UMA ROTINA COMPUTACIONAL PARA ESTRATIFICAÇÃO: DESENVOLVIMENTO E APLICAÇÃO A SOLOS DO NORDESTE

Dissertação apresentada ao Curso de Mestrado em Engenharia Elétrica da Universidade Federal da Paraíba, como parte dos requisitos necessários à obtenção do Título de Mestre.

AREA DE CONCENTRAÇÃO : PROCESSAMENTO DA ENERGIA ORIENTADOR : BENEMAR ALENCAR DE SOUZA CO-ORIENTADOR: WELLINGTON SANTOS MOTA

CAMPINA GRANDE

C376r Cavalcanti, Cicero Vladimir de Abreu Uma rotina computacional para estratificacao : desenvolvimento e aplicacao a solos do Nordeste / Cicero Vladimir de Abreu Cavalcanti. - Campina Grande, 1991. 134 f. Dissertacao (Mestrado em Engenharia Eletrica) -Universidade Federal da Paraiba, Centro de Ciencias e Tecnologia. 1. Sistema Eletrico de Potencia 2. Computacao - 3. Processamento de Energia - 4. Dissertacao I. Souza, Benemar Alencar de, M.Sc. II. Mota, Wellington Santos, Dr. III. Universidade Federal da Paraiba - Campina Grande (PB) CDU 621.3.016.2(043) UMA ROTINA COMPUTACIONAL PARA ESTRÀTIFICACAO: DESENVOLVIMENTO E APLICACAO A SOLOS DO NORDESTE

CICERO VLADIMIR DE ABREU CAVALCANTI

DISSERTAÇÃO APROVADA EM 30.10.91

WELLINGTON BAK Ph.D., UFPB **Ør**ientador

BENEMAR ALEANAR DE SOUSA, Mestre, UFPB Orientado

DRUMOND XAVIER DAVALCANTI LIMA, Dr., UFPB Componente da Banca

WASHINGTON EVANGELISTA DE MACEDO, Mestre, UFPB Componente da Banca

> CAMPINA GRANDE - PB OUTUBRO - 1991

Dedico este trabalho

a minha mãe, minha avó Guilhermina, minha esposa e nosso(a) filho(a) que está para nascer.

AGRADECIMENTOS

Ao Prof. Benemar Alencar de Souza pelo bom relacionamento e constante orientação na elaboração deste trabalho.

Ao Engo Alírio Gomes da Cunha pelas sugestões, compreensão e apoio durante todo o Curso de Mestrado.

A Ezequiel Caetano e Elizete Filizola pela acolhida e hospitalidade durante a minha estada em Campina Grande.

Ao Engo Jackson Pacheco pelo apoio e empenho quando diretor, para que eu recomeçasse o curso de Mestrado.

Estendo meus agradecimentos a todas as pessoas que através de apoio, incentivo ou trabalhos técnicos, contribuiram para a realização desta pesquisa. Entre elas destaco:

Engo Elias de Jesus da CEAL ;

Engos Hermano Gouveia, Ricardo Melo e

Antônio Varejão da CHESF;

Engo Manuel Soares Duarte;

Prof. Francisco Moraes do DME/UFPb.

RESUMO

Este trabalho apresenta uma estatística sobre a adequação dos modelos de duas, três e quatro camadas aos solos do Nordeste, a partir de medições disponíveis conseguidas na CHESF e Concessionárias da Região.

É feita a comparação entre a estratificação encontrada pelo melhor modelo de duas camadas, com a redução ao modelo equivalente de duas camadas obtido pela fórmula de *Hummel*, para todos os solos de três e quatro camadas.

Para se fazer a depuração das medições de campo, é proposto um novo critério de exclusão eventual de alguma medida, em substituição ao critério usual do afastamento máximo de 50% em relação à média.

As funções apresentadas por *SUNDE*(1969) para modelagem do solo em camadas, são rearranjadas de modo a se contornar alguns problemas numéricos de ordem prática e viabilizar sua implementação em computador. Uma revisão do método dos mínimos quadrados é feita com direcionamento para estratificação do solo.

Descreve-se o programa de computador desenvolvido para que sejam alcançados os objetivos acima expostos, mostrando-se seus recursos e as técnicas utilizadas.

Finalmente apresenta-se as características dos solos pesquisados, sob o ponto de vista de resistividade.

iv

CLARKER CARDERS.

ABSTRACT

This work presents a statistics about the two, three and four layers model fitness to soil of Northeastern Brazil, using available measurements obtained from CHESF and Concessionaires of the region.

A comparison is performed between the stratification encountered by the best layers model with the two layers equivalent reduction model obtained by the Hummel formula, for all soils of three and four layers.

In order to make field measurements depuration, it is proposed a new eventual exclusion criterion of some measures in substitution to the usual criterion of maximun separation of 50% in relation to the average.

The functions presented by Sunde(1969) to soil modelling in layers, are arranged in the way to contour some numeric problems of pratice order and to viabilite its computer implementation. One review of least square method is performed with emphasis to soil stratification.

It is make a description of the developed computer program, to obtain the purposes explained above showing its capacity and used techniques.

Finally it is shown the researched soils caracteristics, under the optics of resistivity.

INDICE

	Página
LISTA DE TABELAS	ix
LISTA DE FIGURAS	x
Capítulo	
I - INTRODUÇÃO	
1.1 - Considerações Gerais	1
1.2 - Objetivos	2
1.3 - Conceitos Básicos de Um Sistema de	
Aterramento	3 -
1.3.1 - Limites de Correntes Permissíveis	
no Corpo Humano	3 L
1.3.2 - Tensões de Segurança	4
1.3.3 - Tensão de Transferência	8
1.3.4 - Resistência do Aterramento	8
1.4 - Algumas Considerações sobre os Métodos de	
Cálculo de uma Malha de Terra	11 -
1.5 - Apresentação do Trabalho	13 🗠
II - LEVANTAMENTO DAS CARACTERÍSTICAS DO SOLO:	
AQUISIÇÃO E DEPURAÇÃO DOS DADOS.	
2.1 - Introdução	14
2.2 - Características do Solo	
2.3 - Métodos de Medição de Resistividade do	D
Solo	19

		VII
2.3	3.1 - Método da Variação da Profundidade	w 6 184
	ou Haste Sonda	19
2.3	3.2 - Método de <i>Wenner</i>	20
2.3	3.3 - Método de <i>Palmer</i>	21
2.3	3.4 - Método de Schlumberger	23
2.4	- Tratamento Estatístico dos Dados	23
2.4	1.1 - Medidas de Posição e Dispersão	24
2.4	1.2 - O Esquema dos Cinco Números	25
III -	MODELOS DO SOLO EM CAMADAS: FUNDAMENTOS	
	TEÓRICOS.	
3.1	l - Introdução	28 -
3.2	2 - Equações Básicas de Estratificação Genérica	
	do Solo	29
3.3	3 - Cálculo da Resistividade Aparente de um Solo	
	de n camadas	35
3.4	4 - Resistividade Aparente de Solos de Duas	
	Camadas	40 -
-IV - 7	FECNICA DE OTIMIZAÇÃO APLICADA A ESTRATIFICAÇÃO	
4.:	1 - Introdução	42
4.3	2 - O Problema de Otimização Básico: Formulação	
	e Considerações	43
4.	3 - A Técnica dos Minimos Quadrados na	
•	Modelagen do Solo	-44
4.4	4 - O Método Least-pth	-49
4	5 - Otimização por Todos os Pontos	50

		V111
	4.6 - Otimização com Restrição	51
	4.7 - Dados Amostrais	53
Rj.	4.8 - Determinação da Estimativa Inicial	54
	V - O PROGRAMA COMPUTACIONAL E SUA APLICAÇÃO	
	5.1 - Introdução	62
	5.2 - Descrição do Programa Principal e Subrotinas	64
	5.3 - Análise e Depuração dos Dados	67
	5.4 - Exemplos de Estratificações do Solo	70
	5.5 - Resultado das Estratificações dos Dados	
	Coletados	77
	5.6 - Determinação e Validação do Modelo	
	Matemático para os Solos	78
	5.7 - Métodos de Determinação do Modelo de	
	Duas Camadas	80
	5.8 - Distribuição dos Solos em Classes de	
	Resistividade	82
a	VI - CONCLUSSES E RECOMENDAÇSES	
	6.1 - Conclusões	85
	6.2 - Recomendações de Ordem Prática	87
	6.3 - Sugestões de Pesquisas	88
	REFERÊNCIAS BIBLIOGRAFICAS	90
	APENDICES	
	1 - Solução da Integral Usada no Modelo de	
	Duás Camadas	93
	2 - Dados de Medição de Resistividades do Solo do	
	Nordeste e suas Respectivas Estratificações	
	pelo Programa TERRA	95

LISTA DE TABELAS

TABELA	Página
2.1 - Variação da Resistividade em Função do Tipo de Solo	16
2.2 - Período e Formação Geológica do Solo	17
3.1 - Comparação Entre as Resistividades Calculadas	
pelas eqs. 3.16 e 3.19, com (P)=[500; 8; 100]	. 41
5.1 - Distribuição dos Solos Quanto ao Número	
de Camadas	. 79
5.2 - Comparação entre a Redução ao Modelo de Duas	
Camadas pela Fórmula de <i>Hummel</i> e Ajuste Direto	82
5.3 - Distribuição dos Valores das Camadas	
Superficial(ρ_1) e Infinita(ρ_2) por Faixa	
de Resistividade	83

LISTA DE FIGURAS

x

Figura	Página
1.1- Tensão de Passo Próximo a uma Estrutura	
Aterrada	7
1.2- Tensão de Toque em uma Estrutura Aterrada	7
1.3- Situações Básicas de Choque Elétrico em	
uma Subestação	10
2.1- Efeitos do Sal, Umidade e Temperatura na	
Resistividade do Solo	18
2.2- Método de Wenner	22
2.3- Método de Palmer	22
2.4- Método de Schulumberger	22
3.1- Medição pelo Método de Wenner da Resistividade	
de um Solo de n Camadas	30
3.2- Gráfico da Função de Bessel $J_0(\lambda)$ versus λ	38
3.3- Gráfico da Função $[J_o(r\lambda) - J_o(2r\lambda)]$ versus	
λ, para r = 1	38
3.4- Gráfico da Função K([P], λ) versus λ , para um	
Solo de Três Camadas com (P)=[630;2;3150;12;820].	39
3.5- Gráfico da Função $K((r,\lambda)-1)[J_o(r\lambda)-J_o(2r\lambda)]$	
com (P)=[630; 2; 3150; 12; 820]	39
4.1- Curvas Características de Solos de Duas	
Camadas	57
4.2- Curvas Características de Solos de Três	
Camadas	57

4.3-	Curvas Características de Solos de Quatro	
	Camadas	60
4.4-	Curvas Típicas de Solos de Duas Camadas, com	
	Pontos de Inflexão e Pontos de Máximo e Mínimo	
	não Consideráveis	60
4.5-	Curva Típica de Solo de Três Camadas, com	
	Pontos de Máximos e Mínimos não Consideráveis	61
5.1-	Diagrama de Blocos do Programa de Estratificação	
	do Solo	63
5.2-	Curva que Interpola os Pontos Médios Medidos	74
5.3-	Estimativa Inicial para o Modelo de Três	
	Camadas da SE Cabrobó - CHESF	74
5.4-	Otimização dos Parâmetros de Três Camadas	
	para a SE Cabrobó - CHESF	75
5.5-	Equivalente de Duas Camadas Usando a Fórmula	
	de Hummel	75
5.6-	Gráfico da Curva Característica de Duas Camadas	
	para o Solo da SE Cabrobó - CHESF	76
5.7-	Gráfico da Curva Característica de Duas Camadas	
	para o Solo da SE Maisa - COSERN	76
5.8-	Distribuição de Frequência da Camada	
	Superficial(ρ_i) por Faixa de Resistividade	84
5.9-	Distribuição de Frequência da Camada	
- *	Infinita(ρ_{2}) por Faixa de Resistividade	84

xi

CAPÍTULO I

INTRODUÇÃO

1.1 CONSIDERAÇÕES GERAIS

Com o aparecimento dos sistemas elétricos, surgiu também a necessidade de se usar o solo como dissipador das correntes de defeito, referencial de tensão, condutor de retorno para correntes de curto-circuito fase-terra, e até, para as correntes de carga nos sistemas monofásicos de retorno pela terra (*MRT*).

Seja qual for a função que o solo esteja desempenhando, sua facilidade natural de dispersão da corrente deve ser melhorada mediante o emprego de um sistema de aterramento adequado, para proteger todos os elementos constituintes do sistema elétrico, principalmente ao mais importante deles, o ser humano.

O conhecimento do modelo elétrico do solo não é necessário apenas para sua utilização no cálculo de aterramento de sistemas elétricos, mas também para se fazer a proteção catódica contra corrosão de qualquer estrutura metálica subterrânea. Este tipo de proteção tem sido muito usada em tubulações de gás, petróleo, etc...

O principal motivo que nos levou a optar pela linha

1.3 CONCEITOS BÁSICOS DE UM SISTEMA DE ATERRAMENTO

Os principais objetivos de um sistema de aterramento

O primeiro é dispersar na terra as correntes de defeito e de impulso geradas por manobras ou descargas atmosféricas, sem exceder os limites de operação e dos equipamentos ou afetar a continuidade do serviço, além de possibilitar o funcionamento adequado das proteções.

O segundo é garantir que uma pessoa nas proximidades
 de equipamentos aterrados não seja submetida a choques
 elétricos perigosos.

Um sistema de aterramento com baixa resistência, pode não ser seguro em determinadas condições,enquanto outro, com alta resistência pode se tornar seguro, dependendo do arranjo que se faça nos condutores que formam a malha de terra.

Para isto alguns parâmetros precisam ser observados no cálculo de uma malha de terra, os quais são descritos a seguir.

1.3.1 Limites de Corrente Permissíveis no Corpo Humano

Como mostra os estudos de *Dalziel*(IEEE-80,1986), a corrente máxima admissível no corpo humano sem haver fibrilação ventricular, na faixa de 0,03 a 3,00 s, obedece a seguinte equação:

$$(I_B)^2 t_S = S_B$$

onde

- I = Valor rms da corrente através do corpo
- t = Duração em segundos da exposição a corrente
- .S = Constante empírica relativa a energia do choque elétrico tolerável por determinada percentagem de população.

Dalziel em seus estudos concluiu que para 99,5% das pessoas pesando aproximadamente 50 e 70 kg, a constante S_B é 0,0135 e 0,0246, respectivamente. O que fornece as seguintes correntes máximas permissíveis:

$$I_{B} = 0.116 / \sqrt{t_{s}}$$
 (A); para pessoas de 50 kg (1.2)

$$I_{B} = 0,157 / \sqrt{t_{s}}$$
 (A); para pessoas de 70 kg (1.3)

As equações acima são de fundamental importância no cálculo de malha de terra, pois as tensões admissíveis são limitadas pela corrente I e pelas condições de contato do homem no circuito acidental. Como apresenta-se a seguir.

1.3.2 - Tensões de Segurança

Tensão de Passo

Tensão de Passo é a diferença de potencial na superfície do solo, a que fica submetida uma pessoa que está

(1.1)

no interior da área coberta pela malha, próxima ao ponto de maior gradiente de potencial, com afastamento de 1m entre seus pés e sem contato com qualquer outro objeto aterrado (Fig. 1.1).

A máxima tensão de passo em qualquer circuito acidental (Fig. 1.1) não deve exceder o seguinte limite:

$$E_{\text{parado}} = (R_{\text{B}} + R_{\text{parado}})I_{\text{B}}$$
(1.4)

onde

R = Resistência do corpo humano, assumida como 1000 Ω. R_{2FS} = Resistência dos dois pés em série I = Corrente máxima admissível no corpo humano.

$$R_{2FS} = 6C_{(h,K)\rho}$$
(1.5)

Combinando as eqs 1.2, 1.4 e 1.5, temos:

$$E_{passo} = (1000 + 6C_{s}(h_{s}, K)\rho_{s}) 0,116/\sqrt{t_{s}}$$
(1.6)

onde

$$K = \frac{\rho - \rho_s}{\rho + \rho_s}$$

 ρ = Resistividade do solo em Ω .m

- P = Resistividade do material de superfície (geralmente brita) em Ω.m
- h_ = Largura da camada do material de superfície em m.

- C = Fator de redução para ajustar o valor nominal da resistividade da camada do material de superfície (IEEE 80, 1986).
- t = Duração da corrente de choque em s.

Tensão de Toque

Tensão de Toque é a diferença de potencial a que uma pessoa fica submetida quando toca em uma estrutura aterrada, durante um curto-circuito envolvendo a terra (Fig. 1.2).

O valor desta tensão também não deverá exceder o seguinte limite:

$$E_{IOCIUM} = (R + R_{IOCIUM}) I_{IOCIUM}$$
(1.7)

R_{ZFP} = Resistência dos dois pés em paralelo

$$R_{2FP} = 1,5C_{s}(h_{s},K)\rho_{s}$$
(1.8)

Combinando as eqs 1.2, 1.7 e 1.8, temos

$$E_{toque} = (1000 + 1,5C_s(h_s,K),\rho_s) 0,116/\sqrt{t_s}$$
(1.9)

Os parâmetros da eq. 1.9 são os mesmos que constam na eq. 1.6. Estas equações são válidas para pessoas de 50 kg. Como se evidencia pela constante 0,116.

Fig. 1.1-Tensão de Passo Próximo a uma estrutura Aterrada.

Curva P- Curva de Potencial em Relação a um Terra Remoto Durante um Curto-Circuito.

Fig. 1.2-Tensão de Toque em uma estrutura Aterrada.

1.3.3 Tensão de Transferência

É um caso particular da tensão de toque, onde uma tensão é transferida para um ponto mais distante, dentro ou fora da subestação, através de um contato indireto com alguma estrutura ou equipamento aterrado na malha (Fig. 1.3).

Se uma pessoa for submetida a uma tensão de toque ou transferência, o caminho da corrente inclue o coração, sendo mais perigoso do que a tensão de passo.

As malhas não são dimensionadas para proteger as pessoas contra a tensão de transferência, que normalmente é fatal até para equipamentos. Logo, situações em que isto possa acontecer devem ser evitadas a todo custo.

1.3.4 Resistência do Aterramento

Outro parâmetro usado no cálculo de uma malha de terra é a resistência elétrica da mesma em relação a um terra remoto. Este valor deve ser o mais baixo possível, dependendo da finalidade do aterramento e das condições do local onde o mesmo é implantado.

Várias fórmulas são apresentadas na bibliografia para o cálculo da resistência do aterramento. É mostrada aqui a fórmula de *Schwarz (IEEE* 80, 1986), por abordar um sistema misto de malha e hastes e apresentar bons resultados quando comparada com valores medidos.

$$R_{g} = \frac{R_{12} - R_{12}^{2}}{R_{1} + R_{2} - 2R_{12}}$$

onde

R₁ - Resistência da malha de condutores R₂ - Resistência do conjunto de hastes R₁ - Resistência mútua entre a malha e as hastes

$$R_{i} = \left(\rho_{i} / \pi I_{i} \right) \left(\ln \left(2I_{i} / h' \right) + K_{i} (I_{i} / \sqrt{A}) - K_{2} \right)$$

$$R_{2} = \left(\rho_{a} / 2\pi\pi I_{2} \right) \left(\ln \left(8I_{2} / d_{2} \right) - 1 + 2K_{i} (I_{2} / \sqrt{A}) (\sqrt{\pi} - 1)^{2} \right)$$

$$R_{i2} = \left(\rho_{a} / \pi I_{i} \right) \left(\ln \left(2I_{i} / I_{2} \right) + K_{i} (I_{i} / \sqrt{A}) - K_{2} + 1 \right)$$

onde

$$ρ_1$$
 - Resistividade da primeira camada do solo em Ω.m
 $ρ_a$ - Resistividade aparente vista pelo conjunto de hastes em
Ω.m
 l_1 - comprimento total dos condutores da malha em m.
 l_2 - comprimento de uma haste em m.
h' - √d_h

h - profundidade da malha em m.

d - diâmetro do condutor da malha em m.

d, - diâmetro das hastes em m.

n - número de hastes

K₁, K₂ - constantes relativas a geometria do sistema. São encontradas através de gráficos no IEEE 80-1986 .

9

Subestação.

10

1.4 ALGUMAS CONSIDERAÇÕES SOBRE OS MÉTODOS DE CALCULO DE UMA MALHA DE TERRA

O método mais usado atualmente para cálculo de malha de terrá de subestações é apresentado pela norma norte-americana IEEE - 80 "Guide for Safety in AC Substation Grounding" na versão 1976. Poucos usam a versão 1986 que ainda não eliminou todas as falhas da anterior, principalmente por se tratar de um método simplificado.

O IEEE-80 utiliza o solo como sendo homogêneo através do conceito de resistividade aparente que é um equivalente do solo não homogêneo, formado por várias camadas, sendo também função das dimensões da malha ou do eletrodo utilizado.

Na realidade, a grande maioria dos solos são formados por camadas de diferentes valores de resistividade. Esta aproximação de solo homogêneo faz com que o cálculo da malha seja deficiente, com implicação direta na distribuição de corrente no solo e nos gradientes de potencial na superfície do mesmo.

Além disto as fórmulas apresentadas nesse Guia, para determinação das tensões de segurança, são desenvolvidas para resolver os problemas de tensão na periferia da malha. Com a consideração intrínsica desse método de espaçamento uniforme dos condutores, transfere-se assim para toda a malha uma solução particular da periferia, provocando com isto

-11

Outros problemas apresentados pelo IEEE-80 são os seguintes: consideração de dispersão linear de corrente uniforme em toda a malha; profundidade única dos condutores; deficiência de cálculo de malhas com geometrias irregulares; etc...

As considerações do IEEE-80 de solo homogêneo e espaçamento uniforme na malha fazem com que esta torne-se mais cara e insegura.

Para contornar todos estes problemas apresentados, existem métodos melhores para a determinação da geometria de uma malha de terra, como os apresentados por *Dawalibi*(1975) e *Heppe*(1979). Nestes, já pode ser utilizada a modelagem de duas camadas para o solo e adotado espaçamento não uniforme para os condutores da malha.

Começa-se a utilizar o método dos elementos finitos para se determinar a distribuição de potencial elétrico na área de influência da malha de terra de uma substação. Este método apresenta certas vantagens: considera o solo em várias camadas; permite levar em consideração os efeitos de hastes profundas e outros aterramentos naturais nas proximidades da malha, como tubulações; considera espaçamentos não uniformes entre os condutores. As características deste método fazem com que o cálculo da malha de terra seja desenvolvido com mais precisão e economia, além de possibilitar o estudo de malhas com geometria complicada.

12

1.5 APRESENTAÇÃO DO TRABALHO

No Capítulo II faz-se uma revisão bibliográfica no que se refere as características elétricas do solo, os métodos de medição da resistividade do solo e os principais procedimentos e critérios utilizados no cálculo de um sistema de aterramento. Este Capítulo também discorre sobre a necessidade de se fazer o tratamento estatístico dos dados de campo, apresenta as principais medidas de posição e dispersão e sugere novo método para a eliminação das medidas de resistividade que são inconsistentes.

13

O Capítulo III apresenta as equações básicas de estratificação genérica do solo e as modificações feitas nestas equações para calcular a resistividade aparente de um solo de *n* camadas, visando sua implementação em computador.

O Capítulo IV aborda técnicas de otimização e sua utilização no desenvolvimento de modelos matemáticos. Aborda também[°]o método utilizado para a determinação da estimativa inicial durante o processo de otimização.

O Capítulo V apresenta o diagrama de bloco, características e discussão sobre o programa de estratificação do solo elaborado. Apresenta também um levantamento das características elétricas de solos da região Nordeste.

O Capítulo VI, finalmente, apresenta as conclusões tiradas desta pesquísa e dá sugestões para novos trabalhos na mesma linha .

CAPÍTULO II

AQUISIÇÃO E DEPURAÇÃO DOS DADOS

2.1 INTRODUÇÃO

Estratificação do solo é a divisão do mesmo em camadas, determinando suas resistividades e respectivas profundidades. Para se conseguir isto é necessário se fazer medições de resistividade no local de interesse e encontrar um modelo matemático compatível com estas medições dentro de uma precisão pré-estabelecida.

O método de *Wenner* é o mais utilizado para medição de resistividade do solo. Há no entanto, outros métodos cuja aplicação depende das condições e natureza da medição, o que verifica-se nos itens subsequentes.

Nas medições de grandezas físicas, estão embutidos erros devido a vários fatores. No caso de resistividade do solo observa-se que as variações nas medições são muito acentuadas. Por isto é necessário se fazer a depuração dos dados de campo.

Neste capítulo descreve-se os fatores que influem na resistividade do solo e os principais métodos de sua medição. Em seguida descreve-se um novo método de depuração dos dados, que é utilizado no programa TERRA produzido nesta dissertação.

2.2 CARACTERÍSTICAS DO SOLO

O tipo de solo e a sua formação geológica são os principais fatores que determinam a sua resistividade elétrica, conforme mostra-se nas tabelas 2.1 e 2.2, segundo *Leon*(1980) e *Sunde*(1969), respectivamente. Porém, outros fatores também influem nesta resistividade, tais como:

- composição química e concentração dos sais
 dissolvidos na água retida;
 - teor de umidade;
 - temperatura;
- tamanho e distribuição das particulas (grãos) do material;
- compactação e pressão.

Duarte(1983) acrescenta a æstes, outro fator que poderia passar despercebido: as alltærações læntæs æ contínuas, resultantes da atividade do homem sobre a terra.

A Fig. 2.1 mostra a variação da resistividade com três destes fatores. Tabela 2.1

Variação da Resistividade em Função do Tipo de Solo

TIPO DE SOLO	ρ(Ω×m)			
limo	20 a 100			
humus	10 a 150			
lama	5 a 100			
terra de jardim com 50% de umidade	140			
terra de jardim com 20% de umidade	480			
argila com 40% de umidade	80			
argila com 20% de umidade	330			
argila seca	1500 a 5000			
areia com 90% de umidade	1300			
areia comum	3000 a 1800			
calcáreo fissurado	500 a 1000			
calcáreo compacto	1000 a 5000			
granito	1500 a 10000			
basalto	10000 a 20000			

Devido a influência da umidade na resistividade do solo, o procedimento mais adequado é sua medição no período seco, quando a resistividade é mais elevada, cobrindo assim a situação mais desfavorável em termos de umidade.

Tabela 2.2

Período	6	Formação	Geológia	a	do	Solo

RESISTIV.		Quaterná-	Quaternário Terciário	Triássico Carboní fe-	Devoniano Ordoviciano	Câmbrico Misto
Val. Ω.m	Faixas	**	Cretássico	ro	Câmbrico	Pré- Câmbrico
1	ÁGUA DO MAR					
10	BAIXIS		BARROS ARGILOSOS			
	JINA		GREDAS CÁLCICAS			
30	MUITO		MARGAS	MARGAS		1.
	DHINH			DIABASES		
100	BAIXA			PIÇARRAS	PIÇARRAS	
300	MEDIA			CALCAREOS	CALCAREOS	
300				ARENITOS	ARENITOS	
1000	ALTA				DOLOMITES	
1		APETAS				ARENITOS
3000	MUITO	GROSSAS *				QUATZITOS
	HLIH	ATÉ				ARDÓSIAS
10000	ALTIS-	CASCALHOS				GRANITOS
	STHA	MEDIUS *				GNEISSES

* Em camadas superficiais.

Fig. 2.1-Efeitos do Sal, Umidade e Temperatura na Resistividade do Solo. 2.3. METODOS DE MEDIÇÃO DE RESISTIVIDADE DO SOLO

2.3.1 Método da Variação da Profundidade ou Haste Sonda

Este método também chamado de Método dos Três Pontos, consiste no fincamento gradativo de uma haste no solo que se deseja investigar, medindo-se a resistência desta haste, a cada incremento no comprimento efetivamente enterrado.

Pode-se usar vários métodos para medição destas resistências, desde que se tenha precisão suficiente quando comparados com valores teóricos. O mais usado é o Método da Queda de Potencial.

O valor da resistividade é calculado através da eq. 2.1.

$$\rho = \frac{2\pi LR}{\ln \frac{R}{d}} - 1 \tag{2.1}$$

onde

 ρ = resistividade aparente do solo para a profundidade L $(\Omega.m)$

L = comprimento da haste fincada em contato com a terra (m) d = diâmetro da haste (m)

 $R = valor da Resistência medida (\Omega)$

O Mettodo da Variação da Profundidade formece informações sobre à matureza do solo ma vuzimhança da maste. Se um volume maior de solo medessita ser investigado, recomenda-se usar um dos metodos de quatro pontos que são mostrados a seguir, já que a exploração à grandes profundidades não é prática, devido a necessidade de longas hastes.

2.3.2 Método de Wenner

Este método consiste no cravamento de quatro eletrodos em pontos igualmente espaçados entre si e posicionados em linha reta, todos fincados firmemente no solo a uma profundidade *b* (de 10 a 20 cm.) e intervalos *a* , Fig. 2.2(a).

Uma corrente de teste I circula pelos dois eletrodos externos C1 e C2 e a tensão V é medida entre os dois eletrodos internos P1 e P2. Da relação V/I tem-se a resistência R do solo em uma profundidade igual ao espaçamento a entre os eletrodos.

A resistividade ρ na profundidade em questão, expressa em Ω x Unidade de Comprimento, é dada pela seguinte equação(IEEE-81, 1983):

$$\rho = \frac{4\pi aR}{1 + 2a} \qquad (\Omega.m) \qquad (2.1)$$

$$\sqrt{a^2 + 4b^2} \qquad \sqrt{a^2 + b^2}$$

Na prática a profundidade de cravamento da haste b é bem menor do que o espaçamento a, desta forma pode-se fazer b = 0 ma eq. 2.1, simplificando-a para,

 $\rho = 2\pi a R \quad (\Omega.m) \tag{2.2}$

São feitas leituras para vários valores de a, o que fornece a resistividade do solo em diversas profundidades, quando plotados em um gráfico ρ_{Xa} tem-se a indicação do comportamento do solo naquele ponto em que se está fazendo as medições.

Para dar maior consistência estatística as medições e acompanhar possíveis variações do solo na horizontal, mede-se outros pontos na mesma área, cujo número e posicionamento vai depender da importância do projeto e precisão desejada.

2.3.3. Método de Palmer

O arranjo proposto por *Palmer*(1959) é uma modificação do Método de *Wenner*. É usado quando deseja-se fazer medições com grandes espaçamentos entre os eletrodos de corrente e a tensão entre os eletrodos de potencial é pequena a ponto de não sensibilizar o respectivo medidor. Para isto os eletrodos de potencial são colocados mais próximos dos de corrente, como mostrado na Fig. 2.3, aumentando assim a queda de potencial entre P1 e P2 para viabilizar sua medição.

Considerando que a profundidade de cravamento dos eletrodos *b* é pequena, comparada a suas separações *d* e *c*, a resistividade pode ser calculada através da seguinte formula(IEEE-81, 1983):

$$-\rho = \pi c(c + d) R/d \qquad (\Omega.m)$$

21

(2.3)

Fig. 2.2 - Método de WENNER.

Fig. 2.3 - Método de PALMER.

Fig. 2.4 - Método de SCHULUMBERGER.

2.3.4 Método de Schlumberger

Este método usa pequenos espaçamentos entre os eletrodos de potencial e mede o gradiente de potencial, enquanto o método de *Wenner* mede a diferença de potencial. É mais usado para prospecções geofísicas.

Faz-se necessário neste método que o espaçamento *a* entre os eletrodos de corrente e de potencial adjacentes seja bem maior do que a distância entre os eletrodos de potencial (*a* > 5c), conforme Fig. 2.4.

Injetando-se corrente no solo em um procedimento análogo ao método de *Wenner*, determina-se a resistência R do solo a uma profundidade igual a metade do espaçamento entre os eletrodos de corrente. A respectiva resistividade é dada pela seguinte expressão(COBEI/ABNT, 1985):

$$\rho = \pi a^2 R/c \quad (\Omega.m) \tag{2.4}$$

2.4 TRATAMENTO ESTATÍSTICO DOS DADOS

Usualmente o critério que se adota, na depuração dos dados de campo, é a eliminação das medidas que se afastam em mais de 50% da média, na profundidade em questão.

Este critério tem o problema de considerar a mesma faixa aceitável para pontos que tem dispersões diferentes. Por fisto mesta dissertação apresenta-se um novo critério de eliminação dos pontos discrepantes, onde a aceitação ou não de eliminação dos pontos discrepantes, onde a aceitação ou não de 2.4.1 Medidas de Posição e Dispersão

Para se representar um conjunto de dados por um único valor normalmente usa-se uma das seguintes medidas de posição central: Mediana, Moda ou Média aritmética.

Mediana - É o dado que ocupa a posição central de um grupo de dados, quando estes estão ordenados de forma crescente ou decrescente.

Moda - É a observação mais frequente do grupo de valores em questão.

Média aritmética - É a soma dos valores de cada dado, dividido pelo número deles.

A representação de um conjunto de valores por uma única medida de posição central, esconde toda informação sobre a variabilidade do conjunto de valores. Por isto aparecem as medidas de Desvio Médio e Variância, que tem a seguinte formulação matemática

$$DM(x) = \sum_{i=1}^{n} |x_i - \bar{x}| / n$$
$$Var(x) = \sum_{i=1}^{n} (x_i - \bar{x})^2 / n$$

i=1

Como a variância é uma medida que expressa um desvio quadrático médio, pode causar alguns problemas de interpretação. Para evitar isto e se ter uma medida de Variabilidade na mesma unidade dos valores do conjunto de
dados, define-se o desvio padrão como sendo a raíz quadrada positiva da variância

$$DP(x) = \sqrt{Var(x)} = \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 / n}$$
(2.5)

2.4.2 O Esquema dos Cinco Números

Nas medições de resistividade do solo aparecem alguns tipos de problemas e erros que produzem alguns pontos discrepantes e as vezes muito afastados do conjunto de dados. Não querendo utilizar critério independente da dispersão para eliminação daqueles pontos, este trabalho propõe a utilização do esquema dos cinco números pelas razões expostas a seguir.

Dependendo do conjunto de dados, a média e o desvio padrão podem não ser medidas adequadas para representá-lo, pelas seguintes razões:

-são bastante afetados pelos valores extremos, pois algum dado com erro exagerado influi significativamente nesses valores, podendo comprometer a depuração do conjunto de dados.

-não da para se ter ideia da assimetria do conjunto de valores com apenas essas duas medidas.

Visando Solucionar os problemas abordados acima, Tukey(1977) Sugeriu Estas cinco medidas: .Mediana - Já definida no item 2.2;

.Extremos - São dois valores assumidos pelo menor e maior valor do conjunto de dados;

.Quartis ou Juntas - São dois valores assumidos pelo primeiro e terceiro quartil. O primeiro quartil (J_i) é um valor que deixa um quarto dos valores abaixo e três quartos acima dele. Já o terceiro quartil (J_g) deixa três quartos dos dados abaixo e um quarto acima dele.

A mediana e os quartis são medidas <u>resistentes</u> de posição de uma distribuição, já que uma medida de posição ou dispersão é considerada resistente quando for pouco afetada por mudanças em uma pequena porção dos dados.

A média e o desvio padrão não são medidas resistentes, pois acontecem casos em que se houver um erro significativo em apenas um dos dados, essas medidas podem se alterar bastante.

Pode-se usar então, o <u>intervalo</u> interquartil como medida de dispersão alternativa. Este intervalo é a diferença fentre o terceiro e o primeiro quartil, denotado por d_i.

$$d_j = J_j - J_i, \qquad (2.6)$$

"Sendo J e J, o primeiro e terceiro quartis respectivamente.

São consideradas observações discrepantes ou pontos não consistentes aqueles que estão muito acima de J_a ou muito abaixo de J₁. Para isto é definido o limite inferior.

$$DI = J_{i} - \frac{3}{2} d_{j}$$
(2.7)

e o limite superior,

$$DS = J_{3} + \frac{3}{2} d_{j}$$
 (2.8)

A partir do vetor que contém a média das resistividades medidas em cada profundidade, $\hat{\rho} = [\rho(1), \rho(2), \dots, \rho(m)]$, determina-se o valor de J₁ e J₃ da seguinte forma:

$$J = (\rho(N_{1}) + \rho(M_{1}))/2$$
(2.9)

onde

N₁ - parte inteira de (0,25m + 0,75) ?
M₁ - parte inteira de (0,25m + 1) ?
m - número de profundidades medidas

$$J_{a} = (\rho(N_{a}) + \rho(M_{a}))/2$$
(2.10)

onde

N₃ - parte inteira de (0,75m + 0,75) ?M₃ - parte inteira de (0,75m + 1) ?

CAPÍTULO III

MODELOS DO SOLO EM CAMADAS: FUNDAMENTOS TEÓRICOS

3.1 INTRODUÇÃO

Sabe-se que quase na totalidade os solos não são homogêneos, o que significa que a resistividade não é constante. A maioria destes, porém, podem ser considerados como sendo formados por camadas de diferentes valores de resistividade e largura. Geralmente estas camadas são aproximadamente horizontais e paralelas a superfície do solo.

Há grande variação também com a localização e natureza do solo, como foi visto no Capítulo II. Devido a estas variações, é necessário se fazer medição no local onde se deseja construir o sistema de aterramento. Para o cálculo do aterramento, precisa-se de um modelo matemático que represente o solo em questão, adequadamente. Ou seja, que apresente valores suficientemente aproximados das medições feitas em campo.

Neste Capítulo mostra-se as equações clássicas apresentadas por *Sunde*(1969) para os modelos matemáticos do solo constituído de duas, três ou mais camadas.

No caso do solo estar sendo representado por um modelo de duas camadas, não há sgrandes problemas de implementação em computador. Já quando procura-se representá-lo por três ou quatro camadas aparecem, vários problemas de ordem prática durante essa implementação. Por isto é necessário se desenvolver fórmulas a partir das equações sugeridas por Sunde(1969), para o cálculo da resistividade aparente de um solo de *n* camadas, viabilizando assim sua utilização em computador.

3.2 EQUAÇÕES BÁSICAS DE ESTRATIFICAÇÃO GENÉRICA DO SOLO

De acordo com Sunde(1969), a resistência mútua entre os pontos B e C da superfície do solo de *n* camadas, separados por uma distância *r*, conforme *Fig.* 3.1, \leq :

$$R(r) = \frac{\rho_1}{2\pi} \int_0^\infty K_{123...n} J_0(\lambda r) d\lambda \qquad (3.1)$$

onde

$$K_{123...n} = \frac{1 - \mu_{123...n}}{1 + \mu_{123...n}} e^{-2\lambda d_1}; \qquad (3.2)$$

;

;

;

$$\mu_{123..n} = \frac{\rho_1 - \rho_2 K_{23..n}}{\rho_1 + \rho_2 K_{23..n}}$$

$$K_{(m-1)m...n} = \frac{1 - \mu_{(m-1)m...n}}{1 + \mu_{(m-1)m...n}} e^{-2\lambda d(m-1)}$$

$$\mu_{(m-1)m..n} = \frac{\rho_{m-1} - \rho_m K_{m(m+1)..n}}{\rho_{m-1} + \rho_m K_{m(m+1)..n}}$$

Fig. 3.1 - Medição pelo Método de WENNER da Resistividade de um Solo de n Camadas.

$$K_{(n-1)n} = \frac{1 - \mu_{(n-1)n}}{1 + \mu_{(n-1)n}} e^{-2\lambda d(n-1)}$$

$$\mu_{(n-1)n} = \frac{\rho_{n-1} - \rho_n}{\rho_{n-1} + \rho_n}$$

J_o é a função de *Bessel* de primeira classe e ordem zero que se define como:

$$J_{o}(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k} (x/2)^{2k}}{(k!)^{2}}$$

Particularizando as eqs. 3.1 e 3.2 para os casos de 2, 3 e 4 camadas, encontra-se as seguintes equações:

01-1.

Duas Camadas

e

$$R(r) = \frac{\rho_1}{2\pi} \int_0^\infty K_{12}(\lambda) J_0(\lambda r) d\lambda$$

$$K_{12} = \frac{1 - \mu_{12} e^{-2\lambda d1}}{1 + \mu_{12} e^{-2\lambda d1}}$$
$$\mu_{12} = \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}$$

Três Camadas

$$R(r) = \frac{\rho_1}{2\pi} \int_0^\infty K_{123}(\lambda) J_0(\lambda r) d\lambda$$

((3.4)

(3.3)

R(n) = frir

$$K_{123} = \frac{1 - \mu_{123} e^{-2\lambda d_1}}{1 + \mu_{123} e^{-2\lambda d_1}}$$

$$\mu_{123} = \frac{\rho_1 - \rho_2 K_{23}}{\rho_1 + \rho_2 K_{23}}$$

$$K_{23} = \frac{1 - \mu_{23} e^{-2\lambda dz}}{1 + \mu_{23} e^{-2\lambda dz}}$$

$$\mu_{23} = \frac{\rho_2 - \rho_3}{\rho_2 + \rho_3}$$

Quatro Camadas

$$R(r) = \frac{\rho_1}{2\pi} \int_0^\infty K_{1234}(\lambda) J_0(\lambda r) d\lambda \qquad (3)$$

$$K_{1234} = \frac{1 - \mu_{1234}}{1 + \mu_{1234}} e^{-2\lambda d_1}$$

$$\mu_{1234} = \frac{\rho_1 - \rho_2 K_{234}}{\rho_1 + \rho_2 K_{234}}$$

$$K_{234} = \frac{1 - \mu_{234}}{1 + \mu_{234}} e^{-2\lambda dz}$$

$$\mu_{234} = \frac{\rho_2 - \rho_3 K_{34}}{\rho_2 + \rho_3 K_{34}}$$

5)

$$K = \frac{1 - \mu_{34} e^{-2\lambda d3}}{1 + \mu_{34} e^{-2\lambda d3}}$$
$$\mu_{34} = \frac{\rho_3 - \rho_4}{\rho_3 + \rho_4}$$

Por outro lado a resistência mútua entre dois pontos da superfície de um solo homogêneo é simplesmente:

$$R(r) = \frac{\rho}{2\pi r}$$
(3.6)

comparando-se as eqs. 3.1 e 3.6 , obtemos uma expressão para a resistividade aparente do solo de *n* camadas:

$$\frac{\rho_{a}}{2\pi r} = \frac{\rho_{1}}{2\pi} \int_{0}^{\infty} K_{123..n} J_{0}(\lambda r) d\lambda$$

$$\rho_{a} = \rho_{1}r \int_{0}^{\infty} K_{123..n} J_{0}(\lambda r) d\lambda \qquad (3.7)$$

Esta resistividade aparente é função dos parâmetros do solo $[P] = \left[\rho_1, d_1, \rho_2, d_2, \dots, \rho_{(n-1)}, d(n-1), \rho_n\right]$ e da profundidade r. Para se ter isto evidente a eq. 3.7 é reescrita como:

$$\rho_{\rm e}(r,tP1) = \rho_{\rm e} M(r,tP1) \tag{3.8}$$

onde

$$M(r,r) = r \int_{0}^{\infty} K_{1} J_{0}(\lambda r) d\lambda \qquad (3.9)$$

e K₁ é uma notação mais simples da função-núcleo K_{129...}da integral expressa pelas equações recursivas 3.2. Se a prospecção do solo é feita mediante o emprego do método de Wenner (Fig.3.1), apresentado no Capítulo II, e supondo-se os eletrodos pontuais, tem-se as superposições de tensões induzidas nos pontos B e C:

$$V_{B} = \frac{\rho_{a}(r, (P)) I}{2\pi r} - \frac{\rho_{a}(2r, (P)) I}{2\pi (2r)}$$
$$V_{c} = \frac{\rho_{a}(2r, (P)) I}{2\pi (2r)} - \frac{\rho_{a}(r, (P)) I}{2\pi r}$$

logo a tensão indicada no voltímetro é

$$V = V_{BC} = \frac{2\rho_{a}(r, (P)) I}{2\pi r} - \frac{2\rho_{a}(2r, (P)) I}{2\pi (2r)}$$

$$\frac{V}{I} 2\Pi r = 2\rho_{a}(r, [P]) - \rho_{a}(2r, [P])$$

como a resistividade medida $\rho_{am} = \frac{V}{I} 2\pi r$, temos

$$\rho_{am} = 2 \rho_{a}(r, r_{P1}) - \rho_{a}(2r, r_{P1})$$
ou
$$\rho_{am} = \rho_{i} \{2M(r, r_{P1}) - M(2r, r_{P1})\}$$

que numa forma semelhante a eq. 3.8 fica

$$\rho_{\rm BB} = \rho_{\rm I} M_{\rm O}(r, {\rm IP}) \tag{3.10}$$

onde

$$M_{(r,IP1)} = \{ -2M(r,IP1) - M(2r,IP1) \}$$
(3.11)

3.3 CALCULO DA RESISTIVIDADE APARENTE DE UM SOLO DE N CAMADAS

Como K₁ na eq. 3.9 é sempre função dos parâmetros do solo, esta equação será reescrita da seguinte forma:

$$M(r,tP_1) = r \int_0^\infty K(tP_1,\lambda) J_0(\lambda r) d\lambda$$

A função M_ona eq. 3.11 é na verdade uma combinação de valores da função M nas profundidades r e 2r.

$$M_{o}(r,tP1) = 2r \int_{0}^{\infty} K(tP1,\lambda) J_{o}(r\lambda) d\lambda - 2r \int_{0}^{\infty} K(tP1,\lambda) J_{o}(2r\lambda) d\lambda$$

$$M_{o}(r,tP1) = 2r \int_{0}^{\infty} K(tP1,\lambda) \cdot [J_{o}(r\lambda) - J_{o}(2r\lambda)] d\lambda \qquad (3.12)$$

O integrando da função M_o é formado pelo produto de duas funções. A função $[J_o(r\lambda) - J_o(2r\lambda)]$ é completamente independente dos parâmetros do solo; esta função é periódica de amplitude ligeiramente amortecida como se vê na *Fig.* 3.3.

O outro fator do integrando, que é $K(m,\lambda)$ é função dos parâmetros do solo e não da profundidade.

A função K((\mathbf{P},λ)) converge para 1, quase sempre muito rapidamente, conforme ilustrado na *Fig.* 3.4. Sendo assim, existirá sempre un valor finito de λ , λ_m , tal que para $\lambda > \lambda_m$, K((\mathbf{P},λ)) = 1 ,qualquer que seja (\mathbf{P}) . Deste modo a integral imprópria na eq. 3.12 pode se desdobrar:

$$\frac{H_{o}(r, (P))}{2r} = \int_{0}^{\lambda m} K(P) \lambda \left[J_{o}(r\lambda) - J_{o}(2r\lambda) \right] d\lambda + \int_{\lambda m}^{\infty} \left[J_{o}(r\lambda) - J_{o}(2r\lambda) \right] d\lambda$$

Esta segunda integral, de $\lambda_m^{}$ a ∞ , por sua vez, pode ser transformada em outra de 0 a ∞ , menos a parcela a mais que está sendo integrada que é de 0 a $\lambda_m^{}$, assim temos:

$$\frac{M_{o}(r, (r))}{2r} = \int_{0}^{\lambda m} K(r) \lambda \left[J_{o}(r\lambda) - J_{o}(2r\lambda) \right] d\lambda - \int_{0}^{\lambda m} \left[J_{o}(r\lambda) - J_{o}(2r\lambda) \right] d\lambda + \int_{0}^{\infty} \left[J_{o}(r\lambda) - J_{o}(2r\lambda) \right] d\lambda$$
(3.13)

Utilizando-se o fato demonstrado por *Watson*(1966),

de que

$$\int_{0}^{\infty} J_{0}(\alpha x) dx = \frac{1}{\alpha}$$

temos a seguinte solução para a terceira integral da eq. 3.13:

$$\int_{0}^{\infty} \left[J_{0}(\underline{r}\lambda) - J_{0}(\underline{2r}\lambda) \right] d\lambda = \frac{1}{r} - \frac{1}{2r} = \frac{1}{2r}$$

Substituindo este resultado e reorganizando a eq. 3.13, temos que:

37

$$M_{o}(r,P) = 2r \int_{0}^{\infty} (K(P,\lambda)-1) \left[J_{o}(r\lambda) - J_{o}(2r\lambda) \right] d\lambda + 1 \qquad (3.14)$$

O limite λ_m da integral na eq. 3.14 é função dos parâmetros (P) e poderia ser estabelecido a priori pesquisando-se preliminarmente a função K((PL λ). Mais eficiente porém, é substituir a integral da eq. 3.14, no intervalo de O a λ_m , por uma série de integrais em subintervalos. Isto é,

$$M_{o}(r, p_{1}) = 1 + 2r \sum_{i=1}^{m} \int_{\lambda(i-1)}^{\lambda_{i}} (K(p_{1}, \lambda) - 1) \left[J_{o}(r\lambda) - J_{o}(2r\lambda) \right] d\lambda \qquad (3.15)$$

onde $\lambda_0=0$, e m é tal que

$$\int_{(m-1)}^{m} (K(tP),\lambda)-1) \cdot [J_{0}(r\lambda) - J_{0}(2r\lambda)] d\lambda \qquad < \tau$$

 τ é uma tolerância previamente escolhida, por exemplo $\tau=1\times10^{-5}$.

Finalmente, a eq. 3.10 pode ser escrita da seguinte forma:

$$\rho_{a} = \rho_{1} \left\{ 1 + 2r \sum_{i=1}^{m} \int_{\lambda(i-1)}^{\lambda_{i}} (K(iP_{\lambda}\lambda) - 1) \left[J_{o}(r\lambda) - J_{o}(2r\lambda) \right] d\lambda \right\}$$
(3.16)

Na solução da eq. 3.16 é utilizado o método de Romberg (Gérald, 1978) de integração numérica que apresentou bons resultados, mésmo-para funções periódicas.

Fig. 3.3 - Gráfico da Função $[J_0(r\lambda) - J_0(2r\lambda)]$ versus λ , para r = 1.

Fig. 3.5 - Grafico da Função $(K(m, \lambda)-1)[J_0(r\lambda)-J_0(2r\lambda)]$ com m = [630; 2; 3150; 12; 820].

3.4 RESISTIVIDADE APARENTE DE SOLOS DE DUAS CAMADAS

Para o caso do solo de duas camadas, a integral da eq. 3.9 pode ser resolvida analiticamente . Fazendo $\mu_{12} = \mu$ e d₁ = d, tem-se:

$$M(r, r_{P1}) = r \int_{0}^{\infty} \frac{1 - \mu e^{-2d\lambda}}{1 + \mu e^{-2d\lambda}} J_{0}(\lambda r) d\lambda \qquad (3.17)$$

Como demonstrado no apéndice 1, a solução da eq. 3.17 é:

$$\mathbb{M}(r, \mathbf{p}) = \left[1 + 2 \sum_{n=1}^{\infty} \frac{(-\mu)^n}{\sqrt{1 + \left(\frac{2n}{d}\right)^2}}\right]$$
(3.18)

$$\mathbb{K} \text{ Ver apendice } 1$$

Para a utilização do Método de Wenner. as eqs. 3.10 e 3.11 mostram que,

$$\rho_{a}(r) = \rho_{1} \left[2 M(r, tP_{1}) - M(2r, tP_{1}) \right]$$

$$\rho_{a}(r) = \rho_{1} \left[2 + 4 \sum_{n=1}^{\infty} \frac{(-\mu)^{n}}{\sqrt{1 + \left(\frac{2n}{d}r\right)^{2}}} - 1 - 2 \sum_{n=1}^{\infty} \frac{(-\mu)^{n}}{\sqrt{1 + \left(\frac{2n}{d}r\right)^{2}}} \right]$$

$$P_{a}(r) = P_{i} \left[1 + 4 \sum_{n=1}^{\infty} \frac{(-\mu)^{n}}{\sqrt{1 + \left(-2n \cdot d\right)^{2}}} - 4 \sum_{n=1}^{\infty} \frac{(-\mu)^{n}}{\sqrt{4 + \left(-2n \cdot d \cdot r\right)^{2}}} \right]$$

$$\rho_{a}(r) = \rho_{1} \left[1 + 4 \sum_{n=1}^{\infty} \frac{(-\mu)^{n}}{\sqrt{1 + \left(\frac{2n}{d}}{r}\right)^{2}}} - \frac{(-\mu)^{n}}{\sqrt{4 + \left(\frac{2n}{d}}{r}\right)^{2}}} \right] \quad (3.19)$$

onde

$$\mu = \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}$$

Na tabela 3.1 mostra-se os valores de resistividade calculados para várias profundidades utilizando-se a equação genérica 3.16 e a eq. 3.19,que é bastante conhecida e específica para o cálculo em duas camadas. Os parâmetros utilizados foram ρ_1 =500 Ω .m; d_1=8 m e ρ_2 =100 Ω .m.

Tabela 3.1

Comparação Entre as Resistividades Calculadas pelas eqs. 3.16 e 3.19, com $\tau = 10^{-5}$ e [P]=[500; 8; 100]

Profundidade r	Resistiv. ρ (r) em Ω.m Eq. 3.19	Resistiv. ρ (r) em Ω.m Eq. 3.16	Variação %
1	499,554	499,552	-0,0004
2	496,582	496,570	-0,0024
4	476,828	476,827	-0,0002
8	389,037	389,047	0,0026
16	219,201	219,198	-0,0014
32	119,686	119,607	-0,0660
64	102,966	102,447	-0,5040

Verifica-se nos dados da Tabela 3.1 que a diferença na aplicação das egs. 3.16 e 3.19 é mínima, viabilizando assim o uso da eq. 3.16 que ainda tem a vantagem de poder ser usada em solos estratificáveis em mais camadas.

CAPÍTULO IV

TÉCNICA DE OTIMIZAÇÃO APLICADA A ESTRATIFICAÇÃO

4.1 - INTRODUÇÃO

Nas últimas décadas, as técnicas de otimização não-linear emergiram como importante instrumento de pesquisa e suas aplicações têm sido progressivamente estimuladas pela crescente disponibilidade de computadores digitais maiores e mais eficientes.

A procura por métodos de otimização surge da complexidade matemática na teoria de sistemas, processos e dispositivos existentes na prática. Muitas vezes sistemas físicos precisam ser representados por modelos meatemáticos mais simples, como ocorre com o solo quando suposto constituído de camadas horizontais e homogéneas. Sendo assim, o sistema pode vir a ser descrito por uma teoria que contenha aproximações, por parâmetros que muteam com to tempo tou outra variável independente ou que variam de modo aleatório. A teoria, mesmo imperfeita, precisa ser empregada para estimar to comportamento do sistema. Uma técnica adequada de otimização, a partir de uma estimativa inicial e perseguindo um coritério pré-estabelecido, pode chegar a um ponto, do qual a teoria seó pode se aproximar. 4.2 O PROBLEMA DE OTIMIZAÇÃO BASICO:FORMULAÇÃO E CONSIDERAÇÕES

O problema de otimização básico abordado neste trabalho consiste em minimizar uma quantidade escalar ε que é o valor de uma função de *n* parâmetros do solo, agora definidos como P. P., ..., P.

A função ϵ é denominada "função objetiva ou "função erro". O processo de otimização consiste em se fazer ajustes sucessivos nos parâmetros [P] = [P, P, ..., P]^t para se obter o mínimo desejado. Este é um processo iterativo e como tal compreende:

i) Uma estimativa inicial
$$[\mathbf{p}^{(0)}] = [\mathbf{p}^{(0)}_{1}, \mathbf{p}^{(0)}_{2}, \dots, \mathbf{p}^{(0)}_{n}]^{t}$$

ii) Um critério de variação, com a qual se determina

$$[\Delta P] = [\Delta P_1, \Delta P_2, \dots, \Delta P_n]^t$$
tal que
$$(4.1)$$

$$[P^{(i+1)}] = [P^{(i)}] + [\Delta P]$$
(4.2)

$$\varepsilon([\mathbf{P}^{(i+1)}]) < \varepsilon([\mathbf{P}^{(i)}]) \tag{4.3}$$

iii) Um critério de parada.

-Um ponto [?_{min}] que dá o menor valor possível da "função objetivo é denominado <u>mínimo global. Este ponto</u> cuja "determinação é o alvo da otimização, <u>mem sempre</u> é alcançado. Como reconhece Adby, P.R.& Dempster(1978), na prática é muito difícil saber se um mínimo obtido por processo numérico é ou não um mínimo global. Em geral só se pode dizer que este é um mínimo numa área local explorada ("mínimo local"). Uma função pode ter muitos mínimos locais, e a menos que todos estes sejam encontrados e confrontados é impossível afirmar qual é o mínimo global.

4.3 A TÉCNICA DOS MÍNIMOS QUADRÁTICOS NA MODELAGEM DO SOLO

Suponha-se que resultados experimentais disponíveis de resistividade sejam descritos pela eq. 3.16 com nparâmetros do solo . Se os resultados fossem completamente isentos de erros, n medições seriam suficientes para determinar os n parâmetros . Não sendo assim, se toma um número m maior de medições (m > n).

Considere-se que as medições foram realizadas nas profundidades r_1, r_2, \ldots, r_m tendo como resultados as resistividades medidas (p), respectivamente, p_1, p_2, \ldots, p_m . Deseja-se ajustar por este conjunto de dados a curva expressa pela eq. 3.16.

$$\rho_{a} = \rho_{1} \left\{ 1 + 2r \sum_{i=1}^{M} \int_{\lambda(i-1)}^{\lambda_{i}} (K(IPL\lambda) - 1) \left[J_{o}(r\lambda) - J_{o}(2r\lambda) \right] d\lambda \right\}$$
(4.4)

com os parametros do solo [P], agora definidos como:

 $P_1 = P_1, P_2, \dots, P_{(n-1)}, P_1$ O erro, ou seja, a diferença entre os valores experimental e teórico no ponto r_i , é

$$e_i = \rho_i - \rho_i(r_i)$$
 i= 1,2,...,m (4.5)

45

Deseja-se escolher os parâmetros [P] na eq. 4.4 para minimizar o erro, já que é impossível eliminá-lo. O critério do erro quadrático mínimo (least-squares error) procura minimizar a soma dos erros individuais ou locais elevados ao quadrado (para evitar que erros positivos e negativos sejam mutuamente cancelados). Ou seja, ele minimiza

$$\varepsilon = \sum_{i=1}^{m} e_i^2 \tag{4.6}$$

A função erro que se quer minimizar (eq. 4.6) é função dos *n* parâmetros da função ρ_{α} que se procura ajustar aos *m* dados (*m* > *n*). Isto é,

 $s = s(r_1, r_2, ..., r_m, P_1, P_2, ..., P_1)$

$$\varepsilon = \sum_{i=1}^{m} e_{i}^{2} = \sum_{i=1}^{m} \left[\rho_{i} - \rho_{\alpha}(r, IP) \right]^{2}$$
(4.7)

Em notação vetorial, a eq. 4.7 toma a forma:

$$\varepsilon = \varepsilon(\hat{r}, \hat{\rho}, \hat{P}) = \sum_{i=1}^{m} e_i^2 \qquad (4.8)$$

onde,

$$\hat{r} = \begin{bmatrix} r_1, r_2, \dots, r_m \end{bmatrix}^t = \text{vetor das profundidades em que são}$$
feitas as medições

$$\hat{\rho} = \left[\rho_1, \rho_2, \dots, \rho_m\right]^t$$
 vetor da média das resistividades medidas em cada profundidade.

 $\hat{P} = \begin{bmatrix} P_1, P_2, \dots, P_n \end{bmatrix}^t$ vetor dos parâmetros do solo solo serem ajustados

 $\hat{e}^2 = \left[e_1^2, e_2^2, \dots, e_m^2 \right] =$ vetor dos erros locais ao quadrado.

A função de uma única variável é mínima onde sua derivada é zero. O mínimo de uma função de várias variáveis ocorre onde seu gradiente é nulo. O procedimento iterativo que se explicará a seguir, pode se aproximar de zero tanto quanto se queira.

Observando-se que as variáveis da função ε que se quer minimizar, expressa pela eq. 4.8, são os parâmetros \hat{p} da função ρ_{a} que se quer ajustar, o gradiente de ε é

$$\nabla \hat{\varepsilon}(\hat{\mathbf{p}}) = \begin{bmatrix} \frac{\partial \varepsilon}{\partial \mathbf{p}_{1}} \\ \frac{\partial \varepsilon}{\partial \mathbf{p}_{2}} \\ \vdots \\ \vdots \\ \frac{\partial \varepsilon}{\partial \mathbf{p}_{n}} \end{bmatrix} = 2 \begin{bmatrix} \sum_{i=1}^{m} \left(e_{i} \frac{\partial e_{i}}{\partial \mathbf{p}_{1}} \right) \\ \sum_{i=1}^{m} \left(e_{i} \frac{\partial e_{i}}{\partial \mathbf{p}_{2}} \right) \\ \vdots \\ \vdots \\ \sum_{i=1}^{m} \left(e_{i} \frac{\partial e_{i}}{\partial \mathbf{p}_{n}} \right) \end{bmatrix}$$
(4.7)

ou numa forma mais condensada,

$$\nabla \hat{\varepsilon}(\hat{\mathbf{p}}) = 2\hat{\mathbf{J}}^{\dagger}(\hat{\mathbf{p}})\hat{\varepsilon}(\hat{\mathbf{p}})$$
(4.10)

onde,

é a matriz jacobiana da função $\varepsilon(\mathbf{p})$.

Uma estimativa inicial dos parâmetros \mathbf{P} nunca corresponderá ao minimo, assim $\nabla \hat{\varepsilon}(\mathbf{P})$ não será zero. Contudo, a eq. 4.10 pode ser usada para se obter uma variação $\hat{\delta \mathbf{P}}$ que reduza o gradiente. De acordo com a eq. 4.11,

$$\nabla \varepsilon (\mathbf{\hat{P}} + \delta \mathbf{\hat{P}}) = 2 \mathbf{\hat{J}}^{t} (\mathbf{\hat{P}} + \delta \mathbf{\hat{P}}) \mathbf{\hat{e}} (\mathbf{\hat{P}} + \delta \mathbf{\hat{P}})$$
(4.12)

O gradiente não varia demais com os parâmetros, pelo menos quando já se está próximo do mínimo. Portanto é válida a aproximação

$$\nabla e(\mathbf{p} + \delta \mathbf{p}) \approx 2 \mathbf{\hat{J}}^{\dagger}(\mathbf{p}) \mathbf{\hat{e}}(\mathbf{p} + \delta \mathbf{p})$$
 (4.13)

Expandindo-se æ(p+ Sp) na eq.4.13, em série de Taylor e truncando-se os termos de ordem superior à primeira se tem:

$$\hat{e}(\hat{p} + \delta \hat{p}) \approx \hat{e}(\hat{p}) + \sum_{k=1}^{n} \frac{\partial \hat{e}}{\partial p_{k}} \delta p_{k}$$
 (4.14)

ou numa forma ainda mais simples

$$\hat{e}(\hat{\mathbf{p}} + \hat{\delta \mathbf{p}}) = \hat{e}(\hat{\mathbf{p}}) + \hat{J}(\hat{\mathbf{p}})\hat{\delta \mathbf{p}}$$
(4.15)

Combinando-se as equações aproximadas 4.13 e 4.15 se obtém:

$$\hat{J}^{t}(\hat{P}) \ \hat{J}(\hat{P})\delta\hat{P} \approx -\hat{J}^{t}(\hat{P})\hat{e}(\hat{P})$$
 (4.16)

que pode ser usada para se determinar as variações dos parâmetros, δp , que reduzirá o gradiente em $p + \delta p$.

Por conta das aproximações (eqs. 4.13 e 4.15) introduzidas na equação exata 4.12, o gradiente não pode ser zerado, mas apenas reduzido com a variação $\hat{\delta_P}$ resultante da eq. 4.16. Contudo, um procedimento iterativo centrado na eq. 4.16 pode ser adotado para aproximar (o gradiente de zero) a função ε do minimo "tanto quanto se queira".

<u>Cálculo da Matriz Jacobiana</u>

Os elementos da matriz jacobiana $\hat{J}(\hat{p})$ (eq. 4.11) são derivadas parciais primeiras dos erros locais em relação faos parámetros a serem ajustados.

Ao se implementar a eq. 4.16 no computador se deve também implementar uma das duas opções abaixo:

-i) Expressão dos elementos da matriz jacobiana, os quais Seriam obtidos por derivação analítica.

ii) Rotinas que calculam os elementos da jacobiana
 efetivando numericamente as derivadas parciais.

A alternativa (i) pode ser inviável, a menos que se tenha expressões bem simples dos erros locais em relação aos parâmetros. A alternativa (ii) é mais genérica em termos práticos e para se efetivar basta obervar o seguinte

Um elemento de Ĵ é

$$J_{ik} = \frac{\partial e_i}{\partial P_k} = \mathcal{U}m \qquad \qquad \frac{e_i(\hat{P} + \hat{S}\hat{P}) - e_i(\hat{P})}{\hat{S}\hat{P}_k} \qquad (4.17)$$

onde

 $\hat{\delta_{P}} = [0, 0, \dots, 0, \delta_{P_{k}}, 0, 0, \dots, 0]$

A equação 4.17 pode ser aproximada por

$$J_{ik} \approx \frac{\mathcal{E}_{i}[P_{1}, P_{2}, \dots, (1+\Delta)P_{k}, \dots, P_{n}] - \mathcal{E}_{i}(P_{1}, P_{2}, \dots, P_{n})}{\Delta P_{k}}$$

(4.18)

onde $\Delta \neq$ uma constante de proporcionalidade pequena. Por **exemplo** $\Delta = 10^{-6}$.

4.4. O METODO LEAST-PTH

No metodo least-squares, os erros locais foram ellevados ao quadrado para evitar cancelamento mútuo de erros positivos e megativos. O mesmo objetivo se alcançaria com Guitro múmero positivo par q, que não 2, no expoente. Generalizando-se o critério se tem

$$e(\hat{\mathbf{p}}) = \sum_{i=1}^{m} e_{i}^{q}$$
 (4.17)

Seguindo procedimento análogo àquele da seção 4.3 se chega à fórmula de cálculo de variação dos parâmetros $\hat{\delta_P}$ para redução do gradiente.

$$\hat{A} \hat{\delta P} = \hat{C} \tag{4.20}$$

onde

$$\hat{C} = -\frac{1}{p-1} \hat{J}^{t} e^{q-1} \hat{P}$$

$$\hat{A} = \hat{J}^{t} \hat{D} \hat{J}$$

sendo D uma matriz diagonal cujos elementos não-nulos são $e_1^{q-1}, e_2^{q-1}, \ldots, e_m^{q-1}$.

4.5 - OTIMIZAÇÃO POR TODOS OS PONTOS

Na eq. 4.7 a função ε é calculada usando-se o valor da resistividade média para cada profundidade (r), o que pode diminuir a precisão dos cálculos principalmente quando se tem poucos pontos medidos para um mesmo valor de r. O procedimento recomendado é a utilização de todos os pontos medidos no cálculo de ε . Assim a eq. 4.7 passa a ter a seguinte forma:

OFPD / BIBLIOTECA / PHAL

$$\varepsilon = \sum_{i=1}^{m} \sum_{j=1}^{n_i} \varepsilon_{ij}^2 = \sum_{i=1}^{m} \sum_{j=1}^{n_i} \left[\rho_{ij} - \rho_{a}(r, [P]) \right]^2$$
(4.21)

51

n_i= Número de pontos válidos de resistividade na profundidade i:

p = Valor da resistividade medida no j-4simo ponto para
a profundidade i;

e = Erro local associado ao respectivo valor de Pu-

.....

O programa TERRA elaborado dispõe de recurso para fazer este tipo de otimização por todos os pontos, a critério do usuário.

4.6 OTIMIZAÇÃO COM RESTRIÇÃO

Em muitos problemas práticos de otimização há restrições dos valores de pelo menos algum(ns) do(s) parâmetro(s). De forma geral estas restrições se expressam por:

$$g(x_1, x_2, \dots, x_n) :: 0$$
 (4.22)

onde :: é =, \neq , >, \geq , < ou \leq e g é uma função que relaciona os parâmetros envolvidos na restrição.

Um tipo comum de restrição é

$$x_{Li} \leq x_{i} \leq x_{Ui}$$
(4.23)

que pode ser desdobrada em duas:

$$x_i - x_{ij} \le 0$$
 (4.24a)
 $x_{ij} - x_{ij} \le 0$ (4.24b)

Restrições assim subdividem a região de busca em duas: uma "região viável", onde as restrições são satisfeitas e uma "região inviável" onde elas não são.

Otimização com restrição é muito mais difícil. Bastante esforço é exigido para reformular o problema de modo que as restrições sejam eliminadas.

Diferentes técnicas de otimização adotam métodos distintos para garantirem que os parâmetros se mantenham sempre dentro da região viável.

No problema específico de determinação do modelo do solo, apresentado no Capítulo III, é evidente que todos os parâmetros devem ser não-negativos. Estas restrições são do tipo mais simples e para eliminá-las se empregou a técnica da transformação paramétrica (*Box*, 1966) que se processa como se explica a seguir.

Os parâmetros restritos do solo $[P] = [P_1, P_2, .., P_n]^t$ são transformados noutros, irrestritos, $[z] = [z_1, z_2, .., z_n]^t$ que se relacionam via a restrição. Sendo P_{Li} o limite inferior do parâmetro do solo P_i , temos,

então

(4.25)

•52

(4.28)

Da equação 4.25 se tira

$$z_i = \sqrt{P_i - P_{Li}}$$
 (4.26)

pela qual se determina o valor de [z] equivalente a qualquer valor de [p].

Como por enquanto os parâmetros devem apenas ser ≥ 0, a eq. 4.26 passa a ser,

$$Z_{i} = \sqrt{P_{i}}$$
(4.27)

Quando no final ou durante todo o processo de otimização são necessários os valores dos parâmetros originais faz-se a transformação inversa.

$$P_i = Z_i^2$$

.

4.7 DADOS AMOSTRAIS

Em muitos problemas científicos e de engenharia a quantidade a ser otimizada é função não apenas dos parâmetros $P_1, P_2, \dots P_n$, mas também de uma ou mais variável independente. É justamente isto que ocorre no problema da modelagem do solo, no qual o erro é função das resistividades e espessuras das

COM

camadas e também das profundidades nas quais se realizou a prospecção. Deste modo, apenas alguns valores da função objetivo são disponíveis. O tamanho da amostra pode ser limitado por diversos motivos , tal como dificuldade prática de se realizarem as medições. O número de pontos amostrais depende da função aos quais se procura ajustar e devem ser suficientes para descrever o gráfico da função. Para alguns solos se modelarem em mais de duas camadas, as amostras originais precisam ser aumentadas artificialmente, apenas para determinação da estimativa inicial.

vavivu's independentes

res de "A

Para isto se cogitou usar interpolação cúbica ou ajuste por funções racionais, mas, por fim se empregou "cubic spline" (*Liou*, 1976). A experiência contra-indicou esta técnica, pois para diversos solos o programa não teve o sucesso esperado. O problema do cubic spline é sua tendência natural de introduzir pontos de inflexão indesejáveis, dependendo da disposição dos pontos aos quais deve se ajustar. A "cubic spline" convencional foi substituida por "cubic spline" sob tensão desenvolvido por *Cline*(1974) que apresentou resultados excelentes, inclusive para os solos com os quais não se havia tido sucesso anteriormente.

4.8 DETERMINAÇÃO DA ESTIMATIVA INICIAL

Todo método de otimização é iterativo e portanto necessita de uma estimativa inicial para a partir daí evoluir

para o ótimo (mínimo ou máximo). A estratificação em duas camadas, onde o número de parâmetros é o mais reduzido, apresenta uma convergência fácil para o mínimo global com dependência da estimativa inicial muito baixa. Já nas estratificações em mais camadas estas vantagens não existem. Nestas, o número de parâmetros é maior e são muitos os mínimos locais. Conviveu-se com este problema durante o desenvolvimento da rotina de estratificação do solo.

Para solucioná-lo dotou-se o programa de uma rotina que gera a curva característica do solo, interpolando um "cubic spline" sob tensão pela média dos pontos válidos. A partir desta curva o solo é classificado:

<u>Solo de Duas Camadas</u>

A curva característica é monotônica (Fig. 4.1). Neste caso a resistividade inicial da primeira camada é estimada pelo prolongamento da curva até h=0 . A resistividade da segunda camada é tomada pelo prolongamento da curva até a profundidade igual a 130% da profundidade amostral máxima.De fato a resistividade da segunda camada seria dada pela assíntota à curva característica verdadeira do modelo de duas camadas, neste estágio, ainda desconhecida . A espessura da primeira camada é escolhida arbitrariamente como sendo a abscissa do segundo ponto medido, o que não acarreta problema devido a boa estabilidade do método para duas camadas.

Solo de Três Camadas

A curva característica apresenta ponto de máximo ou de mínimo. Ela é dividida por este ponto em dois trechos que devem ter pelo menos cinco pontos, mesmo que tenham que ser completados com pontos artificiais obtidos por interpolação . Por cada um destes trechos, ajusta-se um modelo de duas camadas usando-se o método de otimização já descrito neste capítulo.

> Assim encontra-se os seguintes parâmetros: -primeiro trecho $\Rightarrow P_{1PT}$; d_{1PT} ; P_{2PT} -segundo trecho $\Rightarrow P_{1ST}$; d_{1ST} ; P_{2ST}

onde.

P_{1PT} - Resistividade da primeira camada do primeiro trecho;
 d_{1PT} - Profundidade da primeira camada do primeiro trecho;
 P_{2PT} - Resistividade da segunda camada do primeiro trecho;
 P_{1ST} - Resistividade da primeira camada do segundo trecho;
 d_{1ST} - Profundidade da primeira camada do segundo trecho;
 d_{1ST} - Resistividade da segunda camada do segundo trecho;

Desta forma a estimativa inicial dos parâmetros para o modelo de três camadas são dados por:

$$\begin{array}{l}
\rho_1 = \rho_{1PT} \\
q_2 = d_{1ST} \\
\end{array} \quad \begin{array}{l}
d_1 = d_{1PT} \\
q_3 = \rho_{2ST}
\end{array}$$

Fig. 4.1 - Curvas Características de Solos de Duas Camadas (h - Profundidade; hi - Ponto de Inflexão)

- a) Solo Positivo
- b) Solo Negativo

Fig. 4.2 - Curvas Características de Solos de Três Camadas

- a) Com ponto de mínimo
 - b) Com ponto de máximo

Solo de Quatro Camadas

A curva característica apresenta pontos de máximo e de mínimo. Neste caso ela é dividida em três trechos (Fig. 4.3) e a estimativa dos parâmetros é conduzida por procedimento análogo ao anterior, complementado da seguinte forma:

-terceiro trecho ⇒ P_{1TT}; d_{1TT}; P_{2TT} onde

 ρ_{iTT} - Resistividade da primeira camada do terceiro trecho; d_{iTT} - Profundidade da primeira camada do terceiro trecho; ρ_{zTT} - Resistividade da segunda camada do terceiro trecho;

Estimativa dos parâmetros:

$$\rho_{1} = \rho_{1PT} ; \quad d_{1} = d_{1PT} ; \quad \rho_{2} = \rho_{2PT}$$

$$d_{2} = d_{1ST} - d_{1PT} ; \quad \rho_{3} = \rho_{2ST}$$

$$d_{3} = d_{1TT} - d_{1ST} - d_{1PT} ; \quad \rho_{4} = \rho_{2TT}$$

Dependendo da posição dos pontos amostrais, a curva Característica do solo pode apresentar algumas pequenas Cdifficuldades. Na Fig. 4.4a por exemplo, a curva é monotônica Mas com tres pontos de inflexão. Na Fig. 4.4b a curva Representa pontos de inflexão. Na Fig. 4.4b a curva Representa pontos de mínimo e máximo, mas de valores bastante Safecidos e la Profundidades muito próximas. O usuário Go programa deve estratificar estes solos em duas camadas, Inflerpretando dos pontos consequência da dispersão normal Ga más da mostral dem relação a média verdadeira. Pontos estranhos de máximo e minimo podem ocorrer também na curva de solos estratificáveis em três camadas como é ilustrado na Fig. 4.5.

As vezes curvas mesmo monotônicas, sem pontos de máximo e/ou mínimo, são melhor estratificáveis em três camadas do que em duas, dependendo da não suavidade da mesma.

Outras dificuldades não são de todo descartadas, contudo podem ser contornadas por intervenção do usuário mediante observação da curva característica gerada.

As medições padronizadas ainda são feitas hoje em apenas cinco ou seis profundidades e isto é menos que o necessário para estratificação em quatro camadas. Neste caso, pontos artificiais, obtidos da curva característica por interpolação, são acrescentados de modo a se ter pelo menos dois pontos a mais que o número de parâmetros.

5.2 - DESCRIÇÃO DO PROGRAMA PRINCIPAL E SUB-ROTINAS

PROGRAMA TERRA

Este é o programa principal que le os dados de entrada, gerencia todo processo, chama as sub-rotinas que fazem a depuração dos dados e a otimização dos parâmetros do solo. Se os dados de entrada forem as resistências medidas, é feito a conversão para resistividade.

Caso deseje-se apenas verificar os erros locais e global de um modelo de estratificação já conhecido, isto pode ser feito através da mudança de uma variável lógica no arquivo de dados, que fará o programa principal chamar diretamente a sub-rotina ERRO.

Após a otimização do modelo, se desejado, o programa fornece o gráfico da curva característica por três saídas opcionais: vídeo, plotter ou impressora.

SUB-ROTINA DEPURA

Nesta sub-rotina é feito o tratamento estatístico dos dados de campo, através de dois critérios alternativos disponíveis para o usuário, já definidos no Capítulo II. Também faz retornar ao programa principal uma matriz com os dados não nulos e consistentes, além de um vetor com a média dos pontos medidos aceitáveis.

SUB-ROTINA SORT

-Durante a aplicação do método dos cinco pontos para
a depuração dos dados é necessário que estes estejam classificados em ordem crescente, o que é feito por esta sub-rotina, possibilitando assim a determinação do primeiro e terceiro quartis.

SUB-ROTINA ESTINI

Esta sub-rotina gerencia o processo de elaboração de uma curva que passa pelos pontos medidos. Após isto, divide a curva em trechos ascendentes e descendentes e por cada um deles faz a otimização de modelos de duas camadas. Cria pontos artificiais em cada trecho para completar um número mínimo de pontos desejados pelo usuário. Finalmente, faz a composição dos diversos parâmetros encontrados em cada trecho, para fornecer ao programa principal uma estimativa inicial dos parâmetros do solo a serem otimizados.

SUB-ROTINA MAXMIN

Para que o espaço destinado ao gráfico seja aproveitado da melhor forma possível, é necessário que a escala do eixo das ordenadas, seja definida em função dos valores máximos e mínimos de resistividade, dentro do conjunto de pontos calculados. Esta sub-rotina armazena esses valores que foram encontrados entre aqueles pesquisados até então.

SUB-ROTINA SPLINT

Esta sub-rotina determina os parâmetros necessários para computar um "spline" sob tensão que interpola uma sequência de valores funcionais (Cline, 1974).

SUB-ROTINA CURVE

Esta sub-rotina interpola uma curva em um dado ponto usando um "spline" sob tensão. A sub-rotina SPLINT deve ter sido chamada previamente para calcular os parâmetros necessários(*Cline*, 1974).

SUB-ROTINA LPS

Esta sub-rotina faz a otimização dos parâmetros do solo, utilizando a técnica "Least-Pth" . Nesta pesquisa usa-se "2" como potência que eleva os erros locais, tornando-se desta forma a técnica dos mínimos quadrados.

SUB-ROTINA ERRO

Esta sub-rotina fornece os erros locais entre o valor calculado da resistividade e a média dos pontos medidos em cada profundidade, ou em relação a todos os pontos consistentes, dependendo do tipo de ajuste que se deseja fazer, pela média ou por todos os pontos aceitáveis.

FUNÇÃO ROULG

Esta função calcula o valor da resistividade numa determinada profundidade utilizando os parâmetros do solo que lhe são fornecidos. Se o modelo do solo que está sendo otimizado for de duas camadas, usa a eq.3.19, caso contrário usa a eq.3.16. Além do mais, este subprograma administra a

convergência destas equações.

SUB-ROTINA ROMBERG

Nesta sub-rotina é feita a integração necessária na eq.3.16 usando o método de *Romberg* de integração numérica (*Gerald*, 1978).

FUNÇÃO FCN

Durante o processo de integração da sub-rotina ROMBERG, é necessário o valor do integrando da eq. 3.16 em diversos pontos, o que é fornecido pela função FCN.

FUNÇÃO BESSJO

Nesta etapa é fornecido o valor da função de *Bessel* de primeira classe e ordem zero, que faz parte do integrando da equação acima mencionada.

SUB-ROTINA PLOT

Esta sub-rotina traça até três curvas sobrepostas. Aqui ela é usada para traçar a curva característica do modelo encontrado e marcar os pontos correspondentes às médias dos valores medidos.

5.3 - ANÁLISE E DEPURAÇÃO DOS DADOS

Antes de começar a análise dos dados é necessário se fazer a conceituação de algumas nomenclaturas usadas mesta

dissertação, tais como:

Conjunto de dados - É o resultado de todas as medições de resistívidade do solo feitas em vários pontos de medição de uma mesma área ou subestação.

Pontos de medição - São os pontos na superfície do solo da área em estudo, escolhidos como referência para se medir a resistividade deste solo em várias profundidades abaixo do mesmo. Estas profundidades são iguais ao espaçamento entre cada par de hastes quando se utiliza o método de *Wenner* descrito no Capítulo II.

Erro médio - É a média dos erros locais obtidos em cada profundidade, que são tomados como sendo a diferença relativa entre o valor calculado e o valor medido da resistividade do solo, na profundidade em questão.

Erro global - É a soma dos erros locais elevados ao quadrado.

Analisando o banco de dados de resistividades de solos da região Nordeste, conseguidos na CHESF e Concessionárias, verífica-se que na maioria dos conjuntos de medições existem pontos dispersos e em vários casos bastante afastados, justificando assim a necessidade de se usar medidas resistentes de posíção , como os quartis, no critério de tratamento estatístico.

A fodos os 137 solos pesquisados foram aplicados ambos os criférios de depuração dos dados: o usual, que elimina os valores afastados em mais de 50% da média, e o alternativo proposto neste trabalho, que é o método dos cinco pontos e se baseia no intervalo interquartil, conforme é descrito no Capítulo II.

De modo geral, o critério usual se mostrou mais rigoroso, eliminando mais pontos do que o critério alternativo em 73,7% dos casos, e em 6,6% (9 subestações) chega a eliminar todos os pontos de uma determinada profundidade. Esta rigorosidade faz com que seja desprezada uma grande quantidade de medidas realizadas e não seja considerada a dispersão dos dados, que é natural quando se trata de medição de resistividade do solo.

O método alternativo no entanto, é mais flexível, permitindo que a dispersão dos próprios dados determine o grau de rigorosidade que será aplicado na depuração dos mesmos.

Deve-se ficar atento ao fato de que, os pontos refugados por qualquer dos critérios, podem não corresponder a dados falsos, mas sim apontarem irregularidade (variação horizontal da resistividade) no solo. Isto se confirmado por repetição ainda mais criteriosa das medições, exige projeto diferenciado em áreas de uma mesma malha.

O número de pontos de medição na superfície do solo de cada subestação é geralmente satisfatório. Já o número de profundidades medidas, cinco na média, é menor que o necessário para se fazer a otimização dos parâmetros do solo por qualquer método computacional e até mesmo pelo método gráfico. Esta média de cinco profundidades é baixa,

principalmente quando se está trabalhando com os modelos de três e quatro camadas, que tem cinco e sete parâmetros respectivamente. Como foi visto no Capítulo IV, deve-se ter um número *m* de medições maior do que os *n* parâmetros da função $\rho_{\rm c}(r,[P])$.

Este baixo número de profundidades deve-se principalmente a existência de espaçamentos padrões entre as hastes (2,4,8,16,32 e 64m). Quando não se conseguem as medições nos espaçamentos padrões de 32 e 64m, por causa de limitações do terreno ou por falta de sensibilidade do aparelho de medição, não se fazem outras medidas intermediárias.

5.4 - EXEMPLOS DE ESTRATIFICAÇÕES DO SOLO

Descreve-se a seguir, apenas as principais etapas de estratificação de um solo de três camadas e outro de duas, utilizando-se o programa TERRA que é a ferramenta final resultante deste trabalho.

Inicialmente o programa faz a depuração dos dados de campo seguindo um dos dois critérios descritos no Capitulo II, a escolha do usuário. Em seguida fornece uma courva que interpola os pontos médios medidos conforme Fig. 5.2.

Utilizando esta curva e o método ^cda estimativa inicial abordado no item 4.8, fornece a curva cdeterminada pelos parâmetros da estimativa inicial(Fig. 5.3).

A partir da estimativa inicial e seguindo o método de otimização descrito no Capítulo IV, calcula os parâmetros finais que representam o solo em estudo e plota sua curva característica segundo estes parâmetros (Fig. 5.4).

Usando os parâmetros finais e a fórmula de *Hummel*, que será melhor explicada no item 5.7, o programa calcula o modelo equivalente de duas camadas, que normalmente não apresenta bons resultados (Fig. 5.5).

Finalmente, partindo-se do equivalente de Hummel ou outra estimativa inicial qualquer, calcula-se o melhor modelo de duas camadas, usando o método de otimização já descrito, e plota o gráfico da respectiva curva característica (Fig. 5.6 e 5.7).

Além das curvas acima o programa fornece, através de um arquivo de saída, os resultados numéricos para cada uma das etapas descritas neste item, conforme exemplo de listagem de resultados mostrada a seguir.

EXEMPLOS DE LISTAGENS DE RESULTADOS

* - Ponto eliminado durante a depuração dos dados.
 0.0 - Valor não medido neste ponto a esta profundidade.

SE CABROBO - PERNAMBUCO - CHESF

. .

••

1 1

Estratificação em Três Camadas

Parâmetro: Estimativa inicial:	rou1 47.3	d1 2.2	rou2 26.8	d2 18.8	rou3 372.4
Valores Finais:	47.1	2.5	23.9	10.3	101.9
Redução 2 camadas:	26.4	12.8	101.9		
Número de iterações:	7				
Erro global:	9.88E-04				
Raiz Média Quadrática:	1.28E-02				
Erro Médio:	9.88E-03				
Tempo execução (s):	50.9				

Profund.	erro			_	Resi	stividade	es (ohm.	m)	
(m)	(pu)	calculada	média	(1)	(2)	(3)	(4)	(5)	(6)
1.0 -1.5E	-02	46.5	45.8	53.4 23.9	18.2 72.9	32.7 829.4*	46.5 27.6	109.3	27.6
2.0 2.4E	-02	43.8	44.9	60.3 23.9	33.9 57.8	55.3 31.4	$51.5 \\ 30.2$	56.5	47.8
4.0 -1.2E	-02	36.4	35.9	47.8 17.6	22.6 25.1	52.8 37.7	$\frac{42.7}{25.1}$	30.2	57.8
8.0 5.0E	-03	30.5	30.7	30.2 25.1	25.1 25.1	45.2 35.2	$40.2 \\ 20.1$	25.1	35.2
16.0 -2.3E	-03	36.3	36.2	40.2	30.2	40.2	40.2 30.2	40.2	40.2
24.0 8.2E	-04	45.2	45.2	45.2 0.0	45.2 30.2*	60.3* 45.2	$0.0 \\ 45.2$	0.0	0.0

SE CABROBO - PERNAMBUCO - CHESF

Parâmetro: rou1 d1 rou2 d2 ro Estimativa inicial: 26.4 12.8 101.9 Valores Finais: 26.4 12.8 101.9 Número de iterações: 0 Erro global: 4.15E-01		Estratificação	em	Duas	Camadas	(Usando	Hummel)	
Raiz Média Quadrática: 2.63E-01 Erro Médio: 1.95E-01	arâmet: stimat alores úmero d rro gle aiz Mé rro Me	ro: iva inicial: Finaís: de iterações: obal: dia Quadrática: édio:	4. 2. 1.	rou1 26.4 26.4 0 15E-01 63E-01 95E-01	d1 12.8 12.8	rou2 101.9 101.9	d2 [.]	rou3

Profu	nd. erro	2			Resi	stividade	es (ohm.	m)	
(m)) (pu,	calculada	média	(1)	(2)	(3)	(4)	(5)	(6)
1.0	4.2E-01	26.5	45.8	53.4 23.9	18.2 72.9	32.7 829.4*	46.5	109.3	27.6
2.0	4.1E-01	26.5	44.9	60.3 23.9	33.9 57.8	55.3 31.4	$51.5 \\ 30.2$	56.5	47.8
4.0	2.5E-01	26.8	35.9	47.8	22.6	52.8 37.7	42.7 25.1	30.2	57.8
8.0	6.2E-02	28.8	30.7	30.2	25.1	45.2 35.2	40.2 20.1	25.1	35.2
16.0 -	-1.3E-02	36.7	36.2	40.2	30.2	40.2	40.2	40.2	40.2
24.0 -	-6.9E-03	45.6	45.2	45.2 0.0	45.2 30.2*	60.3* 45.2	0.0 45.2	0.0	0.0

SE CABROBO - PERNAMBUCO - CHESF

Estratificação em Duas Camadas (Ajuste direto)

Parâmetro:	rou1	d1	rou2
Estimativa inicial:	49.6	1.1	35.2
Valores Finais:	49.6	1.0	35.2
Número de iterações:	1		
Erro global:	8.35E-02		
Raiz Média Quadrática:	1.18E-01		
Erro Médio:	9.03E-02		
Tempo execução (s):	0.1		

Profund. en	ro			Resi	stividad	es (ohm	.m)	
	calculada	média	(1)	(2)	(3)	(4)	(5)	(6)
1.0 -2.3E-02	2 46.8	45.8	53.4 23.9	18.2 72.9	32.7 829.4*	46.5	109.3	27.6
2.0 6.9E-02	41.8	44.9 .	60.3 23.9	33.9 57.8	55.3 31.4	51.5 30.2	56.5	47.8
4.0 -4.0E-02	37.4	35.9	47.8	22.6	52.8 37.7	42.7	30.2	57.8
8.0 -1.7E-01	35.8	30.7	30.2 25.1	25.1 25.1	45.2 35.2	40.2 20.1	25.1	35.2
16.0 2.3E-02	35.4	36.2	40.2	30.2	40.2	40.2	40.2	40.2
24.0 2.2E-01	35.3	45.2	45.2 0.0	45.2 30.2*	60.3* 45.2	0.0	0.0	0.0

SE MAISA-RIO GRANDE DO NORTE

Estratificação	em Duas	Camadas	
Parâmetro:	rou1	d1	rou2
Estimativa inicial:	1203.3	7.9	140.3
Valores Finais:	1203.3	7.9	140.3
Número de iteracöes:	1		
Erro global:	6.20E-03		
Raiz Média Quadrática:	3.52E-02		
Erro Médio:	2.92E-02		
Tempo execução (s):	0.2		

(]

	Profund.	erro)			Rest	istivida	des (ohm.	.m)	
	()	(pu)	calculada	. média	(1)	(2)	(3)	(4)	(5)	(6)
2 200 CC 20 20 CC 20	2.0 -2.3E 4.0 5.9E 8.0 -4.3E 16.0 1.7E 32.0 -3.4E	-02 -02 -02 -02 -03	1193.2 1135.4 883.5 418.7 175.2	1166.0 1206.8 847.0 425.9 174.6	1558.2 1397.4 1110.9 552.9 247.3	574.3 884.7 633.3 296.6 98.5	458.7 593.1 749.0 462.4 106.6	1771.9 2128.7 1161.1 428.3 281.5	785.4 816.8 623.3 367.9 92.5	1847.3 1420.0 804.2 447.4 221.2

SE CABROBO - PERNAMBUCO - CHESF

Fig. 5.3 - Estimativa Inicial para o Modelo de Três Camadas da SE Cabrobó - CHESF.

Fig. 5.5 - Equivalente de Duas Camadas Usando a Fórmula de Hummel.

SE MAISA-RIO GRANDE DO NORTE

Fig. 5.7 - Gráfico da Curva Característica de Duas Camadas para o Solo da SE Maisa-COSERN.

5.5 - RESULTADO DAS ESTRATIFICAÇõES DOS DADOS COLETADOS

Segundo observação gráfica de todos os conjuntos de dados estudados, usando a curva que interpola a média dos pontos medidos, os solos foram classificados quanto ao número de camadas como sendo de duas(curva monotônica), de três(curva com ponto de máximo ou mínimo) e de quatro camadas (com ponto de máximo e mínimo); tudo conforme item 4.8. Os resultados estão na tabela 5.1.

Utilizando o programa TERRA com o critério estatístico dos cinco pontos, foram feitas estratificações de todos os 137 solos disponíveis. Os valores finais dos parâmetros encontrados em cada estratificação, juntamente com as medidas conseguidas nas empresas estão no apêndice 2.

Após a utilização do programa, uma nova classificação dos solos, segundo a estratificação final escolhida, é feita e apresentada na tabela 5.1.

Tabela 5.1

Distribuição dos Solos Quanto ao Número de Camadas

Número de Camadas	DUAS		TRÊS		QUATRO		TOTAL	
Classificação do Solo segundo ob- servação gráfica	74	54,0%	54	39.,4%	9	6,6%	137	100%
Estratificação final escolhida	103	75,2%	31	22,6%	3	2,2%	137	100%

A diferença entre os resultados dos dois tipos de classificação dos solos mostrados na tabela 5.1, deve-se basicamente aos seguintes motivos:

a)Número de profundidades insuficientes para modelagem em três ou quatro camadas em relação ao número de parâmetros exigidos para cada caso.

b)Vários solos quando estratificados em três ou quatro camadas, conforme orientação gráfica, apresentavam erros entre os valores de resistividade calculados e medidos, muito próximos dos erros encontrados quando os mesmos solos eram estratificados em duas camadas. Nestes casos esta última passou a ser a estratificação final escolhida, pois fornece o modelo mais simples.

c)Dificuldade do programa em fornecer uma boa estimativa inicial, quando algum trecho da curva característica do modelo de três ou quatro camadas tem inclinação muito acentuada.

5.6 - DETERMINAÇÃO E VALIDAÇÃO DO MODELO MATEMÁTICO PARA OS SOLOS

Os modelos matemáticos que pretendem representar os solos em estudo, são funções de parâmetros específicos, que são as resistividades e espessuras das camadas. Para se afirmar que o solo é representado por determinado modelo, é necessário se fazer a validação do mesmo. Precisa-se portanto definir critérios para isto. Neste trabalho foram usadas duas

formas diferentes para determinação de dois tipos de faixa aceitável de resistividade em cada profundidade.

A primeira é definida pelos limites de ± 30% em relação a média das medições em cada profundidade. Esta definição de algum modo foi inspirada numa recomendação do IEEE-80(1986) para classificação de solo uniforme, onde isto acontece quando o afastamento entre os valores máximo e mínimo dos dados de campo em profundidades diferentes, for menor do que 30%; neste caso a resistividade representativa deste solo pode ser a média dos diferentes valores.

A segunda forma de determinar a outra faixa aceitável é definida pelos valores de resistividade compreendidos entre os limites inferior e superior, conforme as eqs. 2.7 e 2.8, que são baseadas nos quartis e intervalo interguartil.

São considerados válidos os modelos em que todos os valores de resistividade calculados para cada profundidade estejam dentro da respectiva faixa aceitável.

Partindo deste princípio pode-se encontrar para solos com características de três ou quatro camadas, modelos de duas camadas válidos segundo os critérios acima estabelecidos. Assim sendo todos os 137 conjunto de dados foram estratificados em duas camadas.

Os resultados destas estratificações foram submetidos aos dois critérios de validação do modelo aqui estabelecido. Verificou-se que 23 solos (16,8%) não foram considerados válidos segundo o critério do afastamento máximo

de 30%; o mesmo acontecendo para 13 solos(9,5%) quando foi usado o critério baseado nos quartis.

Estes resultados comprovam a existência de solos que devem ser estratificados usando modelos a partir de três camadas.

5.7 - MÉTODOS DE DETERMINAÇÃO DO MODELO DE DUAS CAMADAS

Como foi dito na introdução deste Capítulo, a maioria dos métodos de cálculo de malha de terra disponíveis atualmente, foram concebidos para solos modelados em duas camadas. Por outro lado os métodos de estratificação usuais têm a tendência de estratificar o solo em várias camadas, uma vez que guiam-se por uma curva "pseudo-característica" gerada por simples interpolação dos pontos amostrais, como foi discutido no Capítulo IV. Para compatibilizar as duas metodologias, a de estratificação e a de cálculo da malha, o solo originalmente estratificado em várias camadas é reduzido à duas .

Esta modelagem em duas camadas pode ser feita de duas maneiras . A primeira é através da fórmula de *Hummel* (*Tag*, 1964), que será descrita no parágrafo seguinte. A segunda é a determinação direta do melhor modelo de duas camadas utilizando-se a técnica de otimização apresentada no Capítulo IV.

Considerando o solo de *n* camadas do Capítulo III, Fig. 3.1, as *n*-1 primeiras camadas podem ser reduzidas a apenas uma através da seguinte fórmula:

$$\frac{d_1 + d_2 + \dots + d_{n-1}}{\rho_{eq(n-1)}} = \frac{d_1}{\rho_1} + \frac{d_2}{\rho_2} + \dots + \frac{d_{n-1}}{\rho_{n-1}}$$

Um dos resultados esperados deste trabalho é a constatação da superioridade da estratificação direta em duas camadas, usando técnica de otimização, sobre a redução de *Hummel*. Por isto ambas foram aplicadas para todos os solos cuja estratificação escolhida foi de três ou quatro.

Constatou-se que em todos os casos a modelagem direta do solo em duas camadas apresentou menor erro, caracterizando-se assim, como a melhor forma de se encontrar o modelo de duas camadas, para solos originalmente estratificáveis em três ou quatro camadas.

É mostrado na tabela 5.2 dois exemplos desta comparação.

Tabela 5.2

Comparação entre a Redução ao Modelo de Duas Camadas pela Fórmula de *Hummel* e Ajuste Direto.

Arquivo de Dados	TE	ρ ₁ Ω.m	d ₁ m	^ρ 2 Ω.m	^d 2 m	^ρ ӡ Ω.m	Erro Global	Erro Médio
SE	EO	340,7	2,3	1384,6	2,2	138,4	2,8%	6,2%
MESSEJANA	OD	453,9	10,1	119,9	-	—	11,5%	13,2%
COELCE	FH	539,6	4,5	138,4		-	45,7%	27,1%
SE	EO	195,0	3,5	696,6	13,6	115,6	0,0%	0,0%
MASCOTE	OD	156,3	1,4	379,4	-		3,9%	7,7%
COELBA	FH	454, <mark>9</mark>	17,1	115,6			221,0%	52,8%

TE - Tipo de Estratificação

EO - Estratificação Original

OD - Otimização Direta

FH - Fórmula de Hummel

5.8 - DISTRIBUIÇÃO DOS SOLOS EM CLASSES DE RESISTIVIDADE

Como apenas o modelo de duas camadas é usado no cálculo dos potenciais na superfície do solo, na maioria dos métodos usados atualmente, foi considerado também este tipo de modelo para todos os conjuntos de dados. Com estes resultados é feita a distribuição da frequência dos parâmetros de resistividade (ρ_1, ρ_2) por faixa de variação, que é mostrada na tabela 5.3.

Tabela 5.3

Distribuição dos Valores das Camadas Superficial (ρ_1) e Infinita (ρ_2) por Faixa de Resistividade.

Classes	Pr: ou 9	imeira Camad Superficial	ta - <mark>P</mark> 1	Segunda Camada ou Infinita - P ₂			
de	Num.	Percentual	Distrib	Num.	Percentual	Distrib	
Resistividades		7.	Acumul.		7.	Acumul.	
Ω.m			%			7.	
0 - 100	31	22,63	22,63	43	31,39	31,39	
100 - 200	25	18,25	40,88	24	17,52	48,91	
200 - 300	14	10,22	51,09	13	9,49	58,39	
300 - 400	13	9,49	60,58	6	4,38	62,77	
400 - 500	14	10,22	70,80	10	7,30	70,07	
500 - 600	7	5,11	75,91	4	2,92	72,99	
600 - 700	3	2,19	78,10	4	2,92	75,91	
700 - 800	1	0,73	78,83	4	2,92	78,83	
800 - 900	8	5,84	84,67	4	2,92	81,75	
900 - 1000	2	1,46	86,13	2	1,46	83,21	
1000 - 1500	5	3,65	89,78	8-	5,84	89,05	
1500 - 2000	2	1,46	91,24	5	3,65	92,70	
2000 - 3000	5	3,65	94,89	4	2,92	95,62	
3000 - 5000	3	2,19	97,08	4	2,92	98,54	
5000 -10000	4	2,92	100,00	2	1,46	100,00	

Os resultados apresentados na tabela 5.3 indicam uma predominância dos valores de resistividade dos solos pesquisados estarem abaixo de 600 Ω.m; para a camada superficial 75,91% e para a segunda camada (infinita) 72,99%.

Para melhor visualização dos resultados, as distribuições de frequência são apresentadas em forma de histograma através das Figs. 5.8 e 5.9.

CAPITULO VI

CONCLUSCES E RECOMENDAÇCES

6.1 - CONCLUSSES

Foi verificado neste trabalho e através de pesquisa bibliográfica, que nenhum método garante uma otimização dos parâmetros do solo que leve a função erro para o mínimo absoluto, independentemente da estimativa inicial. Sendo assim necessário, nesta dissertação, a elaboração de um método para fornecer os parâmetros iniciais, que já estejam próximos da solução, conforme descrito no Capítulo V.

Quando se está otimizando um modelo de duas camadas, a técnica "Least-Pth" usada no programa TERRA, quase sempre converge para um único modelo matemático que representa aquele solo. O mesmo não acontece quando trata-se de modelagem de três e quatro camadas, porque aumenta o número de parâmetros a serem otimizados, resultando em mais de um modelo matemático que possa representar aquele conjunto de medições.

Analisando os dados do Apéndice 2, verifica-se realmente que há dispersão entre eles e em alguns casos com pontos extremos bastante afastados, justificando assim a necessidade de se fazer depuração nos mesmos e usar medidas resistentes de posição conforme explicado no Capítulo II.

Através da comparação entre os dois critérios de depuração das medidas de campo, contidas no programa, conclui-se que existe diferença significativa na aplicação dos mesmos. O método do afastamento a mais 50% em relação a média é mais rigoroso do que o método dos cinco pontos (*Tukey*, 1977). O primeiro chega a eliminar mais pontos do que o segundo em 73,7% dos casos.

Conforme foi verificado no Capítulo V, nos casos de estratificação em três e quatro camadas, a redução para duas, utilizando a fórmula de *Hummel*, apresentou em todos os casos, erro global mais elevado do que a otimização direta de um modelo de duas camadas. Podemos assim concluir que, este segundo procedimento é o mais adequado, quando é necessário a utilização de um modelo de duas camadas para o solo em estudo.

Do conjunto de estratificações feitas, observa-se que a maioria dos solos apresentam resistividades abaixo de 600 Ω .m, como verifica-se em 75,91% para a Camada Superficial(ρ_1) e 72,99% para a Segunda Camada(ρ_2). Isto quando todos os solos são modelados em duas camadas

Foi comprovada a existência de solos que devem ser

estratificados usando modelos a partir de três camadas. Pois o modelo de duas camadas não foi considerado válido em 23 solos(18,16%), segundo o critério do afastamento máximo de 30%; o mesmo acontecendo para 13 solos(9,5%) quando foi usado o critério baseado nos quartis.

Concluimos também que há necessidade de se desenvolver rotina computacional para calcular os potenciais na superfície, usando o melhor modelo do solo em estudo. Pois a maioria dos métodos atuais de cálculo de malha usam o modelo simplificado de duas camadas, que pode não ser válido.

Partindo da premissa de que os recursos destinados ao setor elétrico estão escassos e que a convivência com essa escassez exige otimização dos projetos e aumento da produtividade em geral, conclui-se que este trabalho colabora neste sentido, quando aborda a estratificação do solo através de métodos computacionais que são mais rápidos e precisos.

6.2 - RECOMENDAÇÕES DE ORDEM PRÁTICA

Para viabilizar melhor utilização dos resultados deste trabalho, recomenda-se que seja adotado o procedimento de se fazer medições de resistividade para mais profundidades, pelo menos sete. Da forma que é feito atualmente, na média cinco pontos, dificulta o processo de otimização seja qual for o método utilizado. Estes pontos devem ser escolhidos de forma a se ter o conhecimento do solo em um espectro razoável, para não prejudicar a modelagem do mesmo.

6.3 - SUGESTÕES DE PESQUISAS

Os métodos atuais de cálculo de malhas de terra empregam o modelo de duas camadas apenas. A rotina de estratificação resultante desta dissertação vai além, e encontra modelos de duas, três ou guatro camadas. Sendo assim este trabalho incentiva o desenvolvimento de novos métodos mais sofisticados de cálculo de sistemas de aterramento, que representem o solo de modo realista. Entre estas novas técnicas se destaca aquela que aplica o método dos elementos finitos (Cardoso, 1987, 1991). Sugere-se então maiores incursões nesta técnica, utilizando-a na determinação da ordem de grandeza dos erros cometidos no cálculo dos potenciais, quando se utiliza o modelo mais simples de duas camadas.

Este trabalho não fez maiores investimentos na técnica de otimização, preferindo a mais simples, que calcula as derivadas através da equação de diferença. Outras técnicas de otimização podem ser testadas em trabalhos futuros, no sentido de melhorar a eficiência do programa. O método dos "mínimos quadrados modificados" desenvolvido por *Power(Box*, 1966) dispensa o cálculo das derivadas e pode ser incluído no programa TERRA para comparação com o método agora empregado.

Para a modelagem de solos em três e quatro camadas, recomenda-se a determinação de expressões matemáticas semelhantes a eq. 3.19, que é específica para o solo de duas camadas, e que possibilitem maior rapidez computacional no cálculo dos parâmetros desses solos.

Sugere-se ainda a elaboração de um roteiro que enfoque técnicas de medição e cálculo da resistividade do solo, quando este é formado também por camadas inclinadas e não só paralelas, como os modelos usualmente adotados.

REFERÊNCIAS BIBLIOGRÁFICAS

Adby, P.R. & Dempster, M.A.H. <u>Introduction to Optimization</u> <u>Methods</u>. Chapman and Hall Ltda. London, 1974.

ANSI/IEEE Std 80-1986. <u>Guide for Safety in AC Substation</u> <u>Grounding</u>. New York: IEEE, 1986.

- ANSI/IEEE Std 81-1983. <u>Guide for Measuring Earth Resistivity</u>, <u>Ground Impedance</u> and Earth <u>Surface Potentials of a Ground</u> <u>System - PartI</u> : <u>Normal Measurements</u>. New York: IEEE , 1983.
- Blattner, C.J. Study of Driven Ground Rods and Four Point Soil Resistivity Tests. <u>IEEE Transactions on Power Apparatus</u> and <u>Systems</u>, Vol.PAS - 101, <u>No.8</u>, Aug 1982, pp 2837 -2850.
- Box, M.J. A Comparison of Several Current Optimization Methods and the Use of Transformations in Contrained Problems, Computer Journal, No. 1, pp 67, 1966.
- Bussab, W.O. & Morettin, P.A. <u>Métodos</u> <u>Quantitativos</u> -<u>Estatística Básica</u>. São Paulo: Atual, 1987.
- Cardoso, J.R., Ribeiro, F.S. & Gambirasio, G. O Método dos Elementos Finitos no Modelamento de Sistemas de Aterramento em Solos de Múltiplas Camadas. <u>IX SNPTEE</u>, Grupo VIII, Belo Horizonte: 1987.
- Cardoso, J.R., Ground-3D: Um Sistema CAD/CAE para Análise de Sistemas de Aterramento. <u>XI SNPTEE</u>, Grupo VIII, Rio de Janeiro: 1991.
- Cline, A.K. Scalar and Planar Valued Curve Fitting Using Splines Under Tension. <u>Comunications of ACM</u>. Vol 17, No 4, April 1974.

- COBEI/ABNT. <u>Curso de Aterramento em Sistemas de Potência.</u> Salvador: COBEI/ABNT, 1985.
- Daniels, R.W. An Introduction to Numerical Methods and Otimization Techniques . Elsevier North-Holland, Inc. New York, 1978.
- •Duarte, M.S. <u>Comportamento</u> <u>Elétrico</u> <u>do</u> <u>Solo</u>. Recife: Copperico, 1983.
- Gerald, C.F. <u>Applied Numerical Analysis</u>. Addison-Wesley Publishing Co. Inc. Massachusetts, 1978.
- Gottfried, B.S. & Weisman, J. <u>Introduction to Optimization</u> <u>Theory</u>, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1973.
- GTA/ELETROBRÁS. <u>Primeiro</u> <u>Relatório</u> <u>para</u> <u>Debate</u> <u>pelas</u> <u>Concessionárias</u> <u>de Energia</u> <u>Elétrica</u>. Rio de Janeiro: Setembro 1987.
- Hamming, R.W. <u>Numerical Methods for Scientists and Engineers</u>, Mc Graw-Hill, New York, 1973.
- Leon, J.A.M. <u>Sistemas de Aterramento</u>. São Paulo: Erico do Brasil, 1980.
- Lima, D.X.C. Curso de Aterramento. Recife: 1981.
- Liou, M.L. Spline Fit Made Easy, <u>IEEE</u> <u>Transaction</u> on <u>Computers</u>, pp. 522-527, May 1976.
- Meliopoulos, A.P., Papalexopoulos, A.D., Webb, R.P. & Blattner, C.J. Estimation of Soil Parameters from Driven Rod Measurements. <u>IEEE Transactions on Power</u> <u>Apparatus and Systems Vol. PAS-103, No 9</u>, Sept 1984, pp 2579-2587
- Polar, E. <u>Computational Methods in Optimization</u>, Academic Press, New York, 1971.

- Schwarz, S.J. Analytical Expressions for the Resistance of Grounding Systems. <u>AIEE Transactions</u>, Vol 73, parte III-B, 1954, pp 1011-1016.
- Souza, B.A. <u>Sistemas de Aterramento</u>. Campina Grande: CCT/UFPb, 1985.

Sunde, E.D. Earth Conduction Effects in Transmission System New York: McMillan, 1968.

Tagg, G. F. Earth Resistances . New York: Pitman, 1964.

7

Tukey, J.W. <u>Exploratory Data Analysis</u>. Massachusetts: Addison Wesley, 1977.

Watson, G.N. <u>A Treatise on the Theory of Bessel Functions</u> Cambridge: University Press, 1966.

APENDICE 1

SOLUÇÃO DA INTEGRAL USADA NO MODELO DE DUAS CAMADAS

 $M(r, \mu) = r \int_{0}^{\infty} \frac{1 - \mu e^{-2d\lambda}}{1 + \mu e^{-2d\lambda}} J_{0}(\lambda r)d\lambda$ (1)

Sabe-se que

$$\frac{1}{1+x} = 1 - x + x^{2} - x^{3} + x^{4} - x^{5} + \dots = \sum_{m=0}^{\infty} (-1)^{m} x^{m} = \sum_{m=0}^{\infty} (-x)^{m}$$

então

.

$$\frac{1}{1 + \mu e^{-8\lambda}} = \sum_{m=0}^{\infty} (-\mu e^{-8\lambda})^m = \sum_{m=0}^{\infty} (-\mu)^m e^{-ma\lambda}$$
(2)

De WATSON(1966) temos que:

$$\int_{0}^{\infty} e^{-at} J_{0}(bt)dt = \frac{1}{\sqrt{a^{2} + b^{2}}}$$
 (3.a)

$$\int_{0}^{\infty} J_{o}(bt)dt = \frac{1}{b}$$
(3.b)

Fazendo a = 2d e b = r e substituindo na eq. 1, temos

$$M = b \int_{0}^{\infty} \frac{1 - \mu e^{-a\lambda} + \mu e^{-a\lambda} - \mu e^{-a\lambda}}{1 + \mu e^{-a\lambda}} J_{0}(b\lambda)d\lambda$$

$$M = b \int_{0}^{\infty} \left[1 - \frac{2\mu e^{-a\lambda}}{1 + \mu e^{-a\lambda}} \right] J_{0}(b\lambda) d\lambda$$
$$M = b \int_{0}^{\infty} J_{0}(b\lambda) d\lambda - 2b \int_{0}^{\infty} \mu e^{-a\lambda} \frac{1}{1 + \mu e^{-a\lambda}} J_{0}(b\lambda) d\lambda$$

Usando as egs. 2 e 3.b

$$M = b \cdot \frac{1}{b} + 2b \int_{0}^{\infty} (-\mu)e^{-a\lambda} \left(\sum_{m=0}^{\infty} (-\mu)^{m} e^{-ma\lambda}\right) J_{0}(b\lambda)d\lambda$$

$$M = 1 + 2b \int_{0}^{\infty} \left(\sum_{m=0}^{\infty} (-\mu)^{m+1} e^{-(m+1)g\lambda} \right) J_{0}(b\lambda) d\lambda$$

$$M = 1 + 2b \sum_{m=0}^{\infty} (-\mu)^{m+1} \int_{0}^{\infty} e^{-(m+1)a\lambda} J_{0}(b\lambda)d\lambda$$

$$M = 1 + 2b \sum_{m=0}^{\infty} (-\mu)^{m+1} \frac{1}{\sqrt{(m+1)^2 a^2 + b^2}}$$

Fazendo m+1 = n e rearrumando

$$M = 1 + 2b \sum_{n=1}^{\infty} \frac{(-\mu)^n}{\sqrt{b^2 \left(\frac{n^2 a^2 + 1}{b^2}\right)}} = 1 + 2 \sum_{n=1}^{\infty} \frac{(-\mu)^n}{\sqrt{1 + \left(\frac{na}{b}\right)^2}}$$

Substituindo a= 2d e b= r

$$\mathbb{M}(r, \mu) = \left[1 + 2\sum_{n=1}^{\infty} \frac{(-\mu)^n}{\sqrt{1 + \left(\frac{2n-d}{r}\right)^2}}\right]$$

APENDICE 2

DADOS DE MEDIÇÃO DE RESISTIVIDADE DO SOLO DO NORDESTE E SUAS RESPECTIVAS ESTRATIFICAÇÕES PELO PROGRAMA TERRA

LEGENDA

* - Dado discrepante que nao foi usado no calculo da media.
 0.0 - Valor nao medido neste ponto a esta profundidade.

CHESF

SE	ACU - RIO	GRANDE DY	NORTE -	CHESF	m	0			
Param Valor Erro Erro	etro: es Finais: global: Medio:		rou1 534.3 1.54E-04 4.11E-03	d1 2.2	17es rou2 130.2	d2 32.7	rou3 5.2	8	
Prof	und. erro				Resi	stividad	es (ohm.	m)	
(п	i) (pu) ca	lculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-2.5E-03	443.0	441.9	204.8	212.4	847.0	187.2	414.7	351.9
4.0	5.5E-03	278.4	280.0	273.9	175.9	0.0	88.0	301.6	211.1
8.0	-8.3E-03	159.0	157.7	246.3	70.4	0.0	35.2	206.1	55.3
16.0	6.8E-03	127.1	127.9	120.6	100.5	0.0	30.2	281.5	10.1
32.0	-1.4E-03	95.6	95.5	120.6	603.2*		60.3	402.1*	0.0
64.0	7.9E-05	40 .2	40.2	0.0 40.2	0.0	0.0	0.0	0.0	0.0
9 Param Valor	E CABROBO metro: reș Finais:	- PERNAMI	BUCO - CHI Estratific roul 47.1	ESF cacao em d1 2.5	Tres rou2 23.9	Camadas d2 10.3	rou3 101.9		
Erro Erro	global: Medio:		9.88E-04 9.88E-03						
Prof	und. erro				Resi	stividad	es (ohm.	m)	
(u	i) (pu)	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
1.0	-1.5E-02	46.5	45.8	53.4	$\frac{18.2}{72.9}$	32.7 829 4*	46.5	109.3	27.6
2.0	2.4E-02	43.8	44.9	60.3	33.9	55.3	51.5	56.5	47.8
4.0	-1.2E-02	36.4	35.9	47.8	22.6	52.8	42.7	30.2	57.8
8.0	5.0E-03	30.5	30.7	30.2	25.1	45.2	40.2	25.1	35.2
16.0	-2.3E-03	36.3	36.2	40.2	30.2	40.2	40.2	40.2	40.2
24.0	8.2E-04	45.2	45.2	45.2 0.0	45.2 30.2*	60.3* 45.2	0.0 45.2	0.0	0.0
SE CO Paran Valor Erro Erro	DREMAS - PA metro: res Finais: global: Medio:	RAIBA -	CHESF Estratifi 93.3 3.39E-02 6.50E-02	cacao em d1 12.6	Duas rou2 1378.7	Camadas			
Prot	fund. erro				Resi	istividad	les (ohm	.m)	
		calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
1.0	-1.4E-01	93.3	82.1	45.2	$122.5 \\ 51.5$	49.0 81.7	56.5 105.6	$155.8 \\ 147.0$	$113.1 \\ 23.9$
2.0	6.8E-02	93.5	100.3	65.3 50.3	$147.0 \\ 59.1$	$109.3 \\ 104.3$	94.2 135.7	74.1 193.5	$123.2 \\ 47.8$
4.0	7.1E-02	95.3	102.6	65.3 72.9	150.8 60.3	128.2 103.0	$138.2 \\ 95.5$	70.4 201.1	90.5 55.3
8.0	6.2E-02	106.9	113.9	70.4	140.7	105.6 150.8	$135.7 \\ 115.6$	70.4 216.1	95.5 80.4
16.0	-4.2E-02	155.4	149.1	80.4	110.6	90.5	110.6	100.5 201.1	231.2 170.9
32.0	1.1E-02	271.7	274.8	160.8 301.6	0.0	181.0 321.7	160.8 321.7	0.0	241.3 361.9

SE CA	MPINA GRAN	IDE - PARA	IBA - CH	ESF	There	Consider			
Param Valor Erro Erro	etro: es Finais: global: Medio:	26	rou1 178.9 .66E-02 .75E-02	cacao em d1 0.3	rou2 50.3	d2 5.1	rou3 146.6	1 	Carlo an In
Prof	und. erro	,			Resi	istividad	es (ohm.)	m)	19 ¹⁸
	1) (pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
1.0	6.6E-02	60.6	64.9	148.9 19.5 23.9	70.4 44.0	224.3* 47.1	155.2 101.8	44.0 20.1	$17.0\\86.7$
2.0	-2.4E-02	53.0	51.8	77.9 28.9	27.6 52.8	$168.4* \\ 51.5$	154.6* 100.5	56.5 39.0	$30.2 \\ 69.1$
4.0	1.0E-01	56.8	63.2	72.9	22.6 75.4	103.0 72.9	103.0 55.3	70.4 67.9	42.7 47.8
8.0	6.8E-02	72.2	77.5	80.4 65.3	25.1* 80.4	85.5 95.5	65.3 60.3	90.5 115.6	50.3 65.3
16.0	-5.4E-02	98.2	93.2	80.4	$10.1* \\ 120.6$	80.4 100.5	$100.5 \\ 80.4$	90.5 160.8*	80.4 110.6
32.0	9.2E-02	118.6	130.7	0.0 0.0 120.6	0.0	0.0 0.0	0.0 80.4	0.0 181.0	0.0 140.7
SE IF Param Valor Erro Erro	ECE - BAH etro: es Finais: global: Medio:	HIA – CHE E	SF stratifi 13.1 .83E-02 .73E-02	cacao em d1 1.0	Duas rou2 93.5	Camadas			
Prof	fund. erro)			Resi	istividad	es (ohm.	m)	
		calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
1.0	-1.5E-02	17.3	17.0	17.6 11.3 20.7	$18.8 \\ 15.1 \\ 17.6 \\ 22.0 \\ 100 \\ $	21.4 27.6 13.8	14.5 40.8* 15.1	$12.6 \\ 14.5 \\ 18.8 $	$17.6 \\ 17.0 \\ 13.2$
2.0	1.1E-01	26.8	30.2	30.2 15.1 31.4	28.9 25.1 37.7	41.5 45.2 23.9	22.6 56.5 26.4	27.6 17.6 28.9	$26.4 \\ 31.4 \\ 17.6$
4.0	-5.5E-03	42.6	42.4	45.2 17.6 42.7	42.7 40.2 30.2 52.8	49.0 55.3 70.4 27.6	16.3 30.2 52.8 45.2	47.8 22.6 45.2	42.7 67.9 17.6
8.0	-9.6E-02	61.1	55.7	$30.2 \\ 85.5 \\ 15.1 \\ 50.3$	70.4 50.3 45.2 75.4	52.8 85.5 85.5 35.2	25.1 35.2 45.2 65.3	60.3 35.2 90.5	75.4 80.4 15.1
16.0	-1.1E-01	77.2	69.5	30.2 100.5 20.1 70.4	85.5 90.5 60.3 90.5	40.2 90.5 90.5 40.2	40.2 30.2 40.2 80.4	$100.5 \\ 40.2 \\ 120.6$	120.6 120.6 20.1
32.0	1.8E-01	87.2	106.9	30.2 181.0 20.1 100.5 40.2	100.5120.680.4160.8140.7	$20.1 \\ 140.7 \\ 140.7 \\ 60.3 \\ 40.2$	50.3 60.3 40.2 120.6 100.5	120.6 80.4 201.1	201.1 181.0 20.1
SE MI Paran Valor Erro Erro	ESSIAS - Al netro: res Finais global: Medio:	LAGOAS -CH	HESF Estratifi 217.9 4.45E-03 2.03E-02	lcacao em d1 1.2	Tres rou2 638.0	Camadas d2 128.2	rou3 4.3		

Prof	und.	erro				Resi	istividad	les (ohm.	.m)	
(1	1)	(pu)	calculada	media	(1)	(2)	(3)	(4	(5)	(6)
1.0	-4.7E-	-03	250.7	249.5	166.5 239.4 172.8	211.7 233.7	211.7	205.5 429.8	238.1 330.5	238.1 172.8
2.0	2.1E-	-02	330.3	337.3	255.1 228.7	356.9	277.7	333.0 511.5	346.8 407.2	407.2 346.8
4.0	-1.4E-	-02	446.2	440.1	417.2 281.5	542.9 289.0	449.9	404.6	439.8	462.4
8.0	-1.6E-	-02	545.8	537.0	583.1 377.0	603.2 442.3	497.6 568.0	573.0 512.7	341.8 552.9	563.0 603.2
16.0	4.0E-	-03	603.1	6 05.6	482.5 693.7 563.0	623.3 512.7	633.3 593.1	532.8 603.2	613.2 542.9	623.3 532.8
32.0	2.2E-	-02	621.8	635.9	$643.4 \\ 643.4 \\ 643.4$	683.6 643.4	603.2 563.0	502.7* 603.2	663.5 482.5*	663.5 623.3
64.0	-6.0E-	-02	596.8	563.0	603.5 522.8 603.2 0.0	643.4 603.2 0.0	563.0 522.8 0.0	$ \begin{array}{r} 703.7 \\ 643.4 \\ 442.3 \\ 0.0 \\ \end{array} $	563.0 522.8 0.0	603.2 522.8 0.0
SE RI	BEIRA) – P	ERNAMBUCO	- CHESE						
Param Valor Erro Erro	etro: es Fin globa Medio	nais: l: o:	E 2 5	stratifi rou1 402.1 .77E-02 .19E-02	icacao er d1 0.6	n Duas rou2 3308.8	Camadas			
Prof	und.	erro)			Res	istividad	les (ohm	.m)	
(n	1)	(pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
1.0	-1.5E	-02	783.8	772.0	659.7 716.3 634.6	1614.8 672.3 760.3	431.7 785.4 754.0	1885.0* 772.8 165.2	2940.5* 873.4 534.7	854.5 1124.7 330.5
2.0	9.7E	-02	1282.9	1420.7	1438.9 1432.6 1256.6 1187.5	2086.0 1245.3 1332.0	$1054.3 \\ 1319.5 \\ 1357.2$	3568.9* 1281.8 575.5	3015.9 1357.2 502.7	1822.1 1972.9 436.1
4.0	-5.4E	-02	1921.5	1822.3	2337.4 439.8 1683.9 1867.4	2764.6 1935.2 1595.9	1794.5 1930.2 1731.6	2990.8 1817.1 877.1	$3041.1 \\ 1505.5 \\ 625.8$	$2163.9 \\ 2915.4 \\ 608.2$
8.0	-7.0E	-02	2545.1	2378.4	2508.3 2447.9 2116.2	3694.5 2251.9 2156.4	$2865.1 \\ 3126.5 \\ 2251.9$	3398.0 2669.1 1070.7	3000.9 1905.1 970.1	$2845.0 \\ 3161.7 \\ 940.0$
16.0	-3.9E	-03	2984.6	2973.1	3217.0 3599.0 2925.5	3991.1 2744.5 3217.0	3227.1 3387.9 3136.6	4272.6 2694.2 1588.4	$\begin{array}{c} 4021.2\\ 2412.7\\ 1729.1 \end{array}$	3126.5 3639.2 1628.6
32.0	9.7E	-02	3200.5	3546.1	1930.2 3076.3 4282.6 4262.5	3820.2 3659.3 4021.2	4443.5 3960.9 2814.9	4423.4 3599.0 2533.4	3116.5 3418.1 3196.9	3538.7 4061.5 2453.0
64.0	-2.5E	-02	3277.2	3196.9	2694.2 0.0 3217.0 0.0 0.0	0.0 0.0 0.0	0.0 3176.8 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
SE ITAPARICA - BAHIA - CHESF Estratificacao em Duas Camadas Parametro: roul dl rou2 Valores Finais: 13.4 2.3 419.9 Erro global: 2.81E-03 Erro Medio: 1.67E-02										

Profu	nd. erro	2			Resi	stividad	es (ohm.:	m)	
(m)) (pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
1.0 -	-8.1E-03	14.2	14.1	14.1 14.3 10.7	18.7 15.4 13.2	16.0 9.5 7.9	20.4 16.8 30.1*	15.4 13.0 17.0	15.9 11.9 11.2
2.0	1.1E-02	17.8	18.0	15.3 19.4 15.5	22.1 18.6 16.8	19.6 14.6 17.5	25.6 19.4 41.8*	19.6 18.8 21.4	$16.6 \\ 14.8 \\ 13.4$
4.0	1.9E-02	30.0	30.6	25.1 30.9 29.7	41.3* 35.9 28.9 30.9	$31.9 \\ 26.4 \\ 33.2$	41.0 37.2 65.3*	$31.7 \\ 34.4 \\ 35.4$	$30.7 \\ 26.1 \\ 22.9$
8.0 -	-2.3E-04	55.7	55.7	47.8 50.8 60.3	56.8 48.3 55.8	60.8 54.3 58.3	62.8 64.8 89.0*	58.8 58.8 70.4	$51.8 \\ 45.7 \\ 41.2$
16.0 -	-1.4E-02	99.6	98.2	18.6* 83.4 83.4 124.7	115.1* 100.5 70.4 92.5	$103.5 \\ 109.6 \\ 104.6$	93.5 118.6 129.7	109.6 104.6 180.0*	98.5 69.4 73.4
32.0 -	-3.5E-02	164.7	159.2	142.8 110.6 233.2	205.1* 181.0 118.6 142.8	$189.0 \\ 203.1 \\ 44.2$	$181.0 \\ 158.8 \\ 243.3$	189.0 132.7 0.0	146.8 130.7 0.0
64.0	2.9E-02	242.9	250.1	0.0 197.0* 0.0 0.0	0.0 0.0 245.3 0.0	0.0 0.0 253.3	0.0 273.4 0.0	$0.0 \\ 241.3 \\ 0.0 \\ 0.0$	237.3 0.0 0.0

CEMAR

Paran Valo: Erro Erro	SE ALCANT netro: res Finais: global: Medio:	ARA - MAR Estrai 1 1	ANHAO tificacac 138.5 .59E-01 .61E-01	o em Dua d1 5.6	as Cama rou2 12.1	das				
Profund. erro . Resistividades (ohm.m)										• • ••
G	m) (pu)	calculada	media	(1)	(2)	(3)	- (4)	(5)	(6)	
2.0 4.0 8.0 16.0 32.0	2.9E-01 -1.0E-01 -1.6E-01 1.9E-01 -6.0E-02	135.4 120.0 73.2 24.9 13.1	189.7 108.8 63.2 30.9 12.3	198.0 96.0 64.0 28.0 9.4	190.0 110.0 82.0* 36.0 14.2	176.0 120.0 62.0 32.6 13.4	194.0 96.0 60.0 26.0 9.8	$180.0 \\ 120.0 \\ 62.0 \\ 32.2 \\ 14.2$	200.0 110.6 68.0 30.8 13.0	
Para Valo Erro Erro	SE PIN metro: res Finais global: Medio:	HEIRO - MA E : 4 8	RANHAO stratific rou1 278.6 .18E-02 .80E-02	cacao em d1 1.6	Duas rou2 26.1	Camadas				•
Pro	fund. err				Res	istividad	les (ohm.	.m)		
. (m) (pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)	
2.0 4.0 8.0 16.0	-2.3E-02 5.1E-02 -1.3E-01 1.5E-01	171.4 65.2 29.6 26.6	167.6 68.7 26.1 31.2	226.2 88.0 30.2 28.1	263.9 113.1 30.2 48.3	$216.1 \\ 130.7 \\ 25.1 \\ 10.1$	$ \begin{array}{r} 62.8 \\ 20.1 \\ 24.1 \\ 62.3 \end{array} $	113.1 35.2 55.3* 18.1	123.2 25.1 21.1 20.1	

SE GODOFREDO	VIANA - MARANHAO Estratificação em	Duas Camadas	
Parametro: Valores Finais: Erro global: Erro Medio:	rou1 d1 341.1 8.1 3.95E-01 2.25E-01	rou2 6.2	

Profund.	erre	2			Res	istividad	es (ohm	.m)			
(m)	(pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)		
2.0 3.7E 4.0 8.8E 8.0 -1.6E 16.0 -1.9E 32.0 4.1E 64.0 -1.3E	-01 -02 -01 -01 -01 -01	337.9 319.5 238.2 87.0 12.5 7.1	538.3 350.3 206.0 73.0 21.3 6.3	440.0 258.0 150.0* 65.0 21.6 540.0*	$\begin{array}{c} 600.0\\ 374.0\\ 220.0\\ 72.0\\ 21.0\\ 7.0\\ \end{array}$	540.0 402.0 200.0 68.0 20.5 6.5	530.0 408.0 206.0 85.0 22.4 6.3	$\begin{array}{c} 600.0\\ 340.0\\ 192.0\\ 70.0\\ 20.0\\ 5.5 \end{array}$	520.0 320.0 212.0 78.0 22.0 6.0		
SE	SE BACABETRA - MARANHAO										
Parametro: Valores Fin Erro globa Erro Medi	nais: l: o:	4 8	stratifi rou1 506.0 .41E-02 .50E-02	cacao em d1 4.5	Duas rou2 52.0	Camadas			×		
Profund.	erro	2			Rest	istividad	es (ohm.	.m)			
(ш)	(pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)		
2.0 -6.1E 4.0 1.9E 8.0 1.1E 16.0 -1.3E 32.0 1.0E	-02 -02 -01 -01 -01	484.8 397.1 202.8 73.8 54.1	456.8 404.6 228.7 65.3 60.3	402.1 394.6 241.3 90.5 80.4	511.5414.7216.140.240.2						
SE Parametro: Valores Fin Erro globa Erro Medi	FORG nais: 1: o:	QUILHA - M E 1 1	ARANHAO stratifi rou1 800.2 .47E-01 .58E-01	cacao em d1 2.8	Duas rou2 19.8	Camadas					
Profund.	erro	2			Rest	istividad	es (ohm.	.m)			
(11)	(pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)		
$\begin{array}{cccc} 2.0 & 4.0E \\ 4.0 & -1.7E \\ 8.0 & 1.8E \\ 16.0 & -1.5E \\ 32.0 & 2.5E \end{array}$	-02 -01 -01 -01 -01	674.0 369.2 79.5 22.4 23.3	702.0 315.3 96.8 19.5 31.0	710.0 342.0 98.0 16.0 0.0	407.0* 250.0 78.0 0.0 -60.0	700.0 275.0 80.0 17.0 0.0	710.0 390.0 97.0 17.0 25.0	720.0 315.0 108.0 28.0 8.0	670.0 320.0 120.0 46.0* 0.0		
SE GRAJAU - MARANHAO Estratificacao em Duas Camadas Parametro: roul dl rou2 Valores Finais: 495.1 4.0 62.2 Erro global: 2.28E-02 Erro Medio: 6.13E-02											
Profund.	erre	2			Res	istividad	les (ohm	.m)			
(11)	(pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)		
2.0 5.3E 4.0 -4.0E 8.0 -3.3E 16.0 1.1E 32.0 -7.0E	-02 -02 -02 -01 -02	469.0 370.1 181.8 78.1 64.2	495.0 356.0 176.0 88.0 60.0	800.0* 420.0 200.0 100.0 60.0	480.0 360.0 180.0 80.0 40.0*	500.0 320.0 150.0 60.0 60.0	420.0 380.0 200.0 100.0 60.0	580.0 300.0 150.0 100.0 120.0*	T		

CEPISA

SE JOCKEY CLUB- CEPISA
Estratificacao em Tres Camadas
roulCamadas
d2Parametro:rou1d1rou2d2Valores Finais:450.70.313294.11.1Erro global:1.13E-02Erro Medio:4.46E-02

OFPD / BIBLIOTECA / PRAT

×

Pro	fund.	erro	Resistividades (chm.m)							
		194	calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	-2.7h 5.2h -1.2h -8.8h	-02 -02 -02 -02	2808.8 3595.2 3366.9 2674.0	2735.2 3790.8 3327.5 2457.8	2557.0 2752.0 2222.0 1860.0	3431.0 5781.0 3996.0 2513.0	1929.0 3443.0 3493.0 2589.0	2513.0 2626.0 2815.0 2171.0	$\begin{array}{r} 3179.0 \\ 4524.0 \\ 4524.0 \\ 2689.0 \end{array}$	2802.0 3619.0 2915.0 2925.0
Para Valo Erro Erro	SE MAF metro: res Fi globs Medi	QUES nais: 11: .o:	DE PARAN	AGUA-CEPI Estratifi 2754.4 9.18E-03 4.23E-02	ISA icacao en d1 1.8	n Duas rou2 722.9	Camadas			
Pro	fund.	erre				Resi	istividad	ies (ohm.	m)	
			calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	-1.1E 3.1E -6.9E 5.8E	-02 -02 -02 -02	2086.8 1237.0 811.4 738.8	2063.8 1276.8 759.3 784.3	$ \begin{array}{r} 641.0 \\ 505.0 \\ 855.0 \\ 754.0 \\ \end{array} $	3292.0 3041.0 814.0 905.0	1495.0 757.0 488.0 764.0	2827.0 804.0 880.0 714.0		
Para Valo Erro Erro	SE MA metro: res Fí globa Medi	RAMBA nais: 1: .o:	AIA - CEP	PISA - Est rou1 151.9 1.35E-01 1.40E-01	cratifica d1 5.7	icao em I rou2 4.5)uas Cama	adas		
Pro	fund.	erro				Resi	istividad	les (ohm.	.m)	
			calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	2.6H -5.9H -1.9H 1.5H -2.9H	-01 -02 -01 -01 -02	148.2 129.8 73.9 17.3 5.1	201.4 122.5 61.9 20.4 4.9	$244.0 \\ 123.5 \\ 56.5 \\ 19.3 \\ 6.3$	297.0 197.0 98.0 29.9 4.8	69.5 69.5 34.1 14.1 3.0	195.0 100.0 59.0 18.5 5.6		
	SE BC	M LUC	GAR - CEP	ISA		D	C			
Para Valo Erro Erro	metro: res Fi globs Medi	nais 1: 10:		rou1 160.0 1.30E-02 4.64E-02	d1 5.0	rou2 6.5	Camadas			
Pro	fund.	erre	2		Resistividades (ohm.m)					
			calculac	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	8.11 -5.51 -3.81 4.11 -1.61	-02 -02 -02 -02 -02 2-02	154.4 129.2 65.1 14.9 7.0	168.0 122.5 62.7 15.5 6.8	194.5147.057.014.45.8	119.0 105.5 98.0 15.6 8.1	333.0* 150.0 74.0 14.5 6.3	137.0 78.0 38.6 16.2 7.4	209.5 149.0 59.0 15.8 7.5	180.0 105.5 49.5 16.8 6.0
F	SE C	AMURUI	PIM - CEE	PISA						
Para Valo Erro Erro	metro res F: globa Med:	inais al: io:	:	Estratif: rou1 262.7 1.25E-03 1.39E-02	icacao er d1 0.2	n Tres rou2 1174.2	Camadas d2 15.5	rou3 340.6		
Pro	fund.	err	°			Res	istividad	des (ohm	.m)	
		(Pd	calculad	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	-2.11 5.11 6.11 -1.31 -2.51	E-02 E-03 E-03 E-02 E-02	1014.0 1110.4 1113.6 957.5 618.8	993.6 1116.1 1120.5 945.6 603.7	682.2 858.3 1120.5 1412.0* 804.9	1186.4 845.1 916.7* 857.3 603.7	$1038.1 \\ 1320.5 \\ 1120.5 \\ 907.7 \\ 402.4$	1334.7 1584.6 1426.0* 1008.6 422.6	726.7 971.9 1120.5 1008.6 784.8	
COELCE

	SE ACA	RAPE-COE	LCE		Dura	Generales			
Param Valor Erro Erro	etro: es Finais: global: Medio:	Ren av an	Estratifi rou1 41.4 3.56E-02 6.36E-02	cacao em d1 8.1	Duas rou2 421.7	Camadas			n ku da s
Prof	und. erro				Resi	stividad	les (ohm.	m)	
(II)	(pu)	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	1.3E-01 -1.3E-01 2.7E-02 1.9E-02 -9.6E-03	$\begin{array}{r} 41.8 \\ 44.3 \\ 56.7 \\ 92.5 \\ 154.3 \end{array}$	48.1 39.1 58.3 94.3 152.8	20.2 16.1 18.6 43.2 106.6	$12.4 \\ 13.8 \\ 21.1 \\ 46.2 \\ 122.6$	116.1 57.8 61.3 96.5 199.1	65.6 56.3 83.9 117.6 189.0	52.7 64.8 121.6 185.0 197.0	21.4 25.9 43.2 77.4 102.5
	SE ARARI	PE-COELC	E						
Param Valor Erro Erro	etro: es Finais: global: Medio:		Estratifi rou1 1285.2 2.16E-04 6.06E-03	cacao em d1 0.6	Duas rou2 34.6	Camadas			
Prof	und. erro				Resi	stividad	les (ohm.	m)	
(m) (pu)	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	9.4E-04 -8.8E-03 1.1E-02 -3.2E-03	101.3 37.9 40.9 67.0	101.4 37.5 41.3 66.8	49.0 28.9 45.2 90.5	248.2 61.6 79.4 80.4	22.0 20.1 19.1 42.2	49.6 30.7 21.1 65.3	138.2 46.5 41.7 55.3	
	SE BONSU	CESSO-CC	ELCE Estratifi	cacao em	Duas	Camadas			
Param Valor Erro Erro	etro: es Finais: global: Medio:		rou1 474.1 2.31E-03 1.98E-02	d1 15.3	rou2 0.0				
Prof	und. erro				Resi	stividad	les (ohm.	m)	
(n	i) (pu)	calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	-3.2E-03 2.0E-02 4.1E-02 -1.5E-02	473.4 468.8 438.7 312.3	471.9 478.4 457.4 307.6	232.5 258.9 316.7 170.9	399.6 364.4 301.6 442.3	578.1 686.1 517.7 351.9	590.6 703.7 718.8 251.3	540.4 447.4 452.4 804.2*	490.1 409.7 437.3 321.7
	SE CAMOO	TM-COELC	E						
Param Valor Erro Erro	etro: es Finais: global: Medio:		Estratifi rou1 1769.6 5.14E-02 8.01E-02	cacao em d1 3.3	Duas rou2 491.0	Camadas			
Prof	und. erro	2			Res	istividad	les (ohm.	m)	
(1	1) (pu)	calculad	la media	(1)	(2)	(3)	(4)	(5	(6)
2.0 4.0 8.0 16.0 32.0	4.4E-02 -5.2E-02 -5.2E-03 1.8E-01 -1.2E-01	$1651.1 \\ 1286.3 \\ 763.0 \\ 536.8 \\ 499.8$	1727.91222.5759.0656.0447.4	1445.1 997.8 658.5 392.1* 201.1	5177.4* 1558.2 728.9 613.2 663.5	1885.0 1332.0 754.0 703.7 1146.1*	2224.3 1382.3 894.7 693.7 402.1	1357.2 841.9 507.7* 613.2 522.8	
	SE CAUCA	TA-ODEL	TE						
Param Valor Erro Erro	metro: es Finais: global: Medio:		Estratifi rou1 260.8 5.56E-02 8.24E-02	icacao em d1 1.1	Quatro rou2 625.8	Camadas d2 3.4	rou3 151.5	d3 26.7	rou4 20000.0

*

Prof	und.	erro	2			Res	istividad	des (ohm	.m)	
(H	.,	(pu)	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	4.1E- 1.5E- -3.2E- -4.7E- 1.7E-	-02 -01 -03 -02 -01	366.2 418.0 343.9 228.0 256.0	382.0 490.1 342.8 217.8 309.6	407.2 578.1 261.4 110.6* 140.7	319.2 427.3 387.0 231.2 422.2	427.3 377.0 502.7 2010.6* 482.5	374.5 434.8 251.3 201.1 301.6	904.8* 633.3 311.6 221.2 201.1	
•	CE	COLL								
Param Valor Erro Erro	etro: es Fir global Medic	nais:	MA-COELC	Estratifi rou1 580.9 3.46E-03 2.38E-02	icacao er d1 5.4	Duas rou2 56.3	Camadas			
Prof	und.	erro	2		· · · ·	Res	istividad	les (ohm	.m)	
(11	.)	(pu)	calculad	a media	(1)	(2))	(4)	(5)	(6)
2.0 4.0 8.0 16.0	-3.1E 4.8E -1.4E 1.7E	-02 -02 -02 -03	566.0 495.5 294.0 103.0	548.7 520.2 289.9 103.2	590.6 560.5 311.6 106.6	552.9 593.1 286.5 100.5	502.7 407.2 271.4 102.5			
Param Valor Erro Erro	SE C etro: es Fir global Medic	CRATE	US-COELC	E Estratifi 829.6 4.18E-02 7.55E-02	icacao en d1 14.4	Duas rou2 15031.1	Camadas			
Prof	und.	erro	2			Res	istividad	les (ohm	.m)	
(11	1)	(pu	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	5.2E- 2.1E- -5.9E- 1.9E	-02 -03 -02 -01	831.3 842.7 918.6 1272.8	877.1 844.5 867.1 1568.3	1256.6 1281.8 1206.4 1709.0	351.9 477.5 653.5 1306.9	1445.1 3267.3* 2865.1* 2010.6	502.7 663.5 703.7 1608.5	829.4 955.0 904.8 1206.4	
Paran Valor Erro Erro	etro: es Fir globa Medio	SE Konais:	HATU-COE	LCE Estratif: 13.0 8.74E-03 3.36E-02	icacao en d1 2.7	Duas rou2 23.2	Camadas			
Prof	und.	erro	2		**	Res	istivida	des (ohm	.m)	
(1	1)	(pu	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	1.6E -5.0E 7.2E -2.8E -2.0E	-02 -02 -02 -02 -03	13.7 15.8 19.0 21.5 22.7	$13.9 \\ 15.1 \\ 20.5 \\ 20.9 \\ 22.6$	12.6 7.5 5.0* 14.1 20.1	11.3 5.0 65.3* 15.1 90.5*	15.7 30.2 20.1 25.1 30.2	$16.3 \\ 13.8 \\ 20.1 \\ 25.1 \\ 20.1$	$13.8 \\ 18.8 \\ 21.4 \\ 25.1 \\ 20.1$	
	<u>م</u>	тлн		 קי						
Param Valor Erro Erro	etro: res Fin globa Medio	nais l:	:	Ëstratif rou1 5234.0 4.84E-02 8.34E-02	icacao er d1 6.7	n Duas rou2 996.1	Camadas			
Prof	fund.	erre	S			Res	istivida	des (ohm	.m)	
			calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	9.9E 1.0E -1.5E 1.2E	-03 -01 -01 -01	5173.7 4849.1 3631.9 1851.3	5225.5 5411.9 3161.7 2101.1	3166.7 4373.1 3438.2 2352.4 1427 5	2111.2 2890.3 3146.6 2432.9 1407.4	8432.1 6936.7 2995.8 1568.3 832.4	5994.2 6710.5 3277.3 2483.1 1347.1	4900.9 5780.5 2950.6 1447.6 1035.5	6748.2 5780.5 4252.5* 2322.3 402.1

	SE	JAB	UTI-COEI	CE.		Dura	O			
Param Valor Erro Erro	netro: res Fin global Medio	ais:		Estratif: rou1 73.4 4.50E-02 8.23E-02	lcacao en d1 23.8	68772.2	Camadas			
Prof	fund.	erro				Resi	stividad	es (ohm.	m)	
			calculac	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	-9.8E- -9.8E- -6.4E- -2.0E- 1.1E-	01 02 02 03 01	73.5 73.7 75.7 88.2 140.2	85.6 67.1 71.2 88.1 156.8	79.2 63.8 60.3 100.5 148.8	82.9 60.3 70.4 100.5 172.9	75.4 52.8 51.8 89.5 148.8	64.8 42.5 55.3 79.4 132.7	343.1* 85.5 94.5 70.4 60.3*	125.7 98.0 95.0 170.9* 181.0
	SE	MASS	APE-COEL	CE.			a .			
Param Valor Erro Erro	etro: es Fin global Medio	ais: :		Estratif: rou1 126.8 1.50E-02 5.00E-02	icacao em d1 3.0	Duas rou2 438.6	Camadas			
Prof	fund.	erro				Resi	stividad	es (ohm.	m)	
		(pu)	calculac	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	2.3E- -6.3E- 2.7E- 8.3E- -5.4E-	02 02 02 02 02 02	138.5 176.4 250.7 332.0 392.0	141.7 165.9 257.6 361.9 372.0	148.3 221.2 301.6 502.7 281.5	$128.2 \\ 150.8 \\ 160.8 \\ 301.6 \\ 301.6 \\ 301.6 \\ $	209.9 186.0 452.4 482.5 703.7	80.4 105.6 115.6 160.8 201.1		
	SE M	ONDU	BTM-COFT	CE						
Paran Valor Erro Erro	netro: res Fin global Medio	ais:		Estratif: rou1 292.9 4.85E-03 3.09E-02	icacao en d1 2.8	n Duas rou2 11.8	Camadas			
Prof	fund.	erro				Resi	stividad	es (ohm.	m)	
			calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	3.7E- -5.2E- 2.8E- -7.6E-	02 02 02 03	$248.4 \\ 140.0 \\ 34.9 \\ 13.0 $	257.9 133.1 35.9 12.9	255.1 99.0 27.6 15.1	257.6 122.9 23.1 15.1	$262.6 \\ 152.1 \\ 26.1 \\ 11.1$	$224.9 \\ 137.7 \\ 26.6 \\ 11.1$	373.2* 202.1* 67.9 14.1	289.0 153.8 44.2 11.1
Paran Valor Erro Erro	SE res Fin global Medic	MORA	DA NOVA-	-COELCE Estratif: rou1 1927.8 3.04E-01 2.17E-01	icacao en d1 1.5	n Tres rou2 351.7	Camadas d2 5.8	rou3 20000.0		
Prot	fund.	erro				Res	istividad	les (ohm.	m)	
(1	n)	(pu)	calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	-5.6E- -1.6E- 2.3E- 2.2E- 4.1E-	-02 -01 -01 -01 -01	1228.1 648.8 663.6 1215.4 2294.1	$1162.4 \\ 559.2 \\ 867.1 \\ 1558.2 \\ 3920.7$	829.4 754.0 804.2 1005.3 4021.2	$1131.0 \\ 351.9 \\ 1256.6 \\ 1608.5 \\ 3619.1$	2513.3 754.0 904.8 2211.7 6434.0	175.9377.0502.71407.41608.5		
Paran Valor Erro Erro	SE metro: res Fin global Medic	NOVA	OLINDA	-COELCE Estratif 605.8 4.79E-01 2.16E-01	icacao en d1 4.2	n Duas rou2 40000.0	Camadas			¥

Profund. erro Resistividades (ohm.								m)		
(1		(pu)	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	9.3E -6.3E -7.1E 5.9E 3.4E	-03 -02 -02 -01 -01	653.6 868.4 1547.4 2968.6 5537.7	659.7 816.8 1445.1 7288.5 8444.6	754.0 879.6 1382.3 10555.8 10455.2	565.5 754.0 1508.0 4021.2 6434.0				
	SI		TCU-COFT	CF						
Param Valor Erro Erro	etro: es Fir global Medic	nais:	100 0011	Estratif: rou1 725.7 2.41E-01 1.63E-01	icacao em d1 410.9	Duas rou2 1347.1	Camadas			
Prof	fund.	erro)			Res	istividad	les (ohm.	m)	
(1	n)	(pu)	calculad	a media	(1)	(2	(3)	(4)	(5)	(6)
2.0	-5.0E-	-02	725.7	691.2	1382.3	276.5	377.0	1256.6	628.3	427.3
4.0	9.8E-	-02	725.7	804.2	1382.3	477.5	477.5	1256.6	754.0	552.9
8.0	-1.4E-	-03	725.7	724.7	1005.3*	703.7	628.3	754.0	754.0	754.0
16.0	-2.8E-	-01	725.7	568.7	603.2	804.2	502.7	402.1	412.2	603.2
32.0	3.9E-	-01	725.8	1192.0	1306.9 1206.4	1809.6	1206.4	804.2	904.8	1105.8
Paran Valor Erro Erro	SE : res Fir global Medic	ais:	OR POMPE	U-COELCE Estratif: 20.8 5.39E-02 9.00E-02	icacao em d1 11.7	Duas rou2 97089.3	Camadas			
Prof	fund.	(pu)				Res	istividad	les (ohm.	m)	
			calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	1.8E -9.3E -7.8E 7.9E 2.0E	-01 -02 -02 -02 -02 -02	20.9 21.5 25.1 40.2 78.4	25.5 19.7 23.3 43.6 80.0	31.4 20.1 22.6 38.2 68.4	18.8 11.3* 11.1 24.1 50.3	$11.9 \\ 17.6 \\ 32.7 \\ 60.3 \\ 100.5$	42.7 23.4 34.2 65.3 100.5	22.6 17.6 16.1 30.2 80.4	
	C1	C TTAL		CE						
Paran Valor Erro Erro	netro: res Fin global Medio	nais: l: o:		Estratif: 598.6 5.57E-03 2.90E-02	icacao em d1 9.9	Duas rou2 100.6	Camadas d2	rou3		
Prot	fund.	erro	,			Res	istivida	des (ohm.	m)	
. (1	n)	(pu)	calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	-4.3E 6.0E -1.3E 9.2E	-02 -02 -02 -04	596.2 581.7 505.9 309.4	571.8 618.8 499.6 309.6	421.0* 683.6* 919.9* 281.5	550.4 615.8 372.0 321.7	568.0 605.7 442.3 201.1	603.2 615.8 563.0 341.8	590.6 628.3 552.9 402.1	546.6 628.3 568.0 309.6
	CF /	TANC	HIA-COFT	т <u>г</u>						
Paran Valor Erro Erro	metro: res Fin globa Medio	nais: l:		Estratif 1049.2 6.27E-02 8.70E-02	icacao en d1 3.6	n Tres rou2 2932.5	Camadas d2 30.1	rou3 645.9		

-										
Profund. erro Resistividades (ohm.m)										
	ш,)	(pu)	calculac	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	3.9E -7.3E -3.6E -2.3E	-02 -02 -02 -02 -02	1102.5 1302.0 1744.5 2196.0 2225.9	1147.6 1213.9 1858.2 2119.2 1816.3	1595.9 2412.7* 3870.5* 2915.4 2312.2*	1080.7 1583.4 2030.7 2070.9 1829.7	741.4 1306.9 1869.9 1759.3 1789.5	600.7 738.9 965.1* 1327.0 1286.8*	1719.1 1226.5 1673.8 2523.3 1829.7	
	SF I	MART		UCE						
Param Valor Erro Erro	netro: res Fir global Medic	nais: l:		Estratif: rou1 222.0 8.28E-02 1.06E-01	icacao em d1 1.9	n Tres rou2 26.9	Camadas d2 7.6	rou3 97.3		
Prof	fund.	erro	,			Rest	istividad	les (ohm	.m)	
(п	1)	(pu)	calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-2.3E-	-02	159.8	156.2	.94.2	213.6	144.5	100.5	213.6	175.9
4.0	4.7E-	-02	75.6	79.3	40.2	183.5	40.2	37.7	70.4	82.9
8.0	-2.3E-	-01	39.2	31.8	23.1	40.2	21.1	30.2	35.2	40.2
16.0	-1.1E-	-01	48.1	43.2	63.3	35.2	30.2	50.3	55.3	36.2
32.0	-1.2E-	-01	66.3	59.3	32.2 60.3 48.3	60.3	60.3	16.1*	72.4	54.3
Param Valor Erro Erro	SE BAN netro: res Fir global Medio	RRA D nais: 1: 5:	O FIGUEI	REDO-COEI Estratif: 138.0 1.49E-02 4.35E-02	CE icacao en d1 6.7	n Duas rou2 1319.3	Camadas			
Prof	fund.	erro	2			Res	istividad	les (ohm	.m)	
(1	n)	(pu)	calculac	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	-9.0E -9.1E -8.2E -8.3E 3.5E	-03 -03 -02 -02 -02	140.4 153.9 212.3 353.9 572.6	139.2152.5231.2326.7593.1	414.7* 346.8* 271.4 311.6 583.1	$133.2 \\ 160.8 \\ 170.9 \\ 351.9 \\ 603.2$	135.7 145.8 170.9 281.5* 0.0	139.5 85.5* 271.4 311.6 0.0	$148.3 \\ 150.8 \\ 271.4 \\ 331.8 \\ 0.0 \\ 0.0 \\$	
	SE BA	TURIT	E-COELCE	3						
Paran Valor Erro Erro	netro: res Fin globa Medio	nais: l: o:		Estratif rou1 7.3 2.94E-02 6.15E-02	icacao er d1 4.9	n Duas rou2 90.6	Camadas			
Prot	fund.	erro	2			Res	istivida	des (ohm	.m)	
(I	ш)	(pu)	calculat	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	-1.3E 1.0E 9.7E -1.3E 6.2E	-02 -02 -02 -01 -02	7.6 9.1 14.4 24.9 40.2	7.5 9.2 16.0 22.1 42.9	4.8 7.0 10.6 20.1 38.2	5.0 7.0 10.6 19.1 56.3	$10.6 \\ 12.1 \\ 21.1 \\ 0.0 \\ 0.0 \\ 0.0$	22.6* 10.8 21.6 27.1 34.2	9.7 0.0 0.0 0.0 0.0	
	SE (CASCI	VEL-COE	CE						
Para Valo Erro Erro	metro: res Fin globa Medi	nais: 1:	:	Estratif rou1 4168.5 5.40E-03 2.64E-02	icacao en d1 4.5	m Duas rou2 21.8	Camadas			

Profund. erro Resistividades (ohm.m)									
(m)	(pu	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 -2.9E 4.0 -9.0E 8.0 6.2E 16.0 -2.5E 32.0 7.1E	-02 -03 -02 -02 -03	3966.2 3127.6 1285.4 144.3 36.9	3853.7 3099.7 1369.7 140.7 37.2	3392.9 2764.6 1105.8 120.6 44.2	4021.2 3267.3 1407.4 130.7 28.1	$\begin{array}{r} 4146.9\\ 3267.3\\ 1558.2\\ 150.8\\ 24.1 \end{array}$	$0.0 \\ 0.0 \\ 1407.4 \\ 160.8 \\ 52.3$		
.SE Parametro: Valores Fin Erro globa Erro Media	DIST nais 1: o:	.IND.DE F	ORTALEZA- Estratif: rou1 822.0 1.72E+00 3.61E-01	-COELCE icacao em d1 1.4	n Duas rou2 52.8	Camadas			
Profund.	erre	2			Res	istividad	les (ohm.	m)	
(m)	(pu	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
1.0 -1.5E 2.0 8.9E 4.0 9.7E 8.0 -4.3E 16.0 4.8E 26.0 5.4E 32.0 7.5E 40.0 8.4E	-01 -02 -01 -01 -01 -02 -01 -01	$706.4 \\ 417.3 \\ 124.9 \\ 57.5 \\ 53.8 \\ 54.1 \\ 54.6 \\ 55.5 $	$\begin{array}{c} 612.6\\ 458.0\\ 138.2\\ 40.2\\ 103.0\\ 57.2\\ 221.2\\ 339.3 \end{array}$	$\begin{array}{c} 684.9\\ 333.0\\ 118.1\\ 40.2\\ 181.0\\ 0.0\\ 301.6\\ 377.0 \end{array}$	$\begin{array}{r} 427.3\\ 478.8\\ 42.7\\ 40.2\\ 120.6\\ 49.0\\ 0.0\\ 0.0\end{array}$	$\begin{array}{r} 640.9\\ 403.4\\ 155.8\\ 50.3\\ 40.2\\ 0.0\\ 140.7\\ 301.6 \end{array}$	$\begin{array}{c} 697.4\\ 617.0\\ 236.2\\ 30.2\\ 70.4\\ 65.3\\ 0.0\\ 0.0\\ \end{array}$		
SE Parametro: Valores Fin Erro globa Erro Medi	IBI nais 1: o:	APINA-COE	LCE Estratif: rou1 49.9 3.16E-03 1.91E-02	icacao en di 0.3	Tres rou2 456.2	Camadas d2 1.5	rou3 269.8		
Profund.	err	2			Res	istividad	les (ohm.	.m)	
(11)	(pu	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 -9.6E 4.0 5.5E 8.0 -8.1E 16.0 -3.6E	-03 -02 -03 -03	251.4 294.0 290.8 277.2	249.0 311.1 288.4 276.2	255.1 296.6 271.4 376.0	238.8 231.2* 187.0 0.0	232.5 316.7 389.6 901.8*	266.4 309.1 226.2 166.9	309.1 346.8 456.4 404.1	192.3 286.5 200.1 157.8
SE J Parametro: Valores Fi Erro globa Erro Medi	UAZE nais 1: o:	IRO DO NO	RTE-COELA Estratif 4931.6 1.29E-04 3.69E-03	CE icacao en d1 3.5	n Tres rou2 281.1	Camadas d2 1.3	rou3 16085.4		
Profund.	err	°			Res	istividad	les (ohm	.m)	
		calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 -1.2E 4.0 -5.8E 8.0 -9.2E 16.0 -1.7E 32.0 -5.1E	-03 -03 -03 -03 -04	4588.2 3544.1 2460.4 3325.6 5592.4	4582.5 3523.6 2437.9 3320.0 5589.5	8293.8* 4373.1 4322.8 3458.3 5589.5	4272.6 2840.0 1407.4 2885.2 0.0	4247.4 3066.2 2262.0 1910.1* 0.0	5227.6 5780.5 8545.2* 2915.4 0.0	1558.2* 1558.2 1759.3 4021.2 0.0	
SE Parametro: Valores Fi Erro globa Erro Medi	JUR nais	EMA-COELC	E Estratif 277.6 1.29E-01 1.26E-01	icacao er d1 3.0	n Duas rou2 25.0	Camadas			

Profi	and.	rro				Resi	stividad	es (ohm.	m)	
СШ	, ((Pu)	calculad	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	1.4E-0 -4.9E-0 8.2E-0 -2.0E-0 2.8E-0)2)2)1)1	246.6 160.2 57.7 27.8 25.5	250.1 152.8 62.8 23.1 35.5	207.3 135.7 60.3 22.1 30.2	263.9 113.1 50.3 20.1 0.0	263.9 175.9 0.0 24.1 32.2	188.5 175.9 85.5 65.3* 0.0	326.7 163.4 55.3 26.1 44.2	
SE MES Parame Valore Erro g Erro	SSEJANA etro: es Fina global: Medio:	A-CON	ELCE	Estratifi rou1 340.7 2.82E-02 6.19E-02	cacao em d1 2.3	Tres rou2 1384.6	Camadas d2 2.2	rou3 138.4		240
Profu	und. e	rro				Resi	stividad	es (ohm.	m)	
(11)	, (pu)	calculac	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 -	-2.5E-C	02	390.2	380.6	251.3	477.5	226.2	351.9	502.7	565.5
4.0	8.4E-C	02	472.2	515.2	502.7	477.5	201.1*	477.5	603.2	578.1
8.0	1.3E-C	01	451.9	517.0	452.4	703.7	201.1	150.8	754.0	603.2
16.0 -	-6.9E-C	02	270.4	253.0	191.0	261.4	241.3	221.2	30.2*	341.8
32.0	6.2E-0	03	159.9	160.8	0.0 120.6	0.0	0.0	0.0	181.0	181.0
SE AGU Parame Valore Erro g Erro g	JA FRIA etro: es Fina global: Medio:	A-CON	ELCE	Estratifi 554.7 1.20E-02 4.30E-02	cacao em d1 6.7	Duas rou2 35.2	Camadas			
Profu	und. e	rro				Resi	stividad	es (ohm.	m)	
(II)		Pu)	calculad	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	7.9E-0 -4.3E-0 -5.1E-0 3.4E-0 -7.7E-0)2)2)2)2)2	546.6 503.1 342.4 118.9 41.5	593.8 482.5 325.7 123.2 41.2	716.3 603.2 301.6 100.5 32.2	666.0 452.4 216.1 100.5 36.2	477.5 377.0 241.3 140.7 201.1*	515.2 100.5 452.4 150.8 44.2	1382.3* 879.6 417.2 0.0 52.3	
				co	SERN					
SE PE	NDENCLA	AS-R	IO GRANI	DE DO NORT	E					
Parame Valore Erro (Erro (etro: es Fina global: Medio:	ais:		Estratifi rou1 550.5 2.54E+00 4.42E-01	cacao em d1 5.0	Duas rou2 0.7	Camadas			
Profi	und.	erro				Resi	istividad	es (ohm.	.m)	
(m) ((pu)	calcular	da media	(1)	(2)	(3)	(4)	(5)	(8)
2.0 4.0 8.0 16.0	-2.8E-0 6.2E-0 -6.5E-0 -1.7E+0)2)2)3)0	530.4 439.9 207.4 26.9	516.2 468.7 206.1 10.1	507.7 379.5 191.0 10.1	389.6 379.5 191.0 10.1	673.6 638.4 241.3 10.1	493.9 477.5 201.1 10.1		
SE PA Param Valor Erro Erro	U DOS I etro: es Fina global Medio	FERR	OS-RIO (GRANDE DO Estratifi rou1 37.8 2.82E-03 2.45E-02	NORTE cacao em d1 3.5	Duas rou2 58.8	Camadas			

Prot	fund.	erro	2		Resistividades (ohm.m)						
(1		(pu	calculada	n media	(1)	(2)	(3)	(4)	(5)	(6)	
2.0 4.0 8.0 16.0	1.6E -3.4E 3.5E -1.3E	-02 -02 -02 -02	38.8 42.0 48.5 54.3	39.4 40.6 50.3 53.6	51.5 60.3 45.2 60.3	36.4 37.7 60.3 40.2	26.4 40.2 40.2 60.3	36.4 35.2 40.2 50.3	21.4 22.6 35.2 50.3	64.1 47.8 80.4 60.3	
SE CA Paran Valon Erro Erro	ANGUAR netro: res Fin globa Medio	ETAM/ nais: l: o:	A-RIO GRAN	DE DO NO Sstratif: rou1 15554.3 .10E-02 .23E-02	ORTE icacao em d1 0.6	Duas rou2 819.9	Camadas				
Prot	fund.	erro	>			Resi	stividad	les (ohm	.m)		
(1	n)	(pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)	
2.0	-5.2E	-03	1628.6	1620.2	1960.3	1935.2	986.0	2136.2	1533.1	1646.1	
4.0	7.2E	-02	869.0	936.2	1306.9	1457.7	698.7	879.6	623.3	972.6	
8.0	-7.4E	-02	844.1	786.0	1010.3	809.3	668.5	623.3	588.1	713.7	
16.0	1.8E	-02	906.6	923.6	1025.4 1005.3 934.9	849.5 844.4 894.7	995.2	914.8	844.4	955.2	
SE S Parar Valor Erro Erro	.PAULO netro: res Fin globa Medi	DO H nais: l: o:	POTENGI-RI Es	0 G. DO stratific 978.9 54E-02 .77E-02	NORTE cacao em d1 0.7	Duas rou2 22.5	Camadas				
Prot	fund.	erro	2 2			Rest	istividad	des (ohm	.m)		
(1	n)	(pu	calculada	nedia	(1)	(2)	(3)	(4)	(5)	(6)	
2.0 4.0 8.0 16.0	-1.3E 1.1E -1.1E 4.0E	-02 -01 -01 -02	85.4 25.3 27.7 50.2	84.3 28.4 24.9 52.3	40.2 23.6 23.6 0.0	108.1 31.7 33.2 35.2	125.0 86.7* 55.3 110.6	118.9 30.2 6.0 11.1	29.4 28.1 6.5 0.0		
SE JA Paran Valor Erro Erro	ARDIM netro: res Fil globa Medi	DE PI nais 1: o:	IRANHAS-RI	0 G.DO I Sstratif 116.9 1.42E-02 3.61E-02	NORTE icacao en d1 2.1	n Tres rou2 53.3	Camadas d2 13.2	rou3 2032.1			
Pro	fund.	erro	Q			Res	istividad	des (ohm	.m)		
Q	E1)	(pu	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)	
2.0 4.0 8.0 16.0	-2.7E -5.3E -1.2E 1.9E	-03 -03 -01 -02	102.7 79.0 66.0 86.3	102.4 78.5 59.1 88.0	203.6 138.2 70.4 130.7	108.1 90.5 75.4 80.4	69.1 55.3 55.3 90.5	28.9 30.2 35.2 50.3			
SE C. Para Valo Erro Erro	EARA-M metro: res Fi globa Medi	IRIM nais 1: o:	-RIO GRAN	NDE DO N Estratif 451.8 4.56E-02 7.97E-02	ORTE icacao en d1 2.0	n Tres rou2 62.6	Camadas d2 21.7	rou3 20000.0			

Profund.	erro	2			Res	istivida	des (ohm	.m)	
(ш)	(pu	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 -2.6E 4.0 9.3E 8.0 -8.4E 16.0 2.7E 32.0 1.7E	-02 -02 -02 -02 -02	339.6 171.2 79.7 79.5 128.3	331.0 188.7 73.5 81.7 154.3	358.1 213.6 88.0 90.5 80.4	413.4 253.8 61.3 81.4 100.5	429.8 194.3 75.4 94.5 382.0	122.5 93.0 69.4 60.3 54.3		tang a s
SE MAI: Parametro: Valores Fin Erro globa Erro Medio	SA-RI nais l: o:	IO GRANDE	DO NORTI Estratif: rou1 1203.3 5.20E-03 2.92E-02	icacao em d1 7.9	Duas rou2 140.3	Camadas			
Profund.	erre	2 			Res	istivida	des (ohm	.m)	
0)	(pu	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 -2.3E 4.0 5.9E 8.0 -4.3E 16.0 1.7E 32.0 -3.4E	-02 -02 -02 -02	1193.2 1135.4 883.5 418.7 175.2	1166.0 1206.8 847.0 425.9 174.6	1558.2 1397.4 1110.9 552.9 247.3	574.3 884.7 633.3 296.6 98.5	458.7 593.1 749.0 462.4 106.6	$1771.9\\2128.7\\1161.1\\428.3\\281.5$	785.4 816.8 623.3 367.9 92.5	$1847.3 \\ 1420.0 \\ 804.2 \\ 447.4 \\ 221.2$
SE GRO: Parametro: Valores Fin Erro globa Erro Media	SSOS- nais 1: o:	-RIO GRAN	DE DO NOP Estratif: 532.5 3.94E+00 5.75E-01	RTE icacao em d1 3.6	Duas rou2 0.1	Camadas			
Profund.	erro (pu)			Res	istivida	des (ohm	.m)	
		calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.6E 4.0 -1.5E 8.0 -1.1E 16.0 -1.8E 32.0 -8.2E	-01 -01 -01 +00 -01	486.5 331.8 93.4 5.0 4.6	907.9 289.0 84.2 1.8 2.5	62.8 100.5 50.3 3.0 4.0	1244.1477.535.21.02.0	917.3 276.5 100.5 1.0 2.0	1407.4 301.6 150.8 2.0 2.0		
SE AP Parametro: Valores Fin Erro globa Erro Medi	ODI-1 nais 1: o:	RIO GRAND	E DO NOR Estratif 428.4 3.62E-03 2.72E-02	TE icacao en d1 2.4	Duas rou2 11.9	Camadas			
Profund.	err	<u> </u>			Res	istivida	des (ohm	1.m)	
(m)	(pu	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 3.1E 4.0 -4.4E 8.0 2.5E 16.0 -8.5E	-02 -02 -02 -03	340.9 164.1 31.9 12.9	351.9 157.1 32.7 12.8	238.8 201.1 30.2 23.1	150.8 150.8 15.1 10.1	100.5 0.3 15.1 17.1	917.3 276.5 70.4 1.0		

SAELPA

SE MANO	GABEIRAS-SAELPA		Tres	Camadas	
Parametro: Valores Finais: Erro global: Erro Medio:	rou1 454.8 1.80E-03 1.63E-02	d1 3.2	rou2 1795.9	d2 8.5	rou3 0.2

Drof	hund					Pagi				
(I	n)	(pu)		modia	(1)	(2)	(2)		.m)	(0)
	1 00	04	402 2		(1)	(2)	(3)	(4)	(5)	(6)
4.0	5.7E 2.8E	-04 -03 -02	493.2 617.9 816.3 777.9	493.2 621.4 839.4 754.0	565.5 625.8 854.5 924 9	500.1 618.3 904.8 874.6	422.2 598.2 779.1 532.8	485.1 643.4 819.3 683.6		
•	01 01		TNA TT DT	CE	LPE					
	SE PI	ETROL	INA II-PH	stratifi) Icacao er	n Quatro	Camadas			
Paran Valor Erro Erro	globa Medio	nais: l: o:	1	45.9 45.9 .27E-01 .33E-01	0.8	638.8	0.6	rou3 8.5	2.4	2110.2
Prof	fund.	erro	2			Resi	istividad	les (ohm.	.m)	
(1	1)	(pu)	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-6.0E	-02	99.1 97.5	93.5 126.8	167.1 379.5	37.2 33.4	46.4 69.9	9.3 13.1	289.0 250.6	$11.7 \\ 14.6$
8.0 16.0 32.0	3.1E 1.0E 2.7E	-03 -01 -01	64.9 74.2 139.9	65.1 82.6 191.0	236.2* 150.8* 0.0	48.3 80.4 0.0	107.1 72.4 0.0	31.2 92.5 0.0	109.1 93.5 183.0	30.2 74.4 199.1
	OF 10	ADTO								
	SE III	APISS	UMA-PERNA	Stratifi	icacao er	n Duas	Camadas			
Valor Erro Erro	globa Medi	nais: 1: o:		4780.3 1.30E-02 1.49E-02	5.9	250.4				
Prof	fund.	erre	2			Rest	istividad	des (ohm	.m)	
(п	n)	(pu	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	-5.9E 9.4E -2.4E 2.1E	-02 -02 -02 -03	4679.6 4173.5 2547.7 740.7	4417.1 4607.7 2488.1 742.3	4021.2 4272.6 2764.6 532.8	2802.3 2890.3 2111.2 1105.8	3330.1 3342.7 1809.6 603.2	6509.4 6484.3 2814.9 804.2	3945.8 4398.2 2664.1 502.7	5893.6 6258.1 2764.6 904.8
SE	MALHA	RTA 1	NDUSTRIA	-PERNAME	3000			-		
Paran	netro:		I	stratif: roul	icacao en	n Duas rou2	Camadas			
Erro	globa Medi	nais: 1: 0:		3.71E-01 2.51E-01	9.2	20000.0				
Prof	fund.	erro	2			Res	istividad	des (ohm	.m)	
(1	u)	(pu	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-6.6E	-02	120.2	112.8	154.6 273.9	395.8* 284.0	144.5 163.4	99.3 98.0	98.0 140.7	67.9 98.0
8.0 16.0	-1.4E 5.2E	-01 -01	162.6 285.2	142.6 591.1	53.3 277.5	105.1 904.8	131.2 0.0	244.8 0.0	196.0 0.0	125.2 0.0
	SE	GRAV	ATA-PERNAN	HBUCO						
Para	netro:		1	Estratif: roul	icacao e d1	m Duas rou2	Camadas			
Valor Erro Erro	globa Medi	nais 1: o:		391.6 1.16E-01 1.62E-01	2.3	76.7				
Prof	fund.	erro	ç			Res	istivida	des (ohm	.m)	
(1	u)	(pu	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	-8.1E 2.2E -1.9E 1.6E	-02 -01 -01 -01	326.0 198.7 100.6 80.0	301.6 255.8 84.8 95.2	26.0 52.0 75.4 130.7	65.5 82.4 90.5 110.6	177.2 196.5 107.1 74.4	730.1 485.1 86.0 104.6	466.2 457.4 259.4* 73.4	344.3 261.4 65.3 77.4

SE C.ALCOOLQU Parametro: Valores Finais Erro global: Erro Medio:	IMICA NACI(E: : 3	DNAL-PER stratifi 138.1 .45E-03 .27E-02	NAMBUCO cacao em d1 4.2	Duas rou2 37.0	Camadas			
Profund. err	Q			Res	istividad	es (ohm.	.m)	
(m) (pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 3.9E-02	133.1	138.5	211.1 201.1	208.6 182.2	251.3 238.8	41.3 81.7	129.4 21.1	213.6 213.6
4.0 -5.5E-02	113.3	107.4	243.8 108.1	155.8 105.3	173.4	58.3 80.4	110.6 16.1	$140.7 \\ 140.7$
8.0 3.0E-02	71.8	74.0	128.7 86.5	92.5 63.3	85.5 86.0	52.3 60.3	102.5	61.8 87.5
16.0 -7.7E-03	43.9	43.6	66.4 64.3 101.5	63.3 21.1 34.2	47.2 45.2 21.1	27.1 31.2 20.1	52.3 30.2 29.2	512.7* 43.2

CEAL

SE PC Param Valor Erro Erro	A-ALAGOAS es Finais global: Medio:	E : 1 	stratifi rou1 447.4 .62E-02 .75E-02	cacao em d1 12.8	Duas rou2 1983.1	Camadas d2	rou3		
(m) (pu)	nedio	(1)	(2)	(2)	(4)	(5)	(6)
		calculada	media	(1)	(2)	(3)	(4)	(3)	(0) .
4.0 8.0 16.0 32.0 64.0	-3.9E-02 7.5E-02 -2.2E-02 -4.6E-02 7.5E-02 -2.8E-02	448.3 454.1 490.2 637.7 951.3 1336.6	431.7 491.1 479.5 609.9 1028.8 1300.2	437.3 500.1 497.6 583.1 1146.1 884.7	526.5* 515.2 517.7 583.1 965.1 0.0	437.3 467.5 588.1* 703.7 1025.4 1246.6	422.2 475.0 427.3 653.5 884.7 0.0	429.8 497.6 472.5 583.1 1146.1 1769.3	309.1* 346.8* 482.5 552.9 1005.3 0.0
SE SA	NTANA DO	IPANEMA-AL E	AGOAS stratifi	lcacao em	Duas	Camadas			*•
Param Valor Erro Erro	etro: es Finais global: Medio:	: 9 1	rou1 134.0 .14E-01 .48E-01	d1 11.6 4	rou2 15245.3			22	
Prof	und. err	ó			Rest	istividad	es (ohm.	.m)	
(11)	() (pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.7E-02	134.6 138.4 162.4 260.4 505.9	126.6 157.1 201.2 323.2 468.5	138.2 130.7 261.4 341.8 542.9	118.1170.9281.5412.2462.4	138.2 188.5 150.8 284.5 396.1	$111.8 \\ 138.2 \\ 111.1 \\ 254.3 \\ 472.5$		
SE PA	LMEIRA DS	INDIOS-AL	AGOAS						
Param Valor Erro Erro	etro: es Finais global: Medio:	н: 8 З	stratif rou1 52.8 .06E-06 .32E-06	d1 0.9	rou2 238.5	Camadas d2 5.3	rou3 60.3		
Prof	und. err	, Q			Res	istividad	es (ohm	.m)	
(11	i) (pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
				FF 0	50 7	100 5			

.

112

.....

SE CRUZ DAS ALM	AS-ALAGOA	S						
Parametro: Valores Finais: Erro global: Erro Medio:	1 7	stratifi 255.5 .29E-01 .76E-02	d1 1.7	Tres rou2 341.1	Camadas d2 33.7	rou3 4.2		Autoren a
Profund. erro				Resi	stividad	es (ohm.	m)	
(m) (pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.6E-04 4.0 -9.2E-04 8.0 1.0E-02 16.0 5.7E-03 32.0 -3.7E-01	274.8 302.5 323.3 319.9 254.9	274.9 302.2 326.7 321.7 186.0	307.9 402.1 452.4 492.6 221.2	301.6 263.9 226.2 191.0 100.5	207.3 213.6 311.6 321.7 201.1	282.7 329.2 316.7 281.5 221.2		
SE MARIBONDO-AL Parametro: Valores Finais: Erro global: Erro Medio:	AGOAS E	stratifi rou1 48.3 .25E-03 .59E-02	cacao em d1 3.5	Duas rou2 149.6	Camadas			
Profund. erro				Resi	stividad	es (ohm.	m)	
(m) (pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 -1.3E-02 4.0 3.8E-02 8.0 -3.7E-02 16.0 1.5E-02	51.3 62.0 85.7 113.1	50.6 64.5 82.7 114.9	44.0 60.3 84.4 100.5	37.7 54.0 62.8 90.5	57.8 68.4 86.0 132.7	62.8 75.4 97.5 135.7		
SE PAJUCARA-ALA Parametro: Valores Finais: Erro global: Erro Medio:	GOAS E	stratifi rou1 375.3 2.29E-03 .19E-02	cacao em d1 0.4	Duas rou2 29.7	Camadas			
Profund. erro				Resi	istividad	es (ohm.	m)	
	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 3.9E-03 4.0 -4.1E-02 8.0 3.2E-02 16.0 2.1E-02 32.0 -1.2E-02	35.4 30.4 30.5 30.5 31.5	35.5 29.2 31.0 31.2 31.2	33.3 26.4 30.2 31.2 32.2	32.0 31.4 30.2 30.2 28.1	27.0 28.9 32.7 33.2 34.2	49.6 30.2 31.2 30.2 30.2		
SE HOSPITAL DOS Parametro: Valores Finais: Erro global: Erro Medio:	S USINEIRC	S-ALAGOA Sstratifi rou1 179.3 2.59E-02 3.48E-02	AS icacao em d1 0.6	Tres rou2 527.6	Camadas d2 2.4	rou3 422.2		
Profund. erro	{			Resis	stividade	s (ohm.m	n)	
(117) (124)	calculada	n media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 -7.8E-02 4.0 6.1E-02 8.0 1.2E-01 16.0 2.7E-02 32.0 4.0E-02	354.0 422.0 438.8 430.4 424.7	328.3 449.2 497.6 442.3 442.3	197.3 311.6 432.3 512.7 402.1	444.9 703.7 703.7 502.7 422.2	168.4 238.8 331.8 351.9 442.3	502.7 542.9 522.8 402.1 502.7		
SE SECCIONADORA Parametro: Valores Finais: Erro global: Erro Medio:	A PILAR-AI	AGOAS Stratif: 1278.3 9.53E-03 1.48E-02	icacao em d1 3.5	Duas rou2 687.9	Camadas			

Profund.	erro				Resi	stividad	es (ohm.	.m)	
	(pu)	calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 -3.5E 4.0 7.3E 8.0 -4.9E 16.0 2.1E	-02 -02 -02 -02	1239.3 1106.1 875.6 735.8	1196.9 1193.8 834.4 751.5	1005.3 1407.4 955.0 663.5	1759.3 1407.4 839.4 874.6	$\begin{array}{r} 1445.1 \\ 1256.6 \\ 1040.5 \\ 914.8 \end{array}$	578.1 703.7 502.7 552.9		
SE SAO MIG Parametro: Valores Fir Erro globa Erro Medio	UEL D nais: 1: o:	os campo	DS-ALAGOAS Estratifi rou1 65.6 1.17E-02 4.37E-02	cacao em d1 6.6	Duas rou2 0.1	Camadas d2	rou3		
Profund.	erro)			Resi	stividad	es (ohm.	m)	
(m)	(pu)	calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
1.0 -9.7E 2.0 2.2E 4.0 4.0E 8.0 -1.6E	-02 -02 -02 -02	65.5 64.5 58.5 37.0	59.7 66.0 60.9 36.4	56.5 69.1 62.8 37.7	62.8 62.8 59.1 35.2				
SE CINAL-AI Parametro: Valores Fin Erro globa Erro Medio	LAGOA nais: l: o:	S	Estratifi rou1 1187.3 2.40E-09 7.18E-09	.cacao em d1 1.4	Tres rou2 575.3	Camadas d2 4.4	rou3 1514.5		
Profund.	erro			_	Resi	stividad	les (ohm.	.m)	
	(pu)	calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 9.2E-	-09	940.0	940.0	1030.4 754.0	1131.0	615.8 867.1	$1294.3 \\ 578.1$	1005.3 502.7	691.2 1055.6
4.0 -1.5E	-08	759.8	759.8	1068.1 854.5 703.7	1244.1 854.5 728.9	1306.9 502.7 754.0	879.6 603.2	904.8 552.9	980.2 703.7
8.0 -9.0E	-09	831.1	831.1	854.5 703.7	1332.0 1105.8 804.2	804.2 754.0	955.0 653.5	904.8 904.8	804.2 653.5
16.0 -2. 0 E	-09	1079.0	1079.0	1005.3	1306.9 1206.4	1206.4 1005.3	1508.0 804.2	$1306.9\\1005.3$	1206.4 904.8
32.0 -1.1E	-09	1306.9	1306.9	1407.4 1407.4 804.2	1608.5 1206.4 1005.3	1809.6 1206.4 1005.3	3418.1* 1005.3	2010.6 1608.5	1206.4 1005.3
SE IGUATEM	I-ALA	GOAS	Fetrotif		Dues	Camadas			
Parametro: Valores Fin Erro globa Erro Media	nais: l: o:		rou1 30.1 1.46E-03 1.49E-02	d1 5.2	rou2 80.0				
Profund.	erro	2			Rest	istividad	ies (ohm	.m)	
(m)	(pu	calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 3.3E 4.0 -1.0E 8.0 2.3E 16.0 -2.6E 32.0 1.2E	-03 -02 -02 -02 -02	30.7 33.4 42.2 56.2 68.5	30.8 33.0 43.2 54.8 69.4	30.2 33.4 41.2 52.3 70.4	31.4 32.7 45.2 57.3 68.4				
SE EST.CAI Parametro: Valores Fi Erro globa Erro Medi	XA EC nais 1:	CONOMICA	-FAROL-AL Estratif 94.2 1.37E-02 5.05E-02	AGOAS icacao er d1 2.3	n Duas rou2 193.3	Camadas			

Profund.	erro				Res	istividad	es (ohm.	m)	
\ # /	(pu)	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 1.3E 4.0 -5.3E 8.0 9.5E 16.0 -4.1E	-02 -02 -02 -02	104.2 127.1 157.0 178.4	105.6 120.6 173.4 171.4	94.2 103.0 150.8 165.9	116.9 138.2 196.0 176.9				
SE DELMIR Parametro: Valores Fin Erro globa Erro Medio	D GOU nais: 1: o:	IVEIA-1 ME	EDICAO-AL Sstratifi rou1 85.1 1.52E-02 3.90E-02	AGOAS cacao em d1 18.1	Duas rou2 585.8	Camadas d2	rou3		
Profund.	erro)			Res	istividad	es (ohm.	m)	
(m)	(pu)	calculada	a media	. (1)	(2)	(3)	(4)	(5)	(6)
2.0 9.6E	-02	85.2	94.2	100.5	88.0	76.7	251.3*	108.1	95.5
4.0 -7.5E	-02	85.7	79.7	77.9 72.9	89.2 45.2	209.9*	$118.1 \\ 100.5$	75.4	75.4
8.0 -1.3E	-02	89.1	88.0	93.0 80.4	70.4	$113.1 \\ 70.4$	88.0 100.5	95.5	70.4
16.0 8.9E	-03	107.4	108.4	70.4	110.6 40.2*	100.5	90.5 150.8	120.6	80.4
32.0 -1.5E	-03	163.6	163.4	100.5 160.8 0.0	90.5 80.4 0.0	120.6 170.9 0.0	120.6 0.0 0.0	241.3	0.0
SE ESTACAO Parametro: Valores Fi Erro globa Erro Medi	REP nais: 1: o:	AGUA BRAN	VCA-ALAGO Estratifi 163.4 4.65E-01 2.34E-01	AS .cacao em d1 14.5	Duas rou2 40000.0	Camadas			
Profund.	erro	2	_		Res	istividad	es (ohm.	m)	
(m)	(pu)	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 6.6E 4.0 -4.6E 8.0 1.7E 16.0 3.2E 32.0 5.7E	-02 -02 -01 -01 -01	163.8 166.3 183.1 263.3 494.1	175.3 159.0 219.9 387.0 1156.1	$235.0 \\ 181.0 \\ 241.3 \\ 452.4 \\ 1246.6$	$163.4 \\ 150.8 \\ 125.7 \\ 291.5 \\ 1065.6$	223.7 228.7 321.7 552.9 0.0	79.2 75.4 191.0 251.3 0.0		
SE PERI-PE Parametro: Valores Fi Erro globa Erro Medi	RI-AI nais: l: o:	LAGOAS I	Estratifi rou1 836.1 8.93E-02 1.04E-01	icacao em d1 3.1	Duas rou2 708.6	Camadas			
Profund.	erre	2			Res	istividad	les (ohm.	.m)	
(m)	(pu	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 -2.0E 4.0 2.5E 8.0 6.7E 16.0 -2.0E 32.0 2.1E	-02 -02 -02 -01 -01	826.5 796.7 750.2 721.4 711.9	810.5 816.8 804.2 603.2 904.8	$1005.3 \\ 854.5 \\ 1005.3 \\ 402.1 \\ 804.2$	615.8 779.1 603.2 804.2 1005.3				
SE ARAPIRA Parametro: Valores Fi Erro globs Erro Medi	ACA I	I-ALAGOAS	Estratif rou1 1456.4 1.53E-02 3.62E-02	icacao en d1 3.5	Tres rou2 42.4	Camadas d2 1.5	rou3 8905.2		

Profund. erro (n) Resistividades (ohm.m) (n) (c) (3) (4) (5) (6) 2.0 4.5E-03 1340.0 1346.0 1175.0 1422.8 1457.7 1644.7 1208.9 1097.0 4.0 -2.7E-02 970.2 944.4 1555.8 1677.5 774.1 794.2 779.1 960.2 8.0 -1.2E-01 497.9 445.2 1995.5 953.3 130.7 422.2 226.2 120.6 18.0 -1.6E-02 561.0 552.1 936.0 0.0 142.3 674.6 321.7 140.7 200.1 58 142.3 674.6 321.7 140.7 201011 52.01 938.0 6.7 16.2 16.2 Profund. erro (n) cro 110.7 200.6 142.3 674.6 321.7 140.7 2.0 1.4E-02 364.7 301.6 377.0 226.2 3 4 15.6 2.0 1.4E-02 364.7 301.6 377.0 226.2 28.2 28.9 <th></th>											
<pre>(Pu) calculada media (1) (2) (3) (4) (5) (8) 2.0 4.5E-03 1340.0 1346.0 1175.0 1482.8 1457.7 1644.7 1208.9 1097.0 4.0 -2.7R-02 970.2 944.4 1555.6 467.5 774.1 794.2 779.1 980.2 8.0 -1.2E-01 497.9 445.2 1935.5 976.7 130.7 422.2 226.2 120.6 16.0 -1.6E-02 561.0 552.1 501.6 642.5 201.1 608.2 914.8 1859.8 32.0 1.5E-02 1041.6 1057.3 0.0 152.1 442.3 674.6 321.7 140.7 3036.0 0 2.0 1 22.1 442.3 674.6 321.7 140.7 SE FCA-CAFTACAD DE AGUA(CINAL)-ALAGOAS Bermetro:</pre>	Prof	und. en	rro			145	Rest	istividad	des (ohm	.m)	
2.0 4.5E-03 1340.0 1346.0 1175.0 1482.8 1457.7 1844.7 1208.9 1097.0 4.0 -2.7E-02 970.2 944.4 1555.6 467.5 774.1 794.2 779.1 980.2 8.0 -1.2E-01 497.9 445.2 1995.5 995.3 130.7 422.2 226.2 120.6 18.0 -1.6E-02 561.0 552.1 502.9 67.6 422.0 201.1 608.2 914.8 1859.8 32.0 1.5E-02 1041.6 1057.3 3036.0 1528.1 442.3 674.6 321.7 140.7 3038.0 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	(11)		pu)	calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
4.0 -2.7E-02 970.2 944.4 1425.2 1402.5 774.1 794.2 779.1 980.2 8.0 -1.2E-01 497.9 445.2 1995.3 130.7 422.2 226.2 120.6 16.0 -1.6E-02 581.0 552.1 301.6 482.5 201.1 608.2 914.8 1859.8 32.0 1.5E-02 1041.6 1057.3 0.0 1528.1 442.3 674.6 321.7 140.7 3038.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.0	4.5E-0	3	1340.0	1346.0	1175.0	1482.8	1457.7	1844.7	1208.9	1097.0
8.0 -1.2E-01 497.9 445.2 1435.2 1465.3 130.7 422.2 226.2 120.6 16.0 -1.8E-02 561.0 552.1 301.6 462.5 201.1 608.2 914.8 1859.8 32.0 1.5E-02 1041.6 1057.3 0.0 1528.1 442.3 874.6 321.7 140.7 3036.0 0.0 0.0 SE FCA-CAPTACAD DE ASUA(CINAL)-ALAGOAS Estratificacao en Duas Camadas Profund. erro (n) (pu) calculada media (1) (2) (3) (4) (5) (6) 2.0 -1.4E-02 303.7 339.3 502.7 175.9 4.0 4.8E-03 205.9 206.1 201.1 211.1 8.0 4.8E-03 205.9 206.1 201.1 211.1 8.0 -3.8E-04 65.9 265.8 11.1 120.6 Estratificacao en Duas Camadas rou2 Valores Finais: 70.1 5.6 464.5 Estratificacao en Duas Camadas rou2 SE ARACAJU - ENERGIPE Estratificacao en Duas Camadas rou2 SE MARUIM-ENERGIPE Parametro: rou di 10.02 10.0 0.0 0.0 0.0 SE MARUIM-ENERGIPE Parametro: 64.4 4.0 SE MARUIM-ENERGIPE Parametro: 64.4 4.0 SE MARUIM-ENERGIPE Parametro: 70.0 0.0 0.0 SE MARUIM-ENERGIPE Parametro: 81.4 63.6 61.7 148.34 75.8 64.1 42.7 71.6 2.0 3.22-03 63.4 630.6 61.7 148.34 77.8 64.1 42.7 71.6 2.0 3.22-03 63.4 630.6 61.7 148.34 77.8 63.1 42.7 71.6 3.02.7 72.5 53.3 50.5 20.1 77.6 3.02.7 70.44 50.3 50.3 50.5 20.1 77.6 SE STANCIA-ENERGIPE Parametro: 81.4 63.6 61.7 148.34 77.8 64.1 42.7 71.6 SE SETANCIA-ENERGIPE Parametro: 14.5 50.1 60.5 50.3 50.5 20.1 77.6 SE SETANCIA-ENERGIPE Parametro: 14.5 50.1 60.7 10.4 50.3 50.5 20.1 77.6 SE	4.0	-2.7E-0	2	970.2	944.4	1535.6	467.5	774.1	794.2	779.1	980.2
18.0 -1.6E-02 561.0 552.1 301.2 304.2 0.0 201.1 608.2 0.0 914.8 1859.8 323.0 32.0 1.5E-02 1041.6 1057.3 3036.0 0.0 1528.1 442.3 874.6 321.7 140.7 SE PCA-CAPTACAD DE AGUA(CINAL)-ALAGOAS Dermentro: Estratificacao em Estratificacao em (m) Dus Estratificacao em (m) Camadas Profund. erro (m) erro (m) 930.6 6.7 18.2 Profund. erro (m) s01.6 377.0 226.2 8.0 4.86-03 205.1 206.1 6.7 8.0 4.86-03 205.2 206.4 301.6 377.0 226.2 8.0 4.86-03 205.1 206.1 201.1 120.6 1.42 Profund. erro (m) calculada media (1) (2) (3) (4) (5) (6) 2.0 -4.85-03 205.1 206.1 301.6 377.0 226.2 2 20 2.6 88.9 91.0 erro 1.01E-01 1.012-01 1.01 1.01 1.01 1.01 1.01 1.01	8.0	-1.2E-0	1	497.9	445.2	1995.5	995.3	130.7	422.2	226.2	120.6
32.0 1.5E-02 1041.6 1057.3 ⁰⁰¹ / ₃₀₃₈₀₀ 1528'1 442.3 674.6 321.7 140.7 SSE PCA-CAPTACAO DE AGUA(CINAL)-ALAGOAS Parametro: Bestratificacaso em lotore pinis: 5.20E/04 Estratificacaso em lotore pinis: 5.20E/04 Duas Canadas Canadas Profund. erro (m) full 5.20E/04 6.7 16.2 Profund. erro (m) calculada media (1) (2) (3) (4) (5) (6) 2.0 1.4E-02 306.9 301.8 377.0 125.2 <td>16.0</td> <td>-1.6E-02</td> <td>2</td> <td>561.0</td> <td><mark>5</mark>52.1</td> <td>301.6</td> <td>482.5</td> <td>201.1</td> <td>608.2</td> <td>914<mark>.</mark>8</td> <td>1859.8</td>	16.0	-1.6E-02	2	561.0	<mark>5</mark> 52.1	301.6	482.5	201.1	608.2	914 <mark>.</mark> 8	1859.8
SE PCA-CAPTACAO DE AGUA(CINAL)-ALAGOAS Estratificacao em Valores Finais: S.20E-04 Duas Camadas rouz Subres Finais: S.20E-04 Profund. erro (m) erro pulson Resistividades (ohm.m) (m) erro (m) (d) (5) Profund. erro (m) erro pulson Resistividades (ohm.m) (d) (m) erro (m) (d) (f) (f) (m) erro (m) (d) (f) (f) (m) erro (m) (f) (f) (f) (m) erro (m) (f) (f) (f) (f) erro (m) erro (m) (f) (f) (f) (f) erro (m) erro (m) (f) (f) (f) (f) f) f) f) (f) (f) (f) f) f) f) (f) (f) (f) f) f) f) f) (f) (f) (f) f) f) f) f) f) f) f) (g) erro f) f) f) f) f) f) f) f) <td>32.0</td> <td>1.5E-02</td> <td>2 :</td> <td>1041.6</td> <td>1057.3</td> <td>0.0 3036.0</td> <td>1528.1 0.0</td> <td>442.3</td> <td>874.6</td> <td>321.7</td> <td>140.7</td>	32.0	1.5E-02	2 :	1041.6	1057.3	0.0 3036.0	1528.1 0.0	442.3	874.6	321.7	140.7
Profund. erro (m) Resistividades (ohm.m) 2.0 1.4E-02 334.7 339.3 502.7 175.8 4.0 -1.6E-02 336.7 206.1 201.1 211.1 16.0 -3.6E-02 305.1 206.1 201.1 211.1 16.0 -3.6E-04 65.9 65.8 11.1 120.6 Estratificacao em Duas Camadas roul d' rou2 Personetro: rou1 5.6 464.5 Erro d'hobal: 5.61E-02 65.9 65.8 Profund. erro Resistividades (ohm.m) 6.0 (m) (pu) 62.8 75.4	SE PC Param Valor Erro Erro	A-CAPTA etro: es Fina: global: Medio:	CAO is:	DE AGU	A(CINAL)-A Estratifi rou1 339.8 5.20E-04 9.12E-03	ALAGOAS icacao en d1 6.7	n Duas rou2 16.2	Camadas			
(m) (p) (q) (Prof	und. en	rro				Resi	istividad	les (ohm	.m)	
2.0 1 4E-02 334.7 339.3 502.7 175.9 4.0 -1.8E-02 366.9 301.6 377.0 226.2 8.0 4.8E-03 205.1 206.1 201.1 211.1 16.0 -3.8E-04 65.9 65.8 11.1 120.6 E N E R G I P E SE ARACAJU - ENERGIPE Parametro: roul d1 rou2 Valores Finais: 5.61E-02 Profund. erro Resistividades (ohm.m) (ru) calculada media (1) (2) (3) (4) (5) (6) 2.0 -7.2E-02 71.9 67.0 75.4 75.4 50.3 50.3 62.8 68.0 4.0 1.2E-01 81.3 92.7 100.5 100.5 75.4 75.4 125.7 16.0 -1.5E-01 185.5 160.8 301.6 100.5 201.1 100.5 0.0 100.5 18.0 -1.5E-01 185.5 160.8 301.6 100.5 201.1 100.5 0.0 100.5 18.0 -1.5E-01 185.5 160.8 301.6 100.5 201.1 100.5 0.0 100.5 2.0 -7.2E-02 75.3 301.6 402.1 0.0 0.0 0.0 0.0 SE MARUIM-ENERGIPE Parametro: roul d1 rou2 Profund. erro (m) (ru) (2) (3) (4) (5) (6) 2.0 3.2E-03 63.4 63.6 81.7 148.3* 57.8 64.1 42.7 71.6 4.0 -5.5E-03 59.4 59.1 37.7 72.9 55.3 90.5 25.1 72.9 8.0 3.7.7 72.9 55.3 30.5 20.5 17.4 75.4 75.4 75.4 125.7 16.0 -1.3E-03 44.3 44.2 50.3 30.2 70.4* 50.3 50.3 100.5 0.0 100.5 SE MARUIM-ENERGIPE Parametro: roul d1 41.4 Erro global: 5.61E-05 Profund. erro (m) (ru) (2) (3) (4) (5) (6) 2.0 3.2E-03 63.4 63.6 81.7 148.3* 57.8 64.1 42.7 71.6 4.0 -5.5E-03 59.4 59.1 37.7 72.9 55.3 90.5 22.1 72.9 8.0 3.7.8-03 44.3 44.2 50.3 30.2 70.4* 50.3 50.3 40.2 SE ESTANCIA-ENERGIPE Parametro: roul d1 rou2 SE ESTANCIA-ENERGIPE	(III			calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
ENERGIPE SE ARACAJU - ENERGIPE Setratificacao em Duas Camadas roul dl roul colspan="2">caudas roul colspan="2">colspan="2">caudas roul colspan="2">colspan="2">caudas roul colspan="2">caudas roul colspan="2">colspan="2">caudas roul colspan="2">colspan="2">caudas roul colspan="2">caudas media (1) (2) (3) (4) (5) (6) calculada media (1) (2) (3) (4) (5) (0) 100.5 calculada media (1) (0.0 201.1 0.0 0.0 0.0 canadas roul class camadas	2.0 4.0 8.0 16.0	1.4E-02 -1.8E-02 4.8E-02 -3.8E-04	2234	334.7 306.9 205.1 65.9	339.3 301.6 206.1 65.8	502.7 377.0 201.1 11.1	175.9 226.2 211.1 120.6				
SE ARACAJU - ENERGIPE Estratificacao em Duas Camadas Valores Finais: 70.1 5.6 Tro global: 5.61E-02 Erro Medio: 1.01E-01 Resistividades (ohm.m) (m) (pu) Calculada media (1) (2) (3) (4) (5) (6) 2.0 -7.2E-02 71.9 67.0 75.4 75.4 50.3 50.3 62.8 68.0 4.0 1.2E-01 81.3 92.2 100.5 100.5 75.4 75.4 75.4 75.4 75.4 75.4 75.4 75.4 75.4 75.4 125.7 8.0 7.7E-02 116.0 125.7 150.8 150.8 150.8 160.5 50.3 150.8 16.0 1.2E.7 150.8 301.6 100.5 201.1 100.5 0.0 100.5 32.0 8.7E-02 275.3 301.6 402.1 0.0 201.1 0.0 0.0 0.0 SE MARUIM-ENERGIPE Estratificacao em Touz Touz rouz 41.4 41.4 41					EN	ERGI	PE				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SE AR Param Valor Erro Erro	ACAJU - etro: es Fina: global: Medio:	ENI	ERGIPE	Estratif: rou1 70.1 5.61E-02 1.01E-01	icacao en d1 5.6	n Duas rou2 464.5	Camadas			
(m) (pu)	Prof	und. en	rro				Res	istividad	des (ohm	m)	
2.0 -7.2E-02 71.9 67.0 75.4 75.4 50.3 50.3 62.8 888.0 4.0 1.2E-01 81.3 92.2 100.5 100.5 75.4 75.4 75.4 75.4 125.7 8.0 7.7E-02 116.0 125.7 150.8 150.8 100.5 50.3 150.8 16.0 -1.5E-01 185.5 160.8 301.6 100.5 201.1 100.5 0.0 100.5 32.0 8.7E-02 275.3 301.6 402.1 0.0 201.1 0.0 0.0 0.0 SE MARUIM-ENERGIPE Parametro: roul d1 rou2 Valores Finais: 64.4 4.0 41.4 Erro global: 5.61E-05 Erro Medio: 3.422E-03 Profund. erro Resistividades (ohm.m) (m) (pu) calculada media (1) (2) (3) (4) (5) (6) 2.0 3.2E-03 63.4 63.6 81.7 148.3* 57.8 64.1 42.7 7	(11	., .,	pu /	calculad	<mark>la m</mark> edia	(1)	(2)	(3)	(4)	(5)	(6)
SE MARUIM-ENERGIPE Estratificacao em Duas Camadas Parametro: roul dl rou2 Valores Finais: 64.4 4.0 41.4 Erro global: $5.61E-05$ 64.4 4.0 41.4 Erro global: $5.61E-05$ 64.4 4.0 41.4 Erro global: $5.61E-05$ $3.42E-03$ Resistividades (ohm.m) Profund. erro (m) (pu) $-$ Resistividades (ohm.m) Calculada media (1) (2) (3) (4) (5) (6) 2.0 $3.2E-03$ 63.4 63.6 61.7 $148.3*$ 57.8 64.1 42.7 71.6 $4.0 - 5.5E-03$ 59.4 59.1 37.7 72.9 55.3 90.5 25.1 72.9 8.0 $3.7E-03$ 50.9 51.1 40.2 40.2 60.3 65.3 30.2 70.4 SE ESTANCIA-ENERGIPE Estratificacao em Duas Camadas Parametro: $roul$ $d1$ $rou2$	2.0 4.0 8.0 16.0 32.0	-7.2E-03 1.2E-0 7.7E-03 -1.5E-0 8.7E-03	2 1 2 1 2	71.9 81.3 116.0 185.5 275.3	67.0 92.2 125.7 160.8 301.6	75.4 100.5 150.8 301.6 402.1	75.4 100.5 150.8 100.5 0.0	50.3 75.4 150.8 201.1 201.1	50.3 75.4 100.5 100.5 0.0	62.8 75.4 50.3 0.0 0.0	88.0 125.7 150.8 100.5 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SE MA	RUTH-FN	FRG	TPR							
Profund. erro (m) Resistividades (ohm.m) calculada media (1) (2) (3) (4) (5) (6) 2.0 3.2E-03 63.4 63.6 81.7 148.3* 57.8 64.1 42.7 71.6 4.0 -5.5E-03 59.4 59.1 37.7 72.9 55.3 90.5 25.1 72.9 8.0 3.7E-03 50.9 51.1 40.2 40.2 60.3 65.3 30.2 70.4 16.0 -1.3E-03 44.3 44.2 50.3 30.2 70.4* 50.3 50.3 40.2 SE ESTANCIA-ENERGIPE Estratificacao em Duas Camadas 40.2 Valores Finais: 481.6 2.6 197.7 50.3 50.3 50.3 40.2 Erro Medio: 9.9E-02 9.9E-02 9.9E-02 197.7 50.3 50.3 50.3 50.3	Param Valor Erro Erro	etro: es Fina global: Medio:	is:		Estratif: rou1 64.4 5.61E-05 3.42E-03	icacao er d1 4.0	n Duas rou2 41.4	Camadas			
(m) (pu) calculada media (1) (2) (3) (4) (5) (6) 2.0 3.2E-03 63.4 63.6 81.7 148.3* 57.8 64.1 42.7 71.6 4.0 -5.5E-03 59.4 59.1 37.7 72.9 55.3 90.5 25.1 72.9 8.0 3.7E-03 50.9 51.1 40.2 40.2 60.3 65.3 30.2 70.4 16.0 -1.3E-03 44.3 44.2 50.3 30.2 70.4* 50.3 50.3 40.2 SE ESTANCIA-ENERGIPE Parametro: roul d1 rou2 Valores Finais: 481.6 2.6 197.7 Erro global: 4.56E-02 9.9E-02 9.9E-02	Prof	und. e	rro				Res	istivida	des (ohm	n.m)	
2.0 3.2E-03 63.4 63.6 81.7 148.3* 57.8 64.1 42.7 71.6 4.0 -5.5E-03 59.4 59.1 37.7 72.9 55.3 90.5 25.1 72.9 8.0 3.7E-03 50.9 51.1 40.2 40.2 60.3 65.3 30.2 70.4 16.0 -1.3E-03 44.3 44.2 50.3 30.2 70.4* 50.3 50.3 40.2 SE ESTANCIA-ENERGIPE Parametro: Yalores Finais: 481.6 2.6 197.7 481.6 2.6 197.7 197.7 Erro Medio: 9.9E-02 9.9E-02 197.7	(11	() ()	μu)	calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
SE ESTANCIA-ENERGIPE Parametro: Valores Finais: Erro global: Erro Medio: Erro	2.0 4.0 8.0 16.0	3.2E-0 -5.5E-0 3.7E-0 -1.3E-0	33333	63.4 59.4 50.9 44.3	63.6 59.1 51.1 44.2	81.7 37.7 40.2 50.3	148.3* 72.9 40.2 30.2	57.8 55.3 60.3 70.4*	$ \begin{array}{r} 64.1 \\ 90.5 \\ 65.3 \\ 50.3 \end{array} $	42.7 25.1 30.2 50.3	71.6 72.9 70.4 40.2
	SE ES Param Valor Erro Erro	TANCIA- etro: es Fina global: Medio:	ENE is:	RGIPE	Estratif rou1 481.6 4.56E-02 9.9E-02	icacao en d1 2.6	n Duas rou2 197.7	Camadas			

Pro	fund.	erro	2			Rest	istividad	es (ohm.	.m)	
. C	"	(pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	5.91 -1.11 1.61 -6.81	-02 -01 -01 -02	441.5 345.4 243.0 206.7	469.1 312.1 289.9 193.5	163.4 128.2 105.6 181.0	854.5 603.2 653.5 201.1	565.5 552.9 402.1 201.1	238.8 175.9 135.7 191.0	691.2 251.3 301.6 0.0	301.6 160.8 140.7 100.5*
CE C	CDTC		ENEDGIDE							
SE S	.CRISI	UVAU-	-ENERGIPE E:	stratifi	.cacao em	Duas	Canadas			
Valor Erro Erro	globa Medi	nais: al: lo:	1	105.9 .30E-03 .52E-02	4.5	11.8				
Prot	fund.	erro	2			Resi	<mark>istivida</mark> d	es (ohm.	m)	
		(pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	-2.81 -2.81 1.11 -1.81	-02 -02 -02 -03	101.6 83.7 43.7 16.6	103.7 81.4 44.1 16.6	115.6 95.5 39.7 14.1	121.9 67.9 25.1 10.1	77.9 62.8 60.3 20.1	115.6 213.6* 44.2 21.1	81.7 80.4 50.3 20.1	109.3 100.5 45.2 14.1
CE C		TAC I	NEDATOR							
Para Valo Erro Erro	netro res Fi globa Medi	nais:	Es 8 3	tratific rou1 22.4 .48E-03 .85E-02	acao em d1 7.3	Duas rou2 251.5	Camadas			
Pro	fund.	erro)			Rest	istividad	es (ohm.	.m)	
(1	m)	(pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	-4.51 7.51 -2.81 5.91	5-02 5-02 5-02	22.7 24.5 32.9 55.1	21.8 26.5 32.0 55.5	13.8 22.1 28.1 53.3	25.1 30.2 45.2 93.5	35.7 30.2 28.1 65.3	15.2 15.6 25.1 43.2	15.6 22.1 26.6 46.2	25.1 39.0 38.7 31.2
SE G	RACHO	CARD	SO-ENERGI	PF					1	
Para Valo Erro Erro	metro res F: globa Med:	inais 11:	E : 	stratifi rou1 624.6 .05E-03 .97E-02	cacao em d1 0.9	Duas rou2 26.4	Camadas			
Pro	fund.	erro	2		R	esistiv	idades (o	hm.m)		
()		(pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	-1.9	E-02 E-02 E-02 E-02	147.7 35.6 27.4 29.0	144.9 37.3 26.0 30.2	39.0 12.6 20.1 30.2	27.6 10.1 15.1 30.2	438.6 77.9 45.2 30.2	31.4 37.7 35.2 30.2	323.0 75.4 25.1 40.2*	10.1 10.1 15.1 30.2
CE T	TACUA		TEDATOE							
Para Valo Erro Erro	metro res F glob Med	inais al: io:	E 2	stratifi rou1 80.0 .91E-02 .40E-02	icacao em d1 21.5	Duas rou2 0.1	Camadas			
Pro	fund.	err	ç			Res	istvvidad	les (ohm	.m)	
(ш) ———————	(pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	5.8 -6.8 1.4 -2.7	E-02 E-02 E-01 E-02	79.9 79.7 77.6 66.1	84.8 74.6 90.5 64.3	75.4 50.3 80.4 80.4	27.6 55.3 120.6 50.3	39.0 70.4 60.3 50.3	155.8 95.5 80.4 70.4	74.1 115.6 165.9 211.1*	137.0 60.3 35.2 70.4

COELBA

SE RI	ACHO D	E SA	NTANA-COE	LBA		Dues	Comodoa			
Param Valor Erro Erro	etro: es Fin global Medio	ais:	26	rou1 56.8 .47E-02 .50E-02	d1 4.4	rou2 369.4	Canadas .			
Prof	und.	erro				Resi	stividad	es (ohm.)	m)	
(1	ı)	(pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	6.5E-	02	59.5	63.7	100.5	25.1	75.4	50.3	88.0	62.8
4.0	-1.1E-	01	72.0	64.6	50.3 62.8	69.1 37.7*	75.4	62.8	100.5*	50.3
8.0	5.7E-	02	109.6	116.1	50.3	150.8	130.7	100.5	150.8	100.5
16.0	5.3E-	02	172.3	182.0	150.8	120.6	251.3	150.8	251.3	201.1
32.0	-3.5E-	02	245.2	236.8	20.1* 201.1	201.1 201.1 201.1	301.6 201.1	201.1 301.6	221.2	301.6
SE PI	RITIBA	-COE	LBA E	stratifi	cacao em	Duas	Camadas			
Paran Valor Erro Erro	es Fin global Medio	ais: : :	1	157.8 64E-01 46E-01	1.6	116.2				
Prof	fund.	erro				Rest	stividad	es (ohm.	m)	
(1	n)	(pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-2.9E-	02	144.9	140.7	502.7*	138.2	40.2	33.9	238.8	175.9
4.0	1.7E-	01	129.4	156.1	326.7	201.1	52.8	40.2	226.2	175.9
8.0	-2.4E-	01	120.0	96.8	115.6	100.5	85.5	50.3	130.7	45.2
16.0	-1.3E-	02	117.2	115.6	145.8	80.4	120.6	70.4	120.6	70.4
32.0	2.8E-	01	116.5	160.8	160.8 241.3	100.5 1407.4*	221.2	120.6	181.0	100.5
SE PA	ARIPIRA	NGA-	COELBA		00000 07	Dues	Camadas			
Paran Valor Erro Erro	netro: res Fin global Medic	ais: .: ::	1	rou1 151.6 7.33E-03 8.44E-02	41.9	rou2 20193.0	Canadas			
Pro	fund.	erro	2			Res	istividad	es (ohm.	m)	
(1	m)	(pu	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-3.4E-	-02	151.6	146.6	100.5 128.2	37.7	47.8	25.1 251.3	$131.9 \\ 188.5$	150.8 251.3
4.0	6.0E-	-02	151.7	161.5	125.7	42.7	42.7 133.2	45.2 251.3	$221.2 \\ 133.2$	203.6 251.3
8.0	-2.5E-	-02	152.5	148.8	100.5	47.8	31.2 201.1	60.3 201.1	271.4 65.3	221.2 165.9
16.0	1.0E-	-02	158.3	159.9	130.7 341.8	51.3 120.6	51.3	100.5	372.0 53.3	$221.2 \\ 150.8$
32.0	4.2E-	-02	192.3	200.8	382.0 482.5 128.7	74.4 241.3 301.6	50.3 160.8 100.5	603.2* 201.1 241.3	201.1 104.6	241.3 100.5

SE MU	RITIBA-COE	LBA	Fatzat: #:	00000 07	Tree	Camadac			
Param Valor Erro Erro	etro: es Finais: global: Medio:		rou1 292.4 1.08E-01 1.37E-01	d1 1.1	rou2 547.3	d2 3.4	rou3 221.0	6 av an we	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Prof	und. erro				Resi	stivida	des (ohm.	m)	
(m	1) (pu)	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-1.0E-01	376.5	341.2	917.3* 251.3	427.3 314.2	238.8 590.6	452.4 326.7	201.1 251.3	377.0 251.3
4.0	9.7E-02	414.9	459.6	779.1 377.0	351.9 452.4	326.7 578.1	427.3 502.7	251.3 351.9	477.5 351.9
8.0	2.4E-01	358.4	473.9	754.0 452.4	402.1 452.4	402.1 452.4	351.9 603.2	$402.1 \\ 402.1$	452.4 402.1
16.0	-1.2E-01	266.9	239.1	231.2 130.7	311.6 140.7	140.7 201.1	$100.5 \\ 402.1$	120.6 201.1	160.8 201.1
32.0	1.2E-01	230.6	262.8	261.4 241.3 402.1	402.1 120.6 402.1	160.8 120.6	160.8 603.2	201.1 201.1	201.1 201.1
SE MU Param Valor Erro Erro	TUIPE-COEL es Finais: global: Medio:	BA	Estratifi rou1 368.4 7.72E-03 3.20E-02	cacao em d1 5.2	Duas rou2 1575.3	Camadas			
Prof	und. erro				Resi	stivida	des (ohm.	m)	
Prof (m	und. erro 1) (pu)	calculad	a media	(1)	Resi (2)	(3)	des (ohm. (4)	m) (5)	(6)
Prof (m	fund. erro i) (pu) -9.4E-03	calculad 377.9	a media 374.4	(1) 150.8 276.5 477.5 917.3	Resi (2) 339.3 314.2 339.3 263.9 138.2	(3) 150.8 150.8 289.0 841.9 188 5	(4) 213.6 615.8 653.5 565.5 138 2	m) (5) 314.2 502.7 841.9 213.6 439.8	(6) 364.4 552.9 263.9 150.8
Prof (m 2.0 4.0	fund. erro (pu) -9.4E-03 5.6E-03	calculad 377.9 424.8	a media 374.4 427.2	(1) 150.8 276.5 477.5 917.3 168.5 150.8 377.0 527.8 1055.6*	Resi (2) 339.3 314.2 339.3 263.9 138.2 427.3 980.2* 527.8 427.3	(3) 150.8 150.8 289.0 841.9 188.5 226.2 251.3 427.3 854.5	(4) 213.6 615.8 653.5 565.5 138.2 276.5 779.1 703.7 452.4	m) 314.2 502.7 841.9 213.6 439.8 452.4 527.8 854.5 105.6 105.6	(6) 364.4 552.9 263.9 150.8 452.4 854.5 427.3 55.3
Prof (m 2.0 4.0 8.0	und. erro (pu) -9.4E-03 5.6E-03 4.5E-02	calculad 377.9 424.8 583.8	a media 374.4 427.2 611.6	(1) 150.8 276.5 477.5 917.3 188.5 150.8 377.0 527.8 1055.6* 251.3 241.3 552.9 502.7 1105.8	Resi (2) 339.3 314.2 339.3 263.9 138.2 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 735.2 735.2 735.2 735.2 735.2 737.3 980.2* 527.8 737.3 735.2 737.3 735.2 737.3 737.8 737.3	(3) 150.8 150.8 289.0 841.9 188.5 226.2 251.3 427.3 854.5 301.6 297.6 4021.2* 703.7 1206.4	(4) 213.6 615.8 653.5 565.5 138.2 276.5 779.1 703.7 452.4 251.3 241.3 854.5 1105.8 552.9	m) 314.2 502.7 841.9 213.6 439.8 452.4 527.8 854.5 105.6 502.7 552.9 603.2 1206.4 105.6	(6) 364.4 552.9 263.9 150.8 452.4 854.5 427.3 55.3 552.9 1457.7 703.7 80.4
Prof (m 2.0 4.0 8.0 16.0	<pre>fund. erro (pu) -9.4E-03 5.6E-03 4.5E-02 -6.7E-02</pre>	calculad 377.9 424.8 583.8 862.7	a media 374.4 427.2 611.6 808.7	(1) 150.8 276.5 477.5 917.3 188.5 150.8 377.0 527.8 1055.6* 251.3 241.3 552.9 502.7 1105.8 170.9 341.8 8042.5* 432.3 1407.4	Resi (2) 339.3 314.2 339.3 263.9 138.2 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 95.5 351.9 3015.9 3015.9 3016.4 1206.4	(3) 150.8 150.8 289.0 841.9 188.5 226.2 251.3 427.3 854.5 301.6 297.6 4021.2* 703.7 1206.4 452.4 402.1 341.8 1306.9 1608.5	(4) 213.6 615.8 653.5 565.5 138.2 276.5 779.1 703.7 452.9 241.3 854.5 1105.8 552.9 502.7 251.3 1105.8 1306.9 613.2	m) (5) 314.2 502.7 841.9 213.6 439.8 452.4 527.8 854.5 105.6 502.7 552.9 603.2 1206.4 105.6 754.0 643.4 502.7 1608.5 170.9	(6) 364.4 552.9 263.9 150.8 452.4 854.5 427.3 55.3 552.9 1457.7 703.7 80.4 593.1 1910.1 1206.4 191.0
Prof (m 2.0 4.0 8.0 16.0 32.0	 and. erro (pu) -9.4E-03 5.6E-03 4.5E-02 -6.7E-02 3.3E-02 	calculad 377.9 424.8 583.8 862.7 1163.1	a media 374.4 427.2 611.6 808.7 1202.7	(1) 150.8 276.5 477.5 917.3 188.5 150.8 377.0 527.8 1055.6* 251.3 241.3 552.9 502.7 1105.8 170.9 341.8 8042.5* 432.3 1407.4 211.1 764.0 1125.9 623.3 1809.6 462.4	Resi (2) 339.3 314.2 339.3 263.9 138.2 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 980.2* 527.8 427.3 95.5 351.9 3015.9* 1206.4 150.6 5428.7* 1025.4 2211.7 382.0	(3) 150.8 150.8 289.0 841.9 188.5 226.2 251.3 427.3 854.5 301.6 297.6 4021.2* 703.7 1206.4 4021.2* 703.7 1206.4 4021.2* 1306.9 1608.5 452.4 603.2 542.9 2211.7 1809.6 723.8	(4) 213.6 615.8 653.5 565.5 138.2 276.5 779.1 703.7 452.4 251.3 241.3 854.5 1105.8 552.9 502.7 251.3 1105.8 1306.9 613.2 904.8 341.8 18095.6* 2010.6 623.3 1809.6	m) (5) 314.2 502.7 841.9 213.6 439.8 452.4 527.8 854.5 105.6 502.7 552.9 603.2 1206.4 105.6 754.0 643.4 502.7 1608.5 170.9 1407.4 1266.7 965.1 1809.6 301.6 2211.7	$(6) \\ 364.4 \\ 552.9 \\ 263.9 \\ 150.8 \\ 452.4 \\ 854.5 \\ 427.3 \\ 55.3 \\ 552.9 \\ 1457.7 \\ 703.7 \\ 80.4 \\ 593.1 \\ 1910.1 \\ 1206.4 \\ 191.0 \\ 1105.8 \\ 2613.8 \\ 2211.7 \\ 361.9 \\ \end{cases}$

Profu	ind.	erro				Resi	stividad	es (ohm.	m)	
(11	,	(pu)	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	1.6E	-09	207.4	207.4	402.1*	314.2	214.9	$139.5 \\ 163.4$	253.8 163.4	163.4 270.2
4. 0	8.9E	-09	253.0	253.0	199.8 452.4 228.7	377.0 326.7 183.5	128.2 208.6 349.3	188.5 183.5 150.8	167.1 329.2 248.8	150.8 261.4
8.0	3.5E	-08	348.6	348.6	238.8 502.7 361.9	402.1 502.7 211.1	165.9 226.2 361.9	196.0 110.6 211.1	452.4 502.7	291.5 351.9
16.0	9.4E	-08	416.8	416.8	402.1 854.5 432.3	1508.0* 201.1	281.5 191.0 221.2	100.5 281.5 382.0	542.9 958.1 231.2	341.8 502.7
32.0	4.9E	-08	336.1	336.1	1105.8* 563.0 422.2	0.0 261.4 201.1	281.5 221.2 341.8	261.4 201.1 361.9	462.4 1065.6* 281.5	341.8 502.7
SE LO	MANTO		OR-COFLB							
Param Valor Erro	etro: es Fi globa Medi	nais: l: o:		Estratifi rou1 210.9 1.13E-02 3.65E-02	cacao em d1 1.7	Tres rou2 768.3	Camadas d2 33.9	rou3 153.9		
Prof	und.	erro				Resi	stividad	es (ohm.	m)	
(m)	(pu)	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	5.0E 3.9E -2.9E	-03 -02 -03 -02	281.3 402.5 546.1 645.7	282.7 418.9 544.5 705.4	125.7 201.1 201.1 231.2	150.8 201.1 251.3 281.5 241.3	502.7 754.0 904.8 1206.4 1206.4	314.2 452.4 703.7 1005.3 1206.4	226.2 351.9 402.1 301.6 40.2	377.0 552.9 804.2 1206.4 804.2
32.0	-5.11	-02	619.8	589.8	40.2	241.5	1200.4	1200.4		
SE LA Param Valor Erro Erro Erro	MAKAC es Fi globs Medi)-COEL	BA	Estratifi 2632.8 1.44E-02 5.04E-02	cacao en d1 4.3	Duas rou2 418.5	Camadas			
Prof	fund.	erro				Rest	istividad	des (ohm	.m)	
(1	1)	(pu)	calcula	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	-2.01 -5.61 -5.61 -4.31	E-02 E-02 E-02 E-02 E-02 E-02	2520.8 2073.2 1132.3 532.7 433.3	$\begin{array}{r} 2471.4\\ 2199.1\\ 1072.3\\ 576.4\\ 415.5\end{array}$	3141.6 3267.3 1407.4 563.0 221.2	$1131.0 \\ 62.8 \\ 402.1 \\ 603.2 \\ 804.2$	3141.6 3267.3 1407.4 563.0 221.2			
SE II Paran Valor Erro	RAQUA netro res F glob	RA-CO inais al:	ELBA :	Estratif rou1 45.4 1.42E-01 1.52E-01	icacao e d1 4.1	m Duas rou2 274.3	Camadas			
Pro	fund.	err	-			Res	istivida	des (ohm	1.m)	
(1	m) .	(pu	calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	1.5 -2.3 7.5 -6.8	E-01 E-01 E-01 E-02 E-02 E-02	48.1 59.2 90.5 139.6 193.3	56.5 47.8 116.9 150.8 181.0	100.5 62.8 50.3 150.8 20.1	62.8 50.3 115.6 201.1 301.6	37.7 40.2 150.8 130.7 201.1	25.1 37.7 150.8 120.6 201.1		
SE I Para Valo Erro	TAJUI metro glot	PE-CC inais al: lio:	ELBA	Estratif roul 290.6 3.35E-02 6.56E-02	icacao e di 9.4	em Duas rou2 193.3	Camadas	3		

Prof	und.	erro				Resi	stividad	es (ohm.	m)	
(111	'	(pu)	calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-4.4E-	-02	290.2	277.9	66.6 213.6 351.9	30.2 603.2 163.4	27.6 175.9 414.7	27.6 138.2 150.8	678.6 653.5 188.5	691.2 213.6 213.6
4.0	-3.0E-	-02	287.8	279.4	226.2	47.8 678.6	231.2	175.9	527.0 678.6	251.3
8.0	1.6E-	-01	275.5	327.0	80.4 150.8	100.5 904.8	125.7 306.6 377.0	55.3 155.8 412.2	653.5 603.2 201.1	653.5 452.4 201.1
16.0	-7.3E-	-02	243.1	226.5	140.7 110.6 201 1	150.8 975.2* 251.3	191.0 261.4 261.4	130.7 80.4 301.6	804.2* 603.2 201.1	804.2* 402.1 110.6
32.0	2.3E-	-02	210.6	215.6	241.3 60.3 100.5	221.2 281.5 160.8	522.8 120.6 120.6	321.7 60.3 60.3	402.1 160.8 361.9	402.1 181.0 100.5
SE IR Param	ARA-CO	DELBA	4	Estratifi roul	icacao em	Tres rou2	Camadas d2	rou3		
Valor Erro Erro	globa. Medic			2.09E-02 4.93E-02	0.2	1000.9	4.0	774.0		
Prof	und.	erro	2			Resi	stividad	les (ohm.	.m)	
(π	()	(pu)	calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	3.0E-	-02	702.0	723.4	251.3 2890.3* 728.9	1055.6 465.0 640.9	728.9 653.5 238.8	1633.6 565.5 1055.6	314.2 741.4 3518.6*	465.0 527.8 1508.0
4.0	8.9E	-02	871.2	956.5	1608.5 2186.6 829.4	1055.6 678.6 578.1	829.4 678.6 276.5	1633.6 552.9 1055.6	377.0 1030.4 5026.6*	678.6 628.3 1583.4
8.0	1.1E	-01	916.5	1028.1	1759.3 2613.8 854 5	1256.6 904.8 603.2	854.5 603.2 155.8	1709.0 331.8 1256.6	502.7 1005.3 4523.9*	904.8 552.9 1608.5
16.0	1.7E	-03	853.7	855.1	1508.0 2412.7 130.7	894.7 754.0 372.0	1306.9 331.8 150.8	4021.2* 522.8 894.7	372.0 924.9 2010.6	754.0 341.8 4021.2*
32.0	1.7E	-02	798.5	812.5	884.7 2010.6 924.9	1085.7 422.2 261.4	924.9 160.8 160.8	2010.6 462.4 1085.7	321.7 904.8 2412.7*	422.2 160.8 1608.5
SE IC	CHU-CO	ELBA		Estratif	icac <mark>ao e</mark> r	n Duas	Camadas			
Paran Valor Erro Erro	netro: res Fi globa Medi	nais l: o:	:	rou1 54.3 8.35E-03 3.64E-02	d1 4.9	rou2 527.4				
Prof	fund.	err	<u> </u>			Resi	istividad	ies (ohm	.m)	
(I		(pu	calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	-1.6E 2.5E 3.6E -7.1E 3.4E	-02 -02 -02 -02	56.5 67.4 104.2 174.9 271.8	55.6 69.1 108.1 163.4 281.5	55.3 62.8 75.4 120.6 201.1	66.6 80.4 135.7 160.8 241.3	57.8 90.5 170.9 291.5 542.9	42.7 42.7 50.3 80.4 140.7		
SE I	TAGIBA	-COE	LBA	Retratif		m Duas	Camadas			
Para Valo Erro Erro	metro: res Fi globs Medi	nais 1: .o:	:	rou1 212.2 2.40E-02 6.06E-02	d1 2.7	rou2 1898.2				

(m) (pl) calculada media (1) (2) (3) (4) (5) 2.0 -2.1E-02 250.8 245.6 75.4 75.4 326.7 402.1 194.8 1 75.4 326.7 150.8 75.4 100.5 515.2 150.8 150.8 75.4 100.5 515.2 351.9 3 263.9 603.2 75.4 276.5 301.6 3 263.9 603.2 75.4 276.5 301.6 3 201.1 201.1 106.6 105.6 552.9 703.7 331.8 3 145.8 552.9 150.8 105.6 502.7 9 201.1 201.1 106.6 188.5 804.2 326.7 150.8 377.0 804.2 502.7 5 427.3 1060.6 427.3 432.3 507.7 7 8.0 -7.7E-02 617.7 573.5 150.8 150.8 754.0 904.8 552.9 5 231.2 754.0 150.8 311.6 1146.1 1 455.4 160.8 603.2 1055.6 703.7 7 8.0 -7.7E-02 617.7 573.5 150.8 150.8 754.0 904.8 552.9 5 231.2 754.0 150.8 311.6 1146.1 1 452.4 160.8 603.2 1055.6 703.7 7 784.1 1859.8* 733.9 557.9 804.2 9 955.0 16.0 -4.1E-02 963.3 925.2 211.1 211.1 924.9 1306.9 904.8 9 221.2 924.9 181.0 221.7 1265.18 301.6 301.6 251.3 502.7 1869.9 22 623.3 201.1 804.2 1709.0 1226.5 12 1327.0 2623.9 1105.8 824.4 1306.9 16 32.0 4.6E-02 1337.1 1401.6 261.4 261.4 1508.0 2211.7 1226.5 12 1327.0 2623.9 1105.8 824.4 1306.9 16 1608.5 1105.8 224.1 201.1 1226.5 12 1327.0 2623.9 1105.8 824.4 1306.9 16 1608.5 201.1 261.4 2211.7 22 2211.7 3619.1 1849.8 1206.4 211.7 22 2211.7 3619.1 1849.8 1206.4 2111.2 24 2453.0	Profunc	l. err				Resistiv	vidades ((ohm.m)		
2.0 -2.1E-02 250.8 245.6 75.4 75.4 326.7 402.1 194.8 1 75.4 326.7 150.8 75.4 35.2 5 150.8 150.8 75.4 100.5 515.2 263.9 603.2 75.4 276.5 301.6 3 389.6 105.6 552.9 703.7 331.8 3 145.8 552.9 150.8 105.6 502.7 9 201.1 201.1 110.6 1185 804.2 326.7 150.8 377.0 804.2 502.7 5 427.3 1060.6 427.3 432.3 507.7 7 703.7 326.7 150.8 150.8 754.0 904.8 552.9 5 231.2 754.0 150.8 150.8 703.7 14 251.3 251.3 160.8 311.6 1146.1 1 455.4 160.8 603.2 1055.6 703.7 7 764.1 1859.8* 733.9 557.9 804.2 9 955.0 16.0 -4.1E-02 963.3 925.2 211.1 211.1 924.9 1306.9 904.8 9 221.2 924.9 181.0 211.1 126.5 18 32.0 4.6E-02 1337.1 1401.6 261.4 261.4 1508.0 2211.7 1206.4 12 36.9 1508.0 2211.7 226.5 12 32.0 2211.7 36.19.1 1849.8 1206.4 211.7 22 36.19.1 1849.8 1206.4 211.7 24 36.19.1	(m)	(pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
4.0 1.2E-01 370.7 420.0 105.6 105.6 552.9 703.7 331.8 3 145.8 552.9 150.8 105.6 502.7 9 201.1 201.1 110.6 188.5 804.2 326.7 1060.6 427.3 432.3 507.7 7 703.7 1060.6 427.3 432.3 507.7 7 8.0 -7.7E-02 617.7 573.5 150.8 150.8 754.0 904.8 552.9 5 231.2 754.0 150.8 150.8 703.7 14 251.3 251.3 160.8 311.6 1146.1 1 452.4 160.8 603.2 1055.6 703.7 7 784.1 1859.8* 733.9 557.9 804.2 9 16.0 -4.1E-02 963.3 925.2 211.1 211.1 924.9 1306.9 904.8 9 221.2 924.9 181.0 211.1 1226.5 18 301.6 301.6 251.3 502.7 1869.9 2 623.3 201.1 804.2 1709.0 1226.5 12 1327.0 2623.9 1105.8 824.4 1306.9 16 1608.5 32.0 4.6E-02 1337.1 1401.6 261.4 261.4 1508.0 2211.7 1206.4 12 241.3 241.3 241.3 241.3 201.1 2855.1 2 1005.3 241.3 1005.3 2654.0 2211.7 22 2211.7 3619.1 1849.8 1206.4 2111.2 24 2453.0 251.3 1005.3 2654.0 2211.7 22 2211.7 3619.1 1849.8 1206.4 2111.2 24 2453.0 251.3 1005.3 2654.0 2211.7 22 2211.7 22 2211.7 3619.1 1849.8 1206.4 2111.2 24 2453.0 251.3 1005.3 2654.0 2211.7 22 2211.7 22 2211.7 3619.1 1849.8 1206.4 2111.2 24 2453.0 251.3 205.4 211.2 24 2453.0 251.3 2654.0 2211.7 22 241.3 241.3 241.3 241.3 241.3 241.3 241.3 241.3 241.3 241.2 24 2453.0 251.3 1005.3 2654.0 2211.7 22 2453.0 251.3 1005.3 2654.0 2211.7 22 251.3 1005.3 2654.0 2211.7 24	2.0 -2.	1E-02	250.8	245.6	75.4 75.4 150.8 188.5 263.9	75.4 326.7 150.8 138.2 603.2	326.7 150.8 75.4 251.3 75.4	402.1 75.4 100.5 515.2 276.5	194.8 35.2 515.2 351.9 301.6	194.8 540.4 50.3 351.9 389.6
8.0 -7.7E-02 617.7 573.5 150.8 150.8 754.0 904.8 552.9 5 231.2 754.0 150.8 150.8 703.7 14 251.3 251.3 160.8 311.6 1146.1 1 452.4 160.8 603.2 1055.6 703.7 7 764.1 1859.8* 733.9 557.9 804.2 9 955.0 955.0 221.2 924.9 181.0 211.1 1226.5 18 301.6 301.6 301.6 251.3 502.7 1869.9 2 2 222.2 924.9 181.0 211.1 1226.5 12 32.0 4.6E-02 1337.1 1401.6 261.4 261.4 1508.0 2211.7 1206.4 12 32.0 4.6E-02 1337.1 1401.6 261.4 261.4 1508.0 2211.7 1206.4 12 32.0 4.6E-02 1337.1 1401.6 261.4 261.4 1508.0 2211.7 1206.4 12 32.11 201.1 265.1 <td>4.0 1.</td> <td>2E-01</td> <td>370.7</td> <td>420.0</td> <td>389.6 105.6 145.8 201.1 326.7 427.3</td> <td>105.6 552.9 201.1 150.8 1060.6</td> <td>552.9 150.8 110.6 377.0 427.3</td> <td>703.7 105.6 188.5 804.2 432.3</td> <td>331.8 502.7 804.2 502.7 507.7</td> <td>331.8 904.8 95.5 502.7 703.7</td>	4.0 1.	2E-01	370.7	420. 0	389.6 105.6 145.8 201.1 326.7 427.3	105.6 552.9 201.1 150.8 1060.6	552.9 150.8 110.6 377.0 427.3	703.7 105.6 188.5 804.2 432.3	331.8 502.7 804.2 502.7 507.7	331.8 904.8 95.5 502.7 703.7
16.0 -4.1E-02 963.3 925.2 211.1 211.1 924.9 1306.9 904.8 9 221.2 924.9 181.0 211.1 1226.5 18 301.6 301.6 251.3 502.7 1869.9 2 623.3 201.1 804.2 1709.0 1226.5 12 1327.0 2623.9 1105.8 824.4 1306.9 16 1608.5 32.0 4.6E-02 1337.1 1401.6 261.4 261.4 1508.0 2211.7 1206.4 12 361.9 1508.0 20.1 261.4 2211.7 32 241.3 241.3 241.3 201.1 2855.1 2 1005.3 241.3 1005.3 2654.0 2211.7 22 2211.7 3619.1 1849.8 1206.4 2111.2 24 2453.0 SE IBIRAPOA-COELBA Estratificação em Tres Camadas	8.0 -7.	7E-02	617.7	573.5	703.7 150.8 231.2 251.3 452.4 784.1	150.8 754.0 251.3 160.8 1859.8*	754.0 150.8 160.8 603.2 733.9	904.8 150.8 311.6 1055.6 557.9	552.9 703.7 1146.1 703.7 804.2	552.9 1407.4 150.8 703.7 955.0
32.0 4.6E-02 1337.1 1401.6 261.4 261.4 1508.0 2211.7 1206.4 12 361.9 1508.0 20.1 261.4 2211.7 32 241.3 241.3 241.3 201.1 2855.1 2 1005.3 241.3 1005.3 2654.0 2211.7 22 2211.7 3619.1 1849.8 1206.4 2111.2 24 2453.0 SE IBIRAPOA-COELBA Estratificação em Tres Camadas	16.0 -4.	1E-02	963.3	925.2	955.0 211.1 221.2 301.6 623.3 1327.0	211.1 924.9 301.6 201.1 2623.9	924.9 181.0 251.3 804.2 1105.8	$1306.9 \\ 211.1 \\ 502.7 \\ 1709.0 \\ 824.4$	904.8 1226.5 1869.9 1226.5 1306.9	904.8 1809.6 221.2 1226.5 1608.5
SE IBIRAPOA-COELBA Estratificação em Tres Camadas		6E-02	1337.1	1401.6	261.4 361.9 241.3	$261.4 \\ 1508.0 \\ 241.3 \\ 241$	1508.0 20.1 241.3 1005.3	2211.7 261.4 201.1 2654.0	1206.4 2211.7 2855.1 2211.7	1206.4 3217.0 201.1 2211.7 2453.0
Parametro: rou1 d1 rou2 d2 rou3 Valores Finais: 328.8 4.8 504.6 67.0 26.1 Erro global: 4.10E-01 1.55E-01 1.55E-01 1.55E-01 1.55E-01	32.0 4.				1005.3 2211.7 2453.0	3619.1	1849.8	1206.4	2111.2	
(m) (pu) (2) (3) (4) (5)	32.0 4. SE IBIRA Parameti Valores Erro glo Erro Me	POA-CO Finais Dal: dio:	ELBA F	stratif: rou1 328.8 1.10E-01 1.55E-01	1005.3 2211.7 2453.0 icacao er d1 4.8	241.3 3619.1 n Tres rou2 504.6	Camadas d2 67.0	1206.4 rou3 26.1	2111.2 	
2.0 -3.3E-02 332.1 321.4 565.5 691.2 70.4 565.5 150.8 10 201.1 120.6 138.2 358.1 653.5 16 13.6 163.4 276.5 377.0 251.3 1 754.0 339.3 364.4 263.9 69.1	32.0 4. SE IBIRA Parameti Valores Erro glo Erro Me Profunc (m)	POA-CO Finais bal: dio: 1. err (pu	ELBA ELBA	Estratif: rou1 328.8 1.10E-01 1.55E-01	1005.3 2211.7 2453.0 icacao er d1 4.8	241.3 3619.1 n Tres rou2 504.6 Res	Camadas d2 67.0 istivida	1206.4 rou3 26.1 des (ohm (4)	.m) (5)	(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.0 4. SE IBIRA Parameti Valores Erro glo Erro Me Profund (m) 2.0 -3	POA-CO Finais bal: dio: 1. err (pu .3E-02	ELBA F calculada 332.1	Estratifi rou1 328.8 1.10E-01 1.55E-01 a media 321.4	1005.3 2211.7 2453.0 icacao er d1 4.8 (1) 565.5 201.1 13.8 754.0	241.3 3619.1 n Tres rou2 504.6 Res (2) 691.2 120.6 163.4 339.3	Camadas d2 67.0 istividad (3) 70.4 138.2 276.5 364.4	rou3 26.1 des (ohm (4) 565.5 358.1 377.0 263.9	(5) (5) (5) (5) (5) (5) (5) (5) (5) (5)	(6) 1005.3 1653.7 124.4 52.8
8.0 -2.2E-02 391.2 382.9 653.5 703.7 155.8 462.4 382.0 2 452.4 271.4 251.3 552.9 683.6 20 402.1 206.1 336.8 598.2 412.2 2	32.0 4. SE IBIRA Parameti Valores Erro glo Erro Me Profund (m) 2.0 -3 4.0 6	POA-CO Finais bal: dio: 1. err (pu .3E-02	ELBA F calculada 332.1 347.4	Estratifi rou1 328.8 1.10E-01 1.55E-01 a media 321.4 370.2	1005.3 2211.7 2453.0 icacao er d1 4.8 (1) 565.5 201.1 13.8 754.0 144.5 804.2 326.7 246.3 1332.0*	241.3 3619.1 n Tres rou2 504.6 (2) 691.2 120.6 163.4 339.3 754.0 176.4 208.6 276.5	Camadas d2 67.0 istividau (3) 70.4 138.2 276.5 364.4 88.0 198.5 351.9 377.0	rou3 26.1 des (ohm (4) 565.5 358.1 377.0 263.9 552.9 402.1 515.2 301.6	2111.2 .m) (5) 150.8 653.5 251.3 69.1 246.3 716.3 552.9 82.9	(6) 1005.3 1653.7 124.4 52.8 301.6 1960.4 178.4 703.7
1407.4* 286.5 301.6 150.8 110.6 201 1	32.0 4. SE IBIR Parameti Valores Erro glo Erro Me Profunc (m) 2.0 -3 4.0 6 8.0 -2	POA-CO Finais bal: dio: 1. err (pu .3E-02 .2E-02	ELBA F calculada 332.1 347.4 391.2	Stratifi rou1 328.8 1.10E-01 1.55E-01 321.4 370.2 382.9	1005.3 2211.7 2453.0 icacao er d1 4.8 (1) 565.5 201.1 13.8 754.0 144.5 804.2 326.7 246.3 1332.0* 150.8 653.5 452.4 402.1 1407.4*	241.3 3619.1 n Tres rou2 504.6 Res (2) 691.2 120.6 163.4 339.3 754.0 178.4 208.6 276.5 703.7 271.4 206.1 286.5	Camadas d2 67.0 istivida (3) 70.4 138.2 276.5 364.4 88.0 198.5 351.9 377.0 155.8 251.3 336.8 301.6	rou3 26.1 des (ohm (4) 565.5 358.1 377.0 263.9 552.9 402.1 515.2 301.6 462.4 552.9 598.2 150.8	2111.2 (5) 150.8 653.5 251.3 69.1 246.3 716.3 552.9 82.9 382.0 683.6 412.2 110.6	(6) 1005.3 1653.7 124.4 52.8 301.6 1960.4 178.4 703.7 251.3 2010.6 226.2 754.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.0 4. SE IBIRA Parameti Valores Erro glo Erro Me Profund (m) 2.0 -3 4.0 6 8.0 -2 16.0 2	POA-CO Finais Dal: dio: 1. err (pu .3E-02 .2E-02 .2E-02	ELBA H calculada 332.1 347.4 391.2 444.6	Sstratifi 328.8 1.10E-01 55E-01 a media 321.4 370.2 382.9 454.5	1005.3 2211.7 2453.0 icacao er d1 4.8 (1) 565.5 201.1 13.8 754.0 144.5 804.2 326.7 246.3 1332.0* 150.8 653.5 452.4 402.1 1407.4* 201.1 532.8 522.8 653.5 1005.3 100.5	241.3 3619.1 n Tres rou2 504.6 (2) 691.2 120.6 163.4 339.3 754.0 178.4 208.6 276.5 703.7 271.4 206.1 286.5 603.2 271.4 100.5 311.6	1849.8 Camadas d2 67.0 istividau (3) 70.4 138.2 276.5 364.4 88.0 198.5 351.9 377.0 155.8 251.3 336.8 301.6 261.4 251.3 201.1	rou3 26.1 des (ohm (4) 565.5 358.1 377.0 263.9 552.9 402.1 515.2 301.6 462.4 552.9 598.2 150.8 301.6 1005.3 985.2 261.4	2111.2 (5) 150.8 653.5 251.3 69.1 246.3 716.3 552.9 82.9 382.0 683.6 412.2 110.6 502.7 713.8 261.4 130.7	(6) 1005.3 1653.7 124.4 52.8 301.6 1960.4 178.4 703.7 251.3 2010.6 226.2 754.0 321.7 2513.3 2010.6 226.2 754.0 321.7 2513.3 1005.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.0 4. SE IBIR Parameti Valores Erro glo Erro Me Profunc (m) 2.0 -3 4.0 6 8.0 -2 16.0 2	POA-CO Finais bal: dio: 1. err (pu .3E-02 .2E-02 .2E-02 .2E-02	ELBA H calculada 332.1 347.4 391.2 444.6	Estratifi rou1 328.8 1.10E-01 1.55E-01 a media 321.4 370.2 382.9 454.5	1005.3 2211.7 2453.0 icacao er d1 4.8 (1) 565.5 201.1 13.8 754.0 144.5 804.2 326.7 246.3 1332.0* 150.8 653.5 452.4 402.1 1407.4* 201.1 532.8 532.8 522.8 653.5	241.3 3619.1 Tres rou2 504.6 Res (2) 691.2 120.6 163.4 339.3 754.0 178.4 208.6 276.5 703.7 271.4 206.1 286.5 603.2 271.4 100.5	Camadas d2 67.0 istivida (3) 70.4 138.2 276.5 364.4 88.0 195.5 354.4 88.0 195.5 377.0 155.8 251.3 336.8 301.6 261.4 261.4 251.3	rou3 26.1 des (ohm (4) 565.5 358.1 377.0 263.9 552.9 402.1 515.2 301.6 462.4 552.9 598.2 150.8 301.6 1005.3 985.2	2111.2 (5) 150.8 653.5 251.3 69.1 246.3 716.3 552.9 82.9 382.0 683.6 412.2 110.6 502.7 713.8 261.4	(6 1005. 1653. 124. 52. 301. 1960. 178. 703. 251. 2010. 251. 2010. 251. 2010. 251. 2010. 754. 321. 2513. 341. 2513.

Parametro: Valores Finais: Erro global: Erro Medio:

61.0 1.62E-02 4.81E-02

Profi	und.	erro				Resi	stividade	es (ohm.r	n)	
(11)	,	(pu)	calculada	media	(1)	(2)	(3)	4)	(5)	(6)
2.0	1.1E-	-02	62.0	62.7	32.7 62.8 30.2	44.0 67.9 50.3	150.8 42.7 66.6	188.5 251.3* 46.5	60.3 42.7 326.7*	213.6* 66.6 30.2
4.0 ·	-3.8E-	-02	68.1	65.6	40.2 128.2 45.2	65.3 70.4 52.8	80.4 55.3 80.4	148.3* 191.0* 57.8	95.5 72.9 402.1*	62.8 52.8 67.9
8.0	9.2E-	-02	97.4	107.2	55.3 351.9* 100.5	90.5 95.5 75.4	100.5 100.5 95.5	160.8 186.0 100.5	110.6 181.0 296.6*	$135.7 \\ 75.4 \\ 125.7$
16.0 ·	-7.5E-	-02	181.7	169.1	100.5 854.5* 160.8	170.9 88.5 130.7	170.9 130.7 150.8	291.5 321.7 160.8	201.1 442.3* 181.0	221.2 160.8 201.1
32.0	2.6E-	-02	354.7	364.1	60.3 193.0 703.7 482.5 100.5	$ \begin{array}{r} 140.7 \\ 341.8 \\ 241.3 \\ 221.2 \\ 0.0 \\ \end{array} $	341.8 341.8 241.3	422.2 623.3 281.5	462.4 542.9 170.9	623.3 241.3 341.8
SE RE Param Valor Erro Erro	TIROLA etro: es Fin globa Medio	ANDIA nais: 1: o:	-COELBA	Stratifi 42.3 1.29E-02 1.26E-02	cacao em d1 7.4	Duas rou2 158.9	Camadas			
Prof	und.	erro				Resi	stividad	es (ohm.	m)	
(m)	(pu)	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	-6.2E 8.5E 1.1E -3.8E 1.8E	-02 -02 -02 -02 -02 -02	42.7 44.9 54.7 78.3 108.6	40.2 49.0 55.3 75.4 110.6	30.2 47.8 60.3 70.4 80.4	50.3 50.3 50.3 80.4 140.7				
SE EL Param Valor Erro Erro	ISIO etro: es Fi globa Medi	MEDRA nais: l:	DO-COELB	A Estratifi 32.8 5.03E-03 2.72E-02	cacao em d1 0.2	Quatro rou2 1836.6	Camadas d2 1.3	rou3 - 42.4	d3 3.4	rou4 1286.9
Prof	und.	erro	2			Res	istividad	les (ohm.	m)	
(1	1)	(pu)	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	3.4E	C-02	294.9	305.2	175.9 15.1 251.3	377.0 301.6 427.3	339.3 402.1 502.7	301.6 213.6 326.7	389.6 552.9 427.3	289.0 351.9
4.0	1 50	2-02	327 2	332 2	30.2*	377.0	502.7	326.7 196.0	527.8 221.2	206.1
10.0	2.00	2-02	261 0	255 3	65.3	271.4	603.2 402.1	236.2 301.6	502.7 221.2	231.2
32.0	9.5E	5-02 5-03	378.4	382.0	130.7 361.9 301.6	211.1 341.8 301.6	462.4* 482.5 482.5	311.6 542.9 361.9	271.4 241.3 442.3	341.8
SE D Paran Valor Erro Erro	DM MAC netro: res Fi globa Medi	CEDO (inais al: io:	COSTA-COF	LBA Estratif 441.1 1.02E-01 1.11E-01	icacao en d1 10.5	n Duas rou2 181.7	Camadas			

Profund.	erro	2		Resistividades (ohm.m)						
(m)	(pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)	
2.0 -8.9E 4.0 2.7E 8.0 -1.3E 16.0 5.3E 32.0 -1.0E	-02 -01 -01 -02 -02	440.2 434.7 404.7 317.2 223.5	404.2 599.0 359.4 335.1 221.2	251.3 477.5 85.5 160.8 261.4	238.8 326.7 301.6 271.4 201.1	552.9 754.0 603.2 422.2 221.2	314.2 477.5 603.2 452.4 201.1	816.8 1231.5 412.2 502.7 804.2*	251.3 326.7 150.8 201.1 221.2	
SE CATU-CO Parametro: Valores Fin Erro globa Erro Medio	ELBA nais: l: o:	E 2 5	stratifi rou1 399.7 14E-02 .45E-02	icacao en d1 3.2	n Duas rou2 1287.7	Camadas				
Profund.	erro	2			Rest	istividad	les (ohm	.m)		
(m)	(pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)	
2.0 -1.3E	-02	430.6	425.0	458.7 100.5*	452.4 276.5	512.7 377.0	512.7 402.1	754.0* 364.4	150.8* 363.2	
4.0 3.2E	-02	535.7	553.6	608.2 251.3	578.1 103.0	756.5 678.6	726.3 452.4	1027.9 326.7	$251.3 \\ 427.3$	
8.0 3.5E	-02	749.2	776.2	693.7 341.8	754.0	1005.3 955.0	1508.0 839.4	$1633.6 \\ 507.7$	492.6 457.4	
16.0 -1.1E	-01	984.8	885.4	924.9 955.0 552.9	502.7 1005.3 100.5	1176.2 1005.3	1769.3 1136.0	1095.8 583.1	703.7 301.6	
32.0 8.0E	-02	1156.7	1256.6	904.8 1407.4 1266.7 1427.5	1105.8 160.8 140.7 1970.4	1990.5 100.5	2010.6 1910.1	1970.4 1467.8	1568.3 201.1	
SE CANDIBA Parametro: Valores Fi Erro globa Erro Medi	-COEI nais: l: o:	LBA F	stratifi rou1 185.9 .35E-01 .57E-01	icacao er d1 5.1	n Tres rou2 10.4	Camadas d2 3.4	rou3 3514.3			
Profund.	erro	ç			Res	istividad	les (ohm	.m)		
(m)	(pu	calculada	n media	(1)	(2)	(3)	(4)	(5)	(6)	
2.0 -1.4E	-01	180.4	158.8	188.5	201.1	188.5	80.4	50.3	175.9	
4.0 1.0E	-01	155.7	173.2	100.5	251.3	251.3	213.6	55.3	50.3	
8.0 -2.2E	-01	95.6	78.2	85.5	100.5	100.5	24.1	21.1	17.6	
16.0 1.2E	-01	68.7	78.0	130.7	50.3	110.6	24.1	30.2 120.6	26.1	
32.0 2.1E	-01	119.5	150.4	221.2 261.4	68.4 84.4	221.2 321.7	64.3 221.2	52.3 86.5	52.3	
SE CONCEIC	AO DO	D ALMEIDA- Es	-COELBA stratific roul	cacao em d1	Duas rou2	Camadas				

Parametro: Valores Finais: Erro global: Erro Medio: 329.9 4.95E-03 2.85E-02

6.8

177.9

Prof	und.	erro			Resistividades (ohm.m)					
(m		(pu)	calculada	n media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-2.1E	-02	328.2	321.5	188.5 578.1 289.0 201.1	175.9 175.9 414.7 314.2	578.1 276.5 377.0 138.2	301.6 640.9 540.4 138.2	678.6 427.3 490.1 188.5	213.6 175.9 138.2 603.2
4.0	4.8E	-02	319.0	335.0	515.2 540.4 364.4 191.0 628.3 402.1 175.9 251.3	439.8 389.6 213.6 158.3 108.1 552.9 276.5 703.7	$188.5 \\ 138.2 \\ 389.6 \\ 527.8 \\ 231.2 \\ 452.4 \\ 125.7 \\ 251.3 \\ $	263.9 263.9 120.6 377.0 552.9 653.5 125.7 301.6	85.5 238.8 377.0 502.7 427.3 603.2 125.7 93.0	$\begin{array}{c} 88.0\\ 377.0\\ 263.9\\ 186.0\\ 165.9\\ 125.7\\ 527.8\\ 150.8\end{array}$
8.0	-3.8E	-02	283.3	272.8	653.5 351.9 196.0 412.2 361.9 216.1 256.4 603.2	477.5 301.6 160.8 60.3 854.5* 351.9 50.3	201.1 527.8 216.1 251.3 402.1 145.8 201.1	236.2 135.7 372.0 341.8 1005.3* 191.0 452.4 276.5	238.8 402.1 276.5 366.9 432.3 261.4 100.5 241.3	351.9 236.2 191.0 170.9 216.1 387.0 181.0 256.4
16.0	2.6E	-02	224.0	230.0	301.6 170.9 271.4 251.3 150.8 130.7	251.3 191.0 60.3 382.0 150.8 50.3	351.9 120.6 261.4 241.3 90.5 170.9	170.9 311.6 221.2 482.5 130.7 160.8	392.1 170.9 341.8 301.6 251.3 70.4	276.5 181.0 181.0 311.6 301.6 140.7
32.0	-9.7E	-03	189.5	187.7	492.6 382.0 201.1 241.3 221.2 40.2 40.2 221.2 261.4	211.1 181.0 120.6 241.3 20.1 8.4 361.9 201.1	$\begin{array}{c} 101.0\\ 402.1\\ 160.8\\ 341.8\\ 181.0\\ 40.2\\ 140.7\\ 241.3\\ 361.9 \end{array}$	241.3 221.2 201.1 221.2 20.1 160.8 221.2 301.6	211.1 372.0 181.0 241.3 181.0 382.0 100.5 201.1 261.4	$\begin{array}{c} 201.4\\ 211.1\\ 160.8\\ 201.1\\ 100.5\\ 181.0\\ 20.1\\ 201.1\\ 201.1\\ 221.2\end{array}$
SE CA Param Valor Erro Erro	ETITE es Fin globa Medio	-COEL	BA I	Sstratifi rou1 417.7 1.97E-02 5.57E-02	cacao em d1 9.4	Duas rrou2 3527.1	Camadas			
SE CA Param Valor Erro Erro Prof	ETITE es Fu globa Medio	-COEL	BA I	Sstratifi rou1 417.7 1.97E-02 5.57E-02	cacao em d1 9.4	Duas rrou2 3527.1 Resi	Camadas	les (ohm.	m)	
SE CA Param Valor Erro Erro Prof	ETITE es Fin globa Media	-COEL	BA H	Sstratifi rou1 417.7 1.97E-02 5.57E-02 a media	cacao em d1 9.4 	Duas rrou2 3527.1 Resi	Camadas stividad (3)	les (ohm. (4)	m) (5)	(6)
SE CA Param Valor Erro Prof (m 2.0 4.0 8.0 16.0 32.0	ETITE es Fil globa Medi und.) -2.1E 7.6E -8.8E 7.3E -2.0E	-COEL nais: 1: o: erro (pu) -O2 -O2 -O2 -O2 -O2 -O2 -O2	BA Ealculada 420.3 436.5 525.1 810.8 1333.0	Estratifi rou1 417.7 1.97E-02 5.57E-02 a media 411.5 472.5 482.5 874.6 1306.9	cacao em d1 9.4 (1) 50.3* 75.4* 100.5* 160.8* 201.1*	Duas rrou2 3527.1 (2) 402.1 452.4 502.7 854.5 1105.8	Camadas stividad (3) 465.0* 477.5 452.4 854.5 1306.9	(4) (4) 414.7 477.5 502.7 904.8 1407.4	m) (5) 414.7 477.5 452.4 854.5 1306.9	(6) 414.7 477.5 502.7 904.8 1407.4
SE CA Param Valor Erro Prof (m 2.0 4.0 8.0 16.0 32.0 SE CA Param Valor Erro Erro	ETITE es Fil globa Medi und. 1) -2.1E 7.6E 7.3E -8.8E 7.3E -2.0E ACHOEI es Fil globa Medi	-COEL nais: 1: o: erro (pu) -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2	BA calculada 420.3 436.5 525.1 810.8 1333.0 ELBA	Estratifi rou1 417.7 1.97E-02 5.57E-02 5.57E-02 a media 411.5 472.5 482.5 874.6 1306.9 Estratifi rou1 652.2 2.34E-03 1.34E-02	cacao em d1 9.4 (1) 50.3* 75.4* 100.5* 160.8* 201.1* .cacao em d1 5.2	Duas rrou2 3527.1 Resi (2) 402.1 452.4 502.7 854.5 1105.8 Tres rou2 1112.1	Camadas (3) 465.0* 477.5 452.4 854.5 1306.9 Camadas d2 3.4	les (ohm. (4) 414.7 477.5 502.7 904.8 1407.4 rou3 423.8	m) (5) 414.7 477.5 452.4 854.5 1306.9	(6) 414.7 477.5 502.7 904.8 1407.4
SE CA Param Valor Erro Prof 2.0 4.0 8.0 16.0 32.0 SE CA Param Valor Erro Erro Prof	ETITE es Fil globa Medi und. 1) -2.1E 7.6E -8.8E 7.3E -2.0E ACHOEI es Fil globa Medi 1) -2.1E 7.6E -2.0E	-COEL nais: 1: o: erro (pu) -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2	BA calculada 420.3 436.5 525.1 810.8 1333.0 ELBA	Estratifi rou1 417.7 1.97E-02 5.57E-02 5.57E-02 a media 411.5 472.5 482.5 874.6 1306.9 Estratifi rou1 652.2 2.34E-03 1.34E-02	cacao em d1 9.4 (1) 50.3* 75.4* 100.5* 160.8* 201.1* .cacao em d1 5.2	Duas rrou2 3527.1 (2) 402.1 452.4 502.7 854.5 1105.8 Tres rou2 1112.1 Res:	Camadas (3) 465.0* 477.5 452.4 854.5 1306.9 Camadas d2 3.4 istividad	les (ohm. (4) 414.7 477.5 502.7 904.8 1407.4 rou3 423.8 des (ohm.	m) (5) 414.7 477.5 452.4 854.5 1306.9	(6) 414.7 477.5 502.7 904.8 1407.4
SE CA Param Valor Erro Prof (m 2.0 4.0 16.0 32.0 SE CA Param Valor Erro Erro Frof (m	ETITE es Fin globa Media 	-COEL nais: 1: o: erro (pu) -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2	BA calculada 420.3 436.5 525.1 810.8 1333.0 ELBA	Estratifi rou1 417.7 1.97E-02 5.57E-02 a media 411.5 472.5 482.5 874.6 1306.8 Estratifi 652.2 2.34E-03 1.34E-02 a media	cacao em d1 9.4 (1) 50.3* 75.4* 100.5* 160.8* 201.1* cacao em d1 5.2	Duas rrou2 3527.1 Resi (2) 402.1 452.4 502.7 854.5 1105.8 Tres rou2 1112.1 Res: (2)	Camadas (3) 465.0* 477.5 452.4 854.5 1306.9 Camadas d2 3.4 istividad (3)	les (ohm. (4) 414.7 477.5 502.7 904.8 1407.4 rou3 423.8 des (ohm. (4)	m) (5) 414.7 477.5 452.4 854.5 1306.9 .m) (5)	(6) 414.7 477.5 502.7 904.8 1407.4 (6)
SE CA Param Valor Erro Prof (m 2.0 4.0 8.0 16.0 32.0 SE CA Param Valor Erro Erro Prof (m 2.0	ETITE etro: es Fil globa Medi 2.1E 7.6E 7.3E	-COEL nais: 1: o: erro (pu) -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2	BA calculada 420.3 436.5 525.1 810.8 1333.0 ELBA	Estratifi rou1 417.7 1.97E-02 5.57E-02 a media 411.5 472.5 482.5 874.6 1306.9 Estratifi rou1 652.2 2.34E-03 1.34E-02 a media 657.6 050.0	cacao em d1 9.4 (1) 50.3* 75.4* 100.5* 160.8* 201.1* .cacao em d1 5.2 (1) 716.3 226.2*	Duas rrou2 3527.1 (2) 402.1 452.4 502.7 854.5 1105.8 Tres rou2 1112.1 Res: (2) 590.6 640.9	Camadas (3) 465.0* 477.5 452.4 854.5 1306.9 Camadas d2 3.4 istividad (3) 678.6 578.1	les (ohm. (4) 414.7 477.5 502.7 904.8 1407.4 rou3 423.8 les (ohm (4) 226.2* 867.1	m) (5) 414.7 477.5 452.4 854.5 1306.9 (5) (5) 640.9 527.8 67.8	(6) 414.7 477.5 502.7 904.8 1407.4 (6) 678.6 1030.4*
SE CA Param Valor Erro Prof (m 2.0 4.0 32.0 SE CA Param Valor Erro Erro Prof (m 2.0 4.0 32.0	ETITE etro: es Fin globa Media 	-COEL nais: 1: o: erro (pu) -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2	BA calculada 420.3 436.5 525.1 810.8 1333.0 ELBA calculada 656.1 671.4	Estratifi rou1 417.7 1.97E-02 5.57E-02 a media 411.5 472.5 482.5 874.6 1306.9 Estratifi rou1 652.2 2.34E-03 1.34E-02 a media 657.6 678.6 561.5	cacao em d1 9.4 (1) 50.3* 75.4* 100.5* 160.8* 201.1* cacao em d1 5.2 (1) 716.3 226.2* 427.3 301.6	Duas rrou2 3527.1 (2) 402.1 452.4 502.7 854.5 1105.8 Tres rou2 1112.1 Res: (2) 590.6 640.9 854.5 678.6	Camadas (3) 465.0* 477.5 452.4 854.5 1306.9 Camadas d2 3.4 istividad (3) 678.6 578.1 603.2 929.9	les (ohm. (4) 414.7 477.5 502.7 904.8 1407.4 rou3 423.8 des (ohm (4) 226.2* 867.1 301.6 929.9	m) (5) 414.7 477.5 452.4 854.5 1306.9 (5) (5) 640.9 527.8 678.6 703.7	(6) 414.7 477.5 502.7 904.8 1407.4 1407.4 (6) 678.6 1030.4* 603.2 1131.0 754.0
SE CA Param Valor Erro Prof (m 2.0 4.0 32.0 SE CA Param Valor Erro Erro Prof (m 2.0 4.0 32.0 SE CA Param Valor 2.0 4.0 8.0 16.0 32.0 9 4.0 8.0 16.0 9 16.0 32.0 9 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0	ETITE etro: es Fil globa Media	-COEL nais: 1: o: erro (pu) -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2 -O2	BA calculada 420.3 436.5 525.1 810.8 1333.0 ELBA calculada 656.1 671.4 688.2 615.1	Estratifi rou1 417.7 1.97E-02 5.57E-02 a media 411.5 472.5 482.5 874.6 1306.9 Estratifi rou1 652.2 2.34E-03 1.34E-02 a media 657.6 678.6 721.7 619.6	cacao em d1 9.4 (1) 50.3* 75.4* 100.5* 160.8* 201.1* cacao em d1 5.2 (1) 716.3 226.2* 427.3 301.6 216.1 452.4 211 1	Duas rrou2 3527.1 Resi (2) 402.1 452.4 502.7 854.5 1105.8 Tres rou2 1112.1 Res: (2) 590.6 640.9 854.5 678.6 653.5 703.7 482	Camadas (3) 465.0* 477.5 452.4 854.5 1306.9 Camadas d2 3.4 istividad (3) 678.6 578.1 603.2 929.9 754.0 1156.1 904.8	les (ohm. (4) 414.7 477.5 502.7 904.8 1407.4 1407.4 rou3 423.8 ies (ohm (4) 226.2* 867.1 301.6 929.9 452.4 1055.6 291.5	m) (5) 414.7 477.5 452.4 854.5 1306.9 (5) 640.9 527.8 678.6 703.7 703.7 904.8 5127.1*	(6) 414.7 477.5 502.7 904.8 1407.4 (6) 678.6 1030.4* 603.2 1131.0 754.0 854.5 904.8

SE	BREJOES	S-COEL	BA	P-1		2	a .			
Par Val Err Err	ametro ores Fi o globa o Medi	nais: 11: 10:		rou1 147.7 1.67E-02 4.67E-02	.cacao em d1 3.2	rou2 100.2	Camadas			A No see a
Pr	ofund.	erro				Resi	istividad	es (ohm	.m)	
	(m)	(pu)	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.	Q -2.2	5-02	143.9	140.9	213.6 188.5 678.6*	213.6 47.8	113.1 515.2*	276.5 41.5	125.7 213.6	44.0 71.6
4.	0 3.9H	3-02	132.4	137.8	201.1 62.8 779 1*	326.7 40.2	60.3 628.3*	168.4 45.2	158.3 238.8	40.2 173.4
8.	0 -7.2H	3-04	114.5	114.4	70.4 60.3	175.9 26.1	31.2 1156.1*	80.4 229.7	216.1 115.6	377.0 75.4
16.	0 -8.6H	2-02	104.2	95.9	56.3 75.4 140 7	35.2 19.1	40.2 1809.6*	80.4 30.2	$241.3 \\ 50.3$	251.3 130.7
32.	0 8.6I	2-02	101.2	110.7	24.1 140.7 16.1	42.2 24.1	150.8 2010.6*	150.8 7.2	261.4 98.5	301.6 110.6
SE Par Val Err Err	BOA VIS ametro; ores Fi o globa o Medi	STA DO	TUPIM-O	0ELBA Estratifi 180.3 2.94E-02 6.15E-02	.cacao em d1 7.1	Duas rou2 744.2	Camadas			
Pr	ofund.	erro				Rest	istividad	es (ohm	.m)	
	(m)	(pu)	calculad	a medi	(1)	(2)	(3)	(4)	(5)	(6)
2.	0 8.11	5-03	182.2	183.7	90.5	402.1	113.1	50.3	75.4	402.1
4.	0 2.91	5-02	193.1	198.8	125.7	477.5	75.4	75.4	100.5	452.4
8.	0 -9.71	E-02	241.1	219.7	201.1	452.4	100.5	125.7	150.8	502.7
16.	0 1.31	2-01	352.8	406.1	301.6	854.5	150.8	231.2	251.3	854.5
32.	0 -4.21	5-02	496.3	476.5	301.6 1306.9	1306.9 20.1	40.2 241.3	201.1 20.1	221.2	1105.8
SE Par Val Err Err	BIRITIN ametro ores F: o globa	NGA-CO inais: al: io:	ELBA	Estratifi 500.3 1.37E-02 4.13E-02	icacao em d1 1.6	Duas rou2 85.5	Camadas			
Pr	ofund.	erro	}			Res	istividad	es (ohm	.m)	
	(ш)	(pu)	calculad	a media	(1)	(2)	(3)	(4)	(5)	(6)
2. 4. 16. 32.	0 1.2 0 -2.8 0 8.9 0 9.2 0 -6.8	E-02 E-02 E-02 E-03 E-03 E-02	332.9 160.2 95.0 87.2 85.9	336.8 155.8 104.3 88.0 80.4	276.5150.8150.8150.8150.8120.6	678.6 804.2* 754.0* 402.1* 281.5*	552.9 351.9 181.0 110.6 80.4	25.120.130.240.260.3	150.8 100.5 55.3 50.3 60.3	
SE	ANGUER	A-COEL	BA							
Par Val Err Err	ametro ores F o globa	inais: al: io:		Estratifi rou1 24.3 3.00E-01 2.25E-01	icacao em d1 6.4	Duas rou2 20000.0	Camadas			

		1.1.1	•							
Prof	und.	erro	}			Resi	istividad	les (ohm.	m)	
(1	1)	(pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	1.9E -3.1E 6.0E 2.4E 3.2E	-01 -01 -02 -01 -01	24.9 28.4 43.5 83.8 166.0	30.7 21.6 46.2 110.6 245.3	$11.3 \\ 25.1 \\ 70.4 \\ 201.1 \\ 301.6$	44.0 20.1 35.2 60.3 201.1	33.9 27.6 50.3 130.7 221.2	26.4 12.6 40.2 100.5 301.6	37.7 22.6 35.2 60.3 201.1	
SE BA Param Valor Erro Erro	ARRA D. es Fin globa Medio	A EST nais: 1: o:	'IVA-COELB E 7 6	A stratifi 559.5 .69E-07 .21E-07	lcacao en d1 1.4	n Tres rou2 377.7	Camadas d2 10.9	rou3 1003.6		
Prof	und.	erro)			Resi	stividad	les (ohm.	m)	
.(n	1)	(pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	-8.3E -3.1E 1.0E 9.6E 1.7E	-08 -07 -08 -07 -06	490.1 427.3 418.9 502.7 670.2	490.1 427.3 418.9 502.7 670.2	502.7 452.4 402.1 603.2 603.2	490.1 427.3 452.4 502.7 804.2	477.5 402.1 402.1 402.1 603.2			
SE BA	TXA G	RANDE	-COELBA							*
Param Valor Erro Erro	netro: ses Fin globa Medi	nais: l: o:	E 2.1	stratifi 242.8 88E-01 .20E-01	cacao en d1 2.9	n Duas rou2 100.2	Camadas			
Prof	und.	erro	2			Resi	istividad	des (ohm.	m)	
(1	n)	(pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	7.7E -1.4E 3.3E -2.7E 2.9E	-02 -01 -01 -01 -01	227.0 183.7 128.8 106.0 101.4	246.1 160.8 192.3 83.8 142.4	$\begin{array}{c} 301.6\\ 276.5\\ 226.2\\ 27.6\\ 251.3\\ 40.2\\ 60.3\\ 70.4\\ 100.5\\ 120.6\end{array}$	$\begin{array}{r} 452.4\\ 326.7\\ 251.3\\ 201.1\\ 251.3\\ 301.6\\ 100.5\\ 80.4\\ 160.8\\ 140.7\end{array}$	$150.8 \\ 50.3 \\ 150.8 \\ 52.8 \\ 201.1 \\ 55.3 \\ 90.5 \\ 80.4 \\ 160.8 \\ 140.7$	$\begin{array}{c} 263.9\\ 88.0\\ 175.9\\ 125.7\\ 201.1\\ 201.1\\ 80.4\\ 100.5\\ 140.7\\ 160.8 \end{array}$	37.7 452.4 40.2 251.3 50.3 251.3 70.4 100.5 120.6 160.8	$\begin{array}{c} 251.3\\ 301.6\\ 201.1\\ 226.2\\ 251.3\\ 251.3\\ 110.6\\ 60.3\\ 201.1\\ 100.5 \end{array}$
SE RU Param Valon Erro Erro	JI BAR netro: res Fi globa Medi	BOSA- nais: l: o:	-COELBA E	stratif: rou1 141.3 .39E-01 .05E-01	icacao en d1 26.6	n Duas rou2 58500.4	Camadas			
Prof	fund.	erro	2			Res:	istividad	des (ohm.	.m)	
(1		(pu	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0 32.0	2.0E 1.4E -1.7E -1.2E 5.0E	-01 -01 -01 -02 -01	141.4 141.8 144.5 162.6 244.2	177.7 164.1 123.4 160.6 488.6	13.8 263.9 22.6 377.0 35.2 904.8* 60.3 1508.0* 120.6 1407.4	$150.8 \\ 84.2 \\ 60.3 \\ 45.2 \\ 45.2 \\ 45.2 \\ 70.4 \\ 60.3 \\ 140.7 \\ 100.5$	$\begin{array}{r} 45.2\\ 150.8\\ 40.2\\ 201.1\\ 35.2\\ 286.5\\ 20.1\\ 241.3\\ 100.5\\ 172.9\end{array}$	$150.8 \\ 1885.0* \\ 118.1 \\ 2488.1* \\ 90.5 \\ 1105.8* \\ 42.2 \\ 1407.4* \\ 80.4 \\ 1608.5$	$150.8 \\ 326.7 \\ 148.3 \\ 276.5 \\ 231.2 \\ 241.3 \\ 573.0 \\ 341.8 \\ 1005.3 \\ 563.0 \\$	439.8 351.9 100.5 36.2 74.4

•

SE SANTANOPOLIS-COELBA

Prof	und.	erro				Res	istividad	les (ohm.	m)	
			calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-1.5E-	-02	61.1	60.2	36.4	854.5*	125.4	201.1	32.7	26.4
4.0	6.1E-	-02	66.1	70.4	60.3 32.7	779.1*	27.6	175.9	50.3	30.2
8.0	-1.1E-	-01	85.5	76.8	115.6	552.9×	45.2	1005.3*	40.2	40.2
16.0	1.7E-	-01	123.7	148.6	221.2	221.2	70.4	120.6	60.3	60.3
32.0	-5.3E-	-02	166.7	158.3	261.4 100.5	100.5 382.0	120.6 804.2*	140.7	60.3	100.5
SE SA	O FELI	PE-C	OELBA							
Param	etro:		I	Estratifi roul	cacao em d1	Duas rou2	Camadas			
Valor Erro Erro	es Fir global Medic	ais:	Ę	177.4 5.91E-03 3.28E-02	0.9	350.4				
Prof	und.	erro				Rest	istividad	les (ohm.	m)	
		(pu)	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-3.7E-	-03	253.3	252.4	716.3* 52.8 490 1	314.2 201.1 276.5	301.6 47.8	326.7 276.5	339.3 201.1	201.1 1759.3*
4.0	2.9E-	-02	302.8	312.0	678.6 105.6 578 1	377.0 226.2 193.5	276.5 95.5	276.5 193.5	377.0 502.7	175.9 3518.6*
8.0	-4.4E-	-02	332.7	318.6	552.9 201.1 467.5	372.0 306.6 271.4	226.2 170.9	$336.8 \\ 271.4$	326.7 457.4	181.0 2613.8*
16.0	-3.1E-	-02	345.1	334.8	552.9 402.1 502.7	382.0 271.4 181 0	291.5 301.6	563.0 181.0	351.9 170.9	201.1 3880.5*
32.0	5.6E-	-02	348.9	369.6	623.3 804.2 321.7	422.2 261.4 201.1	361.9 482.5	402.1 201.1	361.9 160.8	201.1 6031.9*
SE SA	O FELI	x-co	ELBA							
Paran	etro:	~	1	Estratifi roul	cacao em d1	Tres rou2	Camadas d2	rou3		2
Valor Erro Erro	global Medic	nais: L: D:	į	438.0 3.17E-02 3.59E-02	2.4	775.0	3.5	217.2		
Prof	und.	erro)			Res	istividad	des (ohm.	m)	
(1	1)	(pu)	calculada	a media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-8.0E-	-02	464.5	430.1	527.8 175.9 502.7	314.2 804.2 351.9	289.0 238.8 301.6	326.7 439.8 150.8	465.0 251.3 452.4	427.3 603.2 779.1
4.0	2.1E-	-02	506.8	517.5	263.9 402.1 301.6	678.6 477.5 854.5	314.2 326.7 351.9	804.2 477.5 477.5 226.2	603.2 326.7	527.8 754.0 804.2
8.0	1.5E-	-01	472.4	553.4	377.0 186.0	829.4 653.5 754 0	477.5	854.5 653.5	552.9	653.5 754 0
					603.2	336.8	552.9	301.6	452.4	754.0
16.0	9.2E-	-03	326.9	329.9	181.0 462.4 402.1	402.1 331.8 271.4	271.4 301.6 351.9	462.4 311.6 221.2	311.6 170.9 201.1	331.8 422.2 402.1
32.0	7.3E	-02	235.4	254.1	311.6 221.2 341.8 261.4 261.4	402.1 201.1 321.7 382.0 281.5	402.1 160.8 201.1 281.5 201.1	331.8 221.2 301.6 201.1 321.7	221.2 120.6 221.2	201.1 261.4 402.1

SE SA	O GONCALO-	-COELBA			-				
Param Valor Erro Erro	etro: es Finais: global: Medio:	68	stratif: rou1 283.9 .76E-02 .71E-02	d1 2.6	Tres rou2 1719.7	Camadas d2 1.4	rou3 174.5		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Prof	und. erro)			Resi	stividad	es (ohm.	m)	
(11	(pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-4.5E-02	316.7	303.2	377.0	251.3	364.4	377.0	150.8	377.0
4.0	-6.8E-02	382.6	358.1	427.3	377.0	427.3	377.0	226.2	377.0
8.0	2.4E-01	393.7	515.2	653.5	552.9	452.4	502.7	135.7*	452.4
16.0	-7.7E-02	281.5	261.4	392.1	311.6	231.2	271.4	150.8	251.3
32.0	9.9E-03	196.9	198.8	221.2 100.5	261.4 160.8	201.1 261.4	261.4	140.7	181.0
SE SA	PEACU-COEL	BA				Camadaa			
Param Valor Erro Erro	etro: es Finais: global: Medio:	4 7	rou1 107.9 .78E-02 .35E-02	d1 0.4	rou2 615.7	d2 3.1	rou3 204.6		
Prof	und. erro				Resi	stividad	es (ohm.)	m)	
(m) (pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	1.4E-02	353.9	358.9	2010.6* 65.3 389.6	791.7* 490.1 377.0	175.9 314.2 276.5	100.5 439.8 452.4	51.5 515.2 490.1	452.4 465.0 477.5
4.0	1.9E-01	410.3	508.6	364.4 980.2* 62.8* 477.5	515.2 603.2 552.9 578.1	314.2 115.6* 452.4 427.3	678.6 115.6* 552.9 502.7	377.0 57.8* 502.7 703.7	114.4 427.3 502.7 527.8
8.0	-2.3E-02	346.3	338.5	804.2* 80.4 417.2	281.5 387.0 351.9	105.6 366.9 251.3	130.7 437.3 221.2	80.4 422.2 653.5	271.4 336.8 502.7
16.0	-5.6E-02 •	248.1	235.0	291.5 160.8 321.7	452.4 181.0 321.7 341.8	100.5 271.4 251.3	170.9 301.6 241.3	140.7 301.6 251.3	201.1 281.5 181.0
32.0	-8.1E-02	212.9	196.9	181.0		160.8	181.0	221.2	181.0
×				241.3 201.1	261.4 120.6	201.1 181.0	241.3 140.7	221.2 261.4	100.5 221.2
SE VI	TORIA DA C	ONQUISTA-	COELBA						36
Param Valor Erro Erro	etro: es Finais: global: Medio:	E 5 2	stratif: rou1 302.4 .89E-03 .38E-02	icacao em d1 25.8	Duas rou2 896.5	Camadas			
Prof	und. erro				Resi	stividad	es (ohm.	m)	
(11	(pu)	calculada	media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-4.4E-02	302.4	289.6	565.5	175.9	188.5	18.8	188.5	163.4
4.0	6.1E-02	302.8	322.6	980.2*	377.0	351.9	30.2	276.5	377.0
8.0	-1.2E-02	305.7	302.1	1005.3*	552.9	236.2	40.2	422.2	211.1
16.0	1.1E-03	323.9	324.2	351.9	442.3	181.0	60.3	532.8	201.1
32.0	-6.7E-05	397.1	397.1	321.7 1005.3	281.5 482.5	120.6 603.2	100.5	261.4 160.8	281.5 1005.3

SE SERRINHA-COELBA

Estratifica	acao em	Duas	Camadas
rou1	d1	rou2	
199.2	14.9 40	000.0	

Param Valor Erro Erro	netro: res Fin globa Medio	nais: l: p:		Estratif: rou1 199.2 1.91E-01 1.69E-01	102020 e d1 14.9	m Duas rou2 40000.0	Camadas			
Prof	fund.	erro				Res	istividad	des (ohm	n.m)	
	•/		calculad	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	1.1E-	-01	199.6	223.3	213.628.988.028.9100.528.944.0339.3439.8	$\begin{array}{c} 61.6\\ 201.1\\ 339.3\\ 44.0\\ 364.4\\ 377.0\\ 88.0\\ 666.0\\ 515.2\end{array}$	51.5 502.7 854.5* 377.0 201.1 138.2 17.6 1005.3*	$100.5 \\ 276.5 \\ 201.1 \\ 364.4 \\ 326.7 \\ 76.7 \\ 339.3 \\ 238.8 \\$	138.2301.6201.1163.4201.1251.31131.0*238.8	37.7 326.7 326.7 238.8 28.9 44.0 213.6 603.2
4.0	-2.9E-	-02	202.4	196.8	251.3 47.8 100.5 45.2 70.4 45.2 60.3 427.3 402.1	60.3 201.1 100.5 60.3 301.6 301.6 125.7 552.9 603.2	55.3 251.3 1005.3* 301.6 2262.0* 65.3 150.8 422.7 829.4*	$\begin{array}{c} 62.8\\ 201.1\\ 301.6\\ 301.6\\ 276.5\\ 93.0\\ 427.3\\ 251.3\end{array}$	72.9 95.5 2262.0* 93.0 301.6 2262.0* 62.8 251.3	47.8 301.6 276.5 25.1 57.8 1759.3* 452.4
8.0	-2.8E-	-01	221.5	172.3	160.8 90.5 452.4 65.3 100.5 65.3 90.5 265.4 165.9	80.4 216.1 150.8 90.5 266.4 145.8 125.7 321.7	75.4 301.6 100.5 145.8 120.6 80.4 251.3 351.9	$\begin{array}{c} 75.4 \\ 110.6 \\ 201.1 \\ 266.4 \\ 125.7 \\ 145.8 \\ 261.4 \\ 135.7 \end{array}$	$100.5 \\90.5 \\120.6 \\110.6 \\201.1 \\60.3 \\402.1 \\135.7$	65.3 191.0 125.7 301.6 351.9 75.4 160.8 351.9
16.0	1.6E-	-01	314.0	373.4	251.3 160.8 703.7 100.5 150.8 100.5 140.7 160.8	130.7 412.2 281.5 140.7 140.7 904.8 170.9 100.5	110.6 402.1 261.4 904.8 904.8 512.7 402.1	$\begin{array}{c} 130.7\\140.7\\301.6\\140.7\\703.7\\231.2\\160.8\\904.8\end{array}$	$\begin{array}{c} 160.8\\ 130.7\\ 904.8\\ 904.8\\ 301.6\\ 502.7\\ 603.2\\ 904.8\end{array}$	$110.6 \\ 160.8 \\ 703.7 \\ 492.6 \\ 502.7 \\ 110.6 \\ 261.4 \\ 181.0 \\$
32.0	2.7E-	-01.•	585.1	799.8	422.2 261.4 1005.3 1407.4 201.1 1407.4 201.1 241.3 1407.4	160.6 221.2 563.0 522.8 201.1 804.2 1407.4 1407.4 1407.4	$\begin{array}{c} 1407.4 \\ 1809.6 \\ 301.6 \\ 1407.4 \\ 1407.4 \\ 804.2 \\ 1407.4 \\ 603.2 \\ 603.2 \\ 1005.3 \end{array}$	1809.6241.3482.5844.51005.3301.6241.31206.4	$\begin{array}{c} 221.2 \\ 1809.6 \\ 804.2 \\ 1608.5 \\ 482.5 \\ 804.2 \\ 804.2 \\ 1206.4 \end{array}$	$\begin{array}{c} 201.1\\ 221.2\\ 1005.3\\ 603.2\\ 603.2\\ 1809.6\\ 382.0\\ 140.7 \end{array}$
SE UR Param Valor Erro Erro	UCUCA- es Fir global Medic	-COEL nais: l: D:	BA	Estratifi rou1 250.2 6.82E-02 8.52E-02	icacao e d1 7.7	m Duas rou2 3995.9	Camadas			
Prof	und.	erro)			Res	istividad	les (ohn	1.m)	
(1	1)	(pu)	calculad	la media	(1)	(2)	(3)	(4)	(5)	(8)
2.0 4.0 8.0 16.0 32.0	-1.2E- 2.3E- -1.4E- -4.4E- 2.1E-	-01 -01 -02 -02 -02	253.4 272.3 364.6 624.7 1092.6	226.2 351.9 359.4 598.2 1115.9	226.2 377.0 552.9 733.9 1387.3	$\begin{array}{r} 226.2\\ 326.7\\ 165.9\\ 462.4\\ 844.5\end{array}$				

SE UB Param Valor Erro Erro	AIRA- etro: es Fin globa Medio	COELB nais: 1: o:	A	Estratif: rou1 159.1 6.66E-01 2.12E-01	icacao em d1 7.0	Duas rou2 3239.9	Camadas			
Prof	und.	erro				Rest	istividad	les (ohm	.m)	
(AL	.,	(pu)	calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	-3.3E-	-03	161.9	161.4	263.9 138.2 263.9	36.4 188.5 50.3	364.4 32.7 188.5	1131.0* 54.0 16.3	163.4 515.2 65.3	289.0 36.4 76.7
4.0	-4.1E	-02	177.9	170.9	276.5 120.6 276.5	32.7 72.9 70.4	366.9 27.6 60.3	103.0 77.9 201.1	276.5 578.1 40.2	351.9 32.7 110.6
8.0	8.0E-	-01	250.9	1242.1	3518.6	452.4	3518.6	120.6 80.4	3518.6	4523.9
16.0	-1.5E	-01	444.2	385.4	231.2 181.0	804.2 703.7	160.8 703.7	160.8 100.5	251.3 251.3	181.0 804.2
32.0	6.5E	-02	789.7	844.5	231.2 241.3 261.4 241.3	1407.4 1206.4 301.6	221.2 1809.6 1005.3	201.1 1206.4 603.2	361.9 1608.5 1407.4	101.0 1407.4 1407.4 301.6
SE UN Param Valor Erro Erro	A-COE etro: es Fin globa Medio	LBA nais: 1:		Estratifi rou1 415.2 1.03E-01 1.05E-01	icacao em d1 2.9	Duas rou2 1556.4	Camadas			
Prof	und.	erro	·		. 	Res	istividad	des (ohm	.m)	
(m)	(pu)	calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0	2.8E	-02	460.3	473.7	879.6 314.2 62.8	389.6 276.5 351.9	879.6 628.3 628.3	885.9 439.8 1005.3	333.0 351.9 138.2	756.5 402.1 153.3
4.0	-7.9E	-02	601.5	557.3	123.2 1256.6 326.7 50.3	414.7 477.5 552.9	904.8 578.1 955.0	899.8 452.4 1508.0	377.0 351.9 155.8	603.2 452.4 145.8
8.0	-1.6E	-02	869.1	855.3	125.7 2412.7 502.7 115.6	351.9 653.5 804.2	1558.2 703.7 1306.9	1508.0 336.8 2538.4	$1005.3 \\ 251.3 \\ 402.1$	643.4 502.7 251.3
16 .0	2.9E	-01	1161.9	<mark>162</mark> 8.6	402.1 3518.6 1809.6 201.1	603.2 1206.4 804.2	3116.5 1206.4 1809.6	2814.9 552.9 3719.7	3015.9 301.6 1809.6	$1508.0 \\ 854.5 \\ 583.1$
32.0	-1.2E	-01	1381.6	1237.7	1508.0 0.0 0.0 301.6 0.0	0.0 1206.4 402.1	0.0 2010.6 2412.7	2412.7 784.1 5629.7*	0.0 592.7 0.0	0.0 1105.8 0.0
SE MA	TA DE	SAO	JOAO-CO	ELBA		Dues	Camago			
Param Valor Erro Erro	etro: es Fi globa Medi	nais: l: o:		rou1 7841.0 1.30E-01 1.41E-01	d1 2.3	rou2 2189.0	Canass			
Prof	und.	erro	 ?			Res	istivida	des (ohm	.m)	
(1	a)	(pu	calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
2.0 4.0 8.0 16.0	-8.5E 2.6E -2.0E	-02 -01 -01 -01	6751.7 4559.0 2737.2 2278.5 2208.7	6220.4 6149.2 2278.7 2587.0 2298.8	7791.2 9299.1 703.7 3015.9 1688.9	9927.5 7791.2 4373.1 4322.8 4825.5	942.5 1357.2 1759.3 422.2 382.0			

SE WEN Parame Valore Erro Profu (m) 2.0 -	CESLAU G tro: s Finais lobal: Medio: und. erro (pu 9.8E-03	UIMARAES	-COELBA Estratif: 316.7 7.93E-03 3.07E-02 a media 382.4	(1) 527.8 527.8	Duas rou2 2334.7 Resi (2) 527.8 527.8	Camadas stividao (3) 214.9 515.2	des (ohm (4) 214.9 214.9	.m) (5) 203.6 203.6	(6) 527.8
4.0 8.0 - 16.0 32.0	6.0E-02 6.3E-02 9.0E-03 1.1E-02	578.8 936.1 1389.3 1823.1	616.0 880.6 1402.0 1844.3	779.1 779.1 1136.0 1136.0 1759.3 1759.3 2372.5 2372.5	779.1 904.8 1136.0 1115.9 1759.3 1910.1 2372.5 2915.4	356.9 955.0 598.2 1115.9 904.8 1910.1 703.7 2915.4	356.9 356.9 598.2 578.1 904.8 904.8 603.2 1206.4	364.4 364.4 568.0 924.9 924.9 1226.5 1226.5	779.1 1136.0 1759.3 2372.5
SE PRA Parame Valore Erro Erro	DO-COELBA s Finais (lobal: Medio:	A :	Estratif: rou1 840.1 9.91E-02 8.56E-02	icacao er d1 6.1	Duas rou2 76.8	Camadas			
(m)) (pu	calcula	la media	(1)	(2)	(3)	(4)	(5)	(6)
1.4 - 2.0 3.0 4.0 - 8.0 - 12.0 - 16.0 24.0 32.0 -	1.6E-02 6.2E-02 1.0E-01 4.8E-02 -5.1E-02 -1.7E-01 -2.0E-02 1.3E-01 1.4E-01 -1.2E-01	834.7 825.1 795.0 748.1 622.3 489.3 286.9 177.9 102.0 85.3	821.6 879.6 886.6 785.8 591.9 416.7 281.2 203.4 118.4 76.4	833.9 850.7 804.9 741.4 546.6 395.6 270.7 202.1 30.2* 0.0	$\begin{array}{r} 860.3\\ 947.5\\ 953.8\\ 809.3\\ 656.0\\ 450.9\\ 311.4\\ 218.2\\ 117.6\\ 76.4 \end{array}$	770.6 840.7 901.0 806.8 573.0 403.6 261.6 190.0 119.1 76.4			
SE CAF Parame Valore Erro g Erro	RRANCA-CO etro: es Finais global: Medio:	ELBA :	Estratif rou1 2141.6 2.92E-01 1.49E-01	icacao en d1 5.0	Duas rou2 181.2	Camadas			
Profu	ind. err	°			Res	istivida	des (ohm	.m)	
		calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
1.0 2.0 6.0 - 6.0 - 8.0 10.0 12.0 - 20.0 24.0 - - - - - - - - - - - - -	2.7E-01 1.5E-01 -1.5E-01 -2.8E-01 7.3E-02 9.4E-02 8.0E-02 -1.5E-02 2.2E-01 -1.5E-01	$\begin{array}{c} 2131.9\\ 2071.8\\ 1758.5\\ 1332.1\\ 955.6\\ 680.6\\ 497.4\\ 308.6\\ 236.4\\ 208.3\\ \end{array}$	$\begin{array}{r} 2937.4\\ 2444.2\\ 1533.1\\ 1036.7\\ 1030.4\\ 750.8\\ 541.0\\ 304.1\\ 301.6\\ 181.0\\ \end{array}$	$1885.0 \\ 1885.0 \\ 1508.0 \\ 1131.0 \\ 1055.6 \\ 754.0 \\ 452.4 \\ 201.1 \\ 0.0 \\ 0$	3204.4 3141.6 1759.3 754.0 1055.6 754.0 603.2 301.6 0.0 0.0	2324.8 1734.2 1256.6 754.0 854.5 590.6 392.1 251.3 0.0 0.0	4335.4 3015.9 1608.5 1508.0 1156.1 904.8 716.3 462.4 301.6 181.0		
SE DEN Parame Valore Erro a Erro	RIVACAO I etro: es Finais global: Medio:	TAQUARA-	COELBA Estratif 279.1 3.98E-02 5.36E-02	icacao en d1 12.2	n Duas rou2 20746.7	Camadas			

1."

Profund.	erro (pu) <u></u>			Rest	istividade	es (ohm.m	n)	
		calculat	la media	(1)	(2)	(3)	(4)	(5)	(6)
1.4 5.3E 2.0 -1.2E 3.0 1.0E 4.0 3.7E 6.0 -9.9E 12.0 1.6E 12.0 1.6E 12.0 6.0E 12.0 6.0E 32.0 7.5E		279.512 280.199 282.607 287.064 303.447 330.293 410.208 512.095 739.562 971.613	$\begin{array}{c} 281.0\\ 277.0\\ 315.0\\ 298.0\\ 276.0\\ 311.0\\ 417.0\\ 549.0\\ 787.0\\ 1050.0 \end{array}$	$\begin{array}{c} 281.0\\ 277.0\\ 315.0\\ 298.0\\ 276.0\\ 311.0\\ 417.0\\ 549.0\\ 787.0\\ 1050.0 \end{array}$					
SE SEABRA-	COEL	BA							
Parametro: Valores Fin Erro globa Erro Medio	nais l: o:	:	Estratif: rou1 7836.9 1.05E-01 9.35E-02	icacao en d1 3.8	Duas rou2 1331.6	Canadas			
Profund.	err	о б			Rest	istividade	es (ohm.m	n)	
(m)	(pu	calculad	da media	(1)	(2)	(3)	(4)	(5)	(6)
1.4 -1.7E 2.0 9.09E 3.0 -7.6E 6.0 -1.5E 12.0 1.9E 12.0 7.5E 12.0 -1.3E	-02 -02 -02 -01 -02 -01 -02 -01 -02 -01	$\begin{array}{r} 7667.9\\7400.3\\6697.2\\5826.4\\4179.7\\3026.3\\1930.8\\1575.9\\1404.4\end{array}$	7538.6 8130.5 7436.2 5416.1 3647.4 3078.8 2390.1 1703.5 1243.3	$\begin{array}{c} 11083.6\\ 12566.4\\ 11290.9\\ 8293.8\\ 5617.2\\ 4735.0\\ 3581.4\\ 2473.1\\ 1794.5 \end{array}$	$\begin{array}{c} 3993.6\\ 3694.5\\ 3581.4\\ 2538.4\\ 1677.6\\ 1422.5\\ 1198.8\\ 933.9\\ 692.2 \end{array}$				
CE DADDETD	AC N			 ^					
Parametro: Valores Fin Erro globa Erro Medi	nais l: o:	:	Estratif: rou1 1215.3 2.89E+00 3.77E-01	icacao en d1 10.8	n Duas Ca rou2 0.5	amadas .			
Profund.	err	<u> </u>			Res	istividad	es (ohm.n	n)	
(m)	(pu	calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
$\begin{array}{c} 1.4 & -3.5E\\ 2.0 & -1.3E\\ 3.0 & 1.5E\\ 4.0 & 2.8E\\ 6.0 & 2.8E\\ 8.0 & 1.6E\\ 12.0 & -7.7E\\ 16.0 & -4.3E\\ 24.0 & -1.5E\end{array}$	-01 -01 -01 -01 -01 -02 -01 +00	$\begin{array}{c} 1213.5\\ 1210.3\\ 1199.0\\ 1178.7\\ 1108.9\\ 1005.6\\ 753.3\\ 516.5\\ 210.2\\ \end{array}$	$\begin{array}{r} 897.2\\ 1074.4\\ 1413.7\\ 1641.2\\ 1549.4\\ 1190.3\\ 699.7\\ 361.9\\ 82.9\end{array}$	897.2 1074.4 1413.7 1641.2 1549.4 1190.3 699.7 361.9 82.9					
SE BARREIR	AS N	ORTE CHE	SF-COELBA						
Parametro: Valores Fi Erro globa Erro Medi	nais 1:	::	Estratif rou1 864.9 2.52E-01 55E-01	icacao er d1 7.8	n Duas rou2 23.9	Camadas			
Profund.	err				Res	istividad	es (ohm.	m)	
(m)	(pu	calcula	da media	(1)	(2)	(3)	(4)	(5)	(6)
$\begin{array}{c} 1.4 & -2.6E\\ 2.0 & -1.1E\\ 3.0 & 1.0E\\ 4.0 & 1.3E\\ 6.0 & 1.8E\\ 8.0 & 2.2E\\ 12.0 & 1.4E\\ 16.0 & -2.1E\\ 16.0 & -2.1E\\ 24.0 & 5.3E\end{array}$	-01 -01 -01 -01 -01 -01 -01 -01	861.8 856.1 837.3 805.8 710.1 591.0 366.6 212.7 75.7	685.2 774.1 933.1 922.4 867.1 759.0 426.0 175.9 79.9	685.2 774.1 933.1 922.4 867.1 759.0 426.0 175.9 79.9					

SE IR	ECE-CC	ELBA				Dung	Canadaa			
Param Valor Erro Erro	etro: es Fin global Medic	ais: .:		escracii rou1 67.2 4.10E-02 4.55E-02	d1 3.1	rou2 288.3	Canadas		-	
Prof	und.	erro				Res	istividad	des (ohm	.m)	
(m	.,	(pu)	calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
$1.0 \\ 2.0 \\ 4.0 \\ 6.0 \\ 8.0 \\ 10.0 \\ 12.0 \\ 16.0 \\ 20.0 \\ 24.0 $	-9.6E- 3.32E- -3.32E- -3.6EE- -3.6EE- -3.6EE- -3.6EE- -3.6EE- -3.6EE- -3.6EE- -3.6EE- -3.6EE- -3.6EE- -3.6EE- -3.6EE- -3.6EE- -3.6EE- -3.32EE- -3.6EE- -3.6EE- -3.32EE- -3.6EE- -3.6EE- -3.32EE- -3.6EE- -3.6EE- -3.32EE- -3.6EE- -3.5	02 01 02 02 02 02 02 02 02 02 02 02 02 02	68.2 73.8 96.2 121.1 142.8 160.7 175.6 198.6 215.4 227.9	62.3 87.5 99.5 121.0 137.7 153.3 171.2 201.1 216.1 238.3	$\begin{array}{r} 62.3\\ 87.5\\ 99.5\\ 121.0\\ 137.7\\ 153.3\\ 171.2\\ 201.1\\ 216.1\\ 238.3\end{array}$					
SE CA	ETITE-	COEL	BA		setting .					
Param Valor Erro Erro	etro: es Fin global Medic	ais:		Estratifi 2224.9 2.88E-01 1.23E-01	icacao en d1 9.3	n Duas rou2 111.7	Camadas			
Prof	und.	erro				Rest	istividad	les (ohm	.m)	
(m	.,	(Pu)	calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
$1.0 \\ 2.0 \\ 4.0 \\ 6.0 \\ 10.0 \\ 12.0 \\ 16.0 \\ 20.0 \\ 24.0 \\ 30.0 \\ 30.0 \\ 10.0$	-2.6E- 2.2E- 3.0E- 1.8E- -5.8E- -2.0E- 4.4E- 1.0E- 2.0E- -4.0E- -1.1E-	01 01 01 02 01 02 01 03 01 02 03 02 02	$\begin{array}{c} 2223.2\\ 2211.8\\ 2133.0\\ 1968.4\\ 1741.4\\ 1489.3\\ 1243.1\\ 831.6\\ 549.4\\ 372.4\\ 231.1 \end{array}$	1764.02830.03031.02397.71646.21244.11248.6924.9560.5371.0228.6	$\begin{array}{c} 1690.2\\ 2463.0\\ 2035.8\\ 1998.1\\ 1759.3\\ 1759.3\\ 1759.3\\ 1734.2\\ 1306.9\\ 816.8\\ 527.8\\ 263.9 \end{array}$	$\begin{array}{c} 1621.1\\ 2098.6\\ 2236.8\\ 2111.2\\ 1558.2\\ 754.0\\ 663.5\\ 502.7\\ 339.3\\ 226.2\\ 160.2\\ \end{array}$	$1872.4 \\ 2789.7 \\ 3317.5 \\ 2714.3 \\ 1658.8 \\ 1131.0 \\ 980.2 \\ 824.4 \\ 578.1 \\ 377.0 \\ 301.6 \\ \end{array}$	3116.5* 3707.1 4398.2 2827.4 2362.5* 1570.8 1885.0 1085.7 666.0 527.8 0.0	$1872.4 \\ 3091.3 \\ 3166.7 \\ 2337.4 \\ 1608.5 \\ 1005.3 \\ 980.2 \\ 904.8 \\ 402.1 \\ 196.0 \\ 188.5 \\ 1005.3 \\ 196.0 \\ 188.5 \\ 1005.3 \\$	
SE SE	NTO SE	-COE	LBA			-				
Param Valor Erro Erro	etro: es Fir global Medic	ais:		Estratifi rou1 5191.0 5.64E-03 2.79E-02	icacao er d1 2.6	n Duas rou2 189.6	Camadas			
Prof	und.	erro				Res	istividad	des (ohm	.m)	
(10	1)	(pu)	calculad	la media	(1)	(2)	(3)	(4)	(5)	(6)
1.0 2.0 4.0 6.0 8.0	3.9E -5.5E 3.1E -1.2E 2.3E	-02 -02 -02 -02 -03	5027.9 4274.4 2239.5 1020.7 507.8	5230.8 4052.7 2312.2 1008.5 508.9	7100.0 3895.6 1759.3 1055.6 452.4	6911.5 4398.2 1960.4 414.7 201.1	3141.6 4146.9 2513.3 1055.6 452.4	3769.9 3769.9 3015.9 1508.0 929.9		