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Resumo

Desde os anos 70, o pré-processador C é amplamente utilizado na pratica para adaptar
sistemas para diferentes plataformas e cendrios de aplicacdo. Na academia, no entanto, o
pré-processador tem recebido fortes criticas desde o inicio dos anos 90. Os pesquisadores
tém criticado a sua falta de modularidade, a sua propensdo para introduzir erros sutis e sua
ofuscacdo do cédigo fonte. Para entender melhor os problemas de usar o pré-processador
C, considerando a percepcdo dos desenvolvedores, realizamos 40 entrevistas € uma pesquisa
entre 202 desenvolvedores. Descobrimos que os desenvolvedores lidam com trés problemas
comuns na pratica: erros relacionados a configuragéo, testes combinatérios € compreensao
do cédigo. Os desenvolvedores agravam estes problemas ao usar diretivas ndo disciplinadas,
as quais nao respeitam a estrutura sintdtica do cddigo. Para evoluir familias de programas
de forma segura, foram propostas duas estratégias para a deteccdo de erros relacionados a
configuracdo e um conjunto de 14 refatoramentos para remover diretivas ndo disciplinadas.
Para lidar melhor com a grande quantidade de configuracdes do cddigo fonte, a primeira
estratégia considera todo o conjunto de configuracdes do cédigo fonte e a segunda estratégia
utiliza amostragem. Para propor um algoritmo de amostragem adequado, foram comparados
10 algoritmos com relacdo ao esforco (nimero de configuragdes para testar) e capacidade
de detecgdo de erros (ndmero de erros detectados nas configuragdes da amostra). Com base
nos resultados deste estudo, foi proposto um algoritmo de amostragem. Estudos empiricos
foram realizados usando 40 sistemas C do mundo real. Detectamos 128 erros relacionados
a configuragdo, enviamos 43 correcdes para erros ainda nao corrigidos e os desenvolvedores
aceitaram 65% das corre¢des. Os resultados de nossa pesquisa mostram que a maioria dos
desenvolvedores preferem usar a versao refatorada, ou seja, disciplinada do cédigo fonte, ao
invés do cddigo original com as diretivas ndo disciplinadas. Além disso, os desenvolvedores
aceitaram 21 (75%) das 28 sugestdes enviadas para transformar diretivas ndo disciplinadas
em disciplinadas. Nossa pesquisa apresenta resultados tteis para desenvolvedores de c6digo
C durante suas tarefas de desenvolvimento, contribuindo para minimizar o nimero de erros
relacionados a configuragdo, melhorar a compreensdao e a manutenc¢do do cédigo fonte e

orientar os desenvolvedores para realizar testes combinatérios.



Abstract

Since the 70s, the C preprocessor is still widely used in practice in a numbers of projects,
including Apache, Linux, and Libssh, to tailor systems to different platforms and application
scenarios. In academia, however, the preprocessor has received strong criticism since at least
the early 90s. Researchers have criticized its lack of separation of concerns, its proneness
to introduce subtle errors, and its obfuscation of the source code. To better understand the
problems of using the C preprocessor, taking the perception of developers into account, we
conducted 40 interviews and a survey among 202 developers. We found that developers deal
with three common problems in practice: configuration-related bugs, combinatorial testing,
and code comprehension. Developers aggravate these problems when using undisciplined
directives (i.e., bad smells regarding preprocessor use), which are preprocessor directives
that do not respect the syntactic structure of the source code. To safely evolve preprocessor-
based program families, we proposed strategies to detect configuration-related bugs and bad
smells, and a set of 14 refactorings to remove bad smells. To better deal with exponential
configuration spaces, our strategies uses variability-aware analysis that considers the entire
set of possible configurations, and sampling, which allows to reuse C tools that consider
only one configuration at a time to detect bugs. To propose a suitable sampling algorithm,
we compared 10 algorithms with respect to effort (i.e., number of configurations to test)
and bug-detection capabilities (i.e., number of bugs detected in the sampled configurations).
Based on the results, we proposed a sampling algorithm with an useful balance between
effort and bug-detection capability. We performed empirical studies using a corpus of 40
C real-world systems. We detected 128 configuration-related bugs, submitted 43 patches
to fix bugs not fixed yet, and developers accepted 65% of the patches. The results of our
survey show that most developers prefer to use the refactored (i.e., disciplined) version of
the code instead of the original code with undisciplined directives. Furthermore, developers
accepted 21 (75%) out of 28 patches submitted to refactor undisciplined into disciplined
directives. Our work presents useful findings for C developers during their development
tasks, contributing to minimize the chances of introducing configuration-related bugs and
bad smells, improve code comprehension, and guide developers to perform combinatorial

testing.
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Chapter 1

Introduction

The C preprocessor is a simple, effective, and language independent tool to transform the
source code before compilation, but it provides no perceptible form of modularity [1]. De-
velopers frequently use the C preprocessor to develop infrastructure software like operating
systems, e.g., Linux and FreeBSD, security protocols, such as Libssh, and web servers like
Apache and Cherokee. Infrastructure software is critical, and requires configurability to run
on different platforms and high quality software artifacts to minimize the chances of financial
losses due to software bugs.

The preprocessor is still widely used in industry and practice to implement program
families [2; 3; 4]. A program family is a set of programs whose commonality is so exten-
sive that it is advantageous to study their common properties before analyzing individual
programs [5]. In this context, developers use preprocessor conditional directives, such as
#ifdef, #else, and #endif, to mark parts of the source code as optional, with the pur-
pose of tailoring software systems to different hardware platforms, operating systems, and
application scenarios. However, by coding with preprocessor directives, developers deal
with two independent languages, which hinders code understanding, maintainability, and the

development of tool support.

1.1 Problem Statement

Despite the widespread use of the C preprocessor, it has received strong criticism since at
least the early 90s. Researchers have criticized its lack of separation of concerns [6; 7; 8; 9;

101, its proneness to introduce subtle errors [2; 11; 7; 4; 12; 13], and its obfuscation of the
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source code [13; 3; 6; 14; 15]. Many studies have found bugs related to preprocessor use [16;
12; 17; 18; 19; 20]. Additionally, its complexity hinders tool support available in other
languages, such as automated refactoring [21; 17; 22; 23; 24; 25].

The C preprocessor essentially has not changed since the 70s. Researchers have proposed
several alternatives to preprocessor directives, e.g., syntactical preprocessors [26; 23; 27],
aspect-oriented programming [15; 28], and various forms of metaprogramming. However,
for the best of our knowledge, such alternatives have not been adopted in practice.

To better understand the C preprocessor challenges, and its widespread use in practice
despite all criticism and alternatives, we conducted 40 interviews and a survey among 202
developers. We found that developers have a love/hate relationship with the C preprocessor
and do not see any current technologies that can entirely replace the preprocessor [29]. Many
developers see the preprocessor as an elegant solution to workaround portability problems.
However, developers are aware that they must follow code guidelines strictly to avoid three
common problems of the preprocessor: (1) configuration-related bugs, which are perceived
as more critical than other bugs, (2) combinatorial testing, as conditional directives increase
the number of configurations to check for quality-assurance, and (3) code comprehension,
due to the cluttering of #1ifdefs and C statements [29].

Developers aggravate these problems when using undisciplined directives that do not
respect the syntactic structure of the source code, for example, wrapping a single bracket
without its corresponding closing one [3; 13; 30; 4]. Undisciplined directives influence code
understanding, maintainability, and error proneness negatively [29; 13; 3; 4]. Although some
tools could enforce such guidelines [4; 31; 13; 201, research studies show that guidelines are
not followed strictly in practice [3; 4; 29]. The guidelines on coding style of the Linux Kernel,
for example, guide developers explicitly to avoid undisciplined directives, saying: “prefer
to compile out entire functions, rather than portions of functions or portions of expressions.
Rather than putting an #1 fdef in an expression, factor out part or all of the expression into
a separate helper function and apply the conditional to that function." Some researchers have
proposed refactorings to convert undisciplined into disciplined directives, however, these
refactorings clone code [30; 321, which also impacts code quality negatively [33].

Besides, the vast majority of mature quality-assurance C development tools consider

only a single configuration at a time. For example, state-of-the-art tools, such as Gee, Clang,
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Eclipse, Xcode, and NetBeans, operate typically on C code after the C preprocessor has
resolved variability implemented through conditional compilation (e.g., implemented with
#1ifdef directives). To reuse these mature C development tools to detect configuration-
related bugs, sampling is a viable alternative [34; 35; 36; 37; 20]. That is, instead of analyzing
all configurations, one selects a subset of configurations to analyze individually. However,
the effectiveness of sampling for detecting configuration-related bugs depends significantly
on how samples are selected. In this context, there is a gap of studies comparing sampling
algorithms with regards to their efficiency to detect bugs. In the research literature, there
are some tools with support to deal with variability in C. For instance, TypeChef [17] and
SuperC [38], variability-aware parsers for C code, which analyze complete configuration
spaces. However, they require a time-consuming setup to analyze all dependencies defined
through #include directives.

Due to the complexities of dealing with variability in C and without an appropriate tool
support, developers have problems when evolving C program families, e.g., introducing
bugs [13; 3; 12; 39] and bad smells [33; 29] related to preprocessor directives. Further-
more, developers introduce bugs and bad smells that appear in software repositories like
Git [40], such as uninitialized variables, undefined functions, and other compilation errors.!
This way, as these problems are difficult to detect due to variability [29], they also appear in
the projects releases [12; 39], which may impact time-to-market, software quality, and lead
to problems like financial losses.

In summary, we focus on the following three problems:

1. Configuration-related syntax errors, bugs, and warnings that we can detect by perform-
ing static analysis, such as undeclared and unused variables and functions, memory and

resource leaks, dereference of null pointers, and uninitialized variables;
2. Code comprehension with regards to the use of undisciplined directives;

3. Combinatorial testing, as preprocessor conditional directives increase the number of

configurations to check for quality-assurance.

Mttps://bugzilla.gnome.org/show_bug.cgi?id=580750, 445140, 309748, and 461011.
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1.2 Motivating Examples

To clarify the problems we address in this work, we present some motivating examples in
what follows. For instance, Figure 1.1 (a) presents a syntax error in the CVS? project when
we enable, for example, macros SHUTDOWN, SOCKET, and POPEN. After preprocessing
this code snippet, we generate an invalid program, see Figure 1.1 (b). When compiling this
program, traditional C compilers (e.g., Geec and Clang) report a compilation error, as we
have an else if just after an if statement. However, when compiling the code snippet
presented in Figure 1.1 (a), compilers report no syntax errors or warnings when we enable
macros SHUTDOWN and POPEN, and disable SOCKET. Notice, though, that the syntax error

actually exists, but in another configuration, as it is a configuration-related syntax error.

Configuration 1 Configuration 1

#define SHUTDOWN

#ifdef (SHUTDOWN)

if (current != server_method)
#endif
#ifndef (SOCKET)

if (S_ISSOCK (s.st_mode))
shutdown (fileno, 0);
}
#endif
#ifdef (POPEN)
else if (pclose == EOF){
error ("closing connection");
closefp = 0;

}
#endif

#define SOCKET (%)
#define POPEN

Compilation
Error

Configuration 2

#define SHUTDOWN
#define SOCKET ()
#undef POPEN

Configuration 8

#undef SHUTDOWN
#undef SOCKET ()
#define POPEN

P if (current != server_method)

else if (pclose == EOF){
error ("closing connection™);
closefp = 0;

(ad

b

Figure 1.1: Code snippet of CVS that causes a compilation error.

As another example, Figure 1.2 (a) presents a code snippet of the Bash® project with
unexpected behavior when developers disable macros TRACE and REGISTER, and enable
macro WATCH. As we can see in Figure 1.2 (b), variable ubytes is not initialized, but it
is used at Line 15. Technically, the value of an uninitialized, non-static, local variable is
indeterminate in C, and accessing it leads to an undefined behavior [41]. Developers can use
traditional C tools (e.g., Gee) to detect this uninitialized variable, but it is not guaranteed.
These tools preprocess the code to generate each configuration and check these configura-

tions individually. So, these tools might not detect this uninitialized variable, because it

’http://www.nongnu.org/cvs/
https://www.gnu.org/software/bash/
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appears only in some configurations of the code. In this context, developers face a problem
of selecting which configurations they check (i.e., combinatorial testing), specially because
the space of possible configurations is exponential, in the worst case, and it is usually too
large to explore exhaustively. Assuming n optional and independent configuration options,
the number of configurations is 2". In the Linux Kernel, for example, there are more than

12K configuration options.

Configuration 1 Configuration 8

static void internal_free (O{ #define TRACE 1. static void internal_free O{

int ubytes; #define REGISTER @ 2. int ubytes;

- #define WATCH 3.0 .
#1f (defined (TRACE) || defined (REGISTER)) 4.
#eﬁzi/:es = p->minfo.mi_nbytes; Configuration 2 Z

#define TRACE 7.
#if definedEx (TRACE) #define REGISTER @ 8.

mtrace_free (ubytes); #undef WATCH 9.
#endif 10.
#1f defined (REGISTER) Tt L,

mregister_free (ubytes); Configuration 8 12.
#endif 13.
#if defined (WATCH) #undef TRACE o 14,

malloc_ckwatch (ubytes); #“”d?f REGISTER ® " 15. malloc_ckwatch Cubytes);
#endif #define WATCH 16.
} Uninitialized 17.}

Variable
() (b)

Figure 1.2: Code snippet of Bash with unexpected behavior.

Besides syntax errors and undefined behavior that appear only in some configurations
of the source code, developers can also introduce bad smells. Figure 1.3 presents a code
snippet of Xterm* that contains undisciplined directives. As we can see, the developers
of Xterm encompass only a closing bracket with preprocessor directives (see Line 21). In
this work, we consider undisciplined directives as bad smells [33] related to preprocessor
directives, because undisciplined directives influence code quality negatively, making the
tasks of reading and understanding the source code more difficult [13; 3; 4].

Developers may need more time to understand the code snippet of Figure 1.3 (a), e.g., to
detect where 1f statements end, or to analyze whether opening and closing brackets match
correctly. Furthermore, undisciplined directives leave the source code more conducive to
introduce syntax errors [12]. In this code snippet, for example, there is a syntax problem
but in invalid configurations, such as when we enable macros GLIBC and PTSFLAG, as
presented in Figure 1.3 (b). By setting this configuration, developers introduce an extra
bracket at Line 12. Thus, they may still need more time to detect that this configuration is

invalid since the source code does not contain this information explicitly.

‘http://invisible-island.net/xterm/
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1. . Invalid Configuration
2. #ifdef GLIBC #define GLIBC

4. char *name = ptsname(*pty);

5. if (name != @) {

6. strcpy(ttydev, name);

7. result = 0;

g' 3 3 Syntax Problem
10. #else

11. #1f defined (PTSFLAG)

12. if (result){ -

13. #endif if ((*pty = getpt()) >= 0){
14. result = ((*pty = open("ptmx", O_RDWR)) < @); char *name = ptsname(*pty);
15. #endif if (name !'= @) {

16. result = pty_search(pty); strcpy(ttydev, name);

17.#if defined (SVR4) |1 defined (PTSFLAG) result = 0;

©OoONOU A WNE

18. if (lresult) }
19. strcpy(ttydev, ptsname(*pty)); }
20. #ifdef PTSFLAG result = pty_search(pty);
21. 3} 10.1if (!result)
22. #endif 11. strcpy(ttydev, ptsname(*pty));
: _ " " _ 2.}
23. if ((*pty = open("/dev/ptc”, O_RDWR)) >= 0){ 2.4 . i
24. strcpy(ttydev, ttyname(*pty)); 13.if ((*pty = open("/dev/ptc", O_RDWR)) >= 0){
25. result = 0; 14.  strcpy(ttydev, ttynameC*pty));
6. 3 ’ 15.  result = 0;
27. 16.}
28. #endif A7 0 o
29.
(@ )

Figure 1.3: Code snippet of Xterm with bad smells.

Bugs like undefined behavior may cause security problems and financial losses. In this
context, developers need better tool support to develop and evolve program families, and to
minimize configuration-related bugs. We can support C developers in distinct ways, such as
using a defective or corrective strategy, in which the main focus is finding bugs. Also, we can
apply a perfective or preventive solution, which focuses on improving code quality with the
purpose of avoiding bugs in the future, and making the tasks of reading and understanding
the code faster [42]. In addition, studies to investigate the use of the C preprocessor in real
projects are helpful to understand common problems that happen in practice, provide insights
for better development processes, and minimize chances of introducing subtle bugs [13; 3;

12; 39; 29; 43].

1.3 Solution

To minimize the aforementioned problems, this study proposes an approach to safely evolve
C program families. To support defective evolution, which focuses on detecting exiting prob-
lems [42], we defined two strategies to detect configuration-related bugs. These strategies
consider different types of bugs, such as syntax errors, type errors, memory leaks, resource

leaks, dereferences of null pointers, and uninitialized variables.
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The first strategy applies variability-aware analysis. It uses a variability-aware parser
to generate abstract syntax trees enhanced with variability information and performs static
analysis to detect configuration-related bugs. Our first strategy uses some simplifications
to avoid the time-consuming setup of variability-aware tools and to make the analysis of
several projects feasible, such as the use of stubs to eliminate the complexities of dealing
with #include directives.

The second strategy uses sampling, which allows us to reuse traditional C tools, such as
Gcce, Clang, and Cppcheck, to check one configuration at a time. The efficiency of our second
strategy depends significantly on how we select samples. This way, we performed a study
to compare a number of sampling algorithms, guiding developers to perform exponential
testing. Based on the results of this study, we propose the Linear Sampling Algorithm (LSA),
which provides an useful balance between effort (i.e., number of configurations to test) and
bug-detection capability (i.e., number of bugs detected in the sampled configurations).

To support perfective evolution, which focuses on improving code quality [42], we de-
fined a catalog of refactorings to make the source code less conducive to introduce bugs,
and improve code readability. Our refactorings are transformation templates, and each refac-
toring is an unidirectional transformation satisfying specific preconditions. Furthermore,
our catalog of refactorings removes undisciplined directives without cloning code, different
from previous studies [30; 4; 32]. Thus, developers do not need to decide whether to keep
undisciplined directives or to introduce code clone.

Finally, we developed a supporting tool named Colligens to implement the strategies
to detect configuration-related bugs and to apply the catalog of refactorings automatically.
By using Colligens, developers gain the benefits of an integrated, sampling-based, and

variability-aware environment to develop program families in C.

1.4 Evaluation

To evaluate our strategies and the catalog of refactorings, we used a corpus of 63 C open-
source projects. Our corpus includes projects of different sizes, ranging from 2 thousand
to 7 million lines of code, including projects from different domains, such as web servers,

databases, diagramming software, lexical analysers, text editors, and file compressors.
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To evaluate our support for defective evolution, we instantiated the sampling-based and
the variability-aware strategies. To select a suitable sampling algorithm, we conducted a
comparative study to analyze sampling algorithms and understand the tradeoffs, especially
with regard to effort and bug-detection capabilities. We analyzed 10 sampling algorithms and
35 combinations of these sampling algorithms in a study of 135 known configuration-related
bugs in 24 projects of our corpus. The results motivated us to instantiate the sampling-
based strategy using LSA. We also used TypeChef to generate abstract syntax trees with
variability information, and Cppcheck, a static analysis tool that developers have been using
in many popular projects to detect various kinds of bugs, including memory leaks, uninitial-
ized variables, and dereference of null pointers. In addition, developers of Cppcheck claim
to minimize false positives.

By applying the sampling-based strategy using LSA and Cppcheck, we detected 34 mem-
ory leaks, 12 uninitialized variables, 11 dereferences of null pointers, 6 resource leaks, and 2
buffer overflows. By using TypeChef in our variability-aware strategy, we detected 24 syntax
errors, 14 undeclared functions, 2 undeclared variables, 7 unused functions, and 16 unused
variables. Overall, we detected 128 configuration-related bugs, submitted 43 patches to fix
the configuration-related bugs not fixed by developers, and 28 (65%) patches were accepted.

Our empirical study presents findings to aid developers during their development tasks,
such as examples of common configuration-related bugs, and analyses of how developers
introduce these bugs in practice. The results show that configuration-related bugs remain
longer in the source code than bugs that appear in all configurations. The variability of
program families hide configuration-related bugs, hindering the detection of such bugs.
We found that the majority of configuration-related bugs involve two or less preprocessor
macros, which support the effectiveness of sampling algorithms, such as pair-wise [44;
45], and LSA. Furthermore, the results show that configuration-related bugs appear as fre-
quent as bugs that occur in all configurations of the source code, giving evidence that bugs
are equality distributed across different configurations.

We evaluated our catalog of refactorings regarding frequency of application possibili-
ties in practice, opinion of developers, behavior preservation, and quality of the refactored
code. We found 5670 application possibilities for our refactorings in 63 real-world projects,

showing many opportunities to apply the refactorings. With regards to the opinion of de-
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velopers, we found by using our survey among 202 developers that most participants prefer
to use the refactored (i.e., disciplined) version of the source code instead of the original
source code with undisciplined directives. Furthermore, developers accepted 21 (75%) out
of 28 patches that we submitted converting undisciplined into disciplined directives. To
check that our refactorings are behavior preserving, we applied the refactorings to more
than 36 thousand programs generated automatically using a formal model as well as in
three real-world projects: BusyBox, OpenSSL, and SQLite. By using regression testing [46;
47], we detected and fixed a few behavioral changes introduced by our refactorings, the
majority caused by unspecified behavior in the C language, but also problems in the imple-
mentation of the catalog of refactorings. Last, we removed 447 undisciplined preprocessor
directives of 12 real-world systems, such as Apache and Ghostscript, without cloning code,

different from previous work [32; 30; 4].

1.5 Summary of Contributions

In summary, the main contributions of this thesis are:

e An interview study to understand how developers perceive the C preprocessor and
complimentary studies (literature review, online survey, and repository analysis) to

cross-validate and to quantify the results [29];

e A comparison of sampling algorithms for program families with regards to effort and
bug-detection capability. Based on the results of our comparative study, we proposed

the Linear Sampling Algorithm (LSA) [43];

e An empirical study to investigate and to quantify configuration-related bugs using real

C projects [12; 39; 48; 49];

e Two strategies to identify configuration-related bugs in C projects using sampling and

variability-aware analysis [12; 39]1;
e A catalog of refactorings to remove bad smells in preprocessor directives [50];

e A supporting tool named Colligens that automatizes our strategies to detect

configuration-related bugs and applies our catalog of refactorings automatically [51].
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1.6 Organization of this Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we present background in-
formation about the main concepts used in this thesis. In Chapter 3, we describe the problem
we address in this study. In Chapter 4, we present the sampling-based strategy to detect bugs,
and in Chapter 5, we present the variability-aware strategy. Chapter 6 presents our catalog of
refactorings to remove bad smells in preprocessor directives, and Chapter 7 presents our sup-
porting tool. Finally, we discuss the related work in Chapter 8, and present the concluding

remarks in Chapter 9.



Chapter 2

Background

In this chapter, we present a brief overview of the main concepts used in this thesis. In Sec-
tion 2.1, we discuss program family and software product line concepts. Section 2.2 presents
information about the C preprocessor, including the definition of configuration, configuration
spaces, configuration-related bugs, and undisciplined directives. In Section 2.3, we present
concepts of variability-aware analysis, and Section 2.4 discusses sampling-based analysis.
Section 2.5 considers concepts and tools to perform static analysis, and Section 2.6 discusses

refactorings in C program families.

2.1 Program Families and Software Product Lines

A program family is a set of programs whose commonality is so extensive that it is advan-
tageous to study their common properties before analyzing individual family members [5].
In this context, individual family members may have different functionalities, or the same
functionalities implemented differently according to specific operating systems and platform
characteristics [2]. The concept of program families is similar to Software Product Lines
(SPL) [52; 53]. However, the latter is more systematic and uses some concepts, theories,
and artifacts that are not necessarily used in program families, e.g., feature model [54; 55;
56] and configuration knowledge [57; 58].

Software product line engineering has its principles based on automobile manufactures,
which enable mass production cheaper than individual product creation. These manufactures

use a common platform to derive products that can be customized to specific customers or

11
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market segments needs [52]. In the context of software engineering, the combination of mass
customization, large-scale production, and the use of a common platform to derive products
results in the software product line engineering paradigm [53].

A product line is a set of similar software intensive systems that share a collection of
common features satisfying the needs of specific customers or market segments. This set
of systems are developed from a set of core assets, which are documents, specifications,
components, and other software artifacts that naturally become highly reusable during the
development of each specific system in the product line [59; 60; 61; 53].

In this sense, the software product line development paradigm uses a systematic and

planned reuse strategy, which is presented in Figure 2.1 and explained in what follows [52]:

e Core asset development: In this activity, a set of core assets, a product line scope,
and a production plan are produced. The core assets form the basis of the product line

and its production capability;

e The product development activity receives as input the outputs of the core asset de-
velopment, and a product-specific requirement. The product required is developed

using the core assets developed previously;
e Management is necessary because core asset development and product development

activities are iterative, and this iteration must be carefully managed.

Ny

Core Asset Product
Development Development

‘n}

Figure 2.1: The activities of software product line engineering.
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Regarding the C language, developers often use the C preprocessor to handle variability,
solve portability problems, and implement individual family members [2], i.e., developers
encompass C source code with preprocessor directives, such as #ifdef, #else, #elif,
and #endif. However, real C program families do not necessarily use the concepts and
artifacts of SPL, and their development is not always systematic. Thus, in this study, we use
the term program family to reference projects, such as Apache and Libssh, which use the
C preprocessor to handle variability and portability. The next section presents an overview

about the C preprocessor.

2.2 The C Preprocessor

The C preprocessor is a language-independent tool for lightweight meta-programming that
fills a need, among others, for portability and variability. The preprocessor is widely used
in practice. It is essentially used in all projects written in C, including many well-known
databases and operating systems. The C preprocessor essentially has not changed since the
70s and it is used automatically by C compilers to transform programs before compilation.
The preprocessor is executed during the compilation process and performs three interacting

tasks:

o [t lexically includes files (# include);
o [t expands macros (defined with #define); and

o [t conditionally excludes part of the source code depending on which and how macr