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Resumo
Linguagens de programação gerenciadas abstraem o gerenciamento de memória de baixo

nível, permitindo que programadores se concentrem em questões de alto nível. Nessas

linguagens de programação, o Gerenciamento Automático de Memória (GAM), frequente-

mente implementado por meio de um Coletor de Lixo (GC, do inglês, Garbage Collector),

lida automaticamente com a alocação e desalocação de memória. Embora o GAM mitigue

erros relacionados à memória, sua sobrecarga pode impactar o desempenho da aplicação.

GCs modernos empregam técnicas como concorrência, gerenciamento de memória genera-

cional e algoritmos adaptativos para minimizar esse impacto no desempenho.

Esta dissertação se concentra em estratégias de GC especificamente adaptadas para apli-

cações de Function-as-a-Service (FaaS). As cargas de trabalho de FaaS exibem um padrão

distinto de uso de memória, caracterizado por objetos efêmeros e persistentes. Diferente-

mente das abordagens tradicionais de GC de propósito geral, neste trabalho, propomos e

avaliamos um novo algoritmo de GC, o Serverless-Optimized Garbage Collector (SOGC).

O SOGC aproveita as características únicas do FaaS para obter ganhos significativos de efi-

ciência.

Um ciclo típico de uso de memória em uma função FaaS envolve uma fase de inicializa-

ção, durante a qual os dados destinados a toda a vida útil da função são alocados, seguida

por uma fase de processamento de eventos, caracterizada por dados efêmeros que são usa-

dos para processar o evento e, em seguida, descartados rapidamente. O SOGC aborda esse

padrão organizando a memória em um layout que inclui um espaço persistente para dados de

longa duração e um espaço de processamento separado para cada evento. Essa organização

eficiente da memória permite uma rápida recuperação de dados não utilizados, minimizando

interrupções relacionadas ao coletor de lixo durante a execução da lógica de negócios.

Para avaliar o SOGC, empregamos um modelo analítico, permitindo uma comparação

direta com algoritmos GC clássicos. Por meio desse modelo, avaliamos vários cenários,

demonstrando que o SOGC tem o potencial de superar as soluções existentes sob certas

condições.
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Abstract
Managed programming languages abstract away low-level memory management, enabling

programmers to focus on high-level concerns. In these programming languages, Automatic

Memory Management (AMM), often realized through a Garbage Collector (GC), automat-

ically handles memory allocation and deallocation. While AMM mitigates memory-related

errors, its overhead can impact application performance. Modern GCs employ techniques

such as concurrency, generational memory management, and adaptive algorithms to mini-

mize this performance impact.

This dissertation focus on GC strategies specifically tailored for Function-as-a-Service

(FaaS) applications. FaaS workloads exhibit a distinct memory usage pattern, characterized

by ephemeral and persistent objects. Unlike traditional, general purpose GC approaches,

in this work we propose and evaluate a novel GC algorithm, Serverless-Optimized Garbage

Collector (SOGC). SOGC takes advantage of FaaS unique characteristics to achieve signifi-

cant efficiency gains.

A typical memory usage cycle in a FaaS function involves an initialization phase, dur-

ing which data intended for the function’s entire lifetime is allocated, followed by an event

handling phase, characterized by ephemeral data that is used to process the event and then

promptly discarded. SOGC addresses this pattern by organizing memory into a layout that

includes a persistent space for long-lived data and a separate handler space for each event.

This efficient memory organization allows for rapid reclamation of unused data, minimizing

garbage collector-related interruptions during the execution of business logic.

To evaluate SOGC, we employ an analytical model, enabling a direct comparison with

classic GC algorithms. Through this model, we assess various scenarios, demonstrating that

SOGC has the potential to outperform existing solutions under certain conditions.
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Chapter 1

Introduction

Managed programming languages are prevalent in modern software development, powering

a wide range of services and applications. Their popularity is due to their ability to simplify

the implementation process, allowing programmers to focus on higher-level problem-solving

and abstractions. These languages achieve this by delegating the complexities of operating

system interactions to the language runtime, effectively abstracting away the intricate de-

tails of resource management. In contrast, traditional programming languages often require

developers to explicitly manage the memory allocation of even the simplest data structures,

thus demanding more cognitive effort.

Automatic Memory Management (AMM) is a cornerstone of managed programming

languages. AMM significantly simplifies development by handling memory allocation and

deallocation automatically, eliminating the need for explicit programmer intervention. In

languages like Java or Python, developers simply declare variables and data structures, and

the language runtime handles memory management transparently. In most cases, developers

do not need to worry about explicitly freeing memory – the language runtime takes care of

this automatically.

AMM is often implemented by the Garbage Collector (GC), which is responsible for

memory management. Despite its name, a GC’s duties extend beyond freeing memory. A

comprehensive GC must, at a minimum, perform three essential processes: allocation, iden-

tification, and reclamation. Specifically, the GC is tasked with:

• Allocation: Managing the allocation of all objects and data structures in the heap

section of memory;

1
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• Identification: Identifying memory occupied by unreachable objects (those not in use

by the application);

• Reclamation: Safely removing these unreachable or "dead" objects to free memory

for future allocations.

Although a robust GC greatly simplifies development, it does come with trade-offs. The

concurrent execution of AMM background processes can impact the performance of the

mutator – which is the program running within the managed environment, responsible for

requesting memory allocation [11]. This contention for resources, inherent in all AMM

algorithms, can cause pauses or delays in application execution, often referred to as garbage

collection pauses.

Significant efforts have been devoted to mitigating the impact of garbage collection (GC)

on mutator performance. For example, some approaches focus on implementing more ef-

ficient concurrent GC operations, aiming to reduce interference with application execution,

as demonstrated by Shenandoah [18] for the Java Virtual Machine or using techniques such

as parallel garbage collection for shared memory multiprocessors [7], while others leverage

generational memory management, a common strategy used to focus collection on objects

more likely to be reclaimed, exemplified by the Garbage-First (G1) garbage collector [10].

Region-based memory management [25] also offers an alternative approach that uses mem-

ory regions to bound the overhead of collection, which can be relevant in scenarios where

memory locality is important. These techniques, along with others like Immix [4], a mark-

region garbage collector, show that garbage collectors can significantly enhance application

performance when matched to the appropriate environment, configuration, and application

requirements. All of these advances and many others are related to the idea of better manag-

ing the heap and reducing the performance overhead associated with it.

This dissertation introduces a novel GC algorithm specifically designed for the Function-

as-a-Service (FaaS) programming model. FaaS has emerged as a popular approach for devel-

oping and deploying cloud-based applications [12], abstracting away infrastructure complex-

ities and allowing developers to focus on writing code that responds to events triggered by

user interactions. FaaS finds applications across diverse domains, including web applications

and machine learning pipelines [20, 6, 13]. These diverse applications, while varying in their
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specific functionalities, share a common characteristic: they rely on managed programming

languages, where memory management and thus garbage collection is a core component of

their runtime environment.

Memory management in FaaS is both a cost (resource usage) and performance (latency)

issue, due to FaaS billing model. Poorly configured GCs can increase resource consump-

tion, directly translating to higher costs. While unoptimized resource usage is detrimental in

any application, it is further exacerbated in serverless 1 environments due to their latency-

sensitive and event-driven nature; FaaS providers bill clients by the time each function is in-

voked. Additionally, serverless functions are frequently deployed with constrained resource

configurations, making them more susceptible to the performance impacts of GC. Some al-

ternatives even avoid part of the GC overhead by starting runtimes from a pre-warmed GC

checkpoint [23, 15]. Chapter 2 explores how FaaS functions utilize memory and how GCs

can leverage the unique characteristics of this programming model.

Our proposal, The Serverless-Optimized garbage collector (SOGC) strategically orga-

nizes memory into two distinct regions: a persistent space for data that persists across func-

tion invocations, and a handler space that is allocated for each new event. This approach

allows SOGC to quickly reclaim memory used during each invocation by simply discard-

ing the handler space after the function’s execution, minimizing the overhead of traditional

garbage collection and aiming to reduce interruptions during the execution of the function’s

business logic.

In summary, the objective of this work is to propose a low-overhead GC algorithm for

serverless functions that is not tied to a specific runtime and directly addresses the perfor-

mance and cost challenges of Automatic Memory Management in FaaS environments. In

this direction, in the following chapters, we present the following contributions:

1. We review automatic memory management in the context of serverless by analyzing

the unique characteristics of FaaS memory usage (Chapter 2);

2. We present the design of the Serverless-Optimized Garbage Collector (SOGC): a new

GC algorithm for FaaS that leverages the properties of FaaS functions to improve

1The term Function-as-a-Service is often used synonymously with “serverless“, since FaaS is the most

prevalent use case for serverless computing. We use the terms FaaS and Serverless as synonyms in our work.
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memory management (Chapter 4);

3. We present an analytical evaluation of garbage collectors in serverless environments,

establishing a model and a framework for comparing different algorithms (Chapter 5);

4. We analyze the performance of different garbage collectors using our analytical model,

comparing the proposed SOGC algorithm with traditional approaches in different sce-

narios (Chapter 6).

Finally, in Chapter 7, we present conclusions and future work derived from this disserta-

tion.



Chapter 2

Context

This chapter lays the foundation for understanding the challenges and opportunities in op-

timizing garbage collection for Function-as-a-Service (FaaS) environments. We begin by

exploring the core principles of the FaaS model, examining how applications within this

paradigm utilize memory resources. Following this, we overview Automatic Memory Man-

agement (AMM) and its operational mechanics, providing the essential context for under-

standing the design choices that led to our algorithm.

2.1 The Function-as-a-Service Offering

Function-as-a-Service (FaaS) has emerged as a popular model for developing and deploy-

ing cloud-based applications [12]. FaaS abstracts away the complexities of the underlying

infrastructure, enabling developers to focus solely on writing code. FaaS has been used to

build applications across diverse domains, including web applications and machine learning

pipelines [20, 6, 13]

FaaS functions are event-driven, ensuring that resources are allocated only when needed,

reducing idle time and associated costs. Functions are triggered by events such as HTTP

requests, database updates, or file uploads. This event-driven nature enables elasticity, where

functions can automatically scale resources up or down based on demand.

5
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Figure 2.1: Sequence diagram illustrating the FaaS function lifecycle. The diagram shows a

Developer submitting code to the Provider, followed by a User triggering the function with

an event. The Provider then initiates a Setup Phase, often referred to as the cold-start, before

executing a Handling Phase to process the event. Subsequent events are handled directly via

the execution of the handling phase.

2.1.1 Memory allocation on FaaS Applications

Consider the code depicted in Source Code 2.1. This code could represent a user-provided

function within a FaaS environment, tasked with processing images by compressing them

and subsequently storing them in a database. This is the core application logic, or the busi-

ness logic, for the user’s specific task. However, for this code to function correctly, it re-

quires dependencies from the FaaS environment. These dependencies include establishing

a connection to the database, setting up an event listener, opening HTTP connections, and

potentially loading necessary libraries.

1 def handle_image_event(event, context):

2 image_data = event.get(’image_data’)

3 if not image_data:

4 return { ’statusCode’: 400 }

5 decoded_image = base64.b64decode(image_data)

6 storage_location = store_image(decode_image)
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7 return { ’statusCode’: 200 }

Source Code 2.1: Example of a FaaS function in Python. This code illustrates at high-level

a image compression process.

As illustrated in Figure 2.1, after the user submits the function code, the FaaS provider

awaits incoming events. The first event triggers a setup phase, during which the environment,

including cloud resources and runtime dependencies, is loaded. Immediately following the

setup, the event is handled by the user’s code. In our example, this would involve com-

pressing and storing the image. Subsequent events bypass the setup phase, being directly

processed by the user’s code in the handling phase.

This process highlights a clear distinction between persistent memory usage and

ephemeral memory usage, a key aspect that influences how memory is managed in FaaS en-

vironments. Persistent memory, such as the HTTP connections that should remain open and

the database connection, persists across multiple invocations and requires careful manage-

ment to prevent resource exhaustion. Conversely, ephemeral memory, used in the handling

phase for variables holding the raw and compressed images, becomes garbage and is eligible

for disposal after the handling phase is completed.

The need to efficiently manage this ephemeral memory, alongside the persistent re-

sources, introduces a level of complexity that is typically addressed by Automatic Memory

Management (AMM). Understanding the intricacies of AMM is crucial for comprehending

the challenges inherent in managing memory within FaaS environments.

2.2 Automatic Memory Management

In traditional programming languages, such as C and C++, the programmer is responsible

for memory management, explicitly allocating and deallocating memory. This programmer-

led memory management is error-prone, often leading to memory leaks, dangling pointers,

crashes, and undefined behavior. These issues make it hard to develop and maintain applica-

tions.

To address this challenge, Automatic Memory Management (AMM) was developed,

shifting the responsibility of memory management from the programmer to the system.
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AMM performs several crucial tasks to ensure that memory is used effectively and safely.

The first of these responsibilities is the dynamic allocation of objects in the Heap section of

memory. When the mutator needs a new object, the GC finds a suitable memory space in the

Heap and marks it as occupied. The allocation triggers the GC to manage the memory using,

for example, strategies that find the next available memory space. Second, AMM involves

the identification of unreachable objects, that is, finding memory that is no longer in use.

Over time, the Heap will fill up with objects that are no longer referenced. The GC must

identify these objects to reclaim them. Third and last, AMM is responsible for the recla-

mation of unused memory from the Heap. Once garbage has been identified, the GC needs

to free the memory associated with the related objects. To reclaim the memory, GCs usu-

ally defragment the heap, grouping the available memory, and addressing the fragmentation

caused by the allocation and deallocation of objects over time.

To illustrate the concepts of allocation, identification, and reclamation, and to under-

stand how garbage collection operates, we can refer to Figure 2.2, which depicts a sim-

plified memory model. In this figure, the boxes on the left represent different scopes of

execution, analogous to stack frames in an operating system. The Main Scope represents

the application’s main execution context, which persists throughout the entire process. The

other scopes, Function Scope 1 and Function Scope 2, represent different executions of the

handle_image_event function. In the FaaS setting, the Main Scope corresponds to the

runtime environment, while each function scope represents a specific invocation of the image

compression code.

Within these scopes, we have root nodes—memory pointers referencing locations within

the heap, where objects are dynamically allocated. When a scope terminates, these pointers

become eligible for reclamation, because they are intrinsically tied to the scope’s lifetime,

and the memory they refer to in the stack is released. However, these root nodes often point to

objects in the Heap, which can, in turn, reference other objects, forming a chain of references.

To determine which objects are still in use and which are eligible for reclamation, a garbage

collector needs to perform a reachability analysis. One common way to do this—and the

one we present here for simplicity—is by tracing all the pointers, starting from root nodes in

active scopes and following all the references to the heap objects. Objects that are reachable

are considered live, and everything else is considered garbage and can be reclaimed.
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Figure 2.2: Example of memory scopes, object reachability, and lifetime. The figure shows

three distinct scopes: Main Scope, Function Scope 1, and Function Scope 2, with their

respective root nodes (RHTTP , RImage1, and RImage2). The Heap represents the dynamic

memory area where objects are allocated. Heap nodes HImage1 and Hmeta1 are allocated

in Function Scope 1, which has finished, making them unreachable. Heap node HHTTP

is allocated in the Main Scope. Heap nodes HImage2 and Hmeta2 are allocated in Function

Scope 2, which is currently running.

Let’s map these concepts to the example in Figure 2.2. The Main Scope has a root node,

RHTTP , which points to a heap object, HHTTP . This object holds information about the con-

nection, such as its type, version, and open ports, and remains live throughout the function’s

lifetime. Function Scope 1 represents a finished execution of the handle_image_event

function. Its root node, RImage1, has been discarded with the function’s stack frame. Conse-

quently, the nodes containing the image’s data, HImage1 and Hmeta1, are no longer reachable

from any active scope, and are thus considered garbage. Finally, Function Scope 2 repre-

sents a running execution of the function, with its root node, RImage2, and corresponding

references, HImage2 and Hmeta2, still active.

A core challenge for garbage collectors is balancing two conflicting goals: they must

identify and collect garbage effectively, yet avoid interfering with the application’s execu-
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tion. To accomplish this delicate balance, GCs require resources, such as CPU cycles and

memory access, leading to overheads inherent in all AMM strategies. When the GC needs to

identify unreachable memory, it may pause mutator threads, which effectively halts the ex-

ecution of all application threads, significantly impacting application responsiveness. These

pauses, often referred to as "stop-the-world" pauses, can lead to noticeable latency spikes,

particularly in latency-sensitive applications like web services. As highlighted in the semi-

nal work "Tail at Scale" [9], even infrequent high-latency events caused by GC pauses can

disproportionately degrade the user experience. For example, if the garbage collector pauses

the mutator threads while handling an HTTP request from a user, the time for that request

may increase considerably, causing the application to become unresponsive. This is further

illustrated in Figure 2.3.

Figure 2.3: Example of interference between garbage collector and mutator execution. The

GC impact can manifest itself as a pause in mutator threads during the handling of events,

effectively increasing the time to respond queries for the user, thus increasing user-side la-

tency.

Many garbage collection strategies aim to reduce the impact of these pauses. For exam-

ple, some GCs employ techniques such as generational collection, which segregates objects

based on their age to focus the collection efforts on areas that are likely to contain more
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garbage [10], and concurrent collection, which overlaps the GC process with application

execution, reducing the length of these "stop-the-world" pauses [18]. This study adopts a

similar objective by leveraging the unique memory allocation characteristics of serverless

functions. Specifically, we propose a segregated memory space to optimize garbage col-

lection for Function-as-a-Service (FaaS) environments, separating persistent and ephemeral

memory into distinct regions to simplify and enhance the efficiency of their respective col-

lections.

This new approach to the problem will define a new garbage collection algorithm that

leverages the memory usage of FaaS. We will dive deeper into the definition of this new

algorithm in Chapter 4.



Chapter 3

Related Work

This chapter discusses previous research that proposed new garbage collection (GC) algo-

rithms, explored improvements in Automatic Memory Management (AMM), and analyzed

memory management in Function-as-a-Service (FaaS) applications. This allows us to con-

textualize our work within the existing body of knowledge and highlight its potential contri-

butions to the serverless paradigm.

3.1 On Creating New Garbage Collectors

The creation of general-purpose GCs is a very complex task that involves trade-offs, and to

create a new one, a lot of research should be done to evaluate the impact of each strategy.

Modern industry-standard collectors, built as generalists, implement many optimizations to

try to perform well under any scenario or application. While these collectors are designed

to perform well in most situations, that does not mean that they are the best for specific

applications, which creates an opportunity for research into specialized GCs.

Bacon et al. [2] introduced a unified theory of garbage collection that provides a frame-

work for understanding and comparing different algorithms. Their work emphasizes the

importance of balancing trade-offs between Mutator Utilization (U), Space Utilization (S),

and Collection Cost (C). In our work, we also aim to find a good trade-off between these

variables, but with a specific focus on FaaS applications, instead of general-purpose ones.

In 2008, Blackburn et al. introduced Immix, a novel mark-region garbage collector fea-

turing opportunistic defragmentation and a new heap structure [4]. A key innovation of

12
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Immix is its approach to allocating and reclaiming memory in contiguous regions, utiliz-

ing coarse blocks where possible and finer-grain lines when necessary, which distinguishes

it from simpler tracing GCs. Immix’s mark-region tracing strategy sweeps contiguous free

regions of the heap, offering potential performance benefits. As a general-purpose garbage

collector, Immix aims to perform well across a variety of applications. Consequently, its

evaluation, like that of many generalist collectors, typically employs benchmark suites that

may not fully reflect the unique characteristics of serverless environments. Our work, in

contrast, is specifically targeted towards optimizing garbage collection for the FaaS pro-

gramming model.

Following Immix, in 2022, Zhao et al. introduced LXR [26]. LXR employs a similar

heap structure to Immix, but instead of relying on costly read/write barriers, it implements

reference counting, highlighting the fundamental similarities between tracing and reference

counting techniques, as described by Bacon et al. [3]. While Immix uses a mark-region ap-

proach, LXR leverages reference counting to identify and reclaim dead objects. Like Immix,

LXR is a general-purpose collector and its evaluation has primarily focused on benchmarks

that do not specifically reflect FaaS-like application characteristics.

Every GC strategy presents its own set of trade-offs, and understanding these limitations

is crucial for determining the appropriate use case. For example, Shenandoah, a GC algo-

rithm, prioritizes minimizing pause times to achieve high throughput and low latency [18].

However, previous work suggests that Shenandoah’s emphasis on short pauses can lead to a

higher frequency of concurrency operations and more expensive read/write barriers, poten-

tially resulting in lower overall performance in certain benchmarks [26].

3.2 Improving AMM on Interactive Cloud Services

Besides proposing new GC algorithms, some studies also focused on improving existing

AMM techniques, by acting on the application instead of the garbage collector itself. They

made a background task controller that monitors GC behavior and predicts when a garbage

collection will happen [14, 22, 16]. This collector-agnostic approach, called Garbage Collec-

tor Control Interceptor (GCI), is valuable for cloud services. By predicting when a garbage

collection will occur, the system can optimize the load balancing, by rerouting requests to
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replicas that are not going to be impacted by a collection. Their experiments show that this

technique reduces AMM’s impact on the application’s long-tail latency.

Our work complements GCI very well by providing an alternative to slow garbage collec-

tors. While GCI reduces the impact on latency, our proposed SOGC algorithm is optimized

for fast garbage collections, which also enhances the availability of the service. These two

strategies can be combined to create more robust and efficient systems.

3.3 Garbage Collection for Specific Use Cases

Some researchers have explored garbage collection algorithms tailored for specific use cases,

providing valuable insights into how GCs can be adapted for different environments and

constraints.

• Real-Time Garbage Collection: Several works have focused on developing garbage

collectors that can provide low latency and predictable pause times for real-time sys-

tems. The work of Bacon et al. [3] presents a real-time garbage collector for Java, and

the work of Cheng et al. [7] explores, for the first time, the challenges of real-time

garbage collection running on shared-memory multiprocessors.

• Garbage collection for parallel programs: Several works have explored parallel

garbage collection techniques to improve performance in multi-core systems. The

work of Appel et al. [1] presents a parallel garbage collection algorithm, and the work

of Flood et al. [17] explores the challenges of concurrent garbage collection.

• Region-Based Memory Management: Introduced by Tofte and Talpin [25], presents

an alternative approach to traditional garbage collection. The core idea is to allocate

objects into regions, which are then deallocated as a whole when they are no longer

needed. A type and effect system automatically infers where regions can be allocated

and deallocated, aiming to provide memory safety without relying on a garbage col-

lector. In the context of FaaS, where minimizing resource consumption and latency

is paramount, the concept of region-based memory management could be valuable.

However, the overhead of a full static analysis by the compiler to determine these
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regions might be excessive for the short-lived and dynamic nature of serverless func-

tions. Furthermore, in FaaS, the separation of persistent and ephemeral data provides

a natural partitioning of memory that obviates the need for complex compiler analysis

to identify regions. Our serverless-optimized garbage collector, in contrast, leverages

this inherent separation, directly addressing the unique memory allocation patterns and

lifecycle of FaaS functions without requiring extensive static analysis.

3.4 Serverless Performance Evaluation

To propose improvements for Function-as-a-Service (FaaS) environments, it is necessary to

understand how to evaluate new proposals within this paradigm. Several studies have de-

veloped FaaS benchmarks that tackle the challenge of testing serverless functions, creating

standardized sets of metrics, functions, and tests. The authors in the latest serverless bench-

mark studies acknowledge that a benchmark for FaaS should encompass a comprehensive list

of workloads, representative applications, and tests that address aspects unique to serverless

architectures—such as cold-start latency—which differ from traditional ones.

One such study is by Copik et al., who introduced SeBS, an open-source FaaS bench-

mark offering new metrics and experiments, alongside a representative model for FaaS. This

benchmark allows both local and remote tests [8]. Their study demonstrated SeBS’s potential

to identify discrepancies between billing costs and actual resource usage, compare cold-start

latencies across platforms, and measure provider availability. However, the authors did not

address the impact of automatic memory management on FaaS performance.

Somu et al. released PanOpticon, a unique serverless benchmark that focuses on display-

ing metrics related to function chaining and trigger overhead [24]. This benchmark aims to

measure a comprehensive set of FaaS provider metrics, helping users automate testing of var-

ious options. These options include changing the provider, adjusting the memory assigned

to functions, altering the request rate, modifying function chain lengths, and other unique

parameters. However, this benchmark does not address automatic memory management

strategies, and the available applications lack specific memory access patterns that would be

relevant for garbage collection evaluation.

Martins et al. proposed a diverse suite of benchmarks for serverless platforms [21]. The
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authors aimed to capture essential aspects specific to serverless, including the overhead of

the serverless platform, differences between programming languages within this paradigm,

and container reutilization. Their suite included a test that varies the memory allocated per

container, but it does not evaluate different memory management strategies and uses only

basic "Hello-world" functions for this particular test, which would not stress the application

in any significant way.

In summary, state-of-the-art benchmark suites reflect the current priorities of their field.

The lack of automatic memory management metrics, evaluation, and memory configuration

options in serverless benchmarks demonstrates the relevance of our approach, which pro-

poses and evaluates a new garbage collection algorithm, SOGC, and an analytical model for

garbage collection evaluation.



Chapter 4

The Serverless-Optimized Garbage

Collector

Our approach to garbage collection is specifically designed for the memory usage patterns

of Function-as-a-Service (FaaS) applications. Instead of designing a general-purpose algo-

rithm, we focus on the characteristics of this programming model. In this chapter, we will

detail the constraints that define our specific scenario, describing the memory usage patterns

we are targeting. We will then present how our algorithm organizes application memory, fol-

lowed by a description of the algorithm itself. Finally, we will outline the expected benefits

of this new approach.

4.1 Constraints

The Serverless-Optimized Garbage Collector (SOGC) is specifically designed to thrive in

environments where memory usage exhibits a distinct pattern: a clear separation between

long-lived, persistent data and short-lived, ephemeral data associated with individual event

executions. SOGC excels when the majority of an application’s persistent state is estab-

lished during a setup or initialization phase, and the bulk of memory allocated during event

handling is temporary, becoming irrelevant once the event has been processed. This pat-

tern is particularly well-suited to FaaS applications, where each function invocation is often

treated as an independent transaction. While some limited allocation of persistent resources

during event handling might be possible, it should be minimized to maintain the efficiency

17
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of SOGC. SOGC needs each event execution to have a handler memory allocation with a

limited size.

The power of SOGC lies in its ability to rapidly reclaim the ephemeral memory associ-

ated with each event. By assuming that handler memory is, in fact, ephemeral, SOGC can

avoid the overhead of traditional garbage collection techniques.

It is important to note that, if an event requires significantly more memory than the al-

located handler space, a backup memory management strategy could be employed, similar

to how reference counting uses tracing garbage collection to handle circular references. If

the memory of some application reaches this state a lot it means that it does not respect our

constraints anyway and our algorithm is not suited for it.

4.2 Memory Layout

By following these constraints, memory usage becomes more predictable and manageable,

allowing for efficient garbage collection strategies. To take advantage of these constraints,

we propose a new memory layout that segregates persistent and temporary resources for

more efficient memory management and quick reclamation of resources after each event:

• Setup Memory: This pool is defined beforehand and allocated during the setup phase

to store all persistent resources of the function, remaining throughout its lifecycle.

• Handler Memory: A new memory pool is created for each event handled by the

mutator. This pool stores temporary resources and is marked as garbage and reclaimed

immediately after the event handling concludes.

The SOGC algorithm, which is designed to efficiently manage memory in serverless en-

vironments, leverages the memory layout described above. The process starts by initializing

the Setup Memory pool, where all persistent objects are stored, and creating reusable Han-

dler Memory pools. When an event arrives, the algorithm allocates a Handler Memory pool

from the set of reusable pools, and then uses this pool to process the event. After processing

the event, the Handler Memory is marked as garbage and its resources are reclaimed. This

simple reclamation is a direct consequence of the previous constraints, and does not require

complex tracing mechanisms. Although these constraints are strict and may not be suitable
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for all applications, the FaaS programming model encourages the creation of environments

where applications naturally adhere to them.

4.3 Algorithm

Algorithm 1 Serverless-Optimized Garbage Collector (SOGC)
Require: Memory pools for setup and handler phases are not initialized

Ensure: Memory is efficiently managed and reclaimed in a serverless environment

1: procedure INITIALIZE_MEMORY_POOLS

2: setup_memory← CREATE_MEMORY_POOL

3: ALLOCATE_SETUP_OBJECTS(setup_memory)

4: handler_memory_pools← CREATE_HANDLER_MEMORY_POOLS

5: end procedure

6: procedure HANDLE_EVENT(event)

7: handler_memory← ALLOCATE_HANDLER_MEMORY(handler_memory_pools)

8: PROCESS_EVENT(event, handler_memory)

9: MARK_HANDLER_MEMORY_AS_GARBAGE(handler_memory)

10: RECLAIM_HANDLER_MEMORY(handler_memory_pools, handler_memory)

11: end procedure

12: while IS_EVENT_HANDLING do

13: event← GET_NEXT_EVENT

14: HANDLE_EVENT(event)

15: end while

The SOGC algorithm is designed to efficiently manage memory in serverless environ-

ments by leveraging the previously defined memory layout. The process begins by initializ-

ing the Setup Memory pool, where persistent resources are allocated, and by creating a set

of reusable Handler Memory pools. Upon each incoming event, the algorithm allocates a

new Handler Memory pool from the set of reusable pools. The event is then processed us-

ing this pool, and once the event handling is complete, the Handler Memory is immediately

marked as garbage and reclaimed. This reclamation is a simple operation, possibly a matter
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of resetting a pointer. This ensures that no leftover resources from event handling persist,

maintaining efficient memory usage.

The simplicity of this algorithm is a direct result of the constraints we established. Know-

ing that Handler Memory pools become garbage after each event eliminates the need for

complex tracing mechanisms. Additionally, the fixed allocation size for each Handler Mem-

ory pool means the algorithm does not need to adapt to varying memory demands across

different events, avoiding the need for traditional garbage collection cycles.

While these constraints are strict and may not be suitable for all applications, we believe

that the FaaS programming model itself strongly encourages the creation of environments

where applications naturally adhere to these rules. This makes SOGC particularly well-

suited for FaaS workloads.

4.4 Expected Benefits

Leveraging the specific memory patterns of FaaS, the SOGC design offers several key bene-

fits for serverless environments:

• Reduced Latency Spikes During Event Handling: By segregating persistent and

temporary resources, SOGC aims to reduce garbage collection-related pauses during

event processing.

• Fast Garbage Collection: By grouping all garbage within the Handler Memory pool,

SOGC allows for a simpler and quicker reclamation process, eliminating the need for

complex tracing or sweeping algorithms.

• Reduced Memory Fragmentation: By quickly reclaiming entire Handler Memory

pools, SOGC minimizes memory fragmentation, ensuring efficient use of memory

resources.

• Simplified Memory Management: The separation of concerns by using specific

memory pools and the single point of reclaim for each pool makes SOGC algorithm

easier to understand, implement and optimize.



Chapter 5

Garbage Collection Model

Typically, new garbage collectors are evaluated experimentally using benchmarks [26, 12,

4, 5]. However, this approach presents significant challenges within the scope of our study.

Benchmarking requires fully functional implementations of each GC algorithm under con-

sideration, as well as ensuring that these implementations are in comparable states of opti-

mization. Comparing a newly developed algorithm from a single research cycle with ma-

ture, industry-proven GCs could lead to unfair conclusions that do not accurately represent

the potential of the new algorithm. Furthermore, such an approach would require significant

development efforts, which are beyond the scope of this research.

Therefore, we have opted for an analytical approach to evaluate our Serverless-Optimized

Garbage Collector (SOGC). Our review of the literature provided us with the foundations to

formulate a new analytical model for comparing algorithms without the need for complete,

optimized implementations. While analytical models inevitably involve simplifications and

constraints, they enable understanding core performance trade-offs while maintaining a use-

ful level of comparability between algorithms. This approach allows us to study the behavior

of each algorithm without being influenced by particular implementation details.

Our model predicts the performance of the GC, for a specific collection algorithm sub-

ject to the activity of the mutator. To achieve this, we combined the performance model

created by Heymann [19] with the memory model discussed by Bacon et al. [2]. Using

this combined model, we described three algorithms: 1) Mark-and-Sweep (M&S); 2) Copy-

Live-Objects (COPY); and our own SOGC. The model described here is used in the next

chapter to compare these algorithms.

21
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5.1 Memory representation and the Garbage Collection

Cycle

Our garbage collection process follows Bacon et al. [2] definition of the memory as a graph

G = (V,E), where:

• The set of vertices V represents allocated memory nodes;

• The set of directed edges E represents references between objects;

• Root nodes R ⊆ V represents external references;

• The "free list" F ⊆ V of available memory nodes;

• The live vertices VL ⊆ V , those reachable from R;

• Dead vertices VD ⊆ V , defined as VD = V − VL, which are not reachable from R.

In this model, a vertex is a point in the graph G representing a memory location. We will

refer to these memory locations as nodes. The application stores objects in these memory

nodes. The garbage collector has the duty of reclaiming the memory nodes not reachable

from the root set, that is storing dead objects. We will use the term "node" to refer to the

smallest unit of memory that is allocated or reclaimed by a garbage collector, and "object"

to refer to the program entity stored in memory.

To maintain a tractable analytical model, we simplify the garbage collection cycle by

focusing on a streamlined scenario of allocation followed by reclamation. Our garbage col-

lection cycle uses the following steps:

1. The system begins with a partially filled heap (memory graph) containing live nodes

(VL).

2. New objects are allocated into the memory graph at a defined allocation rate, continu-

ously adding nodes to V and increasing the set of live nodes VL, until the heap is full

(F = ∅).

3. Once full, the garbage collector is invoked, reclaiming dead nodes (nodes in VD),

making new free space available in F and returning the heap to a state comparable to

the beginning of the cycle.
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Based on the above blueprint, in the next section we can model the performance of the

selected algorithms.

5.2 Garbage Collector Performance

Following Heymann [19], in our performance model we consider that, during the collection

cycle, the mutator performs useful computation, which we define as the productive time (τp),

while the garbage collector manages memory, incurring a garbage collection time overhead

(τo).

The total cycle time (τc), representing the complete duration of a garbage collection cycle,

is defined as the sum of the productive time and the garbage collection time overhead:

τc = τp + τo (5.1)

In the context of our GC cycle, the productive time (τp) represents the time it takes to

allocate all of the objects which will be garbage in the current cycle. It can be calculated

using the allocation rate (λ), the rate at which new nodes are used to allocate memory.

This parameter directly affects how quickly the memory fills up, impacting the frequency of

garbage collections and therefore, the performance of all algorithms. When inverted ( 1
λ

) it

represents the time taken to allocate one memory node. Multiplying by the number of nodes

allocated during a cycle, we have the following equation for the productive time:

τp =
|V | − |VL|

λ
(5.2)

The garbage collection time overhead (τo), on the other hand, is particularly defined for

each algorithm, since the overhead depends on the algorithm’s design. Each algorithm’s

overhead will be discussed in the following sections, but common to them are the defini-

tions of core operation costs that capture the costs associated with each garbage collection

algorithm’s core operations. These costs are expressed in terms of time and represent the

overhead incurred by the GC. Examples of such costs include:

• The cost cm to mark a single node as live;

• The cost cs to scan a single memory node to find object references;
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• The cost ca to allocate a single memory node;

• The cost cr to reclaim a single memory node;

• The cost cc to copy a single live object to another node in memory.

It’s important to note that while parameters like the cost to allocate a node (ca) are com-

mon to multiple algorithms, their actual values can vary significantly based on the specific

garbage collection algorithm. For instance, Mark-and-Sweep may require additional opera-

tions, such as initializing bits to mark the node, making the allocation operation more costly

compared to Copy-Live-Objects, which do not require this additional overhead. Similarly,

our proposed SOGC algorithm introduces costs related to the initialization of its memory

spaces, reflecting its specific memory layout designed for FaaS environments.

Finally, our model includes a overallocation factor (ρ), defined as the ratio of the total

number of allocated memory nodes (|V |) to the number of live memory nodes (|VL|), i.e.,

ρ = |V |
|VL|

. This dimensionless factor represents the proportion of total allocated memory

space relative to the memory occupied by live nodes. This ratio is a key parameter when

one is configuring any GC in practice, since GCs need more or less space to work properly.

As a consequence, discussing performance results in terms of ρ helps system operators’

decision-making. For example, operators can better tune their system to a specific scenario

(for example, provide more heap memory when needed). Also, it is possible to help operators

decide between algorithms on a given setting.

5.2.1 Mark-and-Sweep

The Mark-and-Sweep (M&S) algorithm works by first marking all live memory nodes reach-

able from the root set, and then sweeping through the entire memory, reclaiming the un-

marked nodes. During each cycle, all the live nodes (|VL|) must be marked, each with a cost

of cm. Additionally, all allocated memory nodes (|V |) must be scanned, each with a cost

of cs, and the dead nodes (|VD| = (|V | − |VL|)) must be allocated (ca) and reclaimed (cr).

Therefore, the total garbage collection time overhead (τo) for M&S can be expressed as:

τo = |VL|cm + |V |cs + (|V | − |VL|)(ca + cr) (5.3)
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To express this equation in terms of the overallocation factor (ρ), which is defined as

ρ = |V |
|VL|

, we can rewrite |V | as ρ|VL| and substitute into the previous equation:

τo = |VL|cm + ρ|VL|cs + (ρ|VL| − |VL|)(ca + cr) (5.4)

Now, we can factor out |VL| from the equation:

τo = |VL|(cm + ρcs + (ρ− 1)(ca + cr)) (5.5)

Finally, we can group terms with ρ:

τo = |VL|(cm − ca − cr + ρ(cs + ca + cr)) (5.6)

5.2.2 Copy-Live-Objects

The Copy-Live-Objects algorithm operates by copying all live nodes from one memory re-

gion, referred to as the fromspace, to another, known as the tospace. This action effectively

compacts the live data, eliminating any fragmentation that may have accumulated in the

fromspace and subsequently making the old fromspace region available for reuse in subse-

quent cycles. Within our model, this translates to the algorithm requiring an additional |VL|

space compared to Mark-and-Sweep; this extra space allows the live objects to be copied to

new nodes within the tospace region. Put simply, the total memory consists of a space for

the live nodes (|VL|), a free space that will receive those live objects upon the invocation of a

collection (VL′ , where |VL| = |VL′|), and the space for nodes allocated during the cycle that

will become garbage (|VD|). Consequently, we can express the total memory as:

|V | = |VL|+ |VL′ |+ |VD| = 2|VL|+ |VD| (5.7)

During each collection cycle, the nodes that will eventually become garbage are implic-

itly allocated in the fromspace (incurring a cost of ca per node), and each live node must be

copied from the fromspace to the tospace, with a cost of cc for each. Thus, the total garbage

collection time overhead (τo) for Copy-Live-Objects can initially be expressed as:

τo = |VL|cc + |VD|ca (5.8)
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To express this equation in terms of the overallocation factor (ρ), we can rewrite the

number of dead nodes |VD| as |V | − 2|VL|, using equation 5.7. Consequently, the overhead

becomes:

τo = |VL|cc + (|V | − 2|VL|)ca (5.9)

Using the fact that ρ = |V |
|VL|

, we can write |V | as ρ|VL|:

τo = |VL|cc + (ρ|VL| − 2|VL|)ca (5.10)

Finally, factoring out |VL|:

τo = |VL|(cc + (ρ− 2)ca) (5.11)

5.2.3 Serverless-Optimized Garbage Collector

This algorithm takes into account the specific memory characteristics of FaaS, where there

is a setup phase for persistent memory, which by design will not be subject to garbage col-

lection, and a handler phase that allocates nodes which will be garbage. Consequently, the

SOGC introduces a specific parameter to capture the unique aspects of its memory layout:

the cost for persistent memory setup (ct), which is the cost to set up the memory for the

persistent objects. The total garbage collection time overhead (τo) for SOGC is calculated

as the cost to set up the persistent memory plus the cost to allocate and reclaim the handler

memory. This overhead can be initially expressed as:

τo = |VL|ct + (|V | − |VL|)(ca + cr) (5.12)

To express this equation in terms of the overallocation factor (ρ), which is defined as

ρ = |V |
|VL|

, we can rewrite (|V |−|VL|) as (ρ−1)|VL|, and substitute into the previous equation:

τo = |VL|ct + (ρ− 1)|VL|(ca + cr) (5.13)

Now, we can factor out |VL| from the equation:

τo = |VL|(ct + (ρ− 1)(ca + cr)) (5.14)
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Evaluation

This chapter presents the results obtained from our analytical model, which compares the

performance of the Mark and Sweep (M&S), Copy-Live-Objects (COPY), and Serverless-

Optimized Garbage Collector (SOGC) algorithms across different scenarios.

The performance of the algorithms is evaluated in terms of two key metrics, Productivity

(π) and Effectivity (η), adapted from Heymann[19]. The Productivity is the proportion of

the time that the application is active, is given by:

π =
τp
τc

(6.1)

In its turn, Effectivity is defined as the productivity divided by the overallocation factor.

This metric expresses the overhead and the productivity of each algorithm with relation to

the extra space that is required to execute the GC:

η =
π

ρ
(6.2)

The results are organized into distinct scenarios. Each scenario represents a specific

configuration of parameters, or a variation of a particular parameter, allowing us to evaluate

the behavior of all garbage collectors under different conditions. For instance, one scenario

examines the impact of varying the allocation rate, which allows us to assess the performance

of each algorithm under different memory pressure conditions.

27
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6.1 Parametrization

To ground our analytical model costs, we map the core operations of the garbage collec-

tion algorithms to sequences of assembly instructions, using the instruction latencies from

Agner Fog’s instruction tables for the Intel Knights Landing architecture 1. The assembly

instructions representing the core operations can be found in the Appendix A.

6.1.1 Mark-and-Sweep

The table below summarizes the core operations of the Mark-and-Sweep garbage collector,

the instructions they use, and their calculated latencies.

Operation Instructions Used Latency (Cycles)

Marking ‘MOV‘ 3

Scanning ‘MOV‘, ‘CMP‘, ‘JL‘, ‘JG‘ 3

Allocation ‘MOV‘ 2

Reclamation ‘MOV‘ 2

Table 6.1: Assembly instructions for Mark-and-Sweep operations and their latencies.

Based on these mappings, the parameter values for Mark and Sweep are set as follows:

• Marking (cm): The marking operation was mapped to three ‘MOV‘ instructions, one

for memory read and two for register operations, having a combined cost of 3 cycles.

• Scanning (cs): The scanning operation was mapped to instructions for memory read

with ‘MOV‘, and two comparison operations ‘CMP‘ with the heap start and the heap

end, having a combined cost of 3 cycles. Other instructions in this mapping have no

cost.

• Allocation (ca) and Reclamation (cr): Both allocation and reclamation operations were

mapped to ‘MOV‘ instructions and have similar latencies of 2 cycles.
1Data available on: https://agner.org/optimize/instruction_tables.pdf
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6.1.2 Copy-Live-Objects

The table below summarizes the core operations of the Copy-Live-Objects garbage collector,

the instructions they use, and their calculated latencies.

Operation Instructions Used Latency (Cycles)

Copying ‘MOV‘ 2

Allocation ‘MOV‘ 2

Table 6.2: Assembly instructions for Copy-Live-Objects operations and their latencies.

Based on these mappings, the parameter values for Copy-Live-Objects are set as follows:

• Allocation (ca): The allocation operation in the Copy-Live-Objects algorithm is

mapped to two MOV instructions, and thus has a latency of 2 cycles.

• Copying (cc): The copying operation involves loading data from memory and storing

it again in another memory address. This mapping includes two ‘MOV‘ instructions,

thus having a latency of 2 cycles

6.1.3 Serverless-Optimized Garbage Collector

The table below summarizes the core operations of the Serverless-Optimized Garbage Col-

lector, the instructions they use, and their calculated latencies.

Operation Instructions Used Latency (Cycles)

Persistent Memory Setup ‘MOV‘ 3

Handler Allocation ‘MOV‘ 1

Handler Reclamation ‘MOV‘ 1

Table 6.3: Assembly instructions for Serverless-Optimized Garbage Collector operations

and their latencies.

Based on these mappings, the parameter values for Serverless-Optimized Garbage Col-

lector are set as follows:

• Persistent Memory Setup (ct): The persistent memory setup operation was mapped to

memory load and data structure initialization operations that use MOV instructions,

having a combined cost of 3 cycles.
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• Handler Allocation (ca): The handler allocation operation was mapped to a simple

‘MOV‘ instruction and a single memory access, thus having a cost of 1 cycle.

• Handler Reclamation (cr): The handler reclamation operation was mapped to a ‘MOV‘

instruction and a single memory access, thus having a cost of 1 cycle.

This approach, which maps core operations to assembly instructions and uses instruction

latencies, provides a more realistic foundation for comparing the trade-offs between different

garbage collection algorithms. While the parameter values are derived from a simplified

mapping and do not account for the complexities of real-world implementations, including

microarchitectural effects and the variable cost of memory accesses (e.g., cache and RAM),

they offer a useful starting point for our analysis. Future work should focus on validating

these parameters with micro-benchmarks and performance analysis in a real environment.

6.2 Base Scenario

We now analyze the performance metrics of each garbage collector based on our model. For

a base scenario, we use the parameter values defined in Section 6.1, and these values are

summarized in Table 6.4, organized by garbage collector.

Garbage Collector Parameter Value

M&S cs 1

cm 3

ca 1

cr 1

COPY ca 2

cc 2

SOGC ct 3

ca 1

cr 1

ALL λ 0.1

Table 6.4: Parameter values for the base scenario, separated by garbage collector.



6.2 Base Scenario 31

6.2.1 Productivity

Figure 6.1 illustrates the productivity of each garbage collection algorithm using the default

parameter values defined in Section 6.1. First, as expected, for ρ < 2, COPY shows zero

productivity. SOGC exhibits higher productivity for most of the range of overallocation.

Only for very large overallocation values, COPY shows hints of being slightly better than

SOGC. Beyond ρ = 3.5, the productivity of all three algorithms starts to converge,

Figure 6.1: Productivity (π) vs. Overallocation Factor (ρ) for M&S, COPY, and SOGC in

the base scenario. The plot shows that SOGC achieves higher productivity than M&S for

most values of ρ, with COPY surpassing it by a narrow margin only at high overallocation

factors (ρ > 3.7).

These results suggest that, using our baseline parameters, SOGC’s optimized memory

management outperforms M&S and maintains higher productivity from low overallocation

factors up to approximately ρ = 3.7, where its performance converges with COPY. In the

context of FaaS applications, lower overallocation factors are particularly relevant because

users usually try to configure function memory close to the minimum required, in order

to optimize costs. Then, our results indicate that FaaS applications might benefit from the

proposed approach.
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6.2.2 Effectivity

To further analyze the trade-offs between performance and memory utilization, we now con-

sider the effectivity (η) of the three garbage collection algorithms in the base scenario. Ef-

fectivity, defined as the ratio of productivity (π) to the overallocation factor (ρ), provides a

measure of how efficiently an algorithm utilizes memory while maintaining performance.

Figure 6.2: Effectivity (η) vs. Overallocation Factor (ρ) for M&S, COPY, and SOGC in

the base scenario. The plot shows how SOGC reaches the highest effectivity at very low

overallocation factors, and how COPY has a sharp rise after ρ = 2, while M&S is lower in

all cases.

Figure 6.2 illustrates the effectivity of M&S, COPY, and SOGC across varying values of

the overallocation factor (ρ). The plot reveals that SOGC exhibits the highest effectivity at

very low overallocation factors, achieving a peak value around ρ = 1.5, and outperforming

both M&S and COPY. As the overallocation factor increases, the effectivity of both SOGC

and M&S declines, while COPY’s effectivity rises sharply, starting at ρ = 2, as expected for

this algorithm. All algorithms exhibit a gradual decline in effectivity for ρ > 2.7, but while

SOGC and COPY maintain similar levels, M&S is consistently lower.

These results reveal a performance trend mirroring that of the productivity metric; for
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instance, the overallocation factor at which COPY surpasses M&S in effectivity aligns with

the point where it surpasses M&S in productivity. However, a notable divergence emerges

at lower overallocation values. Specifically, at ρ = 1.5, SOGC demonstrates an effectivity

approximately 1.3 times greater than that of M&S. This, coupled with SOGC’s superior

productivity within this range, strongly suggests that our algorithm is both faster and more

space-efficient in its memory management, a characteristic of particular relevance for FaaS

environments where low overallocation is frequently the most critical consideration.

6.3 Productivity in Other Scenarios

In the following sections, we will analyze the results of our model for additional scenarios.

It is important to note that the effectivity metric in these scenarios exhibits a trend consistent

with the productivity metric, maintaining the relative performance of each garbage collector.

Therefore, to avoid redundancy, we will focus our analysis solely on the productivity results

for these specific scenarios.

6.3.1 The Impact of Allocation Rate

Figure 6.3 summarizes the impact of varying object allocation rates on the productivity of

the three garbage collection algorithms. We have established three distinct levels for the

allocation rate: Low, Medium, and High. The Low rate is set to be ten times lower than the

base scenario, Medium corresponds to the base scenario rate, and the High rate is ten times

higher than the base scenario.

At the Low allocation rate, all garbage collectors demonstrate similarly high productiv-

ity, which is a direct result of the minimal memory pressure imposed by the system. This

outcome serves as a crucial validation for our model, as it aligns with the expectation that

garbage collectors should have a negligible impact on application performance when serving

a slow workload. As the allocation rate increases to Medium and subsequently to High, the

productivity of all GCs declines, and no particular algorithm exhibits a clear advantage in

handling higher allocation rates over the others.

Despite the decrease in absolute productivity, the relative performance of each garbage

collector remains consistent across all allocation rates. SOGC continues to outperform the
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Figure 6.3: Productivity (π) vs. Overallocation Factor (ρ) for M&S, COPY, and SOGC under

varying allocation rates. This plot highlights the consistent relative performance of each GC

algorithm when the allocation rate changes.

other algorithms for most values of ρ, up to approximately 3.5, and COPY surpasses both

M&S and SOGC only in very high overallocation factors. These results show that our pro-

posed SOGC algorithm remains the better option for applications operating in realistic ranges

of overallocation factors, even when the allocation rate varies.

In FaaS environments, where functions may experience variable pressure due to fluctu-

ations in user demand, understanding the behavior of garbage collectors under these condi-

tions is paramount for the development of novel algorithms. Therefore, future work should

prioritize refining the garbage collector parameterization, exploring the inclusion of concur-

rency and other complex factors within the model, and subsequently revisiting this scenario

to gain more nuanced insights into the algorithms’ behavior.
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6.3.2 The impact of SOGC optimizations

The SOGC optimization scenario, illustrated in Figure 6.4, explores the impact of varying

the setup costs for SOGC. It’s important to acknowledge that, beyond the design of a garbage

collection algorithm, its implementation plays a critical role in its overall performance. Ma-

ture garbage collectors are highly optimized, so this section analyzes the potential impact

of implementation improvements, which are reflected as lower parameter costs. To achieve

this, this analysis considers different levels of optimization for the persistent memory setup,

ranging from an Optimistic configuration, where these costs are three times lower than the

base scenario, to a Pessimistic configuration, where these costs are three times higher. A

Regular configuration, using our base parameter values, was also tested.

Figure 6.4: Productivity (π) vs. Overallocation Factor (ρ) for M&S, COPY, and SOGC under

different SOGC setup costs (Optimistic, Regular, and Pessimistic). This plot highlights the

sensitivity of the SOGC algorithm to the configuration of its setup parameters.
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The Optimistic configuration demonstrates SOGC’s potential, showing that it can out-

perform both M&S and COPY across the entire range of the overallocation factor (ρ). In

a better implementation scenario, SOGC can achieve even higher performance than in the

base scenario. For instance, within the range 1 < ρ < 4, SOGC’s productivity is up to 1.5

times greater than M&S and also outperforms COPY even at higher values of ρ. Conversely,

the Pessimistic configuration reveals a substantial performance drop, with SOGC performing

similarly to M&S up to ρ = 2.4, beyond which COPY becomes the more productive algo-

rithm. This highlights that a poorly optimized setup phase could easily render SOGC less

effective than other options for all values of ρ.

We acknowledge that our default modeling of SOGC was inherently pessimistic, as we

incorporated a setup cost not present in the other GCs. This decision was deliberate, de-

signed to create a parameter that allows us to gauge the accuracy of our constraints for this

particular GC. If it is indeed possible in a real-world scenario to completely separate the

setup phase from the collection cycle without incurring additional amortized costs during fu-

ture collections, then the Optimistic scenario would more closely reflect reality. Conversely,

if segregating these two memory regions proves difficult and the setup memory requires

constant maintenance throughout the cycle, then the Pessimistic scenario would be more

representative. Ultimately, the implementation of SOGC must prioritize efficient setup and

initialization processes, as these aspects significantly influence its overall performance and

determine whether the proposed approach proves beneficial or detrimental.
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Conclusion

This work introduced the Serverless-Optimized Garbage Collector (SOGC), a novel garbage

collection algorithm designed to improve memory management in Function-as-a-Service

(FaaS) environments. We proposed an analytical model, combining the abstract framework

proposed by Bacon et al. [2] with a simplified memory cycle and performance metrics in-

spired by Heymann [19], to evaluate the performance of the proposed algorithm in com-

parison with traditional garbage collection techniques, namely Mark-and-Sweep (M&S) and

Copy-Live-Objects (COPY).

Our results demonstrate that SOGC exhibits higher productivity and effectivity than

M&S within a specific range of low overallocation factors (ρ), a common scenario in FaaS.

This suggests a significant advantage for SOGC in memory-constrained FaaS environments.

While other GCs may achieve better performance in very specific scenarios—such as when

memory is over-provisioned or when SOGC has a poor implementation—these are not the

typical use cases for serverless applications. The COPY algorithm shows zero productivity

when the overallocation factor is lower than 2, making it unsuitable for FaaS scenarios. Fur-

thermore, our model indicates that all GCs experience a similar reduction in productivity with

increasing allocation rates, highlighting the importance of understanding the algorithms’ be-

havior under various workloads. The results from the SOGC setup scenario underscore the

critical importance of efficient setup and initialization processes for the performance of our

proposed algorithm, as a poorly optimized implementation can make SOGC a detrimental

choice.

To further validate and extend this research, we propose future work in two main cate-
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gories: improvements to the model and empirical evaluations. In terms of model improve-

ments, we should:

• Refine Model Parameters with Micro-benchmarks: The parameters used in the

analytical model should be refined by developing and executing micro-benchmarks

that empirically measure the cost of individual GC operations. This would help to align

the model with actual performance characteristics and increase its validity, ensuring

our parameters are grounded in more realistic measurements.

• Extend Model to Concurrent and Parallel Garbage Collection: The model should

be extended to support concurrent garbage collection algorithms and to address po-

tential resource contention scenarios. This would enable the evaluation of different

implementations and help in analyzing how concurrency can impact our findings, al-

lowing for a better understanding of the algorithms’ behavior in complex scenarios.

• Analyze Model Sensitivity with Parameter Variations: The model should be further

analyzed by studying how it reacts to different parameter combinations. This can help

us in understanding its limits and benefits, and should allow us to better study its

relation to real-world scenarios, and also help us validate our assumptions.

To evaluate our model, we should:

• Design, implement and evaluate a SOGC prototype: Implement and evaluate the

SOGC algorithm in a relevant FaaS environment. This would allow us to directly

benchmark SOGC performance with specific FaaS workloads. By comparing the re-

sults with the predictions from our analytical model, we would accurately assess the

model’s validity and also understand the practical limitations of our approach, which

uses a simplistic assembly mapping that ignores caching, reordering, various microar-

chitectural effects, and uses a flat memory model.

• Refine Model Fidelity through Simulations: Another approach would be to develop

a simulation environment that allows for exploration of different mutator behaviors

and memory usage patterns, as well as enabling analysis of the garbage collector per-

formance under varying FaaS workloads. This would allow us to better understand the

limitations of our approach and to create models that better capture the dynamics of
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realistic FaaS environments. For example, in our analyzes, we considered that the mu-

tator activity is constant (modelled by our λ parameter). If fact, it should be variable

across the time.

This combination of future research and potential threats to validity aims to address the

limitations of our model, to enhance it with more complex factors, and to further explore the

potential of the proposed SOGC algorithm. We believe that this work provides valuable in-

sight into the design and evaluation of garbage collection algorithms for FaaS environments.

Further research is encouraged in this area to validate and expand our findings, focusing

on more realistic scenarios and on the trade-offs between the different algorithms, with a

particular focus on the optimization of the implementation of SOGC.
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Appendix A

Gargage collector operations to Assembly

A.1 Mark-and-Sweep

A.1.1 Mark

Source Code A.1: Assembly code for Marking operation

1 MOV r d i , o b j e c t _ a d d r e s s

2 MOV rbx , b i t m a s k

3 MOV [ r d i ] , rbx

This code represents the marking operation by loading the memory address of the object and

then using the bitmask to activate a specific bit in memory. This bit will represent if this

object is a live object or not.

A.1.2 Scan

Source Code A.2: Assembly code for Scanning operation

1 MOV rax , [ r d i ]

2 CMP rax , h e a p _ s t a r t

3 JL nex t_node

4 CMP rax , heap_end

5 JG nex t_node

6 nex t_node :

45
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This code demonstrates how a GC checks if a memory address is a pointer to a memory

location within the heap. The code loads the value of a memory node in the register rax, and

then checks if that address is between the start and end of the heap. This code does not show

how the GC actually gets to the next node in the heap, and how it will keep processing the

heap nodes, as this snippet aims to model a single iteration in the scanning process.

A.1.3 Allocation

Source Code A.3: Assembly code for Allocation operation

1 MOV rbx , 1

2 MOV [ r d i ] , rbx

This code shows how the GC will perform the allocation of a new node, by simply marking

a memory region as occupied, with the value 1.

A.1.4 Reclamation

Source Code A.4: Assembly code for Reclamation operation

1 MOV rbx , 0

2 MOV [ r d i ] , rbx

This code demonstrates how the GC reclaims the memory of a node, by simply setting a

specific location in memory to the value of zero.

A.2 Copy-Live-Objects

A.2.1 Copying

Source Code A.5: Assembly code for Copying operation

1 MOV rax , [ r d i ]

2 MOV [ rbx ] , r a x

This code represents the copy operation by loading the value from a specific memory loca-

tion, and then storing this value in the other memory location.
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A.2.2 Allocation

Source Code A.6: Assembly code for Allocation operation

1 MOV rbx , 1

2 MOV [ r d i ] , rbx

This code shows how the GC will perform the allocation of a new node in tospace, by simply

marking a memory region as occupied, with the value 1.

A.3 Serverless-Optimized Garbage Collector

A.3.1 Persistent Memory Setup

Source Code A.7: Assembly code for Persistent Memory Setup operation

1 MOV rbx , v a l u e 1

2 MOV [ r d i ] , rbx

3 MOV rbx , v a l u e 2

4 MOV [ r d i + o f f s e t 1 ] , rbx

This code simulates the process of setting up the persistent memory of a handler, which

involves loading values to a register and then storing them in a given memory address.

A.3.2 Handler Allocation

Source Code A.8: Assembly code for Handler Allocation operation

1 MOV rbx , 1

2 MOV [ r d i ] , rbx

This code demonstrates how a GC allocates a new node for the handler, by simply marking

a given memory location as occupied by setting a value in memory.

A.3.3 Handler Reclamation

Source Code A.9: Assembly code for Handler Reclamation operation
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1 MOV rbx , 0

2 MOV [ r d i ] , rbx

This code demonstrates how the GC reclaims the memory of a node from the handler, by

simply setting a specific location in memory to the value of zero.


