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Resumo

Um estudo recente mostra que cerca de 90% de todos os refactoramentos são aplicados

manualmente. Refatoramentos manuais são mais suscetíveis a erro, uma vez que desenvol-

vedores tem que coordenar transformações relacionadas e entender relações, muitas vezes

complexas, entre arquivos, variáveis e métodos. Neste contexto, suites de regressão são usa-

das para diminuir as chances de introdução de defeitos durante refatoramentos. Contudo,

devido aos altos custos de lidar com suites massivas, existe a necessidade de otimização da

execução destas. Técnicas de priorização de casos de teste propõem uma nova ordem de

execução, almejando a detecção antecipada de faltas. Entretanto, as técnicas atuais não são

projetadas para lidar especificamente com faltas relacionadas a refatoramentos. Neste docu-

mento propomos RBA (Refactoring-Based Approach), uma técnica de prioritização voltada

para refatoramentos. RBA reordena uma suite existente de acordo com um conjunto de mo-

delos de falta (Refactoring Fault Models - RFMs). Estes abrangem os elementos de código

que são geralmente impactados dado um refatoramento. Apesar de ser a técnica de validação

de refatoramentos mais usada na prática, em alguns casos, o uso de suites de regressão pode

ser inadequado. Suites inadequadas podem impedir desenvolvedores de iniciar uma tarefa de

refatoramento dada as chances de introdução de defeitos. A fim de complementar a validação

por testes e ajudar na revisão de refatoramentos, nós propomos REFDISTILLER, uma técnica

que usa anáise estática para detectar edições de código negligenciadas e edições extra que

desviam de um refatoramento padrão e podem vir a mudar o comportamento do software.

Ambas abordagens (RBA e REFDISTILLER) focam em sistemas Java/JUnit e em um sub con-

junto dos refatoramentos mais comuns. Uma avaliação usando um dataset composto de faltas

de refatoramento sutis, e comparando com técnicas de prioritização tradicionais, mostra que

RBA melhor prioriza as suites em 71% dos casos, promovendo um melhor agrupamento dos

casos de teste em 73% dos casos. REFDISTILLER detecta 97% das faltas do nosso dataset

de faltas injetadas. Destas, 24% não são detectadas por suites de teste geradas. Finalmente,

em um estudo com projetos open-source, REFDISTILLER detecta 22.1 mais anomalias que as

suites de teste, com uma precisão de 94%. Esses resultados mostram que (i) RBA consegue

melhorar consideravelmente a priorização durante evoluções perfectivas, melhorando tanto
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a antecipação da detecção de defeitos, quanto fornecendo mais informação sobre estes an-

tecipadamente; (ii) REFDISTILLER complementa efetivamente a análise dinâmica por achar

novas anomalias e fornecer informações extra que ajudam no debug e correção das faltas.
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Abstract

A recent study states that about 90% of all refactorings are done manually. Manual refacto-

ring edits are error prone, as refactoring requires developers to coordinate related transforma-

tions and to understand the complex inter-relationship between affected files, variables, and

methods. In this context, regression tests suites are often used as safety net for decreasing

the chances of introducing behavior changes while refactoring. However, due to the high

costs related to handling massive test suites, there is a need for optimizing testing execution.

Test case prioritization techniques propose new test execution orders fostering early fault

detection. However, existing general-purpose prioritization techniques are not specifically

designed for detecting refactoring-related faults. In this work we propose a refactoring-

aware strategy – RBA (Refactoring-Based Approach) – for prioritizing regression test case

execution. RBA reorders an existing test suite, according to a set of proposed Refactoring

Fault Models (RFMs), which comprise impact locations of certain refactorings. Although

being the most used refactoring validation strategy in practice, regression suites might be

inadequate. Inadequate test suites may prevent developers from initiating or performing re-

factorings due to the risk of introducing bugs. To complement testing validation and help

developers to review refactorings, we propose REFDISTILLER, a static analysis approach for

detecting missing and extra edits that deviate from a standard refactoring and thus may affect

a program’s behavior. Both strategies (RBA and RefDistiller) focus on Java/JUnit systems

and on a set of the most common refactoring types. Our evaluation using a data set com-

posed by hard-to-identify refactoring faults shows that RBA improves the position of the

first fault-revealing test case in 71% of the suites, also providing a better grouping rate (in

73% of the cases) for test cases in the prioritized sequence, when compared to well-known

general purpose techniques. Regarding REFDISTILLER, it detects 97% of all faults from our

data set with seeded refactoring faults, of which 24% are not detected by generated test sui-

tes. Moreover, in a study with open source projects, REFDISTILLER detects 22.1 times more

anomalies than testing, with 94% precision on average. Those results show that (i) RBA can

considerably improve prioritization during perfective evolution, both by anticipating fault

detection as well as by helping to giving more information about the defects earlier; and (ii)
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REFDISTILLER effectively complements dynamic analysis by finding additional anomalies,

while providing extra information that help fault debugging/fixing.
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Chapter 1

Introduction

Refactoring edits are code changes performed for improving quality factors of a program

while preserving its external behavior [33; 75]. The term Refactoring was first coined by

Opdyke [86] and later popularized by Fowler [33]. Refactoring edits play an important

role during software development. Recent studies have evidenced that nearly 30% of the

changes performed during a software development are likely to be refactoring [108]. For

instance, in the Extract Method refactoring [33], which is one of the most widely applied

refactorings [79], code clones spread throughout several methods of a class can be unified

into a single method, then replacing the clones by a call to this new method. In the agile

community, the refactoring activity is known to contribute to confine the complexity of a

source code and to improve nonfunctional aspects of a software such as decrease coupling

and increase cohesion [78]. Fowler [33] lists four advantages that refactoring brings in the

context of agile projects: i) it helps developers program faster; ii) it improves design of the

software; iii) it makes software easier to understand; and iv) it helps developers find bugs.

Although popular IDEs (e.g., Eclipse1, NetBeans2) have built-in automatic refactoring

tools, developers still perform most refactorings manually. Murphy et al. [79] find that about

90% of all refactoring edits are manually applied. Negara et al. [83] agree by showing that

expert developers prefer manual refactorings over automated. Usability issues seem to have

a negative impact on developers’ confidence on those tools [67]. Moreover, recent studies

show that incorrect refactorings - unexpectedly changing behavior - are present even in the

1https://eclipse.org/
2https://netbeans.org/
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most used tools [26; 109; 77]. Therefore, manual refactoring remains developers’ standard

procedure for performing refactoring tasks [63].

The manual application of refactoring edits often leads to the error-proneness of refac-

toring, despite the original intention of improving software quality and productivity through

refactoring. Studies using version histories find that indeed there is a strong correlation be-

tween the timing and location of refactorings, and bug fixes [61]. Weibgerber and Diehl find

that a high ratio of refactoring is often followed by an increasing ratio of bug reports [119;

61]. In a field study of refactoring at Microsoft, Kim et al. [63] observe that 77% of the sur-

vey participants perceive that refactoring comes with a risk of introducing subtle bugs and

functionality regression. Moreover, developers find it difficult to ensure correctness of man-

ual refactoring - “I would like code understanding and visualization tools to help me make

sure that my manual refactorings are valid.” (a quote from a professional developer [63]).

The error-proneness of manual refactoring is even more crucial for object-oriented lan-

guages where small changes can have major and nonlocal effects due to type hierarchies

and dynamic dispatch [102]. Binder [16] lists a set of possible causes for a refactoring fault

inclusion: i) a coding mistake inserted by a programer who is responsible for implementing

the refactoring; ii) an unexpected interaction between the modified elements; and iii) a side

effect introduced by an incorrect communication of elements of the system.

Several approaches have been proposed for ensuring correctness of refactoring edits:

• Refactoring mechanics. Fowler [33] proposes a set of mechanics for a group of refac-

toring types. Those mechanics are micro steps in which small edits are combined with

compilation and test checking. However, the overhead of applying each step individu-

ally may lead developers to apply several at once, which can easily lead to mistakes;

• Formal specification of refactorings. Several studies try to formally specifying refac-

toring edits and, consequently, eliminate the possibility of fault introduction (e.g., [25;

76; 105; 106]). However, due to the intrinsic complexity of object-oriented languages,

these formal solutions have a short applicability in real projects;

• Refactoring validation tools and methodologies. Several studies propose strategies

for validating refactoring edits. For instance, SafeRefactor [111] validates refactoring

edits by leveraging an existing test generation engine and by comparing test results
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between two versions of a program. It requires the generation of new tests cases for

the program under refactoring. Similarly, GhostFactor [39] validates whether certain

behavior preserving conditions are satisfied for refactoring edits; however, it is limited

to three refactoring types and five types of refactoring faults.

Regression test suites are still the main, in most of the cases the only, strategy for as-

suring the correctness of manual refactorings in the daily development. A regression test

suite [68] is a set of test cases which have already passed when run against previous versions

of a System Under Testing (SUT) and should still pass when run against its future versions,

i.e., given a program P and P ′ (P after a modification), a regression suite should reveal be-

havior differences between P and P ′. Testing validation has been widely used in the industry

context [85]. Moreover, test suites are the main validator artifact used during the continuous

architecture adjustments in agile methodologies [78]. Developers often use regression test

suites as safety nets to gain confidence that, if all test cases continue to pass after the edits,

the software’s previous behavior remains preserved. Participants from Kim et al. field study

at Microsoft [63] pointed that the lacking of a sufficient regression test suite often prevent

developers to initiate a refactoring effort. However, it may be impractical to rerun the whole

test suite, and analyze its execution, every time a refactoring edit is performed. This diffi-

culty is crucial for projects that deal with massive test suites and have limited resources. For

instance, in the context of our lab3, there is a Java project which applies several real time

features. The execution of this system’s JUnit test suite takes over 48 hours. Thus, suppose

a recently added refactoring fault is detected by a test case run only in the 48o hour, it could

easily pass undetected, or be later detected, if a developer decides not to run the whole test

suite due to a time constraint. Techniques that minimize the number of test cases to run and

analyze while maintaining their effectiveness are desirable.

Test case prioritization [100] rearranges a test suite aiming to speed up the achievement

of certain testing goals (e.g., improve the rate of fault detection). Differing from others

strategies designed for reducing regression efforts (e.g., test case selection, test case reduc-

tion), prioritization techniques do not discard any test case. The developer/tester decides

how much of the prioritized suite needs to be run, according to his needs and/or available

resources. However, the top test cases are most likely to enable the achievement of the

3http://splab.computacao.ufcg.edu.br/
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testing goal. Although prioritization has been widely studied (e.g., [122; 64; 69; 118; 112;

101; 95]), there is no prioritization techniques focusing on detecting refactoring faults. Most

prioritization techniques use coverage criteria to accelerate detection of faults. However,

testing coverage alone frequently misleads the prioritization when searching for test cases

that reveal refactoring problems [5; 4]. Moreover, refactoring edits often lead to the inclu-

sion of faults [61; 119; 63]. Therefore, a prioritization approach for detecting those faults

might require more qualified data, and a specific analysis. On the other hand, deep impact

analysis approaches may be costly and time-consuming. Finally, refactoring validation by

testing alone might be faulty. The effectiveness of a test suite is related to how much effort

developers put into creating test cases.

1.1 Problem

Suppose a project with a massive regression test suite. By massive we mean a test suite that

could rarely be run entirely with limited resources (e.g., too time consuming or too costly).

This suite was created by the project’s developers over several software development itera-

tions and not for validating any specific change. Now, suppose a developer decides to man-

ually perform a single refactoring edit in the project’s code, and, without noticing, he ends

up changing the behavior of the system due to a side effect related to the recent applied edit

(refactoring fault). Depending on the developer’s expertise and/or system’s characteristics,

this refactoring fault can be hard to detect/fix, or may even be not detected till later stages.

Undetected, or later detected, refactoring faults often entail delayed software deliveries and

high costs. Thus, solutions to help developers to detect refactoring faults earlier (before

it passes to later phases of the software development), additionally providing information

that can be used as starting point to fix those faults, are highly desired by developers [63],

specially when refactoring is manually applied.

The following two examples use snippets from open-source projects to instantiate the

problem above introduced. Suppose Ann is a developer in the JMock project4, a library

that supports test-driven development of Java code with mock objects (≈ 5KLOC, 445 JU-

nit test cases). Ann decides to perform a Pull up Field refactoring edit, aiming at reducing

4http://www.jmock.org/
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repetitive code. Field myActualItems should be moved from ExpectationSet and

ExpectationList to AbstractExpectationCollection (Figure 1.1). Not fa-

miliar with any refactoring tool, she performs this refactoring manually. Trying to be sys-

tematic, Ann decides to follow Fowler’s pull up field mechanics [33], which comprises this

edit into six steps:

1. Inspect all uses of the candidate fields to ensure they are used in the same way;

2. If the fields do not have the same name, rename the fields so that they have the name

you want to use for the super class field;

3. Compile and test;

4. Create a new field in the super class;

5. Delete the subclass fields;

6. Compile and test.

Supposing that Ann is having a busy day and, by mistake, she ends up introducing a refac-

toring fault after neglecting the first step of the pull up field’s mechanics. Instead of mov-

ing identical fields, Ann moves fields with identical names (myActualItems) but with

different defining types (HashSet and ArrayList). Figure 1.1 depicts Ann’s changes

- code insertion is marked with ‘+’, code deletion with ‘−’). As the program uses only

common methods from Java Collections API, no compilation error is found, however, a be-

havior change is introduced. For instance, a method that used to know myActualItems

as an HashSet object, is expecting no repetitive elements in this list, and by calling

myActualItems.remove(Object o) it expects a specific object to be removed. This

behavior might have changed after the refactoring, since method remove(Object o)

from ArrayList removes the first occurrence of the specified element from this list.

Aiming at validating her edits, Ann runs existing JMock’s test suite. In this running,

Ann observes that only 4 out of 445 test cases fail due this fault. The first test case to fail

is run after 400 others. Suppose an average execution time of 30 seconds for each test case

(e.g., test cases that access database are often costly and time consuming), it would take

over 3 hours and a half to detect this problem. Depending on how much time and resources
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1 class AbstractExpectationCollection {

2 ...

3 }

4 class ExpectationSet extends

AbstractExpectationCollection {

5 HashSet myActualItems = new HashSet();

6 ...

7 }

8 class ExpectationList extends

AbstractExpectationCollection {

9 ArrayList myActualItems = new ArrayList

();

10 ...

11 }

(a) Original code.

1 class AbstractExpectationCollection {

2 + HashSet myActualItems = new HashSet();

3 ...

4 }

5 class ExpectationSet extends

AbstractExpectationCollection {

6 - HashSet myActualItems = new HashSet();

7 ...

8 }

9 class ExpectationList extends

AbstractExpectationCollection {

10 - ArrayList myActualItems = new ArrayList

();

11 ...

12 }

(b) Code after Ann’s pull up field refactoring. Since the moved field

had different types in the subclasses, a behavioral change is

introduced after the edit. Because there is no compilation error, Ann

did not notice it.

Figure 1.1: An example of a problematic refactoring edit (refactoring + fault) using JMock’s

code.

are available, Ann could naively stop the testing validation before any fault-detecting test

case is run (e.g., after running 50% of the test cases), and have the sense that no fault was

introduced, which in fact is a misleading impression.

Trying to accelerate the process of detecting this fault, and possibly help the fault de-

bugging process, Ann priorizatizes JMock’s regression suite by using the traditional tech-

niques [99] (Total Statement Coverage, Total Method Coverage, Additional Statement Cov-

erage, Additional Method Coverage and Random Choice). However, no optimal results

are found from this process. Table 1.1 shows the position of the first test case that re-

veals the fault (F-Measure) for all prioritized suites. Although all reordered suites detect

the fault earlier, the strategy that produced the best result was Random Choice. This fact

shows us evidence that the general prioritization heuristics may not effective when dealing

with refactoring faults. This fact was later confirmed by a series of empirical studies [5;

4]. By investigating the four failed test cases (e.g., Figure 1.2), we notice that they do not di-

rectly exercise parts of the code that were modified during refactoring. The fault is revealed
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by test cases that cover elements indirectly impacted by Ann’s changes. By neglecting as-

pects such as the impact of a change, the coverage-based techniques fail to perform a better

prioritization. Moreover, the traditional prioritization techniques often end up spreading the

fault-revealing test cases throughout the entire suite, which makes the debugging process

harder.

Table 1.1: Position of the first failed test case after prioritization.
Prioritization Technique F-Measure

Original Suite 400

Total Statement Coverage 206

Total Method Coverage 259

Additional Statement Coverage 169

Additional Method Coverage 112

Random Choice 70

1 public void testManyFromIterator {

2 Vector expectedItems = new Vector();

3 expectedItems.addElement("A");

4 expectedItems.addElement("B");

5 Vector actualItems = (Vector)expectedItems.clone();

6 myExpectation.addExpectedMany(expectedItems.

iterator());

7 myExpectation.addActualMany(actualItems.iterator())

;

8 myExpectation.verify();

9 }

Figure 1.2: Failed test case due to the problematic pull up field edit.

Although widely used in practice, not always a regression test suite is effective. Rachata-

sumrit and Kim [94] find that regression test suites may lack coverage of refactored locations.

Thus, refactoring testing validation by itself is not always safe. Moreover, developers often

have a hard time interpreting testing outcomes (pass/fail) and locating/fixing a fault using

only tests, specially if the informative test cases are spread out through a test suite.

Suppose another scenario on which Bob works in the XMLSecurity5 project, which is a

library that provides security for managing XML. Bob performs an Extract Method refac-

5http://xml.apache.org/security
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1 class Reference {

2 boolean verify() throws .. {

3 Element digestValueElem = (Element)

new Node(0);

4 digestValueElem = this.

getChildElementLocalName(..);

5 byte[] p1 = Base64.decode(

digestValueElem);

6 byte[] p2 = this.calculateDigest();

7 boolean re = MessageDigestAlgorithm.

isEqual(p1, p2);

8 if (!re) { .. }

9 return re;

10 }

11 }

(a) Original code.

1 class Reference {

2 boolean verify() throws .. {

3 Element digestValueElem = (Element)

new Node(0);

4 - digestValueElem = this.

getChildElementLocalName(..);

5 + initializeDigest(); // This line

should be digestValueElem =

initializeDigest();

6 byte[] p1 = Base64.decode(

digestValueElem);

7 byte[] p2 = this.calculateDigest();

8 boolean re = MessageDigestAlgorithm.

isEqual(p1, p2);

9 if (!re) { .. }

10 return re;

11 }

12 + Element initializeDigest() {

13 + Element digestValueElem;

14 + digestValueElem = this.

getChildElementLocalName(..);

15 + return digestValueElem;

16 + }

17 }

(b) Extract method refactoring with missing edits.

Figure 1.3: An example of problematic refactoring edits. (a) The original code. (b)

Code after Bob’s extract method refactoring. Lines 4 is extracted to create a new method

initializeDigest.

toring manually (Figure 1.3). Bob extracts Line 4 to a new method initializeDigest

and adds a call at line 5. However, since the extracted statement modifies the status of an

object used by subsequent statements from verify, variable digestValueElem should

have been updated with the return value of the new method. Because there is no compilation

error, Bob misses the required edit. Moreover, the XMLSecurity’s test suite in this case is

inefficient, not revealing this fault. Bob needs to review his refactoring, but unless he uses a

different approach, he will end up with the false sense of a correct program. For instance, an

static analysis, or an automatic tool, could have been applied to check whether Bob’s edits

include all required variable updates for a successful refactoring.

In this work we intend to minimize problems like to the ones above mentioned. For that,
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we propose solutions for early detection of refactoring faults. By early detection we mean

trying to anticipate behavioral changes accidentally added during a refactoring edit, in order

to avoid they go unnoticed after the refactoring changes are consolidated into the program

code. Differing from other studies, our work considers a scenario in which a developer

has just applied a single refactoring edit manually and wants to gain confidence that it was

safe. Other works try to prevent problematic refactorings by checking sets of preconditions.

However, in practice developers still perform most of their refactorings manually and validate

them by using regression testing [79; 83; 63]. Moreover, even well-known refactoring tools

that check hundreds of pre-conditions before allowing refactorings are not 100% safe [26;

109; 77]. Thus, our work contributes to state-of-the-art by providing novel solutions that

will help developers to accelerate the detection of potential problems that might affect a

program’s behavior and indications to help developers to better find/fix those faults.

1.2 Research Strategies and Research Questions

Aiming at addressing the problems discussed in Section 1.1, in this work we propose a set of

novel approaches, reporting the empirical studies that based the approaches’ development.

Based on our experience on testing/performing refactorings, and on the literature regarding

refactoring validation and/or how developers perform refactorings, we define three research

strategies to base our work: i) the investigation on the relation between testing coverage

and a simplified impact analysis based on commonly impacted locations for refactoring fault

detection. Several code locations are reported as likely to be impacted when refactoring (e.g.,

callers of a refactored method) and might be a good starting point for evaluating a suite’s

effectiveness for detecting refactoring faults; ii) the use of test case prioritization for speeding

up the detection of refactoring faults. When working with a massive test suite, it might be

impractical to rerun the tests after each refactoring. A refactoring-oriented prioritization

algorithm may anticipate the detection without reducing a suite’s testing power; and iii)

the use of static analysis for complementing testing validation and help refactoring review.

Static analysis solutions have been widely used for finding general defects in a software

code [128]. As testing validation may be flawed, we intend to provide a static analysis

refactoring-oriented solution for complementing testing validation and helping developers to
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review a refactoring that was recently performed. To guide our investigation we define the

following research questions:

RQ1: Is the coverage of the most commonly impacted elements appropriate to evaluate

a test suite’s capability of detecting refactoring faults?

RQ2: Can we anticipate the detection of refactoring faults of a suite by using data such

as commonly impacted locations and test coverage?

RQ3: Can static analysis be an effective complement to regression suites for detecting

refactoring faults?

1.3 Contributions

Several contributions are presented throughout this work. First, we propose a refactoring-

based prioritization approach (RBA) and a tool that automatizes it (PRIORJ). RBA rearranges

test cases aiming at speeding up the detection of refactoring faults. For that, it uses refactor-

ing fault models that relate testing coverage data and an impact analysis based on common

locations. Moreover, our prioritization groups refactoring-related test cases close to each

other, i.e., in nearest positions in the prioritized test suite. That fact may help developers

when debugging refactoring faults, since the developer can focus on a smaller group of test

cases that are most likely to give him useful information when trying to locate/fix those

faults. Our evaluation on a data set with several refactoring faults show that an implemen-

tation of RBA outperforms a set of well-known general purpose prioritization techniques by

improving by 71% the position of the first fault-revealing test case, also providing a better

grouping rate (73% higher) for test cases in the prioritized sequence.

As second contribution, we propose an approach and tool that complements testing val-

idation, REFDISTILLER. This strategy uses static analysis data for detecting two classes of

refactoring faults (missing and extra edits). Our approach uses refactoring templates to de-

tect constituent steps that were neglected by a developer when refactoring. Moreover, it

uses a refactoring engine to detect extra edits that deviate from standard refactoring and thus

may affect a program’s behavior. REFDISTILLER is indicated when a developer needs to re-

view a refactoring recently applied. The implemented tool, besides identifying refactoring

faults, facilitates fault debugging by giving “clues” about the type and location of the faults.
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By using REFDISTILLER we identified several refactoring faults that are not detected neither

manual or automatic test suites. REFDISTILLER as an approach and tool were developed in

collaboration with professor Miryung Kim from The University of Texas at Austin.

RBA and REFDISTILLER are complementary approaches. The first should be used when

there is a trustworthy massive test suite and a developer need to speed up the detection of a

refactoring fault. On the other hand REFDISTILLER can be used when there is little evidences

about a suite’s quality or the testing results are not helpful enough. REFDISTILLER comple-

ments the testing validation by pointing out code editions that might have pass unnoticed

and/or that require confirmation during a refactoring reviewing process.

Finally, as third contribution, we perform an exploratory study on the use of coverage

data of mostly impacted code elements to identify shortcomings in a test suite. This study

shows that by verifying the coverage rate of the most impacted code locations, and which

ones, we can predict a suite’s capacity of revealing refactoring faults. The results of this

study motivated the definition of both RBA and REFDISTILLER. Besides that, those results

can be used by developers to help deciding whether a testing validation alone can be trusted

or not when validating refactorings. Moreover, the conclusions of this study can work as

guidelines for test suite augmentation in case there is a need for suite improvement.

We believe that all solutions proposed in this have their potential maximized when ap-

plied after a single refactoring edit. Although both solutions (RBA and REFDISTILLER) are

technically applicable with combined refactorings, the impact of this scenario is yet to be

assessed. However, we believe that the combination of refactorings would make RBA select

a bigger and less useful subset of test cases to start its prioritization, and might lead REFDIS-

TILLER to generate a bigger number of false positives. For instance, as RBA uses a set of

refactoring type and location rules to discover possible impact methods, if two refactorings

affect the same location in different ways, this set might not be accurate when the extraction

rules are run sequentially, which might interfere with the prioritization process and results.

1.4 Structure

This introduction chapter presents an overview of our doctorate research. Further details

regarding the remainder of our research are discussed in the upcoming chapters
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This document is organized as follows. Chapter 2 provides background on program

refactoring, regression testing and test case prioritization. Next, we describe an exploratory

empirical study on the use of coverage of mostly impacted code elements (Chapter 3). Chap-

ter 4 describes an approach for selecting and prioritizing test cases based on refactoring edits.

Chapter 5 introduces a static analysis approach for detecting refactoring faults. In Chapter

6 we present the tools developed for automating the proposed solutions. Chapter 7 presents

the related work. Finally, Chapter 8 discusses the final remarks about our work and possible

future works.



Chapter 2

Background

This chapter describes concepts used in this document to make it self-contained. First, we

introduce the basic ideas about Refactoring (Section 2.1). Then, we define and present im-

portant aspects of Regression Testing (Section 2.2). In Section 2.3, we present an overview

of Test Case Prioritization, including the most used code-based prioritization techniques.

Finally, in Section 2.4 we discuss the main ideas about Change Impact Analysis.

2.1 Program Refactoring

Code edits are very common during software development. Those edits are usually classified

as: i) evolutionary, changes performed to add or remove software functionalities; or ii) refac-

toring, edits for applying structural improvements to a software, not altering any behavioral

features.

Opdyke and Johnson [86] first coined the term refactoring and formally define refactor-

ings such as (1) generalizing an inheritance hierarchy, (2) specializing an inheritance hierar-

chy, and (3) using aggregations to model the relationships among classes. Opdyke defines a

refactoring edit as a program transformation aiming at improving a software quality aspect,

such as reusability and maintainability, but preserving its semantics. Fowler [33] assembles

a catalog with over ninety refactoring types.

In Agile Methods (e.g. XP [15], TDD [14]) refactoring is an integral part of the develop-

ment process; it is adopted to continuously improve the system architecture and source code

readability [78]. The agile community widely accepts that refactoring prevents code rotting.

13
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Quite often, refactoring efforts are performed in an ad hoc manner. Fowler’s mechan-

ics try to reduce the chaos of performing refactoring by decomposing the edits into micro

steps associated with compilation and testing checking. Each refactoring type from Fowler’s

catalog is presented along with an informal description, a motivation for its use, and its

mechanics. Although well-accepted, those mechanics do not prevent developers from intro-

ducing refactoring faults. It is known that the outcome of a refactoring is often related to the

developer’s expertise and knowledge about the system [38].

In the past few years, popular Integrated Development Environments (IDEs), such as

Eclipse, IntelliJ, NetBeans, and Visual Studio, include support for automated refactoring.

Despite the help that refactoring tools may bring, recent studies have shown that developers

preform most refactoring edits manually [79; 63]. Other studies speculate on reasons for this

underuse, such as usability issues, unawareness, and lack of trust [80; 116]. Moreover, not

even the most well-known tools are 100% safe [109].

2.1.1 Refactoring Example

Fowler’s refactoring catalog1 lists 92 different types of refactoring edits. To exemplify how

refactoring tasks are usually performed during software development, consider the code in

Figure 2.1-a. After analyze this code, a skilled developer may identify duplicate snippets.

Variable k is identically defined in C2 and C3, both subclasses of C1. Fowler and Beck [33]

present Duplication of Code as one of the 21 Bad Smells that are often refactoring opportu-

nities.

After identifying the problematic part of the code, we need to choose the proper refac-

toring edit to apply. As the code duplication is related to fields in two subclasses of C1,

the reasonable edit to be performed is a Pull Up Field. In a Pull Up Field edit, one or more

fields are moved to a superclass aiming at improving a code’s readability and maintainability.

Fowler’s mechanics for this edit is comprised by six steps:

1. Inspect the declaration of the candidate fields to assert that they are initialized in the

same way;

1http://refactoring.com/catalog/
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1 public class C1 {

2 ...

3 }

4 public class C2 extends C1 {

5 public int k = 10;

6 public int getK(){

7 return k;

8 }

9 ...

10 }

11 public class C3 extends C1 {

12 public int k = 10;

13 public int doubleK(){

14 return k * k;

15 }

16 ...

17 }

(a) Original code.

1 public class C1 {

2 + public int k = 10;

3 ...

4 }

5 public class C2 extends C1 {

6 - public int k = 10;

7 public int getK(){

8 return k;

9 }

10 ...

11 }

12 public class C3 extends C1 {

13 - public int k = 10;

14 public int doubleK(){

15 return k * k;

16 }

17 ...

18 }

(b) Code after a pull up field edit.

Figure 2.1: Example of a Pull Up Field refactoring.

2. If the fields do not have the same name, rename them so that they have the name you

want;

3. Compile and test;

4. Create a new field in the super class. If the fields are private, you should declare them

as protected so that the subclass can access it;

5. Remove the fields from the subclasses;

6. Compile and test.

In Figure 2.1-b two Pull Up Field edits are performed. Field k is pulled from C2 and

C3 to C1. For this example, no other updates are needed, however, in order to preserve

the original semantics, a Pull Up Field edit is often combined with other code updates. For

instance, statements that call/use the moved field may have to directly reference the super

field to avoiding breaking and/or adding of overriding constraints (e.g., by using the keyword

super).



2.2 Regression Testing 16

2.2 Regression Testing

According to Harrold [47], Regression Testing is the activity of retesting a software after it

has been modified aiming at gaining confidence that: i) newly added and changed code do not

interfere with the previous software behavior; and ii) unmodified code does not misbehave

because of the modifications. In other words, regression testing is a practical solution used

to give to developers/testers more confidence that new modifications do not alter a previous

stable behavior of a software [85].

In a regression scenario there are two versions of the SUT: i) the base version - an stable

version of the SUT whose test suite reflects the system’s behavior; and ii) the delta version -

SUT after modification(s). A regression test suite is composed by regression test cases. Each

regression test case has already passed when run against the base version and it is expected

to pass when run against the delta version. When a regression test case does not pass after a

modification (delta version) a ”regression fault“ is detected.

When this fault is due to a refactoring edit, we call it a refactoring fault. Ideally, a

refactoring edit should always be behavior-preserving. When those edits are not performed

correctly (e.g., due to a missing step, or extra edit) refactoring-related fault is added, and thus

the software’s previous stable behavior is modified. A refactoring fault is a type of regression

fault. It is highly recommended the combination of refactoring edits and regression testing,

and it is indeed commonly applied in practice [94; 109].

The regression activity can be costly and hard to manage. Harrold [47] lists a set of

sub activities related to regression testing, each one with its respective challenges: test suite

maintenance, regression test selection, test suite augmentation, test suite prioritization, test

suite minimization, test case manipulation. Due to their high costs, often a subset of those

activities are in fact performed. The decision of which activities to perform is usually made

according to the testing team’s goals and/or resource limitation.

Several studies (e.g., [68; 85; 17; 99]) have discussed the challenges of using regression

testing and its cost. For instance, Chittimalli and Harrold [24] affirm that 80% of testing cost

is regression testing. Therefore, new strategies have been developed aiming at reducing the

regression testing effort (e.g., [47]), including new techniques for test case selection (e.g.,

[17]), prioritization (e.g., [69]), and suite reduction (e.g., [65]).
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2.3 Test Case Prioritization for Regression Suites

As the software evolves, regression test suite tend be massive [68; 85; 99]. Thus, developer-

s/testers often run part of a test suite, according to theirs budget/resources, but trying not to

lose much of the original suite’s testing power. As an alternative for decreasing the regres-

sion testing high costs and make retesting more effective, Test Case Prioritization techniques

[29] have been proposed. Those techniques reschedule the test cases in a different execution

order for satisfying a given test objective (e.g., increase the rate of fault detection). Thus, a

good prioritized suite has in its top positions test cases with the highest chances of achieving

certain testing goal.

The test case prioritization problem was formally defined by Rothermel [99] as follows:

Given: T , a test suite; PT , the set of permutations of T , and f , a function from PT to real

numbers.

Problem: Find T ′ ∈ PT such as (∀T ′′)(T ′′ ∈ PT )(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)]

where PT represents the set of possible orderings of T , and f is a function that gets the best

possible values when applied to any ordering.

There are several approaches for performing test case prioritization. Singh in [107] cat-

egorizes the current prioritization techniques into eight categories: i) coverage-based [100;

99; 28]; ii) modification-based [122; 64]; iii) fault-based [100; 28]; iv) requirement-based

[113]; v) history-based [60; 90]; vi) genetic-based [118]; vii) composite approaches [71];

and viii) other approaches [101; 95].

In practice, coverage-based prioritization techniques are the most used [107]. This is

mainly due to their simplicity and to generate acceptable results in general. Coverage-based

prioritization techniques assume the more code elements a test case exercises, the better are

the chances of revealing faults.

As follows we present a brief description of the algorithms of the most popular prioriti-

zation techniques. The first four are coverage-based techniques, the following is a random

technique, and the last one is a modification-based prioritization technique:

• Total Statement Coverage (TSC): the prioritized suite’s first test case is the one which

covers the most SUT statements; the second test case has the second highest statement

coverage, and so on;
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Figure 2.2: (left-side) Procedure P; (right-side) coverage data.

• Total Method Coverage (TMC): the prioritized suite’s first test case is the one which

covers the most SUT methods; the second test case has the second highest method

coverage, and so on;

• Additional Statement Coverage (ASC): the prioritized suite’s first test case is the one

which covers the most SUT statements. The following test case is the one which covers

more statements that remain not exercised by the previously chosen test cases. Repeat

this process until the prioritized test suite is complete;

• Additional Method Coverage (AMC): the prioritized suite’s first test case is the one

which covers the most SUT methods. The following test case covers more untested

methods. Repeat this process until the prioritized test suite is complete;

• Random (RD): Technique in which the test cases new order is randomly defined;

• Changed Blocks (CB) [114]: first identifies the modified code blocks between two

versions of a program (edited parts of the source code), then it reschedules the test

cases according to how much of the changed blocks each test case covers.

2.3.1 Prioritization Example

To exemplify how prioritization techniques work, we present the prioritization process of two

of the techniques described above, TSC and ASC. Consider procedure P showed in Figure



2.4 Change Impact Analysis 19

2.2 (left-hand side). This procedure is exercised by three test cases (Figure 2.2, rigth-hand

side). For instance, Test Case 1 exercise statements 1, 2, 7, 8 and 9.

According to TSC’s prioritization algorithm, the first test case of the prioritized suite is

Test Case 3 because it covers the greatest amount of statements from P (8 statements). The

second test case is Test Case 1 (5 statements). Finally, the prioritized suite is finished with

the test case that covers less statements of P , Test Case 2 (4 statements). Thus, according to

the TSC prioritization algorithm, the prioritized test suite is [Test Case 3, Test Case 1, and

Test Case 2].

The ASC prioritization process claims that the chances of detecting faults are higher

when test cases that cover different parts of the SUT code are run first. Thus, for our example

scenario, ASC first selects the test case that covers more statements (Test Case 3). The next

selected test case is the one that covers more statements that were not covered yet (first Test

Case 2, and Test Case 3 in the sequence). Therefore, the final ASC prioritized suite is: [Test

Case 3, Test Case 2, and Test Case 1].

2.4 Change Impact Analysis

A software edit often undergoes an impact that goes beyond the entities that are directly

modified. Therefore, estimate the set of impacted entities and measure how deep is the

impact of a change, might help developers to avoid the high costs of solving problems

detected in later development phases, or during software maintenance. Change impact

analysis techniques aim at dentifying the potential consequences of a change, or esti-

mating what needs to be modified to accomplish a change [18]. Moreover, this analy-

sis can also be used for predicting the costs of certain change prior its application [49;

50].

Pfleeger and Bohner define impact analysis as the evaluation of the risks associated to

certain change, including the measurement of its effects on the project’s resources [92].

Besides associate an impact level to a change, impact analysis approaches are often used

when there is more than one way of solving an architectural problem. By measuring the

impact of each solution to the software’s artifacts and resources, developers can better decide

which one is the best alternative.
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Change impact analysis approaches are often subdivided into two categories: static

and dynamic. Static approaches use the program’s structure, and/or design elements of a

software, such as UML diagrams, to predict the set of impacted entities due to a change

(e.g., [96; 3; 21]). Dynamic approaches uses the program’s execution data to find relations

between entities that might not be captured statically (e.g., [66; 87]. Alternatively, other

change impact analysis approaches combine static and dynamic data to provide more accu-

rate results (e.g., [70]).

2.5 Concluding Remarks

In this chapter we cover the basic concepts related to our research. Being aware of those

concepts the reader should be capable of fully understand the following chapters of this

document. In the next chapter we present an empirical study conducted to investigate the

role of testing coverage and commonly impacted locations for detecting refactoring faults.

This study’s results provide the proper motivation for developing the core solutions proposed

in this document.



Chapter 3

Exploratory Empirical Study

In a context where most refactorings are done manually, developers use regression test suites

for validating their edit. However, not always test suites are effective for validating refac-

torings [63]. It seems appropriate to consider that test cases that exercise the elements in-

volved in a refactoring are more likely to uncover faults. For instance, after applying an

Extract Method, exercising the changed method, its callers, and callees, tends to be effec-

tive in finding any introduced faults. Nevertheless, there is little evidence on which im-

pacted elements are the most important to be tested, and how test coverage is related to

this refactoring-based impact analysis. In this chapter, we present an exploratory study [8;

9], performed on three open-source Java projects, that investigate the role of testing coverage

and directed impacted locations for detecting refactoring faults, focusing on two of the most

common refactoring edits, Extract Method and Move Method [79].

3.1 Motivating Example

Suppose that, after working on several tasks, John, a developer, notices an opportu-

nity of applying an Extract Method edit. Figure 3.1 presents this edit; Lines 5-8 from

Element.m(boolean) - Figure 3.1-a - are extracted into the n method, Figure 3.1-b.

As no compilation error is found and the regression test suite passes, John believes his edits

are safe. However, in this case the software behavior is undesirably modified. The exception

is thrown with the global x having its initial state 42; differently, after extracting the method,

x finishes with value 23 - 42 is only stored to the local x before throwing ex. This example

21
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shows a very subtle refactoring fault that can easily go undetected, specially if the test suite

does not complete exercise the test method.

Exercising the program elements potentially impacted by a refactoring edit possibly in-

creases the chances to reveal faults. By examining previous research on change impact

analysis [97; 126; 102; 77] we can establish that in an Extract Method refactoring edit, the

types of elements most likely to be impacted (likely to have its behavior changed due to a bad

refactoring) are: i) the original method (M ): the n method is always exercised by calling the

m method; ii) the callers of the method under refactoring (C): methods that call m() might

be negatively influenced in case they use m’s return value, and/or any variable handled by m;

iii) the callees of the method under refactoring (Ce): given methods that m calls require as

pre-requisite the program to be in a certain state, then m must be run according to its previous

behavior; and iv) methods with similar signature to the newly added one (O): an extracted

method may break or introduce overriding/overloading contracts causing a behavior change;

for instance, m could already be declared within Element’s hierarchy.

Although widely adopted to evaluate test suite’s quality, test coverage alone can mislead

developers/testers [52]. More specifically, when dealing with refactoring faults, there is no

evidence whether testing coverage is a good quality measure in this context and/or which

elements a test suite should be covered to consider it acceptable for validating an edit. Our

study aims at analyzing the relationship between impacted elements and test coverage for

both the Extract Method and Move Method refactorings, using as experimental units open

source Java projects and their JUnit test suites.

3.2 Study on Test Coverage for Impacted Program Ele-

ments

We conduct an exploratory study with real open source programs with three goals:

i) investigate whether the refactoring type or the type of fault are factors that influence a

suite’s capacity of detecting refactoring faults;

ii) investigate whether coverage (method level) of the most commonly impacted elements is

appropriate to evaluate a test suite’s capability of detecting refactoring faults;
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1 class Element{

2 int m(boolean b){

3 int x = 42;

4 try{

5 if (b){

6 x = 23;

7 throw new Exception();

8 }

9 }catch(Ex e){

10 return x;

11 }

12 return x;

13 }

14 int test(){

15 return m(true);

16 }

17 ...

18 }

(a) Original version.

1 class Element{

2 int m(boolean b){

3 int x = 42;

4 try{

5 - if (b){

6 - x = 23;

7 - throw new Ex();

8 - }

9 + x = n(b, x);

10 }catch (Ex e){

11 return x;

12 }

13 return x;

14 }

15 + int n(boolean b, int x) throws

Exception{

16 + if (b){

17 + x = 23;

18 + throw new Exception();

19 + }

20 + return x; }

21 int test(){

22 return m(true);

23 }

24 ...

25 }

(b) Code after a problematic Extract Method edit.

Figure 3.1: Extract Method Example. Lines 6-9 are extracted to n.

iii) investigate which impacted elements are, when exercised, most likely to reveal refactor-

ing faults.

Our study focuses on two refactoring types, Extract Method (EM) and Move Method

(MM) [33]. These are two of the most commonly applied refactorings in Java systems [79].

Those edits are selected to represent edits that involve a single class (Extract Method: part of

the code of a method is extracted and placed in a newly added method in the same class) and

a pair of classes (Move Method: a method is moved from one class to another). Despite their

apparent simplicity, a number of potential issues must be addressed for correctly performing

these edits. For instance, the state preservation of variables, fields and parameters being read

or written by the statements extracted/moved, the value returned by the extract method, or

breaking/adding overriding/overloading constraints. Therefore, often faults are introduced
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when these refactorings are performed manually [119; 61]. Moreover, not even well-known

refactoring tools are free of injecting faults [111].

Although several types of faults could be expected, we narrow down our study to two

specific faults: a statement deletion (SD) and a relational operator replacement (ROR).

Nevertheless, as more complex faults can be decomposed into small steps such as statement

manipulation, we believe that other faults would present similar results. We also center our

investigation on the four classes of commonly impacted source code elements presented in

Section 3.1 (M , C, Ce, and O).

3.2.1 Study Setup

We select three open source Java projects as experimental units: XML-Security1 (≈ 17

KLOC), a library that provides security APIs for manipulating XML documents, such as

authorization and encryption; JMock2 (≈ 5KLOC), a library for testing applications with

mock objects; and EasyAccept3 (≈ 2 KLOC), a tool that helps create and run acceptance

tests.

We mine three random versions of each program from their repository history. Each

version is associated with a regression test suite that was manually created by its developers

for system integration purposes. Then, for each version, we perform five extract method

edits each with a single statement deletion, and five with a relational operator replacement.

Similarly, ten move methods are performed for each version, five with a single statement

delete, and five with a relational operator replacement. Thus, 180 faulty versions are created;

60 for each project, in which 30 are related to extract method faults and 30 to move method

faults.

Refactoring Faults. Each of the 180 faulty versions differs from the original only by a

single erroneous refactoring edit. As our study deals with two refactoring types and two

refactoring faults, we establish a fault seeding process for each combination “refactoring X

fault” (Tables 3.1 and 3.2). Each process injects, without compilation errors, a refactoring

related mutant. Although dealing only with injected faults, recent studies (e.g [57]) state that

1http://xml.apache.org/security
2http://jmock.org/
3http://easyaccept.sourceforge.net/
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mutant/injected faults are valid substitutes for real faults in software testing.

Table 3.1: Seeding fault processes for extract method.
Seeding a statement deleting fault in an extract method edit:

Being S the set of classes from a given project version.

1. Randomly select a class C from S;

2. Randomly select a method m from C; its body must not be empty;

3. Randomly select a statement s from m;

4. Extract s to a new method, newMethod. The new method’s name is selected

from a pool of names prepared in advance;

5. Insert the fault by removing a random statement st from newMethod;

6. A compilation error is found, undo the changes and go back to step 1;

Seeding a relational operator replacement fault in an extract method edit:

Being S the set of classes from a given project version.

1. Randomly select a class C from S;

2. Randomly select a method m from C; its body must have at least a statement

that uses a relational operator (==, ! =, >, <, >= or <=);

3. Randomly select a statement s from m that uses a relational operator;

4. Extract s to a new method, newMethod. The new method’s name is selected

from a pool of names prepared in advance;

5. If the extracted method generates a compilation error, undo the extraction and

go back to step 1;

6. Insert the fault by replacing the operator from s with another one.

The selected faults (statement deletion and relational operator replacement) simulate sce-

narios in which a developer that performs a refactoring may mistakenly introduce behavior

changes. The statement deletion fault emulates a scenario in which a developer comments

a statement while refactoring, and forgets to uncomment after he is done. Figure 3.2 exem-

plifies such fault in XML-Security. Line 6 in generateDigestValues() should have

been extracted to generate(Reference). However, this statement is commented out

in the extracted method (Figure 3.2-b), changing the previous behavior without generating

compilation errors. Similarly, we also consider scenarios in which the developer does not

copy all statements from the original method to the new one.

The relational operator replacement fault emulates a situation in which a developer com-

bines a refactoring with other changes. This scenarios goes according to Murphy-Hill et



3.2 Study on Test Coverage for Impacted Program Elements 26

Table 3.2: Seeding fault processes for move method.
Seeding a a statement deleting fault in a move method edit:

Being S the set of classes from a given project version.

1. Randomly select a class C from S;

2. Randomly select a method m from C; its body must not be empty;

3. Randomly select a class C2;

4. Move m from C to C2;

5. Insert the fault by removing a random statement st from newMethod;

6. A compilation error is found, undo the changes and go back to step 1;

Seeding a relational operator replacement fault in a move method edit:

Being S the set of classes from a given project version.

1. Randomly select a class C from S;

2. Randomly select a method m from C; its body must have at least a statement

that uses a relational operator (==, ! =, >, <, >= or <=);

3. Randomly select a class C2;

4. Move m from C to C2;

5. If the moving generates a compilation error, undo the moving and go back to

step 1;

6. Randomly select a statement s from m that uses a relational operator;

7. Insert the fault by replacing the operator from s with another one.

al.’s [81] that conclude that developers often interleave refactorings with other transforma-

tions. Recent studies [11] affirm that extra edits are worth revision since they may interfere

with the software’s previous behavior. Figure 3.3 exemplifies such fault in a move method

edit applied to XML-Security. Method getProviderIsRegisteredAtSecurity is

moved from JCEMapper to Algorithm along with the replacement of the operator ! =

for == (line 5). This extra change modifies the behavior of the program without introducing

compilation errors.

Metrics. We run each project’s test suite on its 3 versions, for all 180 faulty versions. Then,

we measure the following properties: M : number of test cases that cover the refactored

method; C: number of test cases that cover the callers of the refactored method; Ce: number

of test cases covering the callees of the refactored method; and O: number of test cases that

cover methods with similar signature of the newly added methods (by similar signature we

mean methods with the same name and return type). We also measure how many of the test
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cases in fact detect the refactoring fault: DM : number of test cases that cover the refactored

method and detect the fault; DC : number of test cases that cover the caller of the refactored

method and detect the fault; DCe: number of test cases that cover the callees of the refactored

1 class Manifest{

2 void generateDigestValues() throws...{

3 if (this.state == MODESIGN) {

4 for (int i = 0;i < this.references.size();i++){

5 Reference currentRef = (Reference) this.references.elementAt(i);

6 currentRef.generateDigestValue();

7 }

8 ...

9 }

10 }

11 ...

12 }

(a) original code

1 class Manifest{

2 void generateDigestValues() throws...{

3 if (this.state == MODESIGN) {

4 for (int i = 0;i < this.references.size();i++){

5 Reference currentRef = (Reference) this.references.elementAt(i);

6 - currentRef.generateDigestValue();

7 + generate(currentRef);

8 }

9 ...

10 }

11 }

12 + void generate(Reference currentRef) throws...{

13 + /* Missing statement */

14 + // currentRef.generateDigestValue();

15 + }

16 ...

17 }

(b) extract method refactoring with missing statement

Figure 3.2: An example of a seeded statement deletion fault when extracting a method. (a)

The original code. (b) Code after an extract method refactoring. Lines 6 is extracted to create

a new method generate. Since the extracted statement is commented out, the behavior of

generateDigestValues() has changed.
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method and detect the fault; and DO: number of test cases that cover methods with similar

signature of the newly added methods detect the fault. For collecting coverage data we use

the EclEmma tool4.
4http://www.eclemma.org/

1 class JCEMapper{

2 Algorithm algorithm;

3 boolean getProviderIsRegisteredAtSecurity(String providerId) {

4 java.security.Provider prov =

5 java.security.Security.getProvider(providerId);

6 if (prov != null) {

7 return true;

8 }

9 return false;

10 }

11 ...

12 }

13 class Algorithm{...}

(a) original code

1 class JCEMapper{

2 Algorithm algorithm;

3 ...

4 }

5 class Algorithm{

6 boolean getProviderIsRegisteredAtSecurity(String providerId) {

7 java.security.Provider prov =

8 java.security.Security.getProvider(providerId);

9 - if (prov != null) {

10 + if (prov == null) {

11 return true;

12 }

13 return false;

14 }

15 }

(b) move method refactoring with a relational operator replacement.

Figure 3.3: An example of a seeded move method fault. (a) The original code. (b) Code

after a move method refactoring. Method getProviderIsRegisteredAtSecurity

is moved from JCEMapper to Algorithm. Since the relational operator is changed, the

behavior of program has changed.
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Details about artifacts used in our study (subjects, faults and metrics) are available at our

website [1].

3.2.2 Results and Discussion

Appendix A presents the detailed tables regarding the results of our study. The largest re-

gression suites are in JMock – the number of test cases in each suite vary according to the

collected version. For instance, Version 1 in JMock is supported by 195 test cases, while

Version 2 presents 222 tests. Since all versions are subject to a seeded refactoring fault,

in all projects more than one version presents no failing test cases, for instance versions

“xv1/f1/em + ds”, “jv2/f4/mm + ds” and “ev1/f1/mm + ror” (see Appendix A). In

every such cases, test cases do not cover either the changed method, its callers, its callees, or

methods with similar signatures.

Analyzing the Suite’s Fault Detection Capacity

Overall, only 67% of the seeded faults are detected by the projects’ test suites. Thus,

in 33% of the faults, a successful test suite run would be misleading. The least ef-

fective test suite for those faults is in XML-Security – 34 out of 60 faults are missed;

EasyAccept misses 16 out of 60. Better results are observed in JMock, with only 10

missing faults. This result evidences that test suites might lack effectiveness when de-

tecting refactoring faults, reinforcing conclusions from previous researches (e.g., [63;

7]). textcolorredHowever, the practice shows that developers do most of their refactoring

validations through testing. This fact might be that it is hard to replace the validation power

of a quality suite created by expert developers.

We group those results by refactoring and fault type. Moreover, we also analyze each

combination “refactoring type X fault type”. In all these analysis we observe similar rates of

refactoring fault detection. Considering all extract method edits, or all move method edits,

the suites detect only 67% of the faults. When grouping by fault type, this rate drops to 61%

for delete statement, and increases to 72% for relational operator replacement.

Based on those results we perform a hypothesis test of proportion in which we compare

the proportions regard rate of refactoring fault detection pair to pair. Table 3.3 shows the
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Table 3.3: Null and alternative hypothesis regard the proportion tests.
H0 H1

CEM = CMM CEM 6= CMM

CDS = CROR CDS 6= CROR

CEM∧DS = CEM∧ROR CEM∧DS 6= CEM∧ROR

CMM∧DS = CMM∧ROR CMM∧DS 6= CMM∧ROR

CEM∧DS = CMM∧DS CEM∧DS 6= CMM∧DS

CEM∧ROR = CMM∧ROR CEM∧ROR 6= CMM∧ROR

hypothesis established for this test, in which C refers to a suite’s capacity of detecting refac-

toring faults, EM to an Extract Method edit, MM to a Move Method edit, DS to a Delete

Statement fault, and ROR to a Relational Operator Replacement fault. The null hypotheses

state that there is no difference on the proportions when comparing by refactoring type (first

line), type of fault (line two), and the combinations of type of refactoring and type of fault

(lines 3 to 6). With a 95% confidence level, no statistical differences are found to any of

the proportion tests. Thus, we can conclude that, for those systems, the suites’ capacity of

revealing refactoring faults remains stable, not depending on type of refactoring nor type of

fault. In fact, we can say that around one third of the refactoring faults (33%) goes unde-

tected by the suites. This fact evidences the risks of trusting 100% on general propose test

suites alone for validating refactorings. There is a need for creating test cases specialized on

checking behavior preservation.

Besides coverage of commonly impacted elements, we believe that other factors might

have influenced our results, such as, systems characteristics, general testing coverage, etc.

However, this impact remains to be assessed.

Undetected Faults

By observing the coverage data after running our exploratory study, we can then relate the

scenarios in which a test suite is not able to detect a refactoring fault (Tables from Appendix

A when FTC = 0 - no fault detection) to the coverage of impacted elements (M , C, Ce and

O). For that, we investigate test coverage for each type of element in isolation, and also their

combination, when the fault is not detected. The results are grouped by type of refactoring

(Extract Method and Move Method - Table 3.4-a, second and third columns) and by type of
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Table 3.4: Analysis based on coverage of mainly impacted code elements.

faults (Delete Statement and Relational Operator Replacement - Table 3.4-a, fourth and fifth

columns). We also put all results together to have an overview (Table 3.4-b, first column).
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Our results show that the lack of test cases calling the method whose body was changed

(M ) seems to be very relevant – 57% of the unrevealed faults present this property (60% for

extracted method, 53% for move method, 54% for delete statement, and 60% for relational

operator replacement). Similarly, 40% (EM: 43%, MM: 37%, DS: 40%, ROR: 40%) of the

undetected faults do not cover the callers of the changed methods. The changed method and

its callers are missed altogether in also 37% (EM: 43%, MM: 30%, DS: 37%, ROR: 36%)

of the faults. As expected, these data indicate that chances of detecting refactoring faults are

higher if test cases targeting the refactorings main elements – changed method and its callers

– are included in the suite. In addition, techniques that generate test cases focusing on the

impacted elements should be prioritized in refactoring scenarios; although this is visible to

Extract Method and Move Method, other similar refactorings should benefit as well – Extract

Class and Pull Up Method are representative examples.

Although less important, other combinations are worth discussing and should be consid-

ered by the tester. For instance, in 20% of the cases (EM: 20%, MM: 17%, DS: 20%, ROR:

16%) when a suite cannot detect a fault, there are no tests covering neither the changed

method callers nor its callees. Thus, after assuring that both the changed method and its

callers are well tested, if the tester has still time and resources available, it is worthy to head

efforts in testing the method’s callees in order to increase even more the suite’s chances of

detecting faults.

Detected Faults

In a similar analysis, we investigate the 120 cases in which the refactoring faults are detected

by using the program’s suite (FTC 6= 0). Table 3.4-a sixth to ninth columns and Table 3.4-b

second column summarize this analysis by grouping the results by type of refactoring, type

of fault and general overview. Again, our results evidence the importance of having tests that

exercise the modified method. In 92% (EM: 88%, MM: 95%, DS: 91%, ROR: 92%) of the

cases that identified a fault, there is at least one test case that covers the refactored method.

Considering callers, this rate is also high - 83% (EM: 81%, MM: 85%, DS: 76%, ROR: 89%),

and the combination of M and C presents a rate of 82% (EM: 80%, MM: 83%, DS: 74%,

ROR: 88%). Moreover, Figure 3.4 shows the density charts for each impacted elements and

their combination. Each chart relates coverage of each impacted elements (M , C, Ce and
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Figure 3.4: Density charts relating fault detection and coverage of impacted elements (M ,

C, Ce and O).

O) to detection of faults (1 means a fault is detected and 0 it is not detected). The density

charts reinforces the numeric results discussed above. The density curves clearly tend to be

higher in 1 (fault detected) when there is test coverage of M , C and M ∧ C. On the other

hand, the density curves tend to be higher in 0 (fault not detected) for the other elements and

combinations. Moreover, the correlation coefficients between fault detection and each class

of elements (M , C, and M ∧ C) are at least three times higher then all the other elements

and their combinations. These results corroborate our previous conclusion that these two

classes of impacted elements are indeed the most important ones when aiming to validate an

refactoring edits. Test suites that have low coverage of those elements might be ineffective.

Our results show that test cases that cover methods with similar signature (O) has very

little impact on testing/detecting refactoring faults. However, our fault seeding process was

able to emulate those scenarios in only 12 of the 180 cases (7%). Those situations are hard to

emulate in a non manual seeding process (we randomly select code elements such method,
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statements and method name to be part of the refactoring edits). However, considering only

those cases, test cases that call those similar methods detected the fault only in one case.

Cases like “xv3/f1/em+ds” and “jv2/f5/em+ds” (Table in Appendix A) are interesting

to mention. In xv3/f1/em+ds there are several test cases that cover both elements that our

investigation points as worth testing (M and C), and in “jv2/f5/em+ds” we have a high

number of test cases that exercise one of those classes (76 test cases cover C). In both cases

the test suite is unable to detect the fault. Those cases illustrate that, although very common,

there is no strong correlation between testing coverage and fault detection, confirming results

from other works (e.g. [35; 52]). However, our results show that method coverage is still

a good measure for detecting refactoring faults in general. When we look closely to those

cases, we see that although covering M and/or C, those tests do not cover 100% of refactored

method branches. They also have a very low testing data variability, i.e., the data used as

input to the test cases are very similar. Those are factors that can mislead a judgment based

on pure method coverage. In Section 3.2.4 we investigate whether the combination of method

and branch coverage can help to diminish the uncertainty of those cases.

Based on our results, we can answer the first research question of this work (RQ1), by

concluding that in fact test coverage of commonly impacted locations is in general a good

measure to predict a suite’s capacity on detecting refactoring faults. Also, the lack of testing

coverage on the mainly impacted elements can be considered a weakness, and be the starting

point to guide developers to augment and improve a suite. Similarly, our study identifies that

two classes of impacted elements (the method under refactoring and its callers) must be the

first priority when testing an extracted method edit. Test cases that cover those elements are

more likely to reveal refactoring faults.

3.2.3 A Coverage-based Model for Predicting Detection of Refactoring

Faults

After observing the relationship between the testing coverage of M , C, and/or M ∧ C and

refactoring fault detection, we propose a regression model based on our study data. This

model summarizes coverage data and refactoring fault detection, aiming to help developer-

s/testers to predict the chances of their suite regards its capacity of detecting possible refac-



3.2 Study on Test Coverage for Impacted Program Elements 35

toring faults that might have been introduced.

Before building the model we first calculate the correlation coefficients matrix of all

class of elements (M , C, Ce, and O) and their combinations in order to visualize which

ones should be used in our prediction model. Agreeing with the conclusions discussed in

the previous sections, only M , C, and M ∧ C prove to be essential, the other elements and

combinations shown to be statistically equivalent to at least one of the selected variables,

thus they can be removed from the regression model equation without much loss. To build

our prediction model we apply a Logistic Regression [48] by using a random sample of 50%

of our data set results. For that, we use R5, an environment for statistical computing. The

Logistic Regression is a statistical method used to predict a binary response from at least one

categorical predictor. In our case, the predictors refer to the coverage of certain impacted

element (0 if the element is not coverage, 1 if it covered).

Table 3.5 shows the coefficients of each predictor from our model and their p-values,

while Equation 3.1 presents the proposed predictor model. Our model aims to infer whether

a suite is likely to detect refactoring faults. The closer to 1, better the chances of, if there is,

a refactoring fault be detected based on the coverage of mostly impacted elements.

To test the fit of our model we use our whole data set. Our model shows to be effective by

correctly predicting the detection or non detection of refactoring faults in 80% of the cases.

Table 3.6 presents the confusion matrix when we use our model against the reference data

regards detection. Therefore, although not general, we believe that our model can work as

a tool for helping developers to increase confidence about their suite’s capacity of revealing

refactoring faults. Moreover, when there is a need, it can be used for driving efforts on

deciding how to augment a test suite.

Precision of this model can still be improved with further information such as different

coverage analysis or other metrics. In the next section we present a study that motivates fur-

ther research in this direction. Moreover, this model still needs to be evaluated using different

data sets. Our model is limited to the two refactoring types and refactoring faults used in our

study. However, we believe that it can also be used when dealing with similar refactorings

and faults. For instance, the pull up method refactoring’s code edits are comparable to the

ones applied when performing a move method (method deletion in a certain class, method

5http://www.r-project.org/
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addition in another class, etc). Thus, test cases that would validate both types of refactoring

seem to work in a similar way.

Table 3.5: Regression statistics
Coefficient p-value

Intercept -2.1595 0.000397

M 3.7689 1.79e-05

C 1.8718 0.021557

M ∧ C -2.1054 0.046224

Table 3.6: Model confusion matrix
Reference

0 1

Prediction
0 34 9

1 27 110

D = 1/(1 + e−(−2.1595+3.7689M+1.8718C−2.1054M∧C)) (3.1)

3.2.4 Variation: Analyzing Branch Coverage

Although our overall results show that, by covering the modified method and its callers,

we maximize the chances of detecting faults from both Extract Method and Move Method,

some specific faults are not detected, even though test cases cover those element types. For

instance, “xv3/f1/em+ds” (Appendix A), although there are 36 test cases that cover both

the refactored method and its callers, which corresponds to 37% of the test suite, none of

them detects the fault. In order to provide a more thorough analysis, we extend the study by

selecting the subset of faults for which there is at least one test case covering the changed

method and/or its callers (M 6= 0 and/or C 6= 0). In this scenario, we take a white-box

approach to investigate which branches (execution paths) of the original method those test

cases cover. Moreover, we establish two ranges to categorize levels of branch coverage:

[0; 25%] as low, and [75%; 100%] as high. For instance, in “ev2/f5/em+ds”, the single test

case that exercises the changed method (Script.allErrorMessages()) covers 100%

of its branches (high branch coverage for M ), while its callers, that are exercised by four

test cases, cover 0% of Script.allErrorMessages() (low branch coverage for C).

Table 3.7 summarizes the results for this analysis.

In 88% of the cases, the fault is detected as long M 6= 0 and the branch coverage of the

refactored method due to M is high (≥ 75%). Similarly, in 86% of the cases a suite detects

a refactoring fault when C 6= 0 and those methods exercise more than 75% of the branches.
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Moreover, in only 12% and 15% of the cases a high branch coverage is not associated with

a fault detection.

When the branch coverage is low (≤ 25%), this rate drops to approximately 50% (for

C it drops to 19%). So, for those three projects, a high branch coverage of the refactored

method seems to increase the chances of detecting refactoring faults.

To better analyze whether the combination of the coverage of M , C or M ∧ C with a

high branch coverage would improve the detection faults, from our results, we observe the

proportion of detected faults when the main impacted elements are covered (65%), and the

proportion of detected faults when, besides the coverage of those elements, a high branch

coverage is found (67%). As we can see the combination of coverage of impacted elements

and high branch coverage ended up improving the fault detection by 2%. Although, no

statistical difference is found when comparing both strategies in isolation, the combined

analysis ended up eliminating several situations in which there were coverage of impacted

elements and no fault detection. In some cases, although the mainly impacted elements are

covered, the refactoring faults are not detected due to a low branch coverage.

Although helpful when applied in isolation, coverage of M and C alone might be mis-

leading. In some cases, even having tests covering M and C with a high branch coverage

(≥ 75%), do not lead to fault detection. For instance, in ev/v1/ror 11 test cases cover both

M and C with a branch coverage of 100%, however those test cases do not reveal the seeded

fault. Looking closely these 11 test cases we can see that although covering all branches

there is low variability of test data, i.e., the data used in the test case are quite similar. That is

the reason these faults remain undetected. Thus, we can say that our results have shown evi-

dences that by having test cases covering M and C with a high branch coverage we increase

the chances of revealing refactoring faults. However, this analysis is not 100% efficient.

3.2.5 Threats to Validity

In terms of construct validity, the accuracy of EclEmma for extracting coverage data and

the coded R functions for calculating statistical tests might directly affect our study results.

However, both tools have been widely used in practice by developers and researchers, which

attests that they rely on their results. Moreover, we also manually validated Eclemma’s and

our functions’ results by using limited samples.
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Table 3.7: Branch coverage analysis
M , C or M ∧ C are covered + Branch coverage ≥ 75%

M C

# of occurrences 85 73

% of detected faults 88 86

% of not detected faults 12 14

M , C or M ∧ C are covered + Branch coverage ≤ 25%

M C

# of occurrences 8 16

% of detected faults 50 19

% of not detected faults 50 81

In terms of internal validity, we measure only method and branch coverage. Other cov-

erage metrics (e.g., decision coverage) and the testing data might be influential factors to our

results. We plan to investigate the impact of those factors as future work.

In terms of external validity, our evaluation results certainly do not generalize beyond

the three studied projects. However, we tried to minimize this problem by selecting projects

with different code and test suite sizes. In projects build in a less controlled environment, it

is usually harder to build and maintain an effective test suite. Industrial projects, on the other

hand, with tighter QA practices, might present different results. Moreover, all test suites used

in our study were manually created to validate the behavior at the system level for integration

purpose. Thus, the results be different if considering suites with different styles and purpose,

e.g., automatically generated suites, test acceptance suites.

Also, we focused on the Extract Method and Move Method refactorings. Different refac-

toring edits would present their own singularity, depending on the type of elements impacted

by the change. Nevertheless, several of the most applied refactoring edits – such as Pull Up

Method or Encapsulate Field [33] – involve creating new methods, and adding new calls to

them, thus results might be comparable to those refactorings. Regarding seeded faults, the

ones applied to our study represent typical mistakes when performing local manual refac-

torings. Extract Method and Move Method involve a handful of copy and paste commands

on the IDE, and subtle differences between the original and the modified code could induce

those kind of errors. Moreover, a recent study [57] affirm that there is a significant correlation
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between injected faults (mutants) detection and real fault detection.

3.2.6 Study on Binding-related Faults

Reference binding problems are faults that developers often face when refactoring [13].

Refactoring edits usually deal with the moving, renaming and replacement of source code

elements. A developer working with systems with several hierarchy levels may have a hard

time to make sure that all his edits preserve all method and variable references, not breaking

or adding any overriding/overloading constraints. Recent studies have emphasized how easy

is to include a binding problem when refactoring, even when using well-known automatic

refactoring tools [108; 11].

Aiming to test whether the conclusions of our empirical study are also valid when

dealing with this important refactoring fault we run a second exploratory study using the

XML-Security project. This system uses class hierarchies in several packages to better

distribute the system’s behavior and avoid coupling. In our study we manually create

four faulty versions of the original XML-Security code by applying a single problematic

Move Method in each version. Each move method edit ends up changing the system’s

original behavior by breaking or adding a method overriding/overloading, and consequently

introducing a method binding problem. None of the edits generates compilation errors.

Figure 3.5 exemplifies a faulty move method applied to the XML-Security’s code. Method

Canonicalizer20010315Excl.engineCanonicalizeXPathNodeSet(Set,-

String) is moved to Canonicalizer20010315ExclOmitComments. However, in

the output code, the call of engineCanonicalizeXPathNodeSet(Set,String)

in Canonicalizer20010315Excl.engineCanonicalizeXPathNodeSet

refers to the method from CanonicalizerBase instead of

Canonicalizer20010315ExclOmitComments. The underlined lines refer to

the location where the binding problem can be identified after the problematic move method

edit.

All four faults are detected by the XML-Security’s test suite. For each faulty version

we analyze the test coverage of the mostly impacted elements (moved method - M , callers

- C, callees - Ce, methods with similar signature - O). Our analysis shows that, in all four

cases, M and C are covered. However, in one case, although covering C with 18 test cases,



3.3 Concluding Remarks 40

none of those tests fail due to the fault. It is valid to discuss that in all four cases, there is at

least one test that covers O and detects the faults. As expected, this fact shows that this class

of elements can be important for detecting binding problems. Moreover, we believe that

O can also be helpful when debugging binding refactoring faults, since these elements fo-

cus on methods that may lead to the breaking/adding of override/overloading contracts. For

instance, considering the binding problem depicted in Figure 3.5, one of the test case that

reveals this fault exercises the method engineCanonicalizeXPathNodeSet(Set).

By noticing that this test case used to pass before the edit and that it was not directly mod-

ified during the refactoring, a developer can infer that the edit may have added or broken

an overloading/overriding contract, which in fact happened. Thus, the results of our case

study show us evidences that our previous conclusions might be still valid when detecting

biding problems. M and C are impacted elements that when covered increase the chances

of detecting those faults. However, other impacted elements, mainly O, may also deserve

attention.

3.3 Concluding Remarks

This chapter reports a study that investigate the relationship between program elements

impacted by the Extract Method or Move Method refactoring and test coverage. Our ex-

ploratory studies provide evidences that by exercising two different classes of impacted el-

ements, the modified method and its callers, we are more likely to detect refactoring faults,

similar to DS and ROR, related to both Extract Method and Move Method edits. Also, if

those tests cover a high number of branches of the original method the chances of detect-

ing those faults are even higher. On the other hand, the lack of testing coverage for those

elements may strongly decrease a suite’s capability for detecting refactoring faults. More-

over, we derived from our study results a statistical coverage-based model that aims to help

developers to predict whether a test suite is likely to detect the refactoring fault.

A few guidelines to developers, obtained from the results of the reported study, seem

appropriate. When a developer is performing a refactoring edit, and he mistrusts the test

suite as a safety net for avoiding behavioral changes, it seems wise to perform a previous

analysis on the test suite. In this analysis, he might identify whether the two main types of
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1 class CanonicalizerBase {

2 byte[] engineCanonicalizeXPathNodeSet(Set xpathNodeSet, String inclusiveNamespaces)

...{

3 if (this.xpathNodeSet.size() == 0) {

4 return new byte[0]; } ... } }

5 class Canonicalizer20010315Excl extends CanonicalizerBase {

6 byte[] engineCanonicalizeXPathNodeSet(Set xpathNodeSet, String inclusiveNamespaces) ...

{

7 try { this.renderedPrefixesForElement = new HashMap();

8 return super.engineCanonicalizeXPathNodeSet(xpathNodeSet);

9 } finally { ... } }

10 byte[] engineCanonicalizeXPathNodeSet(Set xpathNodeSet) ... {

11 return this.engineCanonicalizeXPathNodeSet(xpathNodeSet, "");

12 } }

13 class Canonicalizer20010315ExclOmitComments{ ... }

(a) Original version.

1 class CanonicalizerBase {

2 byte[] engineCanonicalizeXPathNodeSet(Set xpathNodeSet, String inclusiveNamespaces)

... {

3 if (this.xpathNodeSet.size() == 0) {

4 return new byte[0];} ... } }

5 class Canonicalizer20010315Excl extends CanonicalizerBase{

6 - byte[] engineCanonicalizeXPathNodeSet(Set xpathNodeSet, String inclusiveNamespaces)

... {

7 - try { this.renderedPrefixesForElement = new HashMap();

8 - return super.engineCanonicalizeXPathNodeSet(xpathNodeSet);

9 - } finally { ... } }

10 byte[] engineCanonicalizeXPathNodeSet(Set xpathNodeSet) ... {

11 return this.engineCanonicalizeXPathNodeSet(xpathNodeSet, "");

12 } }

13 class Canonicalizer20010315ExclOmitComments{

14 + byte[] engineCanonicalizeXPathNodeSet(Set xpathNodeSet, String inclusiveNamespaces)

... {

15 + try { this.renderedPrefixesForElement = new HashMap();

16 + return super.engineCanonicalizeXPathNodeSet(xpathNodeSet);

17 + } finally { ... } }

18 }

(b) Code with a binding problem due to a Move Method.

Figure 3.5: Binding problem example.
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impacted elements (refactored method and callers of the refactored method) are thoroughly

exercised. Then, by applying the proposed statistical model he gets a effectiveness level for

the test suite. This information can be used to help him to decide whether is safe to perform

the refactoring edit, or whether there is room for a test suite improvement. Moreover, by

knowing the locations not efficiently tested (e.g., low branch coverage), he may direct efforts

to developing tests that improve this deficiency.

Based on those results, in the next chapter, we propose a novel refactoring-based priori-

tization technique that aims to accelerate the detection of refactoring faults focusing on test

cases that cover commonly impacted code locations.



Chapter 4

The Refactoring-Based Approach

The use of regression test suite as safety net when performing refactoring is known to be a

common practice in real projects [63]. However, as refactoring edits are often applied in a

great number [108], it might be impractical rerun and analyze the execution results of the

whole test suite after each refactoring edit. Moreover, a regression test suite run is often

costly and time-consuming [24].

Test case prioritization is frequently used to speed up the achievement of certain testing

goal. Although general-purpose solutions often produce acceptable results, software engi-

neering specific problems may require specific and/or adaptive solutions [58; 74; 73]. With

this fact in mind, we have performed a set of exploratory studies using real open-source

projects in which we investigate how six of the most used general-purpose prioritization

techniques behave when dealing with refactoring fault detection [5; 4; 7]. Results of these

studies show that those techniques perform poorly when placing refactoring fault-revealing

test cases – fault revealing test cases were placed in the top of the prioritized suite only in

35% of the cases. Moreover, to the best of our knowledge there is no prioritization technique

specialized on refactoring fault detection. In this chapter we present the Refactoring-Based

Approach (RBA) [7; 6], a technique for prioritizing test cases guided by refactoring edits.

This technique reorders test cases assuming that a test case is more likely to detect a refac-

toring problem if it covers the locality of the edits, and/or the commonly impacted elements;

idea that goes according to the conclusions of the study presented in Chapter 3. The RBA ap-

proach is currently part of a test case prioritization environment for Java systems, PriorJ [98;

10] (details in Chapter 6).

43
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RBA’s Equivalence Definition RBA’s equivalence notion establishes that a refactoring

transformation is behavior-preserving when all test cases pass before and after the refactoring

edits. Otherwise, we consider that a refactoring fault was during refactoring. Equation 4.1

summarizes RBA’s equivalence definition:

Being:

• P , the original version of a program;

• P ′, P after a refactoring;

• T , a test suite for P ;

• t, a test case from T ;

• f : {t ∈ T, P ∨ P ′} → {pass, fail}, a function that executes test case t against the

program P or its refactored version, P ′.

∀t ∈ T, f(t, P ) = pass ∧ f(t, P ′) = pass (4.1)

4.1 Overview

Refactoring-Based Approach (RBA) is a prioritization solution that focuses on reschedul-

ing test cases to speed up the detection of behavioral changes introduced after refactoring.

Figure 4.1 gives an overview of RBA - rounded-edge rectangles represent activities, dotted-

rounded-edge rectangles represent input or output artifacts, and arrows indicate flow between

activities or between an activity and an artifact.

Inputs and Outputs RBA requires inputs that are commonly available when a refactoring

task is applied:

• Two consecutive versions of a program. The base version – a stable version of the

program that has its behavior tested by a test suite; and the delta version – the version

after refactoring edit(s). The behavior of the delta version remains untested;

• A test suite. A set of test cases that reflects the behavior of the base version.
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Figure 4.1: RBA overview.

As output, RBA generates two artifacts. The developer/tester must decide whether one

or both output artifacts are needed:

• A selected suite. A subset of test cases composed only by tests that are related to the

performed changes, according to our Refactoring Fault Models (RFM, Section 4.2);

• A prioritized test suite. A suite with the exactly same size of the original regression

suite, but in a new execution order.

Guiding example In the following sections, we present RBA along with a guiding exam-

ple. Suppose a developer performs the pull up method edit shown in Figure 4.2. Method

k (int i) is moved from class B to its superclass, A. Although simple, this change in-

troduces a behavioral change; method B.m() produces different results depending on the

version (10 in Figure 4.2-a code and 20 in Figure 4.2-b).
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1 public class A {

2 public int k (long i){

3 return 10;

4 }

5 public int x (){

6 return 5;

7 }

8 public int sum (){

9 int xRes = x();

10 return xRes + k(xRes)

;

11 }

12 }

13 public class B extends A

{

14 public int k (int i){

15 return 20;

16 }

17 public int m(){

18 return new A().k(2);

19 }

20 public int a(){

21 return 30;

22 }

23 }

(a) Original code.

1 public class A {

2 public int k (long i){

3 return 10;

4 }

5 + public int k (int i){

6 + return 20;

7 + }

8 public int x (){

9 return 5;

10 }

11 public int sum (){

12 int xRes = x();

13 return xRes + k(xRes)

;

14 }

15 }

16 public class B extends A

{

17 public int m(){

18 return new A().k(2);

19 }

20 public int a(){

21 return 30;

22 }

23 }

(b) Code after a problematic pull up

method refactoring. There is a behavioral

change in the B.m() method.

1 public void test1(){

2 p1.B b = new p1.B();

3 int res = b.m();

4 assertEquals (10, res)

;

5 }

6 public void test2(){

7 p1.B b = new p1.B();

8 int res = b.a();

9 assertEquals (30, res)

;

10 }

11 public void test3(){

12 p1.B b = new p1.B();

13 int res = b.sum();

14 assertEquals (15, res)

;

15 }

(c) JUnit test cases for the target version.

Figure 4.2: An example of a problematic refactoring edit.

Approach Depending on the type of refactoring, a different set of behavioral changes may

be introduced to the program. RBA is directed to the refactorings applied. In the first ac-

tivity (Discover Refactoring Edits, Figure 4.1), the edits applied between the base and delta

versions are identified. Our implementation tool (PRIORJ) reuses a state-of-art refactoring

detection tool, Ref-Finder [62]. Ref-Finder is a tool that uses a template-based refactoring

reconstruction for identifying which refactoring edits were applied between two consecutive

versions of a Java program. Although often producing acceptable success rates (precision

of 0.79 and recall of 0.95), Ref-Finder may generate false positives [110]. Therefore, RBA

can also work with manual refactoring identification methods (e.g., refactoring plans, pair
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Table 4.1: ref-strings specification of the five refactoring types supported by RBA.

review comparison [81]). For that, the output of the RBA’s first activity is independent of

refactoring detection method. The results from Ref-Finder, or any other method, are parsed

into ref-strings. Each ref-string consists of a string pattern that describes a refactoring edit,

its type and location. Their representation evokes a procedure signature; the procedure name

represents the refactoring, and parameters are the elements directly involved in the specific

edit. Ref-strings for the five refactoring types currently supported by RBA are depicted in Ta-

ble 4.1 – the ref-string for the edit described in our guiding example is PullUpMethod(B,

A, k(int i)). The output from this refactoring reconstruction process is a set of ref-

strings.

After gathering the refactoring data, in its second activity (Discover Impacted Elements)

RBA identifies the elements of the program source code that might be impacted, given an

incorrect refactoring. This phase is key to the technique, as the prioritized suite’s quality is

highly related to the accuracy of the set of possible impacted elements. For that, we propose

Refactoring Fault Models (RFM) –algorithms that employ a lightweight static analysis for

extracting the method calls potentially affected by that particular refactoring. The RFM

concept is detailed in Section 4.2. For each collected ref-string, the correspondent RFM
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is run, and an affected set (AS) is built. At the end of this activity the AS set contains

the method calls from the base version, whose behavior might have been modified by the

refactorings. Back to Figure 4.2, the application of the pull up method RFM results in AS =

{A.k(long i), A.sum(), B.k(int i), B.m()}.

In the activity Generate Test Case Call Graphs, RBA creates a call graph [45] for each

test case. Those graphs are used to determine the relationship of a test cases to methods

from AS. Each node in a call graph represents a procedure and each edge (f,g) indicates

that procedure f calls procedure g. Call graphs can be either dynamically or statically gen-

erated. However, statically generated call graphs may miss accurate information related to

subtyping and dynamic dispatch. There are several tools that automatically generate call

graphs for different languages, such as Java, Python and C (e.g., PriorJ [98], KCachegrind1,

phpCallGraph2). To work with a more thorough data, our implementation of RBA uses dy-

namic call graphs. Figure 4.2-c shows three JUnit test cases for the example in Figure 4.2-a,

while Figure 4.3 shows their respective call graphs created after RBA’s third activity. It is

important to highlight that when using RBA in a real scenario, a developer would have to

execute the whole test suite and generate its call graphs once. These graphs will be reused

for future prioritizations. Modifications on a test case would impact on its respective call

graph. However, if major modifications are performed in the system’s code, its test cases

might be highly impacted as well. In this scenario, there is need for major updates in the call

graphs.

Next, RBA performs a call graph-based analysis (Select Refactoring-Impacted Test

Cases) for selecting the test cases related to the refactoring edits. Although the main goal

of RBA is prioritization, we opt to give to the developer/tester the option of working with

a smaller set of test cases as well, in case prioritization is not needed. The resulting set

encompasses test cases whose call graph contains at least one node that matches elements

from AS. For example, as the call graphs of test1 and test3 include nodes from the AS

(A.k(int i), B.m(), and B.sum()), the resulting set is {test1(), test3()}. If,

due to project constraints, having a complete suite is an issue, test cases absent from this

resulting set may be removed from the suite, although, depending on the number of edits or

1http://kcachegrind.sourceforge.net/
2http://phpcallgraph.sourceforge.net/



4.2 Refactoring Fault Models – RFM 49

Figure 4.3: Call graphs of the test cases for the code under refactoring (Figure 4.2-c).

their overall impact, this set may be vast. In this case, prioritization is indispensable.

Prioritization is based on an impact value (IVAL) assigned to each test case in the

suite during the activity Calculate Impact Values. IVAL corresponds to the number of el-

ements from AS each test case covers. For instance, both test1() and test3() in-

clude two nodes related to elements from the affected set, so their impact value is the same

(IV ALtest1 = 2, and IV ALtest3 = 2). As test2 does not match any AS element, it is associ-

ated with an impact value of 0 (IV ALtest2 = 0).

In its last activity (Prioritize Test Cases) a new order is proposed by using the calculated

IVALs as criterion. Our prioritization heuristics assumes test cases that cover more elements

from AS are more likely to reveal introduced behavioral changes. The test case with the high-

est IVAL is placed on the top of the prioritized test suite, then removed from the comparison

for choosing the next test case. Ties with IVAL are dealt with simple randomization. Two

possible prioritized suites from the example would be: {test1, test3, test2} or {test3, test1,

test2}. Both reordered suites would detect behavioral change in its first test case.

4.2 Refactoring Fault Models – RFM

The refactoring fault models (RFM) extraction rules identify method calls from the SUT that

might be affected by a specific refactoring – in particular, calls that are likely to present an

altered behavior in the refactored program. The novelty of an approach based on RFMs is that

individual characteristics of applied refactorings are taken into consideration for customizing

test case prioritization.

The rules that compose the RFMs are related to the most common refactoring faults –

a number of those common faults is related to subtle behavioral changes that usually pass
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unnoticed, even by well-trained developers (e.g., unnoticed overwritten or overloaded meth-

ods). We present the RFM in a pseudocode fashion (Sections 4.2.1, 4.2.2 and Appendix B).

These RFMs were defined based on guidelines for applying refactorings edits in practice

(e.g., Fowler’s mechanics[33]), and initiatives for defining formal preconditions for sound

refactorings (e.g., [88; 25; 76; 105; 106]).

We propose RFMs for five of the most common refactoring edits in Java systems [79]

– rename method, move method, pull up field, pull up method and add parameter. For

brevity, in the following subsections we present RFM for two representative refactorings

types (rename method and pull up method), and describe them as pseudo-code algorithms.

Each RFM builds up the Affected Set (AS). We illustrate those RFMs with examples of tricky

refactoring problems reported by Soares et al. [109].

The following shows the meaning of the auxiliary functions used in the RFM pseudo-

code algorithms:

• searchMethod(m, C) returns method named m from class C;

• searchMethodsWithSameName(m, C) returns all methods that is or could be part

of an overriding/overloading constraint with m from C;

• searchMethodCalls(m, C) returns all callers of method named m from C;

• getSubClasses(C) returns all sub classes of C;

• getSuperClasses(C) returns all super classes of C;

• getAllClasses() returns all classes from the current project.

The specification of the remaining three developed RFMs is available in Appendix B.

In addition, to give a formal and less ambiguous definition, the specification of all RFM

using Metamodeling and ATL rules (Atlas Transformation Language [56] is an OCL-based

language) are available in [2].

4.2.1 Rename Method

The RFM for rename method can be represented as the signature

RenameMethod(C,oldName,newName), where C is the class whose method is

to be renamed, oldName is the signature of the method that will be renamed, and

newName is the new signature of the renamed method. The algorithm (with pseudocode

listed in Figure 4.4-a) appends to the affected set –AS:
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• the method formally named oldName from C;

• all methods in C ∪ subtypes(C) ∪ supertypes(C) whose bodies contain at

least one call to oldName or newName. subtypes(C) (and supertypes(C)

analogously) yields all subclasses that inherit from C directly or indirectly;

• if the method oldName in C is static, all methods, in any class, whose bodies contain

a call to this method.

Consider the refactoring depicted in Figure 4.5 – method n from B is renamed to k, gen-

erating the target version depicted in Figure 4.5-b. In this scenario, even though a refactoring

is desirable, a behavioral change occurred. Method m from B now returns 0, instead of 1

in the previous version. This change is due to a subtle method overriding that could easily

pass without notice in a real complex system. For detecting such fault, a test case must cover

calls to method B.m(), because through this method, B.k() can be invoked, and the modified

behavior could be observed. Line 7 of the RFM’s pseudocode selects this method as possi-

bly impacted. Also, Lines 6, 11, 17 and 24 identify possible obsolete test cases accessing

method n, which is absent in the target version.

4.2.2 Pull Up Method

As a RFM, the pull up method refactoring is represented by PullUpMethod (Cs, C,

mName), where Cs is the class where the method will be moved to, C is the original class,

and mName is the signature of the method to be moved. The pseudocode for the pull up

method RFM is listed in Figure 4.4-b – intuitively, AS is composed of:

• any method with a similar signature as m in Cs ∪ subtypes(Cs) (C ∈

subtypes(Cs));

• all methods in Cs ∪ subtypes(Cs) whose bodies contain at least one call to the

method to be moved;

• if the method to be moved in C is static, all methods whose bodies contain a call to this

method.
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1 RenameMethodRFM (C: class, oldName: String

, newName: String)

2 BEGIN

3 AS <- Set<Method> {};

4 oldMethod <- searchMethod (oldName, C)

;

5 AS.add ( oldMethod );

6 AS.addAll (searchMethodCalls (oldName

, C) );

7 AS.addAll (searchMethodCalls (newName

, C) );

8

9 subClasses <- getSubClasses (C);

10 FOREACH S in subClasses DO

11 AS.addAll (searchMethodCalls (

oldName, S) );

12 AS.addAll (searchMethodCalls (

newName, S) );

13 END FOREACH

14

15 superClasses <- getSuperClasses (C);

16 FOREACH Sp in subClasses DO

17 AS.addAll (searchMethodCalls (

oldName, Sp) );

18 AS.addAll (searchMethodCalls (

newName, Sp) );

19 END FOREACH

20

21 IF oldMethod is #static THEN

22 allClasses <- getAllClasses();

23 FOREACH C in allClasses DO

24 AS.addAll (searchMethodCalls (

oldName, C) );

25 END FOREACH

26 END IF

27 return AS;

28 END

(a) Rename method refactoring fault model.

1 PullUPMethodRFM (Cs: class, C: class,

mName: String)

2 BEGIN

3 AS <- Set<Method> {};

4 method <- searchMethod (mName, C);

5 AS.add ( method );

6 method2 <- searchMethod (mName, Cs);

7 AS.add ( method2 );

8 AS.addAll(searchMethodsWithSameName (

mName, C));

9 AS.addAll(searchMethodsWithSameName (

mName, Cs));

10 AS.addAll (searchMethodsCall (mName,

C) );

11 AS.addAll (searchMethodsCall (mName,

Cs) );

12

13 subClasses <- getSubClasses (Cs);

14 FOREACH S in subClasses DO

15 AS.addAll (searchMethodsCall (mName

, S) );

16 AS.addAll(searchMethodsWithSameName

(mName, S));

17 END FOREACH

18

19 IF method is #static THEN

20 allClasses <- getAllClasses();

21 FOREACH C in allClasses DO

22 AS.addAll (searchMethodsCall (

mName, C) );

23 END FOREACH

24 END IF

25 return AS;

26 END

(b) Pull up method refactoring fault model.

Figure 4.4: Refactoring fault models algorithms.

In Figure 4.6, method B.test(), after the edit, has the invocation resolved to B.k(),

differently from the source version, in which the call to k() is resolved to A.k() The RFM

selects, among others, the B.test() method as possibly impacted. Then, test cases that
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1 package p1;

2 public class A{

3 public long k(long a){

4 return 1;

5 }

6 }

7 package p2;

8 import p1.*;

9 public class B extends A{

10 protected long n(int a){

11 return 0;

12 }

13 public long m(){

14 return k(2);

15 }

16 }

(a) Original code.

1 package p1;

2 public class A{

3 public long k(long a){

4 return 1;

5 }

6 }

7 package p2;

8 import p1.*;

9 public class B extends A{

10 - protected long n(int a){

11 + protected long k(int a){

12 return 0;

13 }

14 public long m(){

15 return k(2);

16 }

17 }

(b) Code after a problematic rename method. There is a behavior

change when running the B.m() method in the target code.

Figure 4.5: Example of a problematic pull up method.

cover this method are more likely to unveil this fault when run against the target version.

4.2.3 Limitations of RFMs

The aim of our proposal is to anticipate the detection of faults when using regression test-

ing; we assume that such verification technique places emphasis on practical constraints

over completeness of refactoring fault detection. Therefore, RFMs do not intend to perform

a complete change impact analysis; more elaborate static analysis, or even fusing some dy-

namic analysis, could improve precision of impact determination (e.g., extending the AS set),

but the cost-benefit ratio is yet to be assessed. Also, our RFM cannot guarantee the detection

of all types of behavioral changes; we do not expect RFMs to cover any possible error in ap-

plying a particular refactoring. RFMs are proposed as commonly impacted locations, based

on established — theoretically-based and/or practice-oriented – literature on refactoring. As

such, the proposed approach covers a considerable ground for common refactoring faults.

What contributes to this decision is the complexity of the effort to anticipate any possible

semantic change within a general-purpose object-oriented language like Java. In fact, the-
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1 public class A{

2 public int k(){

3 return 10;

4 }

5 }

6 public class B extends A{

7 public int test(){

8 return k();

9 }

10 }

11 public class C extends B{

12 public int k(){

13 return 20;

14 }

15 }

(a) Original code.

1 public class A{

2 public int k(){

3 return 10;

4 }

5 }

6 public class B extends A{

7 public int test(){

8 return k();

9 }

10 + public int k(){

11 + return 20;

12 + }

13 }

14 public class C extends B{

15 - public int k(){

16 - return 20;

17 - }

18 }

(b) Code after a problematic pull up method. There is a behavior

change when running the B.test() method in the target code.

Figure 4.6: Example of a problematic rename method.

oretical research on defining such completeness property always consider a confined core

language [25; 76; 82]. A more comprehensive RFM might lead to excessively large sets of

affected methods, possibly, in consequence, decreasing the quality of test case selection and

prioritization.

4.3 Evaluation

Assuming test suites that detect refactoring faults, we perform two empirical studies to inves-

tigate RBA’s effectiveness regarding early detection of behavioral changes : an exploratory

study, in which common behavioral changes are seeded into a real Java open-source project;

and a set of controlled experiments where subtle behavioral changes, collected from related

research studies, are detected with automatic generated test suites. In both studies, we mea-

sure how effective RBA is in placing fault-revealing test cases on top positions. Additionally,

we also investigate whether the prioritization empowered by RBA is capable of grouping be-

havioral change-revealing test cases.
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4.3.1 Exploratory Study

In this study, we compare RBA to other prioritization techniques in the context of a real Java

project.

Goal The goal of this study is to observe RBA’s prioritization effectiveness when dealing

with behavioral changes for a given refactoring edit from the point of view of a tester.

Question and Metrics To guide our investigation, we establish the following research

question: What is the position of the first fault-revealing test case in the ordering defined by

each technique? The metrics chosen to address this question are: i) F-Measure [55], number

of distinct test cases needed to be run in order to detect the first program failure; and ii)

APFD [99], that reflects the effectiveness of a test case ordering (Equation 4.3.1 – ranges

from 0 to 1. Higher APFD values imply faster fault detection rates).

APFD = 1−
TF1 + TF2 + ...+ TFm

nm
+

1

2n
(4.2)

where n is the number of test cases, m is the number of exposed faults. TFi is the position

of the first test case which reveals the fault i in the ordered test cases sequence.

Planning and Design In this study we use the JMock project (described in Section 1.1).

We create five faulty versions of JMock’s code each one with a single and a distinct refac-

toring related behavioral change. To each version, a single refactoring fault is seeded. For

seeding the faults we follow a similar process as described in Section 1.1, in which a single

step from Fowler’s mechanics [33] is neglected. For performing the prioritizations, we col-

lect JMock’s manually created test suite (445 JUnit test cases in the system integration level).

Then, the suite is prioritized using seven prioritization techniques from different categories:

i) RBA; ii) four coverage-based [99] (Total Statement Coverage - TSC, Total Method Cov-

erage - TMC, Additional Statement Coverage - ASC, Additional Method Coverage - AMC);

iii) a random-based (RD); iv) a modification-based [114] (Change Blocks - CB). Test cases

that present compilation errors after the code edits are deleted before prioritization.
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Table 4.2: Case study results. (a) F-Measure values; (b) APFD values.

Data Analysis and Discussion Tables 4.2-a and 4.2-b show the results of this case study.

Those results show that, in most cases, RBA’s prioritized suites detect the faults after running

just a single test case (F-Measure = 1), which is the best scenario for a prioritization tech-

nique. Another aspect to consider is the high stability of RBA when compared to the other

techniques. All RBA’s APFD results vary in a very tight range [0.989; 0.999], i.e. RBA’s or-

derings detect all behavioral changes very early and in similar positions. This is more evident

when we observe the standard deviation of APFD values (αTSC = 0.431; αTMC = 0.409;

αASC = 0.408; αAMC = 0.404; αCB = 0.06; αRD = 0.088; αRBA = 0.004). RBA’s

standard deviation is much lower. Those results give us evidences about the effectiveness of

RBA when detecting refactoring faults.

In two cases RBA is outperformed by other techniques, pull up field - TSC/TMC and

rename method- CB. In the first case, the behavioral change-revealing test case has a high

coverage which ended up favoring the Total strategies. In the second case, the CB prioriti-

zation strategy is better performs better due to the fact that the introduced rename method

behavioral change, by chance, can be detected by tests that directly cover the changed parts

of the code, which is the prioritization heuristic applied by CB. But, we can see that even

when RBA does not produce the best results, RBA’s results are quite close to the best ones.

4.3.2 Study with Subtle Faults

In the second investigation, we perform a set of controlled studies to analyze prioritization

techniques when dealing with subtle refactoring faults and generated test suites.
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Goal The goal of this investigation is to compare RBA with a set of well-known prioriti-

zation techniques on how they speed up the detection of refactoring faults.

Questions and Metrics This study is conducted based on two study questions:

SQ1: Does RBA detect refactoring faults earlier?

SQ2: Does RBA places the behavioral change-revealing test cases in scattered positions?

For addressing the first question we use the F-Measure metric. Although APFD is the

most important metric for evaluating prioritized suites, we opt not to use it in our experi-

ments. As each study deals with a single refactoring edit and a single behavioral change at

time, for this configuration, the APFD results would only reflect a relative magnitude of the

F-Measure values.

Besides the F-Measure, as we believe that a good prioritization technique would not only

place fault-revealing test cases in a suite top positions, but also group them close to each

other, we define a new metric, F-spreading (Equation 4.3.2) for addressing the second study

question. F-spreading measures how spread out the failed test cases are in a suite.

F − spreading = (

m∑

i=2

TFi − TFi−1) ∗
1

N
(4.3)

where N is the number of test cases; m is the number of failed test cases; TF is an ordered

set containing the positions of the test cases that failed due a behavioral change; and TFi is

the io failed test case in the prioritized suite.

Even when a single behavioral change is introduced, several test cases may fail. But, not

always a single test case provides enough information for helping fault localization (debug-

ging). Thus, if the failed test cases are less scattered, its easier to analyze and find relations

among them. As higher the F-spreading is, more scattered the behavioral revealing test cases

are. Thus, a good prioritization technique generates prioritized suites with low F-measure

and F-spreading. For instance, consider two prioritization techniques T1 and T2, and a test

suite S with 200 test cases in which 5 of them failed due to a refactoring fault. Suppose

that, after prioritizing S with T1 and T2, we have suites where the failed test cases are placed

in the following positions SP1:{1, 30, 40, 75, 100}, and SP2:{1, 10, 11, 15, 30}. The F-

spreading value for ST1 and ST2 are 0.495 and 0.145, respectively. Although both suites are
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able to detect the refactoring fault early (F −MeasureSP1
= 1 and F −MeasureSP2

= 1),

T2 rescheduled the failed test cases in a less spread out way, when compared to T1. Thus,

by using T2 for this context the tester are likely to have better understanding of the problem

which facilitate the fault localization and/or fix.

Planning and Design Due to the difficulty of finding available real systems in which refac-

toring behavioral changes could be localized through failed test cases (its a common police

to do not commit code with failed test cases), and that the current fault-injector strategies

(e.g., mutant operators) do not allow us to control the type of faults, we build a data set with

26 refactoring transformations that contain subtle refactoring faults. Those transformations

are reported in the literature ([109]) and, in general, cover unexpected introduction/breaking

of overriding/overloading constraints during a refactoring. This fault has been reported by

Bavota et al. [13] as commonly found in projects after refactoring edits. All transformations

are free of compilation errors and depict situations that not even well-known refactoring tools

(e.g., Eclipse, NetBeans, JRRT3 - JastAdd Refactoring Tools) are able to predict. Figure 4.7

shows an example of one of a pull up method transformation used as subjects in our ex-

periments. Method k (int i) is pulled up from class B to A), generating an unexpected

behavioral change. Method B.test() returns a different result depending on the version

used (10, considering the source version, and 20 for the target version). This kind of behav-

ioral change is usually hard to identify through visual inspection and was not anticipated by

the JRRT v1 refactoring tool.

To consistently evaluate the prioritization order produced by each technique, for each

code transformation, we automatically generate a test suite by using the Randoop tool4 [89].

Randoop is an automatic unit test generator for Java that generates unit tests using feedback-

directed random test generation. This tool can build regression test suites from scratch

and has been used in several works (e.g. [111; 109; 51]). A similar strategy is used by

SafeRefactor[111], a tool for validating refactorings. However, as the size of the code trans-

formations is quite small (Figure 4.7), and enable the generation of more diversified regres-

sion suites, we add a set of extra Java methods to each code transformation. Each extra

method is completely independent, not interfering with the execution neither of the original

3http://jastadd.org/web/jastaddj/refactoring.php
4https://code.google.com/p/randoop/
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1 public class A {

2 public int k (long i){

3 return 10;

4 }

5 }

6 public class B extends A {

7 public int k (int i){

8 return 20;

9 }

10 public int test(){

11 return new A().k(2);

12 }

13 }

(a) Original code.

1 public class A {

2 public int k (long i){

3 return 10;

4 }

5 + public int k (int i){

6 + return 20;

7 + }

8 }

9 public class B extends A {

10 - public int k (int i){

11 - return 20;

12 - }

13 public int test(){

14 return new A().k(2);

15 }

16 }

(b) Code after a problematic pull up method refactoring. When

called, B.test() returns 20 instead of 10 as in the previous version.

Figure 4.7: One of the pull up method transformations used as experiment subjects.

code example methods, nor to any other extra method. The extra methods are available in

[2]. On average, for each of the 26 subjects, Randoop generated suites with 3,568 JUnit test

cases, with a time limit of 100 seconds, and maximum test size of 5. Although larger time

limits would allow Randoop to occasionally generate new test cases that might detect faults,

studies [111; 108] have shown that there is little gain regarding testing power when consid-

ering test suites generated using big time limits. After a while, Randoop’s test generation

algorithm exhausts most of its possibilities and starts generating new test cases that are quite

similar (in terms of path coverage and data) to the ones already generated. This is even more

evident in small-size subjects such as the ones that compose our data set.

To conduct the statistical validation of our experimentation, we postulate two pairs of

statistical hypotheses, null and alternative (Table 4.3). The null hypotheses (H0 and H0.2)

state that all prioritization techniques under investigation behave similarly, with respect to

F-Measure and F-spreading. The alternative hypotheses (H1 and H1.2) state that they are

not all similar. We apply the One-factor-and-several-treatments experimental design [53] in

each experiment of our study (an experiment for each type of refactoring), where the factor

is the prioritization technique and the treatments are the seven techniques under investigation
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Table 4.3: Experiments Hypothesis.

(TSC, TMC, ASC, AMC, RD, CB, and RBA).

A pilot study was performed to define the statistically required number of replications

for each configuration in our experiments. For each configuration (Java transformation x

prioritization technique x metric), the number of replications varied from 500 to 1,892, for a

precision (r) of 2% of the sample mean and significance (α) of 5%.

Operation All prioritization executions are performed using the PriorJ tool (details in

Chapter 6). PriorJ is an open-source tool that supports prioritization activities execution

for Java/JUnit systems. Additionally, a set of Java classes were developed for translating

PriorJ’s output artifacts and calculating the needed metrics (F-Measure and F-spreading).

During the execution of this study PriorJ was run using Java 7 in a MacBook Pro Core i5

2.4GHz and 4GB RAM, running Mac OS 10.8.4.

Data Analysis and Discussion First, we perform a normality test with a confidence level

of 95% (α = 0.05) for each of experimental configurations (26 Java transformations x 7

prioritization techniques). The variability of the data comes from the aleatory aspect of each

prioritization algorithm. As the p-values from those tests are all smaller than the significance

value, we can say that our samples do not follow the normal distribution and, consequently,

a non-parametric test should be used. Since each experimental design has a unique factor

with more than two treatments, we applied the Kruskal-Wallis test [121]. This test is used

to determine whether there are significant differences among the population means. Again,

for all cases, the p-values are smaller than the significance level (α < 0.05). Thus, all null

hypotheses can be rejected, i.e., the prioritization techniques do not have identical behavior

neither considering the F-Measure nor the F-spreading, with 95% confidence level.

Continuing the data analysis, we plot confidence intervals for each groups of F-Measure
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and F-spreading results. When we find overlappings, we apply the Mann-Whitney test [121].

The Mann-Whitney test allows us to look to samples in pairs to be able to rank the tech-

niques. After analyzing the position of the confidence intervals and the Mann-Whitney re-

sults we rank the techniques with respect to their behavior (Table 4.4). The whole data regard

this statistical analysis (normality tests, Kruskal-Wallis tests, and Mann-Whitney tests) are

available in [2].

Table 4.4 summarizes the results of our statistical analysis. Each row shows a compar-

ison among the technique results, in which it goes from better to worse results from left to

right. For instance, considering only the code transformation related to the first move method

behavioral change (MM_1) and the F-Measure analysis, RBA is the technique that has the

best performance, i.e. it is the technique that detects this behavioral change earlier. The

second best technique for this scenario is either RD or CB, they have statistically identical

performances. Then TMC or AMC. Finally, TSC and ASC have the worst performance when

detecting this fault.

Our analysis shows RBA’s ability on helping the early detection of refactoring faults re-

lated to behavioral changes. With respect to fault detection effectiveness (F-Measure results

- Table 4.4), we can see that RBA’s performance is better than, or at least similar to, the other

techniques for every configuration and every refactoring type. Even the change-based tech-

nique (CB) does not behave well in several situations (e.g., MM_4, MM_5), which does not

happen to RBA. These facts help us to answer the first study question (SQ1) and conclude

that, in the context of our experiments, RBA is be a better choice for prioritizing test cases

aiming at speeding up the detection of refactoring related behavioral changes.

Regards the scattering of failed test cases, we observe the F-spreading results (Table 4.4,

right-hand side). For most of the cases, RBA has the best performance with respect to placing

the failed test cases in close positions. Thus, we can answer our second study question (SQ2)

by stating that RBA often places behavioral change revealing test cases near to each other.

This fact may give to the tester/developer more information earlier to help him during the

fault detection/debugging task.

Looking closely to the cases where RBA is outperformed (MM_6, PUF_1, PUF_2,

PUF_3), we observe that the selected possible impacted methods are in fact not affected.

It happened because some rules from the RFMs apply a name-based investigation, which
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Table 4.4: Behavior evaluation of prioritization techniques.

shown not to be efficient for those cases. More specifically, when a refactoring involves vari-

able manipulation (e.g., pull up field), this name analysis can be confused by variable names

from different scopes. Some of the extra methods had internal variables with the same name

of the fields manipulated. Thus, for those cases the name-based analysis failed on select-

ing only the test cases related to the changes. When we rename those problematic variables

in a investigation-scenario we observe a great improvement of the F-spreading results. For

instance, PUF_1 ’s F-spreading went from 0.95 to 0.004. This fact enable us to conjecture

that by combining the current fault model rules with a variable scope differentiation and/or

a binding checking we can improve even more the quality of our prioritization process.

Numerical Analysis The statistical tests discussed above depict the general behavior of

RBA. They showed that statistically RBA is the better option for detecting refactoring faults
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earlier, when compared to the traditional techniques. Taking into consideration all con-

figurations run during our empirical studies we can numerically visualize this benefit. In

our study each prioritization technique was run 3,545 times, generating 3,545 different pri-

oritized suites. After analyzing the values collected through the metrics (F-Measure and

F-spreading) we observe that in 71% of the cases RBA generated better results than the

traditional techniques w.r.t. F-Measure. Similar results are found when we consider the F-

spreading metric, RBA outperformed the other techniques in 73% of the cases. The spread-

sheets containing all results from this study are available in [2].

Final Remarks An important aspect to highlight regarding our investigation is that we

dealt with two complex factors: i) very subtle refactoring faults, faults that even the most

well-known refactoring tools (Eclipse, NetBeans, JRRT) are not able to identify; and ii) large

regression test suites, our suites had an average of 3,568.6 test cases. These factors tend to

turn the prioritization process even harder. Even though dealing with those difficulties, RBA

produced very good and stable results.

With the combination of an early fault localization (low F-Measures) and low scatter-

ing of failed test cases (low F-spreading) we show the contribution that RBA brings to the

state-of-art of test case prioritization when dealing with refactoring problems. Thus, we can

answer the second research question of our doctorate work (RQ2) by stating that indeed is

possible to anticipate the detection of refactoring faults by using relating testing coverage

and commonly impacted locations.

4.3.3 Threats to Validity

In terms of conclusion validity, we discuss about the statistical test used during in our eval-

uation. To achieve significant conclusions, the number of replications for each experiment

was decided according to statistical guidelines. Also, the analyses of the results were per-

formed considering a high confidence level (95%). Finally, we choose the statistical tests

based on the type of data collected from our data set (e.g., according to normality tests).

In terms of internal validity, a factor that may influence our results is the existence of

potential faults in our tool support. The PRIORJ project has a set of unit testing that confirms

its accuracy regarding prioritization. Additionally, for controlling this threat, we additionally
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validated this tool through testing on several examples of JUnit test suites and Java programs.

In terms of construction validity, the dependent measures that we have considered, F-

Measure and F-spreading, are not the only possible measure for evaluating prioritization

effectiveness or spreadness of refactoring-revealing test cases. However, according to the

purpose of our investigation, and to configuration of our experiments, we believe that those

measures are quite appropriated. Future studies will consider different measures.

In terms of external validity, some aspects can be defined as limiting for the general-

ization of our results: i) the subjects. Due to the fact that the number of subjects are small

in some cases (e.g., two code examples for the rename method edit) we cannot say that our

subjects represent the whole universe of Java programs and refactoring faults. But, as those

transformatios were collected from independent works and reflect tricky faults that not even

the most used refactoring tools were able to identify, we believe that they are suitable for

the purpose of our investigation based on the assumption that if a prioritization technique is

able to accelerate the detection of those hard to find faults it is likely that a similar result

will be achieved when dealing with easier ones; and ii) test suite representativeness. We

decided to use only automatically generated random regression suites in our second study.

Though this practice is not always used in real projects, random testing has been used for a

long time and random unit tests has been a great alternative due to the available tool support

(e.g., Randoop). Random suites has been used for validating refactorings [108]. Moreover

the results of our first study with a real project and a test suite manually created, confirm our

conclusions.

4.4 Concluding Remarks

This chapter presents the Refactoring-Based Approach (RBA) for prioritizing test cases.

This approach aims to speed up the detection of mistakenly introduced behavioral changes

after refactoring. RBA’s evaluation studies show statistical evidences that RBA speeds up

the detection of refactoring problems when compared to other prioritization techniques, i.e.,

it places fault revealing test cases in earlier positions of prioritized suites. Moreover, as

RBA tends to better group the refactoring fault revealing test cases. Thus, it may give to the

developer/tester more information related to those faults earlier, which can be very helpful
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for debugging.

Despite the fact that, along with coverage-based techniques, RBA demands the complete

test suite to be executed at least once for generating the call-graphs, one may argue on what

are the actual benefits of test case prioritization when compared to the demanded effort.

Firstly, during an edit validation, a test suite may be run several times until no failures are

experienced. Secondly, the order proposed by RBA may more effectively group test cases

that fail, potentially saving testing/debugging time. Finally, test cases that become obsolete

can be identified and possibly discarded.

It is important to highlight that our prioritization solution does not affect a suite’s testing

potential as no test case is discarded, and the number of test cases to execute is flexibility

decided according to the project resources availability. However, not rarely test suites fail to

provide an efficient support for validating refactorings. In the next chapter, we propose an

static analysis approach that aims to complement the refactoring validation with testing, and

to help refactoring reviewing.
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RefDistiller

Although, most developers use regression test suites for validating refactorings, the quality

of those suites are highly related to developer’s expertise and efforts on building high quality

tests. Rachatasumrit and Kim find that regression test suites can be inadequate for covering

refactored locations [94]. Moreover, testing results are not always easy to understand. A

failing test case may not provide useful information to facilitate the process of locating and/or

fixing a found fault.

As refactoring requires developers to coordinate related transformations and understand

the complex inter-relationship between affected types, methods, and variables, often, there is

a need of reviewing those edits. In this chapter we present REFDISTILLER [11], a refactoring-

aware code review approach and tool (Chapter 6) that uses static analysis elements to

help developers detect potential behavioral changes (anomalies) in manual refactoring edits.

REFDISTILLER detects two types of refactoring anomalies that are important to observe when

reviewing a refactoring, missing and extra edits. Missing edits are required steps that, when

missed, often alters the behavior of a stable code. Extra edits are edits that deviates from a

pure refactoring transformation. Either anomalies may not be in fact behavior changes, how-

ever, since developers often interleave refactorings with extra changes [81], it is important to

be aware of them, specially when reviewing refactorings correctness.

Besides automatically identifying potential behavioral changes that could pass unnoticed

when refactoring manually, REFDISTILLER innovates by helping developers to localize and

fix potential refactoring anomalies by outputting information related to the type of anomaly,

its location, and possible clues for the anomaly. Thus, REFDISTILLER can complement cur-

66
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rent testing-based refactoring validations in two ways: (1) it can identify problems that the

test suite may fall short on covering and (2) it can help improve the quality of the developer’s

test suite by identifying new scenarios that require testing. Finally, REFDISTILLER provides a

refactoring separation analysis that can be used during peer code review, highlighting which

parts of the code deviate from a pure refactoring version.

REFDISTILLER’s Equivalence Definition REFDISTILLER’s equivalence notion establishes

two scenarios when there is behavior preservation after a refactoring: i) when there is no

missing edit: all required constituent steps are find among the manually performed edits;

and ii) when there is no extra edits: there is no additional edit in relation to the correct edits

performed by an automated refactoring tool. The following definition summarizes REFDIS-

TILLER’s equivalence representation:

Being:

• Re, set of required constituent code editions related to a certain refactoring;

• Me, set of manually performed code editions after a certain refactoring;

• Ae, set of code editions performed by an automatic refactoring after a certain refactor-

ing;

Ae ≡ Me ∧ ∀e ∈ Re, ∃e
′ ∈ Me|e = e′ (5.1)

5.1 The RefDistiller Approach

Figure 5.1 gives an overview of our approach. REFDISTILLER detects two types of refactor-

ing anomalies: missing and extra edits. REFDISTILLER consists of two independent phases:

REFCHECKER and REFSEPARATOR. REFCHECKER detects likely omissions of expected refac-

toring steps; and REFSEPARATOR tries to detect unexpected additional changes made during

refactoring. REFDISTILLER takes as input the original version P and the manual refactoring

version Pr, and uses RefFinder [62], or any manual refactoring detecting strategy, to infer
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Figure 5.1: RefDistiller overview.

the types and locations of potential refactoring edits, which we call RefSet. Using this in-

formation, REFDISTILLER detects anomalies, i.e., potential errors that might deviate from a

behavior preserving refactoring.

5.1.1 Detecting Missing Edits with RefChecker

For each refactoring type, we define template rules to describe required constituent edits. The

rules are based on the literature on refactoring definition and formal specifications [33; 104;

88; 25], on the literature on common refactoring faults [13], and on our experience on testing

and applying refactorings. For this research, we target the following six refactoring types,

as they are some of the most commonly used refactoring types in Java [79]: extract method,

inline method, move method, pull up method, push down method, and rename method. Each

verifiable refactoring type requires a proper refactoring template. For each detected refac-

toring edit, REFCHECKER compares a set of expected edits Cp with actual manual edits Cd,

generated by ChangeDistiller [30] that extracts source code changes based on tree differ-
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encing. ChangeDistiller reports AST change types such as adding a new method, deleting

a method, inserting a new statement in a method body, deleting a statement from a method

body, updating a statement, updating a method visibility, etc.

For each refactoring type in RefSet, REFCHECKER updates the set of required con-

stituent edits and method and field reference updates, Cp, with the constituents edits based

on their predefined template rules. A new required edit is a triple <Type, Element,

Location> where Location represents the specific code element where the edit is ex-

pected (e.g., class, method, and field), Element represents the code element involved in the

edit, and Type indicates the type of expected edit.

In order to preserve behavior, it is important to check whether method calls, field ac-

cesses, and type declarations of variables are preserved before and after manual refactoring.

Therefore, we create a new checking type Binding Problem that is not currently sup-

ported by ChangeDistiller. REFCHECKER includes a binding object to Cp every time a refer-

ence, such as a method call, a variable access, and a field access in the original code differs

from its correspondent in the refactored code. Those references are statically associated with

the respective class and object scope. Our binding checking strategy compares AST trees in

order to verify the preservation of desired references. REFCHECKER verifies if the associa-

tions remain the same for modified methods, their callers, and their direct callees in the new

version. Similarly, it checks all refactored fields and the field accessors.

REFCHECKER reports the following nine types of warning messages for missing edits:

• Binding problem: Detected problematic reference binding X which may have affected

method Y;

• Missing method: Method X was not found in Class Y;

• Missing statement update: There is at least one missing statement to be updated in the

method X’s body;

• Missing statement addition: There is at least one missing statement to be inserted in the

method X’s body;

• Missing statement deletion: There is at least one missing statement to be deleted in the

method X’s body;

• Missing type update: The type associated with field X needs to be updated;

• Missing renaming: Method X was not renamed;
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• Not removed method: Method X should have been removed from Class Y;

• Visibility problem: Method X is not visible for one of its callers.

As an example of refactoring template, Table 5.1 presents the template rules for the

Extract Method refactoring. The rules focus on (i) correct placements of the newly created

method and extracted statements, (ii) reference consistency with respect to its callers, and

(iii) scoping consistency with respect to parameters and local variables. We consider an

extract method edit a transformation in which part of a method is moved to a newly created

method, this new method is placed in the same class of the original method. Thus, extractions

to different classes can be decomposed to a combination of a local extracted method and

a move method. Rules 1-7 in Table 5.1 define basic steps to check whether an extract a

method is successful. Failing to perform any of those steps may lead to behavior changes.

Rules 5, 6 and 7 perform a binding check to verify whether the methods and fields still

reference the equivalent AST elements after the refactoring edits. This binding verification is

important, since simple code modifications may lead to subtle errors in variable and method

references. For example, the newly created method could unexpectedly override a method

from a higher hierarchy. The rules of our refactoring templates are presented in pseudo code

and the following shows the meaning of the auxiliary functions. The rules for the remaining

five refactoring types are available in Appendix C.

• getClass(P, m) returns the containing class of method m to be refactored;

• getCallers(m) returns all callers of method m;

• getStatements(m, [beginLine;endLine]) returns the statements from line

beginLine to line endLine. If an empty range (i.e, []) is given, it returns all statements

from method m;

• Set{ReferenceElement}:checkBindingProblem(m1, m2) verifies

whether all references to methods or variables are identical between m1 and m2.

Returns a set of problematic reference objects;

• haveDependences(m, stm) verifies whether the remaining statements in method m,

after extracting statements stm from method m, depend on any statement within extracted

statements stm.
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5.1.2 Reviewing Extra Edits with RefSeparator

Recent studies [63; 81] show that developers often apply refactoring in the context of bug

fixes and feature additions and interleave refactorings with extra changes. Such extra edits

are not always errors and could be intentionally made during refactoring. Nevertheless,

according to a study at Microsoft [63], developers report that they would like to see semantic

changes that deviate from pure refactoring separately.

As shown in Figure 5.1, REFSEPARATOR takes as input the RefSet generated by

RefFinder. For each refactoring instance, it automatically applies an equivalent refactoring

using Eclipse’s refactoring APIs and creates a version with pure refactoring, P ′. It compares

the generated version against the manual refactoring version, Pr. If the two versions are not

identical, it highlights the location of the differences for further revision.

Perform automatic refactorings is very challenging. Despite being the most well known

refactoring tool, the Eclipse refactoring engine is not bug free. Several studies [26; 44;

109] found bugs in the Eclipse refactoring engine—the conditions under which refactoring

generates compilation errors or behavior changes. Naively using the Eclipse refactoring

engine to create a pure refactoring version can lead REFSEPARATOR to false positives. To

address this problem, REFSEPARATOR first performs a checking step to avoid non-behavior

preserving refactorings. For each refactoring edit, if any of the conditions is satisfied, REF-

SEPARATOR will not apply the automated refactoring and instead report a warning message

to the user. Table 5.2 summarizes the conditions checked by REFSEPARATOR for the push

down method refactoring, Eclipse generates unsafe refactoring for those scenarios. The first

column indicates the bug number in the Eclipse bug tracker,1 and the second column shows a

brief description of the condition where refactoring creates a compilation error or subtle be-

havior change. Our technical report [12] describes all conditions that REFSEPARATOR checks

for the remaining five refactoring types.

It is important to highlight that REFDISTILLER’s reported refactoring faults are anomalies

and not always those anomalies lead to real faults. In some cases those anomalies are devi-

ations from the standard refactoring templates and/or automatic refactoring transformation.

However, those are problems that often are associated to a bug, and/or require refactoring

review to double check the developer intention.

1The Eclipse bug tracker—https://bugs.eclipse.org/bugs/
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Table 5.2: Conditions checked by REFSEPARATOR to avoid push down method refactoring

bugs in Eclipse

Bug C1: class under refactorings; C2: target class; m: method under refactorings

320115 Method m is to be pushed down and it directly calls a method that is invis-

ible from the target class.

348278 Method m is to be pushed down and it contains a method call using the

keyword this.

356698 / 355322 Method m contains a super access to a method that is overridden/over-

loaded in class C1.

290618 / 355324 Method m contains a call to a method that is overridden/overloaded in the

target class C2.

195003 Method m is to be pushed down, which contains a field access using the

keyword, this.

195004 Method m is to be pushed down, whose callee invokes another method by

the origin class (e.g., new ClassX().foo().)

5.2 Evaluation

To assess the effectiveness of REFDISTILLER and its capacity of complementing the testing

validation, we use two evaluation methods. First, we apply REFDISTILLER to a data set

of 100 refactoring transformations with seeded behavior changes (anomalies). Second we

apply REFDISTILLER to three real world open source programs. In both studies we compare

REFDISTILLER with regression testing suites, our baseline. In both studies, the found faults

were manually validated by the authors.

5.2.1 Evaluation using a Data Set

Goal, Question and Metrics We first use a data set of 100 refactoring transformations with

seeded refactoring related behavior changes in order to assess the effectiveness of REFDIS-

TILLER on detecting refactoring related anomalies. To guide our study we define the follow-

ing question: Is REFDISTILLER effective in detecting refactoring anomalies?

To answer our study question we use two of the most applied measures for evaluating
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search strategies, Precision and Recall. Being TotF : the set of all injected refactoring faults;

TP (true positives): set of corrected identified anomalies; and FP (false positives): set of

incorrect identified anomalies:

• Precision = |TP |/(|TP |+ |FP |)

• Recall = |TP |/|TotF |

Planning and Design Each transformation from our data set is a pair (p1, p2) of Java

programs - p2 is p1 after a single refactoring. Both p1 and p2 are free of compilation errors and

p2 contains at least one seeded refactoring related behavior change. 39 transformations were

automatically identified by prior work by Soares [109]; these are subtle refactoring errors

that the state of the art refactoring engines are unable to prevent or detect. The remaining

anomalies are created by the authors based on the literature on refactoring errors [42; 39; 26;

111; 13], varying from missing/adding statements in a refactored method to breaking/adding

overloading/overriding constraints. The data set covers all six refactoring types and includes

both missing edits anomalies (50) and extra edits anomalies (50). Our technical report [12]

details the data set, including a description of all anomalies.

We compare REFDISTILLER against the most used and widely used technique for val-

idating refactorings, regression testing. Thus, testing is our baseline fault detection tech-

nique. For that, we use an automated feedback-directed random test generation tool,

Randoop [89], to create JUnit test suites in for low level integration. Suites created by

Randoop have been successfully used to identify refactoring problems [111; 109; 108;

77]. To increase the variability of the generated tests, a set of independent extra methods

was added to each transformation. We run Randoop with the time limit of 100 seconds and

the maximum test size of 5 statements. On average, we have test suites with 5,332 test cases

for each version pair in the data set.

First, we run REFDISTILLER to each version pair in our data set. We collect the results for

REFCHECKER and REFSEPARATOR respectively and manually validate their outcomes. Next,

we run the regression test suite, which is generated for the original version, and then rerun

it for the refactored version. Any differences in the test outcome are then considered a fault

detected by regression testing.
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Table 5.3: Result of recall and precision

Recall Precision

Missing Edits Extra Edits

REFCHECKER 94% - 75%

REFSEPARATOR - 98% 98%

REFDISTILLER 96% 98% 84%

Testing 84% 66% 100%

Data Analysis and Discussion Here we present the main results of this study and discuss

them regarding improvements of refactoring fault detection.

Recall. We assess how many seeded anomalies can be found by REFDISTILLER. REFDIS-

TILLER detects 97% of all seeded anomalies, outperforming regression testing by 22 faults.

Table 5.3 summarizes the results. REFCHECKER detects 47 anomalies out of 50 and REFSEP-

ARATOR detects 49 anomalies out of 50.

REFDISTILLER finds refactoring anomalies that are not easy to identify because they re-

quire understanding of complex code structures, e.g., overriding relationships in a deep class

hierarchy. For instance, one of the callers of an inlined method is not updated after refactor-

ing, referencing a different method with the same signature from its super class at a higher

level. This type of anomaly is not always predicted when using testing, and generates subtle

behavior changes that can easily pass unnoticed.

False Negatives. Three anomalies are not detected by REFDISTILLER (only one of them was

detected by the test suite). Those are anomalies that require a runtime investigation and/or

that change the state of an object/variable due to exception handling. Figure 5.2 exemplifies

one of those false negatives. Lines 5-8 from Element.m are extracted into method n.

In the original version, when the exception e is thrown at line 7, method m(boolean)

returns the state of x before the try block, x = 42. However, after extracting the method,

when the same exception is thrown, the state of variable x is already updated and method

m returns 23 instead. This missing edit fault is hard to identify using REFCHECKER as our

current templates are not capable of capturing the complex changes in the control flows due
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1 class Element {

2 int m(boolean b) {

3 int x = 42;

4 try {

5 if (b) {

6 x = 23;

7 throw new Expt();

8 }

9 } catch (Expt e) {

10 return x; }

11 return x; }

12 int test() {

13 return m(true);}

14 }

(a) Original version.

1 class Element{

2 int m(boolean b) {

3 int x = 42;

4 try {

5 - if (b) {

6 - x = 23;

7 - throw new Expt();

8 - }

9 + x = n(b, x);

10 } catch (Expt e) {

11 return x; }

12 return x; }

13 + int n(boolean b, int x) throws Expt {

14 + if (b) {

15 + x = 23;

16 + throw new Expt();

17 + }

18 + return x; }

19 int test() {

20 return m(true); }

21 }

(b) Code after a problematic extract method edit. Method m returns a

different value when exception e is thrown due to a different of variable

x’s state.

Figure 5.2: Missing edit fault: extract method edits.

to incomplete refactoring. Heuristics to consider those scenarios are planned as future work.

REFDISTILLER detects 22 anomalies that are not found by the generated test suites. Figure

5.3 shows a case where testing fails to detect the faults. Lines 5-6 from Calc.getVal

are extracted to extrMeth, and if/else statements are added to the new method (see

Figure 5.3(b), underlined code). The extra edit changes the control flow depending on inputs.

Although the generated test suite consists of more than 12,000 test cases and has a high

testing coverage (≈ 85%), this fault is not detected. This is because test suites are built for

the old version, thus it is hard to predict how extra edits may affect pre-existing methods or

new ones. Thus, existing test cases are incapable of exploring this new path. To identify the

bug from 5.3(b), the developer, or the test generator tool, should have included a test case

with a negative input to getVal in the old version, which is not the case.
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1 class Calc {

2 int getVal(int amnt) {

3 if (amnt > 10) {

4 int x = amnt + 10;

5 int z = x + 10;

6 return z;

7 } else {

8 int x = amnt * amnt;

9 return x; } }

10 }

(a) Original version.

1 class Calc {

2 int getVal(int amnt) {

3 if (amnt > 10){

4 int x = amnt + 10;

5 - int z = x + 10;

6 - return z;

7 + return extrMeth(x);

8 } else {

9 int x = amnt * amnt;

10 return x; } }

11 + int extrMeth(int x) {

12 + if (x > 0)

13 + return x + 10;

14 + else return -1;

15 + }

16 }

(b) Code after extract method refactoring with extra edits underlined.

Figure 5.3: Fault detected by REFDISTILLER but not by testing

Precision. We assess REFDISTILLER precision—how many anomalies it detects are indeed

true faults. REFCHECKER finds 63 omission anomalies, of which 47 are correct, resulting

in 75% precision. REFSEPARATOR finds 50 extra edit anomalies, of which 49 are correct.

REFDISTILLER in total finds 113 faults, of which 96 are correct, resulting in 84% precision.

Most incorrectly detected instances occurred due to incorrect identification of refactoring

types by RefFinder. Though there are only one hundred refactorings seeded in the data

set, RefFinder identifies 32 additional refactoring instances. For instance, for a single pull

up method refactoring, RefFinder reports both move method and pull up. REFCHECKER

therefore checks two templates to check for potential refactoring missing edit anomalies,

where it finds a false positive with respect to move method. For a push down refactoring

with an extra edit, RefFinder reports three refactoring types: move method, extract method,

and push down. The edit moved method calc from class A to subclass B, turning the

method call to delegation B.calc. When REFSEPARATOR applies push down method and

move method refactorings, it correctly reports two types of extra edit anomalies. On the

other hand, when it applies the false positive extract method refactoring with Eclipse, it

generates an incorrect comparison version. REFSEPARATOR then attempts to compare the
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Table 5.4: Results regarding anomalies detection and Improvement on XML-Security (P1),

JMeter (P2), and JMock (P3).

incorrect comparison refactoring version with the manual version and subsequently reports

a false positive extra edit anomaly.

5.2.2 Evaluation using Real World Programs

Hoping to extend the investigation on REFDISTILLER’s effectiveness, and to assess its appli-

cability to real scenarios, we apply REFDISTILLER to three open source projects: XMLSe-

curity—a library for providing security functionality for XML such as authorization and

encryption, JMeter—a performance analysis application for measuring performance under

different load types, and JMock—a library for testing applications with mock objects.2.

Data Set For XMLSecurity and JMeter, we use a data set from prior work on refactoring

change impact analysis [94]. This work identifies real refactoring edits performed through-

out several versions of these systems. The subject programs are drawn from Software In-

frastructure Repository (SIR) [27]. XMLSecurity is 18 KLOC and JMeter 32 KLOC respec-

tively. As SIR provides release-level changes, to identify a commit with refactoring edits,

we mine commit histories and map each refactoring edit to the earliest and closest commit

revision. For JMock, we go through its repository history and search for commits with refac-

toring edits using RefFinder.3 From this mining, we selected 3 versions (v1-v3). We also

create additional four versions by seeding refactoring faults: (v4) incomplete move method

2JMeter http://jmeter.apache.org/

XMLSecurity http://jmeter.apache.org/

JMock http://jmock.org/
3https://github.com/jmock-developers/jmock-library/commits
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refactoring with incorrect method call bindings, (v5) extract method method with missing

statements, (v6) extract method refactoring with a missing update in its caller, and (v7) in-

line method refactoring without required deletions. Those anomaly versions are all free of

compilation errors and are inspired by the literature on refactoring errors [42; 39; 26; 111;

13]. Each project version used in our study has a test suite manually created by their devel-

opers for testing the system at a system level. The size of these suites varies from dozens to

hundreds of JUnit test cases.

Analysis and Discussion Table 5.4 shows the number of missing and extra edits detected by

REFDISTILLER: XMLSecurity (P1), JMeter (P2), and JMock (P3). Rn is each revision pair.

Running REFDISTILLER takes on average 41.4, 205, and 24.8 seconds for the three

projects. We manually inspect individual anomalies to determine correct anomalies and

precision is 90%, 97%, and 100% for the three projects respectively.

We compare REFDISTILLER’s anomaly detection capability with the fault detection capa-

bility of existing JUnit regression tests included in SIR. The faults detected by REFDISTILLER

and by testing were later manually inspected. The existing regression test suites are inad-

equate for covering refactoring edits, they detects only 2, 0, and 7 refactoring faults in the

subject programs. In fact, those suites have also a low branch coverage in general (above

50% on average). The results are aligned with the prior finding that only a small portion of

refactoring edits are tested by existing regression tests and refactoring mistakes can be easily

unnoticed [94].

Because REFDISTILLER applies a static analysis approach, and focuses on the location

of refactoring edits, it finds 190 additional correct faults not found by testing. We cannot

measure recall because we do not know the total number of all true refactoring faults in

these versions. Therefore, we measure the improvement by dividing the total number of

REFDISTILLER’s true faults by the total number of faults found by testing. The overall im-

provement is 22.1 times. The results show that REFDISTILLER can effectively complement a

testing-based approach for refactoring validation.

False Positives. Although we cannot generalize, in the context of our study, our false positive

rate is low. In a few cases, false positives are caused by the combination of missing edits and

extra edits at the same method location. For example, REFDISTILLER identifies two extract

method edits in the same method body. To obtain the pure refactoring version, REFSEPA-
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RATOR subsequently applies two extract method refactorings to two different edit positions.

However, the refactoring application to the first edit position affects the second refactoring

edits, changing the second edit position. Applying multiple refactorings in the same method

could prevent REFDISTILLER from locating extra edits correctly. Moreover, to have a deep

understanding on REFSEPARATOR’s false positive rate, we would have to ask developers from

each project whether a found extra edit is in fact intended or not, which would have been im-

practical in the context of this study. Therefore, in a real scenario, REFDISTILLER’s number

of false positives tends to be higher. However, considering a refactoring reviewing scenario,

where a developer is reviewing a refactoring that might have been applied by other(s), we

consider that any found extra edits are worth to be noticed and must be reviewed.

Hints for Correcting Refactoring Anomalies. When REFDISTILLER reports warning mes-

sages about missing and extra edits, it provides hints for fixing refactoring anomalies.

For example, REFDISTILLER outputs a warning message about missing edits like “REFDIS-

TILLER detected that a method extract refactoring edit caused a possible binding problem

of the reference foo() in class ClassA at line 1,114. This may have affected method

ClassB.bar().” As another example, REFDISTILLER reports an warning message about

extra edits like “REFDISTILLER detected that a pull up method refactoring edit with extra

edits in Z.baz() at line 1411”. We believe that such warning messages could help develop-

ers debug refactoring mistakes and even fix then. For extra edits, we display a comparative

view in which a pure-refactoring version of the code is put against the manual version with

the extra edits highlighted. That way, a developer can review his edits and undone the extra

edits if they were not intended. As far as we know, REFDISTILLER is the first tool that helps

developers on debugging/fixing refactoring faults by providing this extra information.

Final Remarks With the results obtained with our seeded data set and with the study using

the open-source projects we can answer our third research question (RQ3) by stating that

by using a static analysis strategy we can effectively detect refactoring problems with high

rates of recall and precision. In both studies REFDISTILLER outperformed testing, baseline

refactoring validation technique, and detected several new refactoring anomalies. Moreover,

we believe that REFDISTILLER’s hints for fault localization is an useful source of information

that tests often lack to provide. Thus, we can state that REFDISTILLER complements the
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testing validation.

5.3 Threats to Validity

In terms of construct validity, the accuracy of RefFinder’s refactoring reconstruction di-

rectly affects REFDISTILLER’s capability in detecting refactoring faults. We refer to Prete et

al. [93] for further evaluation data on how varying its similarity threshold affects RefFinder

accuracy. When multiple interfering refactorings are seeded in the same version together,

REFDISTILLER may find false positives or false negatives. For example, when we seed the

extract method and inline method refactorings in the same location, which partially cancel

each other, REFDISTILLER finds two separate faults that should not be found—one related

to the extract method and the other related to inline method. Moreover, as discussed in the

False Positives subsection, in practice, REFSEPARATOR’s false positive rate tends to be higher.

However, we understand that there is a need for confirmation of any extra edit in the refactor-

ing reviewing phase, since those extra edits might interfere with a software’s previous stable

behavior.

Since it applies an static analysis, REFDISTILLER is currently unable to detect runtime

object types precisely and cannot capture control flow changes in the exception handling

logic precisely, etc.

REFDISTILLER takes the old and new version snapshots as input and does not leverage

edit history during programming sessions (e.g., a sequence of edit operations recorded in

Eclipse). Extending and applying REFDISTILLER to edit histories or other richer refactoring

data [84; 117] remains as future work.

In terms of internal validity, we detect refactoring anomalies where behavior changes

occur. Not all identified faults are indeed errors and could be intentional. Nevertheless,

paying attention to behavior changes occurred during refactoring is worthwhile.

In terms of external validity, our evaluation results do not generalize beyond the three

subject programs and our data set. In our evaluation, REFDISTILLER is able to detect anoma-

lies not found by either exiting test suites or auto-generated ones. However, a test suite’s

refactoring validation power is relative to several factors that might influence its effective-

ness, such as coverage level, or variability of data. Thus, the potential gain of using REFDIS-
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TILLER, instead of testing, might be relative, however, we believe that the combination of

both strategies (testing + REFDISTILLER) are likely to allow developers to better validate/re-

view refactorings. Finally, the injected faults do not cover all possible refactoring related

bugs. However, these faults were collected, from previous studies that identified problems in

automatic refactoring tools, and/or or inspired by real scenarios experienced by the authors

when performing/reviewing refactorings.

5.4 Concluding Remarks

This chapter presents REFDISTILLER, an approach for helping developers to review refac-

torings. In addition to anomaly detection, REFDISTILLER also provide useful information

for guiding developers to locate and fix refactoring related problems. REFDISTILLER ask

developers to confirm if extra edits that are included while refactoring and are in fact inten-

tional. The evaluation shows that our static analysis approach can effectively complement

testing-based refactoring validation. REFDISTILLER finds several anomalies that existing and

generated test suite falls short of covering.

To the best of our knowledge, REFDISTILLER is the first to detect both missing edits and

extra edits that deviate from pure refactoring. Its capability can help developers focus their

attention to subtle behavior changes with no compilation errors, which require revision since

can easily slip unnoticed.

In the next chapter we present the two Eclipse plug-ins developed to enable developers

to easily start using the solutions proposed in our work, RBA and REFDISTILLER.



Chapter 6

Tools

How to efficiently validate, locate and fix those faults is a constant concern throughout a

developer’s daily routine. Both solutions presented in the previous chapters (RBA [98] and

REFDISTILLER [11]) aim to address those issues by using artifacts that are often available

when refactoring (e.g., test suites, source code). In order to motivate developers to use our so-

lutions and reduce the overhead that their application might bring, we developed two Eclipse

plug-ins (PRIORJ and REFDISTILLER). Those tools instantiate our solutions for Java/JUnit

systems.

6.1 PriorJ

The PRIORJ tool1 [98] is an open-source Eclipse plug-in developed in order to allow devel-

opers to apply test case prioritization. For that, it embodies a prioritization framework that

provides the following features: i) a testing coverage analysis module; ii) a set of seven pri-

oritization algorithms (TSC, TMC, ASC, AMC, RD, CB, RBA); iii) prioritization in a batch

mode; iv) generation of executable artifacts to run the new prioritized suites; v) measuring

and visualization of quality metrics; and vi) history of prioritization suites and runnings.

By default, PRIORJ includes six of the most widely used prioritization techniques (TSC,

TMC, ASC, AMC, Random and Change Blocks) for Java/JUnit systems. Moreover, the

RBA technique is also part of PRIORJ. This set of techniques can be easily extended. PRIORJ

provides a set of interfaces and modules that enables the inclusion of new prioritization algo-

1https://github.com/samueltcsantos/priorjplugin/
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Figure 6.1: PriorJ Architecture.

rithms by implementing a single new Java class that deals only with the test case reordering.

Other issues such as project’s characteristics capture, the building of runnable Java files that

enable the new execution order, and etc, are provided by PRIORJ.

As most prioritization techniques use testing coverage data, PRIORJ implements its own

integrated coverage analyzer. For that, it applies an strategy that uses AspectJ [59] files to

run JUnit regression test suites and collect coverage traces in both statement and method

levels [10]. Those traces are recorded and later used by the prioritization techniques.

Figure 6.1 presents the PRIORJ’s architecture. Rectangles represent PRIORJ modules,

arrows represent the relationship between modules, and elements out of the PrioJ box with

an incoming arrow are PRIORJ’s external outputs:

Instrumenter. Module that instruments the SUT code in order to make it ready for a further

coverage analysis. For that, it creates a temporary instance of the SUT project and spreads

marks throughout the code of the temporary project.

Coverage Executor. Responsible for running the test suite and collect the coverage data.

This module produces as output artifact a set of log files with coverage traces.

Coverage Analyzer. The files produced by the Coverage Executor module are read and

manipulated in order to generate coverage reports and treat the data for prioritization.

Change Analyzer. Module responsible for identifying, from two versions of a Java program,

the code parts that are different. For that, it compares classes at the AST level.
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Figure 6.2: PriorJ APFD chart.

Prioritizator. PriorJ’s core module. Module that implements the prioritization algorithm-

s/techniques/approaches. Each prioritization technique is represented by a single Java class

that implements an interface of methods. As output, this module generates: i) a file with the

test cases prioritized sequence; ii) an executable Java class that enables the prioritized suite

execution; and iii) the data to be used for calculating the evaluation metrics (module Results

Analyzer).

Results Analyzer. Module that calculates quality metrics for prioritized suites (F-Measure,

APFD). Moreover, this module is responsible for generating quality charts and for reducing

suites according to the user’s needs.

Version Controller. Module that implements a version control mechanism. For that, it man-

ages the creation, storage and update of prioritization projects and data.

In [10], we discuss challenges that developers/testers commonly face when using pri-

oritization in practice. Moreover, we depict scenarios to help developers to build and use

prioritization tools/environments. PRIORJ implements all those scenarios and generated use-

ful artifacts to help to developers/testers to overcome those challenges. For instance, Figure

6.2 presents a comparative chart in which the APFD results are plotted after running several

prioritization techniques in batch mode. Each area presents the collected APFD results for

each prioritization technique. By analyzing this chart, a tester can decide which technique is

better suited to be used in his project.
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Figure 6.3: RefDistiller’s input view

6.2 RefDistiller

Aiming not only to implement the REFDISTILLER solution (described in Chapter 5), but

also to enable the inspection/review of refactoring edits, we developed the REFDISTILLER

tool [11]. RefDistiller2 is a refactoring-aware code review Eclipse plug-in. To detect poten-

tial deviations from pure refactoring edits, REFDISTILLER incorporates two key techniques: i)

RefChecker for detecting missing edits; and ii) RefSeparator for detecting extra edits (more

details in Chapter 5). Currently, REFDISTILLER supports six of the most common refactoring

types for Java programs: move method, extract method, inline method, rename method, pull

up method, and push down method.

When running the REFDISTILLER view, a user first selects both versions of a project

(Figure 6.3), the original and the target one (after refactoring). After that, a new view is

triggered. In the first tab of this view (Potential Problems) all potential deviations from pure

refactoring edits reported by both RefChecker and RefSeparator. Each line describes the

type of a refactoring problem such as BINDING_PROBLEM, the location (e.g., method rent

from class p1.BookManager), and a short description of the problem. By clicking on

each line, a developer can review the corresponding Java files, where the potential problems

are located.

Missing Edits View. By clicking the Missing Edits tab, the user sees the problems reported

from RefChecker. RefChecker reports the nine types of warning messages discussed in

Chapter 5.1.1.

By clicking Missing Edits View’s each line, the respective Java file is opened and a

warning message is tagged at the location of the warning. Figure 6.4 exemplifies RefDis-

tiller’s output for a refactoring fault related to a missing edit. In this scenario, a devel-

2https://sites.google.com/site/refdistiller/
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Figure 6.4: Example of how RefDistiller outputs a missing edit fault.

oper can see that a BINDING_PROBLEM was added after a refactoring because the call to

getPrice(book,days in rent references different methods when comparing before

and after the refactoring (see mark at line 15).

Extra Edits View. By clicking the Extra Edits tab, a user can see the problems reported

from RefSeparator. By clicking each line, an Eclipse Compare View is open. In this view

the developer can examine the program differences between the manual refactoring version

and a pure refactoring version generated by RefDistiller. Figure 6.5 shows a pure refactoring

version on the left side and the manual refactored version on the right side. When the two ver-

sions are different, RefSeparator reports that the manual version is not pure refactoring and

pinpoints the location of extra edits, in this case line 9 calling setUnavailable. When

a developer sees a warning message, “Detected extra edits that may change the behavior of

method findBook”, he can check whether he intended to introduce this new behavior.

6.3 Concluding Remarks

This chapter presents the two open source tools designed and implemented during our re-

search, RBA and REFDISTILLER. Those tools are Eclipse plug-ins and can easily be incor-
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Figure 6.5: Example of how RefDistiller outputs an extra edit fault.

porated to a developers’ daily routine. Those tools evidence the practical character of our

work. In the next chapter we present and discuss works at some point related to our research,

comparing our solutions to similar ones when adequate.



Chapter 7

Related Work

In this section we discuss research results that are related to ours. We focus our discussion

on studies that investigate the role of testing coverage for detecting faults and that evaluate

a suite’s effectiveness (Section 7.1); studies that propose/evaluate test case prioritization

approaches (Section 7.2); studies on change impact analysis for object oriented languages

(Section 7.3); and on refactoring and refactoring tools (Section 7.4).

7.1 Testing Coverage and Suite Effectiveness

Long-established texts on software testing (e.g. [91]) recommend the use of coverage to gain

confidence that a test suite is effective on detecting faults. Extensive research on this topic,

however, presents mixed conclusions. Frank and Iakounenko [34] report the chance of de-

tecting a fault increases sharply with very high coverage rates. While Wong et al. [123]

find a suite effectiveness is highly correlated with block coverage, Xia and Lyu [22] ob-

serve a moderate correlation between coverage and fault detection, depending on the tests

nature. Furthermore, Gligoric et al. [43] state that fault detection effectiveness is moder-

ately correlated with coverage in general, and project size. On the other hand, Frankl and

Weiss [35] found a weak correlation between suite coverage and its error-exposing ability.

Later work [36] investigate the relationship between coverage and effectiveness for fixed-

sized randomly generated test suites, and an improvement in effectiveness with higher cov-

erage is observed (although there is no nonlinear relation). Briand and Pfahl [20] do not find

any causal dependency between test coverage and defect coverage with respect to four cov-
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erage criteria (block, c-use, decision, p-use), independently of suite size. Inozemtseva and

Holmes [52] find there is a low to moderate correlation between coverage and suite effective-

ness, and that stronger forms of coverage do not provide better data to measure effectiveness

of a suite. The empirical study presented in Chapter 3 differs from all of the above by fo-

cusing its investigation on the role of testing coverage to evaluate a suite aiming to identify

refactoring faults. Moreover, instead of considering coverage data as it is, our study observe

coverage of specific classes of impacted code elements. Our study also concludes that testing

coverage indeed can be used for detecting refactoring faults when focusing on specific code

locations.

Gargantini et al. [37] propose a framework to evaluate the robustness of a test suite with

respect to semantic preserving transformations. For that, they define new coverage metrics

that consider the fragility of coverage. Our study applies a different approach by using

coverage of commonly impacted element for predicting a suite’s capability of detecting a

refactoring fault. Moreover, our study’s results are extracted based on data from real projects

and can be used as reference for helping testers to decide which code locations need more

testing when validating a refactoring.

To the best of our knowledge, our exploratory study is the first to investigate the com-

bined use of impacted elements and test coverage to evaluate a suite effectiveness and give

warnings regarding suite weaknesses with respect to refactoring fault detection.

7.2 Test Case Prioritization

To the best of our knowledge, RBA is the first prioritization approach dedicated to an early

detection of refactoring faults. However, a considerable amount of research focusing on test

case prioritization has been done in the past decades.

Singh et al. [107] perform an elaborated literature review mapping the state-of-art of test

case prioritization. From an initial amount of 12,977 studies, 106 prioritization techniques

are discussed and classified among eight categories: i) Coverage Based; ii) Modification-

based; iii) Fault-based; iv) Requirement-based; v) History-based; vi) Genetic-based; vii)

Composite approaches; and viii) Other approaches. Even though there is a Modification-

based category, none of the techniques identified by Singh et al. consider exclusively either
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refactoring edits or the impact that those edits may generate in the SUT code. Similarly, the

systematic mapping study performed by Catal and Mishra [23] did not find any approach in

this context. This fact emphasizes the novelty that RBA brings whereas our prioritization

approach focuses specifically on early detection of refactoring faults. Moreover, the found

modification-based techniques require a model representation of the software code (e.g.,

finite state machines) for performing their prioritization. Those models are not always avail-

able or easy do get. RBA in the other hand uses as prioritization heuristics SUT localities,

which, in most of cases, is more practical, and less costly.

Coverage-based prioritization techniques are simple and often used in practice. Tech-

niques from this group base their prioritization on the assumption that test cases that cover

more elements (e.g., statements, methods), are most likely to reveal faults. Those techniques

have been successfully used for speeding up the detection of faults in general. Rothermel

et al. [100] present several coverage-based prioritization techniques and evaluate them ac-

cording to their ability of improving the rate of fault detection. The authors show that

even the last expensive technique significantly improves the suites’ rate of fault detection.

They also suggest that there might be room for improvement of the traditional test case

prioritization techniques. These conclusions are reassured by our empirical studies [7; 5;

4] in which we observed that the general-purpose techniques are not adequate when aiming

at an early detection of refactoring faults. However, the combination of testing coverage and

impact analysis showed to be effective in this context.

Srivastava and Thiagarajan [114] propose a modification-based prioritization technique

that focus on rescheduling regression test cases according to their coverage on modified the

code blocks. This technique is used in our empirical studies (labeled as CB). By focusing

only on the modified parts of the code, this technique ends up not capturing indirect impacts

that a change may have in the code, i.e. behavior changes that are not directly associated

to the changed code but to their impact (e.g., a method renaming may negatively affect

several methods in an inferior hierarchy level). Srivastava and Thiagarajan’s technique does

not consider those situations when prioritizing. Also, they do not apply any specialization

regards to the type of the changes. Thus, these techniques showed to be less effective when

dealing with refactoring faults (Chapter 4 and [7]).

Other recent studies have contributed to advance the state-of-art on test case prioriti-



7.3 Change Impact Analysis 92

zation. In [125] and [46], the authors propose an unified test case prioritization approach

that encompasses both the total and additional strategies. For that, they propose models in

by which a spectrum of test case prioritization techniques ranging from a purely total to a

purely additional technique. Jeffrey and Gupta [54] present an algorithm that prioritizes test

cases based on coverage of statements in relevant slices of the outputs of test cases, and com-

pare their proposed technique with conventional code coverage techniques. Korel et al. [64]

propose prioritization techniques based on system models that are associated with code in-

formation. Srikanth et al. [112] propose a prioritization approach based on requirements

volatility, customer priority, implementation complexity, and fault proneness of the require-

ments. Walcott et al. [118] present a prioritization technique based on a genetic algorithm to

reorder test suites in light of testing time constraints. Park et al. [90] use historical informa-

tion to estimate the current cost and fault severity for cost-cognizant test case prioritization.

Mei et al. [72] propose an static approach for prioritizating JUnit test cases in the absence of

coverage information. Sanchez et al. [103] explore the applicability of test case prioritization

techniques to software product line testing by proposing five different prioritization criteria

based on common metrics of feature models.

7.3 Change Impact Analysis

Both RBA and REFDISTILLER uses a lightweight change impacted analysis that focus on

commonly impacted code localities (Refactoring Fault Models and Refactoring Templates).

Traditional change impact approaches often use either static or dynamic data, however, the

combination of static and dynamic data, although rare, can also be found. RBA’s fits in the

hybrid group, while REFDISTILLER is a static approach.

Bohner and Arnold [19] measure impact through reachability on call graphs. Although

very intuitive, this strategy can be very imprecise as it only tracks methods downstream from

the changed method. On the other hand, Law and Rothermel [66] propose PathImpact, a

dynamic impact analysis strategy based on whole path profiling. From the changed method,

PathImpact goes back and forth in the execution track in order to determine the impact after

the change. One big issues related to any change impact analysis is that, in general, when

dealing with a big change (e.g., a structural refactoring) they tend to collect a great number
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of methods as possible impacted. When relating those impacted method to regression tests,

a great number of test cases may have to be selected as possibly impacted. RBA reduces this

risk by focusing on the locations that a refactoring edit most commonly affect.

Ren et al. [97; 96] first decompose the differences of two versions of a software into

atomic changes (e.g., add a field, delete a field). Then, they use a test cases call graphs

analysis based on rules that identifies the subset of tests, which is potentially affected by the

changes. RBA performs a similar strategy for detecting the possible affected test cases by

using call graphs. However, RBA’s impact analysis is performed by fault models. Ren et

al.’s approach does not distinguish the type of edit that is performed. As RBA differentiates

the edits by type and prioritizes according to their own specific characteristics and impact,

we can say that RBA’s output is specialized for refactorings. Furthermore, by working with

a different granularity level (refactoring edits, instead of atomic changes), RBA tends to

select a smaller group of test cases. This smaller set might not detect the faults in 100%

of the cases, however, our results have shown that, in general, RBA produces very good

results. Moreover, we believe developers would prefer to work with a smaller set of test

cases, specially in context with strict resource constraints.

Zhang et al. [126; 127] extend Ren et al.’s work by improving their impact analysis, and

introducing an spectrum analysis that helps the inspection of the changes, ranking them ac-

cording to their chances of localizing faults. This work evidences the importance of making

the fault debugging process easier, a secondary goal of our work. With RBA we intend to

avoid the need of this spectrum analysis by efficiently selecting the test cases that are di-

rectly related to the common refactoring faults. Thus, the test cases more likely to reveal

those problems are placed in the top positions of our prioritized suite and also close to each

other.

Wloka et al. [120] propose an approach and tool that uses a specific change impact anal-

ysis to guide developers in creating new unit tests. This analysis identifies code changes not

covered in the current test suite, and indicate if tests are missed for exercising those changes.

If a problem is found, a developer can choose to add or extend a test to cover the problematic

locations. Similar to other work, and different from ours, this approach works with a change

impact analysis with finer granularity (an edit is decomposed into atomic changes), which

might generate a bigger impact set than the one collected by our RFM. Moreover, this work
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goes towards test augmentation, which is not the focus of our work. We focus on project

with massive test suites in which there is a need to speed up fault detection.

Mongiovi et al. [77] propose SafeRefactorImpact, an extension of the SafeRefactor

tool [111] that includes an impact analysis step. SafeRefactorImpact detects non-behavior-

preserving transformations in both object and aspect-oriented programs. For that, it de-

composes an edit into small-grained transformations and analyses the impact of each one,

composing a set of impacted methods. Then, similar to SafeRefactor, it uses the Randoop

tool to generate random test cases that are run against two version of the program. SafeR-

efactorImpact’s and RBA’s refactoring fault models (RFM) are similar in the sense that both

focus on code locations that are commonly impacted in a refactoring edit. However, our

solution differs by the granularity of the applied impact analysis. For instance, by focus-

ing on the impact of a refactoring edit as a whole, a RFM enable the selection of a smaller

impacted set, and consequently a smaller number of test cases are selected and used for pri-

oritization. Moreover, RBA is designed for accelerating the detection of refactoring faults

in a sound test suite, while SafeRefactorImpact generates new tests for that focus on de-

tection those faults. Thus, we believe that both approaches, as well as SafeRefactor, can

be used in combination. Finnaly, when comparing REFDISTILLER to SafeRefactorImpact,

we can see that RefDistiller’s refactoring templates have different goal and approach, while

SafeRefactorImpact identifies impacted elements that are used for guiding a testing gen-

eration process, we aim to verify whether the steps for successful refactoring are indeed

performed. Finally, REFDISTILLER goes a step further than tools that use testing valida-

tion by pinpointing the location and cause of anomaly, such as “Detected problematic bind-

ing in the reference getStorageData(value), which may have affected the method

Store.updateExpiration() - line 9”.

7.4 Refactoring, Refactoring Validation and Tools

Refactoring edits are very common. Xing and Stroulia [124] find that 70% of structural

changes developing the Eclipse IDE are refactorings. Those edits are mostly manually per-

formed [79]. Negara et al.’s study [83] finds that experts still prefer manual refactorings

than automated. However, refactoring is an error prone activity. Kim et al. [61] find there is



7.4 Refactoring, Refactoring Validation and Tools 95

correlation between the timing and location of refactorings and bug fixes. Weissgerber and

Diehl [119] find that a high ratio of refactoring is often followed by an increasing number of

bug reports. Most of the participants of Kim et al.’s field study [63] recognize that refactoring

activities increase the changes of bug introduction.

Several works have proposed formal ways of formulating refactorings and reason about

their correctness (e.g. [88; 25; 76; 105; 106]. For instance, Mens et al. [76] formulate refac-

torings as graph transformations and formalize certain aspects of a program’s behavior as

properties of the graph representing it. Schafer et al. [106] proposes a new representation

of Java programs (JL) and a set of algorithms for translating Java programs into JL and vice

versa. Thus, it is possible to formulate refactorings at the level of JL and to rely that transla-

tions are free of naming and accessibility issues. Although these formal verification ensure

safe refactorings, due to their intrinsic complexity, they end up having short applicability in

real projects. However, those work have inspired us greatly when defining the impact rules

of RBA’s refactoring fault models, and REFDISTILLER’s refactoring templates.

Regression testing remains the most used strategy for checking refactoring correctness.

However, Rachatasumrit and Kim [94] find that test suites are often inadequate and develop-

ers may hesitate to initiate or perform refactoring tasks due to inadequate test coverage [63].

Soares et al. [111] design and implement SafeRefactor that uses randomly generated test

suites for detecting refactoring anomalies. It uses the Randoop tool to generate test cases for

the impacted methods. REFDISTILLER’ evaluation evidences that even tool generated tests

can be inadequate. Using a SafeRefactor like testing validation we find that about 25% of

the refactoring anomalies are not identified by using generated test suites, even with a long

time limit for test generation (100 seconds).

GhostFactor [40] checks correctness of manual refactoring, similar to REFCHECKER.

However, unlike REFSEPARATOR, GhostFactor does not have any capability to isolate poten-

tial behavior changes from pure refactoring by running an equivalent automated refactoring.

GhostFactor detects missing edits only, while REFDISTILLER detects both missing and extra

edits. Though we did not run GhostFactor for comparison, according to GhostFactor’s algo-

rithm, it supports only 3 refactoring types and detects only potential missing edits. Therefore,

GhostFactor can detect 5 missing edits in our open source project data set, as opposed to 24

missing edits and 187 extra edits found by REFDISTILLER. Furthermore, GhostFactor can de-
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tect 3 missing edits from the transformations collected from Soares’ work [109], as opposed

to 34 correct missing edits found by REFDISTILLER.

Ge et al. [41] propose a refactoring-aware code review tool. This tool helps code re-

viewers examine pure refactorings in isolation from extra edits. Like REFDISTILLER, Ge et

al. leverage Eclipse refactoring APIs to separate pure refactorings. REFDISTILLER goes a

step further by extending Eclipse refactoring APIs to prevent unsafe refactoring by checking

bug conditions. This allows REFDISTILLER to apply automated refactoring in a safe manner

when isolating pure refactoring. In addition, REFDISTILLER also detect missing edits (in-

complete refactorings) with concrete warning messages about how to fix the anomalies, such

as “Detected problematic binding in the reference getStorageData(value)”.

Tsantalis and Chatzigeorgiou [115; 31] propose an approach and tool (JDeodorant) for

identifying refactoring opportunities. They also introduces a set of rules regarding the

preservation of existing dependences. Different from REFCHECKER’s refactoring templates,

JDeodorant’s rules are designed to predict whether a possible future refactoring may change

the behavior. On the other hand, REFCHECKER’s templates check whether performed are

according to expected when refactoring.

Ge et al. [38] and Foster at al. [32] detect manual refactoring, remind a developer that

automated refactoring is available, and complete it automatically. While these refactoring

completions tools leverage Eclipse refactoring APIs, REFDISTILLER differs from these by

finding anomalies as opposed to auto-completing refactorings.



Chapter 8

Concluding Remarks

During software development and maintenance developers often face refactoring tasks.

Those tasks are mostly manually executed, which may end up with the introduction of prob-

lems in a previous stable code. Detect and fix refactoring faults are usually mentioned as

great challenges by developers [63]. Regression testing suites are commonly used for val-

idating refactorings. Those suites work as safety nets in order to increase the confidence

that a software’s behavior remains untouched after refactoring. However, regression suites

by itself may fall short when test cases are not designed for validation purposes. Moreover,

large test suites may be ineffective as a delayed fault detection may not be acceptable due to

resource limitations. For instance, in the context of our research laboratory there is a project

with a test suite that takes around two days to execute. This doctorate work presents a novel

test case prioritization technique (RBA [7]) that speeds up the detection of refactoring faults

by using regression test suites. Moreover, this approach places near to each other test cases

that often give useful information about a refactoring fault. We also propose a static analysis

refactoring reviewing technique, REFDISTILLER [11]. This approach complements testing

validation by searching for missing steps and extra edits that deviates from a pure refactor-

ing transformation. As both solutions are complementary a developer might use one or both

depending on the available resources and/or whether he trusts his test suite effectiveness.

Besides proposing RBA and REFDISTILLER, we performed an investigation on the role

of testing coverage combined with a location based change impact analysis for detecting

refactoring faults [8]. This study indicates that by focusing on a set of commonly impacted

locations, a test suite are more likely to effectively detect refactoring faults. This conclu-
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sion motivated the development of the Refactoring Fault Models and Refactoring Templates,

bases of RBA’s prioritization algorithm and REFDISTILLER’ fault detection process. More-

over, the study’s conclusions can work as guidelines to developers to help them to evaluate

theirs suite effectiveness and/or to guide them on detecting which code locations require

more testing efforts.

The contributions of our work help developers to locate and fix refactoring faults. Our

evaluations have shown that both RBA and REFDISTILLER improve the state of art in this

sense by providing to developers useful information regarding fault location. RBA, in gen-

eral, places refactoring fault revealing test cases near to each other. Analyze and understand

a testing execution is not always easy. By grouping the refactoring related test cases a de-

veloper can focus his efforts on the test cases nearby and have a better understanding of the

problem. RefDistiller, not only detects missing and extra edits, but pinpoints the possible

location of the problem along with a description of the fault. This extra information can be

used as starting point in order to find and fix the problem.

We believe that the proposed solutions can be integrated in order to provide to develop-

ers a better support when dealing with refactorings validation and/or revision. For instance,

suppose a developer performs a refactoring manually and, although no compilation error is

found, he decides to review it for double checking its correctness. Although the project he is

working on has a test suite with thousands of test cases, he does not know if it is trustwor-

thy for validating the recently performed edits. Moreover, even if the test suite is effective,

running it entirely would be too costly and time consuming. To have an evaluation regard-

ing the test suite effectiveness, the developer could use the results from the empirical study

presented in Chapter 3 and check if there are test cases covering commonly affected code lo-

cations (the refactored method and its callers) combined with a high rate of branch coverage.

If there are no test cases that fulfill these two requirements, the developer could guide efforts

on augmenting the test suite in order to make it more efficient for validating the current and

future refactorings. After making sure the test suite is effective for refactoring validation, the

developer might use RBA for speeding up fault detection. Thus, any detectable refactoring

fault would be early detected by the prioritized suite, saving time and resources. Moreover,

the test cases that are most related to the edits are likely to be near to each other. When

a refactoring fault is found by testing, but the test cases do not provide much help for lo-
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cating the fault, or when the test suite does not detect any fault and the developer wants to

continue his investigation, REFDISTILLER should be used. REFDISTILLER will perform a dif-

ferent analysis, searching for missing and extra edits. The developer can use REFDISTILLER’s

outputs for locating the fault detected by testing and/or for detecting new faults that might

go undetected by testing. Thus, REFDISTILLER’s outputs can also provide useful information

that can be used to improve the project’s test suite.

One of our main goals while conducting this doctorate work was to provide to developers

the proper support for using the proposed solutions. For that, two Eclipse plug-ins were

developed (Chapter 6): PriorJ [98], a prioritization tool for Java/JUnit systems that, besides

other features, includes RBA as built-in prioritization technique; and RefDistiller [11], a tool

that detects missing and extra edits in Java programs, and information to help to review a

refactoring. The statistical model extracted from our study results (Section 3.2.3) enables

the ease evaluation of a suite’s capacity for validating a refactoring.

The challenges faced when developing PRIORJ forced us to provide new solutions that

can be applied when developing/using prioritization in practice. We did not discuss these

challenges and solutions in this documents, however, details about this side research can be

seen in [10].

Although our evaluations show very promising results, our solutions still have limitations

and could be improved. Thus, we can list several improvements planned as future work: i)

refine our the model for evaluating a suite’s effectiveness by investigating whether system’s

characteristics (e.g., coupling and method cyclomatic complexity) are influential factors. We

believe that by introducing new factors, the evaluative capacity of our model could be im-

proved; ii) refine the refactoring fault models. The empirical studies on RBA’s effectiveness

indicate that we could generate a more accurate impacted set if the extraction rules were

less name-based; iii) define fault models and refactoring templates for new refactoring types.

Since our solutions are related to the specific edits of each refactoring, new fault models and

refactoring templates related to new refactorings would amplify their use; iv) investigate how

RBA and RefDistiller would behave when more than one refactoring is applied at once. To

maximize their results and/or avoid false positives, we suggest that the current versions of

our solutions should be used when a single refactoring is performed at time, which might

not be the real refactoring scenario in practice. We plan to investigate the impact of com-
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bined refactorings and adapt our solutions to minimize this limitation; v) use RBA and/or

REFDISTILLER’s outputs to generate new test cases that could improve a suite’s effective-

ness for detecting future refactoring bugs. Both solutions provide interesting information

that could feed a test generation algorithm. The new test cases would be incorporated to the

previous regression suite to improve its capacity of validating future refactorings; and vi) de-

velop a process that combines our solutions (suite evaluation + RBA + REFDISTILLER). This

process would, for instance, define when and how to use each solution during the software

development/maintenance phases. Moreover, we plan to evaluate the real gain of using RBA

and REFDISTILLER, and their tools, in industrial projects, regarding their applicability and

usability.
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Appendix A

Exploratory Study Results

This Appendix section presents the tables (Tables A.1 A.2 A.3 A.4) containing the detailed

results of our exploratory study.

Each faulty version is represented according to the pattern “project version / fault version

/ type of fault”. For instance xv1/f1/em+ds means XML-Security version 1, first created

faulty version in which there is an extract method edit with a deleted statement fault.
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Appendix B

Refactoring Fault Models

This Appendix section presents the refactoring fault models for the remaining refactoring

types: move method, pull up field and add parameter.

1 MoveMethodRFM (C1: class, C2: class, m: Method)

2 BEGIN

3 AS <- Set {};

4 AS.add ( m );

5 // get methods with similar signature

6 AS.addAll ( searchMethodsWithSameName (C1, m.name));

7 AS.addAll (searchMethodCalls (m, C1) );

8 // get methods that access or modify the same fields and/or variables used by m

9 AS.addAll (searchMethodsThatAccessOrModifySameFields (C1, m) );

10 // get methods that have method call with parameters related to any field/

variable modified by m

11 AS.addAll (searchMethodCallsThatUseParametersfromM (C1, m);

12

13 AS.addAll (searchMethodCalls (m, C2) );

14 AS.addAll (searchMethodsThatAccessOrModifySameFields (C2, m) );

15 AS.addAll (searchMethodCallsThatUseParametersfromM (C2, m);

16

17 subClasses <- getSubClasses (C1);

18 FOREACH S in subClasses DO

19 AS.addAll (searchMethodCalls (m, S) );

20 AS.addAll (searchMethodsThatAccessOrModifySameFields (m, S) );

21

22 subClasses <- getSubClasses (C2);

23 FOREACH S in subClasses DO

24 AS.addAll (searchMethodCalls (m, S) );

25 AS.addAll (searchMethodsThatAccessOrModifySameFields (m, S) );

26 END FOREACH

27

28 superClasses <- getSuperClasses (C1);
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29 FOREACH Sp in subClasses DO

30 AS.addAll (searchMethodsWithSameName (Sp, m.name) );

31 END FOREACH

32 superClasses <- getSuperClasses (C2);

33 FOREACH Sp in subClasses DO

34 AS.addAll (searchMethodsWithSameName (Sp, m.name) );

35 END FOREACH

36

37 IF m is #static THEN

38 allClasses <- getAllClasses();

39 FOREACH C in allClasses DO

40 AS.addAll (searchMethodCalls (oldName, C) );

41 AS.addAll (searchMethodsThatAccessOrModifySameFields (m,

C) );

42 END FOREACH

43 END IF

44 return AS;

45 END

Move method refactoring fault model.

1 PullUPFieldRFM (Cs: class, C: class, f: field)

2 BEGIN

3 AS <- Set {};

4 methsC <- searchMethodsThatAccessOrModifyField (C, f)

5 AS.addAll (methsC);

6 AS.addAll (searchMethodsThatAccessOrModifyVariable (Cs, f));

7

8 FOREACH m in methsC DO

9 AS.addAll (searchMethodsWithSameName (m.name, Cs) );

10 END FOREACH

11

12 subClasses <- getSubClasses (Cs);

13 FOREACH S in subClasses DO

14 AS.addAll (searchMethodsThatAccessOrModifyVariable (S, f) );

15 FOREACH m in methsC DO

16 AS.addAll (searchMethodsWithSameName (m.name, S) );

17 END FOREACH

18 END FOREACH

19 return AS;

20 END

Pull up field refactoring fault model.
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1 AddParameterRFM (C: class, m: method, p: parameter)

2 BEGIN

3 AS <- Set {};

4 AS.add ( m );

5 AS.addAll (searchMethodsWithSameName (m.name, C) );

6

7 subClasses <- getSubClasses (C);

8 FOREACH S in subClasses DO

9 AS.addAll (searchMethodCalls (m.name, S) );

10 END FOREACH

11

12 IF oldMethod is #static THEN

13 allClasses <- getAllClasses();

14 FOREACH C in allClasses DO

15 AS.addAll (searchMethodCalls (m.name, C) );

16 END FOREACH

17 END IF

18 return AS;

19 END

Add parameter refactoring fault model.



Appendix C

Remaining Refactoring Templates

REFCHECKER uses templates to detect missing edits in manual refactorings that might lead

to behavior changes. Tables C.1 and C.1 present the template rules that REFCHECKER checks

with brief descriptions. The rules are presented in a pseudo code manner. The following

auxiliary functions are defined in order to simplify the rules presentation:

• getClass(P, m) returns the containing class of method m to be refactored.

• getCallers(m) returns all callers of m.

• isAssociatedWithAField(m) verifies whether the method m accesses any field

declared in the same class.

• checkBindingProblem (m1, m2) verifies whether all method and variable

references are identical between m1 and m2.

• verifyAccessibilityChange (m1, m2) verifies whether method m2 is vis-

ible to method m1.

• haveDependences(m, stms) verifies whether the remaining statements in

method m after the extraction of stmts are dependent on any statements within ex-

tracted code stms.

• getStatements(m, [beginLine;endLine]) returns the statements that are

in between the range of lines specified from beginLine to endLine. In case of an empty

range, it returns all statements from m.
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Table C.1: RefChecker’s refactoring template rules (Part 1).

Move Method (P : original version, Pr: modified version, m1o: method to be refactored,

m2n: newly added method)

1
Cp ={}; co = getClass(P, m1o);

Cp = Cp ∪ {<‘Remove Functionality’, co>}

There must be a method deleting in the original version

P .

2
co = getClass(Pr, m1o);

Cp = Cp ∪ {<‘Add Functionality’, co>}
There must be a new method in the modified version Pr .

3

C = getCallers(P, m1o);

FOREACH (c in C) DO

IF (isAssociatedWithField(m1o)) THEN

Cp = Cp ∪ {<‘Change Attribute Type’, c>};

ELSE Cp = Cp ∪ {<‘Update Statement’, c>};

For all callers of m1o, if the method call is associated to

a field, there must be an attribute type change in P , and

a statement update otherwise.

4

C = getCallers(P, m1o);

FOREACH (c in C) DO

m = getMethod(Pr, c);

IF (checkBindingProblem(c, m)) THEN

Cp = Cp ∪ {<‘Binding Problem’, c>};

All callers of m1o in the modified version (m from Pr)

must preserve all method and variable references from

the original version P .

5
IF (checkBindingProblem(m1o, m2n)) THEN

Cp = Cp ∪ {<‘Binding Problem’, m1o>};

All method and variables references in m1o must remain

the same in the modified version Pr .

6

C = getCallers(P, m1o);

FOREACH (c in C) DO

m = getMethod(Pr, c);

IF (verifyAccessibilityChange (c, m)) THEN

Cp = Cp ∪ {<‘Change Visibility’, m>};

Added method m2n must be visible to the callers of the

removed method m1o.

Pull Up Method: rules 1, 2, 4, and 5

Push Down Method: rules 1, 2, 4, and 5
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Table C.2: RefChecker’s refactoring template rules (Part 2).

Inline Method (P : original code, Pr: modified version, m1o: method to be inlined)

13
Cp ={}; co = getClass(P, m1o);

Cp = Cp ∪ {<‘Remove Functionality’, co>}

There must be a deleted method in the modified version

Pr .

14

STMo = getStatements (m1o, []);

C = getCallers(P, m1o);

FOREACH (c in C) DO

m2n = getMethod(Pr, c);

IF (isNotVoid (c)) THEN

Cp = Cp ∪ {<‘Update Statement’, c>};

FOREACH (s in STMo) DO

Cp = Cp ∪ {<‘Insert Statement’, s, c>};

If the inlined method m1o has a return type, there must

be an updated statement in each of its callers. Also, for

all callers, there must exist a sequence of inserted state-

ment inlined from m1o.

- Check rule 4 See 4

Rename Method (P : original code, Pr: modified version, m1o: method to be renamed)

15
Cp ={}; co = getClass(P, m1o);

Cp = Cp ∪ {<‘Rename Method’, co>}

There must be a method in Pr that had its signature

changed when compared to the original version P .

16

C = getCallers(P, m1o);

FOREACH (c in C) DO

Cp = Cp ∪ {<‘Update Statement’, c>};

For all callers to m1o, there must be an updated state-

ment in modified version Pr .


