \backslash
> A
> F 40
> F $\quad \$ 0$ L 3 :
> F 4
> ; \# 8
> ; \#
> \&
> F 4
> F 4
> 0 A
> \&
> 0
> \&
> \&
> \& 3%
> $8 ?$

5 :
\#
\&
\&
\& $\quad F$
/ 0 \%
0

A
\&
\&
\& 0
\&

.- 10
\&
(Q \$
\&
3 \%
3%
3%

.- $10 \mathrm{~L} . \&$

F $\quad 10 \$<$
\&
\&
\&

- - \&
=
\&
\&
日月 -
/ $0+$
\&

8	$=$
$\&$	$=$

\&
6
\&
6
\& 0

8
0

