CÁLCULO DE CONTINGÊNCIAS E ELIMINA-ÇÃO DE SOBRECARGAS EM SISTEMAS DE POTÊNCIA.

RUI NUNES RÉGO

TRABALHO DE DISSERTAÇÃO APRESENTADO À COMISSÃO DE PÓS-GRADUAÇÃO DE ENGENHARIA ELÉTRICA, DO CENTRO DE TECNOLOGIA DA UNI-VERSIDADE FEDERAL DA PARAÍBA, COMO PAR-TE DOS REQUISITOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS.

JANEIRO/1981

R343c Rêgo, Rui Nunes. Cálculo de contingências e eliminação de sobrecargas em sistemas de potência / Rui Nunes Rêgo. - Campina Grande, 1981. 92 f. Dissertação (Mestrado em Ciências) - Universidade Federal da Paraíba, Centro de Ciências e Tecnologia, 1981. "Orientação: Prof. Dr. Drumond Xavier Cavalcanti". Referências. 1. Sistemas Elétricos. 2. Sistemas Elétricos de Potência. 3. Ciências - Dissertação. I. Cavalcanti, Drumond Xavier. II. Universidade Federal da Paraíba - Campina Grande (PB). III. Título DEDICATÓRIA

A minha mãe, a minha esposa e aos meus filhos.

AGRADECIMENTOS

Não me é possível agradecer a todos os que contribuíram na realização deste trabalho. Entretanto, desejo registrar a minha gratidão ao professor Dr. DRUMOND XAVIER CA-VALCANTI que, como orientador, contribuiu com uma parcela significativa; agradeço também ao meu colega MANOEL FIRMINO JÚNIOR da UFRN pelo seu decisivo apoio.

SINTESE

Apresentamos neste trabalho um método de cálculo de contigências, que utiliza os elementos da matriz de impedância de barra. Desenvolvemos também um método de redução de sobrecar ga, para ser utilizado em conjunto com o da referência (2).

Desenvolvemos no capítulo (2) um algo ritmo de formação da matriz ZBUS, terra como referência; no capítulo (3), mostramos como modifi car a matriz ZBUS, quando determinado elemento da transmissão é removido; nos capítulos (4) e (5), são feitos os desenvolvimentos matemáticos dos métodos de eliminação de sobrecarga. No capítulo (6), são apresentados os resultados de concluaplicação, no capítulo (7), fazemos as sões e, finalmente, nos apendices 1 e 2, expomos respectivamente um fluxo de carga GAUSS-SEIDEL ZBUS e um esquema computacional para a interligação dos métodos.

CAPÍTULO - 1

INTRODUÇÃO:

O redespacho de um sistema de potência pode ser feito para atender a uma certa demanda, quando perturbações ocorrem no sistema. Essas perturbações devem ser controladas por equipamentos de proteção, projetados de maneira a desligar a região mais efetada, evitando com isso consequências mais graves nos equipamentos de geração e transmissão. Portanto, é de fundamental importância que no estudo de planejamento e operação os efeitos das contingências sejam considerados, com a finalidade de tornar o sistema em estudo mais seguro. Isto pode ser feito verificando as condições de regime permanente depois de simulada uma contingência e testando, neste regime permanente:

a) os fluxos de correntes nas várias linhas e unidades
 do sistema bem como as tensões de barras;

 b) as diferenças entre os ângulos das barras terminais das linhas.

Quando uma determinada contingência leva o sistema a uma configuração não segura, devemos modificar o mesmo para conduzi-lo novamente a uma configuração segura. Vários trabalhos sobre cálculos de contingências já foram desenvolvidos, entre os quais podemos citar HOMER E. BROW (3), que utiliza os elementos da matriz de impedância de barra para calcular as variações nos fluxos de potências nas linhas que tendem a tor nar-se sobrecarregadas, quando determinado elemento da transmissão é removido. Para isto, poucos elementos da matriz de impedância são utilizados. ABOYTES (7) desenvolveu uma formulação probabilística para o estudo de contingência em regime permanente. Essa formulação considera a incerteza nos dados de geração e de carga, bem como a contingência como variãvel aleatória. EJEBE e WOLLENBERG (8) apresentam uma metodologia, desenvolvida para simulação de saída de linhas de transmissão e de geradores, de acordo com a severidade de seus efeitos sobre as tensões de barras ou fluxos nas linhas. SASSON (9) apresenta um estudo do método de E-JEBE e WOLLENBERG e propõe o uso de um fluxo de carga DC para tornar o método mais realístico. WHANG (10) desenvolveu um método para cálculo de contingência a partir de uma técnica de relaxação concêntrica, que procura compensar os efeitos das contingências sobre os módulos e ângulos das tensões de barras, através de injeções de potências nas barras situadas na vizinhança da contingência.

O método de cálculo de contingência apresentado neste tr<u>a</u> balho é uma modificação do apresentado por HOMER E. BROW. A partir de uma lista pré-selecionada de contingências, calculamos, para cada contingência, os novos fluxos nas linhas do sistema. Para isto, é utilizado uma parte do algorítmo de formação da matriz ZBUS (apresentado no capítulo 2), para modificarmos a matriz do sistema base. Em seguida, resolvemos novo fluxo de carga através da aplicação do método de GAUSS - SEIDEL ZBUS . A eficiência do método depende, portanto, da preparação da lista para cá<u>1</u> culos de contingências.

O objetivo principal deste trabalho é a redução de sobrecargas em linhas e transformadores de um sistema de potência, durante as condições de contingências. Sabemos que cada linha tem um limite máximo de transmissão que depende da duração da sobrecarga e isto deve ser obser vado. O limite máximo de transmissão de uma linha está relacionado com o seu limite térmico, para linhas curtas, ou com o seu limite de estabilidade, para linhas longas. No entanto, estas afirmativas são um pouco vagas, pois isto depende da configuração do sistema.

Quanto ao problema da redução de sobrecargas, podemos de<u>s</u> tacar os seguintes trabalhos: MAMANDUR e BERG (11) apresentam um método que procura evitar sobrecargas em linhas e transformadores, depois de ocorrido uma contingência. Para isto, é utilizada uma técnica de fatoração

- 2 -

triangular da matriz jacobiana, envolvida no fluxo de carga NEWTON-RAPHSON, para obter as relações de sensibilidade entre os fluxos de potência através das linhas, bem como a injeção de potência ativa nas barras de geração térmica. DANIELS e CHEN (12) desenvolveram um método para eliminar sobre cargas em linhas de transmissão e manter os fluxos nas linhas críticas . Este método utiliza um modelo de fluxo de carga linear, com a matriz de impedância de barra. Esses métodos acima são adequados apenas para sistemas que têm geração térmica. FIRMINO (2) e SERAFIM (13) propuseram um método para redução de sobrecargas, através da redução das correntes nas linhas, pela alocação ótima de potência reativa nas diversas barras do sistema; o primeiro, além de levar em consideração todas as restrições operacionais, utiliza somente os elementos da matriz de impedância de barra, enquanto o segundo utiliza também os elementos da matriz admitância de barra.

- 3 -

Para resolvermos o problema da redução de sobrecargas, de senvolvemos um método para ser utilizado em conjunto com o da referência (2). Neste método fazemos um redespacho da geração de potência ativa, de pois de ocorrida uma contingência. Com isto reduzimos os fluxos de potên cia ativa nas linhas sobrecarregadas.

Apresentamos a seguir o desenvolvimento dos métodos e os resultados da aplicação dos mesmos a alguns sistemas.

CAPÍTULO - 2

FORMAÇÃO DA MATRIZ DE IMPEDÂNCIA DE BARRA

(ZBUS) TERRA COMO REFERÊNCIA

2.1 - INTRODUÇÃO:

A matriz impedância de barra pode ser formada por três métodos distintos, que são:

- transformações matriciais, a partir da matriz admitância de barra;
- 2) inversão direta da matriz admitância de barra;
- 3) algorítmo de formação.

Neste capítulo, vamos formar a matriz de impedância de barra de um sistema, usando o algorítmo. O princípio básico do método escolhido consiste na formação da matriz de impedância de barra, passo a passo: a partir da barra tomada como referência, adiciona-se uma linha do sistema de cada vez, modoficando-se a matriz para cada nova linha adicionada, até a construção do sistema completo e, conseqüentemente, a matriz que o corresponde. A adição de um novo ramo pode ou não implicar na adição de uma nova barra ao sistema até então formado. Para simples efeito de formação da matriz impedância, classificaremos os ramos do sistema em quatro tipos distin tos:

- ramo ligado à referência e que inclui uma nova barra, ou ramo radial à referência;
- ramo ligado à referência e que não inclui uma nova barra, ou de fechamento de laço, através da referência;
- ramo ligado a uma barra j\u00e1 incluida e uma nova barra, ou ramo radial;
- ramo ligado a duas barras j\u00e1 incluidas, ou de fechamento de laço.

A presente classificação é justific**a**da pelo fato de que, a cada tipo de ramo, corresponde uma modificação diferente na matriz impedância de barra em formação.

2.2 - ALCORÍTMO DE FORMAÇÃO:

- 4 -

Para dar uma idéia introdutória do algorítmo, utilizaremos um sistema de quatro barras, a partir do qual adicionaremos novos ramos. À medida que chegarmos às formulas para o sistema simples, vamos, ao mesmo tempo, generalizando-as para um sistema com NB barras.

Uma equação de performance para este sistema é:

$$\begin{bmatrix} V_2 \\ V_3 \\ V_4 \\ V_5 \end{bmatrix} = \begin{bmatrix} Z_{22} & Z_{23} & Z_{24} & Z_{25} \\ Z_{32} & Z_{33} & Z_{34} & Z_{35} \\ Z_{42} & Z_{43} & Z_{44} & Z_{45} \\ Z_{52} & Z_{53} & Z_{54} & Z_{55} \end{bmatrix} \begin{bmatrix} I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix}$$
(2.1).

2.2.1 - ADIÇÃO DE UM RAMO RADIAL

Vamos acrescentar um ramo ao sistema apresentado na fig.2.1,

chegando a:

fig.2.2

- 5 -

Uma equação de performance para este sistema é:

$$\begin{bmatrix} V_2 \\ V_3 \\ V_4 \end{bmatrix} = \begin{bmatrix} Z_{22} & Z_{23} & Z_{24} & Z_{25} & Z_{26} \\ Z_{32} & Z_{33} & Z_{34} & Z_{35} & Z_{36} \\ Z_{42} & Z_{43} & Z_{44} & Z_{45} & Z_{46} \\ V_5 \\ V_6 \end{bmatrix} \begin{bmatrix} Z_{52} & Z_{53} & Z_{54} & Z_{55} \\ Z_{62} & Z_{63} & Z_{64} & Z_{65} \end{bmatrix} \begin{bmatrix} Z_{26} & Z_{26} \\ Z_{55} & Z_{56} \\ Z_{66} \end{bmatrix} \begin{bmatrix} Z_{22} & Z_{25} \\ Z_{26} \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_{22} & Z_{25} \\ Z_{26} \end{bmatrix} \begin{bmatrix} Z_{22} & Z_{25} \\ Z_{26} \end{bmatrix} \begin{bmatrix} Z_{22} & Z_{25} \\ Z_{26} \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_{22} & Z_{25} \\ Z_{26} \end{bmatrix} \begin{bmatrix} Z_{22} & Z_{25} \\ Z_{26} \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_{22} & Z_{26} \\ Z_{26} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_{22} & Z_{26} \\ Z_{26} \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_{22} & Z_{2$$

CALCULO DOS ELEMENTOS Zai

onde:

q - representa o índice da nova barra; i - '' '' de uma barra genérica do sistema existente , sendo i≠q

Para o cálculo dos elementos acima, procede-se da seguinte maneira: injeta mos uma corrente na barra i (i \neq q) e determina-se a tensão em q com relação à barra de referência. As demais correntes permanecem todas nulas.

Usando-se o sistema mostrado na fig.2.2 e injetando-se por exemplo, uma corrente I_2 na barra 2, com as demais nulas, temos:

$$V_6 = Z_{62} I_2$$

٦

com as mesmas considerações, se injetarmos correntes em 3, 4 e 5, teremos:

$$V_{6} = Z_{63} I_{3}$$

$$V_{6} = Z_{64} I_{4}$$

$$V_{6} = Z_{65} I_{5}$$
(2.3).

Portanto, se considerarmos um sistema com NB barras, podemos obter por analogia, uma formula generalizada para a tensão V_q , que é:

$$V_q = Z_{qi} I_i$$

 $i = 2, 3, ..., m$
(2.4).

onde:

m - representa o número de barras ja incluídas;

- 6 -

1 - a barra tomada como referência.

8 . To

Consideremos que há acoplamento entre os ramos 4/6 e 3/4 da fig.2.2. Vamos representar por:

onde:

Y_{46,46} e Y_{34,34} - são as admitâncias primitivas dos ramos 4/6 e 3/4 respec tivamente;

 $Y_{46,34}$ - é a admitância de acoplamento entre os ramos 4/6 e 3/4.

Dessa forma as correntes através dos ramos do sistema da fig.2.2. são dadas por:

$$I_{46} = Y_{46,46} V_{46} + Y_{46,34} V_{34}$$

$$I_{23} = Y_{23,23} V_{23}$$

$$I_{34} = Y_{34,34} V_{34} + Y_{34,46} V_{46}$$

$$I_{45} = Y_{45,45} V_{45}$$
(2.5).

Escrevendo as equações (2.5) em forma matricial, temos:

$$\begin{bmatrix} I_{46} \\ I_{23} \\ I_{34} \\ I_{45} \end{bmatrix} = \begin{bmatrix} Y_{46,46} & 0 & Y_{46,34} & 0 \\ 0 & Y_{23,23} & 0 & 0 \\ Y_{34,46} & 0 & Y_{34,34} & 0 \\ 0 & 0 & 0 & Y_{45,45} \end{bmatrix} \begin{bmatrix} V_{46} \\ V_{23} \\ V_{34} \\ V_{34} \\ V_{45} \end{bmatrix} (2.6).$$

Se fizermos $I_{46} = 0$, temos, da eq. (2.6):

- 7 -

fig.2.3

$$V_{46} = -\frac{Y_{46,34} V_{34}}{Y_{46,46}}$$

Seja, $V_{46} = V_4 - V_6$

$$V_6 = V_4 + \frac{Y_{46,34} (V_3 - V_4)}{Y_{46,46}}$$
(2.8)

Da eq. (2.4), obtemos:

 $V_6 = Z_{6i} I_i$ $V_3 = Z_{3i} I_i$ $V_4 = Z_{4i} I_i$

ou, para $I_i = 1.0$ pu:

 $V_6 = Z_{6i}$

$$V_3 = Z_{3i}$$
 (2.9).

 $V_4 = Z_{4i}$

Considerando (2.8) e (2.9), temos:

$$Z_{6i} = Z_{4i} + \frac{Y_{46,34} (Z_{3i} - Z_{4i})}{Y_{46,46}}$$

$$i = 2, 3, 4 \in 5$$
(2.10).

Para generalizarmos a formula acima, vamos considerar que a partir de uma barra p, já existente no sistema, adiciona-se um novo ramo ligado a uma nova barra q, ou seja:

$$p \xrightarrow{Y_{pq,pq}} q$$
 fig.2.5

(2.7).

it.

Consideremos agora que o ramo pq seja mutuamente acoplado com um ramo genérico rs. De acordo com a representação adotada, temos:

Y_{pq,pq} e Y_{rs,rs} - são as admitâncias primitivas dos ramos pq e rs; Y_{pq,rs} - é a admitância de acoplamento entre os ramos pq e rs.

Considerando a fig.2.5, podemos escrever a seguinte equação matricial:

$$\begin{bmatrix} I_{pq} \\ I_{rs} \end{bmatrix} = \begin{bmatrix} Y_{pq,pq} & Y_{pq,rs} \\ Y_{rs,pq} & Y_{rs,rs} \end{bmatrix} \begin{bmatrix} V_{pq} \\ V_{rs} \end{bmatrix}$$
(2.11).

Se fizermos $I_{pq} = 0$, temos:

$$\dot{V}_{pq} = -\frac{Y_{pq,rs} V_{rs}}{Y_{pq,pq}}$$

como, $V_{pq} = V_p - V_q$, obtemos:

$$V_q = V_p + \frac{Y_{pq,rs} (V_r - V_s)}{Y_{pq,pq}}$$
 (2.12).

Da eq. (2.4), podemos escrever:

$$V_q = Z_{qi} I_i$$

 $V_p = Z_{pi} I_i$

$$V_r = Z_{ri} I_i$$

$$V_s = Z_{si} I_i$$

ou, para I_i = 1.0 pu:

$$V_{q} = Z_{qi}$$

$$V_{p} = Z_{pi}$$

$$V_{r} = Z_{ri}$$

$$V_{s} = Z_{si}$$

$$i = 2, 3, ...$$

$$i \neq q$$

De (2.12) e (2.13), temos:

 $Z_{qi} = Z_{pi} + \frac{Y_{pq,rs} (Z_{ri} - Z_{si})}{Y_{pq,pq}}$ i = 2, 3, ..., m i ≠ q (2.14).

<u>CALCULO</u> <u>DO</u> <u>ELEMENTO</u> Z_{qq} (Z_{66} da eq. (2.2))

, m

O cálculo do elemento Z_{qq} pode ser feito usando-se o seguinte procedimento: injeta-se uma corrente na barra q e calcula-se o valor da tensão, com relação à referência, na mesma barra, e considera-se as demais correntes nulas.

Se injetarmos, no sistema da fig.2.2, uma corrente na barra 6, com as outras correntes nulas, temos, da eq. (2.2):

(2.13).

$$V_{2} = Z_{26} I_{6}$$

$$V_{3} = Z_{36} I_{6}$$

$$V_{4} = Z_{46} I_{6}$$

$$V_{5} = Z_{56} I_{6}$$

$$V_{6} = Z_{66} I_{6}$$
(2.15).

- 11 -

De uma forma geral, podemos escrever:

$$V_k = Z_{kq} I_q$$
 (2.16).
k = 2, 3, 4, ..., m

Considerando I₆ = 1.0 pu, então:

$$I_{46} = -I_6 = -1.0 \text{ pu}$$
 (2.17).

Da eq. (2.6), temos:

$$I_{46} = Y_{46,46} V_{46} + Y_{46,34} V_{34} = -1.0$$

$$V_{46} = -\frac{1 + Y_{46,34} V_{34}}{Y_{46,46}}$$

$$V_{6} = V_{4} + \frac{1.0 + Y_{46,34} (V_{3} - V_{4})}{Y_{46,46}}$$
(2.18).

Da eq. (2.15), temos:

$$V_3 = Z_{36} I_6$$

 $V_4 = Z_{46} I_6$ (2.19).

$$V_6 = Z_{66} I_6$$

ou, para I₆ = 1.0 pu

 $V_3 = Z_{36}$

Substituindo as eqs. (2.19) em (2.18), obtemos:

$$Z_{66} = Z_{46} + \frac{1.0 + Y_{46,34} (Z_{36} - Z_{46})}{Y_{46,46}}$$
(2.20).

De uma maneira geral, temos:

$$V_{pq} = V_p - V_q$$
 (2.21).

onde:

p corresponde ao índice da barra já existente ligada a nova barra pelo novo ramo. No exemplo da fig.2.2, p corresponde à barra 4 e q corresponde ao índice da nova barra, isto é, corresponde à barra 6. Da eq. (2.11), obtemos:

$$I_{pq} = Y_{pq,pq} V_{pq} + Y_{pq,rs} V_{rs} = -1.0$$

$$V_{pq} = -\frac{1.0 + Y_{pq,rs} V_{rs}}{Y_{pq,pq}}$$
(2.22).

De (2.21) e (2.22), temos:

$$V_{p} - V_{q} = -\frac{1.0 + Y_{pq,rs} V_{rs}}{Y_{pq,pq}}$$

$$V_{q} = V_{p} + \frac{1.0 + Y_{pq,rs} (V_{r} - V_{s})}{Y_{pq,pq}}$$
(2.23)

V

Considerando (2.16) e fazendo-se $I_q = 1.0$ pu, vem:

 $V_p = Z_{pq}$ $V_q = Z_{qq}$ $V_r = Z_{rq}$ - 12 -

 $V_s = Z_{sq}$

Substituindo esses resultados em (2.23), fica:

$$Z_{qq} = Z_{pq} + \frac{1.0 + Y_{pq,rs} (Z_{rq} - Z_{sq})}{Y_{pq,pq}}$$
(2.24).

Temos então, até este ponto, parte das equações necessárias à formação da matriz ZBUS. Essas equações se aplicam no caso de se acrescentar um ramo que não forme no sistema um laço (link).

2.2.2 - ADIÇÃO DE UM RAMO DE FECHAMENTO DE LAÇO

Consideremos ainda a fig. 2.1 e suponha que agora acrescen tamos um ramo entre as barras 2 e 4. A fig. 2.6 mostra essa modificação.

O procedimento para calcular os elementos da matriz de impedância de barra nesta condição, é considerar o sistema sem o novo ramo e criar um no fictício L entre o ramo adicionado, colocando-se uma fonte de tensão ajustada de tal modo, que a corrente através do novo ramo seja nula. O no fictício criado é logo depois eliminado, através de uma redução de KRON, conforme apresentamos a seguir:

Os indices entre parênteses são genéricos.

Uma equação de performance para esta situação é:

						-	– –	
v ₂		Z ₂₂	Z ₂₃	Z ₂₄	^Z 25	Z ₂₆	I ₂	
v ₃		Z ₃₂	Z ₃₃	^Z 34	Z ₃₅	^Z 36	I ₃	
v ₄	æ	z ₄₂	z ₄₃	Z ₄₄	^Z 45	z46	I ₄	(2.25).
V ₅		Z ₅₂	^Z 53	z ₅₄	^Z 55	z ₅₆	I ₅	
V ₆		Z ₆₂	^Z 63	Z ₆₄	^Z 65	Z ₆₆	I ₆	*
_		-						

CÁLCULO DOS ELEMENTOS ZLI

Para o cálculo dos elementos acima procede-se da seguinte maneira: injeta-se uma corrente na barra i e determina-se a tensão em Lcom relação a barra q. Usando-se o sistema mostrado na fig. 2.6 e injetando uma corrente I₂ na barra 2, com as demais nulas, da eq. (2.25), temos:

$$V_6 = Z_{62} I_2$$

Com as mesmas considerações, se injetarmos correntes em 3, 4, 5 e 6, teremos:

> $V_6 = Z_{63} I_3$ $V_6 = Z_{64} I_4$ $V_6 = Z_{65} I_5$ $V_6 = Z_{66} I_6$

ou, genericamente:

 $V_{L} = Z_{Li} I_{i}$ i = 2, 3, ..., m

fazendo $I_i = 1.0$ pu, temos:

$$V_{\rm L} = Z_{\rm Li}$$
 $i = 2, 3, ..., m$ (2.26).

Da fig. 2.7 podemos escrever:

$$V_p = V_q + V_L + V_{pL}$$

ou:

$$V_{\rm L} = V_{\rm p} - V_{\rm q} - V_{\rm pL}$$
 (2.27).

Da eq. (2.11), para q = L, temos:

$$I_{pL} = Y_{pL,pL} V_{pL} + Y_{pL,rs}$$

como a corrente através do novo ramo é nula, obtemos:

$$Y_{pL,pL}V_{pL} + Y_{pL,rs}V_{rs} = 0$$
 (2.28).

ou:

$$V_{pL} = -\frac{Y_{pL,rs} V_{rs}}{Y_{pL,pL}}$$

temos também da fig. 2.7:

$$Y_{pL,pL} = Y_{pq,pq}$$

pois as barras L e q são apenas os terminais da fonte V_L . Então:

$$V_{pL} = -\frac{Y_{pq,rs} V_{rs}}{Y_{pq,pq}}$$
(2.29).

Substituindo (2.29) em (2.27), obtemos:

$$V_{\rm L} = V_{\rm p} - V_{\rm q} + \frac{Y_{\rm pq,rs} V_{\rm rs}}{Y_{\rm pq,pq}}$$
 (2.30).

Da eq. (2.26), temos:

$$V_{L} = Z_{Li}$$

 $V_{p} = Z_{pi}$
 $V_{q} = Z_{qi}$

Substituindo esses resultados em (2.30), fica:

$$Z_{Li} = Z_{pi} - Z_{qi} + \frac{Y_{pq,rs} V_{rs}}{Y_{pq,pq}}$$

i = 2, 3, ..., m

i ≠ L

(2.31).

<u>CALCULO DO ELEMENTO Z_{LL} (Z_{66} da eq. (2.25))</u>

O elemento Z_{LL} pode ser determinado, usando-se o seguinte procedimento: injetamos uma corrente na barra L, com a barra q como referência e calculamos o valor da tensão em L em relação a q. No sistema da fig.2.6, se injetarmos uma corrente I_6 na barra 6, com as demais nulas, te mos, da eq. (2.25):

$$V_{2} = Z_{26} I_{6}$$

$$V_{3} = Z_{36} I_{6}$$

$$V_{4} = Z_{46} I_{6}$$

$$V_{5} = Z_{56} I_{6}$$

$$V_{6} = Z_{66} I_{6}$$

ou, genericamente:

$$V_k = Z_{kI} I_L$$
 $k = 2, 3, ..., m$ (2.32).

Fazendo-se I_L =1.0 pu, temos:

$$V_k = Z_{kL}$$
 (2.33).

A corrente no ramo pL, da fig. 2.7, é:

$$I_{\rm pl} = -I_{\rm l} = -1.0 \, {\rm pu}$$
 (2.34).

Da eq. (2.11), podemos escrever:

 $I_{pL} = Y_{pL,pL} V_{pL} + Y_{pL,rs} V_{rs} = -1.0$

- 16 -

ou:

$$V_{pL} = -\frac{1.0 + Y_{pL,rs} V_{rs}}{Y_{pL,pL}}$$

mas Y_{pL,pL} = Y_{pq,pq}, logo:

$$V_{pL} = -\frac{1.0 + Y_{pq,rs} V_{rs}}{Y_{pq,pq}}$$
(2.35).

Substituindo (2.35) em (2.27), temos:

$$V_{\rm L} = V_{\rm p} - V_{\rm q} + \frac{1.0 + Y_{\rm pq, rs} V_{\rm rs}}{Y_{\rm pq, pq}}$$
 (2.36).

De (2.33), temos:

$$V_L = Z_{LL}$$

 $V_p = Z_{pL}$
 $V_q = Z_{qL}$

substituindo esses resultados em (2.36), obtemos:

$$Z_{LL} = Z_{pL} - Z_{qL} + \frac{1.0 + Y_{pq,rs} V_{rs}}{Y_{pq,pq}}$$
(2.37).

As eqs. (2.31) e (2.37) só devem ser aplicadas quando se acrescentar linha ou transformador, que forme no sistema um laço. Calculados os elementos da matriz impedância de barra, quando da adição de um ramo de fechamento de laço, os elementos da linha e coluna correspondentes ao nó fictício L devem ser eliminados para incluir na matriz o efeito do novo ramo adicionado. Isto é feito através de uma redução de KRON (1), onde os novos elementos da matriz, depois de eliminado o nó fictício L, são dados por:

$$Z_{ij} = Z_{ij} - \frac{Z_{iL} Z_{Lj}}{Z_{LL}}$$

i = 2, 3, ..., m

j = 2, 3, ..., m

(2.38).

As eqs. (2.14), (2.24), (2.31), (2.37) e (2.38), são as equações necessárias para a formação da matriz de qualquer sistema.

Este trabalho está sendo desenvolvido com a finalidade de obter a matriz de impedância de barra de qualquer sistema de potência, para posteriormente ser utilizada em cálculos de fluxo de cargas e cálculos de contingências. Consequentemente, podemos obter uma boa simplificação pa ra as equações anteriormente deduzidas sem, entretanto, acarretar erros consideráveis. Esta simplificação consiste exatamente em desprezar os acoplamentos mútuos entre os ramos do sistema considerado.

A seguir, mostramos as equações simplificadas que serão usadas no algorítmo de formação da matriz de impedância de barra.

ADIÇÃO DE UM RAMO RADIAL

1 - Na eq. (2.14), se fizermos Y_{pq,rs} = 0 e considerarmos o no p como a referência, a tensão na barra de referência, com relação a ela mesma, é zero. Logo:

$$Z_{pi} = 0$$

i = 2, 3, ..., m
i ≠ q

então:

 $Z_{qi} = 0$ (2.39). i = 2, 3, ..., m $i \neq q$ Também $Z_{pq} = 0$, de (2.24), obtemos:

 $Z_{qq} = Z_{pq}$ (2.40).

2 - De (2.14), se fizermos Y_{pq,rs} = 0, não sendo p o no de referência, temos:

$$Z_{qi} = Z_{pi}$$
 (2.41).
 $i = 2, 3, ..., m$
 $i \neq q$

De (2.24), teremos:

$$Z_{qq} = Z_{pq} + Z_{ser}_{pq}$$
(2.42).

ADIÇÃO DE UM RAMO DE FECHAMENTO DE LAÇO

1 - Quando uma das barras é a referência, temos, das eqs. (2.31) e (2.37):

 $Z_{\text{Li}} = -Z_{\text{qi}}$ (2.43).

- 18 -

i = 2, 3, ..., m i # L $Z_{LL} = - Z_{qL} + Zser_{pq}$ (2.44).

2 - Quando nenhuma das barras é a referência, temos, das mesmas eqs.(2.31) e (2.37):

$$Z_{Li} = Z_{pi} - Z_{qi}$$

$$i = 2, 3, ..., m$$

$$i \neq L$$

$$Z_{LL} = Z_{pL} - Z_{qL} + Z_{ser}_{pq}$$
(2.45).

2.3 - MODIFICAÇÃO DO SISTEMA ORIGINAL PARA O INÍCIO DA FORMAÇÃO DA MATRIZ ZBUS.

Mostraremos, a seguir, como incluir os elementos paralelos das linhas de transmissão, capacitores ou reatores de barras, bem como os transformadores do sistema considerado, no método de formação da matriz ZBUS.

Para ilustrar o método, consideremos um simples sistema de três barras:

Na fig.2.9 as linhas estão representadas pelos seus respectivos circuitos

- 19 -

(2.46).

equivalentes. Nota-se que temos várias ligações para a terra e, à medida que cresce o sistema, o número de ligações para a terra cresce em proporção maior, pois para cada linha do sistema, correspondem dois elementos shunt. Portanto, com a finalidade de reduzir ao mínimo possível o número de ligações para a terra e, conseqüentemente, o tempo computacional para formação da matriz ZBUS, procedemos da seguinte maneira: para cada barra do sistema considerado somamos todos os elementos paralelos a ela ligados. Para a fig.2.9, temos:

> barra (1) - SHT(1) = QSHT(1) + Y(1) + Y(2) '' (2) - SHT(2) = Y(1) + Y(3) '' (3) - SHT(3) = Y(2) + Y(3)

ou, genericamente:

$$SHT(k) = QSHT(k) + Y(i)$$
 (2.47).

onde:

k - indice correspondente às barras
i - " " " linhas ligadas à barra k
SHT - shunt total.

Logo em seguida, transformamos o shunt total de cada barra em uma nova ligação para a terra, com uma impedância igual a 1.0/SHT(k). Portanto, o sistema da fig.2.9, torna-se:

fig.2.10

A fig.2.10 representa o sistema modificado correspondente ao mostrado na fig.2.8. Notamos, portanto, que o número de ligações para a terra ficou reduzido a menos da metade daquele da fig.2.9, e à medida que consideramos sistemas maiores, esta redução torna-se cada vez maior.

INCLUSÃO DE TRANSFORMADORES COM MUDANÇA DE DERIVAÇÃO EM CARGA.

O circuito equivalente de transformadores com mudança de derivação em carga, tem o mesmo modelo da representação de uma linha de transmissão, porém com os parâmetros diferentes. A seguir, mostraremos como determinar os parâmetros do circuito equivalente dos transformadores de mudança de derivação em carga. Consideremos o transformador representado na fig.2.11.

A fig. refere-se ao tap do lado i:

$$\frac{V_1}{V_k} = a \quad \because \quad V_1 = a \quad V_k \tag{2.47}.$$

 $I_1 = -I_i$ (2.48).

Como o transformador ideal não tem perdas, podemos escrever:

$$V_k I_k^* = a V_k(-I_i^*)$$

 $\frac{I_k}{I_i} = -a^* = -a$, porque a é real (2.50).

Da fig.2.11, temos:

$$V_i = V_1 + I_i Zser$$
 (2.51).

Substituindo (2.47) em (2.51), teremos:

$$I_i = (V_i - a V_k)/Zser$$
 (2.52).

- 21 -

$$I_{k} = \frac{a(V_{i} - aV_{k})}{Z_{ser}}$$
(2.53).

Consideremos, agora, o circuito mostrado abaixo:

onde:

A, B,e C são admitâncias.

Da fig.2.12, podemos escrever:

$$I_i = (V_i - V_k) A + B V_i$$
 (2.54).

$$I_k = (V_k - V_i) A + C V_k$$
 (2.55).

A 4.

Comparando-se as equações (2.52) com (2.54) e (2.53) com (2.55), obtemos:

Substituindo os valores de A, B e C na fig.2.12, temos:

- 22 -

que é o circuito equivalente para os transformadores com mudança de derivação em carga.

Calculados os parâmetros do circuito acima, a inclusão dos transformadores existentes no sistema é feita de maneira análoga às linhas de transmissão. Mostraremos a seguir, um exemplo de formação da matriz ZBUS terra como referência.

fig.2.14

Linha	Zser (pu)	Ysht (pu)
1 - 2	0.0656 + j0.3720	j0.3170
1 - 3	0.0494 + j0.2800	j0.2380
2 - 3	0.0329 + j0.1860	j0.1590

Potência Base : 100 MVA

Exemplo:

	GER	ação	CON	SUMO	BANCO FIXO
Barra	MW	MVAR	MW	MVAR	MVAR
1	-	-	0.0	0.0	0.0
2	0.0	0.0	150.0	70.0	0.0
3	100.0	0.0	0.0	0.0	0.0

Aplicando a eq. (2.47), obtemos:

SHT(1) = j0.317 + j0.238 = j0.555 SHT(2) = j0.317 + j0.159 = j0.476 SHT(3) = j0.238 + j0.159 = j0.397 - 23 -

Logo, a configuração do sistema fica:

Temos que iniciar a formação, incluindo inicialmente uma linha ligada à referência.

Inclusão da linha (4): a linha (4) é uma linha radial ligada à referência. Da eq. (2.40), temos:

Matriz 0.00 - j1.80

Inclusão da linha (5):

Matriz $\begin{bmatrix} 0.00 - j1.80 & 0.00 + j0.00 \\ 0.00 + j0.00 & 0.00 - j2.10 \end{bmatrix}$

Inclusão da linha (6):

Matriz0.00 - j1.800.00 + j0.000.00 + j0.000.00 + j0.000.00 - j2.100.00 + j0.000.00 + j0.000.00 + j0.000.00 - j2.52

Inclusão da linha (1). A linha (1) é uma linha de fechamento de laço, não incluindo a referência. Das eqs. (2.45) e (2.46), obtemos:

Matriz0.00 - j1.800.00 + j0.000.00 + j0.000.00 - j1.800.00 + j0.000.00 - j2.100.00 + j0.000.00 + j2.100.00 + j0.000.00 + j0.000.00 - j2.520.00 + j0.000.00 + j0.000.00 + j2.100.00 + j0.000.07 - j3.53

- 25 -

Redução de KRON: depois da aplicação da eq. (2.38 na matriz

acima, obtemos:

Matriz
$$0.02 - j0.88 - 0.02 - j1.07 \\ -0.02 - j1.07 \\ 0.02 - j0.85 \\ 0.00 + j0.00 \\ 0.00 + j0.00 \\ 0.00 + j0.00 \\ 0.00 - j2.52 \\ 0.$$

Inclusão da linha (2):

Matriz

 $z = \begin{bmatrix} 0.02 - j0.88 & -0.02 - j1.07 & 0.00 + j0.00 & 0.02 - j0.88 \\ -0.02 - j1.07 & 0.02 - j0.85 & 0.00 + j0.00 & -0.02 - j1.07 \\ 0.00 + j0.00 & 0.00 + j0.00 & 0.00 - j2.52 & 0.00 + j2.52 \\ 0.02 - j0.88 & -0.02 - j1.07 & 0.00 + j2.52 & 0.07 - j3.12 \end{bmatrix}$

Depois da redução de KRON, temos:

	0.01 -	j0.63	-0.01 - j0.77	0.00 - j0.71
Matriz	-0.01 -	j0.77	0.04 - j0.48	-0.03 - j0.86
	0.00 -	j0.71	-0.03 - j0.86	0.04 - j0.49

Inclusão da linha (3):

Matriz	0.01 - j0.63	-0.01 - j0.77	0.00 - j0.71	-0.01 - j0.06
	-0.01 - j0.77	0.04 - j0.48	-0.03 - j0.86	0.08 + j0.38
	0.00 - j0.71	-0.03 - j0.86	0.04 - j0.49	-0.08 - j0.37
	-0.01 - j0.06	0.08 + j0.38	-0.08 - j0.37	0.19 + j0.94

Depois da redução de KRON, temos a matriz completa do siste-

ma exemplo:

Matriz0.012 - j0.636 - 0.009 - j0.746 - 0.006 - j0.735
-0.009 - j0.746 - 0.012 - j0.637 - 0.002 - j0.712
-0.006 - j0.735 - 0.002 - j0.712 - 0.011 - j0.638

2.4 - FLUXOGRAMA

Apresentaremos a seguir um fluxograma para implementação con putacional do método descrito neste capítulo.

CAPÍTULO - 3

CÁLCULO DE CONTINGÊNCIA COM A MATRIZ ZBUS

3.1 - INTRODUÇÃO:

Chamamos de contingência a perda de um ou mais elementos de um sistema de geração, transmissão ou distribuição de energia elétrica, tais como unidades geradoras, linhas ou transformadores. A contingência pode ser simples, quando apenas um elemento do sistema é perdido; ou multi pla, quando há perda simultânea de dois ou mais elementos do sistema.

O calculo de contingência é de real importância tanto para o planejamento de sistemas de potência, como para a expansão dos ja existentes. É evidente que, quando se planeja ou se expande um sistema de potência, devemos simular várias contingências e calcular um fluxo de carga para cada contingência simulada, com a finalidade de verificar se houve so brecarga no sistema. As conseqüências mais graves provocadas por sobrecarga em linhas e a violação dos seus limites térmicos.

Os limites térmicos são determinados a partir de hipóteses sobre a temperatura do meio ambiente, velocidade do vento, e uma série de outros fatores, não podendo, no entanto, ser ultrapassados, em média, pois is to provocaria uma diminuição sensível da vida útil dos condutores, como também provocaria uma flecha que pode comprometer a distância mínima ao so lo. Neste caso o controle das correntes nas linhas sobrecarregadas é de fundamental importância.

3.2 - O PROBLEMA DO CÁLCULO DE CONTINGÊNCIA

Inicialmente calcula-se a matriz ZBUS do sistema através do método descrito no capítulo anterior e logo em seguida obtém-se, pela aplicação de um algorítmo de fluxo de carga, os fluxos nas linhas e as ten sões resultantes da convergência do caso base. Neste trabalho será utilizado um algorítmo ZBUS GAUSS - SEIDAL. Com estes dados disponíveis, o pro blema do cálculo de contingência é feito da seguinte maneira:

- Perda de uma unidade geradora. Retira-se do sistema base a geração per dida e calcula-se novo fluxo de carga;
- 2 Perda de um elemento da transmissão. Modifica-se a matriz ZBUS do sistema base para incluir o efeito do elemento perdido e calcula-se novo fluxo de carga.

A seguir mostraremos como modificar a matriz ZBUS, quando um elemento da transmissão é perdido. Consideremos o sistema de três barras mostrado abaixo:

fig.3.1

Como mostramos no capítulo anterior, tanto uma linha como um transformador com mudança de derivação em carga, podem ser perfeitamente representados pelo circuito abaixo:

onde:

 $Y_i = Y_k$, para linhas $Y_i \neq Y_k$, para transformadores.

Dessa forma, o sistema da fig. 3.1 transforma-se no da fig. 3.3,

2

(1)

1

Onde os elementos paralelos foram transformados em novas linhas ligando as barras 1, 2 e 3 a barra de referência (terra).

Suponhamos que, por algum motivo, temos que retirar a linha (1) do sistema da fig.31. A modificação da matriz ZBUS, formada para o sistema base, é feita adicionando-se ao sistema uma linha paralela à linha (1), com valores de impedância e admitâncias paralelas simétricas aos valores de impedância e admitâncias paralelas da linha a retirar. O que cor responde a:

fig.3.4

Representando a nova linha pelo seu circuito equivalente, temos:

A introdução do circuito da fig. 3.5, no circuito modificado da fig. 3.3, resulta em:

Portanto, para se modificar a matriz ZBUS do sistema base, quando da saída de uma linha, três novos ramos devem ser adicionados ao sistema, caso a li nha retirada tenha uma admitância paralela não nula. Caso contrário, a adi ção de apenas um ramo é o suficiente. Para a retirada de transformadores, procedemos de maneira idêntica a anterior, só que antes devemos calcular os elementos paralelos do circuito equivalente ao mesmo, através das equa-

- 30 -

ções deduzidas no capítulo 2. Mostramos abaixo a modificação da matriz ZBUS do sistema da fig.2.14, quando retiramos a linha (2). A linha (2) tem admitâncias paralelas não nulas; portanto, de acordo com a fig. 3.6, três novos ramos devem ser incluídos no sistema modificado da fig.2.15.

Inclusão do ramo série: este é um ramo de fechamento de laço, não ligado à referência. Das equações (2.45) e (2.46), temos:

 $\begin{bmatrix} 0.01 - j0.64 & -0.01 - j0.75 & -0.01 - j0.73 & 0.02 + j0.01 \\ -0.01 - j0.75 & 0.01 - j0.64 & -0.00 - j0.71 & -0.01 - j0.03 \\ -0.01 - j0.73 & -0.00 - j0.71 & 0.01 - j0.64 & -0.02 - j0.01 \\ 0.02 + j0.01 & -0.01 - j0.03 & -0.02 - j0.01 & -0.01 - j0.08 \end{bmatrix}$

Redução de KRON: depois da aplicação da equação (2.38) na matriz acima, teremos:

 $\begin{bmatrix} 0.04 - j0.52 & -0.02 - j0.79 & -0.03 - j0.85 \\ -0.02 - j0.79 & 0.01 - j0.62 & 0.01 - j0.67 \\ -0.03 - j0.85 & 0.01 - j0.67 & 0.04 - j0.53 \end{bmatrix}$

Inclusão do ramo paralelo, que liga a barra (1) à referên cia: este é um ramo de fechamento de laço, ligado à referência. Das equações (2.43) e (2.44), obtemos:

 $\begin{bmatrix} 0.04 - j0.52 & -0.02 - j0.79 & -0.03 - j0.85 & -0.02 - j0.10 \\ -0.02 - j0.79 & -0.01 - j0.62 & 0.01 - j0.67 & 0.01 + j0.03 \\ -0.03 - j0.85 & 0.01 - j0.67 & 0.04 - j0.53 & 0.02 + j0.10 \\ -0.02 - j0.10 & 0.01 + j0.03 & 0.02 + j0.10 & 1.80 - j7.33 \end{bmatrix}$

Redução de KRON:

 $\begin{bmatrix} 0.04 - j0.52 & -0.02 - j0.79 & -0.03 - j0.85 \\ -0.02 - j0.79 & 0.01 - j0.62 & 0.01 - j0.67 \\ -0.03 - j0.85 & 0.01 - j0.67 & 0.04 - j0.53 \end{bmatrix}$

Inclusão do ramo paralelo, que liga a barra (3) à referên

cia.

- 31 -
- 32 -

Depois da redução de KRON, temos finalmente a matriz mo-

dificada:

 Matriz
 0.037 - j0.524
 -0.017 - j0.785
 -0.031 - j0.846

 -0.017 - j0.785
 0.015 - j0.624
 -0.006'- j0.674

 -0.031 - j0.846
 0.006 - j0.674
 0.035 - j0.528

3.3 - FLUXOGRAMA

Apresentaremos a seguir um fluxograma para o método descrito neste capítulo.

fig.3.7

- 33 -

CAPÍTULO - 4

3

ELIMINAÇÃO DE SOBRECARGA POR ALOCAÇÃO

DE POTÊNCIA ATIVA

4.1 - INTRODUÇÃO:

Os problemas de maximização ou minimização de uma função f(x) são conhecidos tecnicamente como problemas de otimização. A função a ser otimizada é denominada "função objetivo". O problema de otimização , em geral, consiste em um processo de busca de um ponto extremo absoluto da função a ser otimizada, em uma região limitada por restrições de igualdade ou desigualdade. A função objetivo pode ser linear ou não linear de uma ou mais variaveis. Como foi dito anteriormente, o nosso principal objetivo é a eliminação de sobrecarga no sistema, durante determinadas condições de emergência. Vamos escolher, neste capítulo, a função de perdas ativas que, depois de minimizada, atende aproximadamente ao nosso objetivo. Portanto, trata-se de uma função não linear, onde as variaveis de controle, são as potências ativas de barras, e as de estado, os ângulos de fase. Inicialmente supomos conhecidas as potências ativa e reativa líquidas injetadas em todas as barras do sistema e a configuração do mesmo.

Utilizaremos aqui o método do gradiente por apresentar resultados satisfatórios quando se trata de problemas dessa natureza.

4.2 - O METODO DO GRADIENTE

Todos os métodos de gradiente são baseados (6), pelo menos em parte, na seguinte equação:

$$x^{(i+1)} = x^{(i)} - k H \nabla f|_{x = x}(i)$$
(4.1).

sendo:

f(x₁, x₂, ..., x_n) - a função a ser otimizada; H - matriz quadrada nxn; k - número real; - 34 -

Com a finalidade de tornar mais simples o método utilizado, vamos desprezar a matriz H da equação (4.1), ficando com:

$$x^{(i+1)} = x^{(i)} - k \nabla f |_{x = x^{(i)}}$$
 (4.2).

Para se obter a convergência do processo iterativo, ou evitar oscilações desnecessárias, a escolha do valor de k da equação (4.2) é fundamental, ou seja, para cada caso, devemos ter um valor de k que tor ne o mais rápido possível a convergência do método. A seguir, mostraremos, através de um simples exemplo, a influência da escolha do valor de k no processo iterativo.

Seja, por exemplo, minimizar a função f, definida por:

$$f(x, y) = x^{2} - 2y + y^{2}$$

$$\nabla f = \begin{vmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{vmatrix} = \begin{vmatrix} 2x \\ 2y - 2 \end{vmatrix}$$

da equação (4.2), temos:

$$x^{(i + 1)} = x^{(i)} - k \frac{\partial f}{\partial x} |_{x} = x(i)$$

$$y^{(i + 1)} = y^{(i)} - k \frac{\partial f}{\partial y} |_{y} = y^{(i)}$$
(4.3).

Como estimativa inicial, tomamos:

 $x^{(0)} = 1$ e $y^{(0)} = 0$

aplicando as eqs. (4.3) para k = 2, temos:

$$x^{(1)} = x^{(0)} - k \frac{\partial f}{\partial x} |_{x = x}(0) = 1 - 4 = -3$$

- 35 -

$$y^{(1)} = y^{(0)} - k \frac{\partial f}{\partial y} |_{y} = y^{(0)} = 0 + 4 = 4$$

$$x^{(2)} = x^{(1)} - k \frac{\partial f}{\partial x} |_{x} = x^{(1)} = -3 + 12 = 9$$

$$y^{(2)} = y^{(1)} - k \frac{\partial f}{\partial y} |_{y} = y^{(1)} = 4 - 12 = -8$$

$$x^{(3)} = x^{(2)} - k \frac{\partial f}{\partial x} |_{x} = x^{(2)} = 9 - 36, = -27$$

$$y^{(3)} = y^{(2)} - k \frac{\partial f}{\partial y} |_{y} = y^{(2)} = -8 + 36 = 28$$

$$x^{(4)} = x^{(3)} - k \frac{\partial f}{\partial x} |_{x} = x^{(3)} = -27 + 108 = 81$$

$$y^{(4)} = y^{(3)} - k \frac{\partial f}{\partial y} |_{y} = y^{(3)} = 28 - 108 = -80$$

Como podemos observar, pelos valores calculados acima, a escolha do k levou o processo a não convergência. A seguir, mostraremos através de um gráfico, a não convergência do processo iterativo:

1

- 36 -

Para k = 0.80, temos para a mesma estimativa inicial:

$$x^{(1)} = -0.6$$

$$y^{(1)} = 1.6$$

$$x^{(2)} = 0.36$$

$$y^{(2)} = 0.64$$

$$x^{(3)} = -0.216$$

$$y^{(3)} = 1.21$$

$$x^{(4)} = 0.13$$

$$y^{(4)} = 0.87$$

3

Para esse valor de k,o processo iterativo converge lentamente para a solução, que é x = 0 e y = 1. Cálculos foram feitos para vári os valores de k e observamos que, a medida que tomávamos valores mais próximo de 0.5, a convergência era acelerada. Finalmente, para k = 0.5, obtive mos a melhor convergência do método, ou seja, com apenas uma iteração encontramos a solução desejada.

- 37 -

Neste capítulo, utilizaremos um valor de k calculado com os parâmetros das próprias equações que definem o problema (5). O cálculo de k é feito a cada iteração do processo de otimização, uma vez que é fei to de maneira aproximada.

4.3- O PROBLEMA DE ELIMINAÇÃO DE SOBRECARGA POR ALOCAÇÃO DE POTÊNCIA ATIVA

Sendo nossa função as perdas ativas na transmissão, dedu ziremos, inicialmente, uma expressão para as mesmas.

Sabemos que:

SL =
$$\sum_{i=1}^{NB} S_i$$
, sendo $S_i = P_i + jQ_i = V_i I_i^*$ (4.4).

Portanto,

$$SL = \sum_{i=1}^{NB} V_i I_i^*$$
(4.5).

Por outro lado, temos:

$$V_{i} = \sum_{k=1}^{NB} Z_{ik} I_{k}$$
(4.6).

Substituindo (4.6) em (4.5), obtemos:

3

 $SL = \sum_{i=1}^{NB} I_{i} \sum_{k=1}^{*} Z_{ik} I_{k}$

chamando $I_i = I_{pi} + jI_{qi} e Z_{ik} = R_{ik} + jX_{ik}$, temos:

$$SL = \sum_{i=1}^{NB} \sum_{k=1}^{NB} (I_{pi} - jI_{qi}) (R_{ik} + jX_{ik}) (I_{pk} + jI_{qk})$$

a parte real de SL corresponde às perdas ativas na transmissão, sendo dada por:

$$PL = \sum_{i=1}^{NB} \sum_{k=1}^{NB} (I_{pi} (R_{ik} I_{pk} - X_{ik} I_{qk}) + I_{qi} (R_{ik} I_{qk} + X_{ik} I_{pk}))$$

$$(4.7).$$

De (4.4), obtemos:

- 38 -

$$P_i + jQ_i = |V_i| (\cos \delta i + j \sin \delta i) (I_{pi} - jI_{qi})$$

ou ainda:

$$P_{i} + jQ_{i} = |V_{i}| ((I_{pi} \cos \delta i + I_{qi} \sin \delta i) + j(I_{pi} \sin \delta i - I_{qi} \cos \delta i))$$

separando as partes real e imaginária, fica:

$$P_{i} = |V_{i}| (I_{pi} \cos \delta i + I_{qi} \sin \delta i)$$
(4.8).

$$Q_i = |V_i| (I_{pi} \text{ sen } \delta i - I_{qi} \cos \delta i)$$
 (4.9).

Multiplicando P_i por cos $\delta i \in Q_i$ por sen $\delta i \in Some ando as equações resultan$ tes, teremos:

$$I_{pi} = \frac{1}{|V_i|} (P_i \cos \delta i + Q_i \sin \delta i)$$
 (4.10).

Analogamente, obtemos:

$$I_{qi} = \frac{1}{|V_i|} (P_i \text{ sen } \delta i - Q_i \cos \delta i) \qquad (4.11).$$

Substituindo (4.10) e (4.11) em (4.7) e arrumando os termos, temos:

$$PL = \sum_{i=1}^{NB} \sum_{k=1}^{NB} (\alpha_{ik} (P_i P_k + Q_i Q_k) + \beta_{ik} (Q_i P_k - P_i Q_k))$$

$$(4.12).$$

Onde:

a.. =

$$\alpha_{ik} = \frac{R_{ik}}{|V_i| |V_k|} \cos(\delta i - \delta k)$$
$$\beta_{ik} = \frac{R_{ik}}{|V_i| |V_k|} \sin(\delta i - \delta k)$$

A seguir, aplicaremos o método do gradiente, descrito no início desse capítulo, à função objetivo dada pela equação (4.12).

Para o nosso caso, a equação (4.2), torna-se:

- 39 -

- 40 -

(4.13).

$$P^{(i + 1)} = P^{(i)} - k^{(i)} \nabla PL^{(i)}$$

onde:

As perdas ativas constitui-se na variável dependente, sen do as potências ativas líquidas injetadas nas barras do sistema, as variáve is independentes. A função objetivo é aproximadamente quadrática em P, de vido à pequena sensibilidade dos coeficientes α e β com as potências ativas.

4.3.1 - CALCULO DO VETOR GRADIENTE

Separando a equação (4.12), teremos:

$$PL = \sum_{i=1}^{NB} \sum_{k=1}^{NB} \alpha_{ik} P_i P_k + \sum_{i=1}^{NB} \sum_{k=1}^{NB} \alpha_{ik} Q_i Q_k$$

 $\begin{array}{cccc} \text{NB} & \text{NB} & \text{NB} & \text{NB} \\ \Sigma & \Sigma & \beta_{ik} & Q_i & P_k & - & \Sigma & \Sigma & \beta_{ik} & P_i & Q_k \\ i=1 & k=1 & k=1 & k=1 & k=1 & \end{array}$

o calculo do VPL sera feito por parcelas, como segue:

$$PL_{1} = \sum_{i=1}^{NB} \sum_{k=1}^{NB} \alpha_{ik} P_{i} P_{k}$$

ou:

$$PL_{1} = \sum_{k=1}^{NB} (\alpha_{1k} P_{1} + \alpha_{2k} P_{2} + \cdots + \alpha_{ik} P_{i} + \cdots + \alpha_{NBk} P_{NB})P_{k} =$$

•

 $(\alpha_{11} P_1 + \alpha_{21} P_2^{+\cdots +\alpha_{11}} P_1 + \cdots + \alpha_{NB1} P_{NB})P_1 +$

 $(\alpha_{12} P_1 + \alpha_{22} P_2 + \dots + \alpha_{1i} P_i + \dots + \alpha_{NB2} P_{NB})P_2 +$

$$(\alpha_{1i} P_{1} + \alpha_{2i} P_{2}^{+\cdots+\alpha_{ii}} P_{i}^{+} + \cdots + \alpha_{NBi} P_{NB})P_{i}^{+}$$

$$(\alpha_{1NB} P_{NB} + \alpha_{2NB} P_{NB}^{+\cdots+\alpha_{iNB}} P_{NB}^{+} \cdots + \alpha_{NBNB} P_{NB})P_{NB}$$

- 41 -

$$\frac{\partial PL_1}{\partial P_1} = \alpha_{i1} P_1 + \alpha_{i2} P_2 + \dots + (\alpha_{1i} P_1 + \dots + 2 \alpha_{ii} P_i + \dots$$

$$+\alpha_{\text{NBi}} P_{\text{NB}} + \cdots + \alpha_{\text{iNB}} P_{\text{NB}}$$

$$\frac{\partial PL_{1}}{\partial P_{i}} = \sum_{k=1}^{NB} \alpha_{ik} P_{k} + \sum_{k=1}^{NB} \alpha_{ki} P_{k}$$

$$como \quad \alpha_{ik} = \alpha_{ki}, temos:$$

-

$$\frac{\partial PL_1}{\partial P_i} = 2 \sum_{k=1}^{NB} \alpha_{ik} P_k$$

$$PL_{2} = \sum_{i=1}^{NB} \sum_{k=1}^{NB} \alpha_{ik} Q_{i} Q_{k}$$

$$\frac{\partial PL_2}{\partial P_i} = 0$$

$$PL_{3} = \sum_{i=1}^{NB} \sum_{k=1}^{NB} \beta_{ik} Q_{i} P_{k}$$

$$\frac{\partial PL_3}{\partial P_i} = \beta_{1i} Q_1 + \beta_{2i} Q_2 + \dots + \beta_{ii} Q_i + \dots + \beta_{NBi} Q_{NB}$$

$$\frac{\partial PL_3}{\partial P_i} = \sum_{k=1}^{NB} \beta_{ki} Q_k$$

$$PL_{4} = \sum_{i=1}^{NB} \sum_{k=1}^{NB} \beta_{ik} P_{i} Q_{k}$$

$$\frac{\partial PL_4}{\partial P_i} = \beta_{i1} Q_1 + \beta_{i2} Q_2 + \dots + \beta_{ii} Q_i + \dots + \beta_{iNB} Q_{NB}$$

$$\frac{\partial PL_4}{\partial P_i} = \sum_{k=1}^{NB} \beta_{ik} Q_k$$

$$\frac{\partial PL}{\partial P_{i}} = \frac{\partial PL_{1}}{\partial P_{i}} + \frac{\partial PL_{2}}{\partial P_{i}} + \frac{\partial PL_{3}}{\partial P_{i}} - \frac{\partial PL_{4}}{\partial P_{i}}$$

$$\frac{\partial PL}{\partial P_{i}} = 2 \sum_{k=1}^{NB} \alpha_{ik} P_{k} + \sum_{k=1}^{NB} \beta_{ki} Q_{k} - \sum_{k=1}^{NB} \beta_{ik} Q_{k}$$

 $como \beta_{ki} = -\beta_{ik}$, temos:

$$\frac{\partial PL}{\partial P_{i}} = 2 \sum_{k=1}^{NB} \alpha_{ik} P_{k} - \sum_{k=1}^{NB} \beta_{ik} Q_{k} - \sum_{k=1}^{NB} \beta_{ik} Q_{k}$$

$$= 2 \sum_{k=1}^{NB} \alpha_{ik} P_k - 2 \sum_{k=1}^{NB} \beta_{ik} Q_k$$

ou:

$$\frac{\partial PL}{\partial P_{i}} = 2\left(\sum_{k=1}^{NB} \left(\alpha_{ik} P_{k} - \beta_{ik} Q_{k}\right)\right) \qquad (4.14).$$

Em forma matricial, a equação (4.14) fica:

- 42 -

$$\nabla PL = 2(\alpha P - \beta Q)$$

Sendo:

e

$$\alpha = \begin{vmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \vdots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nn} \end{vmatrix}, \quad \beta = \begin{vmatrix} \beta_{11} & \cdots & \beta_{1n} \\ \vdots & \vdots \\ \beta_{n1} & \cdots & \beta_{nn} \end{vmatrix}$$
$$Q = \begin{vmatrix} Q_{1} \\ \vdots \\ Q_{n} \end{vmatrix}$$

4.3.2 - CÁLCULO DO PASSO k

Inicialmente, consideraremos uma linearização da função objetivo entre dois pontos, correspondente a iterações sucessivas. Para isso, desenvolvemos a mesma em série de Taylor e desprezamos os termos correspondentes às derivadas de ordem maior ou igual a dois, ou seja:

$$PL^{(i)} - PL^{(i+1)} = \frac{\partial PL}{\partial P_i} \Delta P_i + \dots + \frac{\partial PL}{\partial P_n} \Delta P_n$$

a equação acima, em forma matricial, fica:

$$\Delta PL = \Delta P^{t} \nabla PL^{(1)}$$
(4.16).

onde:

AP^t - é o vetor variação de potência ativa, transposto.

Considerando a equação (4.13), temos:

$$p^{(i)} - p^{(i+1)} = \Delta p = k \nabla p_{L}^{(i)}$$
 (4.17).

Substituindo (4.17) em (4.16), vem:

$$\Delta PL = k^{(i)} \nabla PL^{t(i)} \nabla PL^{(i)}$$
(4.18).

- 43 -

(4.15).

Calcularemos, agora, as variações nas perdas ativas, provocadas por variações nas potências ativas. Da equação (4.12), podemos escrever para uma iteração i:

$$PL^{(i)} = P^{t(i)} \alpha^{(i)} P^{(i)} + Q^{t(i)} \alpha^{(i)} Q^{(i)} - P^{t(i)} \beta^{(i)} Q^{(i)} + Q^{t(i)} \beta^{(i)} P^{(i)}$$

Para uma iteração i + 1, considerando variação apenas nas potências ativas, temos da equação acima:

$$pL^{(i)} = p^{t(i + 1)} \alpha^{(i)} p^{(i+1)} Q^{t(i)} \alpha^{(i)} Q^{(i)} - p^{t(i + 1)}$$

$$\beta^{(i)} Q^{(i)} + Q^{t(i)} \beta^{(i)} P^{(i + 1)}$$

subtraindo a segunda equação da primeira, obtemos:

13

$$\Delta PL = P^{t(i)} \alpha^{(i)} P^{(i)} - P^{t(i+1)} \alpha^{(i)} P^{(i+1)} - (P^{t(i)} - P^{t(i+1)}) \beta^{(i)} Q^{(i)} + Q^{t(i)} \beta^{(i)} (P^{(i)} - P^{(i+1)})$$

ou ainda:

$$\Delta PL = P^{t(i)} (\alpha^{(i)} P^{(i)} - \beta^{(i)} Q^{(i)}) - P^{t(i+1)} (\alpha^{(i)})$$
$$P^{(i+1)} - \beta^{(i)} Q^{(i)} + Q^{t(i)} \beta^{(i)} \Delta P \qquad (4.19).$$

Na equação (4.15), vimos que:

$$\nabla PL = 2(\alpha P - \beta Q)$$

se consideramos que as matrizes α e β variam pouco entre as iterações i e i + 1, podemos escrever:

$$\alpha^{(i)} P^{(i)} - \beta^{(i)} Q^{(i)} = \frac{1}{2} \nabla PL^{(i)}$$
$$\alpha^{(i)} P^{(i+1)} - \beta^{(i)} Q^{(i)} = \frac{1}{2} \nabla PL^{(i+1)}$$

Substituindo esses resultados na equação (4.19), teremos:

$$\Delta PL = \frac{1}{2} P^{t(i)} \nabla PL^{(i)} - \frac{1}{2} P^{t(i+1)} \nabla PL^{(i+1)} + Q^{t(i)} \beta^{(i)} \Delta P \qquad (4.20).$$

Supondo que na iteração i + 1 é alcançada a solução ótima, os elementos do vetor gradiente são aproximadamente zero; consequentemente, podemos desprezar o segundo termo da equação (4.20), chegando a :

$$\Delta PL = \frac{1}{2} P^{t(i)} \nabla PL^{(i)} + Q^{t(i)} \beta^{(i)} \nabla P \qquad (4.21).$$

Substituindo agora, (4.16) e (4.17) em (4.21), temos:

$$k^{(i)} \nabla PL^{t(i)} \nabla PL^{(i)} = \frac{1}{2} P^{t(i)} \nabla PL^{(i)} + Q^{t(i)} \beta^{(i)} k^{(i)} \nabla PL^{(i)}$$

ou:

$$k^{(i)} \nabla PL^{t(i)} (\nabla PL^{(i)} + \beta^{(i)} Q^{(i)}) = \frac{1}{2} P^{t(i)} \nabla PL^{(i)}$$

tirando o valor de k⁽ⁱ⁾ da expressão acima, obtemos:

$$k = \frac{1}{2} \frac{p^{t(i)} \nabla PL^{(i)}}{\nabla PL^{t(i)} (\nabla PL^{(i)} + \beta^{(i)} Q^{(i)})}$$
(4.22).

Com as equações (4.22), (4.15) e (4.13) a alocação ótima de potência ativa pode ser efetuada.

4.4 - FLUXOGRAMA

Apresentamos, a seguir, um fluxograma para implementação computacional do método descrito neste capítulo.

- 45 -

CAPÍTULO - 5

3

ELIMINAÇÃO DE SOBRECARGA POR ALOCAÇÃO

DE POTÊNCIA REATIVA

5.1 - INTRODUÇÃO:

Neste capítulo, vamos tratar do problema de sobrecarga através de alocação de potência reativa nas diversas barras do sistema , permanecendo a geração de ativos fixa. Portanto, trata-se de um problema contrário ao do capítulo anterior, onde alocávamos potência ativa, ficando a reativa fixa. A alocação de potência reativa será feita a partir de equações que desenvolveremos a seguir, aplicando à função escolhida o método dos multiplicadores de Lagrange.

Para simplificar a implementação computacional, bem como atender ao nosso objetivo, vamos escolher uma função custo (2) quadrática e de coeficientes positivos. Com isto podemos afirmar que, depois de aplicado o método dos multiplicadores de Lagrange ã função escolhida, estamos realmente encontrando um valor que minimiza a mesma.

5.2 - FORMULAÇÃO GERAL DO PROBLEMA

A nossa função custo escolhida é:

$$C = \sum_{i=1}^{NB} \frac{1}{2} Q_{i}^{2}$$
(5.1)

onde:

$$Q_i = Q_{gi} - Q_{ci}$$

sendo:

Q_i - potência reativa líquida na barra i; Q_{gi}- """ gerada """; Q_{ci}- """ consumida na barra i.

Para o nosso caso, temos a seguinte restrição de igualdade para os reativos:

$$C_1 = Q_L - \sum_{i=1}^{NB} Q_i = 0$$
 (5.2),

sendo Q_L o balanço de reativos do sistema.

Aplicando o método de Lagrange às equações acima, temos:

logo:

$$dC^* = \frac{1}{2} d\left(\sum_{i=1}^{NB} Q_i^2\right) + \lambda dC_1$$

ou ainda:

$$dC^{*} = \frac{1}{2} \frac{\frac{\partial \Sigma}{i=1} Q_{i}^{2}}{\partial Q_{i}} dQ_{i} + \lambda \frac{\partial (Q_{L} - \Sigma Q_{i})}{\partial Q_{i'}} dQ_{i} =$$

$$= Q_{i} dQ_{i} + \lambda \left(\frac{\partial Q_{L}}{\partial Q_{i}} - 1\right) dQ_{i} =$$

$$= dQ_{i} \left(Q_{i} + \lambda \left(\frac{\partial Q_{L}}{\partial Q_{i}} - 1\right)\right)$$
(5.3),

i = 1, 2, ..., NB

onde λ é um multiplicador de Lagrange.

Da eq. (5.3), temos para a condição de ótimo:

$$dC^* = 0 \quad \text{ou} \quad Q_i + \lambda \left(\frac{\partial Q_L}{\partial Q_i} - 1\right) = 0$$
$$i = 1, 2, \dots, NB$$

explicitando o valor de Q_i, podemos escrever:

$$Q_{i} = \lambda (1 - \frac{\partial Q_{L}}{\partial Q_{i}})$$
 (5.4).
 $i = 1, 2, ..., NB$

Na equação acima, devemos calcular inicialmente o valor de λ e de $\mathcal{R}_L/~\mathcal{R}_i\cdot$ Isto é o que faremos a seguir.

Da equação (5.2), temos:

$$\sum_{i=1}^{NB} Q_i = Q_L$$

substituindo esse resultado em (5.4), vem:

- 48 -

$$\lambda = \frac{Q_L}{(1 - \frac{\partial Q_L}{\partial Q_i})}$$

$$i = 1, 2, \dots, NB$$
(5.5).

Para calcular o valor de $\partial Q_L / \partial Q_i$, vamos utilizar a expressão deduzida no capítulo 4, para o valor de SL. Tomando a parte imaginária daquela expressão, temos:

$$Q_{L} = \sum_{i=1}^{NB} \sum_{j=1}^{NB} X_{ij} (I_{pi} I_{pj} + I_{qi} I_{pj})$$
(5.6).

Podemos colocar a expressão anterior em função das potências e tensoês de barras.

A potência complexa total em uma barra i é dada por:

$$S_i = P_i + jQ_i = V_i I_i^*$$
, $i = 1, 2, ..., NB$

sendo,

$$V_i = |V_i| e^{j\delta_i} = |V_i| (\cos\delta_i + j \sin\delta_i)$$

como no capítulo anterior:

$$I_i^* = I_{pi} - jI_{qi},$$

portanto:

$$S_i = |V_i| (\cos \delta_i + j \sin \delta_i) (I_{pi} - j I_{qi})$$

efetuando os produtos e separando P_i e Q_i, depois resolvendo para I_{pi} e I_{qi}, obtemos:

$$I_{pi} = \frac{1}{|V_i|} (P_i \cos \delta_i + Q_i \sin \delta_i)$$

$$I_{qi} = \frac{1}{|V_i|} (P_i \sin \delta_i - Q_i \cos \delta_i)$$
(5.7).

- 49 -

3

Substituindo essas equações na equação (5.6), teremos:

$$Q_{L} = \sum_{i=1}^{NB} \sum_{j=1}^{NB} (\alpha_{ij} (P_{i} P_{j} + Q_{i} Q_{j}) + \beta_{ij} (Q_{i} P_{j} - P_{i} Q_{j}))$$

$$- P_{i} Q_{j})$$
(5.8).

Sendo:

$$\alpha_{ij} = \frac{X_{ij}}{|V_i| |V_j|} \cos \left(\delta_i - \delta_j\right) , \qquad (5.9).$$

$$\beta_{ij} = \frac{X_{ij}}{|V_i| |V_j|} \sin \left(\delta_i - \delta_j\right)$$

Deduzida a equação para Q_L , podemos agora calcular $\partial Q_L / \partial Q_i$.

$$Q_{L} = \sum_{\substack{i=1 \ j=1}}^{NB} \sum_{j=1}^{NB} (\alpha_{ij} P_{i} P_{j} + \alpha_{ij} Q_{i} Q_{j} + \beta_{ij} Q_{i} P_{j} - \beta_{ij} P_{i} Q_{j})$$

UFPD/BIBLIOTECA/PRAI

- 51 -

$$\alpha_{NB1} P_1 + \alpha_{NB2} P_2 + \cdots + \alpha_{NB1} P_1 + \cdots + \alpha_{NBNB} P_{NB} P_{NB}$$

$$\frac{\partial Q_{L1}}{\partial Q_i} = \frac{\partial \alpha_{ii}}{\partial Q_i} P_i^2 .$$

1.3

Analogamente, obtemos:

$$Q_{L2} = \sum_{i=1}^{NB} \sum_{j=1}^{NB} \alpha_{ij} Q_i Q_j$$

$$\frac{\partial Q_{L2}}{\partial Q_{i}} = 2 \sum_{j=1}^{NB} \alpha_{ij} Q_{j} + \frac{\partial \alpha_{ii}}{\partial Q_{i}} Q_{i}^{2}$$

$$Q_{L3} = \sum_{i=1}^{NB} \sum_{j=1}^{NB} \beta_{ij} Q_i P_j$$

$$\frac{\partial Q_{L3}}{\partial Q_{i}} = \sum_{\substack{j=i \\ j=i}}^{NB} \beta_{ij} P_{j}$$

=

$$Q_{L4} = - \begin{array}{c} NB & NB \\ \Sigma & \Sigma & \beta_{ij} & P_i & P_j \\ i=1 & j=1 \end{array}$$

$$\frac{\partial Q_{L4}}{\partial Q_{i}} = - \sum_{j=1}^{NB} P_{j} \beta_{ji} = \sum_{j=1}^{NB} \beta_{ij} P_{j}$$

$$\frac{\partial Q_{L}}{\partial Q_{i}} = \frac{\partial Q_{L1}}{\partial Q_{i}} + \frac{\partial Q_{L2}}{\partial Q_{i}} + \frac{\partial Q_{L3}}{\partial Q_{i}} + \frac{\partial Q_{L4}}{\partial Q_{i}} =$$

$$2 \sum_{j=1}^{NB} (\alpha_{ij} Q_j + \beta_{ij} P_j) + (P_i^2 + Q_i^2) \frac{\partial \alpha_{ii}}{\partial Q_i}$$
(5.10).

A equação acima foi obtida desprezando a influência de algumas derivadas,

- 52 -

Para completar o cálculo da equação (5.10) devemos calcular $\partial \alpha_{ii} / \partial Q_i$. Vamos aqui desprezar algumas parcelas que como no caso anterior, são insignificantes. Uma dedução exata, bem como um quadro com parativo das expressões exata e aproximada e encontrado na referência (2).

No capítulo (2), vimos que:

 $V_{i} = \sum_{j=1}^{NB} Z_{ij} I_{j}, i=1, 2, \dots, NB$

se separarmos a parcela correspondente a barra slack, temos:

$$V_{i} = \sum_{\substack{j=1 \ j\neq s}}^{NB} Z_{ij} I_{j} + Z_{is} I_{s}, i=1, 2, ..., NB$$
(5.11).

seja:

 ΔI_i - corrente injetada na barra i; ΔI_s - corrente surgida na slack devido a injeção de ΔI_i . então:

$$\Delta V_{i} = Z_{ii} \Delta I_{i} + Z_{is} \Delta I_{s}$$

$$\Delta V_{s} = Z_{si} \Delta I_{i} + Z_{ss} \Delta I_{s}$$
(5.12),

 $\Delta S_{i} = (V_{i} + \Delta V_{i}) (I_{i} + \Delta I_{i})^{*}$

supondo ΔI_i muito pequeno, podemos escrever para a última equação acima:

$$\Delta S_{i} = \Delta V_{i} I_{i}^{*} + V_{i} \Delta I_{i}^{*}$$
(5.13).

Das equações (5.12), podemos escrever:

$$\Delta V_{s} = 0$$

$$\Delta I_{s} = -\frac{Z_{si}}{Z_{ss}} \Delta I_{i}$$

$$\Delta I_{i} = \frac{\Delta V_{i} Z_{ss}}{(Z_{ii} Z_{ss} - Z_{is} Z_{si})}$$

substituindo esses resultados na equação (5.13), teremos:

$$\Delta S_{i} = \Delta |V_{i}| I_{i}^{*} + \frac{|V_{i}| \Delta |V_{i}| Z_{ss}}{(Z_{ii} Z_{ss} - Z_{is} Z_{si})^{*}}$$

ou:

$$\Delta S_{i} = \frac{\Delta |V_{i}| (P_{i} + jQ_{i})}{|V_{i}|} + \frac{|V_{i}| \Delta |V_{i}| Z_{ss}}{(Z_{ii} Z_{ss} - Z_{is} Z_{si})^{*}} (5.14).$$

Ja vimos que:

$$\alpha_{ij} = \frac{X_{ij}}{|V_i| |V_j|} \cos \left(\delta_i - \delta_j\right)$$

portanto:

$$\alpha_{ii} = \frac{\lambda_{ii}}{|V_i|^2}$$

$$\frac{\partial \alpha_{ii}}{\partial V_i} = \frac{-2 X_{ii}}{|V_i|^3}$$

mas estamos querendo calcular ${\Im \alpha}_{ii}$ / ${\Im Q}_i.$ Pela regra da cadeia, vem:

$$\frac{\partial \alpha_{ii}}{\partial Q_{i}} = \frac{\partial \alpha_{ii}}{\partial |V_{i}|} \frac{\partial |V_{i}|}{\partial Q_{i}} = \frac{-2 X_{ii}}{|V_{i}|^{3}} \frac{\partial |V_{i}|}{\partial Q_{i}}$$

o nosso cálculo resume-se portanto ao cálculo de $\partial |V_i| / \partial Q_i^{\circ}$ Da equação (5.14), se separarmos a parte imaginária, temos: - 53 -

- 54 -

$$\Delta Q_{i} = \frac{\Delta |V_{i}|}{|V_{i}|} Q_{i} + |V_{i}| \Delta |V_{i}| I_{m} \left(\frac{Z_{ss}}{(Z_{ii} Z_{ss} - Z_{is} Z_{si})^{*}}\right)$$

dividindo-se a expressão acima por ${\vartriangle}|V_{\underline{i}}|$, vem:

$$\frac{\Delta Q_{i}}{\Delta |V_{i}|} = \frac{Q_{i}}{|V_{i}|} + |V_{i}| I_{m} \left(\frac{Z_{ss}^{*}}{(Z_{ii} Z_{ss} - Z_{is} Z_{si})^{*}}\right)$$

ou:

$$\frac{\Delta |V_{i}|}{\Delta Q_{i}} = \frac{1}{\frac{Q_{i}}{|V_{i}|} + |V_{i}| I_{m}} \left(\frac{Z_{ss}^{*}}{(Z_{ii} Z_{ss} - Z_{is} Z_{si})^{*}}\right)$$

como estamos supondo uma injeção de corrente muito pequena, é válida a expressão abaixo:

$$\frac{\frac{\partial |V_{i}|}{\partial Q_{i}}}{\frac{\partial Q_{i}}{\partial Q_{i}}} = \frac{\frac{\Delta |V_{i}|}{\Delta Q_{i}}}{\frac{Q_{i}}{|V_{i}|} - |V_{i}| I_{m}(\frac{Z_{ss}}{(Z_{ii} Z_{ss} - Z_{is} Z_{si})})$$
(5.15)

Temos finalmente:

$$\frac{\partial \alpha_{ii}}{\partial Q_{i}} = -\frac{2 X_{ii}}{|V_{i}|^{3}} \frac{1}{\frac{Q_{i}}{|V_{i}|} - |V_{i}|I_{m}} \left(\frac{Z_{ss}}{(Z_{ii} Z_{ss} - Z_{is} Z_{si})}\right)$$
(5.16).

As equações deduzidas acima são aplicadas durante o processo de otimização, até que uma tolerância pre-fixada seja atendida.

5.3 - RESTRIÇÕËS DE DESIGUALDADE

Com a finalidade de evitar que as potências reativas, du-

rante o processo de otimização, ultrapassem um valor máximo ou mínimo fixado, vamos considerar a seguinte restrição de desigualdade:

$$QG_{\min} \leq QG \leq QG_{\max}$$

Quando ocorre a violação dos limites máximo ou mínimo dos reativos de uma barra, durante o processo de otimização, esses são fixados no limite violado. Para evitar que as tensoês nas barras sejam muito altas ou baixas, quando da alocação dos reativos, vamos considerar uma s<u>e</u> gunda restrição de desigualdade:

O procedimento para levar em consideração essas restrições, no processo de otimização, é o seguinte (2):

Modificar todas as tensões de barras, que aumentaram quan do o limite máximo foi violado, ou as que diminuiram quando o mínimo foi violado. Inicialmente, procura-se a barra cuja tensão se distanciou mais do limite violado e modificamos as outras barras, que variaram sua tensão no mesmo sentido que a barra anterior, para barra do tipo PV, com uma tensão especificada igual ao valor da iteração atual menos o valor do des vio encontrado inicialmente para a barra cuja tensão mais se afastou do limite violado. Se as tensoes especificadas para as barras que mudaram de tipo, em virtude de violação de limite máximo, for menor que o valor determinado na iteração anterior, fazemos a tensão especificada igual ao valor da tensão na iteração anterior; ou se esse valor especificado, para o caso das barras que violaram os limites mínimos, for maior que o calculado na iteração anterior, fazemos também o valor especificado igual ao da iteração anterior. Isto evita que as barras com tensão modificada não atinjam seu limite de reativos. Para as barras, cujas tensões não segui-

- 55 -

ram a variação de máximo desvio, fixamos suas tensões no valor atual, para evitar novas violações de limites. Feito isto, todas as barras cujas tensões permaneceram dentro das faixas mudam navamente para o tipo PQ e novos cálculos para alocação de reativos são feitos, caso a convergência não tenha se verificado. As barras que permanecem com tensão em um extr<u>e</u> mo são excluidas do processo, até que os reativos nas demais convirjam. As condições de KUHN - TUCKER para teste de otimalidade são aplicadas ãs ba<u>r</u> ras excluidas, para verificar a condição de ótimo. Para maior simplicid<u>a</u> de as condições de KUHN - TUCKER são aplicadas aos reativos, devido ã se<u>n</u> sibilidade existente entre reativos e tensão em uma mesma barra. Aprese<u>n</u> tamos a seguir um fluxograma, para a implementação computacional do método descrito neste capítulo.

98

- 56 -

CAPÍTULO - 6

RESULTADOS:

3

6.1 - INTRODUÇÃO:

Apresentamos a seguir os resultados da aplicação dos métodos desenvolvidos nos capítulos anteriores. Escolhemos, para isto, dois sistemas com características e tamanhos diferentes. O primeiro é um subsistema do sistema Norte-Oeste da CHESF e o segundo é o sistema de 25 barras e 35 linhas do artigo de TSANG. Fizemos testes também com o sistema completo Norte-Oeste da CHESF, que vai de Paulo Afonso até o Maranhão, e deixamos de apresentar os resultados porque quase toda a geração do sistema, como também a carga referente aos estados de Pernambuco e Bahia, estão concentradas em Paulo Afonso. Isto dificultou o funcionamento dos métodos desenvolvidos anteriormente.

6.2 - SISTEMA - 1:

- Diagrama unifilar:

- Dados:

Dados de linhas

Linha	SB	EB	Zser (pu)	Ysht (pu)
1	1	2	0.0291 + j0.1658	j0.0146
2	1	2	0.0318 + j0.1626	j0.0144
3	1	2	0.0318 + j0.1658	j0.0141
4	2	3	0.0159 + j0.0808	j0.0711
5	2	3	0.0159 + j0.0824	j0.0697
6	2	3	0.0145 + j0.0824	j0.0718
7	3	4	0.0416 + j0.2182	j0.0188
8	3	4	0.0416 + j0.2182	j0.0188
9	3	4	0.0416 + j0.2182	j0.0188
10	4	5	0.0324 + j0.1687	j0.0144
11	4	5	0.0324 + j0.1687	j0.0144
12	4	5	0.0324 + j0.1687	j0.0144
13	5	6	0.0406 + j0.2125	j0.0183
14	6	7	0.0314 + j0.1634	j0.0139
15	7	8	0.0290 + j0.1509	j0.0128

Dados de barras

Nº	GERA	.ÇÃO	DEMA	BANCO	
Barra	MW	MVAR	MW	MVAR	MVAR
1	-	-	0.0	0.0	40.0
2	0.0	0.0	14.0	8.2	0.0
3	0.0	0.0	47.0	3.9	0.0
4	0.0	0.0	14.5	1.5	0.0
5	150.0	0.0	197.8	23.3	0.0
6	0.0	0.0	28.0	-1.2	0.0
7	0.0	-	12.0	-8.9	0.0
8	. 0.0	-	28.4	-18.9	0.0

- Resultados do fluxo de carga para o caso base:

- 61 -

Nº	TE	NSÃO	GERAÇÃO			
Barra	rra VMOD ANG		MW	MVAR		
1	1.0520	0.0000	205.47	-39.49		
2	1.0324	-5.9094	0.00	0.00		
3	1.0222	-8.6671	0.00	0.00		
4	0.9918	-14.2020	0.00	0.00		
5	0.9710	-18.1644	150.00	0.00		
6	0.9735	-27.7256	0.00	0.00		
7	0.9900	-32.1031	0.00	-35.40		
8	1.0500	-35.2411	0,00	27.70		

Correntes nas linhas

Linha	SB	EB	Ireal (pu)	Iaimag (pu)	Imod (pu)
1	1	2	0.648	-0.022	0.648
1	2	1	-0.646	0.053	0.648
2	1	2	0.659	-0.010	0.659
2	2	1	-0.657	0.040	0.658
3	1	2	0.646	-0.013	0.646
3	2	1	-0.645	0.042	0.646
4	2	3	0.615	-0.010	0.615
4	3	2	-0.586	0.155	0.616
5	2	3	0.603	-0.012	0.603
5	3	2	-0.585	0.154	0.605
6	2	3	0.604	-0.020	0.604
6	3	2	-0.585	0.166	0.608
7	3	4	0.439	-0.123	0.456
7	4	3	-0.432	0.160	0.460
8	3	4	0.439	-0.123	0.456
8	4	3	-0.432	0.160	0.460
9	3	4	0.439	-0.123	0.456
9	4	3	-0.432	0.160	0.460
10	4	5	0.386	-0.143	0.411
10	5	4	-0.378	0.170	0.414
11	4	5	0.386	-0.143	0.411
11	5	4	-0.378	0.170	0.414
12	4	5	0.386	-0.143	0.411
12	5	4	-0.378	0.170	0.414
13	5	6	0.740	-0.129	0.752
13	6	5	-0.726	0.162	0.744
14	6	7	0.465	-0.041	0.466
14	7	6	-0.451	0.065	0.456
15	7	8	0.493	0.230	0.544
15	8	7	-0.479	-0.208	0.522

Fluxos	nas	1 inhas

3

Linha	SB	EB	P. ATIVA MW	P. REAT. MVAR	Linha	SB	EB	P. ATIVA MW	P. REATIVA MVAR
1	1	2	68.138	2.353	8	4	3	-45.388	-4.858
1	2	1	-66.913	1.454	9	3	4	46.263	5.634
2	1	2	69.294	1.096	9	4	3	-45.388	-4.858
2	2	1	-67.912	2.841	10	4	5	40.559	4.371
3	1	2	67.995	1.327	10	5	4	-40.006	-4.267
3	2	1	-66.664	2.549	11	4	5	40.559	4.371
4	2	3	63.244	-5.520	11	5	4	-40.006	-4.267
4	3	2	-62.647	-6.452	12	4	5	40.559	4.371
5	2	3	62.053	-5.181	12	5	4	-40.006	-4.267
5	3	2	-61.478	-6.550	13	5	6	72.217	-10.487
6	2	3	62.196	-4.375	13	6	5	-69.938	18.954
6	3	2	-61.668	-7.781	14	6	7	41.917	-17.469
7	3	4	46.263	5.634	14	7	6	-41.248	18.269
7	4	3	-45.388	-4.858	15	7	8	29.267	-45.210
8	3	4	46.263	5.634	15	8	7	-28.437	46.837

Perdas ativas = 13.69 MW Balanlo de reativos = 10.70 MVAR

 Apresentamos, a seguir, os resultados do fluxo de carga, quando a linha 6 é removida do sistema base.

Nº	TEN	ISÃO	GERAÇÃO		
Barra	VMOD	ANG	MW	MVAR	
1	1.0520	0.0000	206.97	-19.69	
2	1.0218	-5.9066	0.00	0.00	
3	1.0024	-10,1383	0.00	0.00	
4	0.9733	-15.9253	0.00	0.00	
5	0.9541	-20.0656	150.00	0.00	
6	0.9655	-30.0024	0.00	0.00	
7	0.9900	-34.5103	0.00	-30.70	
8	1.0500	-37.6489	0.00	27.83	

- 62 -

Correntes nas linhas

Linha	SB	EB	Ireal (pu)	Iaimag (pu)	Imod (pu)	Linha	SB	EB	Irea1 (pu)	Iaimag (pu)	Imod (pu)
1	1	2	0.652	-0.085	0.657	9	3	4	0.447	-0.130	0.465
1	2	1	-0.650	0.115	0.660	9	4	3	-0.438	0.166	0.469
2	1	2	0.664	-0.074	0.668	10	4	5	0.392	-0.148	0.419
2	2	1	-0.663	0.104	0.671	10	5	4	-0.384	0.174	0.421
3	1	2	0.651	-0.075	0.656	11	4	5	0.392	-0.148	0.419
3	2	1	-0.650	0.104	0.658	11	5	4	-0.384	0.174	0.421
4	2	3	0.926	-0.114	0.933	12	4	5	0.392	-0.148	0.419
4	3	2	-0.906	0.256	0.942	12	5	4	-0.384	0.174	0.421
5	2	3	0.908	-0.115	0.916	13	5	6	0.764	-0.121	0.773
5	3	2	-0.889	0.255	0.925	13	6	5	-0.749	0.153	0.764
7	3	4	0.447	-0.130	0.465	14	6	7	0.491	-0.020	0.491
7	4	3	-0.438	0.166	0.469	14	7	6	-0.476	0.043	0.478
8	3	4	0.447	-0.130	0.465	15	7	8	0.502	0.209	0.544
8	4	3	-0.438	0.166	0.469	15	8	7	-0.487	-0.188	0.522

Fluxos nas linhas

Linha	SB	EB	P. ATIVA MW	P. REAT. MVAR	Linha	SB	EB	P. ATIVA MW	P。REATIVA MVAR
1	1	2	68.571	8.932	9	3	4	46.386	4.942
1	2	1	-67.305	-4.862	9	4	3	-45.476	-3.839
2	1	2	69.864	7.770	10	4	5	40.645	3.352
2	2	1	-68.436	-3.568	10	5	4	-40.072	-3.045
3	1	2	68.530	7.879	11	4	5	40.645	3.352
3	2	1	-67.155	-3.742	11	5	4	-40.072	-3.045
4	2	3	95.362	1.810	12	4	5	40.654	3.352
4	3	2	-93.964	-9.276	12	5	4	-40.072	-3.045
5	2	3	93.544	2.128	13	5	6	72.418	-14.157
5	3	2	-92.198	-9.434	13	6	5	-70.009	23.394
7	3	4	46.386	4.942	14	6	7	41.998	-22.010
7	4	3	-45.476	-3.839	14	7	6	-41.259	23.195
8	3	4	46.386	4.942	15	7	8	29.269	-45.210
8	4	3	-45.476	-3.839	15	8	7	-28.444	46.838

Perdas ativas = 15.23 MW Balanço de reativos = -13.92 MVAR - 63 -

- 64 -

Como podemos observar nos resultados apresentados anteriormente, os fluxos de reativos nas linhas são pequenos. Por esta razão apresentaremos apenas, para este sistema, os resultados da aplicação do método desenvolvido no c<u>a</u> pítulo (4).

N۹	TEN	NSÃO	GERAÇÃO		
Barra	VMOD ANG		MW	MVAR	
1	1.0520	0.0000	128.55	-5'3.03	
2	1.0437	-3.7076	0.00	0.00	
3	1.0362	-6.1528	0.00	0.00	
4	1.0199	-8.6289	0.00	0.00	
5	1.0050	-10.0924	220.00	0.00	
6	0.9889	-18,9522	0.00	0.00	
7	0.9900	-23.0885	0.00	-45.50	
8	1.0500	-26.2271	0.00	28.02	

Correntes nas linhas

Linha	SB	EB	Ireal (pu)	Iaimag (pu)	Imod (pu)	Linha	SB	EB	Ireal (pu)	Iaimag (pu)	Imod (pu)
1	1	2	0.406	0.023	0.406	9	3	4	0.206	-0.042	0.210
1	2	1	-0.405	0.007	0.405	9	4	3	-0.201	0.080	0.216
2	1	2	0.412	0.031	0.143	10	4	5	0.151	-0.068	0.169
2	2	1	-0.411	-0.001	0.411	10	5	4	-0.150	0.097	0.179
3	1	2	0.404	0.029	0.405	11	4	5	0.155	-0.068	0.169
3	2	1	-0.403	0.001	0.403	11	5	4	-0.150	0.097	0.179
4	2	3	0.550	0.042	0.552	12	4	5	0.155	-0.068	0.169
4	3	2	-0.538	0.106	0.548	12	5	4	-0.150	0.097	0.179
5	2	3	0.540	0.039	0.541	13	5	6	0.709	-0.102	0.716
5	3	2	-0.528	0.106	0.538	13	6	5	-0.700	0.137	0.713
7	3	4	0.206	-0.042	0.210	14	6	7	0.428	-0.056	0.432
7	4	3	-0.201	0.080	0.216	14	7	6	-0.418	0.082	0.426
8	3	4	0.206	-0.042	0.210	15	7	8	0.451	0.304	0.544
8	4	3	-0.201	0.080	0.216	15	8	7	-0.440	-0.280	0.522

(1)

	65	-

Linha	SB	EB	P. ATIVA MW	P. REAT. MVAR	Linha	SB	EB	P. ATIVA MW	P. REATIVA MVAR
1	1	2	42.678	-2.438	9	3	4	21.694	2.018
1	2	1	-42.199	1.962	9	4	3	-21.505	-5.003
2	1	2	43.337	-3.270	10	4	5	16.672	4.516
2	2	1	-42.796	2.871	10	5	4	-16.574	-6.959
3	1	2	42.536	-3.151	11	4	5	16.672	4.516
3	2	1	-42.016	2.668	11	5	4	-16.574	-6.959
4	2	3	57.041	-8.048	12	4	5	16'.672	4.516
4	3	2	-56.566	-4.917	12	5	4	-16.574	-6.959
5	2	3	55.975	-7.684	13	5	6	71.926	-2.414
5	3	2	-55.517	-5.022	13	6	5	-69.847	9.661
7	3	4	21.694	2.018	14	6	7	41.847	-8.489
7	4	3	-21.505	-5.003	14	7	6	-41.268	8.778
8	3	4	21.694	2.018	15	7	8	29.270	-45.211
8	4	3	-21.505	-5.003	15	8	7	-28.445	46.839

Fluxos nas linhas

3

Perdas ativas = 6.82 MW

Balanço de reativos = 34.04 MVAR

6.3 - SISTEMA - 2:

- Diagrama unifilar:

Dados:

Dados de linhas

3

Linha	SB	EB	Zser (pu)	Ysht (pu)
1	1	3	0.0720 + j0.2876	j0.0179
2	1	16	0.0290 + j0.1379	j0.0337
3	1	17	0.1012 + j0.2799	j0.0148
4	1	19	0.1478 + j0.3897	j0.0224
5	1	23	0.1085 + j0.2245	j0.0,573
6	1	25	0.0753 + j0.3593	j0.0873
7	2	6	0.0617 + j0.2935	j0.0186
8	2	7	0.0511 + j0.2442	j0.0155
9	2	8	0.0579 + j0.2763	j0.0175
10	3	13	0.0564 + j0.1478	j0.0085
11	3	14	0.1183 + j0.3573	j0.0185
12	4	19	0.0196 + j0.0514	j0.0113
13	4	20	0.0382 + j0.1007	j0.0220
14	4	21	0.0970 + j0.2547	j0.0558
15	5	10	0.0497 + j0.2372	j0.0577
16	5	17	0.0144 + j0.1269	j0.1335
17	5	19	0.0929 + j0.2442	j0.0140
18	6	13	0.0263 + j0.0691	j0.0040
19	7	8	0.0529 + j0.1465	j0.0078
20	7	12	0.0364 + j0.1736	j0.0110
- 21	8	9	0.0387 + j0.1847	j0.0118
22	8	17	0.0497 + j0.2372	j0.0572
23	9	20	0.0973 + j0.2691	j0.0085
24	10	11	0.0898 + j0.2359	j0.0135
25	11	17	0.1068 + j0.2807	j0.0161
26	12	17	0.0460 + j0_2196	j0.0139
27	14	15	0.0281 + j0.0764	j0.0044
28	15	16	0.0256 + j0.0673	j0.0148
29	17	18	0.0806 + j0.2119	j0.0122
30	18	19	0.0872 + j0.2294	j0.0132
31	20	21	0.0615 + j0.1613	j0.0354
32	21	22	0.0414 + j0.1087	j0.0238
33	22	23	0.2250 + j0.3559	j0.0169
34	22	24	0.0970 + j0.2595	j0.0567
35	24	25	0.0472 + j0.1458	j0.0317

N°	GER	AÇÃO	DEM	BANCO	
Barra	MW	MVAR	MW	MVAR	MVAR
1		-	200.0	65.0	100.0
2	100.0	-17.0	10.0	3.0	0.0
3	150.0	4.0	50.0	17.0	0.0
4	50.0	-4.0	30.0	10.0	0.0
5	200.0	-47.0	25.0	8.0	0.0
6	0.0	0.0	15.0	5.0	0.0
7	0.0	0.0	15.0	5.0	0.0
8	0.0	0.0	25.0	0.0	0.0
9	0.0	0.0	15.0	5.0	0.0
10	0.0	0.0	15.0	5.0	0.0
11	0.0	0.0	5 . 0	0.0	0.0
12	0.0	0.0	10.0	0.0	0.0
13	0.0	0.0	25.0	8.0	0.0
14	0.0	0.0	25.0	7.0	0.0
15 15	0.0	0.0	30.0	10.0	0.0
16	0.0	0.0	30.0	10.0	0.0
17	0.0	0.0	60.0	20.0	0.0
18	0.0	0.0	15.0	5.0	0.0
19	0.0	0.0	15.0	5.0	0.0
20	0.0	0.0	25.0	8.0	0.0
21	0.0	0.0	20.0	7.0	0.0
22	0.0	0.0	20.0	7.0	0.0
23	0.0	0.0	15.0	5.0	0.0
24	0.0	0.0	15.0	5.0	0.0
25	0.0	0.0	25.0	8.0	0.0

- Resultados do fluxo de carga para o caso base:
| | ł. | s | ۰, |
|--|----|---|----|
| | | | 3 |
| | | | - |
| | | | |

Nº	TEN	SÃO	GERAÇ	ÃO
Barra	VMOD	ANG	MW	MVAR
1	1.0200	0.0000	255.02	113.30
2	0.8841	13.9029	100.00	-17.00
3	0.9561	8.3057	150.00	4.00
4	0.8864	0.9312	50.00	-4~00
5	0.8795	14.0023	200.00	-47.00
6	0.9014	8.2868	0.00	0.00
7	0.8788	7.8546	0.00	0.00
8	0.8803	7.1336	0.00	0.00
9	0.8689	6.3081	0.00	0.00
10	0.8775	8.2273	0.00	0.00
11	0.8866	6.5701	0.00	0.00
12	0.8863	6.2149	0.00	0.00
13	0.9102	7.5727	0.00	0.00
14	0.9340	-1.5921	0.00	0.00
15	0.9414	-2.8468	0.00	0.00
16	0.9621	-2.7860	0.00	0.00
17	0.8967	5.8313	0.00	0.00
18	0.8827	3,1360	0.00	0.00
19	0.8913	2.5161	0.00	0.00
20	0.8776	-1.9876	0.00	0.00
21	0.8899	-3.8485	0.00	0.00
22	0.9084	-5.4454	0.00	0.00
23	0.9717	-3.3902	0.00	0.00
24	0.9374	-7.3601	0.00	0.00
25	0.9577	-6.8410	0.00	0.00

Correntes nas linhas

Γ	T	T	1	1		1	r	T	1	r	
			I real	Iaimag	Imod				Ireal	Iaimag	Imod
Linha	SB	EB	(pu)	(pu)	(pu)	Linha	SB	EB	(pu)	(pu)	(pu)
1	1	3	-0.391	-0.337	0.516	18	13	6	-0.077	-0.174	0.191
1	3	1	0.389	0.372	0.538	19	7	8	0.058	0.048	0.075
2	1	16	0.411	-0.307	0.513	19	8	7	-0.059	-0.035	0.069
2	16	1	-0.409	0.374	0.554	20	7	12	0.120	0.096	0.153
3	1	17	-0.142	-0.493	0.513	20	12	7	-0.122	-0.077	0.144
3	17	1	0.140	0.522	0.540	21	8	9	0.074	-0.028	0.079
4	1	19	0.023	-0.301	0.320	21	9	8	-0.077	0.048	0.091
4	19	1	-0.024	0.344	0.344	22	8	17	0.052	0.140	0.149
5	1	23	0.296	-0.024	0.297	22	17	8	-0.063	-0.039	0.074
5	23	1	-0.292	0.138	0.323	23	9	10	-0.101	-0.011	0.102
6	1	25	0.343	-0.031	0.344	23	10	9	0.099	0.025	0.102
6	25	1	-0.333	0.204	0 390	24	10	11	0.070	0.091	0.115
7	2	6	0.242	0.183	0.303	24	11	10	-0.073	-0.068	0.100
7	6	2	-0.248	-0.150	0.290	25	11	17	0.017	0.061	0.064
8	2.	7	0.349	0.138	0.375	25	17	11	-0.020	-0.033	0.039
8	7	2	-0.354	-0.111	0.371	26	12	17	0.010	0.064	0.065
9	2	8	0.343	0.143	0.371	26	17	12	-0.012	-0.040	0.042
9	8	2	-0.348	-0.113	0.366	27	14	15	0.212	0.169	0.271
10	3	13	0.205	-0.210	0.293	27	15	14	-0.211	-0.161	0.266
10	13	3	-0.207	0.225	0.306	28	15	16	-0.102	0.223	0.301
11	3	14	0.422	0.123	0.439	28	16	15	0.103	-0.255	0.275
11	14	3	-0.424	-0.088	0.433	29	17	18	0.192	0.034	0.195
12	4	19	-0,447	-0.079	0,454	29	18	17	-0.194	-0.012	0,194
12	19	4	0,440	0.099	0,458	30	18	19	0,021	0,060	0.063
13	4	20	0,419	0.088	0.428	30	19	18	-0.022	-0.036	0.042
13	20	4	-0.419	-0.049	0.422	31	20	21	0.137	0.150	0.203
14	4	21	0.251	0.152	0.294	31	21	20	-0.134	-0.088	0.160
14	21	4	-0.249	-0.053	0.254	32	21	22	0.164	0.234	0.286
15	5	10	0.327	0.184	0.375	32	22	21	-0.160	-0.191	0.250
15	10	5	-0.347	-0.085	0.357	33	22	23	-0.139	0.109	0.177
16	5	17	0.884	0.522	1.027	33	23	22	0.141	-0.078	0.161
16	17	5	-0.925	-0.289	0.969	34	22	24	0.087	0.180	0.200
17	5	19	0.568	0.381	0.684	34	24	22	-0.076	-0.076	0.107
17	19	5	-0.571	-0.357	0.674	35	24	25	-0.076	0.149	0.167
18	6	13	0.076	0.182	0.197	35	25	24	0.084	-0.090	0.122

7777			•
HINNOG	nac	110	hac
TTUNUS	mas	TTU	11a S

Linha	SB	EB	P. ATIVA MW	P. REAT. MVAR	Linha	SB	EB	P. ATIVA MW	P. REATIVA MVAR
1	1	3	-39.916	34.353	18	13	6	-9.038	14.807
1	3	1	41.926	-29.822	19	7	8	5.597	-3.504 -
2	1	16	41.914	31.318	19	8	7	-5.570	2.372
2	16	1	-41.087	-34.008	20	7	12	11.567	-6.909
3	1	17	-14.450	50.316	20	12	7	-11.487	5.579
3	17	1	17.269	-45.250	21	8	9	'6.1 90	3.259
4	1	19	2.351	30.673	21	9	8	-6.162	-4.931
4	19	1	-0.786	-30.682	22	8	17	6.043	-11.689
5	1	23	30.164	2.466	22	17	8	-5.986	2.930
5	23	1	-29.141	-11.715	23	9	10	-8.836	-0.068
6	1	25	34.961	3.213	23	10	9	8.937	-0.948
6	25	1	-33.967	-15.559	24	10	11	7.245	-7.062
7	2	6	24.657	-10.558	24	11	10	-7.141	5.234
7	6	2	-24.112	10.187	25	11	17	2.142	-5.235
8	2	7	32.854	-4.400	25	17	11	-2.114	2.748
8	7	2	-32.142	5.396	26	12	17	1.483	-5.579
9	2	8	32.440	-5.001	26	17	12	-1.470	3.432
9	8	2	-31.650	6.044	27	14	15	19.329	-16.345
10	3	13	16.476	22.660	27	15	14	-19.126	16.122
10	13	3	-15.970	-22.814	28	15	16	-10.867	-26.129
11	3	14	41.591	-5.824	28	16	15	11.079	24.004
11	14	3	-39.330	9.347	29	17	18	17.450	-1.283
12	4	19	-39.767	6.321	29	18	17	-17.144	0.154
12	19	4	40.174	-7.038	30	18	19	2.142	-5.153
13	4	20	37.275	-7.164	30	19	18	-2.118	3.140
13	20	4	-36,585	5.560	31	20	21	11.588	-13.574
14	4	21	22.486	-13.101	31	21	20	-11.387	8.572
14	21	4	-21.768	6.183	32	21	22	13.155	-21.762
15	5	10	31.840	-8.742	32	22	21	-12.858	18.693
15	10	5	-31.177	3.002	33	22	23	-13.499	-8.687
16	5	17	86.571	-25.770	33	23	22	14.141	6.714
16	17	5	-85.131	17.398	34	22	24	6.357	-17.006
17	5	19	56.557	-20.446	34	24	22	-6.131	7.949
17	19	5	-52.265	29.534	35	24	25	-8.869	-12.950
18	6	13	9.137	-15.204	35	25	24	8.967	7.559

Perdas ativas = 25.01 MW Balanço de reativos = 74.68 MVAR A seguir, mostramos os resultados do fluxo de carga para o sistema, depois que toda a geração da barra 3 é removida.

N۹	TEN	SÃO	GERAÇ	ÇÃO
Barra	VMOD	ANG	MW	MVAR
1	1.0200	0.0000	409.01	140.22
2	0.8226	8.6259	100.00	-17.00
3	0.8726	-7.4114	0.00	0.00
4	0.8631	0.0384	50.00	-4.00
5	0.8413	13.1208	200.00	-47.00
6	0.8223	-3.4942	0.00	0.00
7	0.8285	3.9205	0.00	0.00
8	0.8320	3.5026	0.00	0.00
9	0.8211	3.2952	0.00	0.00
10	0.8348	6.2240	0.00	0.00
11	0.8465	4.5924	0.00	0.00
12	0.8420	3.1398	0.00	0.00
13	0.8283	-5.6583	0.00	0.00
14	0.9006	-8.5048	0.00	0.00
15	0.9172	-7.7828	0.00	0.00
16	0,9471	-5.9948	0.00	0.00
17	0.8601	3.9913	0.00	0.00
18	0.8515	1.6423	0.00	0.00
19	0.8669	1.5777	0.00	0.00
20	0.8554	-2.9079	0.00	0.00
21	0.8704	-4.6652	0.00	0.00
22	0.8928	-6.0829	0.00	0.00
23	0.9651	-3.6244	0.00	0.00
24	0.9266 -7.8310		0.00	0.00
25	0.9498	-7.1846	0.00	0.00

			Ireal	Iaimag	Imod			[Ireal	Iaimag	Imod
Linha	SB	EB	(pu)	(pu)	(pu)	Linha	SB	EB	(pu)	(pu)	(pu)
1	1	3	0.495	-0.396	0.634	18	13	6	-0.381	-0.193	0.428
1	3	1	-0.493	0.429	0.654	19	7	8	0.026	0.043	0.050
2	1	16	0.801	-0.363	0.880	19	8	7	-0.027	-0.030	0.040
2	16	1	-0.798	0.430	0.906	20	7	12	0.041	0.099	0.107
3	1	17	-0.004	-0.565	0.565	20	12	7	-0.042	-0.081	0.091 .
3	17	1	0.003	0.593	0.593	21	8	9	0.030	-0.042	0.052
4	1	19	0.078	-0.341	0.350	21	9	8	-0.031	0.061	0.069
4	19	1	-0.078	0.384	0.391	22	8	17	-0.063	0.151	0.164
5	1	23	0.320	-0.040	0.322	22	17	8	0.056	-0.054	0.078
5	23	1	-0.316	0.154	0.352	23	9	10	-0.155	-0.011	0.155
6	1	25	0.360	-0.052	0.364	23	10	9	0.154	0.025	0.156
6	25	1	-0.350	0.223	0.415	24	10	11	0.063	0.095	0.104
7	2	6	0.559	0.158	0.581	24	11	10	-0.066	-0.072	0.097
7	6	2	-0,560	-0.128	0.575	25	11	17	0.007	0.067	0.068
8	2	7	0.249	0.119	0.276	25	17	11	-0.009	-0.040	0.041
8	7	2	-0.252	-0.094	0.269	26	12	17	-0.076	0.074	0.107
9	2	8	0.237	0.126	0.269	26	17	12	0.075	-0.051	0.091
9	8	2	-0.240	-0.098	0.259	27	14	15	-0.180	0.174	0.250
10	3	13	-0.089	-0.305	0.318	27	15	14	0.181	-0.166	0.246
10	13	3	0.091	0.319	0.332	28	15	16	-0.490	0.319	0.585
11	3	14	0.033	0.097	0.103	28	16	15	0.493	-0.291	0.573
11	14	3	-0.028	-0.065	0.071	29	17	18	0.156	0.038	0.161
12	4	19	-0.418	-0.082	0.426	29	18	17	-0.157	-0.017	0.158
12	19	4	0.418	0.102	0.430	30	18	19	-0.021	0.071	0.074
13	4	20	0.411	0.088	0.420	30	19	18	0.020	-0.048	0.052
13	20	4	-0.410	-0.050	0.413	31	20	21	0.123	0.158	0.200
14	4	21	0.239	0.157	0.286	31	21	20	-0.119	-0.097	0.153
14	21	4	-0.235	-0.060	0.243	32	21	22	0.131	0.256	0.288
15	5	10	0.386	0.175	0.424	32	22	21	-0.127	-0.214	0.249
15	10	5	-0.402	-0.080	0.410	33	22	23	-0.162	0.124	0.203
16	5	17	0.960	0.526	1.095	33	23	22	0.164	-0.092	0.188
16	17	5	-0.994	-0.302	1.039	34	22	24	0.074	0.192	0.206
17	5	19	0.531	0.408	0.669	34	24	22	-0.062	-0.090	0.109
17	19	5	-0.534	-0.384	0.658	35	24	25	-0.091	0.166	0.189
18	6	13	0.382	0.200	0.431	35	25	24	0.099	-0.107	0.146

Fluxos	nas	1 inhas
TTOULOS	man	TTTTTTT

Charles and the second second									
Linha	SB	EB	P. ATIVA MW	P.REAT: MVAR	Linha	SB	EB	P. ATIVA MW	P. REATIVA MVAR
1	1	3	50.489	40.344	18	13	6	-29.867	19.049
1	3	1	-47.492	-31.598	19	7	8	2.407	-3.374 .
2	1	16	81.695	37.066	19	8	7	-2.396	2.328
-2	16	1	-79.376	-32.567	20	7	12	3.961	-7.977
3	1	17	-0.416	57.649	20	12	7	-3.925	6.613
3	17	1	3.823	-50.858	21	8	9	. 2.272	3.638
4	1	19	7.926	34.813	21	9	8	-2.258	-5.183
4	19	1	-5.864	-33.423	22	8	17	-4.438	-12.861
5	1	23	32.589	4.116	22	17	8	4.509	5.009
5	23	1	-31.376	-12.904	23	9	10	-12.741	0.184
6	1	25	36.730	. 5.274	23	10	9	12.976	-0.699
6	25	1	-35.604	-16.861	24	10	11	6.116	-7.278
7	2	6	47.396	-5.981	24	11	10	-6.016	5.632
7	6	2	-45.328	13.304	25	11	17	1.017	-5.634
8	2	7	21.726	-6.635	25	17	11	-0.985	3.372
8	7	2	-21.346	6.338	26	12	17	-6.079	-6.613
9	2	8	20.829	-7.353	26	17	12	6.124	4.812
9	8	2	-20.425	6.884	27	14	15	-18.325	-13.137
10	3	13	-4.264	27.386	27	15	14	18.498	12.880
10	13	3	4.860	-27.056	28	15	16	-48.505	-22.881
11	3	14	1.758	-8.776	28	16	15	49.364	22.565
11	14	3	-1.669	6.136	29	17	18	13.629	-2.313
12	4	19	-36.079	7.083	29	18	17	-13.424	1.063
12	19	4	36.438	-7.832	30	18	19	-1.578	-6.063
13	4	20	35.445	-7.540	30	19	18	1.612	4.204
13	20	4	-34.783	6.037	31	20	21	9.786	-14.050
14	4	21	20.629	-13.496	31	21	20	-9.595	9.278
14	21	4	-19.961	6.866	32	21	22	9.556	-23.150
15	5	10	34.952	-6.953	32	22	21	-9.257	20.235
15	10	5	-34.089	2.970	33	22	23	-15.511	-9.456
16	5	17	88.736	-24.743	33	23	22	16.376	7.903
16	17	5	-87.086	19.956	34	22	24	4.768	-17.778
17	5	19	51.286	-23.269	34	24	22	-4.527	9.037
17	19	5	-47.182	32.013	35	24	25	-10.473	-14.039
18	6	13	30.352	-18.320	35	25	24	10.604	8.861
and the second of the second se	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	the second s	the control of the second s	And the second				The second s	

Perdas ativas = 28.99 MW Balanço de reativos = 47.75 MVAR - Apresentamos agora, os resultados da aplicação dos métodos de eliminação de sobrecargas desenvolvidos nos capítulos 4 e 5.

Nº	TEN	ISÃO	GERA	GERAÇÃO			
Barra	VMOD	ANG	MW	MVAR			
1	1.0200	0.0000	442.93	-5.02			
2	0.9643	-1.4397	90.67	-6.20			
3	0.9144	-8.8573	0.00	0.00			
4	1.0067	-2.1527	101.70	0.82			
5	1.0095	-1.2167	108.04	-3.04			
6	0.9133	-8.1266	0.00	0.00			
7	0.9725	-4.9212	0.00	0.00			
8	0.9774	-5.3565	0.00	0.00			
9	0.9758	-6.0294	0.00	0.00			
10	0.9947	-4.7966	0.00	0.00			
11	0.9951	-5.1612	0.00	0.00			
12	0.9817	-5.3935	0.00	0.00			
13	0.9050	-9.0884	0.00	0.00			
14	0.9197	-8.9873	0.00	0.00			
15	0.9313	-8.0906	0.00	0.00			
16	0.9566	-6.1729	0.00	0.00			
17	0.9928	-4.6003	0.00	0.00			
18	0.9887	-4.4624	0.00	0.00			
19	1.0039	-2.4547	0.00	0.00			
20	0.9927	-4.3319	0.00	0.00			
21	0.9910	-5.6131	0.00	0.00			
22	22 0.9878 -4		0.00	0.00			
23	23 1.0016 -		0.00	0.00			
24	0。9929	-7.7666	0.00	0.00			
25	0.9981	-7.0268	0.00	0.00			
the second se		1	and the second se				

Correntes nas linhas

A	T		P	7							
Linho	CD	ER	Ireal	Iaimag	Imod	Tinh	CD	ED	Ireal	Iaimag	Imod
LIIIIa		LD	(pu)	(pu)	(pu)	Linna	SB	EB	(pu)	(pu)	(pu)
1	1	3	0.556	-0.248	0.609	18	13	6	-0.225	0.070	0.236
1	3	1	-0.554	0.282	0.621	19	7	8	0.039	0.050	0.063
2	1	16	0.815	-0.294	0.867	19	8	7	-0.037	-0.035	0.051
2	16	1	-0.812	0.361	0.888	20	7	12	0.039	0.067	0.078
3	1	17	0.286	0.010	0.287	20	12	7	-0,037	-0.046	0.054
3	17	1	-0.285	0.020	0.286	21	8	9	0.062	0.010	0.063
4	1	19	0.111	0.021	0.113	21	9	8	-0.060	0.013	0.062
4	19	1	-0.110	0.024	0.112	22	8	17	-0.056	0.112	0.125
5	1	23	0.271	0.098	0.289	22	17	8	0.065	-0.000	0.065
5	23	1	-0.268	0.018	0.268	23	9	10	-0.087	0.054	0.103
6	1	25	0.342	0.079	0.351	23	10	9	0.089	-0.037	0.096
6	25	1	-0.331	0.097	0.345	24	10	11	0.025	0.022	0.033
7	2	6	0.384	-0.105	0.398	24	11	10	0.022	0.005	0.023
7	6	2	-0.381	0.140	0.406	25	11	17	-0.028	-0.000	0.028
8	2	7	0.229	0.083	0.243	25	17	11	0.030	0.032	0.044
8	7	2	-0.227	-0.053	0.233	26	12	17	-0.064	0.055	0.085
9	2	8	0.226	0.097	0.246	26	17	12	0.067	-0.028	0.072
9	8	2	-0.224	-0.063	0.233	27	14	15	-0.202	0.107	0.229
10	3	13	0.036	-0.046	0.058	27	15	14	0.204	-0.099	0.226
10	13	3	-0.034	0.061	0.070	28	15	16	-0.507	0.251	0.566
11	3	14	0.006	0.032	0.032	28	16	15	0.511	-0.223	0.557
11	14	3	-0.000	0.002	0.002	29	17	18	-0.004	-0.008	0.009
12	4	19	0.108	-0.006	0.108	29	18	17	0.006	0.032	0.033
12	19	4	-0.107	0.029	0.111	30	18	19	-0.153	0.030	0.156
13	4	20	0.376	0.005	0.377	30	19	18	0.155	-0.004	0.155
13	20	4	-0.374	0.039	0.376	31	20	21	0.129	0.060	0.142
14	4	21	0.231	0.066	0.240	31	21	20	-0.123	0.010	0.123
14	21	4	-0.223	0.046	0.228	32	21	22	0.152	0.035	0.156
15	5	10	0.266	0.038	0.268	32	22	21	-0.147	0.012	0.148
15	10	5	-0.260	0.078	0.271	33	22	23	-0.118	-0.008	0.119
16	5	17	0.473	0.033	0.474	33	23	22	0.121	0.043	0.128
16	17	5	-0.459	0.234	0.515	34	22	24	0.073	0.090	0.116
17	5	19	0.086	0.021	0.088	34	24	22	-0.058	0.021	0.062
17	19	5	-0.085	0.007	0.085	35	24	25	-0.084	0.049	0.098
18	6	13	0.266	-0.063	0.235	35	25	24	0.093	0.014	0.093
	1										

Fluxos nas linhas

3

				D DDAM					
Linha	SB	EB	P. AIIVA	P.REAL.	Linha	SB	EB	P.ATIVA	P. REATIVA
			MW	MVAR				MW	MVAR
1	1	3	56.723	25.250	18	13	6	-21.110	-3.037
1	3	1	-53.987	-17.683	19	7	8	3.332	-5.161 .
2	1	16	83.133	30.021	19	8	7	-3.315	3.726
2	16	1	-80.894	-25.960	20	7	12	3.220	-6.846
3	1	17	29.207	-1.014	20	12	7	-3.203	4.827
3	17	1	-28.377	0.312	21	8	9	· 5.987	-1.494
4	1	19	11.307	-2.191	21	9	8	-5.972	-0.687
4	19	1	-11.124	-1.918	22	8	17	-6.438	-10.421
5	1	23	27.681	-10.000	22	17	8	6.472	-0.517
5	23	1	-26,865	-0.021	23	9	10	-9.027	-4.314
6	1	25	34.880	-8.045	23	10	9	9.122	2.928
6	25	1	-33,999	-5.529	24	10	11	2.275	-2.373
7	2	6	37.249	9.233	24	11	10	-2.269	-0.285
7	6	2	-36.248	-7.756	25	11	17	-2.731	0.284
8	2	7	21.838	-8.531	25	17	11	2.742	-3.434
8	7	2	-21.548	7.008	26	12	17	-6.797	-4.827
9	2	8	21.567	-9.907	26	17	12	6.825	2.250
9	8	2	-21.234	8.193	27	14	15	-19.921	-6.832
10	3	13	3.910	3.618	27	15	14	20.067	6.474
10	13	3	-3.887	-4.965	28	15	16	-50.074	-16.472
11	3	14	0.075	-2.933	28	16	15	50.882	15.959
11	14	3	-0.072	-0.170	29	17	18	-0.334	0.852
12	4	19	10.878	0.203	29	18	17	0.337	-3.238
12	19	4	-10.855	-2.426	30	18	19	-15.337	-1.762
13	4	20	37.855	-1.924	30	19	18	15.547	-0.306
13	20	4	-37.315	-1.050	31	20	21	12.319	-6.945
14	4	21	22.951	-7.468	31	21	20	-12.216	0.248
14	21	4	-22.444	-3.334	32	21	22	14.661	-4.913
15	5	10	26.749	-4.366	32	22	21	-14.568	0.498
15	10	5	-26.399	-5.552	33	22	23	-11.525	2.173
16	5	17	47.660	-4.365	33	23	22	11.865	-4.980
16	17	5	-47.327	-19.461	34	22	24	6.094	-9.671
17	5	19	8.628	-2.316	34	24	22	-6.040	-1.308
17	19	5	-8.559	-0.342	35	24	25	-8.960	-3.693
18	6	13	21.255	2.757	35	25	24	8.999	-2.471

Perdas ativas = 13.32 MW Balanço de reativos = 137.40 MVAR

- Resultados do fluxo de carga quando a linha 9 do sistema - 2 é removida:

Nº	TENS	SÃO	GERA	GERAÇÃO			
Barra	VMOD	ANG	MW	MVAR			
1	1.0200	0.0000	261.45	146.86			
2	0.8360	20.1167	100.00	-17.00			
3	0.9362	9.8257	150.00	4.00			
4	0.8625	0.6985	50.00	-4.00			
5	0.8423	14.3269	200.00	-47.00			
6	0.8680	11.5855	0.00	0.00			
7	0.8305	8.5557	0.00	0.00			
8	0.8322	5.1241	0.00	0.00			
9	0.8217	4.8189	0.00	0.00			
10	0.8357	7.5888	0.00	0.00			
11	0.8474	5.9790	0.00	0.00			
12	0.8432	6 . 3244	0.00	0.00			
13	0.8807	10.2278	0.00	0.00			
14	0.9232	-1.0994	0.00	0.00			
15	0.9333	-2.5340	0.00	0.00			
16	0.9565	-2.6061	0.00	0.00			
17	0.8611	5.4007	0.00	0.00			
18	0.8517	2.7240	0.00	0.00			
19	0.8664	2.3038	0.00	0.00			
20	0.8547	-2.3145	0.00	0.00			
21	0.8698	-4.1737	0.00	0.00			
22	0.8924	-5.7239	0.00	0.00			
23	0.9649	-3.5023	0.00	0.00			
24	0.9262	-7.6095	0.00	0.00			
25	0.9496	-7.0333	0.00	0.00			
1							

Linha	SB	EB	Ireal (pu)	Iaimag (pu)	Imod (pu)	Linha	SB	EB	Ireal (pu)	Iaimag (pu)	Imod (pu)
1	1	3	-0.443	-0.432	0.618	19	7	8	0.280	0.160	0.322
1	3	1	0.440	0.466	0.641	19	8	7	-0.281	-0.147	0.317
2	1	16	0.396	-0.350	0.528	20	7	12	0.148	0.137	0.202
2	16	1	-0.395	0.416	0.574	20	12	7	-0.151	-0.119	0.192
3	1	17	-0.070	-0.592	0.596	21	8	9	0.038	-0.037	0.052
3	17	1	0.069	0.619	0.623	21	9	8	-0.039	0.056	0.068
4	1	19	0.054	-0.353	0.357	22	8	17	-0.055	0.156	0.166
4	19	1	-0.055	0.395	0.399	22	17	8	0.047	-0.060	0.076
5	1	23	0.312	-0.044	0.315	23	9	10	-0.148	-0.011	0.148
5	23	1	-0.309	0.158	0.347	23	10	9	0.146	0.025	0.148
6	1	25	0.353	-0.053	0.357	24	10	11	0.060	0.096	0.113
6	25	1	-0.343	0.224	0.410	24	11	10	-0.063	-0.073	0.096
7	2	6	0.319	0.305	0.442	25	11	17	0.004	0.067	0.067
7	6	2	-0.328	-0.275	0.442	25	17	11	-0.007	-0.040	0.040
8	2	7	0.609	0.289	0.674	26	12	17	0.033	0.106	0.111
8	7	2	-0.615	-0.264	0.670	26	17	12	-0.035	-0.083	0.090
10	3	13	0.144	-0.314	0.346	27	14	15	0.232	0.212	0.314
10	13	3	-0.147	0.329	0.361	27	15	14	-0.231	-0.204	0.309
11	3	14	0.444	0.167	0.474	28	15	16	-0.085	0.325	0.336
11	14	3	-0.447	-0.132	0.466	28	16	15	0.086	-0.298	0.310
12	4	19	-0.434	-0.092	0.444	29	17	18	0.177	0.047	0.183
12	19	4	0.434	0.112	0.448	29	18	17	-0.178	-0.026	0.180
13	4	20	0.418	0.095	0.429	30	18	19	-0.001	0.076	0.076
13	20	4	-0.418	-0.057	0.422	30	19	18	-0.000	-0.054	0.054
14	4	21	0.246	0.162	0.294	31	20	21	0.129	0.162	0.208
14	21	4	-0.243	-0.065	0.252	31	21	20	-0.126	-0.101	0.162
15	5	10	0.374	0.180	0.415	32	21	22	0.145	0.264	0.301
15	10	5	-0.392	-0.085	0.401	32	22	21	-0.142	-0.222	0.263
16	5	17	0.927	0.542	1.074	33	22	23	-0.154	0.128	0.200
16	17	5	-0.966	-0.318	1.017	33	23	22	0.157	-0.096	0.184
17	5	19	0.551	0.425	0.696	34	22	24	0.081	0.195	0.211
17	19	5	-0.554	-0.401	0.684	34	24	22	-0.069	-0.092	0.115
18	6	13	0.147	0.297	0.331	35	24	25	-0.085	0.167	0.187
18	13	6	-0.149	-0.290	0.326	35	25	24	0.092	-0.108	0.142

Linha	SB	EB	P. ATIVA MW	P. REAT. MVAR	Linha	SB	EB	P. ATIVA MN	P. REATIVA MVAR
1	1	3	-45.176	44.025	19	7	8	24.947	-9.653
1	3	1	48.046	-35.994	19	8	7	-24.406	10.073
2	1	16	40.409	35,669	20	7	12	13.883	-9.451
2	16	1	-39.526	-38.060	20	12	7	-13 。472	8.586
3	1	17	-7.158	60.349	21	8	9	2.837	3,308
3	17	1	10.934	-52.544	21	9	8	-2.823	-4.855
4	1	19	5.498	35.967	22	8	17	-3 ,432	-13.380
4	19	1	-3.358	-34.372	22	17	8	3.504	5.522
5	1	23	31.835	4.495	23	9	10	-12 .177	-0.143
5	23	1	-30.664	-13.369	23	10	9	12 .391	-0.433
6	1	25	36.041	5.392	24	10	11	6.024	-7.272
6	25	1	-34.949	-17.137	24	11	10	-5.926	5.618
7	2	6	33.842	-14.795	25	11	17	0.926	-5.618
7	6	2	-32.670	17.667	25	17	11	-0.895	3.350
8	2	7	56.125	-5.176	26	12	17	3.739	-8.587
8	7	2	-53.809	14.088	26.	17	12	-3.693	6.790
10	3	13	8.301	31.269	27	14	15	21.015	-20.005
10	13	3	-7.597	-30.829	27	15	14	-20.742	19.988
11	3	14	43.647	-8.261	28	15	16	-9.251	-29.996
11	14	3	-41.016	13.008	28	16	15	9.518	28.055
12	4	19	-37.551	7.475	29	17	18	15.518	-2.597
12	19	4	37.941	-8.142	29	18	17	-15.254	1.504
13	4	20	36.169	-7.722	30	18	19	0.251	-6.503
13	20	4	-35.479	6.300	30	19	18	-0.214	4.653
14	4	21	21.376	-13.704	31	20	21	10.481	-14.314
14	21	4	-20.661	7.210	31	21	20	-10.273	9.596
15	5	10	34.237	-6.874	32	21	22	10,934	-23.812
15	10	5	-33.410	2.696	32	22	21	-10.603	20.984
16	5	17	86.935	-24.884	33	22	23	-14.833	-9.972
16	17	5	-85.353	19.457	33	23	22	15.665	8.369
17	5	19	53.799	-23.204	34	22	24	5.436	-18.011
17	19	5	-49.364	32.820	34	24	22	-5.178	9.321
18	6	13	17.695	-22.685	35	24	25	-9.822	-14.321
18	13	6	-17.411	22.820	35	25	24	9.949	9.136

Perdas ativas = 31.43 MW Balanço de reativos = 41.12 MVAR - 79 -

- 80 -

- Apresentamos, a seguir, os resultados da aplicação dos métodos de eliminação de sobrecargas.

Nº	TEN	ISÃO	GERAÇÃO			
Barra	VMOD	ANG	MW	MVAR		
1	1.0200	0.0000	394.79	-25.14		
2	0.9622	-1.4208	56.58	-5.49		
3	0.9613	-3.2897	62.77	7.94		
4	1.0088	-2.0133	103.01	0.54		
5	1.0131	-0.9274	122.88	-3.26		
6	0。9385	-4.8389	0.00	0.00		
7	0.9749	-5.8012	0.00	0.00		
8	0.9815	-7.0242	0.00	0.00		
9	0.9788	-7.1603	0.00	0.00		
10	0.9981	-5.1349	0.00	0.00		
11	0.9982	-5.4882	0.00	0.00		
12	0.9842	-6.0098	0.00	0.00		
13	0,9374	-5.0180	0.00	0.00		
14	0.9425	-6.4779	0.00	0.00		
15	0.9484	-6.2790	0.00	0.00		
16	0.9678	-4.9828	0.00	0.00		
17	0.9954	-4.9189	0.00	0.00		
18	0.9910	-4.5683	0.00	0.00		
19	1.0061	-2.3406	0.00	0.00		
20	0.9948	-4.1975	0.00	0.00		
21	0.9928	-5.4959	0.00	0.00		
22	0.9893	-6.5174	0.00	0.00		
23	1.0021	-3.6995	0.00	0.00		
24	0.9939	-7.7025	0.00	0.00		
25	0.9988	-6.8903	0.00	0.00		

Correntes nas linhas

-

Linha	SB	EB	Ireal (pu)	Iaimag (pu)	Imod (pu)	Linha	SB	EB	Ireal (pu)	Iaimag (pu)	Imod (pu)
1	1	3	0.230	-0.134	0.266	19	7	8	0.121	0.080	0.145
1	3	1	-0.229	0.169	0.285	19	8	7	-0.120	-0.064	0.136
2	1	16	0.665	-0.230	0.704	20	7	12	0.016	0.065	0.067
2	16	1	-0.662	0.297	0.726	20	12	7	-0.013	-0.043	0.045
3	1	17	0.302	0.023	0.303	21	8	9	0.015	-0.002	0.015
3	17	1	-0.301	0.007	0.301	21	9	8	-0.012	0.025	0.028
4	1	19	0.105	0.025	0.108	22	8	17	-0.148	0.097	0.177
4	19	1	-0.104	0.020	0.106	22	17	8	0.160	0.015	0.161
5	1	23	0.268	0.099	0.286	23	9	10	-0.134	0.045	0.141
5	23	1	-0.265	0.017	0.265	23	10	9	0.135	-0.028	0.138
6	1	25	0.340	0.081	0.349	24	10	11	0.025	0.020	0.038
6	25	1	-0.329	0.095	0.342	24	11	10	-0.022	0.007	0.023
7	2	6	0.199	-0.031	0.202	25	11	17	-0.028	-0.002	0.028
7	6	2	-0.197	0.067	0.208	25	17	11	0.031	0.034	0.036
8	2	7	0.287	0.108	0.306	26	12	17	-0.088	0.054	0.103
8	7	2	-0.285	-0.078	0.295	26	17	12	0.090	-0.026	0.094
10	3	13	0.217	-0.085	0.233	27	14	15	-0.056	0.065	0.085
10	13	3	-0.216	0.101	0.239	27	15	14	0.057	-0.056	0.080
11	3	14	0.149	0.002	0.150	28	15	16	-0.260	0.196	0.410
11	14	3	-0.147	0.033	0.150	28	16	15	0.363	-0.167	0.399
12	4	19	0.116	-0.003	0.116	29	17	18	-0.019	-0.014	0.024
12	19	4	-0.115	0.025	0.117	29	18	17	0.021	0.038	0.044
13	4	20	0.378	0.005	0.378	30	18	19	-0.168	0.024	0.170
13	20	4	-0.376	0.039	0.378	30	19	18	0.170	0.002	0.170
14	4	21	0.233	0.066	0.242	31	20	21	0.131	0.060	0.144
14	21	4	-0.225	0.046	0.230	31	21	20	-0.125	0.010	0.126
15	5	10	0.311	0.044	0.315	32	21	22	0.157	0.033	0.160
15	10	5	-0.305	0.072	0.314	32	22	21	-0.152	0.013	0.152
16	5	17	0.557	0.031	0.558	33	22	23	-0.115	-0.009	0.116
16	17	5	-0.544	0.237	0.593	33	23	22	0.118	0.043	0.126
17	5	19	0.099	0.020	0.101	34	22	24	0.075	0.089	0.116
17	19	5	-0.098	0.008	0.099	34	24	22	-0.061	0.022	0.065
18	6	13	0.043	-0.000	0.043	35	24	25	-0.082	0.048	0.095
18	13	6	-0.042	0.008	0.043	35	25	24	0.090	0.015	0.092

Fluxos	nas	1in	has
	TIME	****	inc.

	Paratele contraction of the second		for some of the second s	Contraction of the local division of the loc			and the second se		
Linha	SB	EB	P. ATIVA MW	P. REAT. MVAR	Linha	SB	EB	P. ATIVA MW	P. REATIVA MVAR
1	1	3	23.446	13.641	19	7	8	10.988	-8,920
1	3	1	-22.899	-14.973	19	8	7	-10.884	7.717
2	1	16	67.860	23.508	20	7	12	0.885	-6.423
2	16	1	-66.373	-23.100	20	12	7	-0.874	4.367
3	1	17	30.804	-2.365	21	8	9	1.473	-0.003
3	17	1	-29.880	1.914	21	9	8	-1 .471	-2.258
4	1	19	10.675	-2.538	22	8	17	-15.592	-7.712
4	19	1	-10.512	-1.633	22	17	8	15.720	-2.855
5	1	23	27.369	-10.118	23	9	10	-13.528	-2.742
5	23	1	-26.570	0.055	23	10	9	13.717	1.605
6	1	25	34.639	-8.228	24	10	11	2.271	-2.221
6	25	1	-33,770	-5.418	24	11	10	-2.266	-0.455
7	2	6	19.243	2.547	25	11	17	-2.734	0.455
7	6	2	-18.984	-4.676	25	17	11	2.746	-3.622
8	2	7	27.330	-11.042	26	12	17	-9.126	-4.368
8	7	2	-26.867	10.347	26	17	12	9.170	1.854
10	3	13	21.329	6.921	27	14	15	-5.923	-5.451
10	13	3	-21.015	-7.631	27	15	14	5.943	4.716
11	3	14	14.337	-1.006	28	15	16	- 35。943	-14.715
11	14	3	-14.073	-1.551	28	16	15	3 6。632	13.908
12	4	19	11.656	-0.157	29	17	18	-1.805	1.534
12	19	4	-11.630	-2.068	29	18	17	1.814	-3.918
13	4	20	38.116	-1.887	30	18	19	-16 .814	-1.083
13	20	4	-37.570	-1.091	30	19	18	17.065	-0.889
14	4	21	23.219	-7.431	31	20	21	12.577	-6.903
14	21	4	-22.702	-2.391	31	21	20	-1 2.741	0.187
15	5	10	31.470	-4.997	32	21	22	15 .175	-4.796
15	10	5	-30.990	-4.382	32	22	21	-15.075	0.382
16	5	17	56.406	-4.056	33	22	23	-11.246	2.219
16	17	5	-55.946	-18.822	33	23	22	11.571	-5.056
17	5	19	9.996	-2.216	34	22	24	6.322	-9.600
17	19	5	-9.905	-0.399	34	24	22	-6.266	-1.401
18	6	13	3.991	-0.321	35	24	25	-8.734	-3.599
18	13	6	-3.986	-0.371	35	25	24	8.770	-2.582

Perdas ativas = 10.03 MW Balanço de reativos = 149.37 MVAR CAPITULO - 7

CONCLUSÕES:

Em vez de obtermos a matriz ZBUS pelo método de formação, apresentado neste trabalho, poderíamos tê-la obtido por inversão da matriz YBUS. Mas, no cálculo de contingência, seria necessária uma alteração e posterior inversão da matriz YBUS, para cada modificação do sistema de transmissão. Isto, evidentemente, exige um processo computacional mais demorado do que o método exposto no capítulo (2), o que foi comprovado através de testes realizados com alguns sistemas. Para o sistema da fig. 6.2, obtivemos os tempos de 21.01 segundos e 32.06 segundos para uma mesma contingência.

Como podemos observar nos resultados mostrados no capítulo (6), a aplicação dos métodos de eliminação de sobrecargas em condições de emergência, apresentaram bons resultados. Embora o objetivo principal em condições de emergência seja a eliminação de sobrecargas, podemos observar também que tanto o redespacho da potência ativa como o método de alocação ótima de potência reativa conduz o sistema a uma redução substancial nas perdas ativas.

A eficiência do método do redespacho de potência ativa depende das características do sistema. É evidente que, quanto maior o número de barras de geração, como também o grau de interligação dessas barras, maior será a flexibilidade de redistribuição dos fluxos de potência ativa. Isto foi comprovado durante as aplicações do método.

Alguns esquemas computacionais para convergência foram fei tos e o que apresentou convergência mais rápida foi o apresentado no apên dice (2). As restrições de desigualdade sobre as variáveis de controle conduziram os métodos a uma convergência mais rápida, embora com prejuízo na eliminação de sobrecarga.

0

A fixação simultânea de potências ativa e reativa pode exigir, de uma determinada máquina, um ponto de operação fora da região delimitada por sua curva de capacidade. Isto pode ser contornado através da injeção de parte da potência reativa por bancos de capacitores ou reatores, como esquematizado na figura abaixo.

fig. 7.1.

Algumas particularidades sobre o passo k da equação 4.22 devem ser observadas. Para o perfeito funcionamento do método do gradiente, é necessário que,a cada iteração, o passo assuma um valor positivo. Isso não pode ser garantido pela equação 4.22 e, portanto, devemos utilizar o valor absoluto do calculado por essa equação. Podemos ainda salientar que o valor calculado por 4.22 pode não ser o melhor passo, em algum sistema particular. Entretanto, isso pode ser conseguido através de um fator de redução ou aumento de k, ajustado com base em uma análise do processo iterativo. Para os sistemas apresentados neste trabalho, a melhor convergência foi obtida com um fotor (de aumento) igual a 2(dois).

- 84 -

(A.2),

APENDICE

FLUXO DE CARGA ZBUS TERRA COMO REFERÊNCIA

Neste apêndice, apresentamos um método de cálculo de fluxo de carga GAUSS - SEIDEL desenvolvido na referência (2), que utiliza os elementos da matriz ZBUS de um determinado sistema, que foi utilizado neste trabalho.

a - As equações de fluxo de carga ZBUS.

3

As tensões nas diversas barras de um sistema podem ser cal culadas por:

$$V_{1} = Z_{11} I_{1} + Z_{12} I_{2} + \dots + Z_{1n} I_{n}$$

$$V_{2} = Z_{21} I_{1} + Z_{22} I_{2} + \dots + Z_{2n} I_{n}$$

$$\ddot{V}_{n} = Z_{n1} I_{1} + Z_{n2} I_{2} + \dots + Z_{nn} I_{n}$$
(A.1),

onde:

 V_i : valor complexo da tensão na barra i;

Z_{ik}: impedância de transferência da barra i para a barra k;

 I_k : corrente líquida injetada na barra k;

n : número de barras do sistema.

As eqs. (A.1) podem também ser escritas em forma matricial:

V = Z Ionde: $V = \begin{bmatrix} V_1 \\ \vdots \\ V_n \end{bmatrix}, I = \begin{bmatrix} I_1 \\ \vdots \\ I_n \end{bmatrix} e Z = \begin{bmatrix} Z_{11} & \cdots & Z_{1n} \\ \vdots & & \vdots \\ Z_{n1} & \cdots & Z_{nn} \end{bmatrix}$

Reordenando as equações (A.1) de tal forma a evidenciar as grandezas relativas à barra slack, temos:

$$V_{1} = Z_{11} I_{1} + \dots + Z_{1n} I_{n} + Z_{1s} I_{s}$$
$$V_{2} = Z_{21} I_{1} + \dots + Z_{2n} I_{n} + Z_{2s} I_{s}$$

.
.
.

$$V_n = Z_{n1} I_1 + \dots + Z_{nn} I_n + Z_{ns} I_s$$

 $V_s = Z_{s1} I_1 + \dots + Z_{sn} I_n + Z_{ss} I_s$
(A.3),

- 86 -

onde:

s : é o índice correspondente à barra slack.

Das eqs. (A.3), podemos escrever:

$$V_{i} = \sum_{\substack{k=1 \\ k \neq s}}^{n} (Z_{ik} I_{k}) + Z_{is} I_{s}, i = 1, 2, ..., n \neq s$$
(A.4).

$$V_{s} = \sum_{\substack{k=1\\k\neq s}}^{11} (Z_{sk} I_{k}) + Z_{ss} I_{s}$$
(A.5)

ou:

$$I_{s} = \frac{1}{Z_{ss}} \left(V_{s} - \sum_{\substack{k=1 \ k \neq s}}^{n} \left(Z_{sk} I_{k} \right) \right)$$
(A.6).

Substituindo (A.6) em (A.4), fica:

$$V_{i} = \sum_{\substack{k=1\\k\neq s}}^{n} Z_{ik} I_{k} + \frac{Z_{is}}{Z_{ss}} (V_{s} - \sum_{\substack{k=1\\k\neq s}}^{n} Z_{sk} I_{k}), i=1, 2, \dots n\neq s$$

ou:

ra k é:

$$V_{i} = \sum_{\substack{k=1 \ k\neq s}}^{n} (Z_{ik} - \frac{Z_{is} Z_{sk}}{Z_{ss}}) I_{k} + \frac{Z_{is}}{Z_{ss}} V_{s}, i=1, 2, ..., n=s$$
(A.7).

O processo de dedução da equação acima é conhecido na re ferência (15) como redução de eixo da barra slack, que é uma variável dependente nos modelos usuais de fluxo de carga.

Por outro lado, a injeção líquida de corrente em uma bar

$$I_{k} = \frac{P_{k} - jQ_{k}}{V_{k}^{*}}$$
 (A.8),

onde:

P_k : potência ativa líquida injetada na barra k;

 Q_k : potência reativa líquida injetada na barra k.

Substituindo (A.8) em (A.7), obtemos:

13

$$V_{i} = \sum_{\substack{k=1 \ k\neq s}}^{n} ((Z_{ik} - \frac{Z_{is} Z_{sk}}{Z_{ss}}) \frac{P_{k} - jQ_{k}}{V_{k}^{*}}) + \frac{Z_{is}}{Z_{ss}} V_{s}$$

$$i = 1, 2, ..., n\neq s$$
(A.9).

Assim como no método da matriz Y, algumas operações ar<u>i</u> tméticas podem ser efetuadas antes do início do processo iterativo, com o objetivo de reduzir o tempo de processamento. Dessa forma, definimos:

$$A_{ik} = (Z_{ik} - \frac{Z_{is} Z_{sk}}{Z_{ss}}) (P_k - jQ_k)$$

e
$$B_i = \frac{Z_{is}}{Z_{ss}} V_s , \quad i = 1, 2, ..., n \neq s$$

Introduzindo essas especificações, a equação (A.9), torna-se:

$$V_{i} = \sum_{\substack{k=1 \ k \neq s}}^{n} \frac{A_{ik}}{V_{k}^{*}} + B_{i}, \quad i = 1, 2, ..., n \neq s \quad (A.10).$$

Podemos ainda modificar a eq. (A.10), para utilizar o processo iterativo GAUSS - SEIDEL, como segue:

$$V_{i}^{(v+1)} = \sum_{\substack{k=1 \ k\neq s}}^{i-1} \frac{A_{ik}}{(V_{k}^{v+1})^{*}} + \sum_{\substack{k=i \ k\neq s}}^{n} \frac{A_{ik}}{(V_{k}^{v})^{*}} + B_{i}$$
(A.11),

onde o v indica a ordem da iteração.

b - Barras PQ :

Para as barras que têm injeção fixa, o processo iterati vo definido pela eq. (A.11) dã os valores complexos das tensões em todas as barras. Valores iniciais são assumidos para as tensões e são re ajustados por (A.11) até que a convergência seja obtida.

c - Barras PV :

As barras deste tipo têm injeção de potência ativa e mõ dulo de tensão especificados. Devemos então calcular, a cada iteração, o ângulo de tensão e potência reativa injetada.

Suponhamos que uma barra m seja de tensão controlada. O valor complexo de sua tensão em uma iteração v é:

> $V_{\rm m}^{\rm V} = |V_{\rm m}^{\rm esp}| / \delta_{\rm m}^{\rm V}$ $\delta_{\rm m}^{\rm V} = \operatorname{arctg} \frac{I_{\rm m} (V_{\rm md})}{R_{\rm e} (V_{\rm md})}$

onde:

sendo V_{md} o valor determinado por (A.11).

3

CÁLCULO DA POTÊNCIA REATIVA:

Da equação (A.11), temos:

 $V_{m} = \sum_{k=1}^{n} \frac{A_{mk}}{V_{k}^{*}} + B_{m} + (Z_{mm} - \frac{Z_{ms}Z_{sm}}{Z_{ss}}) \frac{P_{m} - jQ_{m}}{V_{m}^{*}}$

ou:

$$P_{m} - jQ_{m} = S_{m}^{*} = \frac{Z_{ss} V_{m}^{*}}{Z_{mm} Z_{ss} - Z_{ms} Z_{sm}} (V_{m} - \sum_{\substack{k=1 \ k\neq s, m}}^{n} \frac{A_{mk}}{V_{k}^{*}} - B_{m})$$
(A.13)

e

 $Q_m = - I_m (S_m^*)$ (A.14).

d - Equações para o processo iterativo:

Apresentamos aqui, em resumo, as equações utilizadas em um processo iterativo GAUSS - SEIDEL:

1 -
$$A_{ik} = (Z_{ik} - \frac{Z_{is} Z_{sk}}{Z_{ss}}) (P_k - jQ_k)$$

(A.12),

 $2 - B_{i} = \frac{Z_{is}}{Z_{ss}} V_{s}$ $3 - V_{i}^{v+1} = \sum_{\substack{k=1 \ k\neq s}}^{i-1} \frac{A_{ik}}{(V_{k}^{v+1})^{*}} + \sum_{\substack{k=i \ k\neq s}}^{n} \frac{A_{ik}}{(V_{k}^{v})^{*}} + B_{i}$ $4 - (S_{m}^{v+1})^{*} = \frac{Z_{ss}(V_{m}^{v+1})^{*}}{Z_{mm}Z_{ss} - Z_{ms}Z_{sm}} (V_{m}^{v+1} - \frac{m-1}{Z_{k=1}} \frac{A_{mk}}{(V_{k}^{v+1})^{*}} - \frac{n}{k\neq s} \frac{A_{mk}}{(V_{k}^{v+1})^{*}} - \frac{n}{k\neq s} \frac{A_{mk}}{(V_{k}^{v})^{*}} - B_{m}$ $5 - Q_{m}^{v} = -I_{m} ((S_{m}^{v})^{*})$ $6 - V_{m}^{v} = |V_{m}|^{esp} / \delta_{m}^{v}$

- 89 -

onde $\delta_m^V \tilde{e}$ determinado por (A.12). Lembramos que o índice m refere-se apenas as barras PV.

e - Cálculo das potências da barra slack:

Depois de terminado o processo iterativo, conhecemos os valores complexos das tensões em todas as barras do sistema. Dessa forma, podemos calcular a corrente injetada na slack por:

$$I_{s} = \sum_{\substack{i=1\\i \in C_{1}}}^{n} V_{s} Y_{sht_{i}} + \sum_{\substack{k=1\\k \in C_{2}}}^{n} \frac{V_{s} - V_{k}}{Z_{ser_{sk}}}$$
(A.15),

onde:

c1 : conjunto das linhas ligadas à barra slack;

c₂ : conjunto das barras vizinhas à slack;

^Ysht_i :metade da admitância shunt da linha i;

 Z ser_{sk}: impedância série da linha que une as barras s e k.

Da equação (A.15) e, considerando que:

- 90 -

 $P_{s} + jQ_{s} = V_{s}I_{s}^{*}$,

obtemos:

$$P_{s} = \operatorname{Re} \left(V_{s} \sum_{\substack{i=1 \ i \in C_{1}}}^{n} V_{s} Y_{sht_{i}} + V_{s} \sum_{\substack{k=1 \ k \in C_{2}}}^{n} \frac{V_{s} - V_{k}}{\operatorname{Ser}_{sk}} \right)^{*}$$
(A.16).

e

$$Q_{s} = I_{m} \left(V_{s} \sum_{\substack{i=1 \ i \in C_{1}}}^{n} V_{s} Y_{sht_{i}} + V_{s} \sum_{\substack{k=1 \ k \in C_{2}}}^{n} \frac{V_{s} - V_{k}}{Z_{ser_{sk}}} \right)^{*}$$
(A.17).

f - O processo iterativo:

Apresentamos abaixo a sequência de passos para obtenção dos resultados do fluxo de carga ZBUS GAUSS - SEIDEL:

 A) assumir valores iniciais para as tensões em todas as barras do sistema;

B) calcular as constantes A e B pelas equações (1) e (2);

C) se a barra onde se vai corrigir a tensão é do tipo PV, calcular a potência reativa líquida que deve ser injetada nessa barra, pelas equações (4) e (5) e calcular os valores de A_{im}; caso contrário, pular para o passo E;

 D) se os reativos calculados no passo anterior estiverem fora da faixa pre-estabelecida para a barra, fixá-los no limite violado. Nesse caso a barra é transformada, nessa iteração, no tipo PQ;

E) calcular o valor complexo da tensão em uma barra i pela equação (3).
Se a barra i é do tipo PV, seu módulo de tensão é o valor especificado;
o ângulo é o determinado por (A.12);

F) retornar ao passo C até que todas as tensões complexas sejam corrigidas (exceto a da barra slack);

G) incrementar contador do número de iterações;

H) testar a convergência pelo critério:

$$\max_{j} |V_{j}^{v+1} - V_{j}^{v}| \leq \epsilon$$

onde:

 ϵ : é a tolerância pré-fixada.

 I) se a convergência foi alcançada, calcular as potências na barra sla ck pelas equações (A.16) e (A.17) e calcular os fluxos de potências nas linhas; caso contrário, retornar ao passo C. - Esquema computacional para interligação dos métodos.

13

- 92 -

1.20

REFERÊNCIAS BIBLIOGRÁFICAS

- Stagg, G. W., A. H. El Abiab: "Computer Methods in Power Systems Analysis", McGrall Hill, 1968.
- Manoel Firmino M. Júnior: "Alocação Otima de Potência Reativa em Sistemas de Potência", Tese de Mestrado, CCT - UFPb, Jul./1979.
- H. E. Brown: "Contingencies Evaluated by a Z-Matrix Method", IEEE Trans. PAS, pp.409, vol. 88, Apr./1968.
 - M. S. Sachdev, S. A. Ibrahim: "A Simulation Technique for Studying and reactive Power Flow Patterns", IEEE Trans. PAS, vol.94 Nov/Dec 1975.
 - 5 J. F. Dopazo, O. A. Klitin, G. W. Stagg, M. Watson: "An Optimization Technique for Real and Reactive Power Allocation", -PICA-67.
 - D. A. Pierre: "Optimization Theory with Applications", John Wiley Sons, INC. - 1969.
 - F. Aboytes: "Stochastic Contingency Analysis", IEEE Trans. PAS, vol. 97, No. 2, Mar./Apr. 1978.
- 8 G. C. Ejebe, B. F. Wollenberg: "Automatic Contingency Selection", IEEE Trans. PAS, vol. 98, No. 1, Jan./Feb. 1979.
 - 9 A. M. Sasson, G. Irisarri, D. Levner: "Automatic Contingency Selection for On-Line", IEEE Trans. PAS, vol. 98, No. 5, Sept. / Oct. 1979.
- John Zaborszky, Keh-Wen Whang, Krishna Prasad: "Fast Contingency Evaluation Using Concentric Relaxation", IEEE Trans. PAS, vol. 99, No. 1, Jan./Feb. 1980.
- 11 K. R. C. Mamandur, G. J. Berg: "Economic Shift in Electric Power Generation with Line Flow Constraints", IEEE Trans. PAS, vol. 97, No. 5, Set./Out. 1978.
- 12 H. Daniels, Mo-Shing Chen: "An Optimization Technique and Security Calculations for Dispatching Computers", IEEE Trans. PAS, vol. 91, pp. 883 - 888, 1972.

- J. Serafim Sobrinho: "Controle da Operação em Sistemas de Distribuição", Tese de Mestrado, FEC - UNICAMP, Jan./1976.
- 14

- M. S. Sachdev, S. A. Ibrahim: "An Approach for Preventing System Insecurities Arising from Line and Transformer Outages", IEEE Trans. PAS, vol. 94, No. 6, Nov./Dec. 1975.
- H. E. Brown, G. K. Carter, H. H. Happ, C. E. Person; "Power Flow Solution by Impedance Matrix Iterative Method," AIEE Trans. PAS, pp. 1 -10. vol. 82, apr./ 1963.