
Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da

Computação

Estratégias para Controlar o Tamanho da Suíte de

Teste Gerada a partir de Abordagens MBT

Emanuela Gadelha Cartaxo

Tese submetida a Coordenação do Curso de Pós-Graduação em Ciência da

Computação da Universidade Federal de Campina Grande - Campus I como

parte dos requisitos necessários para a obtenção do grau de doutor em Ciência

da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

Patrícia Duarte de Lima Machado

(Orientadora)

Antonia Bertolino

(Co-Orientadora)

Campina Grande, Paraíba, Brazil

c©Emanuela Gadelha Cartaxo, 30/03/2011

«

FICHA CATALOGRÁF1CA ELABORADA PELA BIBLIOTECA CENTRAL DA UFCG

C322e Cartaxo, Emanuela Gadelha.

Estratégias para controlar o tamanho da suíte de teste gerada a partir de

abordagens MBT / Emanuela Gadelha Cartaxo. — Campina Grande, 2011.

158 f.: il . col.

Tese (Doutorado em Ciência da Computação) - Universidade Federal

de Campina Grande, Centro de Engenharia Elétrica e Informática.

Referências.

Orientadoras: Prof. Ph.D. Patrícia Duarte de Lima Machado, Prof.

Ph.D. Antónia Bertolino.

1. Teste Caixa-Preta. 2. Redução. 3. Seleção. I . Título.

CDU -004.415.532.2(043)

UFCG • BIBLIOTECA - CAMPnc: j

so,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA es- o ç - on

"STRATEGIES FOR CONTROLLING THE SIZE OF TEST SUITE GENERATED FROM

MBT APPROACHES"

EMANUELA GADELHA CARTAXO

TESE APROVADA EM 11.02.2011

PATRICIA DUARTE DE LIMA MACHADO, Ph.D

Orientador(a)

ANTONIA BERTOLINO, Ph.D

Orientador(a)

JOI^GE CESAR ABRANTES DE FIGUEIREDO, D.Sc

Examinador(a)

FRANKLIN DE SOUZA RAMALHO, Dr.

Examinador(a)

ROBERTA DE SOUZA COELHO, Dr
3

Examinador(a)

PAULO HENRIQUE MONTEIRO BORBA, Ph.D

Examinador(a)

CAMPINA GRANDE - PB

Resumo

Teste é a técnica mais comumente utilizada para avaliar a qualidade do software como

parte do processo de validação e verificação. Entretanto é normalmente uma atividade cara.

Prometendo reduzir os custos e também promover efetividade, abordagens de Teste Baseado

em Modelos (Model-based Testing - MBT) têm sido propostas, onde os casos de teste podem

ser obtidos a partir de especificações. Em MBT, os algorítmos usados para obter casos de

teste são normalmente baseados em “busca” em um modelo comportamental e, na maioria

das vezes, o critério de parada é baseado em um critério de cobertura estrutural que é exaus-

tivamente aplicado. Portanto, neste contexto, o número de casos de teste tende a ser muito

grande. Por outro lado, nem sempre há recursos suficientes (tempo e dinheiro) para executar

todos eles. Também, alguns casos de teste podem exercitar sequências comuns de funcional-

idades. Neste sentido, redundância é um conceito importante que pode ser considerado para

obter uma suíte de teste menor, uma vez que partes redundantes podem não incrementar a

cobertura de funcionalidades ou cobertura de faltas.

Algumas estratégias para controlar o tamanho da suíte de teste têm sido propostas: se-

leção de casos de teste e redução de suítes de teste. A primeira normalmente considera um

propósito de teste (para reduzir o espaço de busca) e/ou fixa um número de casos de teste

desejado sem levar em consideração o conceito de redundância. Por outro lado, algumas

estratégias para redução de suítes de teste são propostas e experimentadas considerando a

redundância estrutural no contexto de teste caixa branca.

Obviamente, é necessário buscar estratégias para controlar o tamanho das suítes de teste

geradas a partir de abordagens MBT que considerem o conceito de redundância. Difer-

entes estratégias para controlar o tamanho das suítes de teste foram propostas nesta tese fo-

cando em seleção e redução. Os resultados mostram que estratégias para seleção e redução

baseadas em Similaridades são boas para detectar faltas e prover um adequada cobertura. As

estratégias propostas podem ser aplicadas a diferentes níveis de teste, porém o foco é teste

de sistema.

Por fim, um novo modo de avaliar estratégias para redução de suítes de teste - con-

siderando a taxa de detecção de faltas - é proposta. A taxa de detecção de faltas é uma

i

métrica largamente utilizada para comparar estratégias de priorização de suítes de teste, en-

tretanto até agora não tinha sido considerada para avaliar estratégias de redução de suítes de

teste.

ii

Abstract

Testing is the most commonly applied technique to evaluate the quality of software as

part of verification & validation processes. However, it is usually an expensive activity.

Promising to reduce costs as well as promoting effectiveness, Model-based Testing (MBT)

approaches have been proposed, where test cases can be obtained from specifications. In

MBT, the algorithms used to obtain test cases are usually based on a “search” in a behavioral

model and, in most of the times, the stop decision is based on structural coverage criteria

that are exhaustively applied. Therefore, in this context, the number of applicable test cases

tends to be very high. On the other hand, usually, there are not sufficient resources (time and

money) to execute all of them. Also, some test cases may exercise common sequences of

functionalities. In this sense, redundancy is an important concept that can be considered to

obtain a smaller test suite, once that redundant parts may not increase functionality coverage

or fault detection.

Some strategies for controlling the size of the test suites have been proposed: test case

selection and test suite reduction. The former usually considers a test purpose (to reduce a

space search) and/or fix a number of test cases that are desired without taking into account the

redundancy concept. On the other hand, some strategies for test suite reduction are proposed

and experimented considering structural redundancy for white-box testing.

Obviously, it is necessary to seek strategies for controlling the size of the test suites

generated from MBT approaches that consider the redundancy concept. Different strategies

for controlling the size of test suites are proposed in this thesis focusing on selection and

reduction. Results show that strategies for selection and reduction based in Similarities are

good to detect faults and provide a adequate coverage. Even though the strategies proposed

can be applied to different testing levels, the focus is on system testing.

Finally, a new way to evaluate test suite reduction strategies - by considering the rate of

fault detection - is proposed. Even though, the rate of fault detection is a metric widely used

to compare test suite prioritization strategies, it has not yet been considered to evaluate test

suite reduction strategies.

iii

Agradecimentos

Inicialmente, eu gostaria de agradecer a Deus por tudo.

Obrigada aos meus pais e irmãs pelo amor, compreensão e suporte dado em todas as

dificuldades encontradas durante estes anos. Provavelmente eu nunca teria chegado até aqui

sem isso.

Obrigada a José Lima Júnior por sua paciência, compreensão e amor durante estes anos.

Eu gostaria de agradecer a minha orientadora Patrícia Machado pelo seu apoio profis-

sional. Ela foi não somete uma boa professora, mas também amiga. Seu apoio e paciência

foram valiosos durante esses anos.

Eu gostaria de agradecer a minha co-orientadora Antonia Bertolino pela sua colaboração

durante este trabalho e por ter me adotado em seu grupo. Todas as discussões foram valiosas

para este trabalho.

Eu gostaria de agradecer a Eda Marchetti pelo seu apoio profissional e pessoal (incluindo

os sorrisos e “chiacchieri”) enquanto eu estava em Pisa.

Eu gostaria de agradecer a Francisco de Oliveira Neto pelo seu apoio técnico, discussões

valiosas durante a implementação das estratégias e, claro, por estar sempre aberto a escutar

meus desabafos.

Eu gostaria de agradecer a João Felipe Ouriques e Priscila Vieira pelo apoio técnico.

Eu gostaria de agradecer a equipe do projeto de pesquisa Motorola Brazil Test Center

(Motorola BTC-RD) por todas as discussões.

Por fim, obrigada aos meus amigos: Ana Emília, Ana Esther, Andréia Karla, Danilo,

Laísa, Neto, Rafael, Rafaelly, Ramon, Raniere, Spachson e Verlaynne pelo apoio e por ter

tolerado minhas mudanças de humor.

iv

Conteúdo

1 Introdução 1

1.1 Visão Geral da Tese . 3

1.2 Metodologia . 4

1.3 Estrutura da Tese . 5

2 Fundamentação Teórica 8

2.1 Software Testing . 8

2.1.1 Test Case . 9

2.1.2 Testing Methods . 10

2.1.3 Level of Testing . 11

2.2 Model-Based Testing . 12

2.2.1 Models . 13

2.2.2 Activities of MBT . 15

2.3 Coverage criteria . 16

2.4 Test Case Selection . 18

2.5 Test Suite Reduction . 19

2.6 Test Case Prioritization . 23

2.7 Value Based approach . 24

2.8 Experimentation in Software Engineering 25

2.8.1 Scientific Methods in Software Engineering 25

2.8.2 Experiment . 26

2.9 Statistical Analysis . 31

2.9.1 Descriptive Statistic . 31

2.9.2 Graphical Visualization . 32

v

CONTEÚDO vi

2.9.3 Hypothesis Testing . 33

2.10 Concluding Remarks . 34

3 Similaridade 35

3.1 Redundancy . 35

3.2 Similarity Function . 38

3.3 Similarity Matrix . 40

3.4 Concluding Remarks . 41

4 Seleção baseada em Similaridade 43

4.1 Definition . 44

4.2 Example - Similarity Selection . 46

4.3 Case Study . 48

4.3.1 Application . 48

4.3.2 Case Study - Preparation . 49

4.3.3 Results of the Case Study . 49

4.3.4 Concluding Remarks - Case Study 51

4.4 Experiment - Selection . 51

4.4.1 Definition . 51

4.4.2 Planning . 52

4.4.3 Operation . 54

4.4.4 Analysis and Interpretation . 56

4.4.5 Concluding Remarks - Experiment 57

4.5 Concluding Remarks . 57

5 Similaridade Balanceada (WSA) 59

5.1 Definition . 59

5.2 Example - WSA . 63

5.2.1 Example - Description . 63

5.3 Case Study . 67

5.3.1 Applications . 67

5.3.2 Metrics . 68

CONTEÚDO vii

5.3.3 Case Study - Preparation . 68

5.3.4 Results of the Case Study . 70

5.4 Concluding Remarks . 76

6 Redução baseada em Dissimilaridade 77

6.1 Definition . 78

6.2 Example - Dissimilarity . 79

6.3 Case Study . 82

6.3.1 Application . 82

6.3.2 Case Study - Preparation . 83

6.3.3 Results of the Case Study . 83

6.4 Experiment - Reduction . 86

6.4.1 Definition . 86

6.4.2 Planning . 87

6.4.3 Operation . 89

6.4.4 Analysis and Interpretation . 90

6.4.5 Concluding Remarks - Experiment 92

6.5 Concluding Remarks . 93

7 Analisando Redução baseada na Ordem de Seleção 94

7.1 Motivation . 95

7.2 General definition . 97

7.3 Case Studies . 99

7.3.1 Case Studies Design . 99

7.3.2 Results . 102

7.3.3 Threats to validity . 103

7.4 Discussion . 104

7.5 Concluding Remarks . 106

8 Revisão de Trabalhos em Seleção de Casos de Teste e Redução de Suítes de Teste108

8.1 Review of Work on Test Case Selection 108

8.2 Review of Work on Test Suite Reduction 110

CONTEÚDO viii

8.3 Concluding Remarks . 114

9 Conclusões e Trabalhos Futuros 116

9.1 Conclusions . 116

9.2 Future works . 118

A Similarity based Selection - Case Studies 128

A.1 Introduction . 128

A.2 Overview of Case Study Applications . 129

A.3 Overview of Case Studies Definition . 132

A.3.1 Evaluation Criteria . 132

A.3.2 Test Case Selection Goals . 134

A.3.3 Fault Model . 134

A.4 Case Studies Results . 137

A.4.1 Transition Based Coverage . 137

A.4.2 Fault-based Coverage . 142

A.5 Case Studies - General Remarks . 150

B LTS Generator 153

C Experiment - Test Suite Reduction 155

Lista de Figuras

1.1 Visão geral do processo de seleção de casos de teste/ redução de suítes de teste 5

2.1 System Test Case . 10

2.2 Annotated LTS model . 14

2.3 Test Case . 15

2.4 Model Based Testing . 16

2.5 LTS model . 17

2.6 Sample of Box Plot . 32

2.7 Confidence Intervals - a, b, c, d and e . 33

3.1 LTS Behaviour Model - Phonebook . 36

3.2 Test Cases - Redundancy . 38

4.1 Example - LTS model . 46

4.2 Average Number of excluded transitions by running each test selection strat-

egy 100 times for each test selection goal 50

4.3 Average Number of covered faults by running each test selection strategy

100 times for each test selection goal . 50

4.4 Anderson-Darling normality test - Similarity 56

4.5 Anderson-Darling normality test - Random 57

5.1 Creating a New Contact - Main Flow . 63

5.2 Creating a New Contact - Alternative Flows 64

5.3 Labeled Transition System (LTS) Behavior model 65

5.4 Probabilities . 65

ix

LISTA DE FIGURAS x

5.5 Average number of covered faults by running each test selection strategy -

with probabilities assigned by WSA designer - 100 times for each test case

selection goal - Application 1. 70

5.6 Average number of covered faults by running each test selection strategy -

with probabilities assigned by test designer - 100 times for each test case

selection goal - Application 1. 71

5.7 Average number of covered faults by running each test selection strategy -

with probabilities assigned by WSA designer - 100 times for each test case

selection goal - Application 2. 72

5.8 Average number of covered faults by running each test selection strategy -

with probabilities assigned by test designer - 100 times for each test case

selection goal - Application 2. 72

5.9 Average number of excluded transitions by running each test selection strat-

egy - with probabilities assigned by WSA designer - 100 times for each test

case selection goal - Application 1. 73

5.10 Average number of excluded transitions by running each test selection strat-

egy - with probabilities assigned by test designer - 100 times for each test

case selection goal - Application 1. 74

5.11 Average number of excluded transitions by running each test selection strat-

egy - with probabilities assigned by WSA designer - 100 times for each test

case selection goal - Application 2. 75

5.12 Average number of excluded transitions by running each test selection strat-

egy - with probabilities assigned by test designer - 100 times for each test

case selection goal - Application 2. 75

6.1 Example - LTS model . 79

6.2 TaRGeT - Reduced Test Suite Size . 84

6.3 TaRGeT - Failures . 85

6.4 Interval Plot . 91

6.5 Anderson-Darling normality test - Dissimilarity 91

6.6 Anderson-Darling normality test - GRE 92

LISTA DE FIGURAS xi

6.7 Box Plot RTSS of DSim - GRE . 93

7.1 Test Case Order . 96

7.2 Overview of a test suite reduction process 100

7.3 Application 1 - GE . 103

7.4 Application 1 - GRE . 103

7.5 Application 1 - Greedy . 103

7.6 Application 1 - H . 103

7.7 Application 2 - GE . 104

7.8 Application 2 - GRE . 104

7.9 Application 2 - Greedy . 104

7.10 Application 2 - H . 104

A.1 An excerpt of the LTS model for Case Study 1. 136

A.2 Average number of excluded transitions by running each test selection strat-

egy 100 times for each test case selection goal - Case Study 1. 137

A.3 Average number of excluded transitions by running each test selection strat-

egy 100 times for each test case selection goal - Case Study 2. 139

A.4 Average number of excluded transitions by running each test selection strat-

egy 100 times for each test case selection goal - Case Study 3. 140

A.5 Percentage of the average number of excluded transitions in all case studies

for each test case selection goal. 141

A.6 Percentage of the average number of excluded pairs of transitions in all case

studies for each test case selection goal. 142

A.7 Average number of covered faults by running each test selection strategy 100

times for each path coverage goal - Case Study 1. 143

A.8 Average number of covered faults by running each test selection strategy 100

times for each path coverage goal - Case Study 2. 144

A.9 Average number of covered faults by running each test selection strategy 100

times for each path coverage goal - Case Study 3. 145

A.10 Percentage of the average number of faults transitions covered in all case

studies for each test case selection goal. 146

LISTA DE FIGURAS xii

A.11 Average and minimum number of the most effective test cases that are in-

cluded for each test case selection goal - Case Study 1. 147

A.12 Average and minimum number of the most effective test cases that are in-

cluded for each test case selection goal - Case Study 2. 148

A.13 Average and minimum number of the most effective test cases that are in-

cluded for each test case selection goal - Case Study 3. 149

A.14 Average number of the times (out of 100 executions of each strategy) at least

one of most effective test cases is selected in all case studies for each test

case selection goal. 150

C.1 Anderson-Darling normality test - GRE 156

C.2 Anderson-Darling normality test - GE . 156

C.3 Anderson-Darling normality test - G . 157

C.4 Anderson-Darling normality test - H . 157

Lista de Tabelas

2.1 TS consists of Test Cases t1, ..., t7, Test Requirement reqn, and Associated

Testing Sets are Tn - Example 1 . 20

2.2 Cardinality . 23

2.3 Statistical tests for different Experimental Designs and data distribution . . 34

3.1 Test Cases generated from LTS model presented in Figure 3.1 and their re-

spective lengths . 37

3.2 Pair of Test Case and Number of Identical Transitions 39

4.1 Test Cases and Size of test cases . 46

4.2 Mean, Standard Deviation and number of necessary replications for each

technique. 53

4.3 Mann-Whitney Test - Sim and Random 57

5.1 Test Cases generated from LTS model presented in Figure 5.3 and their re-

spective lengths . 65

5.2 Weights of the test cases obtained from LTS Model 5.3 and assigned proba-

bilities 5.4 . 66

5.3 Number of Test Cases and Faults . 68

6.1 Test Cases and Size of test cases . 81

6.2 Average of RTS size (100 executions) for all 3 sets of test requirements . . 83

6.3 Average of test suite reduced size (100 executions) for all 3 sets of test re-

quirements . 84

6.4 Summary - Percentage of Reduction and Fault Coverage 85

xiii

LISTA DE TABELAS xiv

6.5 Mean, Standard Deviation and number of necessary replications for each

technique. 88

6.6 Mann-Whitney Test - GRE and DSim . 92

7.1 Test Suite and Faults exposed . 95

7.2 APFD of the considered reduction heuristic 95

7.3 Application 1: Reduced Test Suite Size and Number of Faults. 102

8.1 Kinds of strategies for selecting test cases compared to the Similarity strategy

and WSA strategy . 111

8.2 Kinds of strategies for reduction test suites compared to the Dissimilarity

strategy . 115

A.1 Embedded item and available Tasks . 130

A.2 Case Studies - Metrics . 131

A.3 Faults per Number of Transitions and Test Cases and Test Cases per Transi-

tions (Similarity Rate) . 131

A.4 Fault Model - Case Study 1. Test cases 04, 12, 18 are the most effective test

cases w.r.t. the number of faults covered 138

A.5 Execution time for full test case generation and also one execution of simi-

larity selection algorithms with 50% test case selection goal. 152

C.1 Kruskal-Wallis Test - G, GE, GRE, H . 158

Capítulo 1

Introdução

Teste é uma atividade para avaliar a qualidade das aplicações e é normalmente usado na

prática como uma atividade do processo de verificação e validação. Esta atividade frequen-

temente consome uma quantidade significante de recursos em projetos de desenvolvimento

[46], dessa forma pesquisas têm sido direcionadas para desenvolver abordagens que possam

contribuir para diminuir os custos (tempo e dinheiro [33; 8]) que são demandados por esta

atividade. Uma dessas abordagens é o Teste baseado em Modelos (Model-based Testing -

MBT).

MBT tem se tornado popular devido a necessidade de garantia de qualidade e também

devido ao paradigma de desenvolvimento emergente centrado no modelo e metodologias de

desenvolvimento centradas em teste [48]. MBT promete controlar a qualidade do software

e reduzir os custos inerentes do processo de teste, uma vez que os casos de teste podem

ser gerados a partir da especificação do software. Assim, casos de teste podem ser obtidos

antes ou durante o processo de desenvolvimento e portanto, quando o código da aplicação

está disponível, os casos de teste podem ser executados. Resumindo, MBT tem sido apontada

com o uma abordagem para aumentar confiabilidade, efetividade e produtividade no processo

de software, desde que ela promete controlar a qualidade do software e reduzir os custos [48].

Normalmente, abordagens de teste baseado em modelos geram um grande número de

casos de teste (suíte de teste grande) [41]. Dado que tempo e dinheiro para executar todos

os casos de teste são restritos [25] (particularmente para teste manual), é necessário diminuir

a quantidade de casos de teste, ou seja, precisamos obter um subconjunto de casos de teste.

Este subcojunto deve conter os melhores casos de teste, isto é, aqueles que são capazes de

1

2

revelar faltas e prover uma boa cobertura (por exemplo: cobertura de transições ou requisitos,

entre outros). Esta é uma tarefa difícil, uma vez que nós necessitamos observar muitas

variáveis tais como cobertura de funcionalidade ou restrições de recursos. Na prática, a tarefa

de reduzir o tamanho da suíte de teste é um processo manual sujeito a erros e sem garantia

que os sistema será efetivamente testado, uma vez que critério de cobertura ou detecção de

faltas não são usados como parâmetros para a execução da estratégia.

Adicionalmenente, suítes de teste geradas a partir de abordagens MBT apresentam um

considerável grau de redundância entre os casos de teste, isto é, dois casos de teste podem ser

muito similares. É provável que eles não adicionem valor a suíte, uma vez que podem não

garantir uma melhor cobertura de um dado critério ou por não terem capacidade de revelar

defeitos ainda não revelados. Neste caso, nós nomeamos de casos de teste redundantes.

Pesquisadores têm investigado duas abordagens que são direcionadas a resolver o pro-

blema do tamanho da suíte de teste [65]:

• Seleção de Casos de Teste - Algorítmos (tais como os propostos por Rothermel e

Harrold [51; 52] e Jard e Jeron [40]) para seleção de casos de teste, selecionam um

subconjunto de casos de teste da suíte original que pode ou não prover a mesma cober-

tura da sut́e de teste original;

• Redução de Suíte de Teste - Algorítmos (tais como os propostos por Wong et al.[64],

Zhong et al. [67], Harrold et al. [35], Ma et al. [65] e Chen e Lau [18]) para redução de

suíte de teste seleciona um subcojunto representativo que satisfaz os requisitos de teste

definido (critério de cobertura), portanto seleciona um subconjunto da suíte original

que provê a mesma cobertura (de acordo com o requisito de teste definido) que a suíte

original.

Observe que ambas as abordagens lidam como o problema do tamanho da suíte de teste,

tentando reduzir o número de casos de teste. A diferença entre elas é que para reduzir o

tamanho da suíte de teste, a abordagem de redução de suíte de teste considera um específico

conjunto de requisitos de teste (critério de cobertura) e a suíte de teste reduzida satisfaz

aquele conjunto como a suíte de teste original.

As próximas seções deste capítulo apresentam: uma visão geral da tese e suas principais

contribuições (Seção 1.1); a metodologia adotada (Seção 1.2); e por fim, a estrutura desta

1.1 Visão Geral da Tese 3

tese é apresentada (Seção 1.3).

1.1 Visão Geral da Tese

Nesta tese, nós buscamos uma solução para o problema do tamanho da suíte de teste causado

pela redundância no contexto MBT aplicado ao teste de sistema. Nossas questões de pesquisa

são:

• É possível reduzir (seleção de casos de teste/ redução de suíte de teste) o tamanho

da suíte de teste por eliminar casos de teste redudantes baseado em uma função de

similaridade e ainda guardar uma cobertura razoável de um dado critério de teste?

• É possível definir uma estratégia que produza uma suíte de teste menor baseada

naquela função para maximizar cobertura de transições da suíte de teste resultante?

• É possível combinar aquela estratégia com outras estratégias tais como baseada em

valores que são aplicadas para focar em cenários de uso e maximizar a capacidade de

detecção de faltas?

Como respostas a estas questões, nós propomos algumas estratégias que lidam com o

problema do tamanho da suíte de teste. As principais contribuições do nosso trabalho são:

• Função de Similaridade - Esta função calcula a distância entre casos de teste de uma

suíte de teste. Esta distância representa o grau de redundância entre cada par de casos

de teste;

• Seleção baseada em Similaridade - Uma nova estratégia para seleção de casos de

teste é proposta baseada na função de similaridade. Esta estratégia é comparada a

estratégia de seleção aleatória;

• Similaridade Balanceada (WSA) - Uma nova estratégia para seleção de casos de teste

é proposta baseada na função de Similaridade e pesos. Esta estratégia é comparada a

outras estratégias bem conhecidas na literatura;

• Dissimilaridade - Uma nova estratégia para redução é proposta baseada na função de

similaridade. Esta estratégia é comparada a 4 estratégias bem conhecidas na literatura;

1.2 Metodologia 4

• Novo Modo de Avaliar Suítes de Teste Reduzidas - O principal critério usado para

comparar estratégias para redução de suítes de teste é o tamanho da suíte de teste

reduzida, onde a menor suíte é a melhor. Nós propomos usar a ordem de seleção

para comparar as estratégias de redução de suíte de teste, uma vez que as faltas são

importantes e nem sempre é possível executar todos os casos de teste (é necessário

parar a execução de uma suíte reduzida).

Como dito antes, estas estratégias lidam com o problema da redundância e elas são apli-

cadas a abordagens de testes baseado em modelos visando melhorar os resultados dos algo-

rítmos de geração de casos de teste por eliminar casos de teste redundantes da suíte gerada.

As estratégias são baseadas no uso de uma função de similaridade que revela os casos de

teste mais diferentes. Neste sentido, as estratégias podem ser efetivas sob as seguintes pres-

supostos:

• Casos de teste similares são redudantes no sentido que eles cobrem um conjunto co-

mum de funcionalidades e têm a capacidade similar de revelar faltas. Dessa forma,

alguns deles podem ser eliminados para satisfazer as restrições de recursos de um pro-

jeto;

• Provavelmente não existe ganho adicional em mantê-los (os casos de teste redundan-

tes) na suíte de teste já que eles não afetam significativamente a cobertura de funcional-

idades ou faltas.

1.2 Metodologia

O objetivo das estratégias para controlar o tamanho das suítes de teste é diminuir o tamanho

da suíte de teste. Nesta tese, essas estratégias são propostas de acordo com uma função

de similaridade visando selecionar os mais diferentes casos de teste, obtendo uma melhor

cobertura de funcionalidades.

O processo genérico para selecionar casos de teste/ reduzir suítes de teste a ser seguido é

mostrado na Figura 1.1. Inicialmente as suítes de teste são obtidas a partir de modelos LTS

(Labeled Transtion Systems - Sistemas de Transições Rotuladas). As estratégias para seleção

de casos de teste/ redução de suítes de teste são aplicadas nessas suítes de teste. Para aplicar

1.3 Estrutura da Tese 5

Figura 1.1: Visão geral do processo de seleção de casos de teste/ redução de suítes de teste

as estratégias para seleção de casos de teste, é necessário definir um objetivo, tais como um

propósito de teste, o tamanho desejado da suíte, entre outros. Por outro lado, para aplicar

as estratégias para redução de suítes de teste, requisitos de teste podem ser automaticamente

obtidos do modelo.

Após aplicar as estratégias para seleção de casos de teste ou redução de suítes de teste,

nós obtemos um subconjunto da suíte de teste. Para avaliar estas estratégias, alguns estudos

de caos e experimentos foram executados. Cobertura de transições e detecção de faltas são

usados como critério para comparar e avaliar essas estratégias.

1.3 Estrutura da Tese

Os seguintes capítulos desta tese são a fundamentação teórica, as estratégias propostas e

suas respectivas avaliações, trabalhos relacionados e algumas conclusões (incluindo traba-

lhos futuros). Parte do conteúdo em alguns capítulos já foram publicados ([6; 14; 15; 17;

7]). Mais especificamente, os tópicos desta tese são organizados em capítulos como segue:

1.3 Estrutura da Tese 6

Capítulo 2

Visando tornar esta tese auto-contida, este capítulo apresenta termos e conceitos usados

em Teste de Software, Teste Baseado em Modelos, alguns Critérios de Cobertura, Seleção

de Casos de Teste, Redução de Suítes de Teste, Priorização de Casos de Teste, Abordagens

Baseada em Valor, Experimentação em Engenharia de Software e Análise Estatística.

Capítulo 3

Neste capítulo nós apresentamos o nosso conceito de redundância e ilustramos o pro-

blema em uma aplicação real. Depois disso, apresentamos a nossa Função de Similaridade.

Esta função calcula o grau de similaridade entre um par de casos de teste, considerando o

número de transições idênticas entre dois casos de teste e seus respectivos tamanhos. Para

calcular todos os graus de similaridade entre todos os casos de teste do conjunto de testes,

uma matriz de similaridade é construída.

Capítulo 4

Nossa estratégia Seleção baseada em Similaridade é apresentada neste capítulo. O al-

gorítmo da estratégia e um exemplo são apresentados a fim de demonstrar a aplicação da

estratégia. A avaliação desta estratégia é realizada através de um estudo de caso (analisar a

cobertura de transições e faltas) e de um experimento (análise da cobertura de transição). Os

resultados são comparados com estratégia de seleção aleatória.

Capítulo 5

Neste capítulo, propomos outra estratégia - chamada emph Similaridade Balanceada

(WSA) - para seleção dos casos de teste baseado em similaridades com pesos associados

a casos de teste. O algorítmo e um exemplo são apresentados. Dois estudos de caso são

executados para comparar WSA a seleção aleatória, Similaridade (Capítulo 4) e a Aleatória

Guiada, considerando cobertura de transições e faltas.

Capítulo 6

Este capítulo apresenta a estratégia para a redução de suíte de testes baseada na similari-

dade. Essa estratégia, chamada Dissimilaridade, é capaz de reduzir a suíte de teste utilizando

1.3 Estrutura da Tese 7

como requisito de teste, o critério de cobertura de transições. Para explicar a estratégia,

apresentamos o algorítmo e a execução em um exemplo. Para avaliar e comparar a nossa

estratégia a 4 estratégias conhecidas na literatura para a redução de sut́e de testes , um caso

estudo e um experimento foram realizados.

Capítulo 7

Neste capítulo, nós apresentados uma nova fora de analisar as suítes de teste reduzidas

baseadas na ordem dos casos de teste. Este trabalho é inspirado em uma métria utilizada para

avaliar estratégias de priorização de casos de teste. Um exemplo é apresentado para ilustrar

nossa motivação. Dois estudos de caso foram realizados usando a métrica.

Capítulo 8

Este capítulo apresenta algumas pesquisas relacionadas as estratégias de seleção de casos

de teste e redução suíte de testes. O foco é em soluções que podem ser automatizados, uma

vez que nosso escopo é MBT e testes de sistema.

Capítulo 9

Este capítulo apresenta as considerações finais e trabalhos futuros relacionados as nossas

contribuições.

Capítulo 2

Fundamentação Teórica

Este Capítulo apresenta alguns conceitos básicos sobre Teste de Software, Teste baseado em

Modelos, Critérios de Cobertura, Seleção de Casos de Teste, Redução de Suítes de Teste,

Priorização de Casos de Teste, Abordagens baseada em Valor, Experimentação em Enge-

nharia de Software e Análise Estatística, deixando claros a terminologia e os conceitos que

serão utilizados nesta Tese.

2.1 Software Testing

Software testing is a very important activity that is part of the software development process.

Since this activity can spend more than 50% of the resources of the software development

[5], that is, in general, not executed properly or even skipped due to resource (cost and time)

constraints [25].

There are two main reasons to execute software testing [5]: to assess the quality of the

application; and to reveal problems in application under testing. Since testing is concerned

with “error”, “fault”, and “failure”, it is important to clarify these terms before presenting

the other concepts about testing. According to Jorgensen [41]:

• An error occurs because of an incorrect or missing code;

• A fault or defect is the result of an error;

• A failure occurs when the fault executes, then the application does not perform the

8

2.1 Software Testing 9

functionality as required. This is noted when the output is wrong, an abnormal termi-

nation occurs or time restrictions are violated.

Software testing is the activity of designing tests and exercising the software with them,

in order to investigate on quality attributes and find defects. We can classify the test process

according to its goal [56]:

• Defect testing: Where the goal is to reveal faults in the software;

• Validation testing: Where the goal is to demonstrate to the developer and the system

customer that the software meets its requirements.

Our strategies are independent of the goal of the testing process, however the case studies

are focused on validation testing.

The process of software testing can be divided into [41]: test planning, test case develop-

ment, running test cases, and evaluating test results. Our focus is on test case development.

In the next subsections, we present a definition of test case, testing methods and level of

testing.

2.1.1 Test Case

The essential task of software testing is to determine a set of test cases for testing the specific

system. Each test case is associated with a system behavior, and is composed by [41]:

• An identity: An identifier can be associated to the test case, for testing management

and requirements tracing for example;

• A set of inputs, where an input can be:

– Pre-condition: The system state that must hold before test case execution;

– Actual inputs: Actions that should be executed;

• Set of expected outputs, where an expected output can be:

– Post conditions: The system state that must hold after test case execution;

– Actual outputs: An output of the system.

2.1 Software Testing 10

In order to execute one test case, the system must hold the specific state (pre-condition).

Then, the system is exercised with the inputs, collecting the outputs until the post condition is

reached or a failure is detected. Finally, the obtained results are compared with the expected

ones to check if the test has passed or not, i.e., if the software behaved as expected.

This is a general format of a test case. Depending on the kind or level of testing, this

format is tailored. For example, a unit test is a method call, where the inputs are values that

instantiate parameters. On the other hand, at a system test level is an execution scenario of

the application. Then, usually, inputs are a sequence of actions executed by a user, and the

respective system outputs are observed.

Figure 2.1 presents a System Test Case. This test case executes the system to validate the

scenario “add phonebook contact with success”. To execute this test case, the system must

be in Idle, the Phonebook application must be installed in the phone and must have enough

memory to add a new contact. For each input (user action) of this test case, an expected

output (system state) is presented. This expected output is then compared to the real system

state. If they are the same, then we “pass” the test case.

Figura 2.1: System Test Case

2.1.2 Testing Methods

Testing methods are used to identify test cases. A testing method may follow a functional

testing approach or a structural testing approach [5].

2.1 Software Testing 11

Functional Testing

Functional testing is based on the view that any application can be considered as a “black

box”, where only inputs and outputs are taken into consideration, and the implementation

is not known. Since the implementation is not considered, only the specification is used to

obtain the test cases.

For functional test cases, there are two advantages: the test cases can be obtained in

parallel with the implementation, and, if there are any changes in the source code (except

changes of the functionalities), the test cases do not change. In general, functional test cases

may present redundancies among themselves [41], which may increase the costs of software

testing.

Structural Testing

In contrast to the functional testing, the structural testing approach considers the imple-

mentation of the system to obtain the test cases. This approach is also called “white box”,

where it is necessary to observe inside the box in order to identify the test cases. In other

words, to obtain the test cases, the implementation needs to be available. This approach

lends to the definition and use of test coverage metrics [5]. Such coverage metrics define

which part of software will be tested.

2.1.3 Level of Testing

Beizer [5] and Jorgensen [41] show three levels of testing: unit, integration, and system

testing. Each level has a different goal, and thus different methods are applied to perform the

test.

Unit Testing

A unit is the smallest testable piece of an application, that is usually the work of one

programmer. Unit testing is performed to guarantee that the unit satisfies its functional spec-

ification and/or that its implemented structure matches the intended design structure [5].

A component can be considered an unit. This way, each component/subsystem is tested

separately.

Integration Testing

2.2 Model-Based Testing 12

Integration is a process by which components are put together to create a larger compo-

nent. The goal of integration testing is to reveal faults that arise when the components are

put together. This testing considers that each component has already been tested and are

individually satisfactory, as demonstrated by a successful passage of component tests.

The hard task in integration testing is to locate the “faults”. Usually, to make that easier

we should use an incremental approach to system integration and testing [56].

System Testing

A system can be consider a big component. Then, a system testing is performed when all

components are already together(i.e., after the integration occurs). The goal of system testing

is to reveal issues and behaviors that can only be exposed by testing the entire integrated

system.

This testing focus on capabilities and characteristics that are presented only with the

entire system. System scope can be classified by the kind of conformance [10]:

• Functional: The goal is to find errors in the functionality of the system, in other words,

this testing assess if for given inputs, the right outputs are generated;

• Performance: The goal is to observe the behavior of the system under heavy load;

• Stress or load: The goal is to find failures in the system under unexpected inputs,

unavailability of dependent applications, and hardware or network failures.

Our strategies are independent of the level of testing, however the case studies are focused

in functional system testing.

2.2 Model-Based Testing

Model-Based Testing (MBT) is a functional approach and consists in the automatic genera-

tion of tests using models extracted from the system specification [60]. For its application,

it is necessary that the software requirements are precisely defined, in order to characterize

with exactness the system behavior [5].

This section presents concepts about models (Subsection 2.2.1) and activities of Model

based Testing (Subsection 2.2.2).

2.2 Model-Based Testing 13

2.2.1 Models

System Models are an abstract view of a system. Since a model is an abstraction, it is a

simplification of the reality that highlights the most important characteristics [37].

Models may represent a system from different perspectives [56]:

• External: The environment of the system is represented by the model;

• Behavioral: The behavior of the system is represented by the model;

• Structural: The architecture of the system is represented by the model.

Since model-based testing is a black-box approach, the behavioral perspective of the

system is adopted. For behavioral perspective, the following models can be highlighted: De-

cision Tables, Finite State Machines (FSM), Markov Chains, Statecharts, UML diagrams,

Labelled Transition System (LTS), among others. A model is chosen according to the char-

acteristics of the system. In this work, we consider the specific type of LTS model - ALTS

(Annotated LTS).

Labeled Transition System - LTS

LTS is a directed graph in which vertices are named states, and edges are named tran-

sitions. These models are largely used as the semantic formalism of several specification

notations [40] and so they can be easily obtained from functional specifications by using

translation tools, such as UMLAUT [38]. Several tools use LTSs as the model for obtaining

test cases. Among these tools are: SPACES [3], TGV [40], LTS-BT [16] and TaRGeT [47].

Formally, an LTS can be defined as a 4-tuple S = (Q,A, T, q0), where [26]:

• Q is a finite, nonempty set of states;

• A is a finite, nonempty set of labels;

• T is a subset of Q x A x Q, named the transition relation;

• q0 is the initial state.

2.2 Model-Based Testing 14

Usually, LTS take into account internal and external actions [40]. Since our focus is on

functional testing, we show two different LTS that can be used for modeling the functional

behavior of the applications: Input-Output LTS and Annotated LTS.

Annotated LTS - ALTS.

Annotated LTS (ALTS) is an LTS that has transitions actions and also, annotations. These

annotations are insert in the LTS with a specific goal. In our case, this goal is to generate

functional test cases, therefore, such annotations are related to this activity. Figure 2.2 shows

an example of an Annotated LTS model that represents the behavior of an application where

the user wants to save one phone number that is embedded in a message.

Observe that each label has an annotation for the action: steps, conditions or expect-

edResults. These correspond to, respectively, a user action, a pre-condition and a system

response, and are inserted in the LTS to facilitate the test case generation.

Figura 2.2: Annotated LTS model

2.2 Model-Based Testing 15

2.2.2 Activities of MBT

The activities related to MBT can be described as follows [27]:

1. Build the model: The formal model is built from the software specification. This

model needs to be formal, i.e., precise, consistent and unambiguous.

2. Generate expected inputs and outputs: The test inputs and outputs are generated

from the formal model. In order to exercise the system, we need to generate the se-

quence of the inputs, while the expected outputs represent the expected system re-

sponses.

3. Run tests: The system is executed with the generated inputs, generating outputs;

4. Compare outputs with expected outputs: The generated outputs are compared to the

expected outputs.

For example, consider we have the following requirement: The user must be able to save

a phone number that is embedded in a message. From this requirement, we build the model

(activity 1) and obtain the ALTS shown in Figure 2.2.

Using the ALTS showed in Figure 2.2, we can transverse this model by using Depth

Search First (DFS) and generate 2 test cases (path coverage criteria) and its respective inputs

and outputs (activity 2). The test cases to be generated from a model depends on the adopted

coverage criteria (more details in Section 2.3). Figure 2.3 shows one of them.

Figura 2.3: Test Case

Figure 2.4 shows the flow of the MBT activities. As can be seen, the models are obtained

from the requirements. This activity is usually done manually, and it requires a specialist

2.3 Coverage criteria 16

in the notation used to construct the formal model. However, there are already attempts,

in practice, to automatically generated models from requirements specification written in a

natural controlled language [47].

Figura 2.4: Model Based Testing

Inputs to execute the system and expected outputs are extracted from that model. Then,

the system is executed with the tests (activity 3). When the system is executed, the outputs

are produced. Finally, these outputs are compared to the expected outputs and the test cases

are defined as Pass or Fail.

2.3 Coverage criteria

A coverage criterion is a set of rules that imposes test requirements on a test suite [2]. Cov-

erage criteria specify the items of the system that must be exercised during testing. There are

two purposes [60]:

• Measuring the adequacy of a test suite: The coverage level of a specific criterion is

an indicator of the quality of the test suite;

2.3 Coverage criteria 17

• Deciding when to stop testing: The tests are run until reaching a coverage level of a

specific criterion.

There are consolidated coverage criteria for code coverage (white-box coverage criteria),

and many of these coverage criteria are used for black-box coverage [60]. Since our focus is

on MBT and the model is LTS, we will present the main coverage criteria used for Transition-

Based Coverage Criteria: all-states, all-configurations, all-transitions, all-transition pairs,

all-loop-free-paths, all-one-loop-paths, all-round-trips and all-paths [60]. Here, we do not

consider all-configurations because it is not applied to our context, since it is mostly used

for statecharts.

Figura 2.5: LTS model

• All-states coverage: Every state must be visited at least once. Considering the LTS of

Figure 2.5, to reach this coverage, only one test case is required: abd;

• All-transitions coverage: Every transition must be visited at least once. Observing

the LTS of Figure 2.5, this coverage can be reached using only one test case: abcd;

• All-transition-pairs coverage: Every pair of adjacent transition in the model must be

traversed at least once. In the LTS of Figure 2.5, to reach this coverage, we need to

have test cases that traverse ab, bc and bd at least once. In this case, this coverage is

reached with the test cases: abd and abc;

• All-loop-free-paths coverage: Every loop-free path must be traversed at least once.

A path is loop free when it does not have repetitions. For the LTS in Figure 2.5, only

one test case is required to reach this coverage criterion: abd;

• All-one-loop-paths coverage: Each path is traversed at most once the loop. Therefore,

we have one test for each loop. In Figure 2.5, we need two test cases to reach this

coverage criterion: abd and abcd.

2.4 Test Case Selection 18

• All-round-trips coverage: This coverage criterion is similar to all-one-loop-paths

since it requires that all loops are tested in the model, however it is a weaker criterion,

since it only requires one path for testing one loop. For the LTS in Figure 2.5, to reach

this coverage criterion, the following test cases are needed: abd and abc.

• All paths coverage: Every path must be traversed at least once. This corresponds

to an exhaustive testing in LTS models, and the generation algorithm should have an

heuristic to avoid the state space explosion, enabling the proper use of this coverage.

2.4 Test Case Selection

Test case selection is an activity to select a subset of the test suite according to a specific

criterion, for example transitions or requirements coverage. The selected subset may not

provide the same coverage as the original test suite [65], however, it may lower the costs of

the test process. We can enumerate some strategies for test case selection:

1. Deterministic: Where we have a manual choice. For example, one specialist can use

his or hers know-how to select test cases;

2. Random: The subset of test cases is randomly chosen;

3. Statistical: The weights are assigned to guide the choice [4]. One of them is the

Guided Random, where the choice of the test cases is guided by probability values

[49; 3]. For each decision node in an LTS, a probability is assigned. Then, this strategy

tries to select the most important transitions (i.e., the transitions with the highest prob-

ability values) using a Depth-first search. The goal is to define an unbiased test suite

that can be more effective for fault detection, and also to make reliability estimation

possible;

4. Test Purpose: A test purpose denotes a scenario of a functionality of the system

under testing [37]. Jard and Jéron present TGV tool [40], where the test selection

is performed when the model is delimitated by the test purpose.

2.5 Test Suite Reduction 19

2.5 Test Suite Reduction

Test suite reduction is a technique that produces a representative subset of the original test

suite. This subset has equivalent coverage in relation to the original test suite, concerning a

specific criterion [65]. This problem can be stated as follows [35]:

Given: Test Suite TS, a Set of Test Requirements req1, req2, ..., reqn that has to be covered

to provide the desired test coverage of the program, and subsets of TS (TS1, TS2, ..., TSn),

where each test case from TSi can be used to test reqi;

Problem: Find a representative set of test cases from TS that satisfies all of the Req′s.

A test requirement can be a statement, a block, a decision, a requirement and so on. A

representative set of test cases must have at least one test case for each Req. Therefore,

these test cases satisfy all of the Req′s. The maximum reduction occurs when the smallest

representative subset is found. This is a NP-complete problem [21; 35].

The main advantage of test suite reduction is the reduction of the size of the test suite.

However, since the test suite is reduced, we risk to decrease the capability of faults detection.

Wong et al. [64] and Rothermel et al. [53] propose experimental researches to investigate

this risk.

Finally, test suite reduction techniques deal with structural redundancy. The classic def-

inition for redundant test case is: A test case is redundant if other test cases in the test suite

provide the same coverage of the program [35]. For example, considering branch coverage

as a test requirement, a test suite reduction strategy must find a subset that reaches 100%

branch coverage.

Some heuristics for test suite reduction were proposed in the literature. These heuristics

are detailed below, since they are compared to our proposed strategy (Chapter 6). For apply-

ing the proposed heuristics, it is necessary to have the satisfiability relation between the Test

Suite (TS) and the Test Requirements (Req = req1, req2, ..., reqn). First we illustrate the

satisfiability relation required to perform the test suite reduction with the heuristics.

Satisfiability Relation

For each reqn, there is a subset of TS (T1, T2, ..., Tn), such that all the test cases belonging

to Tn can be used to test reqn. Table 2.1 presents a sample of a Satisfiability Relation.

2.5 Test Suite Reduction 20

Tabela 2.1: TS consists of Test Cases t1, ..., t7, Test Requirement reqn, and Associated

Testing Sets are Tn - Example 1

n Reqn TSn

1 req1 {t2}

2 req2 {t6, t7}

3 req3 {t1, t5, t7}

4 req4 {t1, t6}

5 req5 {t3, t4, t7}

6 req6 {t1, t2}

7 req7 {t3, t7}

The goal of test suite reduction, as said before, is to meet a subset (Reduced Set - RS ⊆

TS) that provides 100% coverage of test requirement, in other words, to satisfy all test

requirements.

Greedy Heuristic

The Greedy heuristic [22; 24] repeatedly selects the test case t that satisfies the maximum

number of unsatisfied test requirements, if there is a tie situation, a random choice is made.

The selected test case is added to the Reduced Set (RS) and all test requirements that can be

satisfied by that test case are marked as an already satisfied test requirement. This algorithm

stops when all test requirements are satisfied. Applying this algorithm to the example showed

in Table 2.1, we have:

t7 satisfies the maximum number of unsatisfied test requirements, then RS = {t7}, the

requirements req2, req3, req5 and req7 are marked as satisfied. Now, there is a tie situation:

t1 and t2 satisfy the maximum number of unsatisfied test requirements. This way, a random

choice is made. Considering that t1 is chosen, then RS = {t1, t7}, the requirements req4

and req6 are marked as satisfied.

Finally, the unique requirement that has not yet been marked is req1, since this require-

ment is satisfied by t2, therefore RS = {t1, t2, t7}, which provides 100% coverage of the test

requirements. Rehman et al. proposed TestFilter, a technique to reduce test suites based on

2.5 Test Suite Reduction 21

statement coverage [59]. This technique uses the Greedy Heuristic for test suite reduction.

The authors used statement coverage as test requirement.

Heuristic Greedy - Essential (GE)

This heuristic (defined by Chen and Lau) is based on [19]:

• Essential strategy: Responsible for selecting all essential test cases. A test case is

essential when only that specific test case covers one specific requirement;

• Greedy heuristic: Responsible for selecting a test case that satisfies the maximum

number of not yet satisfied requirements.

Initially, all essential test cases are observed, and their respective requirements are

marked. Then, the greedy heuristic is applied. The focus is on solutions that can auto-

mated since our scope of study is on MBT. Using the example from Table 2.1, the strategy

execute as following.

First, t2 is chosen, since it is an essential test case. Therefore RS = {t2}, and the

requirements req1, req6 are marked as satisfied. Now that we do not have essential test cases

remaining, we must apply the greedy heuristic. Since t7 satisfies the maximum number of

unsatisfied test requirements, we add it to the reduced set. Thus, RS = {t2, t7}, and the

requirements req2, req3, req5 and req7 are marked as satisfied.

Finally, the unique requirement that has not been marked yet is req4. Therefore we apply

a random choice between t1 and t6. Considering that t1 is chosen, we obtain the reduced set

RS = {t1, t2, t7} and req4 is marked as satisfied. Now that all requirements are satisfied, the

algorithm stops.

Heuristic Greedy - 1− to− 1 - Redundancy Essential (GRE)

This heuristic (defined by Chen and Lau) is based on [18]:

• The Greedy and Essential strategies, both presented above;

• 1-to-1 redundancy strategy: A test case t1−1 ∈ TS is said 1-to-1 redundant, if [20]:

∃t | t 6= t1−1 & t ∈ TS & req(t1−1) ⊆ req(t).

2.5 Test Suite Reduction 22

In other words, when all requirements satisfied by t1−1 are also satisfied by t.

The essential and 1-to-1 strategies are applied alternatively, until no essential or 1-to-1

redundant test cases can be found. That means that the greedy strategy is only applied if

neither the essential or 1-to-1 redundancy can be applied. Considering the example from

Table 2.1 the algorithm is applied as following.

First, t2 is chosen, since it is an essential test case. Therefore, RS = {t2}, and the

requirements req1, req6 are marked as satisfied. Now, we do not have any other essential test

cases. Thus, we have to search for 1-to-1 redundant test cases.

During this search we identify t4, t3 and t5 as 1-to-1 redundant test cases, since:

req(t4) ⊆ req(t7), req(t3) ⊆ req(t7) and req(t5) ⊆ req(t7). The test cases t3, t4 and t5

are not considered, since those are redundant in relation to t7.

Now, at this point, t7 becomes an essential test case, and needs to be placed in the reduced

set. Thus, RS = {t2, t7}, and the requirements req2, req3, req5 and req6 are marked as

satisfied. Finally, we have only req4 as not satisfied. A random choice is performed, between

t1 and t6. Considering that t1 is chosen, the resulting subset is RS = {t1, t2, t7} and req4 is

marked as satisfied. Since all the requirements are satisfied, the algorithm stops.

Heuristic H

Harrold et al. [35] present a test suite reduction technique, refered as Heuristic H. Each

test requirement has a cardinality, that is the number of test cases that covers that specific

requirement. When a test case is added to the reduced set, all requirements covered by that

test case are marked. The first step is to identify the test requirement(s) with the lowest

cardinality, since they represent the most essential test cases.

Among the unmarked test requirements with the lowest cardinality, the algorithm selects

the most frequently occurring test case, i.e., the test case that covers most requirements. If

there is a tie, the algorithm chooses the test case that occurs most frequently at the next

higher cardinality and so on (if there is another tie where the cardinality is maximum, then

a random choice is applied). This algorithm stops when the reduced set has test cases that

cover all test requirements.

Summarizing, the main idea is to select test cases according to their essentialness, i.e.,

2.6 Test Case Prioritization 23

Tabela 2.2: Cardinality

Cardinality Req

1 req1

2 req2, req4, req6, req7

3 req3, req5

keeping in the reduced set the test cases in the order from the most essential to the least

essential. Below, we apply this algorithm to the example showed in Table 2.1.

First, we need to calculate the cardinality of each test requirement. The results can be

seen in Table 2.2.

For the lowest cardinality (in this case is one), there is only one test case (t2). Thus, RS =

{t2}, and the requirements req1, req6 are marked as satisfied. Now, the lowest cardinality is

two, tied between req2, req4 and req7. Also there is a tie between the most frequent test cases

within req2, req4 and req7. These test cases are t6 and t7.

Then we must see the next higher cardinality (in this case is 3 - req3 and req5) to de-

termine which one of them occur most frequently. Observing req3 and req5, we identify

t7 as the most frequent test case. Therefore t7, is chosen and then RS = {t2, t7}, also

req2, req3, req5 and req7 are marked as satisfied.

Finally, the unique requirement that has not been yet marked is req4. Again, we have

a tie situation, however we do not have a next higher requirement cardinality, therefore we

apply a random choice between t1 and t6. Considering that t6 is chosen, the reduced subset

is RS = {t2, t6, t7}, and req4 is marked as satisfied. Since all requirements are marked, and

thus satisfied, the algorithm stops.

2.6 Test Case Prioritization

Test case prioritization is a technique that orders test cases in an attempt to maximize an

objective function. The problem is defined by Elbaum et al. as follows [29]:

Given: A test suite TS Test Suite; PTS, a set of permutations of TS; and, f , a function that

maps PTS to real numbers (f : PTS → R).

2.7 Value Based approach 24

Problem: Find a TS′ ∈ PTS | ∀ TS′′ (TS′′ ∈ PTS) (TS′′ 6= TS′) · f (TS′) ≥ f (TS′′)

The objective function is defined according to the goal of the prioritization. The manager

may need to quickly increase the rate of fault detection or the coverage of the source code.

Then, a set of permutations PTS is obtained and the PTS′ that has the highest value of

f (TS′) is chosen.

Note that the key point is the goal, and the success of the prioritization is measured by this

goal. However, it is necessary to have some data (according to the defined goal) to calculate

the function for each permutation. Then, for each test case, a priority is assigned and test

cases with the highest priority are scheduled to execute first. When the goal is to increase

fault detection, there is a metric largely used in the literature, named Average Percentage

of Fault Detection – APFD. The highest the APFD value is, the faster and better the fault

detection rates are [29].

2.7 Value Based approach

Value based software engineering has been introduced in 1981 with Boehm’s Software En-

gineering Economics book [12] and has inspired the value based management movement in

the early 1990 [9]. Its philosophy is that “quality should not be a goal in itself in the absence

of favorable economics”.

Since then, the consideration for software-related value has expanded its scope and values

have been incorporated deeply into successful developments process. The common purpose

has been promoting the different considerations/measures/knowledges to the foreground so

that the software engineering decisions could be guided and optimized by these values.

Saying exactly once for all what “value” represents in this discipline is not possible. The

referred numbers can be related to various topics. They can represent the economical and

financial aspect, they can be percentage or probability, they can represent abstract concepts

as quality, availability, usability and so on.

In software development, generally the various system functionalities do not have the

same “importance” for overall system performance or dependability, and the testing effort

should be planned and scheduled accordingly. Different criteria can be adopted in order to

define what “importance” means for test purposes, e.g., component complexity, or usage

2.8 Experimentation in Software Engineering 25

frequencies (such as in reliability testing [45]).

Often, these criteria are not documented or even explicitly recognized, but their use is

implicitly left to the sensibility and expertise of the managers. Several criteria for assigning

the importance factors could be adopted. Obviously this aspect in the proposed approach

remains highly subjective, more in the realm of expert judgment than mechanizable methods.

The basic idea is that the test managers must explicit these criteria. The main task is

to express, for each functionality, a value belonging to the [0,1] interval, representing its

relative “importance” with respect to the other functionalities. This value, called the weight,

must be assigned in such a manner that the sum of the weights associated to all children of

one level is equal to 1; the more critical a functionality is, the greater its weight.

It is worth noticing that the process of functionalities annotation implies a beneficial

side-effect: for assigning the appropriate values, the managers are forced to reflect on the

relative complexity of each functionality with respect to the context in which it is inserted.

Consequently, they focus on the parts where problems could be more critical and become

more aware of the importance of each node for the system development.

2.8 Experimentation in Software Engineering

In this section, some basic concepts about Scientific Methods and Experimentation in Soft-

ware Engineering are presented.

2.8.1 Scientific Methods in Software Engineering

There are four scientific methods that are used for doing research in software engineering.

Those methods are [32; 61]:

• Scientific: A model is built by observing the world;

• Engineering: New solutions are proposed, and evaluated, from changes of a current

solution;

• Empirical: A model is proposed and evaluated through empirical studies;

• Analytical: A formal theory is proposed and compared with empirical observations.

2.8 Experimentation in Software Engineering 26

Here, we will address the empirical method. An empirical study can be conduct through:

• Survey: The goal is to obtain descriptive and explanatory conclusions [61] from a

sample. One sample in a representative part of a population. The data used in the

analysis are gathered, usually, through interviews or questionnaires. It is not possible

to manipulate variables;

• Case Study: Data is collected for a specific purpose. Normally, a case study is used

for monitoring projects or activities. From the obtained results, the statistical analysis

can be applied;

• Experiment: It is a rigorous, formal and controlled investigation. Normally, it is

executed in a laboratory environment. It is possible to manipulate variables.

The next subsection shows in details the flow of an experiment. We show elements from

a process that defines each step required to perform the experimental study.

2.8.2 Experiment

In this work, we use a process for experimental studies in software engineering defined by

Wohlin et al. [61]. This process is composed of the following activities: definition, planning,

operation, analysis and interpretation, presentation and package. Each one of these activities

are detailed below.

Definition

In this phase, the experiment is defined in terms of a problem, an objective and a goals.

It is required to specify a general hypothesis relating the goal of the experiment, with the

problem being addressed. In order to define the goal, the key questions proposed by Wohlin

et al. should be answered[61]:

1. What is studied? Object of study: this is the entity that is studied in the experiment;

2. What is the intention? Purpose: intention of the experiment;

3. Which effect is studied? Quality focus: primary effect under study;

2.8 Experimentation in Software Engineering 27

4. Whose view? Perspective: viewpoint from which the results are interpreted;

5. Where is the study is conducted? Context: environment which the experiment is run.

From these answers, a goal definition template is filled. This template helps organizing

the main elements of the experiment, and provides a general overview of the goal and purpose

of the experiment. The template is structured as follows:

Analyze object of study

for the purpose of purpose

with relation to quality focus

from the point of view of the perspective

in the context of context.

The environment defines the personnel involved in the experiment (subjects) and the

software artifacts used in the experiment (objects). It is necessary to define the quantity,

priority, know-how for each subject and quantity, size, complexity and application domain

for the objects.

Planning

Once the experiment is defined, the experiment design is specified. In order to properly

plan the experimental study, it is required to specify several elements, such as [61]: context

selection, variable, hypothesis, design, instrumentation and threats.

Context Selection

Aiming to have more general and real results, it is necessary that the experiment is ex-

ecuted by professional staff in large and real software projects [61]. However, this scenario

is costly. In order to reduce the costs, the project can be run off-line, being performed by

students and using toys (e.g. simple models, or software application) in a specific context.

Thus, the context of the experiment can be classified in four dimensions [61]:

• On-line vs. Off-line

• Student vs. Professional

• Toy vs. Real Problems

2.8 Experimentation in Software Engineering 28

• Specific vs. General

Variables Selection

One of the main elements of the experiments are the variables. These variables comprise

the elements that are modified, observed, analyzed and executed during the experimental

study. The variables that will compose the experiment are defined as following:

• Dependent: Variables that will be observed in the experiment;

• Independent: Variables that will be controlled in the experiment.

Hypothesis Formulation

The experiment definition is formalized into hypotheses, that will be tested during the

analysis of the experiment. The hypotheses testing is the basis for the statistical analysis of

an experiment. The experiment definition is formalized as following:

• A null hypothesis, H0: This is the hypothesis that the experimenter wishes to reject

under a specific significance level;

• An alternative hypothesis, H1: This is the hypothesis that the experimenter wishes to

accept.

Selection of Subjects

The subjects of an experiment are the people involved in it. This is a very important step,

since depending on the selection of the subjects, the experiment can be generalized. The

larger the sample (of subjects), the lower the error becomes when generalizing the results.

Experiment Design

The Experiment design is defined from the characteristics of the experiment, such as:

amount of object, subjects, factors and levels. [61; 39]. The design types are suitable for

experiments with:

• One factor with two treatments: To compare two treatments;

• One factor with more than two treatments: The comparisons between more than

two treatments;

2.8 Experimentation in Software Engineering 29

• Two factors with two treatments: It is necessary to compare the treatments in each

factor with the others (2*2 factorial design);

• More than two factors with more than two (k) treatments: It is necessary to com-

pare the treatments in each one of the factors with those from the others (2k factorial

design);

From the Experiment design, the statistical resources and the number of replication are

defined. The number of necessary replications (n) can be calculated using the following

formula [39]:

n = (
100 · Z · s

r · x
)
2

(2.1)

Where Z, for a 95% confidence level, is 1.96 (a standard value from the normal distribu-

tion table); s is the standard deviation from the sample; r is the desired accuracy; and x is

the mean of the sample.

Instrumentation

The instrumentation comprises the elements used to automate and execute the experimen-

tal study. These elements are called instruments. During this step, three types of instruments

are specified [61]:

• Objects: The artifacts used to execute the experiment (e.g., specification models, im-

plementation, among others);

• Guidelines: The guidelines are required to properly guide the subjects in the experi-

ment;

• Measurements: The method in which the data will be collected.

Threats to the Validity

Usually, threats to validity are identified during the planning phase. This is an important

step because if the data are not valid, the obtained conclusions of the experiment can not

be trusted. The sample needs to have an adequate validity for the population, therefore, any

threat to validity need to be considered.

2.8 Experimentation in Software Engineering 30

There are different types of validity, each one related to a specific aspect (theory, imple-

mentation, observation, among others) of the experiment. The validity can be classified in

[23]:

• Internal: Related to the relationship between the treatments;

• External: Related to the ability to generalize the results;

• Construct: Related to the experiment setting;

• Conclusion: Related to draw correct conclusion about an experiment.

Each type of validity must be addressed by the experimenter, and it is necessary to iden-

tify each elements that threats the validity of the experiment. A validity threat that is not

properly handled by the experiment also threats the experimental study itself. Therefore,

specifying a proper validity evaluation method is one of the main elements to evaluate and

validate the experimental study.

Operation

In this phase, the experiment is executed, and the measurements are collected. This is di-

vided:

• Preparation: To prepare the subjects/material to collected data;

• Execution: The execution of the experiment is performed;

• Data Validation: To make sure the collected data are valid.

Analysis and Interpretation

The collected measurements are analyzed by using descriptive statistic. The interpretation

is done by determining, from the analysis, if the null or alternative hypothesis are accepted

or rejected. The statistical resources must be properly use, in order to avoid validity threat

concerning the conclusion of the results. Therefore, it is necessary to analyze each data, and

each sample obtained during the execution before using a specific statistical test (specially

the parametric ones, such as Analysis of Variance, and t Test).

2.9 Statistical Analysis 31

Presentation and Package

After analyzing the results of the experiment, the conclusions and artifacts of the experiment

must be organized and be presented available, so they can be properly presented to other

researches. Therefore, during this step, the entire process is organized in reports, and the

data, statistical resources, should be organized in graphics and other visual resources, to ease

the understanding of the performed experiment.

2.9 Statistical Analysis

In this section, some concepts about descriptive statistic, graphical visualization and hy-

pothesis testing are presented. These resources are presented in order to provide a better

understanding of the analysis performed in this work.

2.9.1 Descriptive Statistic

Descriptive Statistics is used to describe and show - graphically - characteristics of the data

set. The goal is to know the data distribution (to identify abnormal data points). Usually, this

is done before performing the hypothesis testing. These statistic can be measures of a central

tendency, or dispersion.

The measures of central tendency provide an overview to estimate an stochastic variable.

There are three measurements often used to indicate the central tendency of a data set(x)

[61]:

• Mean x: It is the sum of the values divided by the number of values;

• Median: It is the numeric value separating the higher half of a sample (considering

the ordered data set);

• Mode: It is the value that occurs most frequently in a data set.

In turn, the measures of dispersion show how much variation there is from the mean.

There are two measurements often used to indicate the dispersion of a data set [61]: Variance

and Standard Deviation (s). A low value of variance or standard deviation indicates that

2.9 Statistical Analysis 32

the data points tend to be too close to the mean, whereas a high value indicates that the data

is spread out. The difference between Variance and Standard Deviation is that the latter is

expressed in the same unit as the data, whereas the variance is expressed in (unit)2.

2.9.2 Graphical Visualization

By representing some measures graphically, we are, usually, able to draw conclusion about

the data. A box plot shows the dispersion of a sample and the central value. An example of a

box plot is illustrated is presented in Figure 2.6. The picture shows the first and third quartiles

(respectively, the upper and lower edges of the box), and the mean value that is represented

by the central line in each box. The whiskers extending from the quartiles represent the

farthest observation lying within 1.5 times the interquartile range. The outliers (unfilled

dots) represent the individual values beyond the whiskers.

Figura 2.6: Sample of Box Plot

A confidence interval (CI) provides an estimated range of values which is likely to in-

clude an unknown population parameter. The estimated interval is calculated from a given

set of sample data with a chosen confidence level. Thus, for different set of data different CI

are calculated and plotted (see Figure 2.7).

We are able to use the CI from two or more samples to determine if these samples come

2.9 Statistical Analysis 33

Figura 2.7: Confidence Intervals - a, b, c, d and e

from the same population. If there is no overlap among the CIs, we can conclude that the

population are different and, if a hypothesis tests is performed, we are able to reject the null

hypothesis (see next subsection), according to the specified confidence level.

Observing the intervals in Figure 2.7, we can state that “a” is different from “b”, “c”, “d”

and “e”. However, we can not state anything about “b”, “c”, “d” and “e”, therefore further

statistical investigation needs to be done.

2.9.3 Hypothesis Testing

The goal of Hypothesis Testing is to check if it is possible to reject a null hypothesis, H0,

based on a sample from some statistical distribution. Since from the graphical visualization

we are not able to reject the null hypothesis, then further statistical investigation needs to be

done (applying more statistical tests), aiming to obtain more significant conclusions.

First, the data distribution of the sample is checked by applying tests that investigates

distributions, such as Anderson-Darling or Kolmogorov-Smirnov [39].Depending on the data

distribution, the Hypothesis Testing can be classified as [61]:

• Parametric: The data set presents a known distribution (e.g., normal distribution).

Thus, mean and standard deviation of the sample is used to calculate the results;

• Non-parametric: The data set does not present a known distribution.

2.10 Concluding Remarks 34

The choice of an adequate test is done by observing the data distribution and the experi-

mental design. Different statistical tests are presented in Table 2.3.

Tabela 2.3: Statistical tests for different Experimental Designs and data distribution

.

Experimental Design Parametric Non-parametric

One factor with two treatments t− test Mann-Whitney

One factor with two treatments (paired comparison) Paired t− test Wilcoxon

One factor with more than two treatments ANOVA Kruskal-Wallis

More than one factor ANOVA

For interpreting the statistical tests results, it is necessary to observe the resulting p −

value of the applied test. This value is compared to the significance level (α) in order to

decide if it is possible reject the null hypothesis with the specified confidence level.

2.10 Concluding Remarks

In this chapter some important concepts were presented. According to these concepts, our

testing method is functional, comprising MBT approaches that use LTS as a model are con-

sidered. The next chapters present the proposed strategies and their respective evaluation and

analysis using case studies and experiments. The main variable analyzed in our case studies

and experiments is transition coverage, since this variable provides an adequate overview of

functionality coverage. The statistical analysis is performed through hypothesis testing.

Capítulo 3

Similaridade

Este Capítulo apresenta o problema da redundância. Para ilustrar o problema, nós apre-

sentamos uma parte de um modelo de uma aplicação real (Phonebook). Depois disso, nós

apresentamos a nossa função de Similaridade que é responsável por calcular a distância en-

tre dois casos de teste (Seção 3.2), seguida da matriz de similaridade (Seção 3.3) e algumas

conclusões (Seção 3.4).

A partir da matriz proposta (que calcula a similaridade entre casos de teste), nós propo-

mos 3 estratégias (2 para seleção de casos de teste e 1 para redução de suítes de teste) que

serão apresentadas nos próximos capítulos (4, 5 e 6). Maiores detalhes são apresentados nas

próximas seções.

3.1 Redundancy

Model-based testing is an approach that has become popular [48], however the test suites

generated from MBT approaches, usually, contain a considerable degree of redundancy

among test cases. Our redundancy concept considers that two test cases are redundant if

they cover the same set of functionalities and present the same fault capability. Therefore,

one of them can be discarded without significantly impacting the coverage and fault detec-

tion. Thus, a test case is considered redundant, if it can be discarded of the test suite without

significantly affecting the fault detection and coverage of functionalities.

Additionally, if there are not redundant test cases and it is still necessary to eliminate

some test cases to meet the constraints (money and time), the degree of redundancy among

35

3.1 Redundancy 36

test cases can be observed. The higher is the degree of redundancy among test cases, proba-

bly the similar the coverage of functionalities and fault detection capability are.

To better understand, observe the LTS model presented in Figure 3.1. This LTS presents

part of the behavior of a real phonebook application. This part is about “adding” a new

contact and the LTS illustrate the different flows of execution that can be considered. 3.1.

Figura 3.1: LTS Behaviour Model - Phonebook

By following this sequence (using Depth First Search algorithm), we obtain 6 test cases.

The Table 3.1 shows these test cases generated from LTS model presented in Figure 3.1 (for

the sake of simplicity, for each test case, we show the sequence of states that are covered,

meaning that the correspond action/response between two states have been executed/pro-

duced).

3.1 Redundancy 37

Tabela 3.1: Test Cases generated from LTS model presented in Figure 3.1 and their respective

lengths

Test Case Id Test Case Length

TC1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15

TC2 0 1 2 3 4 5 6 7 8 9 10 11 20 21 13

TC3 0 1 2 3 4 5 6 7 8 9 22 23 24 11 12 13 14 15 17

TC4 0 1 2 3 4 5 6 7 8 9 22 23 24 11 20 21 15

TC5 0 1 2 3 4 5 6 7 8 18 19 10

TC6 0 1 2 3 16 17 5

From the main flow, there are alternative flows that characterize the behavior of the fea-

ture. Therefore, the test cases will differ mostly by a step of input and output. In this sample,

the main flow is represented by the path 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15. This path

represents the addition of a contact.

In some points of the main flow, the user of the application can chose to proceed to

an alternative flow. For example, when the contact list is displayed (state 8), the user of

the application can choose to “Press back” (alternative flow) and goes back to the previous

screen (8 18 19) or choose to “Select a new contact option (state 9).

Observe that all test cases present the same initial transitions, by following the sequence

0 1 2 3. Then, there is a certain degree of redundancy among all test cases, since 3 transitions

of both sequences are the same. In this case, the redundancy is one step composed by the

three elements (a user action, a condition and the system response).

We are able to observe that among TC1, TC2, TC3, TC4 and TC5, the degree of redun-

dancy is higher (0 1 2 3 4 5 6 7 8), see that those test cases have 8 identical transitions. More

specifically, among TC1, TC2, TC3 and TC4, the number of identical transitions grows to 9

(0 1 2 3 4 5 6 7 8 9). Between TC1 and TC2 there are 11 identical transitions (0 1 2 3 4 5 6

7 8 9 10 11), and between TC3 and TC4 there are 14 (0 1 2 3 4 5 6 7 8 9 22 23 24 11 13).

To clarify, observe Figure 3.2. Analyzing this figure, we can conclude that the same parts

of the system are being executed several times with a little bit of difference. Observe also,

that the difference between TC1 and TC2 is only one step, i.e., the test cases are identical

3.2 Similarity Function 38

until the last step, therefore, TC1 and TC2 are so similar that if we remove TC2 from the

test suite, we will loose only one step. In the next section, we will present our proposal of a

Similarity Function to calculate the similarity degree between a pair of test cases.

Figura 3.2: Test Cases - Redundancy

3.2 Similarity Function

By observing this real example, in order to measure the similarity degree between two test

cases (two paths in an LTS), we need to count the number of identical transitions between

them. Two transitions are identical (it) if they have exactly the same source and target states

(q) and the same label (α). More formally:

∀q
α
→ q′, q′′

α′

→ q′′′ ∈ T · it(q
α
→ q′, q′′

α′

→ q′′′) ⇐⇒ q = q′′ ∧ q′ = q′′′ ∧ α = α′

Therefore, in order to obtain the similarity degree of the test cases, we need to calculate

the number of identical transitions between each pair of test cases. Considering the example

presented before, the number of identical transitions for each pair of test cases can be seen

in Table :

The number of identical transitions (nit) that is used to calculate the similarity between

two test cases discloses how much a test case is similar to another one, according to the

function. Since, it is necessary to calculate the redundancy of one test case with the other

3.2 Similarity Function 39

Tabela 3.2: Pair of Test Case and Number of Identical Transitions

Pair of Test Case nit

TC1/TC2 11

TC1/TC3 13

TC1/TC4 9

TC1/TC5 8

TC1/TC6 3

TC2/TC3 9

TC2/TC4 11

TC2/TC5 8

TC2/TC6 3

TC3/TC4 13

TC3/TC5 8

TC3/TC6 3

TC4/TC5 8

TC4/TC6 3

TC5/TC6 3

ones, this number (nit) is then divided by the average between the paths length in order to

balance the similarities. With this, we avoid representing a low similarity between two small

test cases due to the length of the test cases and a high similarity between two very big test

cases that are not so similar.

SimilarityFunction(i, j) =
nit(i, j)

avg(|i|, |j|)
(3.1)

Next, we show the use of the similarity function for the example presented above. For

example, we calculate the similarity degree between TC1 and TC2 presented in Table 3.1:

1. Number of identical transitions (nit(TC1, TC2)): 11;

2. Average between Paths’ Length (avg(|i|, |j|)): 14;

3. SimilarityFunction(TC1,TC2): 11 / 14 = 0.78.

3.3 Similarity Matrix 40

3.3 Similarity Matrix

Note that, to disclose the similarity among all test cases, it is necessary to apply the similarity

function for each pair of test cases. Thus, we can represent similarity in a matrix, named as

Similarity Matrix, that is defined as follows:

• n×n (square matrix), where n is the number of paths and each n represents one path,

that is called a test case;

• Each element of the matrix aij is defined by computing the similarity between test

cases i and j. This function is calculated by observing the number of identical tran-

sitions (nit(i, j)), i.e., whether states “from” and “to”, and labeled transition are the

same (see definition in Section 2), and the average between paths length (avg(|i|, |j|)).

We are able to observe that the similarity matrix is symmetric, since aij = aji. As a

result, aij = SimilarityFunction(i, j) where i = j, is not considered, since it is not to

our interest to calculate the similarity of a test case in relation to itself. For the example

presented in Figure 3.1, we obtain the Matrix 3.2. The computational complexity to build

the matrix is O(n2), where n is the number of test cases in the test suite.

SimilarityMatrix =

TC1 TC2 TC3 TC4 TC5 TC6

TC1 0.78 0.81 0.60 0.69 0.30

TC2 0.60 0.78 0.69 0.33

TC3 0.81 0.59 0.27

TC4 0.64 0.30

TC5 0.40

TC6

(3.2)

The matrix provides an overview of the similarity degree of each pair. The next step is

to observe the values in the matrix, in order to draw conclusions concerning the redundancy.

Observing the Matrix 3.2, we can conclude that:

• The highest value (0.81): This means that the test cases TC1/TC3 and TC3/TC4 are

the most similar ones (they present more redundant parts). Observe that both the pairs

TC1/TC3 and TC3/TC4 have 13 identical transitions (see Table 3.2).

3.4 Concluding Remarks 41

• The lowest value (0.30): This means that the test cases TC1/TC6 and TC4/TC6 are the

most different ones in the test suite. Note that both the pairs TC1/TC6 and TC4/TC6

have only 3 identical transitions (see Table 3.2).

3.4 Concluding Remarks

Here, a way of measuring redundancy among test cases of one test suite was presented. By

observing the Similarity Matrix, some conclusions can be drawn. For the pair i and j, if the

value is:

• Zero (0): This means that there is no similarity between the test cases i and j;

• One (1): This means that the test cases i and j are equal. When two test cases are

equal, it is necessary to execute only one of them;

• The highest value: This means that the test cases i and j are the most similar ones of

the test suite, i.e., the difference between the test cases is very small;

• The lowest value: This means that the test cases i and j are the least similar ones of

the test suite, i.e., the difference between the test cases is very big.

In the next Chapters (from Chapter 4 to 6) we present three strategies that use the Simi-

larity matrix presented here. They are:

• Similarity Strategy (Chapter 4): The goal is to select the most different test cases

from a test suite to be executed (the number of test cases is defined by the test man-

ager). In this case, we consider that if two test cases are very similar (the highest value

of the matrix), one of them can be discarded (aiming to meet the resources constraints

while having the adequate coverage of functionalities);

• Weighted-Similarity Approach (Chapter 5): The goal is to select the most different

and important test cases from a test suite to be executed. The importance of each test

case and the number that will be executed are defined by the test manager. In this case,

we need to calculate a weighed-similarity matrix;

3.4 Concluding Remarks 42

• Dissimilarity Strategy (Chapter 6): The goal is to reduce a test suite according to a

test requirement, in this case the transition coverage is considered. Since the intention

is to cover all transitions faster, the best thing is to find the lowest value of the similarity

matrix (that means that the most different test cases) and place both in the reduced set.

Capítulo 4

Seleção baseada em Similaridade

Neste Capítulo apresentamos nossa proposta para Seleção de casos de teste baseada em Si-

milaridade (conceito apresentado no Capítulo 3). Esta estratégia considera as restrições de

recursos (um certo número de casos de teste pode ser executado). Assim são selecionados

os mais diferentes casos de teste visando ter uma melhor cobertura de funcionalidades e de

faltas.

Na Seção 4.1, nós apresentamos a nossa estratégia para seleção de casos de teste; um

exemplo é usado para ilustrar a nossa estratégia na Seção 4.2; na Seção 4.3 é mostrado

um estudo de caso real que foi executado comparando nossa estratégia de seleção aleatória

(analisando cobertura de transições e de faltas); na Seção 4.4 é apresentado o experimento

que nós executamos (analisando cobertura de transições).

Os resultados mostram que:

Estudo de Caso

• Cobertura de Transições - A estratégia de similaridade pode ser mais efetiva que

a estratégia aleatória. Há vantagens consideráveis em utilizar Similaridade quando a

quantidade de casos de teste desejado é maior ou igual a 20%;

• Cobertura de Faltas - Para todos os estudos de caso realizados, temos que Similari-

dade apresentada uma melhor performance relacionada a cobertura de faltas.

Experimento:

Considerando a cobertura desejada é 50% dos casos de teste, Similaridade é melhor que

a estratégia de seleção aleatória. Em outras palavras, aplicando a estratégia de similaridade,

43

4.1 Definition 44

nós obtemos melhores resultados comparados a quando aplicamos a estratégia aleatória.

Maiores detalhes são apresentados nas próximas seções.

4.1 Definition

The idea is to keep in the test suite the least similar test cases according to a goal that is

defined in terms of the intended size of the test suite. The least similar test cases provide the

chance of having a better coverage of both requirements and faults, once that it covers the

most different transitions.

This strategy uses the similarity function to build the similarity matrix (as shown in Chap-

ter 3). The inputs are:

• Percentage: The desired percentage of test cases, defined, for example, according to

the resources constraints;

• Test Suite: The set of test cases;

• Similarity Matrix: The matrix that contains the information regarding the similarity

among all test cases of the test suite.

The Algorithm 1 presents the steps of this strategy. The first step is to calculate the de-

sired number of test cases (line 1) according to the percentage, i.e., the number representing

the total of test cases that have to be selected. Since the idea is to keep in the Similarity

Matrix, the most different test cases, the highest value of the matrix is found. The two test

cases correspondent to that value are analyzed and one of them is removed from the matrix

(lines 2 - 14). This procedure is repeated until the number of test cases in the matrix is equal

to the desired value (line 2).

At this point, the maximum values of the matrix are found. When a tie among maximum

values (more than one maximum value) is found, in the similarity matrix, the idea is to

randomly choose one of them (lines 3 - 4). From the maximum value we are able to discover

the correspondent test cases (lines 5 - 6) from the most similar pair.

Now, the size of the test cases are compared, and the idea is to keep in the matrix the

longest test case (lines 7 - 10), i.e. the test cases with more transitions, since it can represent

4.1 Definition 45

the highest functionality coverage. If the size between the two test cases is the same, a

random choice is applied (lines 12 - 13).

Regarding the complexity analysis of Algorithm 1 we are able to observe a repeat-

ing structure (while command in line 2) where, within each iteration, the method

getAllMaxValue (O(n2)) is used to search the matrix for the highest similarity values.

Therefore Algorithm 1 has a complexity of O(n3), where n is the number of test cases in the

test suite.

It is possible to think that selecting long test cases would provide a test suite that requires

a lot of time to execute. However, to our knowledge, no empirical evidence that relates the

number of transitions of a test cases and the time required to execute the test suite, has been

performed.

input : percentage, testSuite, similarityMatrix

output: selectedTestCases

1 numberOfRequiredTestCases = calculateNumberOfDesiredTestCases(percentage, testSuite);

2 while (selectedTestCases.size() < numberOfRequiredTestCases) do

3 maxValues = getAllMaxValue(similarityMatrix);

4 chosenPair = pairs.shuffle.get(0);

5 testCase1 = chosenPair.getTestCase1();

6 testCase2 = chosenPair.getTestCase2();

7 if (testCase1.size() > testCase2.size()) then

8 similarityMatrix.remove(testCase2);

9 else if (testCase1.size() < testCase2.size()) then

10 similarityMatrix.remove(testCase1);

11 else

12 chosenTestCase = randomChoice(testCase1,testCase2);

13 similarityMatrix.remove(chosenTestCase);

14 selectedTestCases = similarityMatrix.getTestCases();

Algorithm 1: Similarity based Selection - Algorithm

4.2 Example - Similarity Selection 46

4.2 Example - Similarity Selection

In order to illustrate the strategy, an example is presented below. An LTS model is presented

in Figure 4.1. From this LTS model, 6 test cases are obtained. Both the test cases, and their

respective sizes, can be seen in Table 4.1. In turn, the similarity matrix is presented in Matrix

4.1.

Figura 4.1: Example - LTS model

Tabela 4.1: Test Cases and Size of test cases

TC id Path Test Size

1 a 1

2 b c e 3

3 b d f 3

4 b d g 3

5 b d g d f 5

6 b d g c e 6

4.2 Example - Similarity Selection 47

SimilarityMatrix =

TC1 TC2 TC3 TC4 TC5 TC6

TC1 0 0 0 0 0

TC2 0.33 0.33 0.25 0.75

TC3 0.66 0.75 0.5

TC4 0.75 0.75

TC5 0.6

TC6

(4.1)

Considering that, the desired percentage is 50%, the desired number of test cases is 3

(50% · 6). Then, the first step is to find the highest value in the matrix. In this matrix, there

is a tie among TC2/TC6, TC3/TC5, TC4/TC5 and TC4/TC6. Therefore, a random choice is

done. Considering that the pair TC2/TC6 is chosen, TC2 is removed from the matrix, since

|TC6| > |TC2|. The line and column of the removed test cases are also removed from the

matrix, and the new matrix can be seen in Matrix 4.2.

SimilarityMatrix =

TC1 TC3 TC4 TC5 TC6

TC1 0 0 0 0

TC3 0.66 0.75 0.5

TC4 0.75 0.75

TC5 0.6

TC6

(4.2)

Following the algorithm of this strategy, again, it is necessary to find the highest value of

similarity. As we can see, there is a tie among the highest values: TC3/TC5, TC4/TC5 and

TC4/TC6. Thus, a random choice is performed again. Considering that the pair TC3/TC5 is

chosen, since |TC5| > |TC3|, TC3 is removed from the matrix.

SimilarityMatrix =

TC1 TC4 TC5 TC6

TC1 0 0 0

TC4 0.75 0.75

TC5 0.6

TC6

(4.3)

4.3 Case Study 48

So far, 2 test cases were excluded from the matrix (TC2 and TC3), thus we need to

exclude one more. Searching for the highest value, we identify another tie between the

TC4/TC5 and TC4/TC6. Randomly, TC4/TC5 is chosen and, since |TC5| > |TC4|, TC4 is

excluded. Finally, the similarity matrix has 3 test cases (see Matrix 4.4) and thus, our set of

selected test cases is composed by TC1, TC5 and TC6.

SimilarityMatrix =

TC1 TC5 TC6

TC1 0 0

TC5 0.6

TC6

(4.4)

4.3 Case Study

In order to evaluate the use of the similarity strategy, we conducted a case study. The goal of

this case study is to compare Similarity and Random selection by considering fault and tran-

sition coverage. The Similarity and random strategies were applied having the percentage of

the test suite (path coverage) goals ranging from 5% to 95% (increased by 5).

4.3.1 Application

The application used for this is a desktop tool named TaRGeT. This tool automatically gen-

erates test cases [47]. LTS-BT tool [16] was used for executing this case study. The input is

a use case template [47], written by Motorola experts. All test cases, generated for this case

study, were manually executed by Motorola employees. The collected metrics are:

• Transitions Coverage: We are able to measure the coverage of transitions of the

model by counting the number of excluded transitions. The total number of transi-

tions that are excluded by considering all of the discarded test cases of a given test suite

represents the idea of measuring whether the strategies keep a reasonable coverage of

functionalities even though discarding some test cases.

• Faults coverage: The total number of faults that are uncovered by the test suite during

test execution. For this, we considered real faults. The idea is to measure whether the

strategies preserve the fault detection capability of the original test suite.

4.3 Case Study 49

These metrics are widely used in works of the literature and they are able to provide an

overview of how much the strategy is adequate to select test cases considering the specified

budget constraint. We considered these metrics adequate since our interest is to cover more

functionalities (this is measured through transition coverage) and faults (measured through

fault coverage).

4.3.2 Case Study - Preparation

Since, Similarity and of course, Random selection present a random choice in their algo-

rithms, then each strategy was executed one hundred times (for each percentage) and the

metrics were collected.

4.3.3 Results of the Case Study

This subsection shows the results of the case study. The TaRGeT application, used in this

case study has 168 transitions in its LTS model. Also, LTS-BT tool was able to generated

a total of 84 test cases, and these cases were manually executed, where a total amount of

13 failures were revealed. Each failure, in this case study, corresponds to a fault, in the

application (i.e., 13 failures correspond to 13 faults).

Number of Excluded Transitions

The results can be seen in Figure 4.2. In this graph, the x-axis (or abscissa) represents the

intended test cases percentage and in the y-axis (or ordinate) the average of excluded transi-

tions obtained with 100 replications. The most effective strategy regarding this criterion is

the one that presents the lower curve. The results show that most of the times, the Similarity

strategy discards less transitions.

Below 20% of test cases a use of the random selection is more adequate. However, in the

best case the Random selection (5% of test cases) excludes only 3.02% less transitions than

Similarity. And the best case is when the percentage of desired test cases is 50%, where the

Random strategy excludes 41.83% more transitions than Similarity.

4.3 Case Study 50

Figura 4.2: Average Number of excluded transitions by running each test selection strategy

100 times for each test selection goal

Faults Coverage

For fault coverage, the results are presented in Figure 4.3. We represented in the x-axis

the intended test cases percentage and in the y-axis the average of covered faults obtained

with 100 replications. The most effective strategy regarding this criterion is the one that

presents the highest curve. As can be seen, the Similarity strategy reveals more faults for

all percentages and the best case is when the percentage of test case is 55%. In this case,

Similarity is able to reveal 41.33% more faults than Random.

Figura 4.3: Average Number of covered faults by running each test selection strategy 100

times for each test selection goal

4.4 Experiment - Selection 51

4.3.4 Concluding Remarks - Case Study

The case study performed in the evaluation suggests that the similarity approach can be more

effective than random choice, usually by considering path coverage (test suite percentage)

of more than 20%. The main threat to validity is the use of only one model, whereas the

structural elements of the LTS may affect the performance of the analyzed strategies. Aside

from that, it would be more appropriate to compare Similarity with other selection strate-

gies, however our main objective with this case study was to obtain an overall perspective

concerning the Similarity strategy, and not a comparative overview.

More case studies have been executed and can be seen in Appendix A. One of the exe-

cuted case studies is the same presented here, however with another version of the use case

document and a different level of abstraction, were used. Then, the metrics are different than

the ones presented here.

4.4 Experiment - Selection

This Section presents the experiment and the obtained results of the execution. The used

framework - proposed by Wohlin et al. - was presented in Chapter 2. The definition, the

planning, the operation and the Analysis and Interpretation results of the experiment are

showed in the next subsections.

Our general hypothesis is that Similarity presents the best performance in relation to the

number of excluded transitions, considering 50% of the test cases. This percentage was

considered because the highest difference between Similarity and Random strategy in case

study is 50%, as presented before (Section 4.3).

4.4.1 Definition

The first step is to define the experiment. Therefore, the key questions proposed by Wohlin

et al. were answered:

1. What is studied? Selection strategies;

2. What is the intention? To investigate;

4.4 Experiment - Selection 52

3. Which effect is studied? Number of excluded transitions;

4. Whose view? The tester;

5. Where is the study is conducted? Model-Based Testing (MBT).

From these answers, the goal definition template is filled. In summary, the goal of this

experiment is:

Analyze selection strategies

for the purpose of investigating

with relation to number of excluded transitions

from the point of view of the tester

in the context of MBT.

For this experiment, the (input) objects are LTS models. Since the strategies execute

automatically, there is no need for subjects to be involved in this experiment.

4.4.2 Planning

Once the elements of the experiment are properly defined, the following steps of the study

must be planned. Following the chosen framework, the context selection, the variables (de-

pendent and independent), hypothesis, design and instrumentation were defined.

Context Selection

The context of this experiment can be characterized as a “toy vs. real” problem. In this case

the objects are LTS models, randomly generated from a configuration. This configuration is

characterized by a specific number for the depth of the LTS, the number of loops, branches

and joins (these elements are detailed in Appendix B.

Variables Selection

In order to characterize the experiment, the variables must be defined. The variable chosen

to observe (dependent variables) and to control (independent variables) are:

• Dependent: The Number of Excluded Transitions (NET).

4.4 Experiment - Selection 53

• Independent: The test cases percentage; the configuration chosen the depth and the

amount of structures (loops, forks and joins) in the objects; and the strategies for test

case selection (factor). For this factor, there are 2 levels: Similarity (Sim) and Random.

Hypothesis Formulation

Once the variables are defined, we are able to structure our null and alternative hypothesis.

Their definition is formalized as following:

• A null hypothesis (H0): NETSim = NETRandom - The two strategies exclude the

same number of transitions, in another words, the strategies present the same behavior;

• An alternative hypothesis, (H1): NETSim 6= NETRandom - The two strategies ex-

clude a different number of transitions, i.e., the strategies present different behavior.

Experiment Design

As seen before, there is one factor (test case selection strategy) with 2 levels (or treatments).

Thus, there is one factor and 2 treatments, where, for each object, the two treatments are

applied. The chosen confidence level is 95% (significance level is α = 0.05), as suggested

by statistical literature [39].

Aiming to define the number of replications, necessary to guarantee statistical signifi-

cance for the specified level of confidence (95%), 40 replications were performed, collecting

the number of excluded transitions. These data are presented in Table 4.2.

Tabela 4.2: Mean, Standard Deviation and number of necessary replications for each tech-

nique.

Technique Similarity Random

Mean (x) 17.9 20.0

Standard Deviation (s) 6.99 4.61

Number of Necessary Replications (n) 235 82

Observing the Table 4.2, we are able to see that 235 and 82 replications for Similarity

and Random selection, respectively, provide a statistical significance for the obtained data.

Therefore, this experiment design will consider 300 replications for each strategy.

4.4 Experiment - Selection 54

Instrumentation

The next step of the planning is to specify the instruments of the experiment. In this step,

there are three types of instruments [61]:

• Objects: The objects are LTS models randomly generated from a configuration (depth,

number of loops, forks and joins).

• Guidelines: This experiment uses no guidelines, since the strategies do not require

subjects to configure them.

• Measurements: The NET will be collected for each treatment. The tool LTS-BT

provides support for both executing the experiments and collecting the data.

Validity Evaluation

The objects used in this experiment can be considered the main threat to validity. These

objects are automatically generated, and therefore, they can not represent a real behavior.

Besides, since they are randomly generated from a specific configuration, both the traceabil-

ity and controllability of the elements of the model (transitions and states) are reduced.

On the other hand, we are able to obtain an overview of the execution of the strategies

in several models, since they are randomly generated. Thus, we avoid being presented with

a conclusion that is specific to only one LTS (if we would have used the same LTS in every

execution). A proper scenario would be to have several real applications to execute the

strategies. However, most real applications and their respective specification are not available

to the open public.

4.4.3 Operation

To execute this experiment, it was necessary to implement the two strategies and the LTS

generator (see Appendix B). Both the LTS generator and the strategies are implemented in

the Java programming language1.

The objective, in using this LTS generator, is to automatically generate different models.

Therefore, a specific configuration for the depth and structure of the LTS is specified and

1http://www.sun.com/java/

4.4 Experiment - Selection 55

the generator is able to place these structures (loops, forks and joins), in different ways. A

deeper LTS provides more option to place the structures (branches, loops and joins).

Through executions of the generator, we were able to observe that an LTS, generated

with a smaller depth and several structures, generates a lot of test cases with the same size.

This fact does not represent real applications, since the test cases of real applications vary

the size (they have different number of flows). Besides, when there are several test cases

with the same size, the Similarity strategy applies a random selection between each pair of

test cases (most similar), whereas random selection can pick any test case from the test suite.

That scenario would not provide a fair comparison of the strategies. Therefore we chose the

following configuration:

• Depth: 15;

• Number of loops: 2;

• Number of branches: 3;

• Number of joins: 3.

This configurations provides a wide range of possible LTS. The generated LTS begins

with 16 states, where the generator can choose 15 states, out of the 16, to place the structures

according to the constraints described in Appendix B. Aiming to have different size of test

cases, we decide to have a higher depth in relation to the number of structures.

There is only one experimental design (with only one factor - test suite reduction strategy)

with a null and an alternative hypothesis, where the intention is to reject the null hypothesis.

Each strategy was executed 300 times, using a machine with the following configurations:

• Intel Core 2 quad 2.33 GHz;

• 4GB RAM;

• 1TB for Hard Disk Memory.

4.4 Experiment - Selection 56

4.4.4 Analysis and Interpretation

The first step is to analyze if the obtained data, for each strategy, present a normal distribu-

tion. For this, we applied the Anderson-Darling normality test, using the Minitab tool2. The

results can be seen in Figures 4.4 and 4.5. In this graph, the red dots, should overlap the blue

line, in order to indicate that the data fit a normal distribution.

Figura 4.4: Anderson-Darling normality test - Similarity

As can be seen, the data do not fit a normal distribution, once the p-values are less than

0.05. Then, it is necessary to apply a non-parametric test. Since we have only one factor

and two treatments, we can apply a Mann-Whitney testing to check the null hypothesis. The

results are presented in Table 4.3.

Since p − value = 0.0004, and this is less than 0.05 (α), H0 (the null hypothesis) can

be rejected. Therefore, the data support the hypothesis that there is a difference between the

population medians (ETA1−ETA2). The difference between the two population medians is

greater than or equal to -2.000 and less than or equal to -1.001. As we can see, the difference

between the population medians of Similarity and Random is negative, therefore, the NET

from Similarity is less than the NET from Random selection.

2http://www.minitab.com/

4.5 Concluding Remarks 57

Figura 4.5: Anderson-Darling normality test - Random

Tabela 4.3: Mann-Whitney Test - Sim and Random

Technique N Median

Sim 300 14.000

Random 300 19.000

Point estimate for ETA1-ETA2 is -1.000

95.0 Percent CI for ETA1-ETA2 is (-2.000;-1.001)

The test is significant at 0.0004

4.4.5 Concluding Remarks - Experiment

With 95% of confidence level, we are able to reject our null hypothesis. Therefore, our

general hypothesis is confirmed, since the behavior of the Similarity - considering 50% of

the number of the test cases - is better than the one observed with Random. In another words,

by applying the Similarity strategy we obtain better results than by applying Random.

4.5 Concluding Remarks

In this Chapter, we presented one of our strategies for test case selection. This strategy tries

to meet the resources constraints and then, keeps in a test suite, only the test cases that will

4.5 Concluding Remarks 58

be executed. The focus is to increase functionality and fault coverage as high as possible. A

Case study and an experiment were performed, and the results show evidence that:

Case studies:

• Concerning transition-based coverage: For the conducted case study, the simila-

rity strategy can be more effective than the random strategy. There are considerable

advantages when the desired coverage is higher or equal to 20% of the test case;

• Concerning fault coverage: For the conducted case studies, the similarity strategy has

also a superior performance. For all case studies (the ones presented in this chapter,

and the ones presented in Appendix A, the highest coverage is only achieved by the

similarity approach.

Experiment:

Considering a desired coverage of 50% of the number of the test cases, Similarity is

better than the Random strategy. In another words, by applying the Similarity strategy we

obtain better results than by applying Random.

Note that the obtained results in cases studies and in the experiment are not contradictory.

It is important to say that when the model presents test cases with the same length, the

behavior of similarity strategy can be the same or worse than the one observed in the Random

strategy. That situation presents itself, in the Similarity strategy, when the test cases to be

discarded are chosen by the length, and this length is the same for both test cases.

The drawback of this strategy is that important test cases could be eliminated. For in-

stance, a test case may be focused on either a frequent used functionality, or a very important

functionality with respect to the user needs (or on critical path of the application). Since this

strategy does not distinguish the importance of test cases, crucial ones may be discarded.

Therefore, we integrate the similarity method with a value-based test strategy, called the

Weighted-Similarity Approach, that will be presented in next Chapter (Chapter 5).

Capítulo 5

Similaridade Balanceada (WSA)

Neste Capítulo apresentamos nossa proposta para Seleção de casos de teste baseado em

Similaridade (Capítulo 3) que também considera pesos (atribuídos aos casos de teste). Nossa

estratégia é definida na Seção 5.1 e um exemplo para ilustrar é apresentado na Seção 5.2. Na

Seção 5.3 são mostrados dois estudos de caso que nós executamos para comparar WSA

com outras estratégias (seleção aleatória, Similaridade e a Aleatória Guiada) considerando

cobertura de transições e faltas.

Os resultados dos estudos de caso mostram evidências que:

• Cobertur de Faltas: WSA é a estratégia mais efetiva, mas é necessário conhecer ou

acertar o ponto das faltas;

• Cobertura de Transições: Similaridade - na maioria dos casos - apresenta uma me-

lhor performance.

Maiores detalhes são apresentados nas próximas seções.

5.1 Definition

In Chapter 4, the Similarity strategy was presented. This strategy considers the resource con-

straints and thus, selects the most different test cases aiming to have a better functionality and

fault coverage. The results of both the case study and the experiment showed that Similarity

is an efficient strategy, in relation to transition and fault coverage. However, when applying

59

5.1 Definition 60

this strategy, important test cases (e.g., test cases that discover faults) could be eliminated,

since no information about this “importance” is considered by that strategy.

However, if this information is available, this can be used to get most important and dif-

ferent test cases. For this, we integrate similarity based selection strategy with a value-based

test strategy, named Weighted-Similarity Approach (WSA). The main goal of this approach

is to exploit the software engineering knowledge and experience, in order to minimize the

size of a test suite by keeping in it only the test cases that can be feasibly executed according

to the user behavior and resources available to the testing process. To accomplish this goal,

we use the concept of similarity and show how it can be used for test cases selection. WSA

foresees the test cases selection by prioritizing accordingly with the probabilities set by the

test manager. The idea is that when choosing between two similar test cases to be discarded,

the one that has a greater probability is kept. In the original strategy (Similarity-based se-

lection), a random choice is performed when they have the same size. Therefore, we aim at

testing suites that have the most different test cases and yet, these are also the most important

(according to the probability) ones.

Using an LTS model, the user can set the desired path coverage (i.e. amount of desired

test cases) and provide the weights to be associated to each possible flow of the LTS. We can

consider that each weight indicates the expected frequency of use as a concept of “impor-

tance” for a given flow. Taking in consideration that the sum of weights for every flow of a

branch is 1 (the total flow - before the branch - is 1, so the sum should be 1).

Given the LTS model with weights assigned, the test cases similarity and final weight for

each flow is computed. The similarity between two test cases is computed as the number of

common steps in the two test cases. The final weights of a test case is obtained by multiplying

the attributed weight in their branches. As result, a weighted similarity matrix is built with

test cases as columns and rows, where each element is defined as the similarity between two

test cases divided by the weight of the test case of the respective row. Note that, the most

similar test cases must be eliminated and the most important must be kept. For this, we

balance the similarity with the weight of each test case.

With the LTS behavior model and probabilities (weights), we can calculate the si-

milarity and test case weights (this is obtained by multiplying the attributed prob-

abilities in their branches), build the weighted-similarity matrix, where each aij =

5.1 Definition 61

WeightedSimilarityFunction(i, j). The WeightedSimilarityFunction(i, j) is defined

as follows:

WeightedSimilarityFunction(i, j) =
SimilarityFunction(i, j)

W (i)
(5.1)

As can be seen, the equation 5.1 uses the equation 3.1 as its numerator. Similarly to the

Similarity Selection, we apply this equation to each pair of test cases, in order to obtain the

weighted similarity matrix. Therefore, the weighted-similarity matrix is:

• n× n (square matrix), where n is the number of paths and each n represents one path,

that is called a test case;

• Each element of the matrix aij = WeightedSimilarityFunction(i, j) .

The weighted-similarity matrix is not symmetric, since the similarity between i and j

(SimilarityFunction(i, j)) is balanced by the weight of the i (W (i)). The highest value

represents the test case that is most similar to the other ones, and least important. Thus, in

order to choose a test case to be removed, we search for the highest value in the matrix. This

corresponds to a test case that is very similar to other test case, and has a lower weight. If

there is a tie, then the smallest test case must be eliminated. If there is a tie again, random

choice is applied.

This strategy uses the weighted-similarity function to build the weighted-similarity ma-

trix. The inputs are:

• Percentage: The desired percentage of test cases. This percentage is defined accord-

ing resources constraints;

• Test Suite: The set of test cases;

• Weights: The weights of the test cases;

• Weighted-Similarity Matrix: The matrix that contains the information about simila-

rity and importance among all test cases of the test suite.

The Algorithm 2 presents the steps of this approach. The first step is to calculate the

desired number of test cases (line 1) according to the percentage, that number represents

5.1 Definition 62

the total of test cases that have to be selected. Since the idea is to keep in the Weighted-

Similarity matrix, the most different and most important test cases. Then, the highest value

of the matrix is found and discarded of the matrix (lines 2 - 13). This procedure is repeated

until the number of test cases in wsMatrix is equal to the desired value (line 2).

In line 3 of the algorithm, the maximum values are found. When a tie among maximum

values is found (more than one maximum value), the idea is to randomly choose the least

important (line 4), then the least important is discarded of the matrix (lines 5 - 6). If there is

also a tie among the weights (importance) of test cases (lines 7 - 12), the idea is to discard the

smallest test case (lines 8 - 10) to guarantee the highest coverage of functionalities. Finally,

if there is a tie between the smallest test cases, then the random choice is applied (lines 11 -

12).

input : percentage, testSuite, weights, wsMatrix

output: selectedTestCases

1 numberOfRequiredTestCases = calculateNumberOfDesiredTestCases(percentage, testSuite);

2 while (selectedTestCases.size() < numberOfRequiredTestCases) do

3 maxValues = getAllMaxValue(wsMatrix);

4 choosedTestCases = getLessImportant(maxValues, weights);

5 if (choosedTestCases.size()=1) then

6 wsMatrix.remove(choosedTestCases.get(0));

7 else

8 choosedSmalls=getSmallTestCase();

9 if (choosedSmalls.size()=1) then

10 wsMatrix.remove(choosedSmalls.get(0));

11 else

12 wsMatrix.remove(randomChoice(choosedSmalls));

13 selectedTestCases = wsMatrix.getTestCases();

Algorithm 2: WSA - Algorithm

The complexity analysis of Algorithm 2 is similar to the one presented for the Similarity-

based Selection algorithm (Algorithm 1 in Section 4.1, Chapter 4). Performing the analysis

we are able to obtain a computational complexity O(n3), where n is the number of test cases

in the test suite, for Algorithm 2.

5.2 Example - WSA 63

5.2 Example - WSA

In this Section, we will show one simple example to illustrate the proposed strategy. For

this example, the use case (main and alternative flows) and the respective LTS model are

presented (this approach is not strictly related to a specific model-based approach - use case).

Then, the approach is applied.

5.2.1 Example - Description

The use case describes the creation of a new contact in the Contact list (the use case model

presented here was presented by Nogueira and his colleagues [47]). In Figure 5.1 the main

flow of this use case is presented. This flow represents an user that successfully adds a

contact to a phone book.

Figura 5.1: Creating a New Contact - Main Flow

In Figure 5.2 two alternative flows are presented. The first alternative flow describes the

scenario where the user is able to cancel the creation of the new contact. This can happen

in two cases: the form is opened (Step ID 2M) and is filled (Step ID 3M). The second

5.2 Example - WSA 64

alternative flow describes the scenario where the new contact is not created because there is

not available phone memory, this can happen when the user tries to add the contact (after

filling the form in Step ID 3M).

Figura 5.2: Creating a New Contact - Alternative Flows

By following the Step IDs, we can obtain the Labeled Transition System (LTS) Behavior

model (this can be seen in Figure 5.3). Observing this figure, we can see that, after the user

executes the Step 2M, the user can execute the Steps 3M or 1B. The same way for Step 3M,

the user can execute the Steps 4M, 1C or 1B.

We can use a test case generation algorithm, to traverse the model, where each path in

the LTS is a test case. In this case, we used LTS-BT tool, to generate the test cases from the

LTS in Figure 5.3. Thus, we obtain 4 test cases, as seen in Table 5.1.

For applying the weighted-similarity approach, it is necessary to define the meaning of

“importance”. Then, we define weights for each branch that is originated by alternative

flows after step 2M and 3M (Figure 5.4). In this case, the weight is related to the expected

frequency of execution (by the end user) of that specific step.

5.2 Example - WSA 65

Figura 5.3: Labeled Transition System (LTS) Behavior model

Tabela 5.1: Test Cases generated from LTS model presented in Figure 5.3 and their respective

lengths

Test Case Id Test Case Length

TC1 1M 2M 3M 4M 4

TC2 1M 2M 3M 1C 4

TC3 1M 2M 3M 1B 4

TC4 1M 2M 1B 3

Figura 5.4: Probabilities

5.2 Example - WSA 66

Tabela 5.2: Weights of the test cases obtained from LTS Model 5.3 and assigned probabilities

5.4

Test Case Id Weight

TC1 0.7× 0.6 = 0.42

TC2 0.7× 0.2 = 0.14

TC3 0.7× 0.2 = 0.14

TC4 0.3

For calculating the weighted-similarity matrix, it is necessary to calcu-

late the weighted-similarity function for all aij . Then, for example, the

WeightedSimilarityFunction(TC1, TC2) is given by:

1. Number of identical transitions (nit): 3;

2. Average between Paths’ Length (avg(|TC1|, |TC2|)): 4;

3. SimilarityFunction(TC1,TC2): 3 / 4 = 0.75.

4. WeightedSimilarityFunction(TC1,TC2): 0.75 / 0.42 = 1.78.

Calculating every aij , we are able to obtain the weighted-similarity matrix, and thus, the

information regarding the similarity and importance of each test case. The complete matrix

for this example is presented in Matrix 5.2.

WeightedSimilarityMatrix =

TC1 TC2 TC3 TC4

TC1 1.78 1.78 1.36

TC2 5.35 5.35 4.08

TC3 5.35 5.35 4.08

TC4 1.90 1.90 1.90

(5.2)

Considering that there are enough resources to execute only 50% of the test cases, we

need to discard two test cases. The highest values of the Matrix is between rows TC2 and

TC3. Since we need to choose one of them, and the importance and length of both test cases

5.3 Case Study 67

are the same, a random choice is applied. Supposing that TC2 is discarded, the new Matrix

is presented in Matrix 5.3.

WeightedSimilarityMatrix =

TC1 TC3 TC4

TC1 1.78 1.36

TC3 5.35 4.08

TC4 1.90 1.90

(5.3)

Observing the new matrix, the highest value is in the row of TC3. Therefore, TC3 is

discarded. The test cases the are kept to execute are TC1 and TC4. Observe that TC2 and

TC3 are so similar to TC1, but TC1 is kept because it is more important than the other ones.

And TC4 is also kept because it is the most different and has the highest weight.

5.3 Case Study

In order to evaluate the use of WSA, we conducted two case studies. The goal of these case

studies is to compare WSA, Random Selection, Guided Random (Random choice guided

by the same transition probabilities applied with the WSA approach) and Similarity by con-

sidering fault and transition coverage. All strategies were applied having percentage of test

suite (path coverage) goals ranging from 10% to 90% (increased by 10).

5.3.1 Applications

Two real applications provided by Motorola Software Engineers have been selected for the

case studies. They are briefly described as follows:

• Application 1: TaRGeT is a desktop application that supports the model-based testing

process, where it automatically generates test cases from use case documents.

• Application 2: Direct License Acquisition (DLA) Support is a feature for mobile

phone applications that handles acquisition of the WMDRM License (Windows Media

Digital Rights Management) for the Windows Media platform. This License provides

secure delivery of audio and/or video content.

5.3 Case Study 68

Tabela 5.3: Number of Test Cases and Faults

Test Cases # Faults

Application 1 84 13

Application 2 28 2

For each one of these applications, Motorola Software Engineers elaborated the use case

documents [47]. From these documents, LTS-BT generated the test suites that have the

metrics showed in Table 5.3. The test cases were manually executed and the captured failures

were associated with faults that can be detected by the suite.

5.3.2 Metrics

Once the applications used to apply the strategies have been explained, our next step, is to

present the metrics considered in our analysis. Aiming to do a comparison among WSA,

Random Selection, Guided Random, Similarity, and a manual selection, the same metrics

used in the case study performed for the Similarity-based Selection (Section 4.3, Chapter 4)

will be observed. These metrics are the Transitions Coverage, and the Fault Coverage.

5.3.3 Case Study - Preparation

Since, all strategies, besides the manual selection, present a random choice in their algo-

rithms, then each one of them was executed one hundred times and the metrics were col-

lected. The results are presented in the next subsection. For each case study, the following

activities were performed:

• Reading and understanding the related documents, use cases (Target templates), and

LTS model (generated from use cases);

• Assigning probabilities to branches in the LTS model;

• Manually selecting test cases to produce a minimized test suite from 10% to 90% of

selection goal, starting from 10% (performed by the test designer only).

5.3 Case Study 69

Assigning Probabilities - Subjects

Case studies have been conducted by one WSA designer and by one test designer. In both

cases, the goal is to reduce the test suite, maximizing the ability for fault detection and also

providing an adequate coverage of functionalities.

• The test designer:

– Has experience on test selection;

– Has experience with all the approaches considered in this study;

– Has no previous knowledge of the defects presented in the case studies.

• The WSA designer:

– Proposed the WSA approach;

– Has experience with all the approaches considered in this study;

– Knows all defects presented in the case studies.

Our assumption is that by using experience on test selection and also knowledge of the

application domain, the test designer can assign probabilities to guide the selection of the

most effective test cases. By knowing the defects, the WSA designer can maximize the

results obtained by WSA. Therefore, we should be able to assess the limits of the approach

in the best case. From this, we may identify strategies for assigning probabilities as well as

uncover limitation of practical use.

Assigning Probabilities - How to specify the values

Each subject (one test designer and one WSA designer) received the use case document and

the respective LTS of each application. For each branch of the LTS, the subject assigned the

probabilities. The assigned value considers the probability to discover faults. The subjects

were instructed to assign weights (probabilities) between 0 and 1, whereas the closer to zero,

the lower the chance of reveal faults.

5.3 Case Study 70

5.3.4 Results of the Case Study

This subsection presents the results of the case study. As a reminder, the variables considered

in the study are the size of the reduced test suite (RTS) and the fault detection.

Faults Coverage

Application 1

The results obtained - for Application 1 - by applying WSA, Random Selection, Guided

Random, Similarity and Manual selection (done by the test designer), considering the prob-

abilities assigned by WSA and the test designer can be seen, respectively, in the Figures 5.5

and 5.6.

Figura 5.5: Average number of covered faults by running each test selection strategy - with

probabilities assigned by WSA designer - 100 times for each test case selection goal - Ap-

plication 1.

Observing the results, we can conclude that when the probabilities are well assigned,

it’s better to use WSA for any desired percentage of test cases. In another words, effective

probability distribution can contribute to better results. Observe that, when the probabilities

are not well distributed, the manual selection can perform better, and the Similarity, that uses

5.3 Case Study 71

Figura 5.6: Average number of covered faults by running each test selection strategy - with

probabilities assigned by test designer - 100 times for each test case selection goal - Appli-

cation 1.

no probabilities values, presents a better behavior, but it is necessary to consider the overhead

to apply it.

Application 2

The results obtained - for Application 2 - by applying WSA, Random Selection, Guided

Random, Similarity and Manual selection (done by test designer), considering the probabil-

ities assigned by WSA and test designer can be seen, respectively, in the Figures 5.7 and

5.8.

Again, WSA brings better results depending on probabilities assignment and also on the

ability of the tester to pinpoint faults. Note that the manual selection for Application 2 was

not as successful as for Application 1. Moveover, for faults distributed among the longest

test cases selected from several branches, the guided random presents a better behavior since

the selection is always based by the best local choices. On the other hand, WSA computes

the product of probabilities to choose the test case to select, favoring the choice of shorter

test cases.

Fault Coverage - Concluding Remarks

5.3 Case Study 72

Figura 5.7: Average number of covered faults by running each test selection strategy - with

probabilities assigned by WSA designer - 100 times for each test case selection goal - Ap-

plication 2.

Figura 5.8: Average number of covered faults by running each test selection strategy - with

probabilities assigned by test designer - 100 times for each test case selection goal - Appli-

cation 2.

5.3 Case Study 73

For both applications, we can see through the graphics showed in Figures 5.5, 5.6, 5.7

and 5.8 that, in order to obtain good results it is necessary to know the points of possible

faults. The results obtained when WSA designer assigned the probabilities show that WSA

is an effective technique.

Transition Coverage

Application 1

The results obtained - for Application 1 - by applying WSA, Random Selection, Guided

Random, and Similarity, considering the probabilities assigned by WSA and test designer

can be seen, respectively, in the Figures 5.9 and 5.10.

Figura 5.9: Average number of excluded transitions by running each test selection strategy -

with probabilities assigned by WSA designer - 100 times for each test case selection goal -

Application 1.

By observing the results, we can conclude that the similarity presents better performance

in relation to the others, since it excludes less transitions, and therefore, it presents the best

coverage. This fact can be explained because similarity does not consider the importance of

the test cases. Particularly, similarity keeps in the test suite the biggest test cases.

Application 2

5.3 Case Study 74

Figura 5.10: Average number of excluded transitions by running each test selection strategy

- with probabilities assigned by test designer - 100 times for each test case selection goal -

Application 1.

The results obtained - for Application 2 - by applying WSA, Random Selection, Guided

Random, and Similarity, considering the probabilities assigned by WSA and test designer

can be seen, respectively, in the Figures 5.11 and 5.12.

By observing these graphics, we can conclude that the similarity presents better perfor-

mance in relation to the others in most of the cases. However, WSA can be better when

considering a path coverage bellow 30%. This can be an evidence that - bellow 30% - the

importance and length of the test cases are the same and random choice is applied.

Transition Coverage - Concluding Remarks

For both applications, we can see through the graphics showed in Figures 5.9, 5.10, 5.11

and 5.12 that Similarity presents a better performance - in most of the cases. However, when

considering the probabilities based approaches (WSA and Guided Random), WSA presents

generally a better performance since it inherits the similarity principles.

5.3 Case Study 75

Figura 5.11: Average number of excluded transitions by running each test selection strategy

- with probabilities assigned by WSA designer - 100 times for each test case selection goal

- Application 2.

Figura 5.12: Average number of excluded transitions by running each test selection strategy

- with probabilities assigned by test designer - 100 times for each test case selection goal -

Application 2.

5.4 Concluding Remarks 76

5.4 Concluding Remarks

In this Chapter, we presented our proposal for test case selection based on Similarity (Chapter

3) that also considers weights that are assigned to test cases (WSA). The goal of WSA is to

keep in test suite the most important and different test cases. Case studies were performed,

and the results show evidence that:

• Fault Coverage: WSA is an effective strategy, but it is necessary to know and/or guess

the point of the faults;

• Transition Coverage: Similarity - in most of the cases - presents a better performance.

The main threats to validity of the performed case study are related to the weights as-

signed. In the case study the weights were assigned by only two subjects. One of them

(WSA designer) had knowledge about the faults and the strategies. The use of more subjects

to assign different weights would provide a more general overview of the analyzed strate-

gies. Also no guidelines were used to assign the probability values, which may affect the

performance of some strategies (e.g. WSA and Guided Random). Aside from those threats

the use of only two models affect the generalization of the obtained results.

Capítulo 6

Redução baseada em Dissimilaridade

Neste capítulo apresentamos nossa proposta para Redução de Suítes de Teste baseada em

Similadidade (Capítulo 3). O objetivo da redução de suítes de teste, como dito em capítulos

anteriores, é manter a cobertura de um requisito de teste. Entretanto, a cobertura de faltas,

normalmente é afetada. Uma vez que nós obtivemos resultados satisfatórios (considerando

cobertura de faltas) aplicando estratégias de Similaridade anteriormente, nosso objetivo é

aplicar a função de similaridade para escolher os mais diferentes casos de teste, que pos-

sivelmente cobrirão mais requisitos de teste enquanto guardam uma boa cobertura de faltas.

Na Seção 6.1, nós apresentamos a idéia e na Seção 6.2, um exemplo para ilustrar a es-

tratégia. Um estudo de caso real foi executado para comparar nossa estratégia a 4 heurísticas

bem conhecidas na literatura, analisando cobertura de transições e faltas (Seção 6.3). Na

Seção 6.4 é mostrado o experimento que executamos analisando a cobertura de transições.

Os resultados do estudo de caso mostram evidências que Dissimilaridade apresenta o

pior percentual de redução comparada as Heurísticas, porém apresenta a melhor cobertura

de faltas. Analisando os dados de Dissimilaridade, é necessário - em média - executar 3.06%

mais casos de teste comparada a melhor estratégia. Por outro lado, o percentual de faltas

é incrementado em 9.26%. Para o estudo de caso apresentado, isso significa executar 2.57

mais casos de teste, porém ser capaz de revelar 1.2 mais faltas.

Os resultados do experimento confirmam o resultado obtido com o estudo de caso: Dis-

similaridade apresenta o pior percentual de redução. Neste caso considerando apenas 75%

de cobertura de transições como requisito de teste.

Maiores detalhes são apresentados nas próximas seções.

77

6.1 Definition 78

6.1 Definition

The idea is to keep in the reduced test suite the most different test cases while providing

100% coverage of one defined test requirement (in our case, transitions coverage). Then, the

test cases are chosen according to the degree of similarity and are placed in a reduced set

named as the Reduced Test Suite (RTS).

Overall, this strategy uses the similarity function to build the similarity matrix (as showed

in Chapter 3). The inputs are:

• Test Suite: the set of test cases that should be reduced;

• Test Requirements: the set of transitions that should be covered;

• Similarity Matrix: the matrix that contains the information about similarity among

all test cases of the test suite.

Since the proposal of any test suite reduction technique is to cover 100% test require-

ments, then it is important to identify all essential test cases, since an essential test case is

the only one that covers a specific requirement. Therefore, all essential test cases should be

in the RTS for reaching 100% of test requirements.

The algorithm of this strategy is presented in Algorithm 3. The first step of this strategy

is to remove all essential test cases from the similarity matrix, and add all of them to the

RTS (lines 1 and 2). Then, all test requirements satisfied by those test cases are marked (line

3). After that, the idea is to find, in the matrix, the minimum value that represents the most

different test cases and try to keep them in the RTS, always verifying if all test requirements

have already been covered (lines 4 - 30).

When a tie among minimum values (more than one minimum value) is found, in the

similarity matrix, the idea is to choose the pair that covers the maximum number of not yet

covered requirements, however if there is a new tie, a random choice is applied (lines 5 - 7).

The next step (lines 10 - 17) is to verify if the test cases (of the chosen pair) are 1-to-1

redundant. This occurs when the set of covered requirements of one of them is contained

within the other one. In this case, the idea is to place in the RTS, the test case that covers

more not yet covered requirements so far. Since the two test cases were already analyzed,

6.2 Example - Dissimilarity 79

they are removed from the similarity matrix, and all new covered requirements are placed in

the marked requirements set.

If the pair is not 1-to-1 redundant, then it is necessary to check if the requirements cov-

ered by each one of them are already covered (lines 19 - 20 and 25 - 26), because if the

requirements have already been covered, these test cases are redundant. Otherwise, the test

cases are added to the RTS and the new satisfied requirements are added to marked require-

ments set (lines 21 - 24 and 27 - 30).

Regarding the complexity analysis of Algorithm 3 we are able to observe a repeating

structure (while command in line 4) that repeats m times, where m is the number of the test

requirements. The method getAllMinValue searches the matrix for the lowest values of

similarity, having, thus, a complexity O(n2), where n is the number of test cases in the test

suite. Considering that the method getAllMinValue is executed m times, we obtain a

complexity O(m× n2) for Algorithm 3.

6.2 Example - Dissimilarity

In order to illustrate the strategy, an example is presented below. An LTS model is presented

in Figure 6.1. From this LTS model, 6 test cases are obtained as can be seen in Table 6.1.

Figura 6.1: Example - LTS model

Considering that, the test requirement (coverage criteria) is transition coverage, the RTS

should cover all transitions. By applying the presented idea, the matrix is showed in Matrix

6.2 Example - Dissimilarity 80

input : testSuite, testRequirement, similarityMatrix

output: reducedTestSuite

1 similarityMatrix.removeEssentialTestCases();

2 reducedTestSuite.add(essentialTestCases);

3 markedRequirements.add (satisfiedRequirements(essentialTestCases));

4 while (!(satisfyAllRequirements(testRequirements,markedRequirements)) do

5 minValues = getAllMinValue(similarityMatrix);

6 pairs = PairsCoverMaxNumOfNotCoveredRequirements(markedRequirements,minValues);

7 choosedPair = pairs.shuffle.get(0);

8 testCase1 = choosedPair.getTestCase1();

9 testCase2 = choosedPair.getTestCase2();

10 if (containsRequirements(testCase1,testCase2)) then

11 similarityMatrix.remove(testCase1,testCase2);

12 markedRequirements.add(satisfiedRequirements(testCase1));

13 reducedTestSuite.add(testCase1);

14 else if (containsRequirements(testCase2,testCase1)) then

15 similarityMatrix.remove(testCase1,testCase2);

16 markedRequirements.add(satisfiedRequirements(testCase2));

17 reducedTestSuite.add(testCase2);

18 else

19 if (containsRequirements(markedRequirements,testCase1)) then

20 similarityMatrix.remove(testCase1);

21 else

22 similarityMatrix.remove(testCase1);

23 markedRequirements.add(satisfiedRequirements(testCase1));

24 reducedTestSuite.add(testCase1);

25 if (containsRequirements(markedRequirements,testCase2)) then

26 similarityMatrix.remove(testCase2);

27 else

28 similarityMatrix.remove(testCase2);

29 markedRequirements.add(satisfiedRequirements(testCase2));

30 reducedTestSuite.add(testCase2);

Algorithm 3: Dissimilarity-based Reduction - Algorithm

6.2 Example - Dissimilarity 81

Tabela 6.1: Test Cases and Size of test cases

TC id Path Test Size

1 a 1

2 b c e 3

3 b d f 3

4 b d g 3

5 b d g d f 5

6 b d g c e 6

6.1. The size of test cases are also presented in Table 6.1.

SimilarityMatrix =

TC1 TC2 TC3 TC4 TC5 TC6

TC1 0 0 0 0 0

TC2 0.33 0.33 0.25 0.75

TC3 0.66 0.75 0.5

TC4 0.75 0.75

TC5 0.6

TC6

(6.1)

Since the test requirements are transitions, then testRequirements = {a, b, c, d, e, f, g}.

The first step is to find essential test cases. For this example, TC1 is essential.

Therefore, the variables markedTestRequirements and reducedTestSuite are updated:

markedTestRequirements = {a}; reducedTestSuite = {TC1}. The new matrix is pre-

sented in Matrix 6.2.

SimilarityMatrix =

TC2 TC3 TC4 TC5 TC6

TC2 0.33 0.33 0.25 0.75

TC3 0.66 0.75 0.5

TC4 0.75 0.75

TC5 0.6

TC6

(6.2)

There is only one minimum value (0.25) found between TC2 and TC5. They are not

6.3 Case Study 82

1-to-1 redundant test cases, and the satisfied requirements (covered transitions) by each one

of them have not been covered yet. Thus, both test cases are added to RTS, and, the variables

are updated again: markedTestRequirements = {a, b, c, d, e, f, g}; reducedTestSuite =

{TC1, TC2, TC5}.

Finally, all requirements are satisfied by the RTS composed by TC1, TC2, TC5. In other

words, markedTestRequirements = testRequirements.

6.3 Case Study

A case study was executed. The goal of this case study is to compare the fault detection

capability and the RTS size for the Heuristics - G, GE, GRE and H - and Dissimilarity. The

defined test requirement is 75% of transitions coverage. This number was defined because

the stop criteria is the amount of covered transitions, and in this case if all transitions are

covered, all faults will be revealed (the faults are linked to transitions). Therefore, decreasing

the test requirements from 100% to 75%, provides a more realistic and fair comparison.

6.3.1 Application

The application used for this is a desktop tool named TaRGeT, that automatically generates

and selects test cases [47]. In order to execute the case study the tool LTS-BT [16] was used.

For this case study, the input is a use case template [47], written by Motorola experts. This

template contains information regarding the use cases and the scenarios, in the application,

that can be executed by a user. All test cases, generated for this case study, were manually

executed by Motorola employees.

The objective of this case study is to analyze the behavior of the strategy concerning

aspects of the reduced test suite. Therefore we need to observe how much of the test suite

the strategy is able to reduce, and also how many faults were able to be detected by executing

the reduced test suite. These information can be obtained from the following metrics:

• Test Suite Size: The size of a test suite is measured by the number of test cases that it

contains. In this study, the test suite size is 84 test cases;

6.3 Case Study 83

• Fault Coverage: As said before, all test cases are executed manually. From the 84 test

cases, 13 revealed failures. And each one of these failures were caused by a different

fault. Summarizing, the complete test suite revealed 13 different faults.

6.3.2 Case Study - Preparation

As said before, the test requirement is 75% of the transitions of the model. Thus, for each

execution, 75% of transitions are randomly chosen, from the model, in order to establish the

test requirement set. Since the set of test requirements is different, the results can change.

Therefore, 3 sets of test requirements, i.e. three different sets that cover 75% of the transi-

tions, were applied to analyze each strategy.

In other hand, the Heuristics and the Dissimilarity strategy present a random choice in

their algorithms. Thus, each one of them was executed one hundred times, for each set of

test requirement. The results are presented in the next subsection.

6.3.3 Results of the Case Study

This subsection presents the results of the case study. As a reminder, the variables considered

in the study are the size of the RTS and the fault coverage.

Reduced Test Suite Size

By applying Dissimilarity and the heuristics to reduce the test suite, the different RTS size

can be observed. The Table 6.2 presents the obtained results (for one hundred executions)

for each one of the 3 different, randomly defined, set of test requirements.

Tabela 6.2: Average of RTS size (100 executions) for all 3 sets of test requirements

Dissimilarity GRE GE G H

1 31.78 29 29 29 29.52

2 32.08 30 30 30 31.89

3 29.83 27 27 27 29.36

Average 31.23 28.66 28.66 28.66 30.25

6.3 Case Study 84

The results show that GRE, GE and G present better results, followed by H. In this case,

Dissimilarity presents the worst results. In average, Dissimilarity reduces the test suite 62.82

%; G, GE and GRE, 65.88%; and H, 63.99%. The Figure 6.2 presents the graph that shows

the obtained average for the 3 sets of test requirements, in each one of the 100 executions.

Figura 6.2: TaRGeT - Reduced Test Suite Size

Fault Coverage

The obtained results for each strategy, considering the 3 different sets of test requirements,

are presented in Table 6.3.

Tabela 6.3: Average of test suite reduced size (100 executions) for all 3 sets of test require-

ments

Dissimilarity GRE GE G H

1 8.92 7 7 7 7

2 4.51 4 3.58 3.48 3.99

3 5.2 4.68 5.17 5.26 5.26

Average 6.21 5.22 5.25 5.24 5.41

The results show that most of the times, the Dissimilarity strategy reveals more faults. In

average, Dissimilarity reveals 51.28% of the total amount of faults; H reveals 43.58%; GRE

and GE, 42.02%; and G, 38.46%.

6.3 Case Study 85

The Figure 6.3 presents the graph that shows the obtained average by considering the 3

sets of test requirements in each one of 100 executions. The conclusion is that, by consid-

ering each execution (i.e., the average among the 3 sets of test requirements), Dissimilarity

reveals more faults.

Figura 6.3: TaRGeT - Failures

Concluding Remarks - Case Study

The Table 6.4 presents the summary of this case study, in terms of the percentage of reduction

and fault coverage for Dissimilarity, G, GE, GRE and H.

Tabela 6.4: Summary - Percentage of Reduction and Fault Coverage

Dissimilarity GRE GE G H

Percentage of Reduction (%) 62.82 65.88 65.88 65.88 63.99

Percentage of Fault Coverage (%) 51.28 42.02 42.02 38.46 43.58

Summarizing the data of the table: Dissimilarity presents the worst percentage of test

suite reduction (the best is reached by applying GRE ,GE or G), however it presents the best

percentage of the revealed faults (the worst is obtained by applying G). Analyzing the data

from Dissimilarity, it is necessary - in average - to execute 3.06% more test cases, than the

6.4 Experiment - Reduction 86

best strategy. In other hand, the percentage of the faults is increased by 9.26%. For this case

study, this means that executing 2.57 more test cases, we are able to reveal 1.2 more faults.

The use of only one model can be considered a threat to validity of this case study. Since

we measure structural elements from the LTS, mainly the transitions, using more models

would provide a more general overview of the strategies. Another threat to validity is the

chosen test requirement. In order to generalize the results, it would be necessary to use

different test requirements (e.g. fault coverage, requirements coverage, among others) and

observe the behavior of each strategy.

6.4 Experiment - Reduction

This Section presents the executed experiment and results. The used framework was pre-

sented in Chapter 2. The process was followed and the results are presented in the next

subsections.

Our general hypothesis is that Dissimilarity presents the best performance in relation to

the rate of reduction, considering, as test requirement, 75% of transitions.

6.4.1 Definition

To define the goal, the key questions proposed by Wohlin et al. were answered[61]:

1. What is studied? reduction stragegies;

2. What is the intention? to investigate;

3. Which effect is studied? reduced test suite size;

4. Whose view? the tester;

5. Where is the study is conducted? Model-Based Testing (MBT).

From these answers, the goal definition template is filled. In summary, the goal of this

experiment is:

Analyze reduction strategies

for the purpose of investigating

6.4 Experiment - Reduction 87

with relation to reduced test suite size

from the point of view of the tester

in the context of MBT.

The (input) objects are LTS models. In this case, this experiment does not present sub-

jects.

6.4.2 Planning

For this phase, it is necessary to define [61]: context selection, variable, hypothesis, design

and instrumentation.

Context Selection

The context of this experiment can be characterized as a “toy vs. real” problem [61]. In this

case the objects are LTS models, randomly generated from a configuration. This configu-

ration is characterized by a specific number for the depth of the LTS, the number of loops,

branches and joins (these elements are detailed in Appendix B.

Variables Selection

The variable chosen to observe (dependent variables) and to control (independent variables)

are:

• Dependent: The Reduced Test Suite Size - RTSS .

• Independent: The test requirement percentage; the configuration chosen for the depth

and amount of structures (loops, forks and joins) in the objects; and the strategies for

test case selection (factor). For this factor, there are 5 levels: G, GE, GRE, H and

Dissimilarity (DSim).

Hypothesis Formulation

The experiment definition is formalized as following:

6.4 Experiment - Reduction 88

• A null hypothesis (H0): RTSSG = RTSSGE = RTSSGRE = RTSSH =

RTSSDSim: All strategies have a similar behavior in relation to the reduced test suite

size;

• An alternative hypothesis, H1: RTSSG 6= RTSSGE 6= RTSSGRE 6= RTSSH 6=

RTSSDSim: All strategies have a different behavior in relation to the reduced test suite

size.

Experiment Design

As seen before, there is one factor (test suite reduction strategy) with 5 levels (or treatments).

Thus, there is one factor and 5 treatments, where, for each object, all five treatments are

applied. The chosen confidence level is 95% (significance level is α = 0, 05).

Aiming to define the number of replications, necessary to guarantee statistical signifi-

cance for the specified level of confidence (95%), 40 replications were executed and the data

are presented in Table 6.5.

Tabela 6.5: Mean, Standard Deviation and number of necessary replications for each tech-

nique.

Technique G GE GRE H DSim

Mean (x) 4.3 3.75 3.75 3.75 3.85

Standard Deviation (s) 1.26 1.05 1.05 1.05 1.02

Number of Necessary Replications (n) 133 122 122 122 110

Observing the Table 6.5, we are able to see that 133 replications provide a statistical

significance for the obtained data. Therefore, this experiment design will consider 200 repli-

cations for each technique, in order to better explain the results (since they are expressed

using percentages).

Instrumentation

In this step, there are three types of instruments [61]:

• Objects: The objects are LTS models randomly generated from a configuration

(depth, number of loops, branches and joins).

6.4 Experiment - Reduction 89

• Guidelines: This experiment uses no guidelines, since the strategies do not require

subjects to configure them.

• Measurements: The RTS size will be collect for each treatment. The tool LTS-BT

provides support for executing the experiments and collecting the data.

Validity Evaluation

The objects used in this experiment, can be considered the main threat to validity. They

can not represent a real behavior since these are automatically generated. From a specific

configuration, the objects are randomly generated from a specific configuration, both the

traceability and controllability of the elements of the model (transitions and states) are re-

duced.

On the other hand, we are able to obtain an overview of the execution of the strategies in

several models that has a same configurations, since they are randomly generated. Then, we

avoid presenting a conclusion that is specific to only one LTS of a configuration. A proper

scenario would be to have several real applications to execute the strategies. However, most

real applications and their respective specification are not available to the public.

6.4.3 Operation

To execute this experiment, it was necessary to implement the 5 strategies and the LTS

generator (see Appendix B). Both the LTS generator and the strategies are implemented

in Java programming language1.

The objective is to automatically generate different models using the LTS generator. In

order to depict a real application in these generated LTS, the configuration used for the

generator was chosen from observing a real application (used in the case study - Section

6.3). Then the chosen configuration is:

• Depth: 15;

• Number of loops: 2;

• Number of branches: 3;

1http://www.sun.com/java/

6.4 Experiment - Reduction 90

• Number of joins: 3.

There is only one experimental design (with only one factor - test suite reduction strategy)

with a null and an alternative hypothesis, where the intention is to reject the null hypothesis.

Each strategy was executed 100 times, using a machine with the following configurations:

• Intel Core 2 quad 2.33 GHz;

• 4GB RAM;

• 1TB for Hard Disk Memory.

6.4.4 Analysis and Interpretation

The confidence intervals are plotted for each strategy. The graph can be seen in Figure 6.4.

Since the confidence intervals of G, GE, GRE and H overlap, a statistical test is required

[39] to test the hypothesis. In this case, since the confidence interval for G, GE, GRE and H

is overlapped, we will do first a comparison among them. In order to show the comparison

among the four strategies, the statistical tests are applied and the results are presented in

Appendix C. In this Appendix, by applying the statistical test, we concluded that the obtained

results can not be considered different, for the heuristics (G, GE, GRE and H).

Since the behavior of the heuristics can not be considered different, the Dissimilarity

strategy needs to be compared with only one of them. Once that Dissimilarity includes some

concepts from GRE, the comparison will be between GRE and Dissimilarity. The experiment

definition is formalized as following:

• A null hypothesis (H0): RTSSGRE = RTSSDSim : All techniques have a similar

behavior in relation to the reduced test suite size;

• An alternative hypothesis (H1): RTSSGRE 6= RTSSDSim: All techniques have a

different behavior in relation to the reduced test suite size.

The first step is to analyze if the obtained data, for each strategy, present a normal dis-

tribution. For this, we applied the Anderson-Darling normality test, using the Minitab tool2.

The results can be seen in Figures 6.5 and 6.6. In this graph, the red dots, should overlap the

blue line, in order to indicate that the data fit a normal distribution.
2http://www.minitab.com/

6.4 Experiment - Reduction 91

Figura 6.4: Interval Plot

Figura 6.5: Anderson-Darling normality test - Dissimilarity

The p− V alues are smaller than the significance value (α = 0.05), thus the data do not

show a normal distribution. In this case, it is necessary to use a non-parametric test. Since

this experiment has a factor with two treatments (GRE and Dissimilarity), the Mann-Whitney

is applied to check the null hypothesis. The results for the test can be seen in the Table 6.6.

Since p − V alue = 0.0074, and the p − value is lower than 0.05 (α), H0 (the null

6.4 Experiment - Reduction 92

Figura 6.6: Anderson-Darling normality test - GRE

Tabela 6.6: Mann-Whitney Test - GRE and DSim

Technique N Median

GRE 200 4.000

DSim 200 4.000

The test is significant at 0.0074

hypothesis) can be rejected. The box plot that presents the difference of the RTSS between

DSim and GRE can be seen in Figure 6.7. By this figure, we can conclude that in the most

cases, the difference is 0 or 1, but in some cases (not often) can be 2.

6.4.5 Concluding Remarks - Experiment

Summarizing the data of the experiment: Dissimilarity presents the worst percentage of test

suite reduction. The best is reached by applying GRE ,GE or G. However, we can conclude

that the difference is 0 or 1 or 2.

6.5 Concluding Remarks 93

Figura 6.7: Box Plot RTSS of DSim - GRE

6.5 Concluding Remarks

In this Chapter, we presented our proposal for test suite reduction based on Similarity (Chap-

ter 3) named as Dissimilarity. A case study and an experiment are performed. The results

of the case study show evidence that Dissimilarity presents the worst percentage of test suite

reduction (the best is reached by applying GRE ,GE or G), however it presents the best per-

centage of the revealed faults (the worst is obtained by applying G). Analyzing the data from

Dissimilarity, it is necessary - in average - to execute 3.06% more test cases, than the best

strategy. In other hand, the percentage of the faults is increased by 9.26%. For this case

study, this means that executing 2.57 more test cases, we are able to reveal 1.2 more faults.

The experiment confirms one of the obtained results of the case study: Dissimilarity

presents the worst percentage of test suite reduction. In this case, considering 75% of transi-

tion coverage, as the test requirement.

Capítulo 7

Analisando Redução baseada na Ordem

de Seleção

Neste Capítulo introduzimos uma nova perspectiva para avaliar estratégias de redução de

suítes de teste baseada na taxa de detecção de faltas. Este critério é padrão para avaliar

estratégias de priorização de casos de teste, mas até então não foi utilizado para redução.

Nossa proposta considera que o teste pode ser parado antes da execução completa da suíte

de teste e que a ordem com que os casos de teste são colocados na suíte de teste reduzida é

também importante.

Diferentes estudos na literatura têm sido desenvolvidos para comparar estratégias de pri-

orização e redução considerando um único ponto de vista: eficácia em diminuir o tamanho

das suítes de teste e o impacto na efetividade da detecção de faltas. Uma prática comum é

comparar estratégias considerando que todos os casos de teste serão executados. Entretanto,

sob restrições de orçamento, deve-se executar um menor número de casos de teste do que

aqueles que realmente deveriam ser executados.

Nós comparamos quatro heurísticas de redução considerando a taxa de detecção de faltas

e mostramos que a estratégia de redução a ser escolhida quando o tempo está em questão

pode ser diferente daquela que apresentava a melhor performance quando executava a suíte

completa.

Nossos resultados sugerem que - provavelmente - um novo modo de medir a performance

das heurísticas é necessária, levando em consideração a variabilidade de número de casos de

teste a serem executados e as faltas detectadas até agora.

94

7.1 Motivation 95

Maiores detalhes são apresentados nas próximas seções.

7.1 Motivation

Different test reduction heuristics have been proposed. The common practice to com-

pare them is by considering that the whole reduced test suite will be executed [35;

19]. Unfortunately during development managers might be forced for many reasons to stop

the testing earlier than planned, and thus a lower number of test cases is run than those in the

reduced test-suite. The ideal solution would be to maximize the number of failures detected

while selecting a subset of non-redundant test cases that covers all requirements.

To motivate such an approach, let us consider the same toy example presented in [29],

where a program is supposed to contain 10 faults and a test suite of 5 test cases, called for

simplicity (A,B,C,D,E), is available. Table 7.1 shows the fault detection capability of each

test case. When all test cases are executed, independently of their order, the percentage

of fault detection is always 100%. To select the best prioritization technique the Average

Percentage of Fault Detection (APFD) measure reached by the associated combination of test

cases has been proposed. For instance, as described in [29], if three different prioritization

techniques are applied that produce the sets (A,B,C,D,E), (E,D,C,B,A), (C,E,B,A,D), they

yield respectively the following APFD: 50%, 64 % and 84%. Hence the third one gives the

best ordering.

Now, let us suppose to apply three different reduction techniques on the same test suite,

Tabela 7.1: Test Suite and Faults exposed

Test faults

1 2 3 4 5 6 7 8 9 10

A x x

B x x x x

C x x x x x x x

D x

E x x x

Tabela 7.2: APFD of the considered reduction

heuristic

#TC TS1 TS2 TS3

1 40 20 40

2 35.5 22.5 30

3 47.85 34.65 37.95

4 47.85 47.5 46.25

5 47.85 47.5 62

7.1 Motivation 96

Figura 7.1: Test Case Order

obtaining the following reduced sets:

• TS1 = (B,E,D)

• TS2 = (A,E,B,C)

• TS3 = (B,A,C,D,E)

We are assuming that all of the three sets reach 100% requirements coverage, hence TS1

performs the best in terms of test size reduction. However, it should be considered that with

only 3 test cases TS1 discovers the 70% of the faults, while TS2 and TS3 detect the 100%.

We believe that in test reduction a practical compromise that takes into consideration both the

number of test cases executed and the rate of fault detection should be defined. For instance

if we use the APFD measure for comparing the respective rates of fault detection of the three

test suites, we get the results reported in Figure 7.1: TS1 has 47.85% of APFD, TS2 has

47.5% and TS3 has 62%. Thus the best technique in terms of quickly detecting faults would

be TS3, but it is the one having the worst performance in terms of test suite reduction.

On the other hand, if for any reasons the test phase needs to be stopped after only two

test case are executed, which is the relative performance of the three test suites? If the APFD

of TS1, TS2, TS3 are again evaluated considering only their first two tests, the following

results can be observed:

• TS1_r = (B,E) detects 7 faults and reaches the 35.5% of APFD

• TS2_r = (A,E) detects 5 faults and reaches the 22.5% of APFD

• TS3_r = (B,A) detects 4 faults and reaches the 30% of APFD

7.2 General definition 97

This changes the previous measures. The best APFD when only two test cases have been

executed belongs to TS1 and not anymore to TS3. Thus if testing is stopped before all test

cases in the reduced test-suite are run, the ordering in the reduced test-suite is important for

selecting the most effective test strategy. This is why we propose to mix the concepts of

reduction and prioritization.

It is important to notice that the kind of data analyzed in the above example would only

be available a posteriori. This example is used to evidence the existence of different points of

view in the evaluation of a test reduction strategies when taking in consideration also realistic

problems. However, the fault detection of each test case is available only after the test case

is executed and not before, and constraints forcing the manager to stop testing in advance

cannot be foreseen.

From a practical point of view the knowledge about the rate of fault detection of reduction

heuristics could be derived by the application of fault seeding or from the history of test

execution for similar products.

7.2 General definition

From the example discussed in the previous section, we think that test reduction and test

prioritization can be seen as two aspects of a more general problem that is to select an optimal

set of test cases under the existing constraints that minimizes redundancy (via reduction) and

maximizes fault detection (via prioritization). In this section we formalize the procedure

followed for deriving Table 7.2 and consequently provide a general definition of a criterion

to select the reduction heuristics to be applied.

In particular, considering the definition of APFD of [57], given a program having a num-

ber of faults equal to m, a number of requirements equal to q and an ordered test suite

TS = (T1, ...Tn) of cardinality n, the following functions can be defined:

• TF (i) for 1 ≤ i ≤ m represents the position of the first test case in TS that exposes

the fault i

• For 1 ≤ h ≤ n req(Th) = {rp|1 ≤ p ≤ q and rp is a requirement covered by Th}

represents the set of requirements covered by Th

7.2 General definition 98

• For 1 ≤ h ≤ n r(Th) = |req(Th)| represents the number of requirements covered by

Th

Consequently if j, 1 ≤ j ≤ n, represents cumulative number of test cases executed

during a testing phase till a certain point in time, and f , 1 ≤ f ≤ m is the cumulative

number of faults in T1, ..Tj , the following cumulative functions can be defined:

• APFD(j) = 1 − TF (1)+...+TF (f)
jf

+ 1
2j

represents the incremental APFD after the

execution of j test cases and the detection of f faults

• REQ(j) =
⋃j

i=1 req(Ti) represents the set of requirements covered by the execution

of the subset T1, ..Tj

• R(j) = |REQ(j)| represents the cumulative number of requirements discovered by

the execution of the first j test cases

In this case if q represents the cumulative amount of requirements to be covered for a

specific system, and m is the cumulative amount of faults, then when j = n the previous

formulas become:

• APFD(n) = 1− TF (1)+...+TF (m)
nm

+ 1
2n

represents the standard formula of APFD

• REQ(n) =
⋃n

i=1 req(Ti) ≤ q represents the set of requirements covered by the re-

duced test suite T1, ..Tn

• R(n) = |REQ(n)| represents the cumulative number of requirements discovered by

the execution of the reduced test suite

In general, given q and m as above, let us assume that k different heuristics, H1, ...Hk

are available for test reduction, such that the reduced test suites have cardinality h1, ..., hk

respectively and are represented by (Th11 , ..., Th1h1), ..., (Thk1 , ..., Thkhk).

To take into account the number of executed test case, we denote by S ∈ (H1, .., Hk) an

index representing the heuristic having the best fault detections effectiveness, then:

for every j such that 1 ≤ j ≤ (max(h1, .., hk)

•
∨

1 ≤ i ≤ k Calculate the APFD(j)Hi. If j > hi than APFD(j)Hi = APFD(hi)Hi

7.3 Case Studies 99

• Determine MAX(j) = max(APFD(j)H1, ...APFD(j)Hk)

• Define S = Hs such that APFD(j)Hs = MAX(j).

• If there are two (or more) heuristics, Hp and Hq, such that MAX(j) =

APFD(j)Hp = APFD(j)Hq then

if R(j)Hp ≥ R(j)Hq then S = Hp

otherwise S = Hq

The last rule simply says that in case the two heuristics have the same fault detection

effectiveness the heuristic yielding the highest requirements coverage is selected.

The procedure above construct the referring table of the different APFD and provide a

guideline for manager to select the heuristic having the best performance depending on the

number of test cases to be executed.

7.3 Case Studies

In two real-world case studies we compared four well-known test suite reduction heuristics

– G, GE, GRE and H – from the new viewpoint. The idea is to measure the rate of fault

detection in order to show that the techniques based on these heuristics may present a differ-

ent performance when considering coverage in different intervals of the ordering of selection

up to 100% coverage of the test requirements. As mentioned before, the reason is that the

heuristics may pick test cases in a different order. Depending on the order, the rate of fault

detection can be maximized or not with the first few test cases selected.

7.3.1 Case Studies Design

The heuristics were implemented in Java programming language using the LTS-BT tool

[16] as execution environment. These heuristics receive a test suite TS and a satisfiability

relation. After processing the suite, the output is the reduced test suite.

Figure 7.2 illustrates the whole process for obtaining a test suite and reducing it using

a heuristic. In this figure, the round-edge rectangles represent components of LTS-BT and

oval forms represent the artifacts produced by the components. These are used as input for

7.3 Case Studies 100

Figura 7.2: Overview of a test suite reduction process

the next component. LTS-BT is a model-based testing tool that automatically generates test

cases from use case documents. Initially the use case document is translated into an LTS

from which the test suite TS is derived and the requirements mapping ReqM is defined.

Then, for the reduction process, the heuristics receive TS and ReqM as input and after

processing the output, the reduced test suite is produced.

For the case studies, we considered transition coverage as requirement. This means that

each transition in the LTS represents a test requirement and the test cases that contain a given

transition satisfy the corresponding test requirement.

Applications under testing

Two real-world applications provided by Motorola Software Engineers have been selected

for the case studies. They are briefly described as follows.

Application 1: TaRGeT is desktop application that supports the model-based testing

process, where it automatically generates test cases from use case documents.

Application 2: Direct License Acquisition (DLA) Support is a feature for mobile

phone applications that handles acquisition of the WMDRM License (Windows Media Dig-

ital Rights Management) for the Windows Media platform. This License provides secure

delivery of audio and/or video content.

For each one of the applications, Motorola Software Engineers elaborated the use case

7.3 Case Studies 101

documents [47]. From these documents, LTS-BT generated the test suites that have the

following particularities.

Application 1: 84 test cases that present redundancy, taking into account the transi-

tions as test requirements, i.e., there are some test cases that cover the same requirement.

Therefore the heuristics are able to reduce this test suite.

Application 2: 28 test cases that present redundancy, but each test case has at least one

transition that is only covered by it. In this case, the heuristics are not able to reduce the test

suite since 100% coverage of the test requirements is needed and this can only be achieved

if all test cases are considered.

The test cases were manually executed and the failures captured were associated with

faults that can be detected by the suite. For Application 1, 13 faults have been defined,

whereas for Application 2, 2 faults have been defined.

Evaluation Metrics

As said before, in general, to evaluate a prioritized test suite taking into account the fault

detection, the APFD metric is calculated. However, as discussed in Section 7.1 the APFD

metric applied to the complete reduced suite is not suitable here: we have 4 reduced test

suites (one for each heuristic) and we need to compare them and analyze which of them

presents the best ordering. Therefore, we measure the number of faults detected by the test

cases selected up to a given position in the ordering. For the case studies considered, there is

exactly one test case associated with each fault. Then, we need to identify whether the test

case has been included in the selection in order to count the fault.

For presenting the results, we consider groups of 5 test cases from the first one to be

selected up to the last one and count the faults that can be detected up to the group.

Implementation

Output data in the form of the reduced test suites are collected only at the end of the heuristic

processing. This means that the instrumentation does not influence the heuristic perfor-

mance. The code instrumentation was done by inserting Java code to store the information

in a data structure that access entries in constant time, because this is indexed by the heuristic

and metric names.

7.3 Case Studies 102

Tabela 7.3: Application 1: Reduced Test Suite Size and Number of Faults.

Heuristic Reduced Test Suite Size (Average) Number of Faults (Average)

Greedy 74 10.4

GE 74 10.4

GRE 74 10.5

H 74.45 10.75

The experiment consists in executing the four heuristics for each application. The inputs

are the test suite TS, generated from the use case document, and the requirement mapping

ReqM to produce the reduced test suite, with the additional information on the position of

each test case that is associated with a fault.

This process is repeated 20 times for each heuristic since these heuristics may have a

random choice.

7.3.2 Results

Table 7.3 presents the obtained metrics for Application 1: the average of reduced test suite

size and the number of faults obtained with 20 executions for each heuristic.

For Application 2, as said before, the heuristics did not reduce the test suite, since each of

the 28 test cases has at least 1 transition that is covered only by it. So, all heuristics kept on

the reduced test suite the same number of test cases of original test suite and, consequently,

the rate of fault detection is not decreased.

To evaluate fault detection effectiveness, we construct box plots to show the distribution

of faults in 20 executions. In the following figures, the x-axis represents the ordered test

cases that are grouped from 5 to 5 and the y-axis represents the number of detected faults.

The edges of the box mark the first and third quartiles. The mean value is represented by the

central line in each box. The whiskers extend from the quartiles represent the farthest ob-

servation lying within 1.5 times the interquartile range. The outliers (unfilled dots) represent

the individual values beyond the whiskers. Figures 7.3, 7.4, 7.5 and 7.6 show the box plots

obtained for Application 1 respectively for heuristics GE, GRE, Greedy and H. Figures 7.7,

7.3 Case Studies 103

7.8, 7.9 and 7.10 show the box plots obtained for Application 2 respectively for heuristics

GE, GRE, Greedy and H.

Figura 7.3: Application 1 - GE Figura 7.4: Application 1 - GRE

Figura 7.5: Application 1 - Greedy Figura 7.6: Application 1 - H

7.3.3 Threats to validity

To prevent threats to internal validity we have replicated the reported case studies 20 times.

So we believe that the resulted reported in Figures 7.3 – 7.10 are reliable as concerns the two

applications TaRGeT and DLA. We see however important threats to external validity, i.e.,

the results observed cannot of course be generalised to other applications different from the

two case studies considered here. The main problem, as observed in Section 7.1, is that the

comparison of the fault detection capabilities of the test cases involves the knowledge can

only be carried out a posteriori. The only conclusion we can safely draw is that the ordering

of test cases in the reduced test suite is important, but we cannot deduce which heuristic is

superior.

7.4 Discussion 104

Figura 7.7: Application 2 - GE Figura 7.8: Application 2 - GRE

Figura 7.9: Application 2 - Greedy Figura 7.10: Application 2 - H

7.4 Discussion

For Application 1, it can be noticed, from Figures 7.3, 7.4, 7.5 and 7.6, that:

• 1 - 5 test cases – For this group, GE and GRE present the best fault detection effec-

tiveness (always 1); H and Greedy present a variation between 0 and 1, but the order

obtained by H can be better than the one obtained by Greedy because its median value

is 1;

• 6 - 20 test cases – For this group, Greedy presents the best fault detection effectiveness

(the minimum number of faults is 3 and the maximum is 7, whereas the mean value is

5); H presents the second best fault detection effectiveness (the minimum number of

faults is 2 and the maximum is 6, whereas the mean value is 4). The fault detection

effectiveness for GE and GRE are the same (always 3);

• More than 20 test cases – For these groups, H presents the best fault detection effec-

tiveness.

7.4 Discussion 105

Therefore, for this application and the faults considered, if the tester is able to execute

only 1-5 test cases, then GE and GRE is the best choice. From 6-20 test cases, Greedy is

the best choice, whereas for more than 20 test cases, H is the best choice. Note that GE and

GRE present the same behavior until 60 test cases.

For Application 2, it can be noticed, from Figures 7.7, 7.8, 7.9 and 7.10, that:

• 1 - 5 test cases – For this group, H presents the best fault detection effectiveness where

the number of detected faults is – most of the time – 1, but it can occur that the 2 faults

considered are detected; Greedy presents the second best fault detection effectiveness

as it always detects 1 fault. Finally, the behaviour of GE and GRE is the same, none

of them detect faults;

• 6 - 10 test cases – For this group, H presents the best fault detection effectiveness

where the number of detected faults is – most of the time – 1, but it can occur that the

2 faults considered are detected. Greedy, GE and GRE presents the same behavior,

always detecting 1 fault.

• More than 10 test cases – For these groups, GE and GRE presents the best fault detec-

tion effectiveness (always 2). About Greedy and H:

– 11 - 15 test cases – For this group, H presents the highest chance of detecting 2

faults;

– 16 - 20 test cases – For this group, H and Greedy present the same behaviour;

– 21 - 25 test cases – For this group, H and Greedy present a similar behaviour

(they can detect 1 or 2), but Greedy detects 2 faults at most of the executions.

Therefore, for this application and the faults considered, if the tester is able to execute

only 1-10 test cases, then H is the best choice. For more than 10 test cases, GE and GRE

are the best choice. It is important to highlight that GE and GRE heuristics present the same

behaviour for all positions. From Figures 7.7, 7.8, the first failure is detected after executing

6-10 test cases.

From these case studies, it can be noticed that by analysing the rate of fault detection,

it is possible to observe which technique can be more effective, depending on the goals of

7.5 Concluding Remarks 106

the tester. Some techniques are more effective when only the first selected test cases can be

handled, whereas others improve their performance as more test cases are considered.

Note that the differences on the best technique at different points between the two ap-

plications may have been caused by the fact that we are not controlling important factors

such as fault distribution and redundancy level. Nevertheless, the purpose of this study is to

illustrate the importance and the information that can be gained if reduction techniques are

also evaluated from this new viewpoint rather than by the size of the reduced test suite only.

This may lead to more effectiveness on selection strategies. As mentioned before, drawing a

general conclusion of which heuristic is the best in each circumstance is out of the scope of

this study (and probably cannot be ever stated).

7.5 Concluding Remarks

In literature different studies have been developed for comparing prioritization and reduction

techniques considering a unique point of view: for instance the efficacy in decreasing test-

suite size or the impact on fault detection effectiveness. A common practice is to compare

and then select the methodologies for test generation considering that all the test cases will

be executed during the testing phase. However, if under budget constraints a lower number

of test cases than scheduled have to be run, the test methodology chosen for deriving the test

cases during the planning could not be the best choice anymore.

We presented a criterion that generalizes the APFD (Average Percentage of Fault Detec-

tion) metric for evaluating the performance of test suite reduction heuristics in subsequent

moments of the test activity. The purpose is to analyze how the fault detection effectiveness

of the reduction heuristics could change when testers are forced to drastically reduce the

number of test cases scheduled for a certain software. Thus we considered four well-known

test suite reduction heuristics – G, GE, GRE and H – and measured their rate of fault detec-

tion using two real-world applications, namely TaRGeT and DLA, by varying the number of

test cases executed and by picking one-by-one the test cases in the generation order of the

four heuristics.

The analysis of the case studies evidences how the performance of the four heuristics can

be really influenced by the number of the test cases executed: it is possible that the heuristic

7.5 Concluding Remarks 107

having the best performance after the execution of few test cases is not the best when the

all the reduced test suite is executed. Of course the studies performed so far cannot be

used for general conclusions and further investigations are necessary. In particular, since we

considered real applications we could not have the complete controlling of important factors:

fault distribution and redundancy level. Probably using techniques for seeding faults on the

model or comparing applications that have similar level of redundancy could have provided

more effective results. However the task of this work was not to conclude which technique

is the best in every situation. As shown in our case studies the heuristics having the best

performance in a case study have not the same behavior in the other one. Thus no general

conclusion can be derived. Our goal was to show that the metrics adopted so far for assessing

the relative effectiveness of various reduction approaches probably do not completely match

a reality in which testing phase can be shorten depending on time and cost constraints.

Our results suggested that probably a new way of measuring the performance of various

heuristics could be necessary, which takes into consideration the variability of the number

of test case to be executed and the faults detected so far. Giving such a new assessment

approach is part of our future work as well as to execute more case studies and experiments.

Capítulo 8

Revisão de Trabalhos em Seleção de

Casos de Teste e Redução de Suítes de

Teste

Este capítulo apresenta alguns trabalhos relacionados a estratégias de seleção de casos de

teste e redução de suítes de teste. O foco é em soluções que podem ser automatizadas desde

que nosso escopo é Teste Baseado em Modelos e Teste de Sistema.

Nós concluimos que, em geral, as estratégias para seleção de casos de teste são guiadas

por algum propósito e não consideram o conceito de redundância. Entretanto as estratégias

de redução de suítes de teste levam em conta o conceito, mas, por reduzir a suíte de teste, a

capacidade de detecção de faltas pode ser reduzida.

Maiores detalhes são apresentados nas próximas seções.

8.1 Review of Work on Test Case Selection

Related works are presented in this section according to the general kind of the strategy

followed to select test cases. For the sake of simplicity, the focus is on works that are more

closely related to ours, particularly in the model-based testing area.

Combinatory Selection.

108

8.1 Review of Work on Test Case Selection 109

Grindal et al. [33] present an evaluation of strategies for test case selection (the All Com-

bination Strategy, the Each Choice Strategy, the Base Choice Strategy, Automatic Efficient

Test Generator and Orthogonal Arrays). These strategies are mostly devoted to testing activi-

ties where a number of combinations, between parameters and values, need to be considered.

The combination strategies were evaluated by considering the number of test cases, the

number of revealed faults, failure size, and the number of decisions covered. Our strategies,

for test case selection (Similarity and WSA) can be applied to refine the test suite produced

by those other strategies, whenever applicable, as some of the selected combinations may

still be redundant.

Test Purpose Selection.

Based on a test purpose, that may denote a functionality, or scenario of a functionality to

be tested, test case generation algorithms can reduce their search space by considering only

sequences that are related to the test purpose. This is a strategy used by the TGV tool [40].

The inputs of this tool are a specification in an Input/Output LTS (IOLTS) model and a test

purpose. The outputs are test cases that cover the functionality that was modelled in a test

purpose.

Therefore, a selection of part of the model that meets the test purpose is performed. Even

though, this can greatly minimize the search space, the redundancy problem is not addressed.

LTS-BT tool [16] also implements this idea. The inputs are annotated LTS and the outputs

are test cases that cover the test purpose.

Statistical Testing

The Cleanroom software certification process [49] is based on statistical usage testing

that consists in selecting a sample of test cases from a Markov chain model whose probabil-

ities are defined to reflect a usage profile. The goal is to define an unbiased test suite that can

be more effective for fault detection and also to make reliability estimation possible.

Following a similar idea, the Cow Suite tools focus on specifications in Unified Modeling

Language (UML), such as UML sequence and use case diagrams [4] for integration testing.

The test case selection is done by considering a weight function, i.e., for each diagram, it is

attributed a weight regarding its functional importance.

8.2 Review of Work on Test Suite Reduction 110

Also, for testing from UML models, the SPACES tool [3] uses UML diagrams. This

tool is used for functional component testing. For each model’s transition, a weight is at-

tributed. According to the weights, the most important set of test cases are selected. The

main disadvantage of these strategies is the need for attributing weights or probabilities.

These presented strategies do not cope directly with redundancy. Our strategy can be

integrated into both tools (Cow Suite and SPACES) to handle redundancy between test cases

as a test case selection strategy.

Remarks - Test Case Selection

Here, we present some remarks on the related works concerning test case selection. The

Table 8.1 presents a comparison between the test case selection strategies of the literature

and our test selection strategies (Similarity selection and WSA).

In general, test selection strategies are guided by some purpose or number of test cases

and they do not consider a redundancy concept. As advantages, all of the selection techniques

addressed by these works can be fully automated and are based on sound theory. However,

MBT presents several limitations in practice that cannot be completely addressed by them.

Test purposes alone can reduce the scope of search, but the TGV tool usually produces

a huge number of test cases even for a simple test purpose. Statistical testing (Cleanroom,

CowSuites and Spaces) take into account the cost restriction (size - we can define the number

of test cases that we wish) and can lead to unbiased choices. However, the redundancy

concept is not taken in consideration. Similarity and WSA strategies are adequate for MBT

approaches and deal with the redundancy concept. The inputs are LTSs that can be obtained

from some specifications such as UML [38].

8.2 Review of Work on Test Suite Reduction

There is a growing interest among the testing community in strategies for test suite reduction.

As said before, this is an NP-complete problem. Therefore, algorithms based on clusters and

some heuristics have been proposed. A number of experimental studies have been conducted

to compare different strategies proposed in the literature.

8.2 Review of Work on Test Suite Reduction 111

Tabela 8.1: Kinds of strategies for selecting test cases compared to the Similarity strategy

and WSA strategy

Goal Coverage

Criterion

Scope of Appli-

cation and Ex-

perimentation

Input Required Redundancy

Concept

Combinatory

Selection

Select a minimal

number of combi-

nations of different

factors according to

a pattern defined as

criterion

All com-

binations

according

to a com-

binatory

pattern

Data selection at

Integration Test-

ing Level

Table where

columns are

factors and

lines are values

associated with

the factors

NO

Test Pur-

pose

Select a minimal

part of the model

that covers the test

purpose

All paths

in the

model that

are related

to the test

purpose

Model-based

testing

Labelled Tran-

sition Systems:

a specifica-

tion and a test

purpose

No

Statistical

Testing

Select a given num-

ber of test cases

randomly guided by

a usage profile that

weights the impor-

tance of certain ex-

ecution scenarios

A number

of test

cases to be

selected

Model-based

testing

Markov Chain No

Similarity

Strategy

Select the most dif-

ferent test cases ac-

cording to a per-

centage of test se-

lection goal

A per-

centage of

all-one-

loop-paths

coverage

Model-based

testing

Paths generated

from a Labelled

Transition Sys-

tem

Yes

WSA Select the most dif-

ferent and impor-

tant test cases ac-

cording to a per-

centage of test se-

lection goal

A per-

centage of

all-one-

loop-paths

coverage

Model-based

testing

Paths generated

from a Labelled

Transition Sys-

tem and proba-

bilities

Yes

8.2 Review of Work on Test Suite Reduction 112

Clustering Test Cases.

Simão et al. [55] present a technique to reduce the test suites for regression testing. This

technique uses ART-2A self-organizing neural network architecture to classify test cases

(feature vector). These test cases are classified into clusters. When the new source code is

available, the modified arcs are evaluated and the most important clusters are selected.

Also to address regression testing, Ma et al. [44] investigate the use of genetic algo-

rithms for defining a minimum test suite for regression testing. The algorithm builds the

initial population based on test history, calculates the fitness value using coverage and cost

information, and selectively produces the successive generations using genetic operations

until found a minimized test suite.

Clustering based strategies are complementary to ours: if we do not have enough re-

sources to execute all test cases, since the test cases in clusters are very similar, we are able

to apply our strategy, within the cluster, and choose only the most different test cases.

Heuristics.

The heuristics are based on the notion of defining the minimal test suites that covers

100% of testing requirements. A set of test requirements is defined for satisfying a given

testing objective/criterion. Some heuristics were presented in Chapter 2:

• Greedy Heuristic (G);

• Heuristic H;

• Heuristic GE;

• Heuristic GRE.

As these heuristics focus on coverage of a specific testing objective, they may be too strict

and discard test cases that are important for other criteria. Our strategy is more flexible in

this sense, since it relies on the general similarity of the test cases that may favor one or more

criteria. However, these heuristics can be used to extend our proposed strategy as a criterion

for discarding similar test cases.

Experimental works.

8.2 Review of Work on Test Suite Reduction 113

A number of experimental studies have been conducted to compare different reduction

strategies proposed in the literature. Chen and Lau [19] present the results of a simulation

study of four heuristics - H, G, GE and GRE - applied to compute a representative test suite

that covers a given testing requirement. The results can be used as a guideline for choosing

the most appropriate one for test suite reduction. For using this guideline, it is necessary to

know the satisfiability relation and the overlapping ratio (the average number of test cases

that satisfy one requirement). Since these results were obtained from simulation data, they

may not reflect the real situation [67].

Zhong et al. [67] present an experimental comparison of test suite reduction techniques

- H, GRE, genetic algorithm-based approach and ILP-based Approach [11]. The conclusion

is that the four techniques can dramatically reduce the test suite size. However H, GRE and

ILP have a better behavior since they can reduce more and the test suite sizes are almost

the same. The smallest test suite is obtained from ILP-approach. This is applied for test

regression, because it requires that error detection information are available.

Wong et al. in [63; 64] present empirical studies conducted to evaluate the effect of

reducing the size of the test suite, keeping the block and all-uses criteria coverage. The idea

is to evaluate the effect on fault detection of reducing the size of a test suite, while keeping

coverage constant. The conclusion is that representative sets have almost the same capability

to reveal defects as the original test suite.

Rothermel et al. [54] present empirical studies of test suite reduction for heuristic H [35].

The test suite size and fault detection capability for the reduced test suite are analyzed and

reveal that the test suite reduction can compromise fault-detection capability.

Heimdahl and George [36] present an experiment where they investigate the effects of

test suite reduction in test suites generated from model based testing. The algorithm used

to reduce the test suite randomly and retrieve a test case in a test suite. This test case is

added to the reduced set if the coverage criterion is improved. The used coverage criteria

were: Variable Domain, Transition, Decision, Decision Usage, MCDC, MCDC usage. They

concluded that there is an unacceptable loss in terms of test suite quality.

Zhang et al. [66] present an empirical evaluation of test suite reduction (heuristics G’,

H’, GE’ and GRE’) for boolean specification-based testing. They show a guideline to choose

among these strategies.

8.3 Concluding Remarks 114

Remarks - Test Suite Reduction

To sum up, we can see that test suite reduction has been extensively experimented, but

results are not conclusive and also divergent. Results depend on the techniques and choice

of requirements and also on the context of application. Further research is needed to identify

the most appropriate ones for MBT. Fraser [31; 30] proposed an algorithm to optimize the

total costs of a test suite with respect to two factors: the test suite size and the test suite

length, using concepts from model checkers. In the resulting test suite, individual test cases

can be longer than in the original test suite.

A related topic is that of test case prioritization. In contrast to test suite reduction strate-

gies which attempt to discard test cases from the test suite, the test case prioritization tech-

niques (such as the ones presented by Elbaum et al. [28], Wong et al. [62], Korel et al. [43],

Kim and Porter [42]) that only re-order the execution of test cases within a suite with the

goal of maximizing some objective function [50].

The Table 8.2 presents a comparison among the test suite reduction strategies of the

literature and Dissimilarity - our test reduction strategy.

For test suite reduction, related works focus on code-based criteria. Test suite reduction

strategies are guided by a test requirement defined in terms of some coverage criteria. They

reduce the size of a test suite by fixing some coverage criterion, in this case a chosen criterion

is favored, however other important test cases (to reveal faults) can be excluded by being

considered redundant in relation to the chosen criteria.

8.3 Concluding Remarks

In general, test selection strategies are guided by some purpose or number of test cases and

they do not consider a redundancy concept. However, test suite reduction take in account

that concept, but, by reducing the test suite, the fault detection capability can be decreased.

The choice of a test requirement can favor or not the fault detection.

8.3 Concluding Remarks 115

Tabela 8.2: Kinds of strategies for reduction test suites compared to the Dissimilarity strategy

Goal Coverage

Criterion

Scope of Appli-

cation and Ex-

perimentation

Input Required Redundancy

Concept

Heuristics

for Test

Suite Re-

duction

Select a minimal

suite that keeps

100% of require-

ments coverage

All testing

require-

ments

deter-

mined by a

testing ob-

jective/cri-

terion

White-box test-

ing

Traceability

Matrix (test

requirements ×

test cases)

Yes

Clustering

Test Cases

Grouping of similar

test cases in a clus-

ter

All test

cases that

can be

grouped in

the cluster

based on

a fitness

function

White-box test-

ing Unit testing

Test cases and

code excerpt

that is targeted

No

Dissimilarity

Strategy

Select the most dif-

ferent test cases

All test

require-

ments

Model-based

testing

Paths generated

from a Labelled

Transition Sys-

tem

Yes

Capítulo 9

Conclusões e Trabalhos Futuros

Este é o capítulo de conclusão desta tese. Aqui, algumas conclusões são mostradas (Seção

9.1) e alguns possíveis trabalhos futuros são apresentados (Seção 9.2).

9.1 Conclusions

In this thesis, we proposed a similarity function to measure redundancy among test cases of

a test suite in the context of model-based testing, focusing on LTSs and test case generation

algorithms guided by structural coverage criteria such as the all-one-loop-paths coverage.

From that function, strategies for test case selection and test suite reduction are proposed.

The idea is to decrease the test suite size by observing redundant parts. We have contribution

in two angles, as follows:

Test Case Selection Strategies

Two strategies for test case selection are proposed and evaluated. These strategies are:

• Similarity-based Selection:

The goal is to apply a similarity function to help on the selection of the most different

test cases among the set of automatically generated ones according to a target number

of test cases (represented by a percentage of the full test suite). To evaluate this strat-

egy, two kinds of coverage criteria (transition and fault coverage) were considered in

order to compare it with a random selection strategy that is largely used in practice.

116

9.1 Conclusions 117

The results show that the similarity strategy is usually more effective to eliminate

redundant test cases according to these criteria. In particular, for the conducted case

studies (system testing of reactive mobile phone and desktop applications), for test

case selection goal equal or higher than 20%, the similarity strategy is clearly more

appropriate for selection considering the investigated criteria. When the percentage

is too small, the use of a random selection can be more appropriate. An experiment

considering a specific configuration of LTS and 50% of the number of test cases shows

that by applying the Similarity strategy we are able to obtain better results than by

applying Random, considering transition coverage.

• Weighted-Similarity Approach:

The main goal of this approach is to exploit the knowledge (expertise) and the simi-

larity concept to minimize the size of a test suite. Those concepts are combined and

a desired number of test cases are selected. To evaluate this strategy two case studies

were executed, considering fault and transition coverage.

The results show evidences that WSA can be an effective strategy for faults detec-

tion, however the results depend on probabilities assignment and also on the ability

of the tester to pinpoint faults. In other hand, for transition coverage Similarity-based

selection presents a better performance - in most of the cases. Considering only the

probabilities based approaches, WSA presents generally a better performance since it

inherits the similarity principles.

Since these strategies are defined for LTSs, they can be largely applied in practice and

adapted to be implemented in different tools. Both strategies are currently implemented in

the LTS-BT Tool [16]. TaRGeT tool [47] implements a version of Similarity-based Selection.

Test Suite Reduction

One strategy for test suite reduction is proposed in this work. This strategy, named Dis-

similarity, is detailed below.

• Dissimilarity: The main goal of this approach is to reach transition coverage as fast

as possible, considering the redundancy concept. As how less similar are the test cases,

more different they are. A case study and an experiment were performed.

9.2 Future works 118

The results of the case study and experiment showed evidences that the Dissimilar-

ity strategy presents the worst percentage of test suite reduction. However, the case

study show that Dissimilarity presents the best percentage of the revealed faults. The

experiment confirms the results of the case study: Dissimilarity presents the worst per-

centage of test suite reduction. In this case, considering 75% of transition coverage, as

the test requirement.

A new perspective in assessing test suite reduction

We propose a new perspective in assessing test suite reduction techniques based on their

rate of fault detection. Our proposal takes in account that, under pressure, testing could be

stopped before all tests in the reduced test suite are run, and in such cases the ordering in the

reduced test suite is also important, since the APFD of an entire test suite is different from

the APFD of a part of the same test suite. Two case studies were performed and they show

that, by considering the rate of fault detection, the reduction strategy to be chosen, when time

is an issue, might be different from the one presenting the best performance, when testing is

completed.

9.2 Future works

Many other problems need to be solved and improvements in our strategies are possible. In

the future, we wish to evaluate the strategies more exhaustively by executing more industrial

case studies and experiments, by considering different LTSs configurations and fault models.

• Test Case Selection

– Similarity-based Selection

A random choice is applied when there is a tie between values of the similarity

matrix. This point can be improved by considering, for example, transition cov-

erage or other criteria, rather than a simple random choice. The other point that

can be improved is when discarding the test cases. In our proposal, the biggest

test cases are kept. We performed a parallel work (presented in Cartaxo et al.

9.2 Future works 119

[14]) that kept the smallest. Further investigation addressing this concern can be

conducted in future works.

– Weighted-Similarity Approach

A guideline to assign the probabilities needs to be proposed, since this is es-

sential to the performance of the WSA strategy. Other point that needs more

investigation is how to combine the probabilities that are assigned by the test

manager. The current strategy considers the multiplication of the values. When

the considered path (test cases) passes by several branches (where the probabil-

ities are assigned), the final weight of the test case can be very small due to the

multiplication.

• Test Suite Reduction

– Dissimilarity

The fact of placing two test cases at a time in the reduced test suite has hampered

the performance, considering the percentage of the test suite reduction. It is

probably that, by analyzing the placement of the test cases, one by one, this

aspect might be improved.

• A new perspective in assessing test suite reduction

A new perspective in assessing test suite reduction was presented and a new way to

choose a test suite reduction strategy is showed. It is necessary to perform further in-

vestigations of this new way of choosing a reduction strategy, since it is still necessary

to execute all strategies in order to pinpoint the best one.

Finally, our scope is MBT approaches and system testing. It is probable that these strate-

gies are good also for regression test. Then more experimentation can be done in this direc-

tion. Besides, we provide, through LTS-BT, a tool support to execute the proposed strategies

presented in this work. Therefore, other strategies can also be implemented in the tool, so

they can be executed, compared and analyzed in regards to our strategies.

Bibliografia

[1] Bernhard K. Aichernig. Mutation testing in the refinement calculus. Formal Aspects of

Computing, 15(2-5):280–295, 2004.

[2] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University

Press, 2008.

[3] D. L. Barbosa, H. S. Lima, P. D. L. Machado, J. C. A. Figueiredo, M. A. Jucá, and

W. L. Andrade. Automating functional testing of components from uml specifications.

Int. Journal of Software Eng. and Knowledge Engineering, 17:339–358, 2007.

[4] Francesca Basanieri, Antonia Bertolino, and Eda Marchetti. The cow suite approach to

planning and deriving test suites in uml projects. In UML’02: Proceedings of the 5th

International Conference on The Unified Modeling Language, pages 383–397, London,

UK, 2002. Springer-Verlag.

[5] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New

York, NY, USA, 1990.

[6] A. Bertolino, E. Cartaxo, P. Machado, and E. Marchetti. Weighting influence of user

behavior in software validation. In 19th International Conference on Database and

Expert Systems Application - DEXA 2008 Workshops, pages 495–500. IEEE Computer

Society, 2008.

[7] A. Bertolino, E. Cartaxo, P. Machado, E. Marchetti, and Jo ao Ouriques. Test suite

reduction in good order: Comparing heuristics from a new viewpoint. In Proceedings

of the 22nd IFIP International Conference on Testing Software and Systems: Short

Papers, pages 13–18. CRIM, 2010.

120

BIBLIOGRAFIA 121

[8] Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In

2007 Future of Software Engineering, FOSE ’07, pages 85–103, Washington, DC,

USA, 2007. IEEE Computer Society.

[9] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher. Value-Based Software

Engineering. Springer-Verlag New York, Inc. Secaucus, NJ, USA, 2005.

[10] R. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-

Wesley, 1999.

[11] Jennifer Black, Emanuel Melachrinoudis, and David Kaeli. Bi-criteria models for all-

uses test suite reduction. In ICSE ’04: Proceedings of the 26th International Confer-

ence on Software Engineering, pages 106–115, Washington, DC, USA, 2004. IEEE

Computer Society.

[12] B.W. Boehm. Software Engineering Economics. Prentice Hall PTR Upper Saddle

River, NJ, USA, 1981.

[13] Gustavo Cabral and Augusto Sampaio. Formal specification generation from require-

ment documents. Electron. Notes Theor. Comput. Sci., 195:171–188, 2008.

[14] E. G. Cartaxo, P. D. L. Machado, F. G. O. Neto, and J. F. S. Ouriques. Usando funções

de similaridade para redução de conjuntos de casos de teste em estratégias de teste

baseado em modelos. In Simposio Brasileiro de Engenharia de Software 08 (SBES

2008), Campinas, Sao Paulo, October 2008. SBC.

[15] E. G. Cartaxo, F. G. O. Neto, and P. D. L. Machado. Automated test case selection based

on a similarity function. In Model-based Testing 07 (Motes’07), Bremen, Germany,

September 2007. Lecture Notes in Informatics.

[16] Emanuela G. Cartaxo, Wilkerson L. Andrade, Francisco G. Oliveira Neto, and Patrícia

D. L. Machado. LTS-BT: a tool to generate and select functional test cases for em-

bedded systems. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied

computing, volume 2, pages 1540–1544, New York, NY, USA, 2008. ACM.

BIBLIOGRAFIA 122

[17] Emanuela Gadelha Cartaxo, Patricia Duarte Lima Machado, and Francisco

Gomes Oliveira Neto. On the use of a similarity function for test case selection in

the context of model-based testing. STVR Journal of Software Testing, Verification,

and Reliability, 2009.

[18] T. Y. Chen and M. F. Lau. A new heuristic for test suite reduction. Information &

Software Technology, 40(5-6):347–354, 1998.

[19] T. Y. Chen and M. F. Lau. A simulation study on some heuristics for test suite reduction.

Information & Software Technology, 40(13):777–787, 1998.

[20] T. Y. Chen and M. F. Lau. On the completeness of a test suite reduction strategy.

COMPJ: The Computer Journal, 42, 1999.

[21] T. Y. Chen and M. F. Lau. On the divide-and-conquer approach towards test suite

reduction. Inf. Sci., 152(1):89–119, 2003.

[22] V. Chvatal. A greedy heuristic for the set covering problem. Mathematics of Operations

Research, 4:233–235, 1979.

[23] T D Cook and D T Campbell. Quasi-Experimentation: Design and Analysis Issues for

Field Settings. Houghton Mifflin Company, 1979.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

The MIT Press, New York, 2001.

[25] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and B. M.

Horowitz. Model-based testing in practice. In Proceedings of the 21st international

conference on Software engineering, ICSE ’99, pages 285–294, New York, NY, USA,

1999. ACM.

[26] Rene G. de Vries and Jan Tretmans. On-the-fly conformance testing using SPIN.

In Proceedings of Fourth Workshop on Automata Theoretic Verification with the Spin

Model Checker, pages 115–128, 1998.

[27] I. K. El-Far and J. A. Whittaker. Model-based software testing. Encyclopedia on

Software Engineering, 2001.

BIBLIOGRAFIA 123

[28] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. Test case prioritization:

A family of empirical studies. IEEE Transactions on Software Engineering, 28:159–

182, 2002.

[29] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Prioritizing test

cases for regression testing. In In Proc. of the Int. Symposium on Software Testing and

Analysis, pages 102–112. ACM Press, 2000.

[30] Gordon Fraser. Automated Software Testing with Model Checkers. PhD thesis, Graz

University of Technology, October 2007.

[31] Gordon Fraser and Franz Wotawa. Redundancy based test-suite reduction. In Proceed-

ings of the 10th International Conference on Fundamental Approaches to Software

Engineering, FASE’07, pages 291–305, Berlin, Heidelberg, 2007. Springer-Verlag.

[32] Robert L. Glass. The software-research crisis. IEEE Software.

[33] Mats Grindal, Birgitta Lindström, Jeff Offutt, and Sten F. Andler. An evaluation of com-

bination strategies for test case selection. Empirical Software Engineering, 11(4):583–

611, 2006.

[34] Dick Hamlet. When only random testing will do. In RT ’06: Proceedings of the 1st

international workshop on Random testing, pages 1–9, New York, NY, USA, 2006.

ACM.

[35] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A methodology for controlling the

size of a test suite. ACM Trans. Softw. Eng. Methodol., 2(3):270–285, 1993.

[36] Mats P. E. Heimdahl and Devaraj George. Test-suite reduction for model based tests:

Effects on test quality and implications for testing. In ASE ’04: Proceedings of the

19th IEEE international conference on Automated software engineering, pages 176–

185, Washington, DC, USA, 2004. IEEE Computer Society.

[37] Anders Hessel. Model-based test case generation for real-time systems, 2007.

[38] Wai Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, and François Pennaneac’h. UM-

LAUT: An extendible uml transformation framework. In ASE ’99: Proceedings of the

BIBLIOGRAFIA 124

14th IEEE international conference on Automated software engineering, Washington,

DC, USA, 1999. IEEE Computer Society.

[39] R. K. Jain. The Art of Computer Systems Performance Analysis: Techniques for Exper-

imental Design, Measurement, Simulation, and Modeling. Wiley, 1991.

[40] Claude Jard and Thierry Jeron. Tgv: theory, principles and algorithms: A tool for the

automatic synthesis of conformance test cases for non-deterministic reactive systems.

Int. J. Softw. Tools Technol. Transf., 7(4):297–315, 2005.

[41] Paul Jorgensen. Software Testing: A Craftman’s Approach. CRC Press, Inc., Boca

Raton, FL, USA, 2001.

[42] Jung-Min Kim and Adam Porter. A history-based test prioritization technique for re-

gression testing in resource constrained environments. In ICSE ’02: Proceedings of the

24th International Conference on Software Engineering, pages 119–129, New York,

NY, USA, 2002. ACM.

[43] Bogdan Korel, George Koutsogiannakis, and Luay H. Tahat. Model-based test prioriti-

zation heuristic methods and their evaluation. In A-MOST ’07: Proceedings of the 3rd

International Workshop on Advances in Model-based Testing, pages 34–43, New York,

NY, USA, 2007. ACM.

[44] Xue-ying Ma, Bin-kui Sheng, and Cheng-qing Ye. Test-suite reduction using genetic

algorithm. In Advanced Parallel Processing Technologies, volume 3756 of Lecture

Notes in Computer Science, pages 253–262, 2005.

[45] John D. Musa. Software-reliability-engineered testing. Computer, 29(11):61–68, 1996.

[46] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley & Sons,

2004.

[47] Sidney Nogueira, Emanuela Cartaxo, Dante Torres, Eduardo Aranha, and Rafael Mar-

ques. Model based test generation: An industrial experience. In 1st Brazilian Workshop

on Systematic and Automated Software Testing - SBBD/SBES 2007, Joao Pessoa, PB,

Brazil, 2007.

BIBLIOGRAFIA 125

[48] Alexander Pretschner. Model-based testing. In Proceedings of International Confer-

ence on Software Engineering - ICSE, pages 722–723, 2005.

[49] Stacy J. Prowell, Carmen J. Trammell, Richard C. Linger, and Jesse H. Poore. Clean-

room Software Engineering: Technology and Process. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 1999.

[50] G. Rothermel, R.H. Untch, Chengyun Chu, and M.J. Harrold. Test case prioritiza-

tion: an empirical study. (ICSM ’99) Proceedings. IEEE International Conference on

Software Maintenance, pages 179–188, 1999.

[51] Gregg Rothermel and Mary Jean Harrold. Selecting tests and identifying test coverage

requirements for modified software. In ISSTA ’94: Proceedings of the 1994 ACM

SIGSOFT International Symposium on Software Testing and Analysis, pages 169–184,

New York, NY, USA, 1994. ACM.

[52] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test selection

technique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210, 1997.

[53] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong. An empirical

study of the effects of minimization on the fault detection capabilities of test suites.

In In Proceedings of the International Conference on Software Maintenance, pages

34–43, 1998.

[54] Gregg Rothermel, Mary Jean Harrold, Jeffery Von Ronne, and Christie Hong. Em-

pirical studies of test-suite reduction. Journal of Software Testing, Verification, and

Reliability, 12:219–249, 2002.

[55] Adenilso da Silva Simao, Rodrigo Fernandes de Mello, and Luciano Jose Senger. A

technique to reduce the test case suites for regression testing based on a self-organizing

neural network architecture. In Proceedings of the 30th Annual International Computer

Software and Applications Conference - Volume 02, pages 93–96, Washington, DC,

USA, 2006. IEEE Computer Society.

[56] I. Sommerville. Software Enginnering. Van Nostrand Reinhold, eighth edition, 2007.

BIBLIOGRAFIA 126

[57] Praveen Ranjan Srivastava. Test case prioritization. Journal of Theoretical and Applied

Information Technology, pages 178–181, 2008.

[58] Jan Tretmans. Testing concurrent systems: A formal approach. In CONCUR ’99:

Proceedings of the 10th International Conference on Concurrency Theory, pages 46–

65, London, UK, 1999. Springer-Verlag.

[59] Saif ur Rehman Khan, A. Nadeem, and A. Awais. Testfilter: A statement-coverage

based test case reduction technique. In Multitopic Conference. INMIC ’06. IEEE, pages

275–280. IEEE, 2006.

[60] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

[61] C. Wohlin, P. Runeson, M. Host, C. Ohlsson, B. Regnell, and A. Wesslén. Experimen-

tation in Software Engineering: an Introduction. Kluver Academic Publishers, 2000.

[62] W. Eric Wong, Joseph R. Horgan, Saul London, and Hira Agrawal Bellcore. A study of

effective regression testing in practice. Software Reliability Engineering, International

Symposium on, 0:264, 1997.

[63] W. Eric Wong, Joseph R. Horgan, Saul London, and Aditya P. Mathur. Effect of test set

minimization on fault detection effectiveness. In Proceedings of the 17th International

Conference on Software Engineering, ICSE ’95, pages 41–50, New York, NY, USA,

1995. ACM.

[64] W. Eric Wong, Joseph Robert Horgan, Aditya P. Mathur, and Alberto Pasquini. Test set

size minimization and fault detection effectiveness: A case study in a space application.

Journal of Systems and Software, 48(2):79–89, 1999.

[65] Xue ying MA, Zhen feng He, Bin kui Sheng, and Cheng qing Ye. A genetic algo-

rithm for test-suite reduction. In IEEE International Conference on System, Man and

Cybernetics, pages 133–139, 2005.

[66] Xiaofang Zhang, Baowen Xu, Zhenyu Chen, Changhai Nie, and Leifang Li. An em-

pirical evaluation of test suite reduction for boolean specification-based testing (short

paper). In Hong Zhu, editor, QSIC, pages 270–275. IEEE Computer Society, 2008.

BIBLIOGRAFIA 127

[67] Hao Zhong, Lu Zhang, and Hong Mei. An experimental comparison of four test suite

reduction techniques. In ICSE ’06: Proceedings of the 28th International Conference

on Software Engineering, pages 636–640, New York, NY, USA, 2006. ACM.

Apêndice A

Similarity based Selection - Case Studies

The content of this chapter have been published in the paper Cartaxo et al. [17].

A.1 Introduction

In order to evaluate the use of the similarity strategy, three different case studies were con-

ducted, where test cases were selected by the similarity strategy and also by a plain random

selection strategy. The evaluation focused on assessing whether the similarity strategy (when

compared to the random strategy) is suitable for test case selection with the goal of produc-

ing test suites of a given smaller size that still keep effective coverage. The random choice

strategy basically consists in randomly selecting a test case at a time to be removed from the

test suite according to a random function with an even probability distribution. The similarity

strategy has been applied by using the LTS-BT tool [16].

The random selection strategy was chosen because, when coverage and diversified

choices are of concern, random choice has been accepted to be more effective than determin-

istic choice in the model-based testing area [49]. Therefore, this strategy has compatible ex-

pectations when compared to the similarity ones. Also random testing methods have proven

to be more effective in practice in situations where information is lacking to make systematic

approaches applicable [34]. When selecting test cases from plain labelled transition systems

(the context of this work), which is different from selection from high-level specifications,

this situation arises. For example, at system level (the scope of the case studies presented

here), systematic approaches will often require assumptions or information such as opera-

128

A.2 Overview of Case Study Applications 129

tional profile and domain partition. Moreover, random selection is usually applied by other

selection, reduction and prioritisation strategies when they reach an undecided situation and

get blocked due to a tie among test cases to be selected. This makes random selection a very

important and representative selection strategy in practice. Furthermore, random selection is

usually considered as fundamental basis of comparison in most of the empirical studies in

the area.

For the sake of simplicity when explaining the case studies, the term “percentage of test

cases selected"is used with the same meaning as “percentage of all-one-loop-paths cover-

age". This comes from the fact that the selected paths are indeed the test cases.

Next sections present an overview of the case studies applications (Section A.2), how the

case studies were defined and conducted (Section A.3), and the results obtained during case

studies execution (Sections A.4 and A.5).

A.2 Overview of Case Study Applications

In this section, the case studies chosen are briefly described. They are named, for further

reference, as Case Study 1, Case Study 2 and Case Study 3. All of them are reactive appli-

cations i.e., applications that react to stimuli of their environment [40]. Particularly, Case

Studies 1 and 2 are mobile phone applications, whereas Case Study 3 is a desktop applica-

tion. The focus is on system testing and test suites are for manual execution. Therefore, the

LTS models represent use scenarios of the applications. In summary, the case studies are

described as follows:

• Case study 1 is an application for adding contacts in a mobile phone’s contact list;

• Case study 2 is a message application that deals with embedded items. An embedded

item can be an URL, phone number or e-mail. For each embedded item, it is possible

to execute certain tasks (See Table A.1);

• Case study 3 is an application that generates test cases automatically from use case

scenarios - the TaRGeT tool [47].

It is important to remark that, for all case studies, the same basic process has been fol-

lowed to obtain the LTS model. Basically the process has the following activities:

A.2 Overview of Case Study Applications 130

Tabela A.1: Embedded item and available Tasks

Embedded item Tasks

URL Store, Go to

Phone number Send message, Send voice message, Store, Call

E-mail Send message, Store

• Writing use cases from natural language requirement documents according to the for-

mat defined by Cabral and Sampaio [13];

• Use cases inspection and review for consistency, completeness and conformance;

• LTS model generation that combines the behaviours of all use cases [47]. Basically,

each LTS transition represents a use case step. The use case flows may be branched,

resulting in different paths in the LTS.

All case studies have also been conducted by the same team. Therefore, this evaluation

assumed that the level of details and consistency of the LTS models obtained is similar for all

of them. Also, the LTS models cover 100% of the known requirements for each application.

Table A.2 shows some metrics on the case studies in order to illustrate their complexity

such as the number of use cases, the number of branch nodes, the maximum level of nested

sub-branches, the number of loops and the number of transitions. At system use case level

specification, loops are quite rare, unless repetitive interactions are needed in a use. Actu-

ally, since all-one-loop-paths coverage has been considered, loops are not significant here.

Table A.2 also presents the number of test cases, transitions and faults for each case study

considering 100% all-one-loop-paths coverage. Faults are defined according to a fault model

(Subsection A.3.3). Each fault model makes reference to faults that can be included in an

implementation in case programmers do erroneously interpret requirements and, as result,

the implementation produces responses that are not in conformance with the LTS model.

The reason for this is that it is important to obtain a similar level of fault distribution in all

case studies. For Case Study 3, actual faults detected by test execution and debugging were

also considered.

A.2 Overview of Case Study Applications 131

Tabela A.2: Case Studies - Metrics

Case Study 1 Case Study 2 Case Study 3

Number of Use Cases 1 33 25

Number of Branches 7 34 21

Maximum level of Sub-Branches 5 1 3

Number of loops 1 0 0

Number of Transitions 121 826 631

Number of Test Cases 24 66 130

Smallest Test Case (Number of

Transitions)

6 11 6

Biggest Test Case (Number of

Transitions)

29 27 38

Most Common Test Case Size 24 19 14

Number of Most Effective Test

Cases (Associated with more

faults)

3 33 4

Number of Faults 23 99 127

Tabela A.3: Faults per Number of Transitions and Test Cases and Test Cases per Transitions

(Similarity Rate)

Case Study 1 Case Study 2 Case Study 3

Faults/Number of Transitions 0,190 0,120 0,201

Faults/Test Cases 0,958 1,500 0,977

Test Cases/Transitions 0,198 0,080 0,206

A.3 Overview of Case Studies Definition 132

Table A.3 presents the rates of faults per number of transitions and test cases as well as

the rate of test cases per transition that may characterize the similarity degree of paths in the

application and, consequently, the similarity degree of test cases.

For the sake of confidentiality and also for the sake of simplicity, the LTS models of

these case studies are not presented in this paper. However, it is important to comment that

Case Studies 1 and 3 have more redundant test cases than Case Study 2, since the latter has

3 disjoint groups of functionalities that are handled in isolation. This can also be observed

by the rate of test cases per transitions for Case Study 2 (see Table A.3), that is, less test

cases for more transitions. The most effective test cases of Case Study 1 are relatively more

redundant than the ones of Case Study 3 since the former is about a single and cohesive use

case.

A.3 Overview of Case Studies Definition

This section presents the evaluation criteria, path selection strategy and fault model structure

defined for conducting and evaluating the case studies.

A.3.1 Evaluation Criteria

In the general research area on test case selection which is the main focus of the case studies,

the main criteria used to evaluate the resulting test suite are:

(i) Structural coverage;

(ii) Fault-coverage;

(iii) The number of faults detected by the most effective test contained in it;

Regarding (i), for the case studies presented in this paper that are of system level testing

(abstracting from code), transition-based coverage criteria are the most appropriate ones

(actually the only ones that make sense), since the focus of this work is on plain labelled

transition systems without either guards or datatypes or parallel composition. In this case,

the only observable behaviours are transitions that represent outputs. Therefore, transition

coverage is a very important metric, since the number of observable behaviours that are

A.3 Overview of Case Studies Definition 133

going to be evaluated at testing time can be measured. The most popular transition-based

coverage criteria that have been applied to model-based testing are: all-states (every state

must be visited at least once), all-configurations (every configuration of a statechart is visited

at least once), all-transitions (every transition must be visited at least once), all-transition-

pairs (every pair of adjacent transition in the model must be traversed at least once), all-

loop-free-paths (every loop-free path must be traverse at least once) , all-one-loop-paths (all

the loop-free paths through the model must be visited at least once, plus all the paths that

loop once), all-round-trips (requires a test for each loop in the model, but do not require that

all the paths the precede or follow a loop to be tested) and all-paths (every path must be

traversed at least once) [60]. For them, it is valid to say that:

• all-paths subsumes all of them, but this is not applicable to the case studies since

the test generation algorithm only guarantees all-one-loop-paths coverage in order to

avoid the state space explosion problem;

• all-transitions subsumes all-states;

• all-transition-pairs subsumes all-transitions;

• all-configurations is not observable in the context of this work;

• all-one-loop-paths subsumes all-round-trips and all-loop-free-paths;

• all-round-trips is based on breadth search that selects the shortest test cases guided

by this search. Even though, the similarity strategy is independent of whether the

generation algorithm is based on depth or breadth search, we used a depth search one

for these case studies. Therefore, all-round-trips is not applicable here.

Regarding (ii) and (iii), faults were abstracted by possible observable failures during test

execution. Faults are associated with test cases that are capable of exhibiting the corre-

sponding failure behaviour. Finally, for (iii), instead of counting the number of faults re-

vealed by one most effective test case, the most effective test cases were defined and counted

(how many of them are included in the selected suite) - a stronger criterion.

In summary, the following criteria were considered to evaluate the test suites obtained

from each strategy:

A.3 Overview of Case Studies Definition 134

• Transition-based coverage - The total number of transitions and pairs of transitions

that are covered by considering all of the selected test cases of a given test suite. The

idea is to measure whether the strategies keep a reasonable coverage of functionalities.

• Fault-based coverage - The total number of faults that are uncovered by the test suite

during test execution. For this, versions of the case studies that include faults were

considered and also fault models were defined. The idea is to measure whether the

strategies preserve the fault detection capability of the original test suite. It was also

measured whether the most effective test cases are kept in the minimised suites.

The reason for choosing these criteria is to make it possible to investigate, in the con-

text of the case studies, questions such as: (i) Is test case selection based on the similarity

strategy more effective than random selection regarding a given criterion? (ii) What are the

limitations of the similarity strategy? (iii) In which circumstances is it more advisable to

apply each strategy?

A.3.2 Test Case Selection Goals

For each case study, the similarity and random selection strategies were applied having test

selection goals ranging from 5% to 95% (increased by 5) of the test cases. The purpose is

to identify which strategy (similarity or random) assures the best selection according to the

criteria mentioned above. This is reflected in the final transition coverage and observable

failures. Also, due to the random choice that is presented in both strategies, for each path

coverage goal, the selection algorithm has been executed 100 times for each strategy. In this

case, the average of the values obtained for each metric is considered.

A.3.3 Fault Model

For each case study, test cases were associated with the faults that they are capable of reveal-

ing. Then, the number of faults covered by a test suite is computed by the total number of

different faults covered by its test cases.

As mentioned before, all case studies are reactive applications. Moreover, their LTS mod-

els represent system level scenarios that are derived from use case specifications. Branches

A.3 Overview of Case Studies Definition 135

in the LTS represent either different expected inputs to the system or different outputs that

can be produced by the system. A choice of input is made by the environment (and this is

usually controlled/pre-defined for each test case), whereas the actual output produced during

a test case execution is defined by internal behaviour of the system that may or not depending

on conditions to be met. Therefore, outputs are the central information to be observed for

deciding on the success of a test execution [58].

In this context, a fault model aimed at generic system scope may consider faults that

lead to: 1) undesirable feature interactions, 2) incorrect output, 3) abnormal termination, 4)

inadequate response time [10]. Since the models considered in the studies do not express

requirements on feature interaction and timing, only faults of type 2 and 3 were considered

to build the fault models.

At system testing specification level, a fault can only be viewed through the failure that

expose it, i.e., an output produced by the system during test execution that is different from

the expected ones. Therefore, the first step is to identify possible points of failure and them

to assume that one or more faults in the code cause them (assuming also that test cases are

sound, i.e., they would not produce false positives). For example, consider the excerpt of

the LTS model of Case Study 1 presented in Figure A.1. Transitions leaving Node 1 are

input actions (input action have “?"as prefix). If “?go to main menu"action occurs,

then the expected output is “!main menu is displayed"(output actions have “!"as

prefix). When a different output is produced, this indicates a failure that is caused by one

or more faults at different points in the code. For the sake of simplicity, the procedure for

constructing the fault model described below assumes that only one fault is associated with

each failure.

One possible way of identifying points of failure, is to consider the possible mutations

that could be made upon output transitions at specification level aiming at anticipating design

errors that could lead to failures [1]. That is, possible ways of mutating the specification in

order to investigate on possible non-conformant implementations that could be produced.

Based on this, the general procedure applied to construct the fault model is as follows. The

main idea is to mark, in the LTS model, all failure-prone occurrences of output transitions,

i.e., the ones where failures are more likely to occur (the expected output is not the one

produced). All marks represent a different fault that can be uncovered. Then, test cases

A.3 Overview of Case Studies Definition 136

Figura A.1: An excerpt of the LTS model for Case Study 1.

that include the transition are marked as the ones that can reveal the corresponding fault. In

summary, the main steps are as follows:

1. Transitions that are part of a branch of outputs are marked. The reason is that these out-

puts are likely to be defined by a combination of conditions. Since whether a condition

is completely faulty cannot be decided (fails for any combination of values in the input

domain), the fact that all outputs can be erroneously produced must be considered.

Therefore, there is a chance of failure at each one.

2. Transitions that represent a single expected output (only one output transition out of

a node) are marked if: 1) there is a chance of abnormal termination; 2) the output is

produced as a result of a risk operation; 3) a failure is very likely to occur.

3. A matrix of faults and test cases is constructed where the intersection of fault i and test

case t is marked if and only if the output transition represented by i is included in test

case t.

The output transition in Figure A.1 is marked in Step 2, because at this point it is likely

that by failure a different menu is displayed. This is often caused by pointer manipulation

faults.

Even though, for the purposes of the case studies, it is important to define as many faults

as possible in order to favour a more coherent evaluation of the results, not all possible

occurrences of outputs were considered since this is not realistic for real systems: test cases

A.4 Case Studies Results 137

are usually designed for revealing specific faults and stable functionality is rarely faulty (Step

2). An example of a fault model defined according to these steps is presented in Table A.4.

A.4 Case Studies Results

This section presents and discusses the results obtained by considering transition-based and

fault-based coverage respectively. For each criterion, results are analysed considering the

questions posed at the end of Subsection A.3.1.

A.4.1 Transition Based Coverage

On the LTS model of the applications, the functionalities are represented as labelled transi-

tions. Then, transition coverage when we applied the similarity and random strategies was

observed. As transition-based criteria, all-transitions and all-transition-pairs coverage were

considered (see Subsection A.3.1).

Transition Coverage. Figure A.2, Figure A.3 and Figure A.4 illustrate the obtained re-

sults for the similarity strategy and the random choice strategy for Case Studies 1, 2 and 3,

respectively.

Figura A.2: Average number of excluded transitions by running each test selection strategy

100 times for each test case selection goal - Case Study 1.

A.4 Case Studies Results 138

Ta
be

la
A

.4
:

Fa
ul

tM
od

el
-

C
as

e
S

tu
dy

1.
Te

st
ca

se
s

04
,1

2,
18

ar
e

th
e

m
os

te
ff

ec
tiv

e
te

st
ca

se
s

w
.r.

t.
th

e
nu

m
be

r
of

fa
ul

ts
co

ve
re

d

Fa
ul

ts
/

Te
st

C
as

es
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24

F
00

1
-

-
-

-
-

-
-

-
X

X
X

X
X

X
-

-
-

-
-

-
-

-
-

-

F
00

2
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

-
-

-

F
00

3
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

X
-

-

F
00

4
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
X

X

F
00

5
X

X
X

X
X

X
X

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

F
00

6
-

-
-

-
-

-
-

X
X

X
X

X
X

X
-

-
-

-
-

-
-

-
-

-

F
00

7
-

-
-

-
-

-
-

-
-

-
-

-
-

-
X

X
X

X
X

X
X

-
-

-

F
00

8
X

-
-

-
-

-
-

-
X

-
-

-
-

-
X

-
-

-
-

-
-

-
-

-

F
00

9
-

X
-

-
-

-
-

-
-

X
-

-
-

-
-

X
-

-
-

-
-

-
-

-

F
01

0
-

-
X

X
-

-
-

-
-

-
X

X
-

-
-

-
X

X
-

-
-

-
-

-

F
01

1
-

-
-

-
X

-
-

-
-

-
-

-
X

-
-

-
-

-
X

-
-

-
-

-

F
01

2
-

-
-

-
-

X
-

-
-

-
-

-
-

X
-

-
-

-
-

X
-

-
-

-

F
01

3
X

X
X

X
X

X
-

-
-

-
-

-
-

-
X

X
X

X
X

X
-

-
-

-

F
01

4
-

-
-

-
-

-
X

-
-

-
-

-
-

-
-

-
-

-
-

-
X

-
-

-

F
01

5
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
X

X

F
01

6
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

X

F
01

7
-

-
X

-
-

-
-

-
-

-
X

-
-

-
-

-
X

-
-

-
-

-
-

-

F
01

8
-

-
-

X
-

-
-

-
-

-
-

X
-

-
-

-
-

X
-

-
-

-
-

-

F
01

9
-

X
-

-
-

-
-

-
-

X
-

-
-

-
-

X
-

-
-

-
-

-
-

-

F
02

0
-

-
-

X
-

-
-

-
-

-
-

X
-

-
-

-
-

X
-

-
-

-
-

-

F
02

1
-

-
-

-
X

-
-

-
-

-
-

-
X

-
-

-
-

-
X

-
-

-
-

-

F
02

2
-

-
-

-
-

-
X

-
-

-
-

-
-

-
-

-
-

-
-

-
X

-
-

-

F
02

3
-

-
-

-
-

-
-

X
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

#
Fa

ul
ts

4
5

5
6

5
4

4
3

4
5

5
6

5
4

4
5

5
6

5
4

4
1

2
3

A.4 Case Studies Results 139

Figura A.3: Average number of excluded transitions by running each test selection strategy

100 times for each test case selection goal - Case Study 2.

For each of the figures, the x-axis (or abscissa) represents the intended percentage of test

cases to be selected and the y-axis (or ordinate) represents the average number of excluded

transitions obtained with 100 experiments. The higher the value in the y-axis the worse is

the coverage obtained. Therefore, the most effective strategy regarding this criterion is the

one that present the lower curve.

For Case Study 1 (Figure A.2), the similarity approach is clearly more effective when

25% to 75% of the test cases are selected, with the best case for similarity achieved at 35%:

91% of transitions are preserved in the selected test suite, whereas only 82% are preserved

by the random strategy. From percentages 5 to 20, the performance of the similarity strategy

was similar to the random one. In the worst case, at 5% goal, the similarity strategy kept

24% of the transitions, whereas the random strategy kept only 19%. Particularly, in this case

study, a number of similar paths have the same size. Therefore, when such strict selection

percentages are applied, the choice for discarding one test case is mostly a random one.

From 75% of test case selection goal, all-transitions coverage is achieved by the similarity

strategy.

For Case Studies 2 (Figure A.3) and 3 (Figure A.4), the similarity approach is clearly

more effective. The best case for similarity in Case Study 2 is achieved when 50% of the

test cases are selected: 88% of transitions are preserved in the selected test suite, whereas

A.4 Case Studies Results 140

Figura A.4: Average number of excluded transitions by running each test selection strategy

100 times for each test case selection goal - Case Study 3.

only 62% are preserved by the random strategy. The best case for similarity in Case Study 3

is achieved when 35% of the test cases are selected: 92% of transitions are preserved in the

selected test suite, whereas only 54% are preserved by the random strategy. Also, for this

case study, all-transitions coverage is achieved from a selection of 65% of the test cases.

Regarding the questions put in Section A.3.1:

(i) Is test case selection based on the similarity strategy more effective than random se-

lection regarding this criterion? From Figure A.5, the average of the percentage of

excluded transitions in all case studies is lower for the similarity strategy. As men-

tioned above, Case Studies 1 and 3 present more redundant test cases. Therefore, the

percentage of excluded transitions is lower for these two case studies when compared

to Case Study 2. From 75% of test cases selected, all-transitions coverage is achieved.

This indeed shows that the similarity approach is more effective than random choice

for these case studies. The reason is that the similarity strategy is more systematic

and more precisely pinpoints the similarity, keeping the most different test cases and

therefore the best transition coverage, even for Case Study 2 with less redundant test

cases than the other ones.

(ii) What are the limitations of the similarity strategy? The similarity strategy performs

A.4 Case Studies Results 141

Figura A.5: Percentage of the average number of excluded transitions in all case studies for

each test case selection goal.

as well as random selection whenever the criterion for choosing one test case to be

discarded cannot be decided. In this case, random selection is applied. This happened

in Case Study 1, where some similar paths have the same size and the criterion is based

on keeping the one with the biggest size.

(iii) In which circumstances is it more advisable to apply each strategy? By generally

comparing the results obtained, the figures suggest that, usually for test case selection

goal from 20%, it can more adequate to use the similarity strategy than the random,

even in the case where the application presents a considerable number of redundant

test cases as in Case Studies 1 and 3, where redundancy may favour the random choice

strategy performance.

Transition-Pairs Coverage In order to apply this strategy, all pairs of transitions at each

node of the LTS model are computed. The aim is to check whether the strategies preserve

combinations of transitions in the test cases. The evaluation was conducted in the same

way as for transition coverage and the results are very similar with the same advantages

and limitations for each case study. Therefore, for the sake of simplicity, only a summary

is presented in Figure A.6. In the best case, the similarity approach preserves 23% more

A.4 Case Studies Results 142

pairs of transitions than the random approach. For transition coverage, in the best case, the

similarity approach preserves 24% more transitions than the random approach.

Figura A.6: Percentage of the average number of excluded pairs of transitions in all case

studies for each test case selection goal.

A.4.2 Fault-based Coverage

As fault-based criteria, fault coverage and most effective test cases coverage were considered.

The results are presented in the sequel.

Fault Coverage Figure A.7, Figure A.8 and Figure A.9 show the results obtained. For each

one of the figures, the x-axis represents the intended percentage of test cases to be selected

and the y-axis represents the average of covered faults (faults that can be revealed by one

or more test cases in the suite) when a test case selection goal is applied (this data was also

obtained with 100 experiments). The higher the value in the y-axis the best is the coverage

obtained. Therefore, the most effective strategy regarding this criterion is the one that present

the upper curve. It is important to remark that since only up to 95% of test case selection

goal is considered and fault distribution is such that all test cases are generally associated

with at least one fault (see Table A.4), 100% of faults coverage may not be achieved by any

of the strategies.

A.4 Case Studies Results 143

Figura A.7: Average number of covered faults by running each test selection strategy 100

times for each path coverage goal - Case Study 1.

For Case Study 1 (Figure A.7), the similarity approach is clearly more effective when

25% to 75% of the test cases are selected, with the best case for similarity achieved at 35%:

81% of faults are addressed by the selected test suite, whereas only 70% are addressed by the

random strategy. From percentages 5 to 20, the performance of the similarity strategy was

worse than or similar to the random one. In the worst case, at 20% selection goal, the simila-

rity strategy addresses only 38% of the faults, whereas the random strategy addresses 50%.

The best coverage achieved, 96% or 22 faults out of 23, is reached only by the similarity

strategy from 75% of selection goal.

For Case Studies 2 (Figure A.8) and 3 (Figure A.9), the similarity approach is clearly

more effective. The best case for similarity in Case Study 2 is achieved when 50% of the

test cases are selected: 66% of faults are addressed by the selected test suite of the simila-

rity approach, whereas only 49% are addressed by the random strategy. The best coverage

achieved, 95% or 94 faults out of 99, is reached only by the similarity strategy with 95% of

selection goal.

The best case for similarity in Case Study 3 is achieved when 45% of the test cases

are selected: 92% of faults are addressed by the selected test suite, whereas only 60% are

preserved by the random strategy. The best coverage, 100% or 127 faults, is achieved only

by the similarity strategy from 65% of selection goal.

A.4 Case Studies Results 144

Figura A.8: Average number of covered faults by running each test selection strategy 100

times for each path coverage goal - Case Study 2.

Regarding the questions put in Section 4.2.1:

(i) Is test case selection based on the similarity strategy more effective than random se-

lection regarding this criterion? From Figure A.10, the average of the percentage of

faults addressed by the resulting test suite in all case studies is definitely higher for

the similarity strategy from 20% of test case selection goal. As mentioned above,

Case Studies 1 and 3 present more redundant test cases. Therefore, the percentage

of the number of faults covered is closer to 100% and the best coverage is achieved

from 75% of selection goal. The similarity approach is more effective because it can

more systematically select the most different faults that are associated with the most

different test cases. Case Study 2, with less similar test cases, has also less similar

faults. Therefore, the best coverage is only achieved at 95%. Nevertheless, there are

clear gains to the similarity approach when compared to the random strategy. How-

ever, note that, Case Study 1 presents an open question: in the presence of a severe

path coverage constraint (below 20%), is non-deterministic choice more effective than

similarity based selection with regard to fault detection? This question is related to

a claim of the random testing community (non-determinist selection is more effective

than deterministic selection w.r.t. to fault detection) that deserves further investigation.

A.4 Case Studies Results 145

Figura A.9: Average number of covered faults by running each test selection strategy 100

times for each path coverage goal - Case Study 3.

(ii) What are the limitations of the similarity strategy? Again, whenever the criterion for

defining which test case to discard cannot be decided, then the similarity approach

performs as the random strategy. Also, the less redundant test cases are the lower the

coverage of faults is. For instance, coverage rate at Case Study 2 is, in average, 13%

lower than in the other case studies up to 65%. Furthermore, as the choice for the test

case to be discarded, in this paper, is based on the biggest test case, if faults distribution

is more prevalent amongst the smaller test cases, then the strategy may not have a good

performance. In other words, the performance of the strategy can be influenced by the

choice of the criterion to discard the redundant test case.

(iii) In which circumstances is it more advisable to apply each strategy? Comparing the

obtained results for similarity and random, it is clear that, in the case studies conducted,

for test selection goal bigger than 20%, it is more adequate to use the similarity strategy

than the random one, since the number of excluded test cases that failed for different

faults is smaller than using the random strategy. In other words, the similarity strategy,

by keeping the most different test cases, is more effective in selecting test suites that

preserves fault detection capability of the original suite.

It is important to remark that results obtained in these experiments can also be influenced

A.4 Case Studies Results 146

Figura A.10: Percentage of the average number of faults transitions covered in all case stud-

ies for each test case selection goal.

by the rate of faults per test cases, faults distribution and the size of the application (measured

here by the number of transitions). Table A.3 summarizes these rates. For Case Study

1 (Figure A.7), there is a less significant gain of the similarity strategy over the random

strategy when compared to the other case studies. On the other hand, for Case Study 3 with

a similar rate of faults per transitions and faults per test case to Case Study 1, the similarity

strategy had a considerable gain over the random strategy. This may be explained by the

fact that Case Study 1 has more faults distributed among the smaller test cases and then the

random strategy had more chances to keep them with selection goals less than or equal to

20%. Furthermore, Case Study 2 has the highest rate of faults per test case, but this is also

the case with less redundant test cases and faults. Therefore, similarity is more effective for

Case Study 2 than for Case Study 1.

Most Effective Test Cases For each case study, the most effective test cases were selected

as the ones that are associated with the biggest number of faults. The goal is to measure how

many of the best test cases are preserved at each test case selection goal. Instead of choosing

a limiting number of most effective test cases (for example, 1), all test cases that achieve the

biggest number of faults in the suite of a given case study were considered. Therefore, the

number of most effective test cases is dependent on the case study.

A.4 Case Studies Results 147

For each one of the figures presented below, the x-axis represents the intended percentage

of test cases to be selected and the y-axis represents the minimum number and also the aver-

age number of most effective test cases included in the selection. Again, for each selection

goal, the strategies were performed 100 times.

For Case Study 1 (Figure A.11) with 4 most effective test cases out of 23, the random

approach is more effective in the average case. This can be explained by the fact that the most

effective test cases, in this case study, are very similar (diverging by 1-4 transitions only). The

similarity approach constraints its search space by eliminating redundancy according to each

selection goal, whereas the random approach freely chooses among all possible test cases

for each selection goal. Therefore, the most effective test cases for Case Study 1 cannot be

included in the resulting test suite when the similarity strategy is applied. However, note that,

in the worst case (considering the minimum number of the most effective test cases selected

at one or more of the 100 trials), the similarity approaches presented a better performance,

from 75% of selection goal at least one of them is included.

Figura A.11: Average and minimum number of the most effective test cases that are included

for each test case selection goal - Case Study 1.

It is also important to remark that this is the only case study where the curves of the

similarity strategy for the average and the minimum value are different. The reason is that

the study has similar test cases of the same size. Then random choice is very frequently

applied for choosing the test case to be discarded.

A.4 Case Studies Results 148

For Case Study 2 (Figure A.12), with 33 most effective test cases out of 66, the similarity

approach is clearly more effective, even in the worst case that coincides with the average one.

In this case, the most effective test cases are completely different. Therefore, the similarity

approach, by eliminating redundancy and keeping the biggest test case, selected all 33 most

effective test cases from 50% of selection goal.

Figura A.12: Average and minimum number of the most effective test cases that are included

for each test case selection goal - Case Study 2.

Finally, for Case Study 3 (Figure A.13), with 4 out of 130 most effective test cases, the

random approach is more effective in the average case, from 25% of test selection goal. As

Case Study 1, the most effective test cases are similar (diverging by 4-6 transitions), but

not as much as in Case Study 1. Therefore, there is a gain for the similarity approach up

to 20%. From this point on, the random strategy gets more chance to select the 4 out of

130. Nevertheless, note that the similarity approach (both average and minimum number) is

more effective than the worst case for the random strategy, guaranteeing that, at least one is

selected for each selection goal, even the more restricted ones.

Regarding the questions put in Section A.3.1:

(i) Is test case selection based on the similarity strategy more effective than random se-

lection regarding this criterion? Concerning detection of all most effective test cases,

the similarity strategy is more effective whenever the most effective test cases are not

so similar since the strategy focus on selecting the most different ones (Case Study

2). Nevertheless, if the worst case for random selection is considered, similarity can

A.4 Case Studies Results 149

Figura A.13: Average and minimum number of the most effective test cases that are included

for each test case selection goal - Case Study 3.

be more effective since this strategy is more deterministic and has shorter variations

on results (Case Studies 1 and 3). Indeed, from Figure A.14, note that the similarity

approach is more likely to select at least one of the most effective test cases for all

selection goals. Furthermore, for severe selection percentages such as the ones from 5

to 20%, similarity can present better results than random selection (Case Study 3).

(ii) What are the limitations of the similarity strategy? The limitations of the strategy

are on: a) the criteria for discarding test cases; and b) the similarity degree of the

most effective test cases. The criteria adopted in this paper for discarding test cases

(the biggest test case) may not be directly related to the criteria for choosing the most

effective test cases (here are the ones that cover the biggest number of faults). In

this situation, the strategy is not precisely guiding the choice towards the goal and the

results may not be reasonable unless the most effective test cases are not similar. In

this case, the similarity strategy will preserve them depending on the selection goal.

(iii) In which circumstances is it more advisable to apply each strategy? The similarity

strategy is recommended whenever the criterion for defining the most effective test

cases can influence or is related to the criterion for selecting the test cases to be dis-

carded. If the former are semantics ones, then one possibility is to prioritise test cases,

for instance, following the approach proposed by Bertolino et al. [6]. The random

A.5 Case Studies - General Remarks 150

approach is more recommended otherwise, however, to avoid the worst case, it should

be applied several times. If a guarantee that at least one most effective test case is

preserved is important, than the similarity strategy is recommended.

Figura A.14: Average number of the times (out of 100 executions of each strategy) at least

one of most effective test cases is selected in all case studies for each test case selection goal.

A.5 Case Studies - General Remarks

Concerning transition-based coverage, for the case studies conducted, the similarity ap-

proach can be more effective than the random strategy. There are considerable advantages

from 20% of test case selection goal (see Figures A.5 and A.6).

Even for very restrict selection goals such as 5%, the strategy can be more effective. Full

all-transitions and all-transition-pairs is only achieved by the similarity approach.

Concerning fault coverage, for the cases studies conducted, the similarity approach has

also a superior performance. For all case studies, the highest coverage is only achieved by the

similarity approach. There are also considerable advantages from 20% of test case selection

goal. However, the random choice had a better performance for Case Study 1 with test case

selection goal of less than or equal to 20%. The similarity strategy excludes the most similar

test cases, this means that for cases where it is necessary to exclude several test cases, the

strategy begins well, but the last test cases that will be excluded, usually, does not have

similarity, so the criteria to be used is the path length. Moreover, the criterion for discarding

A.5 Case Studies - General Remarks 151

similar test cases can also influence the results by guiding the strategy for selecting more

faults.

Even though this is not always more effective when detecting all of the most effective

test cases, the similarity approach can be more precise in detecting at least one of them. The

limitations for selecting all of them occur when their degree of similarity do not allow them

to be included in the selected test suite such as for Case Study 1 (see similarity of faults on

Table A.4) and Case Study 3.

It is important to remark that test cases and faults are considered to be equally relevant.

Different results may be reached if experiments are conducted by considering a number of

attributes that may add value to specific test cases and also to the faults. Also, the similarity

approach opts for keeping the biggest test case in the test suite for the sake of improving

transition coverage. This decision is closely related to the fact that the focus of this work is on

functional testing, where thorough coverage is critical. However, it may also be interesting

to investigate the strategy when the smallest test case is kept.

Another key point to consider when analysing the results is the number of faults defined

in the fault models. However, the number of faults do not influence on the results obtained:

increasing or decreasing the number of faults has a very similar effect on both strategies. To

confirm this claim, an experiment was performed aiming at observing the behaviour of both

strategies when from a few to several faults are incrementally included in the model. The

results of this experiment (that are not included in this paper for the sake of space) show

that the number of faults does not bias the results. However, with more faults, clarity of the

results is improved.

Regarding computational complexity, the test case generation algorithm has exponential

complexity, but state space explosion is handled by requiring only all-one-loop-paths cover-

age. The selection algorithm, the main focus of this paper, is O(n3), where n is the number

of test cases. For the case studies conducted, the time consumed for each algorithm (gener-

ation and similarity selection) considering one execution of the similarity strategy with 50%

selection goal is presented in Table A.5. As mentioned before, the suites of these case studies

are for manual test execution. By considering that the average time for executing a test case

is 2 minutes, it would roughly take 48 minutes, 132 minutes, and 260 minutes for executing

100% of the test cases for Case Study 1, 2 and 3, respectively. By selecting 50% of the test

A.5 Case Studies - General Remarks 152

Tabela A.5: Execution time for full test case generation and also one execution of similarity

selection algorithms with 50% test case selection goal.

Case Study 1 Case Study 2 Case Study 3

Test Case Generation 16ms 15ms 32ms

Similarity Strategy (Computing the Similarity Matrix) 16ms 110ms 484ms

Similarity Strategy (Selecting Test Cases) 0ms 0ms 31ms

Total 30ms 125ms 547ms

cases, half of the time is saved with only an additional test selection time of 32ms, 125ms,

and 547ms for Case Study 1, 2 and 3, respectively. Obviously, in practice the complexity of

test execution grows with the size of the test suite. Also, test selection may require further

analysis, for instance, running the selection algorithm more than once. Therefore, there are

other gains and losses to be considered than only counting the exact time for executing each

test case. Nevertheless, the difference on the magnitude of the numbers points out that the

similarity strategy can be practical and indeed improve test productivity and reliability.

Apêndice B

LTS Generator

This Appendix presents the generator that was implemented to generate the inputs - LTS

models - for our experiments. The goal of this generator is to generate different LTS models

using a specific configuration. This configuration considers:

• Depth: The depth of the LTS. It is calculated by consider the biggest path (from initial

state to final state - without loops);

• Number of Loops: One loop is an edge that goes back to any prior state or to itself;

• Number of Forks: A fork is a state with more than one outgoing transitions;

• Number of Joins: A join is a state with more than one incoming transitions.

Loops, forks and joins can add redundancy in an LTS model. The intention is to construct

different LTS models that contains the specified configuration. The steps to construct the LTS

models can be seen in Algorithm 4.

The inputs of this algorithm are: the number of LTS models that will be generated; and

the configuration. The configuration is a number for each of the following elements: Depth,

number of loops, number of joins, and number of forks.

Firstly, an initial sequence is generated following the depth (line 1) constraint. For

example, if the depth is 3, the initial sequence has 4 states (0, 1, 2, 3) and 3 transitions

(0 to 1, 1 to 2 and 2 to 3). The next step is to aggregate the new structures to the ini-

tial sequence (lines 2 - 11). For this, all structures are placed into a list (structures),

e.g. if NumberOfLoops = 2, NumberOfJoins = 1, NumberOfForks = 3, then

153

154

input : NumberOfLTSModels, Depth, NumberOfLoops, NumberOfJoins, NumberOfForks

output: LTSModels

1 buildSequenceOfTranstions(depth);

2 structures = getStructuralPatterns(NumberOfLoops, NumberOfJoins, NumberOfForks);

3 shuffle(structures);

4 for each structure:structures do

5 switch structure do

6 case join

7 putAJoin(depth);

8 case fork

9 putAFork(depth);

10 case loop

11 putALoop(depth);

Algorithm 4: LTS Generator - Algorithm

structures = {loop, loop, join, fork, fork, fork} (line 2). These structures are shuffled

(line 3) to increase the diversity of the generated LTS models, since aggregating these struc-

tures in different orders, increases the probability of generating different LTS models.

After shuffling the structures, each structure is aggregated to an actual LTS, observing

some constraining rules:

• Depth: It is not allowed to aggregate any structure that violates the maximum depth;

• Join: Two states are randomly chosen, and these states can not be adjacent. From each

of these state, one new transition is created, both going to the new state (the joining

state);

• Fork - A state is randomly chosen, and two new transitions (and states) are created,

outgoing from the chosen state;

• Loop - Two states are chosen randomly, however the loop must be placed from the

deeper state to other state selected.

Apêndice C

Experiment - Test Suite Reduction

This Appendix shows the comparison among the strategies (G, GE, GRE and H). The vari-

ables are:

• Dependent: The Reduced Test Suite Size (RTSS).

• Independent: The test requirement percentage; the configuration chosen for the depth

and amount of structures (loops, forks and joins) in the objects; and the strategies for

test case selection (factor). For this factor, there are 5 levels: G, GE, GRE, H and

Dissimilarity (DSim).

The experiment definition is formalized as following:

• A null hypothesis (H0) - RTSSG = RTSSGE = RTSSGRE = RTSSH : All tech-

niques have a similar behavior in relation to the reduced test suite size;

• An alternative hypothesis (H1) - RTSSG 6= RTSSGE 6= RTSSGRE 6= RTSSH : All

techniques have a different behavior in relation to the reduced test suite size.

Each technique was executed 200 times. During the analysis we considered a confidence

level of 95% (i.e. a significance level - α - of 0.05). The first step is to analyze if the obtained

data, for each strategy, present a normal distribution. For this, we applied the Anderson-

Darling normality test, using the Minitab tool1. The results can be seen in Figures C.3, C.2,

C.1 and C.4.
1http://www.minitab.com/

155

156

Figura C.1: Anderson-Darling normality test - GRE

Figura C.2: Anderson-Darling normality test - GE

Observe that all p − values are lower than the significance level (α = 0, 05), then the

data do not show a normal distribution. Thus, it is required to apply a non-parametric tests.

Since, there is only 1 factor and more than 2 treatments, a Kruskal-Wallis is applied to check

the null hypothesis.

157

Figura C.3: Anderson-Darling normality test - G

Figura C.4: Anderson-Darling normality test - H

The sample medians for the four treatments (G, GE, GRE, H) were calculated and are

the equal: 4.000.

The test statistic (H) had a p − value of 0.881. Since the p − value is higher than the

significance level (α = 0, 05), the null hypothesis can not be rejected. In other words, the

obtained results, from the strategies, using a confidence level of 95%, indicate that G, GE,

158

Tabela C.1: Kruskal-Wallis Test - G, GE, GRE, H

Factor N Median Ave Rank Z

G 200 4.000 396.6 -0.27

GE 200 4.000 396.6 -0.27

GRE 200 4.000 396.6 -0.27

H 200 4.000 412.1 0.82

Overall 800 400,5

H = 0.67 DF = 3 P = 0.881

GRE and H can not be considered different.

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da

Computação

Strategies for Controlling the Size of Test Suite

Generated from MBT Approaches

Emanuela Gadelha Cartaxo

Thesis submitted to Coordenação do Curso de Pós-Graduação em Ciência da

Computação da Universidade Federal de Campina Grande in partial fulfill-

ment of the requirements for the degree of Doctor of Computer Science.

Area: Computer Science

Research line: Software Engineering

Patrícia Duarte de Lima Machado

(Supervisor)

Antonia Bertolino

(Co-Supervisor)

Campina Grande, Paraíba, Brazil

c©Emanuela Gadelha Cartaxo, 03/30/2011

Abstract

Testing is the most commonly applied technique to evaluate the quality of software as

part of verification & validation processes. However, it is usually an expensive activity.

Promising to reduce costs as well as promoting effectiveness, Model-based Testing (MBT)

approaches have been proposed, where test cases can be obtained from specifications. In

MBT, the algorithms used to obtain test cases are usually based on a “search” in a behavioral

model and, in most of the times, the stop decision is based on structural coverage criteria

that are exhaustively applied. Therefore, in this context, the number of applicable test cases

tends to be very high. On the other hand, usually, there are not sufficient resources (time and

money) to execute all of them. Also, some test cases may exercise common sequences of

functionalities. In this sense, redundancy is an important concept that can be considered to

obtain a smaller test suite, once that redundant parts may not increase functionality coverage

or fault detection.

Some strategies for controlling the size of the test suites have been proposed: test case

selection and test suite reduction. The former usually considers a test purpose (to reduce a

space search) and/or fix a number of test cases that are desired without taking into account the

redundancy concept. On the other hand, some strategies for test suite reduction are proposed

and experimented considering structural redundancy for white-box testing.

Obviously, it is necessary to seek strategies for controlling the size of the test suites

generated from MBT approaches that consider the redundancy concept. Different strategies

for controlling the size of test suites are proposed in this thesis focusing on selection and

reduction. Results show that strategies for selection and reduction based in Similarities are

good to detect faults and provide a adequate coverage. Even though the strategies proposed

can be applied to different testing levels, the focus is on system testing.

Finally, a new way to evaluate test suite reduction strategies - by considering the rate of

fault detection - is proposed. Even though, the rate of fault detection is a metric widely used

to compare test suite prioritization strategies, it has not yet been considered to evaluate test

suite reduction strategies.

i

Acknowledgments

First of all, I would like to thank God for everything.

Thanks to my parents and sisters for their love, understanding and support in all difficul-

ties found during these years. Probably, I never would reach here without this.

Thanks to José Lima Júnior for his patience, understanding and love during these years.

I wish to thank my supervisor Patrícia Machado for her professional support. She was a

good teacher and also a friend. Her support and patience were valuable during these years.

I wish to thank Antonia Bertolino for her productive collaboration during the course and

by adopting me in her group. All discussions were valuable for this work.

I wish to thank Eda Marchetti for her professional (valuable discussions) and also per-

sonal (including all smiles and “chiacchieri”) support while I was in Pisa.

Francisco Oliveira Neto for his technical support, valuable discussions during implemen-

tation of the strategies and, of course, for being always open to hear my confidences.

I wish to thank João Felipe Ouriques and Priscila Vieira for their technical support.

I wish to thank BTC-RD team for all discussions.

Finally, thanks to my friends: Ana Emília, Ana Esther, Andréia Karla, Danilo, Laísa,

Neto, Rafael, Rafaelly, Ramon, Raniere, Spachson and Verlaynne by personal support and

by having tolerated my moods.

ii

Contents

1 Introduction 1

1.1 Overview of the Thesis . 3

1.2 Methodology . 4

1.3 Outline of the Thesis . 5

2 Background 8

2.1 Software Testing . 8

2.1.1 Test Case . 9

2.1.2 Testing Methods . 10

2.1.3 Level of Testing . 11

2.2 Model-Based Testing . 12

2.2.1 Models . 13

2.2.2 Activities of MBT . 15

2.3 Coverage criteria . 16

2.4 Test Case Selection . 18

2.5 Test Suite Reduction . 19

2.6 Test Case Prioritization . 23

2.7 Value Based approach . 24

2.8 Experimentation in Software Engineering 25

2.8.1 Scientific Methods in Software Engineering 25

2.8.2 Experiment . 26

2.9 Statistical Analysis . 31

2.9.1 Descriptive Statistic . 31

2.9.2 Graphical Visualization . 32

iii

CONTENTS iv

2.9.3 Hypothesis Testing . 33

2.10 Concluding Remarks . 34

3 Similarity 35

3.1 Redundancy . 35

3.2 Similarity Function . 38

3.3 Similarity Matrix . 39

3.4 Concluding Remarks . 41

4 Similarity-based Selection 42

4.1 Definition . 42

4.2 Example - Similarity Selection . 44

4.3 Case Study . 46

4.3.1 Application . 46

4.3.2 Case Study - Preparation . 47

4.3.3 Results of the Case Study . 47

4.3.4 Concluding Remarks - Case Study 49

4.4 Experiment - Selection . 49

4.4.1 Definition . 50

4.4.2 Planning . 50

4.4.3 Operation . 53

4.4.4 Analysis and Interpretation . 54

4.4.5 Concluding Remarks - Experiment 56

4.5 Concluding Remarks . 56

5 Weighted-Similarity Approach (WSA) 58

5.1 Definition . 58

5.2 Example - WSA . 61

5.2.1 Example - Description . 62

5.3 Case Study . 66

5.3.1 Applications . 66

5.3.2 Metrics . 67

CONTENTS v

5.3.3 Case Study - Preparation . 67

5.3.4 Results of the Case Study . 69

5.4 Concluding Remarks . 75

6 Dissimilarity-based Reduction 76

6.1 Definition . 76

6.2 Example - Dissimilarity . 79

6.3 Case Study . 81

6.3.1 Application . 81

6.3.2 Case Study - Preparation . 81

6.3.3 Results of the Case Study . 82

6.4 Experiment - Reduction . 85

6.4.1 Definition . 85

6.4.2 Planning . 85

6.4.3 Operation . 88

6.4.4 Analysis and Interpretation . 89

6.4.5 Concluding Remarks - Experiment 92

6.5 Concluding Remarks . 92

7 Analysing Reduction based on Selection Order 93

7.1 Motivation . 93

7.2 General definition . 96

7.3 Case Studies . 98

7.3.1 Case Studies Design . 98

7.3.2 Results . 100

7.3.3 Threats to validity . 101

7.4 Discussion . 102

7.5 Concluding Remarks . 105

8 Review of Work on Test Case Selection and Test Suite Reduction 107

8.1 Review of Work on Test Case Selection 107

8.2 Review of Work on Test Suite Reduction 109

CONTENTS vi

8.3 Concluding Remarks . 114

9 Conclusions and Future Works 115

9.1 Conclusions . 115

9.2 Future works . 117

A Similarity based Selection - Case Studies 127

A.1 Introduction . 127

A.2 Overview of Case Study Applications . 128

A.3 Overview of Case Studies Definition . 131

A.3.1 Evaluation Criteria . 131

A.3.2 Test Case Selection Goals . 133

A.3.3 Fault Model . 133

A.4 Case Studies Results . 136

A.4.1 Transition Based Coverage . 136

A.4.2 Fault-based Coverage . 141

A.5 Case Studies - General Remarks . 149

B LTS Generator 152

C Experiment - Test Suite Reduction 154

List of Figures

1.1 Overview of a test case selection/ test suite reduction process 5

2.1 System Test Case . 10

2.2 Annotated LTS model . 14

2.3 Test Case . 15

2.4 Model Based Testing . 16

2.5 LTS model . 17

2.6 Sample of Box Plot . 32

2.7 Confidence Intervals - a, b, c, d and e . 33

3.1 LTS Behaviour Model - Phonebook . 36

3.2 Test Cases - Redundancy . 38

4.1 Example - LTS model . 45

4.2 Average Number of excluded transitions by running each test selection strat-

egy 100 times for each test selection goal 48

4.3 Average Number of covered faults by running each test selection strategy

100 times for each test selection goal . 49

4.4 Anderson-Darling normality test - Similarity 55

4.5 Anderson-Darling normality test - Random 55

5.1 Creating a New Contact - Main Flow . 62

5.2 Creating a New Contact - Alternative Flows 63

5.3 Labeled Transition System (LTS) Behavior model 64

5.4 Probabilities . 65

vii

LIST OF FIGURES viii

5.5 Average number of covered faults by running each test selection strategy -

with probabilities assigned by WSA designer - 100 times for each test case

selection goal - Application 1. 69

5.6 Average number of covered faults by running each test selection strategy -

with probabilities assigned by test designer - 100 times for each test case

selection goal - Application 1. 70

5.7 Average number of covered faults by running each test selection strategy -

with probabilities assigned by WSA designer - 100 times for each test case

selection goal - Application 2. 71

5.8 Average number of covered faults by running each test selection strategy -

with probabilities assigned by test designer - 100 times for each test case

selection goal - Application 2. 71

5.9 Average number of excluded transitions by running each test selection strat-

egy - with probabilities assigned by WSA designer - 100 times for each test

case selection goal - Application 1. 72

5.10 Average number of excluded transitions by running each test selection strat-

egy - with probabilities assigned by test designer - 100 times for each test

case selection goal - Application 1. 73

5.11 Average number of excluded transitions by running each test selection strat-

egy - with probabilities assigned by WSA designer - 100 times for each test

case selection goal - Application 2. 74

5.12 Average number of excluded transitions by running each test selection strat-

egy - with probabilities assigned by test designer - 100 times for each test

case selection goal - Application 2. 74

6.1 Example - LTS model . 79

6.2 TaRGeT - Reduced Test Suite Size . 83

6.3 TaRGeT - Failures . 84

6.4 Interval Plot . 89

6.5 Anderson-Darling normality test - Dissimilarity 90

6.6 Anderson-Darling normality test - GRE 91

LIST OF FIGURES ix

6.7 Box Plot RTSS of DSim - GRE . 91

7.1 Test Case Order . 95

7.2 Overview of a test suite reduction process 98

7.3 Application 1 - GE . 102

7.4 Application 1 - GRE . 102

7.5 Application 1 - Greedy . 102

7.6 Application 1 - H . 102

7.7 Application 2 - GE . 103

7.8 Application 2 - GRE . 103

7.9 Application 2 - Greedy . 103

7.10 Application 2 - H . 103

A.1 An excerpt of the LTS model for Case Study 1. 135

A.2 Average number of excluded transitions by running each test selection strat-

egy 100 times for each test case selection goal - Case Study 1. 136

A.3 Average number of excluded transitions by running each test selection strat-

egy 100 times for each test case selection goal - Case Study 2. 138

A.4 Average number of excluded transitions by running each test selection strat-

egy 100 times for each test case selection goal - Case Study 3. 139

A.5 Percentage of the average number of excluded transitions in all case studies

for each test case selection goal. 140

A.6 Percentage of the average number of excluded pairs of transitions in all case

studies for each test case selection goal. 141

A.7 Average number of covered faults by running each test selection strategy 100

times for each path coverage goal - Case Study 1. 142

A.8 Average number of covered faults by running each test selection strategy 100

times for each path coverage goal - Case Study 2. 143

A.9 Average number of covered faults by running each test selection strategy 100

times for each path coverage goal - Case Study 3. 144

A.10 Percentage of the average number of faults transitions covered in all case

studies for each test case selection goal. 145

LIST OF FIGURES x

A.11 Average and minimum number of the most effective test cases that are in-

cluded for each test case selection goal - Case Study 1. 146

A.12 Average and minimum number of the most effective test cases that are in-

cluded for each test case selection goal - Case Study 2. 147

A.13 Average and minimum number of the most effective test cases that are in-

cluded for each test case selection goal - Case Study 3. 148

A.14 Average number of the times (out of 100 executions of each strategy) at least

one of most effective test cases is selected in all case studies for each test

case selection goal. 149

C.1 Anderson-Darling normality test - GRE 155

C.2 Anderson-Darling normality test - GE . 155

C.3 Anderson-Darling normality test - G . 156

C.4 Anderson-Darling normality test - H . 156

List of Tables

2.1 TS consists of Test Cases t1, ..., t7, Test Requirement reqn, and Associated

Testing Sets are Tn - Example 1 . 20

2.2 Cardinality . 23

2.3 Statistical tests for different Experimental Designs and data distribution . . 34

3.1 Test Cases generated from LTS model presented in Figure 3.1 and their re-

spective lengths . 37

3.2 Pair of Test Case and Number of Identical Transitions 39

4.1 Test Cases and Size of test cases . 44

4.2 Mean, Standard Deviation and number of necessary replications for each

technique. 52

4.3 Mann-Whitney Test - Sim and Random 54

5.1 Test Cases generated from LTS model presented in Figure 5.3 and their re-

spective lengths . 64

5.2 Weights of the test cases obtained from LTS Model 5.3 and assigned proba-

bilities 5.4 . 65

5.3 Number of Test Cases and Faults . 67

6.1 Test Cases and Size of test cases . 79

6.2 Average of RTS size (100 executions) for all 3 sets of test requirements . . 82

6.3 Average of test suite reduced size (100 executions) for all 3 sets of test re-

quirements . 83

6.4 Summary - Percentage of Reduction and Fault Coverage 84

xi

LIST OF TABLES xii

6.5 Mean, Standard Deviation and number of necessary replications for each

technique. 87

6.6 Mann-Whitney Test - GRE and DSim . 90

7.1 Test Suite and Faults exposed . 94

7.2 APFD of the considered reduction heuristic 94

7.3 Application 1: Reduced Test Suite Size and Number of Faults. 101

8.1 Kinds of strategies for selecting test cases compared to the Similarity strategy

and WSA strategy . 110

8.2 Kinds of strategies for reduction test suites compared to the Dissimilarity

strategy . 113

A.1 Embedded item and available Tasks . 129

A.2 Case Studies - Metrics . 130

A.3 Faults per Number of Transitions and Test Cases and Test Cases per Transi-

tions (Similarity Rate) . 130

A.4 Fault Model - Case Study 1. Test cases 04, 12, 18 are the most effective test

cases w.r.t. the number of faults covered 137

A.5 Execution time for full test case generation and also one execution of simi-

larity selection algorithms with 50% test case selection goal. 151

C.1 Kruskal-Wallis Test - G, GE, GRE, H . 157

Chapter 1

Introduction

Testing is an activity to evaluate the quality of the applications and it is usually applied in

practice as an activity of the verification and validation process. This activity often consumes

a significant amount of the resources in development projects [47], therefore researches have

been directed to develop approaches that can contribute to decrease the costs (e.g. time and

money [34; 8]) that are demanded by this activity so that it can be effectively and thoroughly

applied. One of those approaches is Model-Based Testing (MBT).

MBT has become popular due to the need for quality assurance, and also due to the

emerging model-centric development paradigm and test-centered development methodolo-

gies [49]. That approach promises to control software quality and to reduce the inherent

costs of a testing process, since test cases can be generated from the software specification.

Thus, test cases can be obtained before or during the development process and so, when the

application code is available, the test cases can be executed. Summarizing, MBT has been

pointed as an approach to increase reliability, effectiveness and productivity in the software

process, since its promise is to control software quality and to reduce costs [49].

Generally, model-based testing approaches generate a huge number of test cases (large

test suite) [42]. Since the available time and money to execute all of them are restricted [26]

(particularly for manual testing), it is necessary to decrease the size of the test suite, in other

words, we have to obtain a subset of test cases. This subset should contain the best test cases,

i.e. that are able to reveal faults and provide a good coverage (e.g. transition or requirements

coverage, among others). This is a difficult task, since we need to observe many variables

such as functionality coverage or resource constraints. In practice, the task of reducing the

1

2

size of the test suite is a manual process that is error prone and without sufficient guaranties

that the system will be effectively tested, since coverage criteria or fault detection are not

used as parameter for strategy evaluation.

In addition, test suites generated from MBT approaches usually contain a considerable

degree of redundancy between test cases, i.e., two test cases can be so similar. It is probable

that they do not add value to the suite by either guaranteeing a better coverage of a given

criteria or having the capability of revealing additional defects not yet covered. In this case,

we named them redundant test cases.

Researchers have investigated two approaches for addressing the test suite size problem

[66]:

• Test Case Selection - Algorithms (such as proposed by Rothermel and Harrold [52;

53] and Jard and Jeron [41]) for test selection select a subset of the original test suite

that may (or not) provide the same coverage as the original test suite;

• Test Suite Reduction - Algorithms (such as proposed by Wong et al.[65] Zhong et

al. [68], Harrold et al. [36] Ma et al. [66] and Chen and Lau [19]) for test suite

reduction select a representative subset of the original test suite that satisfies a set of

test requirements (coverage criteria), so select a subset of the original test suite that

provides the same coverage (according to the test requirement) as the original test

suite;

Note that, both of them deal with the test suite size problem, trying to reduce the number

of test cases. The difference between them is that for reducing the size of a test suite, test suite

reduction considers a specific set of test requirements (coverage criteria) and the reduced test

suite must satisfy that set as long as the original suite does.

The following sections of this chapter present: an overview of the thesis and its main

contributions (Section 1.1); the adopted methodology (Section 1.2); and finally, the structure

of this thesis is presented (Section 1.3).

By definition, theses strategies reduce a test suite, however the but nothing of them take

into consideration the number of test cases that we can able to execute at this moment.

1.1 Overview of the Thesis 3

1.1 Overview of the Thesis

In this thesis, we seek a solution for the test suite size problem caused by redundancy in the

MBT context applied to system testing. Our research questions are:

• Is it possible to reduce (test selection/test suite reduction) the size of the test suite by

eliminating redundant test cases based on a similarity function and still keep reason-

able coverage of a given test criteria?

• Is it possible to define a strategy that produces a smaller test suite based on that function

to maximize transition coverage of the resulting test suite?

• Is it possible to combine that strategy with other strategies such as value-based that are

applied to focus on usage scenarios and maximize the fault detection capability?

As answers of these questions, we proposed some strategies that deal with the test suite

size problem. Then, the main contributions of our work are:

• Similarity Function - This function calculates the distance among test cases of a test

suite. This value represents the degree of redundancy between each pair of test cases;

• Similarity-based Selection - A new strategy for test case selection is proposed based

on the Similarity function. This strategy is compared to the Random selection strategy;

• Weighted-Similarity Approach (WSA) - A new strategy for test case selection is

proposed based on the Similarity function and weights. This strategy is compared to

other well-known strategies in the literature;

• Dissimilarity - A new strategy for test suite reduction is proposed based on the Simi-

larity function. This strategy is compared to 4 well-known strategies in the literature;

• New way for evaluating reduced test suites- The main criteria used to compare

strategies for test suite reduction is the test suite size where the smallest test suite

would be the best one. We propose to use the selection order to compare test suite re-

duction strategies, since the faults are important and it is not always possible to execute

all test cases (it is necessary to stop the execution of a reduced test suite).

1.2 Methodology 4

As said before, these strategies deal with the redundancy problem and they can be applied

to model-based testing approaches in order to improve the results of test case generation

algorithms by eliminating redundant test cases from the generated suite. Also, they are

based on the use of a similarity function to discriminate among the most different test cases.

In this sense, the strategies can be effective under the following assumptions:

• Similar test cases are redundant in the sense that they cover a common set of function-

alities and have similar capability of revealing faults. Therefore, some of them can be

eliminated to meet resource constraints of a project;

• Probably there is no additional gain to keep (the redundant test cases) them in the test

suite since they are not significantly affecting functionalities/fault model coverage.

The scope of this thesis is model-based testing approaches where the models are Labelled

Transition Systems (LTSs). From LTSs, system test cases can be obtained. Then, from the

test suites, test case selection/ test suite reduction strategies can be applied by considering

the redundancy concept. Note that LTS models can be obtained from a number of commonly

used models such as UML behavioral specifications [16; 39] and diagrams. Therefore, the

results presented in this thesis can be applied to a larger scope as illustrated by the presented

case studies.

1.2 Methodology

The goal of strategies for controlling the size of the test suites is to decrease the test suite

size. In this thesis, these strategies are proposed according to a similarity function to select

the most different test cases, obtaining the best coverage of functionalities.

The generic process to select test cases/ reduce test suites to be followed is shown in

Figure 1.1. First, the test suites are extracted from the LTSs models. The test case selec-

tion/ test suite reduction strategies can be applied over those test suites. For applying test

case selection strategies, it is necessary to define an objective, such as a test purpose, an

intended size, among others. On the other hand, for applying test suite reduction strategies,

test requirements can be automatically obtained from the model.

1.3 Outline of the Thesis 5

Figure 1.1: Overview of a test case selection/ test suite reduction process

After applying the test case selection or test suite reduction strategies, we obtain a subset

of the test suite. In order to evaluate these strategies, some case studies and experiments

are performed. Transition coverage and fault detection are used as criteria to compare and

evaluate those strategies.

1.3 Outline of the Thesis

The following chapters of this thesis comprises the background, proposed strategies and

their respective evaluation, related works and some concluding remarks (including future

works). Part of the material in some chapters have already been published ([6; 14; 15; 18;

7]). More specifically, the topics of the thesis are organized in the chapters as following:

Chapter 2

In order to make the thesis self-contained, this chapter presents terms and concepts used

in Software Testing, Model Based Testing, some Coverage Criteria, Test Case Selection,

1.3 Outline of the Thesis 6

Test Suite Reduction, Test Case Prioritization, Value Based Approach, Experimentation in

Software Engineering and Statistical Analysis.

Chapter 3

In this chapter, we present our concept of redundancy and illustrate the problem in a

real application. After this, we present our Similarity Function. This function calculates

the degree of similarity between a pair of test cases by considering the number of identical

transitions between two test cases and their respective lengths. To calculate all degree of

similarities among all test cases of the test suite, a similarity matrix is built.

Chapter 4

Our strategy based on Similarity for test case selection is presented in this chapter. The

algorithm of the strategy and a toy sample are presented in order to show the application of

the strategy. The evaluation of this strategy is performed through: a case study (by analyzing

the transition and fault coverage) and an experiment (by analyzing the transition coverage).

The results are compared to random test case selection strategy.

Chapter 5

In this chapter, we propose another strategy - named Weighted-Similarity Approach

(WSA) - for test case selection based on similarities and weights associated to test cases.

The algorithm and an example to illustrate it are presented. Two case studies are executed to

compare WSA, Random Selection, Guided Random and Similarity (Chapter 4) by consider-

ing fault and transition coverage).

Chapter 6

This chapter presents our strategy for test suite reduction based on similarity. This strat-

egy, named Dissimilarity, is able to reduce the test suite using as test requirement, the tran-

sition coverage criteria. In order to explain the strategy, we present the algorithm and its

execution in a toy example. To evaluate and compare our strategy and 4 well-known strate-

gies for test suite reduction in the literature, a case study and an experiment are performed.

1.3 Outline of the Thesis 7

Chapter 7

In this chapter, we present a new way to analyze reduced test suites based on the order of

the test cases. This work is inspired in the metric used to evaluate the test case prioritization

strategies. An example is shown to illustrate our motivation. Two case studies are performed

using the proposed metric.

Chapter 8

This chapter presents some related researches on strategies for test case selection and test

suite reduction. The focus is on solutions that can be automated since our scope of study is

on MBT and system testing.

Chapter 9

This chapter presents the concluding remarks and future works related to our contribu-

tions.

Chapter 2

Background

This Chapter presents some basic concepts about Software Testing, Model Based Testing,

Coverage Criteria, Test Case Selection, Test Suite Reduction, Test Case Prioritization, Value

Based Approach and Experimentation in Software Engineering and Statistical Analysis, clar-

ifying the terminology and concepts that will be used in this Thesis.

2.1 Software Testing

Software testing is a very important activity that is part of the software development process.

Since this activity can spend more than 50% of the resources of the software development

[5], that is, in general, not executed properly or even skipped due to resource (cost and time)

constraints [26].

There are two main reasons to execute software testing [5]: to assess the quality of the

application; and to reveal problems in application under testing. Since testing is concerned

with “error”, “fault”, and “failure”, it is important to clarify these terms before presenting

the other concepts about testing. According to Jorgensen [42]:

• An error occurs because of an incorrect or missing code;

• A fault or defect is the result of an error;

• A failure occurs when the fault executes, then the application does not perform the

functionality as required. This is noted when the output is wrong, an abnormal termi-

nation occurs or time restrictions are violated.

8

2.1 Software Testing 9

Software testing is the activity of designing tests and exercising the software with them,

in order to investigate on quality attributes and find defects. We can classify the test process

according to its goal [57]:

• Defect testing: Where the goal is to reveal faults in the software;

• Validation testing: Where the goal is to demonstrate to the developer and the system

customer that the software meets its requirements.

Our strategies are independent of the goal of the testing process, however the case studies

are focused on validation testing.

The process of software testing can be divided into [42]: test planning, test case develop-

ment, running test cases, and evaluating test results. Our focus is on test case development.

In the next subsections, we present a definition of test case, testing methods and level of

testing.

2.1.1 Test Case

The essential task of software testing is to determine a set of test cases for testing the specific

system. Each test case is associated with a system behavior, and is composed by [42]:

• An identity: An identifier can be associated to the test case, for testing management

and requirements tracing for example;

• A set of inputs, where an input can be:

– Pre-condition: The system state that must hold before test case execution;

– Actual inputs: Actions that should be executed;

• Set of expected outputs, where an expected output can be:

– Post conditions: The system state that must hold after test case execution;

– Actual outputs: An output of the system.

In order to execute one test case, the system must hold the specific state (pre-condition).

Then, the system is exercised with the inputs, collecting the outputs until the post condition is

2.1 Software Testing 10

reached or a failure is detected. Finally, the obtained results are compared with the expected

ones to check if the test has passed or not, i.e., if the software behaved as expected.

This is a general format of a test case. Depending on the kind or level of testing, this

format is tailored. For example, a unit test is a method call, where the inputs are values that

instantiate parameters. On the other hand, at a system test level is an execution scenario of

the application. Then, usually, inputs are a sequence of actions executed by a user, and the

respective system outputs are observed.

Figure 2.1 presents a System Test Case. This test case executes the system to validate the

scenario “add phonebook contact with success”. To execute this test case, the system must

be in Idle, the Phonebook application must be installed in the phone and must have enough

memory to add a new contact. For each input (user action) of this test case, an expected

output (system state) is presented. This expected output is then compared to the real system

state. If they are the same, then we “pass” the test case.

Figure 2.1: System Test Case

2.1.2 Testing Methods

Testing methods are used to identify test cases. A testing method may follow a functional

testing approach or a structural testing approach [5].

Functional Testing

2.1 Software Testing 11

Functional testing is based on the view that any application can be considered as a “black

box”, where only inputs and outputs are taken into consideration, and the implementation

is not known. Since the implementation is not considered, only the specification is used to

obtain the test cases.

For functional test cases, there are two advantages: the test cases can be obtained in

parallel with the implementation, and, if there are any changes in the source code (except

changes of the functionalities), the test cases do not change. In general, functional test cases

may present redundancies among themselves [42], which may increase the costs of software

testing.

Structural Testing

In contrast to the functional testing, the structural testing approach considers the imple-

mentation of the system to obtain the test cases. This approach is also called “white box”,

where it is necessary to observe inside the box in order to identify the test cases. In other

words, to obtain the test cases, the implementation needs to be available. This approach

lends to the definition and use of test coverage metrics [5]. Such coverage metrics define

which part of software will be tested.

2.1.3 Level of Testing

Beizer [5] and Jorgensen [42] show three levels of testing: unit, integration, and system

testing. Each level has a different goal, and thus different methods are applied to perform the

test.

Unit Testing

A unit is the smallest testable piece of an application, that is usually the work of one

programmer. Unit testing is performed to guarantee that the unit satisfies its functional spec-

ification and/or that its implemented structure matches the intended design structure [5].

A component can be considered an unit. This way, each component/subsystem is tested

separately.

Integration Testing

2.2 Model-Based Testing 12

Integration is a process by which components are put together to create a larger compo-

nent. The goal of integration testing is to reveal faults that arise when the components are

put together. This testing considers that each component has already been tested and are

individually satisfactory, as demonstrated by a successful passage of component tests.

The hard task in integration testing is to locate the “faults”. Usually, to make that easier

we should use an incremental approach to system integration and testing [57].

System Testing

A system can be consider a big component. Then, a system testing is performed when all

components are already together(i.e., after the integration occurs). The goal of system testing

is to reveal issues and behaviors that can only be exposed by testing the entire integrated

system.

This testing focus on capabilities and characteristics that are presented only with the

entire system. System scope can be classified by the kind of conformance [10]:

• Functional: The goal is to find errors in the functionality of the system, in other words,

this testing assess if for given inputs, the right outputs are generated;

• Performance: The goal is to observe the behavior of the system under heavy load;

• Stress or load: The goal is to find failures in the system under unexpected inputs,

unavailability of dependent applications, and hardware or network failures.

Our strategies are independent of the level of testing, however the case studies are focused

in functional system testing.

2.2 Model-Based Testing

Model-Based Testing (MBT) is a functional approach and consists in the automatic genera-

tion of tests using models extracted from the system specification [61]. For its application,

it is necessary that the software requirements are precisely defined, in order to characterize

with exactness the system behavior [5].

This section presents concepts about models (Subsection 2.2.1) and activities of Model

based Testing (Subsection 2.2.2).

2.2 Model-Based Testing 13

2.2.1 Models

System Models are an abstract view of a system. Since a model is an abstraction, it is a

simplification of the reality that highlights the most important characteristics [38].

Models may represent a system from different perspectives [57]:

• External: The environment of the system is represented by the model;

• Behavioral: The behavior of the system is represented by the model;

• Structural: The architecture of the system is represented by the model.

Since model-based testing is a black-box approach, the behavioral perspective of the

system is adopted. For behavioral perspective, the following models can be highlighted: De-

cision Tables, Finite State Machines (FSM), Markov Chains, Statecharts, UML diagrams,

Labelled Transition System (LTS), among others. A model is chosen according to the char-

acteristics of the system. In this work, we consider the specific type of LTS model - ALTS

(Annotated LTS).

Labeled Transition System - LTS

LTS is a directed graph in which vertices are named states, and edges are named tran-

sitions. These models are largely used as the semantic formalism of several specification

notations [41] and so they can be easily obtained from functional specifications by using

translation tools, such as UMLAUT [39]. Several tools use LTSs as the model for obtaining

test cases. Among these tools are: SPACES [3], TGV [41], LTS-BT [17] and TaRGeT [48].

Formally, an LTS can be defined as a 4-tuple S = (Q,A, T, q0), where [27]:

• Q is a finite, nonempty set of states;

• A is a finite, nonempty set of labels;

• T is a subset of Q x A x Q, named the transition relation;

• q0 is the initial state.

2.2 Model-Based Testing 14

Usually, LTS take into account internal and external actions [41]. Since our focus is on

functional testing, we show two different LTS that can be used for modeling the functional

behavior of the applications: Input-Output LTS and Annotated LTS.

Annotated LTS - ALTS.

Annotated LTS (ALTS) is an LTS that has transitions actions and also, annotations. These

annotations are insert in the LTS with a specific goal. In our case, this goal is to generate

functional test cases, therefore, such annotations are related to this activity. Figure 2.2 shows

an example of an Annotated LTS model that represents the behavior of an application where

the user wants to save one phone number that is embedded in a message.

Observe that each label has an annotation for the action: steps, conditions or expect-

edResults. These correspond to, respectively, a user action, a pre-condition and a system

response, and are inserted in the LTS to facilitate the test case generation.

Figure 2.2: Annotated LTS model

2.2 Model-Based Testing 15

2.2.2 Activities of MBT

The activities related to MBT can be described as follows [28]:

1. Build the model: The formal model is built from the software specification. This

model needs to be formal, i.e., precise, consistent and unambiguous.

2. Generate expected inputs and outputs: The test inputs and outputs are generated

from the formal model. In order to exercise the system, we need to generate the se-

quence of the inputs, while the expected outputs represent the expected system re-

sponses.

3. Run tests: The system is executed with the generated inputs, generating outputs;

4. Compare outputs with expected outputs: The generated outputs are compared to the

expected outputs.

For example, consider we have the following requirement: The user must be able to save

a phone number that is embedded in a message. From this requirement, we build the model

(activity 1) and obtain the ALTS shown in Figure 2.2.

Using the ALTS showed in Figure 2.2, we can transverse this model by using Depth

Search First (DFS) and generate 2 test cases (path coverage criteria) and its respective inputs

and outputs (activity 2). The test cases to be generated from a model depends on the adopted

coverage criteria (more details in Section 2.3). Figure 2.3 shows one of them.

Figure 2.3: Test Case

Figure 2.4 shows the flow of the MBT activities. As can be seen, the models are obtained

from the requirements. This activity is usually done manually, and it requires a specialist

2.3 Coverage criteria 16

in the notation used to construct the formal model. However, there are already attempts,

in practice, to automatically generated models from requirements specification written in a

natural controlled language [48].

Figure 2.4: Model Based Testing

Inputs to execute the system and expected outputs are extracted from that model. Then,

the system is executed with the tests (activity 3). When the system is executed, the outputs

are produced. Finally, these outputs are compared to the expected outputs and the test cases

are defined as Pass or Fail.

2.3 Coverage criteria

A coverage criterion is a set of rules that imposes test requirements on a test suite [2]. Cov-

erage criteria specify the items of the system that must be exercised during testing. There are

two purposes [61]:

• Measuring the adequacy of a test suite: The coverage level of a specific criterion is

an indicator of the quality of the test suite;

2.3 Coverage criteria 17

• Deciding when to stop testing: The tests are run until reaching a coverage level of a

specific criterion.

There are consolidated coverage criteria for code coverage (white-box coverage criteria),

and many of these coverage criteria are used for black-box coverage [61]. Since our focus is

on MBT and the model is LTS, we will present the main coverage criteria used for Transition-

Based Coverage Criteria: all-states, all-configurations, all-transitions, all-transition pairs,

all-loop-free-paths, all-one-loop-paths, all-round-trips and all-paths [61]. Here, we do not

consider all-configurations because it is not applied to our context, since it is mostly used

for statecharts.

Figure 2.5: LTS model

• All-states coverage: Every state must be visited at least once. Considering the LTS of

Figure 2.5, to reach this coverage, only one test case is required: abd;

• All-transitions coverage: Every transition must be visited at least once. Observing

the LTS of Figure 2.5, this coverage can be reached using only one test case: abcd;

• All-transition-pairs coverage: Every pair of adjacent transition in the model must be

traversed at least once. In the LTS of Figure 2.5, to reach this coverage, we need to

have test cases that traverse ab, bc and bd at least once. In this case, this coverage is

reached with the test cases: abd and abc;

• All-loop-free-paths coverage: Every loop-free path must be traversed at least once.

A path is loop free when it does not have repetitions. For the LTS in Figure 2.5, only

one test case is required to reach this coverage criterion: abd;

• All-one-loop-paths coverage: Each path is traversed at most once the loop. Therefore,

we have one test for each loop. In Figure 2.5, we need two test cases to reach this

coverage criterion: abd and abcd.

2.4 Test Case Selection 18

• All-round-trips coverage: This coverage criterion is similar to all-one-loop-paths

since it requires that all loops are tested in the model, however it is a weaker criterion,

since it only requires one path for testing one loop. For the LTS in Figure 2.5, to reach

this coverage criterion, the following test cases are needed: abd and abc.

• All paths coverage: Every path must be traversed at least once. This corresponds

to an exhaustive testing in LTS models, and the generation algorithm should have an

heuristic to avoid the state space explosion, enabling the proper use of this coverage.

2.4 Test Case Selection

Test case selection is an activity to select a subset of the test suite according to a specific

criterion, for example transitions or requirements coverage. The selected subset may not

provide the same coverage as the original test suite [66], however, it may lower the costs of

the test process. We can enumerate some strategies for test case selection:

1. Deterministic: Where we have a manual choice. For example, one specialist can use

his or hers know-how to select test cases;

2. Random: The subset of test cases is randomly chosen;

3. Statistical: The weights are assigned to guide the choice [4]. One of them is the

Guided Random, where the choice of the test cases is guided by probability values

[50; 3]. For each decision node in an LTS, a probability is assigned. Then, this strategy

tries to select the most important transitions (i.e., the transitions with the highest prob-

ability values) using a Depth-first search. The goal is to define an unbiased test suite

that can be more effective for fault detection, and also to make reliability estimation

possible;

4. Test Purpose: A test purpose denotes a scenario of a functionality of the system

under testing [38]. Jard and Jéron present TGV tool [41], where the test selection

is performed when the model is delimitated by the test purpose.

2.5 Test Suite Reduction 19

2.5 Test Suite Reduction

Test suite reduction is a technique that produces a representative subset of the original test

suite. This subset has equivalent coverage in relation to the original test suite, concerning a

specific criterion [66]. This problem can be stated as follows [36]:

Given: Test Suite TS, a Set of Test Requirements req1, req2, ..., reqn that has to be covered

to provide the desired test coverage of the program, and subsets of TS (TS1, TS2, ..., TSn),

where each test case from TSi can be used to test reqi;

Problem: Find a representative set of test cases from TS that satisfies all of the Req′s.

A test requirement can be a statement, a block, a decision, a requirement and so on. A

representative set of test cases must have at least one test case for each Req. Therefore,

these test cases satisfy all of the Req′s. The maximum reduction occurs when the smallest

representative subset is found. This is a NP-complete problem [22; 36].

The main advantage of test suite reduction is the reduction of the size of the test suite.

However, since the test suite is reduced, we risk to decrease the capability of faults detection.

Wong et al. [65] and Rothermel et al. [54] propose experimental researches to investigate

this risk.

Finally, test suite reduction techniques deal with structural redundancy. The classic def-

inition for redundant test case is: A test case is redundant if other test cases in the test suite

provide the same coverage of the program [36]. For example, considering branch coverage

as a test requirement, a test suite reduction strategy must find a subset that reaches 100%

branch coverage.

Some heuristics for test suite reduction were proposed in the literature. These heuristics

are detailed below, since they are compared to our proposed strategy (Chapter 6). For apply-

ing the proposed heuristics, it is necessary to have the satisfiability relation between the Test

Suite (TS) and the Test Requirements (Req = req1, req2, ..., reqn). First we illustrate the

satisfiability relation required to perform the test suite reduction with the heuristics.

Satisfiability Relation

For each reqn, there is a subset of TS (T1, T2, ..., Tn), such that all the test cases belonging

to Tn can be used to test reqn. Table 2.1 presents a sample of a Satisfiability Relation.

2.5 Test Suite Reduction 20

Table 2.1: TS consists of Test Cases t1, ..., t7, Test Requirement reqn, and Associated Test-

ing Sets are Tn - Example 1

n Reqn TSn

1 req1 {t2}

2 req2 {t6, t7}

3 req3 {t1, t5, t7}

4 req4 {t1, t6}

5 req5 {t3, t4, t7}

6 req6 {t1, t2}

7 req7 {t3, t7}

The goal of test suite reduction, as said before, is to meet a subset (Reduced Set - RS ⊆

TS) that provides 100% coverage of test requirement, in other words, to satisfy all test

requirements.

Greedy Heuristic

The Greedy heuristic [23; 25] repeatedly selects the test case t that satisfies the maximum

number of unsatisfied test requirements, if there is a tie situation, a random choice is made.

The selected test case is added to the Reduced Set (RS) and all test requirements that can be

satisfied by that test case are marked as an already satisfied test requirement. This algorithm

stops when all test requirements are satisfied. Applying this algorithm to the example showed

in Table 2.1, we have:

t7 satisfies the maximum number of unsatisfied test requirements, then RS = {t7}, the

requirements req2, req3, req5 and req7 are marked as satisfied. Now, there is a tie situation:

t1 and t2 satisfy the maximum number of unsatisfied test requirements. This way, a random

choice is made. Considering that t1 is chosen, then RS = {t1, t7}, the requirements req4

and req6 are marked as satisfied.

Finally, the unique requirement that has not yet been marked is req1, since this require-

ment is satisfied by t2, therefore RS = {t1, t2, t7}, which provides 100% coverage of the test

requirements. Rehman et al. proposed TestFilter, a technique to reduce test suites based on

2.5 Test Suite Reduction 21

statement coverage [60]. This technique uses the Greedy Heuristic for test suite reduction.

The authors used statement coverage as test requirement.

Heuristic Greedy - Essential (GE)

This heuristic (defined by Chen and Lau) is based on [20]:

• Essential strategy: Responsible for selecting all essential test cases. A test case is

essential when only that specific test case covers one specific requirement;

• Greedy heuristic: Responsible for selecting a test case that satisfies the maximum

number of not yet satisfied requirements.

Initially, all essential test cases are observed, and their respective requirements are

marked. Then, the greedy heuristic is applied. The focus is on solutions that can auto-

mated since our scope of study is on MBT. Using the example from Table 2.1, the strategy

execute as following.

First, t2 is chosen, since it is an essential test case. Therefore RS = {t2}, and the

requirements req1, req6 are marked as satisfied. Now that we do not have essential test cases

remaining, we must apply the greedy heuristic. Since t7 satisfies the maximum number of

unsatisfied test requirements, we add it to the reduced set. Thus, RS = {t2, t7}, and the

requirements req2, req3, req5 and req7 are marked as satisfied.

Finally, the unique requirement that has not been marked yet is req4. Therefore we apply

a random choice between t1 and t6. Considering that t1 is chosen, we obtain the reduced set

RS = {t1, t2, t7} and req4 is marked as satisfied. Now that all requirements are satisfied, the

algorithm stops.

Heuristic Greedy - 1− to− 1 - Redundancy Essential (GRE)

This heuristic (defined by Chen and Lau) is based on [19]:

• The Greedy and Essential strategies, both presented above;

• 1-to-1 redundancy strategy: A test case t1−1 ∈ TS is said 1-to-1 redundant, if [21]:

∃t | t 6= t1−1 & t ∈ TS & req(t1−1) ⊆ req(t).

2.5 Test Suite Reduction 22

In other words, when all requirements satisfied by t1−1 are also satisfied by t.

The essential and 1-to-1 strategies are applied alternatively, until no essential or 1-to-1

redundant test cases can be found. That means that the greedy strategy is only applied if

neither the essential or 1-to-1 redundancy can be applied. Considering the example from

Table 2.1 the algorithm is applied as following.

First, t2 is chosen, since it is an essential test case. Therefore, RS = {t2}, and the

requirements req1, req6 are marked as satisfied. Now, we do not have any other essential test

cases. Thus, we have to search for 1-to-1 redundant test cases.

During this search we identify t4, t3 and t5 as 1-to-1 redundant test cases, since:

req(t4) ⊆ req(t7), req(t3) ⊆ req(t7) and req(t5) ⊆ req(t7). The test cases t3, t4 and t5

are not considered, since those are redundant in relation to t7.

Now, at this point, t7 becomes an essential test case, and needs to be placed in the reduced

set. Thus, RS = {t2, t7}, and the requirements req2, req3, req5 and req6 are marked as

satisfied. Finally, we have only req4 as not satisfied. A random choice is performed, between

t1 and t6. Considering that t1 is chosen, the resulting subset is RS = {t1, t2, t7} and req4 is

marked as satisfied. Since all the requirements are satisfied, the algorithm stops.

Heuristic H

Harrold et al. [36] present a test suite reduction technique, refered as Heuristic H. Each

test requirement has a cardinality, that is the number of test cases that covers that specific

requirement. When a test case is added to the reduced set, all requirements covered by that

test case are marked. The first step is to identify the test requirement(s) with the lowest

cardinality, since they represent the most essential test cases.

Among the unmarked test requirements with the lowest cardinality, the algorithm selects

the most frequently occurring test case, i.e., the test case that covers most requirements. If

there is a tie, the algorithm chooses the test case that occurs most frequently at the next

higher cardinality and so on (if there is another tie where the cardinality is maximum, then

a random choice is applied). This algorithm stops when the reduced set has test cases that

cover all test requirements.

Summarizing, the main idea is to select test cases according to their essentialness, i.e.,

2.6 Test Case Prioritization 23

Table 2.2: Cardinality

Cardinality Req

1 req1

2 req2, req4, req6, req7

3 req3, req5

keeping in the reduced set the test cases in the order from the most essential to the least

essential. Below, we apply this algorithm to the example showed in Table 2.1.

First, we need to calculate the cardinality of each test requirement. The results can be

seen in Table 2.2.

For the lowest cardinality (in this case is one), there is only one test case (t2). Thus, RS =

{t2}, and the requirements req1, req6 are marked as satisfied. Now, the lowest cardinality is

two, tied between req2, req4 and req7. Also there is a tie between the most frequent test cases

within req2, req4 and req7. These test cases are t6 and t7.

Then we must see the next higher cardinality (in this case is 3 - req3 and req5) to de-

termine which one of them occur most frequently. Observing req3 and req5, we identify

t7 as the most frequent test case. Therefore t7, is chosen and then RS = {t2, t7}, also

req2, req3, req5 and req7 are marked as satisfied.

Finally, the unique requirement that has not been yet marked is req4. Again, we have

a tie situation, however we do not have a next higher requirement cardinality, therefore we

apply a random choice between t1 and t6. Considering that t6 is chosen, the reduced subset

is RS = {t2, t6, t7}, and req4 is marked as satisfied. Since all requirements are marked, and

thus satisfied, the algorithm stops.

2.6 Test Case Prioritization

Test case prioritization is a technique that orders test cases in an attempt to maximize an

objective function. The problem is defined by Elbaum et al. as follows [30]:

Given: A test suite TS Test Suite; PTS, a set of permutations of TS; and, f , a function that

maps PTS to real numbers (f : PTS → R).

2.7 Value Based approach 24

Problem: Find a TS′ ∈ PTS | ∀ TS′′ (TS′′ ∈ PTS) (TS′′ 6= TS′) · f (TS′) ≥ f (TS′′)

The objective function is defined according to the goal of the prioritization. The manager

may need to quickly increase the rate of fault detection or the coverage of the source code.

Then, a set of permutations PTS is obtained and the PTS′ that has the highest value of

f (TS′) is chosen.

Note that the key point is the goal, and the success of the prioritization is measured by this

goal. However, it is necessary to have some data (according to the defined goal) to calculate

the function for each permutation. Then, for each test case, a priority is assigned and test

cases with the highest priority are scheduled to execute first. When the goal is to increase

fault detection, there is a metric largely used in the literature, named Average Percentage

of Fault Detection – APFD. The highest the APFD value is, the faster and better the fault

detection rates are [30].

2.7 Value Based approach

Value based software engineering has been introduced in 1981 with Boehm’s Software En-

gineering Economics book [12] and has inspired the value based management movement in

the early 1990 [9]. Its philosophy is that “quality should not be a goal in itself in the absence

of favorable economics”.

Since then, the consideration for software-related value has expanded its scope and values

have been incorporated deeply into successful developments process. The common purpose

has been promoting the different considerations/measures/knowledges to the foreground so

that the software engineering decisions could be guided and optimized by these values.

Saying exactly once for all what “value” represents in this discipline is not possible. The

referred numbers can be related to various topics. They can represent the economical and

financial aspect, they can be percentage or probability, they can represent abstract concepts

as quality, availability, usability and so on.

In software development, generally the various system functionalities do not have the

same “importance” for overall system performance or dependability, and the testing effort

should be planned and scheduled accordingly. Different criteria can be adopted in order to

define what “importance” means for test purposes, e.g., component complexity, or usage

2.8 Experimentation in Software Engineering 25

frequencies (such as in reliability testing [46]).

Often, these criteria are not documented or even explicitly recognized, but their use is

implicitly left to the sensibility and expertise of the managers. Several criteria for assigning

the importance factors could be adopted. Obviously this aspect in the proposed approach

remains highly subjective, more in the realm of expert judgment than mechanizable methods.

The basic idea is that the test managers must explicit these criteria. The main task is

to express, for each functionality, a value belonging to the [0,1] interval, representing its

relative “importance” with respect to the other functionalities. This value, called the weight,

must be assigned in such a manner that the sum of the weights associated to all children of

one level is equal to 1; the more critical a functionality is, the greater its weight.

It is worth noticing that the process of functionalities annotation implies a beneficial

side-effect: for assigning the appropriate values, the managers are forced to reflect on the

relative complexity of each functionality with respect to the context in which it is inserted.

Consequently, they focus on the parts where problems could be more critical and become

more aware of the importance of each node for the system development.

2.8 Experimentation in Software Engineering

In this section, some basic concepts about Scientific Methods and Experimentation in Soft-

ware Engineering are presented.

2.8.1 Scientific Methods in Software Engineering

There are four scientific methods that are used for doing research in software engineering.

Those methods are [33; 62]:

• Scientific: A model is built by observing the world;

• Engineering: New solutions are proposed, and evaluated, from changes of a current

solution;

• Empirical: A model is proposed and evaluated through empirical studies;

• Analytical: A formal theory is proposed and compared with empirical observations.

2.8 Experimentation in Software Engineering 26

Here, we will address the empirical method. An empirical study can be conduct through:

• Survey: The goal is to obtain descriptive and explanatory conclusions [62] from a

sample. One sample in a representative part of a population. The data used in the

analysis are gathered, usually, through interviews or questionnaires. It is not possible

to manipulate variables;

• Case Study: Data is collected for a specific purpose. Normally, a case study is used

for monitoring projects or activities. From the obtained results, the statistical analysis

can be applied;

• Experiment: It is a rigorous, formal and controlled investigation. Normally, it is

executed in a laboratory environment. It is possible to manipulate variables.

The next subsection shows in details the flow of an experiment. We show elements from

a process that defines each step required to perform the experimental study.

2.8.2 Experiment

In this work, we use a process for experimental studies in software engineering defined by

Wohlin et al. [62]. This process is composed of the following activities: definition, planning,

operation, analysis and interpretation, presentation and package. Each one of these activities

are detailed below.

Definition

In this phase, the experiment is defined in terms of a problem, an objective and a goals.

It is required to specify a general hypothesis relating the goal of the experiment, with the

problem being addressed. In order to define the goal, the key questions proposed by Wohlin

et al. should be answered[62]:

1. What is studied? Object of study: this is the entity that is studied in the experiment;

2. What is the intention? Purpose: intention of the experiment;

3. Which effect is studied? Quality focus: primary effect under study;

2.8 Experimentation in Software Engineering 27

4. Whose view? Perspective: viewpoint from which the results are interpreted;

5. Where is the study is conducted? Context: environment which the experiment is run.

From these answers, a goal definition template is filled. This template helps organizing

the main elements of the experiment, and provides a general overview of the goal and purpose

of the experiment. The template is structured as follows:

Analyze object of study

for the purpose of purpose

with relation to quality focus

from the point of view of the perspective

in the context of context.

The environment defines the personnel involved in the experiment (subjects) and the

software artifacts used in the experiment (objects). It is necessary to define the quantity,

priority, know-how for each subject and quantity, size, complexity and application domain

for the objects.

Planning

Once the experiment is defined, the experiment design is specified. In order to properly

plan the experimental study, it is required to specify several elements, such as [62]: context

selection, variable, hypothesis, design, instrumentation and threats.

Context Selection

Aiming to have more general and real results, it is necessary that the experiment is ex-

ecuted by professional staff in large and real software projects [62]. However, this scenario

is costly. In order to reduce the costs, the project can be run off-line, being performed by

students and using toys (e.g. simple models, or software application) in a specific context.

Thus, the context of the experiment can be classified in four dimensions [62]:

• On-line vs. Off-line

• Student vs. Professional

• Toy vs. Real Problems

2.8 Experimentation in Software Engineering 28

• Specific vs. General

Variables Selection

One of the main elements of the experiments are the variables. These variables comprise

the elements that are modified, observed, analyzed and executed during the experimental

study. The variables that will compose the experiment are defined as following:

• Dependent: Variables that will be observed in the experiment;

• Independent: Variables that will be controlled in the experiment.

Hypothesis Formulation

The experiment definition is formalized into hypotheses, that will be tested during the

analysis of the experiment. The hypotheses testing is the basis for the statistical analysis of

an experiment. The experiment definition is formalized as following:

• A null hypothesis, H0: This is the hypothesis that the experimenter wishes to reject

under a specific significance level;

• An alternative hypothesis, H1: This is the hypothesis that the experimenter wishes to

accept.

Selection of Subjects

The subjects of an experiment are the people involved in it. This is a very important step,

since depending on the selection of the subjects, the experiment can be generalized. The

larger the sample (of subjects), the lower the error becomes when generalizing the results.

Experiment Design

The Experiment design is defined from the characteristics of the experiment, such as:

amount of object, subjects, factors and levels. [62; 40]. The design types are suitable for

experiments with:

• One factor with two treatments: To compare two treatments;

• One factor with more than two treatments: The comparisons between more than

two treatments;

2.8 Experimentation in Software Engineering 29

• Two factors with two treatments: It is necessary to compare the treatments in each

factor with the others (2*2 factorial design);

• More than two factors with more than two (k) treatments: It is necessary to com-

pare the treatments in each one of the factors with those from the others (2k factorial

design);

From the Experiment design, the statistical resources and the number of replication are

defined. The number of necessary replications (n) can be calculated using the following

formula [40]:

n = (
100 · Z · s

r · x
)
2

(2.1)

Where Z, for a 95% confidence level, is 1.96 (a standard value from the normal distribu-

tion table); s is the standard deviation from the sample; r is the desired accuracy; and x is

the mean of the sample.

Instrumentation

The instrumentation comprises the elements used to automate and execute the experimen-

tal study. These elements are called instruments. During this step, three types of instruments

are specified [62]:

• Objects: The artifacts used to execute the experiment (e.g., specification models, im-

plementation, among others);

• Guidelines: The guidelines are required to properly guide the subjects in the experi-

ment;

• Measurements: The method in which the data will be collected.

Threats to the Validity

Usually, threats to validity are identified during the planning phase. This is an important

step because if the data are not valid, the obtained conclusions of the experiment can not

be trusted. The sample needs to have an adequate validity for the population, therefore, any

threat to validity need to be considered.

2.8 Experimentation in Software Engineering 30

There are different types of validity, each one related to a specific aspect (theory, imple-

mentation, observation, among others) of the experiment. The validity can be classified in

[24]:

• Internal: Related to the relationship between the treatments;

• External: Related to the ability to generalize the results;

• Construct: Related to the experiment setting;

• Conclusion: Related to draw correct conclusion about an experiment.

Each type of validity must be addressed by the experimenter, and it is necessary to iden-

tify each elements that threats the validity of the experiment. A validity threat that is not

properly handled by the experiment also threats the experimental study itself. Therefore,

specifying a proper validity evaluation method is one of the main elements to evaluate and

validate the experimental study.

Operation

In this phase, the experiment is executed, and the measurements are collected. This is di-

vided:

• Preparation: To prepare the subjects/material to collected data;

• Execution: The execution of the experiment is performed;

• Data Validation: To make sure the collected data are valid.

Analysis and Interpretation

The collected measurements are analyzed by using descriptive statistic. The interpretation

is done by determining, from the analysis, if the null or alternative hypothesis are accepted

or rejected. The statistical resources must be properly use, in order to avoid validity threat

concerning the conclusion of the results. Therefore, it is necessary to analyze each data, and

each sample obtained during the execution before using a specific statistical test (specially

the parametric ones, such as Analysis of Variance, and t Test).

2.9 Statistical Analysis 31

Presentation and Package

After analyzing the results of the experiment, the conclusions and artifacts of the experiment

must be organized and be presented available, so they can be properly presented to other

researches. Therefore, during this step, the entire process is organized in reports, and the

data, statistical resources, should be organized in graphics and other visual resources, to ease

the understanding of the performed experiment.

2.9 Statistical Analysis

In this section, some concepts about descriptive statistic, graphical visualization and hy-

pothesis testing are presented. These resources are presented in order to provide a better

understanding of the analysis performed in this work.

2.9.1 Descriptive Statistic

Descriptive Statistics is used to describe and show - graphically - characteristics of the data

set. The goal is to know the data distribution (to identify abnormal data points). Usually, this

is done before performing the hypothesis testing. These statistic can be measures of a central

tendency, or dispersion.

The measures of central tendency provide an overview to estimate an stochastic variable.

There are three measurements often used to indicate the central tendency of a data set(x)

[62]:

• Mean x: It is the sum of the values divided by the number of values;

• Median: It is the numeric value separating the higher half of a sample (considering

the ordered data set);

• Mode: It is the value that occurs most frequently in a data set.

In turn, the measures of dispersion show how much variation there is from the mean.

There are two measurements often used to indicate the dispersion of a data set [62]: Variance

and Standard Deviation (s). A low value of variance or standard deviation indicates that

2.9 Statistical Analysis 32

the data points tend to be too close to the mean, whereas a high value indicates that the data

is spread out. The difference between Variance and Standard Deviation is that the latter is

expressed in the same unit as the data, whereas the variance is expressed in (unit)2.

2.9.2 Graphical Visualization

By representing some measures graphically, we are, usually, able to draw conclusion about

the data. A box plot shows the dispersion of a sample and the central value. An example of a

box plot is illustrated is presented in Figure 2.6. The picture shows the first and third quartiles

(respectively, the upper and lower edges of the box), and the mean value that is represented

by the central line in each box. The whiskers extending from the quartiles represent the

farthest observation lying within 1.5 times the interquartile range. The outliers (unfilled

dots) represent the individual values beyond the whiskers.

Figure 2.6: Sample of Box Plot

A confidence interval (CI) provides an estimated range of values which is likely to in-

clude an unknown population parameter. The estimated interval is calculated from a given

set of sample data with a chosen confidence level. Thus, for different set of data different CI

are calculated and plotted (see Figure 2.7).

We are able to use the CI from two or more samples to determine if these samples come

2.9 Statistical Analysis 33

Figure 2.7: Confidence Intervals - a, b, c, d and e

from the same population. If there is no overlap among the CIs, we can conclude that the

population are different and, if a hypothesis tests is performed, we are able to reject the null

hypothesis (see next subsection), according to the specified confidence level.

Observing the intervals in Figure 2.7, we can state that “a” is different from “b”, “c”, “d”

and “e”. However, we can not state anything about “b”, “c”, “d” and “e”, therefore further

statistical investigation needs to be done.

2.9.3 Hypothesis Testing

The goal of Hypothesis Testing is to check if it is possible to reject a null hypothesis, H0,

based on a sample from some statistical distribution. Since from the graphical visualization

we are not able to reject the null hypothesis, then further statistical investigation needs to be

done (applying more statistical tests), aiming to obtain more significant conclusions.

First, the data distribution of the sample is checked by applying tests that investigates

distributions, such as Anderson-Darling or Kolmogorov-Smirnov [40].Depending on the data

distribution, the Hypothesis Testing can be classified as [62]:

• Parametric: The data set presents a known distribution (e.g., normal distribution).

Thus, mean and standard deviation of the sample is used to calculate the results;

• Non-parametric: The data set does not present a known distribution.

2.10 Concluding Remarks 34

The choice of an adequate test is done by observing the data distribution and the experi-

mental design. Different statistical tests are presented in Table 2.3.

Table 2.3: Statistical tests for different Experimental Designs and data distribution

.

Experimental Design Parametric Non-parametric

One factor with two treatments t− test Mann-Whitney

One factor with two treatments (paired comparison) Paired t− test Wilcoxon

One factor with more than two treatments ANOVA Kruskal-Wallis

More than one factor ANOVA

For interpreting the statistical tests results, it is necessary to observe the resulting p −

value of the applied test. This value is compared to the significance level (α) in order to

decide if it is possible reject the null hypothesis with the specified confidence level.

2.10 Concluding Remarks

In this chapter some important concepts were presented. According to these concepts, our

testing method is functional, comprising MBT approaches that use LTS as a model are con-

sidered. The next chapters present the proposed strategies and their respective evaluation and

analysis using case studies and experiments. The main variable analyzed in our case studies

and experiments is transition coverage, since this variable provides an adequate overview of

functionality coverage. The statistical analysis is performed through hypothesis testing.

Chapter 3

Similarity

This chapter presents the redundancy problem (Section 3.2). To better illustrate the problem,

we present a simple part of model from a real application (Phonebook). After this, our

similarity function (responsible for calculating the distance between two test cases) will be

presented in Section 3.2, followed by the similarity matrix, in Section 3.3. Finally, in Section

3.4 are presented some concluding remarks.

3.1 Redundancy

Model-based testing is an approach that has become popular [49], however the test suites

generated from MBT approaches, usually, contain a considerable degree of redundancy

among test cases. Our redundancy concept considers that two test cases are redundant if

they cover the same set of functionalities and present the same fault capability. Therefore,

one of them can be discarded without significantly impacting the coverage and fault detec-

tion. Thus, a test case is considered redundant, if it can be discarded of the test suite without

significantly affecting the fault detection and coverage of functionalities.

Additionally, if there are not redundant test cases and it is still necessary to eliminate

some test cases to meet the constraints (money and time), the degree of redundancy among

test cases can be observed. The higher is the degree of redundancy among test cases, proba-

bly the similar the coverage of functionalities and fault detection capability are.

To better understand, observe the LTS model presented in Figure 3.1. This LTS presents

part of the behavior of a real phonebook application. This part is about “adding” a new

35

3.1 Redundancy 36

contact and the LTS illustrate the different flows of execution that can be considered. 3.1.

Figure 3.1: LTS Behaviour Model - Phonebook

By following this sequence (using Depth First Search algorithm), we obtain 6 test cases.

The Table 3.1 shows these test cases generated from LTS model presented in Figure 3.1 (for

the sake of simplicity, for each test case, we show the sequence of states that are covered,

meaning that the correspond action/response between two states have been executed/pro-

duced).

From the main flow, there are alternative flows that characterize the behavior of the fea-

ture. Therefore, the test cases will differ mostly by a step of input and output. In this sample,

the main flow is represented by the path 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15. This path

represents the addition of a contact.

3.1 Redundancy 37

Table 3.1: Test Cases generated from LTS model presented in Figure 3.1 and their respective

lengths

Test Case Id Test Case Length

TC1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15

TC2 0 1 2 3 4 5 6 7 8 9 10 11 20 21 13

TC3 0 1 2 3 4 5 6 7 8 9 22 23 24 11 12 13 14 15 17

TC4 0 1 2 3 4 5 6 7 8 9 22 23 24 11 20 21 15

TC5 0 1 2 3 4 5 6 7 8 18 19 10

TC6 0 1 2 3 16 17 5

In some points of the main flow, the user of the application can chose to proceed to

an alternative flow. For example, when the contact list is displayed (state 8), the user of

the application can choose to “Press back” (alternative flow) and goes back to the previous

screen (8 18 19) or choose to “Select a new contact option (state 9).

Observe that all test cases present the same initial transitions, by following the sequence

0 1 2 3. Then, there is a certain degree of redundancy among all test cases, since 3 transitions

of both sequences are the same. In this case, the redundancy is one step composed by the

three elements (a user action, a condition and the system response).

We are able to observe that among TC1, TC2, TC3, TC4 and TC5, the degree of redun-

dancy is higher (0 1 2 3 4 5 6 7 8), see that those test cases have 8 identical transitions. More

specifically, among TC1, TC2, TC3 and TC4, the number of identical transitions grows to 9

(0 1 2 3 4 5 6 7 8 9). Between TC1 and TC2 there are 11 identical transitions (0 1 2 3 4 5 6

7 8 9 10 11), and between TC3 and TC4 there are 14 (0 1 2 3 4 5 6 7 8 9 22 23 24 11 13).

To clarify, observe Figure 3.2. Analyzing this figure, we can conclude that the same parts

of the system are being executed several times with a little bit of difference. Observe also,

that the difference between TC1 and TC2 is only one step, i.e., the test cases are identical

until the last step, therefore, TC1 and TC2 are so similar that if we remove TC2 from the

test suite, we will loose only one step. In the next section, we will present our proposal of a

Similarity Function to calculate the similarity degree between a pair of test cases.

3.2 Similarity Function 38

Figure 3.2: Test Cases - Redundancy

3.2 Similarity Function

By observing this real example, in order to measure the similarity degree between two test

cases (two paths in an LTS), we need to count the number of identical transitions between

them. Two transitions are identical (it) if they have exactly the same source and target states

(q) and the same label (α). More formally:

∀q
α
→ q′, q′′

α′

→ q′′′ ∈ T · it(q
α
→ q′, q′′

α′

→ q′′′) ⇐⇒ q = q′′ ∧ q′ = q′′′ ∧ α = α′

Therefore, in order to obtain the similarity degree of the test cases, we need to calculate

the number of identical transitions between each pair of test cases. Considering the example

presented before, the number of identical transitions for each pair of test cases can be seen

in Table :

The number of identical transitions (nit) that is used to calculate the similarity between

two test cases discloses how much a test case is similar to another one, according to the

function. Since, it is necessary to calculate the redundancy of one test case with the other

ones, this number (nit) is then divided by the average between the paths length in order to

balance the similarities. With this, we avoid representing a low similarity between two small

test cases due to the length of the test cases and a high similarity between two very big test

3.3 Similarity Matrix 39

Table 3.2: Pair of Test Case and Number of Identical Transitions

Pair of Test Case nit

TC1/TC2 11

TC1/TC3 13

TC1/TC4 9

TC1/TC5 8

TC1/TC6 3

TC2/TC3 9

TC2/TC4 11

TC2/TC5 8

TC2/TC6 3

TC3/TC4 13

TC3/TC5 8

TC3/TC6 3

TC4/TC5 8

TC4/TC6 3

TC5/TC6 3

cases that are not so similar.

SimilarityFunction(i, j) =
nit(i, j)

avg(|i|, |j|)
(3.1)

Next, we show the use of the similarity function for the example presented above. For

example, we calculate the similarity degree between TC1 and TC2 presented in Table 3.1:

1. Number of identical transitions (nit(TC1, TC2)): 11;

2. Average between Paths’ Length (avg(|i|, |j|)): 14;

3. SimilarityFunction(TC1,TC2): 11 / 14 = 0.78.

3.3 Similarity Matrix

Note that, to disclose the similarity among all test cases, it is necessary to apply the similarity

function for each pair of test cases. Thus, we can represent similarity in a matrix, named as

3.3 Similarity Matrix 40

Similarity Matrix, that is defined as follows:

• n×n (square matrix), where n is the number of paths and each n represents one path,

that is called a test case;

• Each element of the matrix aij is defined by computing the similarity between test

cases i and j. This function is calculated by observing the number of identical tran-

sitions (nit(i, j)), i.e., whether states “from” and “to”, and labeled transition are the

same (see definition in Section 2), and the average between paths length (avg(|i|, |j|)).

We are able to observe that the similarity matrix is symmetric, since aij = aji. As a

result, aij = SimilarityFunction(i, j) where i = j, is not considered, since it is not to

our interest to calculate the similarity of a test case in relation to itself. For the example

presented in Figure 3.1, we obtain the Matrix 3.2. The computational complexity to build

the matrix is O(n2), where n is the number of test cases in the test suite.

SimilarityMatrix =

TC1 TC2 TC3 TC4 TC5 TC6

TC1 0.78 0.81 0.60 0.69 0.30

TC2 0.60 0.78 0.69 0.33

TC3 0.81 0.59 0.27

TC4 0.64 0.30

TC5 0.40

TC6

(3.2)

The matrix provides an overview of the similarity degree of each pair. The next step is

to observe the values in the matrix, in order to draw conclusions concerning the redundancy.

Observing the Matrix 3.2, we can conclude that:

• The highest value (0.81): This means that the test cases TC1/TC3 and TC3/TC4 are

the most similar ones (they present more redundant parts). Observe that both the pairs

TC1/TC3 and TC3/TC4 have 13 identical transitions (see Table 3.2).

• The lowest value (0.30): This means that the test cases TC1/TC6 and TC4/TC6 are the

most different ones in the test suite. Note that both the pairs TC1/TC6 and TC4/TC6

have only 3 identical transitions (see Table 3.2).

3.4 Concluding Remarks 41

3.4 Concluding Remarks

Here, a way of measuring redundancy among test cases of one test suite was presented. By

observing the Similarity Matrix, some conclusions can be drawn. For the pair i and j, if the

value is:

• Zero (0): This means that there is no similarity between the test cases i and j;

• One (1): This means that the test cases i and j are equal. When two test cases are

equal, it is necessary to execute only one of them;

• The highest value: This means that the test cases i and j are the most similar ones of

the test suite, i.e., the difference between the test cases is very small;

• The lowest value: This means that the test cases i and j are the least similar ones of

the test suite, i.e., the difference between the test cases is very big.

In the next Chapters (from Chapter 4 to 6) we present three strategies that use the Simi-

larity matrix presented here. They are:

• Similarity Strategy (Chapter 4): The goal is to select the most different test cases

from a test suite to be executed (the number of test cases is defined by the test man-

ager). In this case, we consider that if two test cases are very similar (the highest value

of the matrix), one of them can be discarded (aiming to meet the resources constraints

while having the adequate coverage of functionalities);

• Weighted-Similarity Approach (Chapter 5): The goal is to select the most different

and important test cases from a test suite to be executed. The importance of each test

case and the number that will be executed are defined by the test manager. In this case,

we need to calculate a weighed-similarity matrix;

• Dissimilarity Strategy (Chapter 6): The goal is to reduce a test suite according to a

test requirement, in this case the transition coverage is considered. Since the intention

is to cover all transitions faster, the best thing is to find the lowest value of the similarity

matrix (that means that the most different test cases) and place both in the reduced set.

Chapter 4

Similarity-based Selection

This Chapter presents our proposal for test case selection based on the Similarity, concept

introduced in Chapter 3. This strategy considers the resource constraints (only a certain

number of test cases can be executed) and thus, select the most different test cases aiming to

have a better functionalities and fault coverage.

Our strategy for selection, and the algorithm, are presented in Section 4.1; a toy example

used to illustrate the strategy is presented in Section 4.2; Section 4.3 contains a case study

with a real application executed to compare our strategy and random selection, analyzing the

transition and fault coverage; and, at last, Section 4.4 presents an experiment that uses a LTS

Generator (more details in Appendix B) to generate different LTSs that are the input of the

experiment.

4.1 Definition

The idea is to keep in the test suite the least similar test cases according to a goal that is

defined in terms of the intended size of the test suite. The least similar test cases provide the

chance of having a better coverage of both requirements and faults, once that it covers the

most different transitions.

This strategy uses the similarity function to build the similarity matrix (as shown in Chap-

ter 3). The inputs are:

• Percentage: The desired percentage of test cases, defined, for example, according to

the resources constraints;

42

4.1 Definition 43

• Test Suite: The set of test cases;

• Similarity Matrix: The matrix that contains the information regarding the similarity

among all test cases of the test suite.

The Algorithm 1 presents the steps of this strategy. The first step is to calculate the de-

sired number of test cases (line 1) according to the percentage, i.e., the number representing

the total of test cases that have to be selected. Since the idea is to keep in the Similarity

Matrix, the most different test cases, the highest value of the matrix is found. The two test

cases correspondent to that value are analyzed and one of them is removed from the matrix

(lines 2 - 14). This procedure is repeated until the number of test cases in the matrix is equal

to the desired value (line 2).

At this point, the maximum values of the matrix are found. When a tie among maximum

values (more than one maximum value) is found, in the similarity matrix, the idea is to

randomly choose one of them (lines 3 - 4). From the maximum value we are able to discover

the correspondent test cases (lines 5 - 6) from the most similar pair.

Now, the size of the test cases are compared, and the idea is to keep in the matrix the

longest test case (lines 7 - 10), i.e. the test cases with more transitions, since it can represent

the highest functionality coverage. If the size between the two test cases is the same, a

random choice is applied (lines 12 - 13).

Regarding the complexity analysis of Algorithm 1 we are able to observe a repeat-

ing structure (while command in line 2) where, within each iteration, the method

getAllMaxValue (O(n2)) is used to search the matrix for the highest similarity values.

Therefore Algorithm 1 has a complexity of O(n3), where n is the number of test cases in the

test suite.

It is possible to think that selecting long test cases would provide a test suite that requires

a lot of time to execute. However, to our knowledge, no empirical evidence that relates the

number of transitions of a test cases and the time required to execute the test suite, has been

performed.

4.2 Example - Similarity Selection 44

input : percentage, testSuite, similarityMatrix

output: selectedTestCases

1 numberOfRequiredTestCases = calculateNumberOfDesiredTestCases(percentage, testSuite);

2 while (selectedTestCases.size() < numberOfRequiredTestCases) do

3 maxValues = getAllMaxValue(similarityMatrix);

4 chosenPair = pairs.shuffle.get(0);

5 testCase1 = chosenPair.getTestCase1();

6 testCase2 = chosenPair.getTestCase2();

7 if (testCase1.size() > testCase2.size()) then

8 similarityMatrix.remove(testCase2);

9 else if (testCase1.size() < testCase2.size()) then

10 similarityMatrix.remove(testCase1);

11 else

12 chosenTestCase = randomChoice(testCase1,testCase2);

13 similarityMatrix.remove(chosenTestCase);

14 selectedTestCases = similarityMatrix.getTestCases();

Algorithm 1: Similarity based Selection - Algorithm

4.2 Example - Similarity Selection

In order to illustrate the strategy, an example is presented below. An LTS model is presented

in Figure 4.1. From this LTS model, 6 test cases are obtained. Both the test cases, and their

respective sizes, can be seen in Table 4.1. In turn, the similarity matrix is presented in Matrix

4.1.

Table 4.1: Test Cases and Size of test cases

TC id Path Test Size

1 a 1

2 b c e 3

3 b d f 3

4 b d g 3

5 b d g d f 5

6 b d g c e 6

4.2 Example - Similarity Selection 45

Figure 4.1: Example - LTS model

SimilarityMatrix =

TC1 TC2 TC3 TC4 TC5 TC6

TC1 0 0 0 0 0

TC2 0.33 0.33 0.25 0.75

TC3 0.66 0.75 0.5

TC4 0.75 0.75

TC5 0.6

TC6

(4.1)

Considering that, the desired percentage is 50%, the desired number of test cases is 3

(50% · 6). Then, the first step is to find the highest value in the matrix. In this matrix, there

is a tie among TC2/TC6, TC3/TC5, TC4/TC5 and TC4/TC6. Therefore, a random choice is

done. Considering that the pair TC2/TC6 is chosen, TC2 is removed from the matrix, since

|TC6| > |TC2|. The line and column of the removed test cases are also removed from the

matrix, and the new matrix can be seen in Matrix 4.2.

SimilarityMatrix =

TC1 TC3 TC4 TC5 TC6

TC1 0 0 0 0

TC3 0.66 0.75 0.5

TC4 0.75 0.75

TC5 0.6

TC6

(4.2)

4.3 Case Study 46

Following the algorithm of this strategy, again, it is necessary to find the highest value of

similarity. As we can see, there is a tie among the highest values: TC3/TC5, TC4/TC5 and

TC4/TC6. Thus, a random choice is performed again. Considering that the pair TC3/TC5 is

chosen, since |TC5| > |TC3|, TC3 is removed from the matrix.

SimilarityMatrix =

TC1 TC4 TC5 TC6

TC1 0 0 0

TC4 0.75 0.75

TC5 0.6

TC6

(4.3)

So far, 2 test cases were excluded from the matrix (TC2 and TC3), thus we need to

exclude one more. Searching for the highest value, we identify another tie between the

TC4/TC5 and TC4/TC6. Randomly, TC4/TC5 is chosen and, since |TC5| > |TC4|, TC4 is

excluded. Finally, the similarity matrix has 3 test cases (see Matrix 4.4) and thus, our set of

selected test cases is composed by TC1, TC5 and TC6.

SimilarityMatrix =

TC1 TC5 TC6

TC1 0 0

TC5 0.6

TC6

(4.4)

4.3 Case Study

In order to evaluate the use of the similarity strategy, we conducted a case study. The goal of

this case study is to compare Similarity and Random selection by considering fault and tran-

sition coverage. The Similarity and random strategies were applied having the percentage of

the test suite (path coverage) goals ranging from 5% to 95% (increased by 5).

4.3.1 Application

The application used for this is a desktop tool named TaRGeT. This tool automatically gen-

erates test cases [48]. LTS-BT tool [17] was used for executing this case study. The input is

4.3 Case Study 47

a use case template [48], written by Motorola experts. All test cases, generated for this case

study, were manually executed by Motorola employees. The collected metrics are:

• Transitions Coverage: We are able to measure the coverage of transitions of the

model by counting the number of excluded transitions. The total number of transi-

tions that are excluded by considering all of the discarded test cases of a given test suite

represents the idea of measuring whether the strategies keep a reasonable coverage of

functionalities even though discarding some test cases.

• Faults coverage: The total number of faults that are uncovered by the test suite during

test execution. For this, we considered real faults. The idea is to measure whether the

strategies preserve the fault detection capability of the original test suite.

These metrics are widely used in works of the literature and they are able to provide an

overview of how much the strategy is adequate to select test cases considering the specified

budget constraint. We considered these metrics adequate since our interest is to cover more

functionalities (this is measured through transition coverage) and faults (measured through

fault coverage).

4.3.2 Case Study - Preparation

Since, Similarity and of course, Random selection present a random choice in their algo-

rithms, then each strategy was executed one hundred times (for each percentage) and the

metrics were collected.

4.3.3 Results of the Case Study

This subsection shows the results of the case study. The TaRGeT application, used in this

case study has 168 transitions in its LTS model. Also, LTS-BT tool was able to generated

a total of 84 test cases, and these cases were manually executed, where a total amount of

13 failures were revealed. Each failure, in this case study, corresponds to a fault, in the

application (i.e., 13 failures correspond to 13 faults).

4.3 Case Study 48

Number of Excluded Transitions

The results can be seen in Figure 4.2. In this graph, the x-axis (or abscissa) represents the

intended test cases percentage and in the y-axis (or ordinate) the average of excluded transi-

tions obtained with 100 replications. The most effective strategy regarding this criterion is

the one that presents the lower curve. The results show that most of the times, the Similarity

strategy discards less transitions.

Figure 4.2: Average Number of excluded transitions by running each test selection strategy

100 times for each test selection goal

Below 20% of test cases a use of the random selection is more adequate. However, in the

best case the Random selection (5% of test cases) excludes only 3.02% less transitions than

Similarity. And the best case is when the percentage of desired test cases is 50%, where the

Random strategy excludes 41.83% more transitions than Similarity.

Faults Coverage

For fault coverage, the results are presented in Figure 4.3. We represented in the x-axis

the intended test cases percentage and in the y-axis the average of covered faults obtained

with 100 replications. The most effective strategy regarding this criterion is the one that

presents the highest curve. As can be seen, the Similarity strategy reveals more faults for

all percentages and the best case is when the percentage of test case is 55%. In this case,

Similarity is able to reveal 41.33% more faults than Random.

4.4 Experiment - Selection 49

Figure 4.3: Average Number of covered faults by running each test selection strategy 100

times for each test selection goal

4.3.4 Concluding Remarks - Case Study

The case study performed in the evaluation suggests that the similarity approach can be more

effective than random choice, usually by considering path coverage (test suite percentage)

of more than 20%. The main threat to validity is the use of only one model, whereas the

structural elements of the LTS may affect the performance of the analyzed strategies. Aside

from that, it would be more appropriate to compare Similarity with other selection strate-

gies, however our main objective with this case study was to obtain an overall perspective

concerning the Similarity strategy, and not a comparative overview.

More case studies have been executed and can be seen in Appendix A. One of the exe-

cuted case studies is the same presented here, however with another version of the use case

document and a different level of abstraction, were used. Then, the metrics are different than

the ones presented here.

4.4 Experiment - Selection

This Section presents the experiment and the obtained results of the execution. The used

framework - proposed by Wohlin et al. - was presented in Chapter 2. The definition, the

planning, the operation and the Analysis and Interpretation results of the experiment are

showed in the next subsections.

Our general hypothesis is that Similarity presents the best performance in relation to the

4.4 Experiment - Selection 50

number of excluded transitions, considering 50% of the test cases. This percentage was

considered because the highest difference between Similarity and Random strategy in case

study is 50%, as presented before (Section 4.3).

4.4.1 Definition

The first step is to define the experiment. Therefore, the key questions proposed by Wohlin

et al. were answered:

1. What is studied? Selection strategies;

2. What is the intention? To investigate;

3. Which effect is studied? Number of excluded transitions;

4. Whose view? The tester;

5. Where is the study is conducted? Model-Based Testing (MBT).

From these answers, the goal definition template is filled. In summary, the goal of this

experiment is:

Analyze selection strategies

for the purpose of investigating

with relation to number of excluded transitions

from the point of view of the tester

in the context of MBT.

For this experiment, the (input) objects are LTS models. Since the strategies execute

automatically, there is no need for subjects to be involved in this experiment.

4.4.2 Planning

Once the elements of the experiment are properly defined, the following steps of the study

must be planned. Following the chosen framework, the context selection, the variables (de-

pendent and independent), hypothesis, design and instrumentation were defined.

4.4 Experiment - Selection 51

Context Selection

The context of this experiment can be characterized as a “toy vs. real” problem. In this case

the objects are LTS models, randomly generated from a configuration. This configuration is

characterized by a specific number for the depth of the LTS, the number of loops, branches

and joins (these elements are detailed in Appendix B.

Variables Selection

In order to characterize the experiment, the variables must be defined. The variable chosen

to observe (dependent variables) and to control (independent variables) are:

• Dependent: The Number of Excluded Transitions (NET).

• Independent: The test cases percentage; the configuration chosen the depth and the

amount of structures (loops, forks and joins) in the objects; and the strategies for test

case selection (factor). For this factor, there are 2 levels: Similarity (Sim) and Random.

Hypothesis Formulation

Once the variables are defined, we are able to structure our null and alternative hypothesis.

Their definition is formalized as following:

• A null hypothesis (H0): NETSim = NETRandom - The two strategies exclude the

same number of transitions, in another words, the strategies present the same behavior;

• An alternative hypothesis, (H1): NETSim 6= NETRandom - The two strategies ex-

clude a different number of transitions, i.e., the strategies present different behavior.

Experiment Design

As seen before, there is one factor (test case selection strategy) with 2 levels (or treatments).

Thus, there is one factor and 2 treatments, where, for each object, the two treatments are

applied. The chosen confidence level is 95% (significance level is α = 0.05), as suggested

by statistical literature [40].

4.4 Experiment - Selection 52

Aiming to define the number of replications, necessary to guarantee statistical signifi-

cance for the specified level of confidence (95%), 40 replications were performed, collecting

the number of excluded transitions. These data are presented in Table 4.2.

Table 4.2: Mean, Standard Deviation and number of necessary replications for each tech-

nique.

Technique Similarity Random

Mean (x) 17.9 20.0

Standard Deviation (s) 6.99 4.61

Number of Necessary Replications (n) 235 82

Observing the Table 4.2, we are able to see that 235 and 82 replications for Similarity

and Random selection, respectively, provide a statistical significance for the obtained data.

Therefore, this experiment design will consider 300 replications for each strategy.

Instrumentation

The next step of the planning is to specify the instruments of the experiment. In this step,

there are three types of instruments [62]:

• Objects: The objects are LTS models randomly generated from a configuration (depth,

number of loops, forks and joins).

• Guidelines: This experiment uses no guidelines, since the strategies do not require

subjects to configure them.

• Measurements: The NET will be collected for each treatment. The tool LTS-BT

provides support for both executing the experiments and collecting the data.

Validity Evaluation

The objects used in this experiment can be considered the main threat to validity. These

objects are automatically generated, and therefore, they can not represent a real behavior.

Besides, since they are randomly generated from a specific configuration, both the traceabil-

ity and controllability of the elements of the model (transitions and states) are reduced.

4.4 Experiment - Selection 53

On the other hand, we are able to obtain an overview of the execution of the strategies

in several models, since they are randomly generated. Thus, we avoid being presented with

a conclusion that is specific to only one LTS (if we would have used the same LTS in every

execution). A proper scenario would be to have several real applications to execute the

strategies. However, most real applications and their respective specification are not available

to the open public.

4.4.3 Operation

To execute this experiment, it was necessary to implement the two strategies and the LTS

generator (see Appendix B). Both the LTS generator and the strategies are implemented in

the Java programming language1.

The objective, in using this LTS generator, is to automatically generate different models.

Therefore, a specific configuration for the depth and structure of the LTS is specified and

the generator is able to place these structures (loops, forks and joins), in different ways. A

deeper LTS provides more option to place the structures (branches, loops and joins).

Through executions of the generator, we were able to observe that an LTS, generated

with a smaller depth and several structures, generates a lot of test cases with the same size.

This fact does not represent real applications, since the test cases of real applications vary

the size (they have different number of flows). Besides, when there are several test cases

with the same size, the Similarity strategy applies a random selection between each pair of

test cases (most similar), whereas random selection can pick any test case from the test suite.

That scenario would not provide a fair comparison of the strategies. Therefore we chose the

following configuration:

• Depth: 15;

• Number of loops: 2;

• Number of branches: 3;

• Number of joins: 3.

1http://www.sun.com/java/

4.4 Experiment - Selection 54

This configurations provides a wide range of possible LTS. The generated LTS begins

with 16 states, where the generator can choose 15 states, out of the 16, to place the structures

according to the constraints described in Appendix B. Aiming to have different size of test

cases, we decide to have a higher depth in relation to the number of structures.

There is only one experimental design (with only one factor - test suite reduction strategy)

with a null and an alternative hypothesis, where the intention is to reject the null hypothesis.

Each strategy was executed 300 times, using a machine with the following configurations:

• Intel Core 2 quad 2.33 GHz;

• 4GB RAM;

• 1TB for Hard Disk Memory.

4.4.4 Analysis and Interpretation

The first step is to analyze if the obtained data, for each strategy, present a normal distribu-

tion. For this, we applied the Anderson-Darling normality test, using the Minitab tool2. The

results can be seen in Figures 4.4 and 4.5. In this graph, the red dots, should overlap the blue

line, in order to indicate that the data fit a normal distribution.

As can be seen, the data do not fit a normal distribution, once the p-values are less than

0.05. Then, it is necessary to apply a non-parametric test. Since we have only one factor

and two treatments, we can apply a Mann-Whitney testing to check the null hypothesis. The

results are presented in Table 4.3.

Table 4.3: Mann-Whitney Test - Sim and Random

Technique N Median

Sim 300 14.000

Random 300 19.000

Point estimate for ETA1-ETA2 is -1.000

95.0 Percent CI for ETA1-ETA2 is (-2.000;-1.001)

The test is significant at 0.0004

2http://www.minitab.com/

4.4 Experiment - Selection 55

Figure 4.4: Anderson-Darling normality test - Similarity

Figure 4.5: Anderson-Darling normality test - Random

Since p − value = 0.0004, and this is less than 0.05 (α), H0 (the null hypothesis) can

be rejected. Therefore, the data support the hypothesis that there is a difference between the

population medians (ETA1−ETA2). The difference between the two population medians is

greater than or equal to -2.000 and less than or equal to -1.001. As we can see, the difference

between the population medians of Similarity and Random is negative, therefore, the NET

4.5 Concluding Remarks 56

from Similarity is less than the NET from Random selection.

4.4.5 Concluding Remarks - Experiment

With 95% of confidence level, we are able to reject our null hypothesis. Therefore, our

general hypothesis is confirmed, since the behavior of the Similarity - considering 50% of

the number of the test cases - is better than the one observed with Random. In another words,

by applying the Similarity strategy we obtain better results than by applying Random.

4.5 Concluding Remarks

In this Chapter, we presented one of our strategies for test case selection. This strategy tries

to meet the resources constraints and then, keeps in a test suite, only the test cases that will

be executed. The focus is to increase functionality and fault coverage as high as possible. A

Case study and an experiment were performed, and the results show evidence that:

Case studies:

• Concerning transition-based coverage: For the conducted case study, the simila-

rity strategy can be more effective than the random strategy. There are considerable

advantages when the desired coverage is higher or equal to 20% of the test case;

• Concerning fault coverage: For the conducted case studies, the similarity strategy has

also a superior performance. For all case studies (the ones presented in this chapter,

and the ones presented in Appendix A, the highest coverage is only achieved by the

similarity approach.

Experiment:

Considering a desired coverage of 50% of the number of the test cases, Similarity is

better than the Random strategy. In another words, by applying the Similarity strategy we

obtain better results than by applying Random.

Note that the obtained results in cases studies and in the experiment are not contradictory.

It is important to say that when the model presents test cases with the same length, the

behavior of similarity strategy can be the same or worse than the one observed in the Random

4.5 Concluding Remarks 57

strategy. That situation presents itself, in the Similarity strategy, when the test cases to be

discarded are chosen by the length, and this length is the same for both test cases.

The drawback of this strategy is that important test cases could be eliminated. For in-

stance, a test case may be focused on either a frequent used functionality, or a very important

functionality with respect to the user needs (or on critical path of the application). Since this

strategy does not distinguish the importance of test cases, crucial ones may be discarded.

Therefore, we integrate the similarity method with a value-based test strategy, called the

Weighted-Similarity Approach, that will be presented in next Chapter (Chapter 5).

Chapter 5

Weighted-Similarity Approach (WSA)

This Chapter presents our proposal for test case selection based on Similarity (Chapter 3)

and that also considers weights that are assigned to test cases. Our strategy for selection is

defined in Section 5.1 and an example to illustrate it is presented in Section 5.2. Section

5.3 presents two case studies that were executed to compare Weighted-Similarity Approach

(WSA), Random Selection, Guided Random (Random choice guided by the same transition

probabilities applied with the WSA approach) and Similarity by considering fault and tran-

sition coverage. Finally, in Section 5.4 the concluding remarks for this chapter are drawn.

5.1 Definition

In Chapter 4, the Similarity strategy was presented. This strategy considers the resource con-

straints and thus, selects the most different test cases aiming to have a better functionality and

fault coverage. The results of both the case study and the experiment showed that Similarity

is an efficient strategy, in relation to transition and fault coverage. However, when applying

this strategy, important test cases (e.g., test cases that discover faults) could be eliminated,

since no information about this “importance” is considered by that strategy.

However, if this information is available, this can be used to get most important and dif-

ferent test cases. For this, we integrate similarity based selection strategy with a value-based

test strategy, named Weighted-Similarity Approach (WSA). The main goal of this approach

is to exploit the software engineering knowledge and experience, in order to minimize the

size of a test suite by keeping in it only the test cases that can be feasibly executed according

58

5.1 Definition 59

to the user behavior and resources available to the testing process. To accomplish this goal,

we use the concept of similarity and show how it can be used for test cases selection. WSA

foresees the test cases selection by prioritizing accordingly with the probabilities set by the

test manager. The idea is that when choosing between two similar test cases to be discarded,

the one that has a greater probability is kept. In the original strategy (Similarity-based se-

lection), a random choice is performed when they have the same size. Therefore, we aim at

testing suites that have the most different test cases and yet, these are also the most important

(according to the probability) ones.

Using an LTS model, the user can set the desired path coverage (i.e. amount of desired

test cases) and provide the weights to be associated to each possible flow of the LTS. We can

consider that each weight indicates the expected frequency of use as a concept of “impor-

tance” for a given flow. Taking in consideration that the sum of weights for every flow of a

branch is 1 (the total flow - before the branch - is 1, so the sum should be 1).

Given the LTS model with weights assigned, the test cases similarity and final weight for

each flow is computed. The similarity between two test cases is computed as the number of

common steps in the two test cases. The final weights of a test case is obtained by multiplying

the attributed weight in their branches. As result, a weighted similarity matrix is built with

test cases as columns and rows, where each element is defined as the similarity between two

test cases divided by the weight of the test case of the respective row. Note that, the most

similar test cases must be eliminated and the most important must be kept. For this, we

balance the similarity with the weight of each test case.

With the LTS behavior model and probabilities (weights), we can calculate the si-

milarity and test case weights (this is obtained by multiplying the attributed prob-

abilities in their branches), build the weighted-similarity matrix, where each aij =

WeightedSimilarityFunction(i, j). The WeightedSimilarityFunction(i, j) is defined

as follows:

WeightedSimilarityFunction(i, j) =
SimilarityFunction(i, j)

W (i)
(5.1)

As can be seen, the equation 5.1 uses the equation 3.1 as its numerator. Similarly to the

Similarity Selection, we apply this equation to each pair of test cases, in order to obtain the

weighted similarity matrix. Therefore, the weighted-similarity matrix is:

5.1 Definition 60

• n× n (square matrix), where n is the number of paths and each n represents one path,

that is called a test case;

• Each element of the matrix aij = WeightedSimilarityFunction(i, j) .

The weighted-similarity matrix is not symmetric, since the similarity between i and j

(SimilarityFunction(i, j)) is balanced by the weight of the i (W (i)). The highest value

represents the test case that is most similar to the other ones, and least important. Thus, in

order to choose a test case to be removed, we search for the highest value in the matrix. This

corresponds to a test case that is very similar to other test case, and has a lower weight. If

there is a tie, then the smallest test case must be eliminated. If there is a tie again, random

choice is applied.

This strategy uses the weighted-similarity function to build the weighted-similarity ma-

trix. The inputs are:

• Percentage: The desired percentage of test cases. This percentage is defined accord-

ing resources constraints;

• Test Suite: The set of test cases;

• Weights: The weights of the test cases;

• Weighted-Similarity Matrix: The matrix that contains the information about simila-

rity and importance among all test cases of the test suite.

The Algorithm 2 presents the steps of this approach. The first step is to calculate the

desired number of test cases (line 1) according to the percentage, that number represents

the total of test cases that have to be selected. Since the idea is to keep in the Weighted-

Similarity matrix, the most different and most important test cases. Then, the highest value

of the matrix is found and discarded of the matrix (lines 2 - 13). This procedure is repeated

until the number of test cases in wsMatrix is equal to the desired value (line 2).

In line 3 of the algorithm, the maximum values are found. When a tie among maximum

values is found (more than one maximum value), the idea is to randomly choose the least

important (line 4), then the least important is discarded of the matrix (lines 5 - 6). If there is

also a tie among the weights (importance) of test cases (lines 7 - 12), the idea is to discard the

5.2 Example - WSA 61

smallest test case (lines 8 - 10) to guarantee the highest coverage of functionalities. Finally,

if there is a tie between the smallest test cases, then the random choice is applied (lines 11 -

12).

input : percentage, testSuite, weights, wsMatrix

output: selectedTestCases

1 numberOfRequiredTestCases = calculateNumberOfDesiredTestCases(percentage, testSuite);

2 while (selectedTestCases.size() < numberOfRequiredTestCases) do

3 maxValues = getAllMaxValue(wsMatrix);

4 choosedTestCases = getLessImportant(maxValues, weights);

5 if (choosedTestCases.size()=1) then

6 wsMatrix.remove(choosedTestCases.get(0));

7 else

8 choosedSmalls=getSmallTestCase();

9 if (choosedSmalls.size()=1) then

10 wsMatrix.remove(choosedSmalls.get(0));

11 else

12 wsMatrix.remove(randomChoice(choosedSmalls));

13 selectedTestCases = wsMatrix.getTestCases();

Algorithm 2: WSA - Algorithm

The complexity analysis of Algorithm 2 is similar to the one presented for the Similarity-

based Selection algorithm (Algorithm 1 in Section 4.1, Chapter 4). Performing the analysis

we are able to obtain a computational complexity O(n3), where n is the number of test cases

in the test suite, for Algorithm 2.

5.2 Example - WSA

In this Section, we will show one simple example to illustrate the proposed strategy. For

this example, the use case (main and alternative flows) and the respective LTS model are

presented (this approach is not strictly related to a specific model-based approach - use case).

Then, the approach is applied.

5.2 Example - WSA 62

5.2.1 Example - Description

The use case describes the creation of a new contact in the Contact list (the use case model

presented here was presented by Nogueira and his colleagues [48]). In Figure 5.1 the main

flow of this use case is presented. This flow represents an user that successfully adds a

contact to a phone book.

Figure 5.1: Creating a New Contact - Main Flow

In Figure 5.2 two alternative flows are presented. The first alternative flow describes the

scenario where the user is able to cancel the creation of the new contact. This can happen

in two cases: the form is opened (Step ID 2M) and is filled (Step ID 3M). The second

alternative flow describes the scenario where the new contact is not created because there is

not available phone memory, this can happen when the user tries to add the contact (after

filling the form in Step ID 3M).

By following the Step IDs, we can obtain the Labeled Transition System (LTS) Behavior

model (this can be seen in Figure 5.3). Observing this figure, we can see that, after the user

executes the Step 2M, the user can execute the Steps 3M or 1B. The same way for Step 3M,

5.2 Example - WSA 63

Figure 5.2: Creating a New Contact - Alternative Flows

5.2 Example - WSA 64

Table 5.1: Test Cases generated from LTS model presented in Figure 5.3 and their respective

lengths

Test Case Id Test Case Length

TC1 1M 2M 3M 4M 4

TC2 1M 2M 3M 1C 4

TC3 1M 2M 3M 1B 4

TC4 1M 2M 1B 3

the user can execute the Steps 4M, 1C or 1B.

Figure 5.3: Labeled Transition System (LTS) Behavior model

We can use a test case generation algorithm, to traverse the model, where each path in

the LTS is a test case. In this case, we used LTS-BT tool, to generate the test cases from the

LTS in Figure 5.3. Thus, we obtain 4 test cases, as seen in Table 5.1.

For applying the weighted-similarity approach, it is necessary to define the meaning of

“importance”. Then, we define weights for each branch that is originated by alternative

flows after step 2M and 3M (Figure 5.4). In this case, the weight is related to the expected

frequency of execution (by the end user) of that specific step.

For calculating the weighted-similarity matrix, it is necessary to calcu-

5.2 Example - WSA 65

Figure 5.4: Probabilities

Table 5.2: Weights of the test cases obtained from LTS Model 5.3 and assigned probabilities

5.4

Test Case Id Weight

TC1 0.7× 0.6 = 0.42

TC2 0.7× 0.2 = 0.14

TC3 0.7× 0.2 = 0.14

TC4 0.3

late the weighted-similarity function for all aij . Then, for example, the

WeightedSimilarityFunction(TC1, TC2) is given by:

1. Number of identical transitions (nit): 3;

2. Average between Paths’ Length (avg(|TC1|, |TC2|)): 4;

3. SimilarityFunction(TC1,TC2): 3 / 4 = 0.75.

4. WeightedSimilarityFunction(TC1,TC2): 0.75 / 0.42 = 1.78.

Calculating every aij , we are able to obtain the weighted-similarity matrix, and thus, the

information regarding the similarity and importance of each test case. The complete matrix

for this example is presented in Matrix 5.2.

WeightedSimilarityMatrix =

TC1 TC2 TC3 TC4

TC1 1.78 1.78 1.36

TC2 5.35 5.35 4.08

TC3 5.35 5.35 4.08

TC4 1.90 1.90 1.90

(5.2)

5.3 Case Study 66

Considering that there are enough resources to execute only 50% of the test cases, we

need to discard two test cases. The highest values of the Matrix is between rows TC2 and

TC3. Since we need to choose one of them, and the importance and length of both test cases

are the same, a random choice is applied. Supposing that TC2 is discarded, the new Matrix

is presented in Matrix 5.3.

WeightedSimilarityMatrix =

TC1 TC3 TC4

TC1 1.78 1.36

TC3 5.35 4.08

TC4 1.90 1.90

(5.3)

Observing the new matrix, the highest value is in the row of TC3. Therefore, TC3 is

discarded. The test cases the are kept to execute are TC1 and TC4. Observe that TC2 and

TC3 are so similar to TC1, but TC1 is kept because it is more important than the other ones.

And TC4 is also kept because it is the most different and has the highest weight.

5.3 Case Study

In order to evaluate the use of WSA, we conducted two case studies. The goal of these case

studies is to compare WSA, Random Selection, Guided Random (Random choice guided

by the same transition probabilities applied with the WSA approach) and Similarity by con-

sidering fault and transition coverage. All strategies were applied having percentage of test

suite (path coverage) goals ranging from 10% to 90% (increased by 10).

5.3.1 Applications

Two real applications provided by Motorola Software Engineers have been selected for the

case studies. They are briefly described as follows:

• Application 1: TaRGeT is a desktop application that supports the model-based testing

process, where it automatically generates test cases from use case documents.

• Application 2: Direct License Acquisition (DLA) Support is a feature for mobile

phone applications that handles acquisition of the WMDRM License (Windows Media

5.3 Case Study 67

Table 5.3: Number of Test Cases and Faults

Test Cases # Faults

Application 1 84 13

Application 2 28 2

Digital Rights Management) for the Windows Media platform. This License provides

secure delivery of audio and/or video content.

For each one of these applications, Motorola Software Engineers elaborated the use case

documents [48]. From these documents, LTS-BT generated the test suites that have the

metrics showed in Table 5.3. The test cases were manually executed and the captured failures

were associated with faults that can be detected by the suite.

5.3.2 Metrics

Once the applications used to apply the strategies have been explained, our next step, is to

present the metrics considered in our analysis. Aiming to do a comparison among WSA,

Random Selection, Guided Random, Similarity, and a manual selection, the same metrics

used in the case study performed for the Similarity-based Selection (Section 4.3, Chapter 4)

will be observed. These metrics are the Transitions Coverage, and the Fault Coverage.

5.3.3 Case Study - Preparation

Since, all strategies, besides the manual selection, present a random choice in their algo-

rithms, then each one of them was executed one hundred times and the metrics were col-

lected. The results are presented in the next subsection. For each case study, the following

activities were performed:

• Reading and understanding the related documents, use cases (Target templates), and

LTS model (generated from use cases);

• Assigning probabilities to branches in the LTS model;

5.3 Case Study 68

• Manually selecting test cases to produce a minimized test suite from 10% to 90% of

selection goal, starting from 10% (performed by the test designer only).

Assigning Probabilities - Subjects

Case studies have been conducted by one WSA designer and by one test designer. In both

cases, the goal is to reduce the test suite, maximizing the ability for fault detection and also

providing an adequate coverage of functionalities.

• The test designer:

– Has experience on test selection;

– Has experience with all the approaches considered in this study;

– Has no previous knowledge of the defects presented in the case studies.

• The WSA designer:

– Proposed the WSA approach;

– Has experience with all the approaches considered in this study;

– Knows all defects presented in the case studies.

Our assumption is that by using experience on test selection and also knowledge of the

application domain, the test designer can assign probabilities to guide the selection of the

most effective test cases. By knowing the defects, the WSA designer can maximize the

results obtained by WSA. Therefore, we should be able to assess the limits of the approach

in the best case. From this, we may identify strategies for assigning probabilities as well as

uncover limitation of practical use.

Assigning Probabilities - How to specify the values

Each subject (one test designer and one WSA designer) received the use case document and

the respective LTS of each application. For each branch of the LTS, the subject assigned the

probabilities. The assigned value considers the probability to discover faults. The subjects

were instructed to assign weights (probabilities) between 0 and 1, whereas the closer to zero,

the lower the chance of reveal faults.

5.3 Case Study 69

5.3.4 Results of the Case Study

This subsection presents the results of the case study. As a reminder, the variables considered

in the study are the size of the reduced test suite (RTS) and the fault detection.

Faults Coverage

Application 1

The results obtained - for Application 1 - by applying WSA, Random Selection, Guided

Random, Similarity and Manual selection (done by the test designer), considering the prob-

abilities assigned by WSA and the test designer can be seen, respectively, in the Figures 5.5

and 5.6.

Figure 5.5: Average number of covered faults by running each test selection strategy - with

probabilities assigned by WSA designer - 100 times for each test case selection goal - Ap-

plication 1.

Observing the results, we can conclude that when the probabilities are well assigned,

it’s better to use WSA for any desired percentage of test cases. In another words, effective

probability distribution can contribute to better results. Observe that, when the probabilities

are not well distributed, the manual selection can perform better, and the Similarity, that uses

5.3 Case Study 70

Figure 5.6: Average number of covered faults by running each test selection strategy - with

probabilities assigned by test designer - 100 times for each test case selection goal - Appli-

cation 1.

no probabilities values, presents a better behavior, but it is necessary to consider the overhead

to apply it.

Application 2

The results obtained - for Application 2 - by applying WSA, Random Selection, Guided

Random, Similarity and Manual selection (done by test designer), considering the probabil-

ities assigned by WSA and test designer can be seen, respectively, in the Figures 5.7 and

5.8.

Again, WSA brings better results depending on probabilities assignment and also on the

ability of the tester to pinpoint faults. Note that the manual selection for Application 2 was

not as successful as for Application 1. Moveover, for faults distributed among the longest

test cases selected from several branches, the guided random presents a better behavior since

the selection is always based by the best local choices. On the other hand, WSA computes

the product of probabilities to choose the test case to select, favoring the choice of shorter

test cases.

Fault Coverage - Concluding Remarks

5.3 Case Study 71

Figure 5.7: Average number of covered faults by running each test selection strategy - with

probabilities assigned by WSA designer - 100 times for each test case selection goal - Ap-

plication 2.

Figure 5.8: Average number of covered faults by running each test selection strategy - with

probabilities assigned by test designer - 100 times for each test case selection goal - Appli-

cation 2.

5.3 Case Study 72

For both applications, we can see through the graphics showed in Figures 5.5, 5.6, 5.7

and 5.8 that, in order to obtain good results it is necessary to know the points of possible

faults. The results obtained when WSA designer assigned the probabilities show that WSA

is an effective technique.

Transition Coverage

Application 1

The results obtained - for Application 1 - by applying WSA, Random Selection, Guided

Random, and Similarity, considering the probabilities assigned by WSA and test designer

can be seen, respectively, in the Figures 5.9 and 5.10.

Figure 5.9: Average number of excluded transitions by running each test selection strategy -

with probabilities assigned by WSA designer - 100 times for each test case selection goal -

Application 1.

By observing the results, we can conclude that the similarity presents better performance

in relation to the others, since it excludes less transitions, and therefore, it presents the best

coverage. This fact can be explained because similarity does not consider the importance of

the test cases. Particularly, similarity keeps in the test suite the biggest test cases.

Application 2

5.3 Case Study 73

Figure 5.10: Average number of excluded transitions by running each test selection strategy

- with probabilities assigned by test designer - 100 times for each test case selection goal -

Application 1.

The results obtained - for Application 2 - by applying WSA, Random Selection, Guided

Random, and Similarity, considering the probabilities assigned by WSA and test designer

can be seen, respectively, in the Figures 5.11 and 5.12.

By observing these graphics, we can conclude that the similarity presents better perfor-

mance in relation to the others in most of the cases. However, WSA can be better when

considering a path coverage bellow 30%. This can be an evidence that - bellow 30% - the

importance and length of the test cases are the same and random choice is applied.

Transition Coverage - Concluding Remarks

For both applications, we can see through the graphics showed in Figures 5.9, 5.10, 5.11

and 5.12 that Similarity presents a better performance - in most of the cases. However, when

considering the probabilities based approaches (WSA and Guided Random), WSA presents

generally a better performance since it inherits the similarity principles.

5.3 Case Study 74

Figure 5.11: Average number of excluded transitions by running each test selection strategy

- with probabilities assigned by WSA designer - 100 times for each test case selection goal

- Application 2.

Figure 5.12: Average number of excluded transitions by running each test selection strategy

- with probabilities assigned by test designer - 100 times for each test case selection goal -

Application 2.

5.4 Concluding Remarks 75

5.4 Concluding Remarks

In this Chapter, we presented our proposal for test case selection based on Similarity (Chapter

3) that also considers weights that are assigned to test cases (WSA). The goal of WSA is to

keep in test suite the most important and different test cases. Case studies were performed,

and the results show evidence that:

• Fault Coverage: WSA is an effective strategy, but it is necessary to know and/or guess

the point of the faults;

• Transition Coverage: Similarity - in most of the cases - presents a better performance.

The main threats to validity of the performed case study are related to the weights as-

signed. In the case study the weights were assigned by only two subjects. One of them

(WSA designer) had knowledge about the faults and the strategies. The use of more subjects

to assign different weights would provide a more general overview of the analyzed strate-

gies. Also no guidelines were used to assign the probability values, which may affect the

performance of some strategies (e.g. WSA and Guided Random). Aside from those threats

the use of only two models affect the generalization of the obtained results.

Chapter 6

Dissimilarity-based Reduction

This Chapter presents our proposal for test suite reduction based on Similarity (Chapter

3). As said before, the goal of test suite reduction is decrease the size of test suite while

keeping the coverage of a specific test requirement. However, the fault coverage, in general,

is affected. Since we obtained adequate results with Similarity strategies considering fault

coverage, our goal is to apply the similarity function to choose the most different test cases,

that possibly will cover the most test requirements while keep a good fault coverage.

6.1 Definition

The idea is to keep in the reduced test suite the most different test cases while providing

100% coverage of one defined test requirement (in our case, transitions coverage). Then, the

test cases are chosen according to the degree of similarity and are placed in a reduced set

named as the Reduced Test Suite (RTS).

Overall, this strategy uses the similarity function to build the similarity matrix (as showed

in Chapter 3). The inputs are:

• Test Suite: the set of test cases that should be reduced;

• Test Requirements: the set of transitions that should be covered;

• Similarity Matrix: the matrix that contains the information about similarity among

all test cases of the test suite.

76

6.1 Definition 77

Since the proposal of any test suite reduction technique is to cover 100% test require-

ments, then it is important to identify all essential test cases, since an essential test case is

the only one that covers a specific requirement. Therefore, all essential test cases should be

in the RTS for reaching 100% of test requirements.

The algorithm of this strategy is presented in Algorithm 3. The first step of this strategy

is to remove all essential test cases from the similarity matrix, and add all of them to the

RTS (lines 1 and 2). Then, all test requirements satisfied by those test cases are marked (line

3). After that, the idea is to find, in the matrix, the minimum value that represents the most

different test cases and try to keep them in the RTS, always verifying if all test requirements

have already been covered (lines 4 - 30).

When a tie among minimum values (more than one minimum value) is found, in the

similarity matrix, the idea is to choose the pair that covers the maximum number of not yet

covered requirements, however if there is a new tie, a random choice is applied (lines 5 - 7).

The next step (lines 10 - 17) is to verify if the test cases (of the chosen pair) are 1-to-1

redundant. This occurs when the set of covered requirements of one of them is contained

within the other one. In this case, the idea is to place in the RTS, the test case that covers

more not yet covered requirements so far. Since the two test cases were already analyzed,

they are removed from the similarity matrix, and all new covered requirements are placed in

the marked requirements set.

If the pair is not 1-to-1 redundant, then it is necessary to check if the requirements cov-

ered by each one of them are already covered (lines 19 - 20 and 25 - 26), because if the

requirements have already been covered, these test cases are redundant. Otherwise, the test

cases are added to the RTS and the new satisfied requirements are added to marked require-

ments set (lines 21 - 24 and 27 - 30).

Regarding the complexity analysis of Algorithm 3 we are able to observe a repeating

structure (while command in line 4) that repeats m times, where m is the number of the test

requirements. The method getAllMinValue searches the matrix for the lowest values of

similarity, having, thus, a complexity O(n2), where n is the number of test cases in the test

suite. Considering that the method getAllMinValue is executed m times, we obtain a

complexity O(m× n2) for Algorithm 3.

6.1 Definition 78

input : testSuite, testRequirement, similarityMatrix

output: reducedTestSuite

1 similarityMatrix.removeEssentialTestCases();

2 reducedTestSuite.add(essentialTestCases);

3 markedRequirements.add (satisfiedRequirements(essentialTestCases));

4 while (!(satisfyAllRequirements(testRequirements,markedRequirements)) do

5 minValues = getAllMinValue(similarityMatrix);

6 pairs = PairsCoverMaxNumOfNotCoveredRequirements(markedRequirements,minValues);

7 choosedPair = pairs.shuffle.get(0);

8 testCase1 = choosedPair.getTestCase1();

9 testCase2 = choosedPair.getTestCase2();

10 if (containsRequirements(testCase1,testCase2)) then

11 similarityMatrix.remove(testCase1,testCase2);

12 markedRequirements.add(satisfiedRequirements(testCase1));

13 reducedTestSuite.add(testCase1);

14 else if (containsRequirements(testCase2,testCase1)) then

15 similarityMatrix.remove(testCase1,testCase2);

16 markedRequirements.add(satisfiedRequirements(testCase2));

17 reducedTestSuite.add(testCase2);

18 else

19 if (containsRequirements(markedRequirements,testCase1)) then

20 similarityMatrix.remove(testCase1);

21 else

22 similarityMatrix.remove(testCase1);

23 markedRequirements.add(satisfiedRequirements(testCase1));

24 reducedTestSuite.add(testCase1);

25 if (containsRequirements(markedRequirements,testCase2)) then

26 similarityMatrix.remove(testCase2);

27 else

28 similarityMatrix.remove(testCase2);

29 markedRequirements.add(satisfiedRequirements(testCase2));

30 reducedTestSuite.add(testCase2);

Algorithm 3: Dissimilarity-based Reduction - Algorithm

6.2 Example - Dissimilarity 79

6.2 Example - Dissimilarity

In order to illustrate the strategy, an example is presented below. An LTS model is presented

in Figure 6.1. From this LTS model, 6 test cases are obtained as can be seen in Table 6.1.

Figure 6.1: Example - LTS model

Table 6.1: Test Cases and Size of test cases

TC id Path Test Size

1 a 1

2 b c e 3

3 b d f 3

4 b d g 3

5 b d g d f 5

6 b d g c e 6

Considering that, the test requirement (coverage criteria) is transition coverage, the RTS

should cover all transitions. By applying the presented idea, the matrix is showed in Matrix

6.2 Example - Dissimilarity 80

6.1. The size of test cases are also presented in Table 6.1.

SimilarityMatrix =

TC1 TC2 TC3 TC4 TC5 TC6

TC1 0 0 0 0 0

TC2 0.33 0.33 0.25 0.75

TC3 0.66 0.75 0.5

TC4 0.75 0.75

TC5 0.6

TC6

(6.1)

Since the test requirements are transitions, then testRequirements = {a, b, c, d, e, f, g}.

The first step is to find essential test cases. For this example, TC1 is essential.

Therefore, the variables markedTestRequirements and reducedTestSuite are updated:

markedTestRequirements = {a}; reducedTestSuite = {TC1}. The new matrix is pre-

sented in Matrix 6.2.

SimilarityMatrix =

TC2 TC3 TC4 TC5 TC6

TC2 0.33 0.33 0.25 0.75

TC3 0.66 0.75 0.5

TC4 0.75 0.75

TC5 0.6

TC6

(6.2)

There is only one minimum value (0.25) found between TC2 and TC5. They are not

1-to-1 redundant test cases, and the satisfied requirements (covered transitions) by each one

of them have not been covered yet. Thus, both test cases are added to RTS, and, the variables

are updated again: markedTestRequirements = {a, b, c, d, e, f, g}; reducedTestSuite =

{TC1, TC2, TC5}.

Finally, all requirements are satisfied by the RTS composed by TC1, TC2, TC5. In other

words, markedTestRequirements = testRequirements.

6.3 Case Study 81

6.3 Case Study

A case study was executed. The goal of this case study is to compare the fault detection

capability and the RTS size for the Heuristics - G, GE, GRE and H - and Dissimilarity. The

defined test requirement is 75% of transitions coverage. This number was defined because

the stop criteria is the amount of covered transitions, and in this case if all transitions are

covered, all faults will be revealed (the faults are linked to transitions). Therefore, decreasing

the test requirements from 100% to 75%, provides a more realistic and fair comparison.

6.3.1 Application

The application used for this is a desktop tool named TaRGeT, that automatically generates

and selects test cases [48]. In order to execute the case study the tool LTS-BT [17] was used.

For this case study, the input is a use case template [48], written by Motorola experts. This

template contains information regarding the use cases and the scenarios, in the application,

that can be executed by a user. All test cases, generated for this case study, were manually

executed by Motorola employees.

The objective of this case study is to analyze the behavior of the strategy concerning

aspects of the reduced test suite. Therefore we need to observe how much of the test suite

the strategy is able to reduce, and also how many faults were able to be detected by executing

the reduced test suite. These information can be obtained from the following metrics:

• Test Suite Size: The size of a test suite is measured by the number of test cases that it

contains. In this study, the test suite size is 84 test cases;

• Fault Coverage: As said before, all test cases are executed manually. From the 84 test

cases, 13 revealed failures. And each one of these failures were caused by a different

fault. Summarizing, the complete test suite revealed 13 different faults.

6.3.2 Case Study - Preparation

As said before, the test requirement is 75% of the transitions of the model. Thus, for each

execution, 75% of transitions are randomly chosen, from the model, in order to establish the

test requirement set. Since the set of test requirements is different, the results can change.

6.3 Case Study 82

Therefore, 3 sets of test requirements, i.e. three different sets that cover 75% of the transi-

tions, were applied to analyze each strategy.

In other hand, the Heuristics and the Dissimilarity strategy present a random choice in

their algorithms. Thus, each one of them was executed one hundred times, for each set of

test requirement. The results are presented in the next subsection.

6.3.3 Results of the Case Study

This subsection presents the results of the case study. As a reminder, the variables considered

in the study are the size of the RTS and the fault coverage.

Reduced Test Suite Size

By applying Dissimilarity and the heuristics to reduce the test suite, the different RTS size

can be observed. The Table 6.2 presents the obtained results (for one hundred executions)

for each one of the 3 different, randomly defined, set of test requirements.

Table 6.2: Average of RTS size (100 executions) for all 3 sets of test requirements

Dissimilarity GRE GE G H

1 31.78 29 29 29 29.52

2 32.08 30 30 30 31.89

3 29.83 27 27 27 29.36

Average 31.23 28.66 28.66 28.66 30.25

The results show that GRE, GE and G present better results, followed by H. In this case,

Dissimilarity presents the worst results. In average, Dissimilarity reduces the test suite 62.82

%; G, GE and GRE, 65.88%; and H, 63.99%. The Figure 6.2 presents the graph that shows

the obtained average for the 3 sets of test requirements, in each one of the 100 executions.

Fault Coverage

The obtained results for each strategy, considering the 3 different sets of test requirements,

are presented in Table 6.3.

6.3 Case Study 83

Figure 6.2: TaRGeT - Reduced Test Suite Size

Table 6.3: Average of test suite reduced size (100 executions) for all 3 sets of test require-

ments

Dissimilarity GRE GE G H

1 8.92 7 7 7 7

2 4.51 4 3.58 3.48 3.99

3 5.2 4.68 5.17 5.26 5.26

Average 6.21 5.22 5.25 5.24 5.41

The results show that most of the times, the Dissimilarity strategy reveals more faults. In

average, Dissimilarity reveals 51.28% of the total amount of faults; H reveals 43.58%; GRE

and GE, 42.02%; and G, 38.46%.

The Figure 6.3 presents the graph that shows the obtained average by considering the 3

sets of test requirements in each one of 100 executions. The conclusion is that, by consid-

ering each execution (i.e., the average among the 3 sets of test requirements), Dissimilarity

reveals more faults.

Concluding Remarks - Case Study

The Table 6.4 presents the summary of this case study, in terms of the percentage of reduction

and fault coverage for Dissimilarity, G, GE, GRE and H.

6.3 Case Study 84

Figure 6.3: TaRGeT - Failures

Table 6.4: Summary - Percentage of Reduction and Fault Coverage

Dissimilarity GRE GE G H

Percentage of Reduction (%) 62.82 65.88 65.88 65.88 63.99

Percentage of Fault Coverage (%) 51.28 42.02 42.02 38.46 43.58

Summarizing the data of the table: Dissimilarity presents the worst percentage of test

suite reduction (the best is reached by applying GRE ,GE or G), however it presents the best

percentage of the revealed faults (the worst is obtained by applying G). Analyzing the data

from Dissimilarity, it is necessary - in average - to execute 3.06% more test cases, than the

best strategy. In other hand, the percentage of the faults is increased by 9.26%. For this case

study, this means that executing 2.57 more test cases, we are able to reveal 1.2 more faults.

The use of only one model can be considered a threat to validity of this case study. Since

we measure structural elements from the LTS, mainly the transitions, using more models

would provide a more general overview of the strategies. Another threat to validity is the

chosen test requirement. In order to generalize the results, it would be necessary to use

different test requirements (e.g. fault coverage, requirements coverage, among others) and

observe the behavior of each strategy.

6.4 Experiment - Reduction 85

6.4 Experiment - Reduction

This Section presents the executed experiment and results. The used framework was pre-

sented in Chapter 2. The process was followed and the results are presented in the next

subsections.

Our general hypothesis is that Dissimilarity presents the best performance in relation to

the rate of reduction, considering, as test requirement, 75% of transitions.

6.4.1 Definition

To define the goal, the key questions proposed by Wohlin et al. were answered[62]:

1. What is studied? reduction stragegies;

2. What is the intention? to investigate;

3. Which effect is studied? reduced test suite size;

4. Whose view? the tester;

5. Where is the study is conducted? Model-Based Testing (MBT).

From these answers, the goal definition template is filled. In summary, the goal of this

experiment is:

Analyze reduction strategies

for the purpose of investigating

with relation to reduced test suite size

from the point of view of the tester

in the context of MBT.

The (input) objects are LTS models. In this case, this experiment does not present sub-

jects.

6.4.2 Planning

For this phase, it is necessary to define [62]: context selection, variable, hypothesis, design

and instrumentation.

6.4 Experiment - Reduction 86

Context Selection

The context of this experiment can be characterized as a “toy vs. real” problem [62]. In this

case the objects are LTS models, randomly generated from a configuration. This configu-

ration is characterized by a specific number for the depth of the LTS, the number of loops,

branches and joins (these elements are detailed in Appendix B.

Variables Selection

The variable chosen to observe (dependent variables) and to control (independent variables)

are:

• Dependent: The Reduced Test Suite Size - RTSS .

• Independent: The test requirement percentage; the configuration chosen for the depth

and amount of structures (loops, forks and joins) in the objects; and the strategies for

test case selection (factor). For this factor, there are 5 levels: G, GE, GRE, H and

Dissimilarity (DSim).

Hypothesis Formulation

The experiment definition is formalized as following:

• A null hypothesis (H0): RTSSG = RTSSGE = RTSSGRE = RTSSH =

RTSSDSim: All strategies have a similar behavior in relation to the reduced test suite

size;

• An alternative hypothesis, H1: RTSSG 6= RTSSGE 6= RTSSGRE 6= RTSSH 6=

RTSSDSim: All strategies have a different behavior in relation to the reduced test suite

size.

Experiment Design

As seen before, there is one factor (test suite reduction strategy) with 5 levels (or treatments).

Thus, there is one factor and 5 treatments, where, for each object, all five treatments are

applied. The chosen confidence level is 95% (significance level is α = 0, 05).

6.4 Experiment - Reduction 87

Aiming to define the number of replications, necessary to guarantee statistical signifi-

cance for the specified level of confidence (95%), 40 replications were executed and the data

are presented in Table 6.5.

Table 6.5: Mean, Standard Deviation and number of necessary replications for each tech-

nique.

Technique G GE GRE H DSim

Mean (x) 4.3 3.75 3.75 3.75 3.85

Standard Deviation (s) 1.26 1.05 1.05 1.05 1.02

Number of Necessary Replications (n) 133 122 122 122 110

Observing the Table 6.5, we are able to see that 133 replications provide a statistical

significance for the obtained data. Therefore, this experiment design will consider 200 repli-

cations for each technique, in order to better explain the results (since they are expressed

using percentages).

Instrumentation

In this step, there are three types of instruments [62]:

• Objects: The objects are LTS models randomly generated from a configuration

(depth, number of loops, branches and joins).

• Guidelines: This experiment uses no guidelines, since the strategies do not require

subjects to configure them.

• Measurements: The RTS size will be collect for each treatment. The tool LTS-BT

provides support for executing the experiments and collecting the data.

Validity Evaluation

The objects used in this experiment, can be considered the main threat to validity. They

can not represent a real behavior since these are automatically generated. From a specific

configuration, the objects are randomly generated from a specific configuration, both the

traceability and controllability of the elements of the model (transitions and states) are re-

duced.

6.4 Experiment - Reduction 88

On the other hand, we are able to obtain an overview of the execution of the strategies in

several models that has a same configurations, since they are randomly generated. Then, we

avoid presenting a conclusion that is specific to only one LTS of a configuration. A proper

scenario would be to have several real applications to execute the strategies. However, most

real applications and their respective specification are not available to the public.

6.4.3 Operation

To execute this experiment, it was necessary to implement the 5 strategies and the LTS

generator (see Appendix B). Both the LTS generator and the strategies are implemented

in Java programming language1.

The objective is to automatically generate different models using the LTS generator. In

order to depict a real application in these generated LTS, the configuration used for the

generator was chosen from observing a real application (used in the case study - Section

6.3). Then the chosen configuration is:

• Depth: 15;

• Number of loops: 2;

• Number of branches: 3;

• Number of joins: 3.

There is only one experimental design (with only one factor - test suite reduction strategy)

with a null and an alternative hypothesis, where the intention is to reject the null hypothesis.

Each strategy was executed 100 times, using a machine with the following configurations:

• Intel Core 2 quad 2.33 GHz;

• 4GB RAM;

• 1TB for Hard Disk Memory.

1http://www.sun.com/java/

6.4 Experiment - Reduction 89

6.4.4 Analysis and Interpretation

The confidence intervals are plotted for each strategy. The graph can be seen in Figure 6.4.

Since the confidence intervals of G, GE, GRE and H overlap, a statistical test is required

[40] to test the hypothesis. In this case, since the confidence interval for G, GE, GRE and H

is overlapped, we will do first a comparison among them. In order to show the comparison

among the four strategies, the statistical tests are applied and the results are presented in

Appendix C. In this Appendix, by applying the statistical test, we concluded that the obtained

results can not be considered different, for the heuristics (G, GE, GRE and H).

Figure 6.4: Interval Plot

Since the behavior of the heuristics can not be considered different, the Dissimilarity

strategy needs to be compared with only one of them. Once that Dissimilarity includes some

concepts from GRE, the comparison will be between GRE and Dissimilarity. The experiment

definition is formalized as following:

• A null hypothesis (H0): RTSSGRE = RTSSDSim : All techniques have a similar

behavior in relation to the reduced test suite size;

• An alternative hypothesis (H1): RTSSGRE 6= RTSSDSim: All techniques have a

different behavior in relation to the reduced test suite size.

6.4 Experiment - Reduction 90

The first step is to analyze if the obtained data, for each strategy, present a normal dis-

tribution. For this, we applied the Anderson-Darling normality test, using the Minitab tool2.

The results can be seen in Figures 6.5 and 6.6. In this graph, the red dots, should overlap the

blue line, in order to indicate that the data fit a normal distribution.

Figure 6.5: Anderson-Darling normality test - Dissimilarity

The p− V alues are smaller than the significance value (α = 0.05), thus the data do not

show a normal distribution. In this case, it is necessary to use a non-parametric test. Since

this experiment has a factor with two treatments (GRE and Dissimilarity), the Mann-Whitney

is applied to check the null hypothesis. The results for the test can be seen in the Table 6.6.

Table 6.6: Mann-Whitney Test - GRE and DSim

Technique N Median

GRE 200 4.000

DSim 200 4.000

The test is significant at 0.0074

Since p − V alue = 0.0074, and the p − value is lower than 0.05 (α), H0 (the null

hypothesis) can be rejected. The box plot that presents the difference of the RTSS between

2http://www.minitab.com/

6.4 Experiment - Reduction 91

Figure 6.6: Anderson-Darling normality test - GRE

DSim and GRE can be seen in Figure 6.7. By this figure, we can conclude that in the most

cases, the difference is 0 or 1, but in some cases (not often) can be 2.

Figure 6.7: Box Plot RTSS of DSim - GRE

6.5 Concluding Remarks 92

6.4.5 Concluding Remarks - Experiment

Summarizing the data of the experiment: Dissimilarity presents the worst percentage of test

suite reduction. The best is reached by applying GRE ,GE or G. However, we can conclude

that the difference is 0 or 1 or 2.

6.5 Concluding Remarks

In this Chapter, we presented our proposal for test suite reduction based on Similarity (Chap-

ter 3) named as Dissimilarity. A case study and an experiment are performed. The results

of the case study show evidence that Dissimilarity presents the worst percentage of test suite

reduction (the best is reached by applying GRE ,GE or G), however it presents the best per-

centage of the revealed faults (the worst is obtained by applying G). Analyzing the data from

Dissimilarity, it is necessary - in average - to execute 3.06% more test cases, than the best

strategy. In other hand, the percentage of the faults is increased by 9.26%. For this case

study, this means that executing 2.57 more test cases, we are able to reveal 1.2 more faults.

The experiment confirms one of the obtained results of the case study: Dissimilarity

presents the worst percentage of test suite reduction. In this case, considering 75% of transi-

tion coverage, as the test requirement.

Chapter 7

Analysing Reduction based on Selection

Order

In this chapter, a new perspective in assessing test suite reduction techniques based on their

rate of fault detection is introduced. This criterion, which is standard in assessing test-suite

prioritization, has never been used for reduction. Our proposal stems from the consideration

that under pressure testing could be stopped before all tests in the reduced test-suite are run,

and in such cases the ordering in the reduced test-suite is also important. We compare four

well-known reduction heuristics showing that by considering the rate of fault detection, the

reduction technique to be chosen when time is an issue might be different from the one

performing the best when testing can be completed.

7.1 Motivation

Different test reduction heuristics have been proposed. The common practice to com-

pare them is by considering that the whole reduced test suite will be executed [36;

20]. Unfortunately during development managers might be forced for many reasons to stop

the testing earlier than planned, and thus a lower number of test cases is run than those in the

reduced test-suite. The ideal solution would be to maximize the number of failures detected

while selecting a subset of non-redundant test cases that covers all requirements.

To motivate such an approach, let us consider the same toy example presented in [30],

where a program is supposed to contain 10 faults and a test suite of 5 test cases, called for

93

7.1 Motivation 94

simplicity (A,B,C,D,E), is available. Table 7.1 shows the fault detection capability of each

test case. When all test cases are executed, independently of their order, the percentage

of fault detection is always 100%. To select the best prioritization technique the Average

Percentage of Fault Detection (APFD) measure reached by the associated combination of test

cases has been proposed. For instance, as described in [30], if three different prioritization

techniques are applied that produce the sets (A,B,C,D,E), (E,D,C,B,A), (C,E,B,A,D), they

yield respectively the following APFD: 50%, 64 % and 84%. Hence the third one gives the

best ordering.

Now, let us suppose to apply three different reduction techniques on the same test suite,

obtaining the following reduced sets:

• TS1 = (B,E,D)

• TS2 = (A,E,B,C)

• TS3 = (B,A,C,D,E)

We are assuming that all of the three sets reach 100% requirements coverage, hence TS1

performs the best in terms of test size reduction. However, it should be considered that with

only 3 test cases TS1 discovers the 70% of the faults, while TS2 and TS3 detect the 100%.

We believe that in test reduction a practical compromise that takes into consideration both the

number of test cases executed and the rate of fault detection should be defined. For instance

if we use the APFD measure for comparing the respective rates of fault detection of the three

Table 7.1: Test Suite and Faults exposed

Test faults

1 2 3 4 5 6 7 8 9 10

A x x

B x x x x

C x x x x x x x

D x

E x x x

Table 7.2: APFD of the considered reduction

heuristic

#TC TS1 TS2 TS3

1 40 20 40

2 35.5 22.5 30

3 47.85 34.65 37.95

4 47.85 47.5 46.25

5 47.85 47.5 62

7.1 Motivation 95

Figure 7.1: Test Case Order

test suites, we get the results reported in Figure 7.1: TS1 has 47.85% of APFD, TS2 has

47.5% and TS3 has 62%. Thus the best technique in terms of quickly detecting faults would

be TS3, but it is the one having the worst performance in terms of test suite reduction.

On the other hand, if for any reasons the test phase needs to be stopped after only two

test case are executed, which is the relative performance of the three test suites? If the APFD

of TS1, TS2, TS3 are again evaluated considering only their first two tests, the following

results can be observed:

• TS1_r = (B,E) detects 7 faults and reaches the 35.5% of APFD

• TS2_r = (A,E) detects 5 faults and reaches the 22.5% of APFD

• TS3_r = (B,A) detects 4 faults and reaches the 30% of APFD

This changes the previous measures. The best APFD when only two test cases have been

executed belongs to TS1 and not anymore to TS3. Thus if testing is stopped before all test

cases in the reduced test-suite are run, the ordering in the reduced test-suite is important for

selecting the most effective test strategy. This is why we propose to mix the concepts of

reduction and prioritization.

It is important to notice that the kind of data analyzed in the above example would only

be available a posteriori. This example is used to evidence the existence of different points of

view in the evaluation of a test reduction strategies when taking in consideration also realistic

problems. However, the fault detection of each test case is available only after the test case

is executed and not before, and constraints forcing the manager to stop testing in advance

cannot be foreseen.

From a practical point of view the knowledge about the rate of fault detection of reduction

heuristics could be derived by the application of fault seeding or from the history of test

7.2 General definition 96

execution for similar products.

7.2 General definition

From the example discussed in the previous section, we think that test reduction and test

prioritization can be seen as two aspects of a more general problem that is to select an optimal

set of test cases under the existing constraints that minimizes redundancy (via reduction) and

maximizes fault detection (via prioritization). In this section we formalize the procedure

followed for deriving Table 7.2 and consequently provide a general definition of a criterion

to select the reduction heuristics to be applied.

In particular, considering the definition of APFD of [58], given a program having a num-

ber of faults equal to m, a number of requirements equal to q and an ordered test suite

TS = (T1, ...Tn) of cardinality n, the following functions can be defined:

• TF (i) for 1 ≤ i ≤ m represents the position of the first test case in TS that exposes

the fault i

• For 1 ≤ h ≤ n req(Th) = {rp|1 ≤ p ≤ q and rp is a requirement covered by Th}

represents the set of requirements covered by Th

• For 1 ≤ h ≤ n r(Th) = |req(Th)| represents the number of requirements covered by

Th

Consequently if j, 1 ≤ j ≤ n, represents cumulative number of test cases executed

during a testing phase till a certain point in time, and f , 1 ≤ f ≤ m is the cumulative

number of faults in T1, ..Tj , the following cumulative functions can be defined:

• APFD(j) = 1 − TF (1)+...+TF (f)
jf

+ 1
2j

represents the incremental APFD after the

execution of j test cases and the detection of f faults

• REQ(j) =
⋃j

i=1 req(Ti) represents the set of requirements covered by the execution

of the subset T1, ..Tj

• R(j) = |REQ(j)| represents the cumulative number of requirements discovered by

the execution of the first j test cases

7.2 General definition 97

In this case if q represents the cumulative amount of requirements to be covered for a

specific system, and m is the cumulative amount of faults, then when j = n the previous

formulas become:

• APFD(n) = 1− TF (1)+...+TF (m)
nm

+ 1
2n

represents the standard formula of APFD

• REQ(n) =
⋃n

i=1 req(Ti) ≤ q represents the set of requirements covered by the re-

duced test suite T1, ..Tn

• R(n) = |REQ(n)| represents the cumulative number of requirements discovered by

the execution of the reduced test suite

In general, given q and m as above, let us assume that k different heuristics, H1, ...Hk

are available for test reduction, such that the reduced test suites have cardinality h1, ..., hk

respectively and are represented by (Th11 , ..., Th1h1), ..., (Thk1 , ..., Thkhk).

To take into account the number of executed test case, we denote by S ∈ (H1, .., Hk) an

index representing the heuristic having the best fault detections effectiveness, then:

for every j such that 1 ≤ j ≤ (max(h1, .., hk)

•
∨

1 ≤ i ≤ k Calculate the APFD(j)Hi. If j > hi than APFD(j)Hi = APFD(hi)Hi

• Determine MAX(j) = max(APFD(j)H1, ...APFD(j)Hk)

• Define S = Hs such that APFD(j)Hs = MAX(j).

• If there are two (or more) heuristics, Hp and Hq, such that MAX(j) =

APFD(j)Hp = APFD(j)Hq then

if R(j)Hp ≥ R(j)Hq then S = Hp

otherwise S = Hq

The last rule simply says that in case the two heuristics have the same fault detection

effectiveness the heuristic yielding the highest requirements coverage is selected.

The procedure above construct the referring table of the different APFD and provide a

guideline for manager to select the heuristic having the best performance depending on the

number of test cases to be executed.

7.3 Case Studies 98

Figure 7.2: Overview of a test suite reduction process

7.3 Case Studies

In two real-world case studies we compared four well-known test suite reduction heuristics

– G, GE, GRE and H – from the new viewpoint. The idea is to measure the rate of fault

detection in order to show that the techniques based on these heuristics may present a differ-

ent performance when considering coverage in different intervals of the ordering of selection

up to 100% coverage of the test requirements. As mentioned before, the reason is that the

heuristics may pick test cases in a different order. Depending on the order, the rate of fault

detection can be maximized or not with the first few test cases selected.

7.3.1 Case Studies Design

The heuristics were implemented in Java programming language using the LTS-BT tool

[17] as execution environment. These heuristics receive a test suite TS and a satisfiability

relation. After processing the suite, the output is the reduced test suite.

Figure 7.2 illustrates the whole process for obtaining a test suite and reducing it using

a heuristic. In this figure, the round-edge rectangles represent components of LTS-BT and

oval forms represent the artifacts produced by the components. These are used as input for

the next component. LTS-BT is a model-based testing tool that automatically generates test

cases from use case documents. Initially the use case document is translated into an LTS

from which the test suite TS is derived and the requirements mapping ReqM is defined.

7.3 Case Studies 99

Then, for the reduction process, the heuristics receive TS and ReqM as input and after

processing the output, the reduced test suite is produced.

For the case studies, we considered transition coverage as requirement. This means that

each transition in the LTS represents a test requirement and the test cases that contain a given

transition satisfy the corresponding test requirement.

Applications under testing

Two real-world applications provided by Motorola Software Engineers have been selected

for the case studies. They are briefly described as follows.

Application 1: TaRGeT is desktop application that supports the model-based testing

process, where it automatically generates test cases from use case documents.

Application 2: Direct License Acquisition (DLA) Support is a feature for mobile

phone applications that handles acquisition of the WMDRM License (Windows Media Dig-

ital Rights Management) for the Windows Media platform. This License provides secure

delivery of audio and/or video content.

For each one of the applications, Motorola Software Engineers elaborated the use case

documents [48]. From these documents, LTS-BT generated the test suites that have the

following particularities.

Application 1: 84 test cases that present redundancy, taking into account the transi-

tions as test requirements, i.e., there are some test cases that cover the same requirement.

Therefore the heuristics are able to reduce this test suite.

Application 2: 28 test cases that present redundancy, but each test case has at least one

transition that is only covered by it. In this case, the heuristics are not able to reduce the test

suite since 100% coverage of the test requirements is needed and this can only be achieved

if all test cases are considered.

The test cases were manually executed and the failures captured were associated with

faults that can be detected by the suite. For Application 1, 13 faults have been defined,

whereas for Application 2, 2 faults have been defined.

7.3 Case Studies 100

Evaluation Metrics

As said before, in general, to evaluate a prioritized test suite taking into account the fault

detection, the APFD metric is calculated. However, as discussed in Section 7.1 the APFD

metric applied to the complete reduced suite is not suitable here: we have 4 reduced test

suites (one for each heuristic) and we need to compare them and analyze which of them

presents the best ordering. Therefore, we measure the number of faults detected by the test

cases selected up to a given position in the ordering. For the case studies considered, there is

exactly one test case associated with each fault. Then, we need to identify whether the test

case has been included in the selection in order to count the fault.

For presenting the results, we consider groups of 5 test cases from the first one to be

selected up to the last one and count the faults that can be detected up to the group.

Implementation

Output data in the form of the reduced test suites are collected only at the end of the heuristic

processing. This means that the instrumentation does not influence the heuristic perfor-

mance. The code instrumentation was done by inserting Java code to store the information

in a data structure that access entries in constant time, because this is indexed by the heuristic

and metric names.

The experiment consists in executing the four heuristics for each application. The inputs

are the test suite TS, generated from the use case document, and the requirement mapping

ReqM to produce the reduced test suite, with the additional information on the position of

each test case that is associated with a fault.

This process is repeated 20 times for each heuristic since these heuristics may have a

random choice.

7.3.2 Results

Table 7.3 presents the obtained metrics for Application 1: the average of reduced test suite

size and the number of faults obtained with 20 executions for each heuristic.

For Application 2, as said before, the heuristics did not reduce the test suite, since each of

the 28 test cases has at least 1 transition that is covered only by it. So, all heuristics kept on

7.3 Case Studies 101

Table 7.3: Application 1: Reduced Test Suite Size and Number of Faults.

Heuristic Reduced Test Suite Size (Average) Number of Faults (Average)

Greedy 74 10.4

GE 74 10.4

GRE 74 10.5

H 74.45 10.75

the reduced test suite the same number of test cases of original test suite and, consequently,

the rate of fault detection is not decreased.

To evaluate fault detection effectiveness, we construct box plots to show the distribution

of faults in 20 executions. In the following figures, the x-axis represents the ordered test

cases that are grouped from 5 to 5 and the y-axis represents the number of detected faults.

The edges of the box mark the first and third quartiles. The mean value is represented by the

central line in each box. The whiskers extend from the quartiles represent the farthest ob-

servation lying within 1.5 times the interquartile range. The outliers (unfilled dots) represent

the individual values beyond the whiskers. Figures 7.3, 7.4, 7.5 and 7.6 show the box plots

obtained for Application 1 respectively for heuristics GE, GRE, Greedy and H. Figures 7.7,

7.8, 7.9 and 7.10 show the box plots obtained for Application 2 respectively for heuristics

GE, GRE, Greedy and H.

7.3.3 Threats to validity

To prevent threats to internal validity we have replicated the reported case studies 20 times.

So we believe that the resulted reported in Figures 7.3 – 7.10 are reliable as concerns the two

applications TaRGeT and DLA. We see however important threats to external validity, i.e.,

the results observed cannot of course be generalised to other applications different from the

two case studies considered here. The main problem, as observed in Section 7.1, is that the

comparison of the fault detection capabilities of the test cases involves the knowledge can

only be carried out a posteriori. The only conclusion we can safely draw is that the ordering

of test cases in the reduced test suite is important, but we cannot deduce which heuristic is

7.4 Discussion 102

Figure 7.3: Application 1 - GE Figure 7.4: Application 1 - GRE

Figure 7.5: Application 1 - Greedy Figure 7.6: Application 1 - H

superior.

7.4 Discussion

For Application 1, it can be noticed, from Figures 7.3, 7.4, 7.5 and 7.6, that:

• 1 - 5 test cases – For this group, GE and GRE present the best fault detection effec-

tiveness (always 1); H and Greedy present a variation between 0 and 1, but the order

obtained by H can be better than the one obtained by Greedy because its median value

is 1;

• 6 - 20 test cases – For this group, Greedy presents the best fault detection effectiveness

(the minimum number of faults is 3 and the maximum is 7, whereas the mean value is

5); H presents the second best fault detection effectiveness (the minimum number of

faults is 2 and the maximum is 6, whereas the mean value is 4). The fault detection

effectiveness for GE and GRE are the same (always 3);

7.4 Discussion 103

Figure 7.7: Application 2 - GE Figure 7.8: Application 2 - GRE

Figure 7.9: Application 2 - Greedy Figure 7.10: Application 2 - H

• More than 20 test cases – For these groups, H presents the best fault detection effec-

tiveness.

Therefore, for this application and the faults considered, if the tester is able to execute

only 1-5 test cases, then GE and GRE is the best choice. From 6-20 test cases, Greedy is

the best choice, whereas for more than 20 test cases, H is the best choice. Note that GE and

GRE present the same behavior until 60 test cases.

For Application 2, it can be noticed, from Figures 7.7, 7.8, 7.9 and 7.10, that:

• 1 - 5 test cases – For this group, H presents the best fault detection effectiveness where

the number of detected faults is – most of the time – 1, but it can occur that the 2 faults

considered are detected; Greedy presents the second best fault detection effectiveness

as it always detects 1 fault. Finally, the behaviour of GE and GRE is the same, none

of them detect faults;

• 6 - 10 test cases – For this group, H presents the best fault detection effectiveness

where the number of detected faults is – most of the time – 1, but it can occur that the

7.4 Discussion 104

2 faults considered are detected. Greedy, GE and GRE presents the same behavior,

always detecting 1 fault.

• More than 10 test cases – For these groups, GE and GRE presents the best fault detec-

tion effectiveness (always 2). About Greedy and H:

– 11 - 15 test cases – For this group, H presents the highest chance of detecting 2

faults;

– 16 - 20 test cases – For this group, H and Greedy present the same behaviour;

– 21 - 25 test cases – For this group, H and Greedy present a similar behaviour

(they can detect 1 or 2), but Greedy detects 2 faults at most of the executions.

Therefore, for this application and the faults considered, if the tester is able to execute

only 1-10 test cases, then H is the best choice. For more than 10 test cases, GE and GRE

are the best choice. It is important to highlight that GE and GRE heuristics present the same

behaviour for all positions. From Figures 7.7, 7.8, the first failure is detected after executing

6-10 test cases.

From these case studies, it can be noticed that by analysing the rate of fault detection,

it is possible to observe which technique can be more effective, depending on the goals of

the tester. Some techniques are more effective when only the first selected test cases can be

handled, whereas others improve their performance as more test cases are considered.

Note that the differences on the best technique at different points between the two ap-

plications may have been caused by the fact that we are not controlling important factors

such as fault distribution and redundancy level. Nevertheless, the purpose of this study is to

illustrate the importance and the information that can be gained if reduction techniques are

also evaluated from this new viewpoint rather than by the size of the reduced test suite only.

This may lead to more effectiveness on selection strategies. As mentioned before, drawing a

general conclusion of which heuristic is the best in each circumstance is out of the scope of

this study (and probably cannot be ever stated).

7.5 Concluding Remarks 105

7.5 Concluding Remarks

In literature different studies have been developed for comparing prioritization and reduction

techniques considering a unique point of view: for instance the efficacy in decreasing test-

suite size or the impact on fault detection effectiveness. A common practice is to compare

and then select the methodologies for test generation considering that all the test cases will

be executed during the testing phase. However, if under budget constraints a lower number

of test cases than scheduled have to be run, the test methodology chosen for deriving the test

cases during the planning could not be the best choice anymore.

We presented a criterion that generalizes the APFD (Average Percentage of Fault Detec-

tion) metric for evaluating the performance of test suite reduction heuristics in subsequent

moments of the test activity. The purpose is to analyze how the fault detection effectiveness

of the reduction heuristics could change when testers are forced to drastically reduce the

number of test cases scheduled for a certain software. Thus we considered four well-known

test suite reduction heuristics – G, GE, GRE and H – and measured their rate of fault detec-

tion using two real-world applications, namely TaRGeT and DLA, by varying the number of

test cases executed and by picking one-by-one the test cases in the generation order of the

four heuristics.

The analysis of the case studies evidences how the performance of the four heuristics can

be really influenced by the number of the test cases executed: it is possible that the heuristic

having the best performance after the execution of few test cases is not the best when the

all the reduced test suite is executed. Of course the studies performed so far cannot be

used for general conclusions and further investigations are necessary. In particular, since we

considered real applications we could not have the complete controlling of important factors:

fault distribution and redundancy level. Probably using techniques for seeding faults on the

model or comparing applications that have similar level of redundancy could have provided

more effective results. However the task of this work was not to conclude which technique

is the best in every situation. As shown in our case studies the heuristics having the best

performance in a case study have not the same behavior in the other one. Thus no general

conclusion can be derived. Our goal was to show that the metrics adopted so far for assessing

the relative effectiveness of various reduction approaches probably do not completely match

7.5 Concluding Remarks 106

a reality in which testing phase can be shorten depending on time and cost constraints.

Our results suggested that probably a new way of measuring the performance of various

heuristics could be necessary, which takes into consideration the variability of the number

of test case to be executed and the faults detected so far. Giving such a new assessment

approach is part of our future work as well as to execute more case studies and experiments.

Chapter 8

Review of Work on Test Case Selection

and Test Suite Reduction

This chapter presents some related works on strategies for test case selection and test suite

reduction. The focus is on solutions that can be automated since our scope of study is on

Model-based Testing and system testing.

8.1 Review of Work on Test Case Selection

Related works are presented in this section according to the general kind of the strategy

followed to select test cases. For the sake of simplicity, the focus is on works that are more

closely related to ours, particularly in the model-based testing area.

Combinatory Selection.

Grindal et al. [34] present an evaluation of strategies for test case selection (the All Com-

bination Strategy, the Each Choice Strategy, the Base Choice Strategy, Automatic Efficient

Test Generator and Orthogonal Arrays). These strategies are mostly devoted to testing activi-

ties where a number of combinations, between parameters and values, need to be considered.

The combination strategies were evaluated by considering the number of test cases, the

number of revealed faults, failure size, and the number of decisions covered. Our strategies,

for test case selection (Similarity and WSA) can be applied to refine the test suite produced

107

8.1 Review of Work on Test Case Selection 108

by those other strategies, whenever applicable, as some of the selected combinations may

still be redundant.

Test Purpose Selection.

Based on a test purpose, that may denote a functionality, or scenario of a functionality to

be tested, test case generation algorithms can reduce their search space by considering only

sequences that are related to the test purpose. This is a strategy used by the TGV tool [41].

The inputs of this tool are a specification in an Input/Output LTS (IOLTS) model and a test

purpose. The outputs are test cases that cover the functionality that was modelled in a test

purpose.

Therefore, a selection of part of the model that meets the test purpose is performed. Even

though, this can greatly minimize the search space, the redundancy problem is not addressed.

LTS-BT tool [17] also implements this idea. The inputs are annotated LTS and the outputs

are test cases that cover the test purpose.

Statistical Testing

The Cleanroom software certification process [50] is based on statistical usage testing

that consists in selecting a sample of test cases from a Markov chain model whose probabil-

ities are defined to reflect a usage profile. The goal is to define an unbiased test suite that can

be more effective for fault detection and also to make reliability estimation possible.

Following a similar idea, the Cow Suite tools focus on specifications in Unified Modeling

Language (UML), such as UML sequence and use case diagrams [4] for integration testing.

The test case selection is done by considering a weight function, i.e., for each diagram, it is

attributed a weight regarding its functional importance.

Also, for testing from UML models, the SPACES tool [3] uses UML diagrams. This

tool is used for functional component testing. For each model’s transition, a weight is at-

tributed. According to the weights, the most important set of test cases are selected. The

main disadvantage of these strategies is the need for attributing weights or probabilities.

These presented strategies do not cope directly with redundancy. Our strategy can be

integrated into both tools (Cow Suite and SPACES) to handle redundancy between test cases

as a test case selection strategy.

8.2 Review of Work on Test Suite Reduction 109

Remarks - Test Case Selection

Here, we present some remarks on the related works concerning test case selection. The

Table 8.1 presents a comparison between the test case selection strategies of the literature

and our test selection strategies (Similarity selection and WSA).

In general, test selection strategies are guided by some purpose or number of test cases

and they do not consider a redundancy concept. As advantages, all of the selection techniques

addressed by these works can be fully automated and are based on sound theory. However,

MBT presents several limitations in practice that cannot be completely addressed by them.

Test purposes alone can reduce the scope of search, but the TGV tool usually produces

a huge number of test cases even for a simple test purpose. Statistical testing (Cleanroom,

CowSuites and Spaces) take into account the cost restriction (size - we can define the number

of test cases that we wish) and can lead to unbiased choices. However, the redundancy

concept is not taken in consideration. Similarity and WSA strategies are adequate for MBT

approaches and deal with the redundancy concept. The inputs are LTSs that can be obtained

from some specifications such as UML [39].

8.2 Review of Work on Test Suite Reduction

There is a growing interest among the testing community in strategies for test suite reduction.

As said before, this is an NP-complete problem. Therefore, algorithms based on clusters and

some heuristics have been proposed. A number of experimental studies have been conducted

to compare different strategies proposed in the literature.

Clustering Test Cases.

Simão et al. [56] present a technique to reduce the test suites for regression testing. This

technique uses ART-2A self-organizing neural network architecture to classify test cases

(feature vector). These test cases are classified into clusters. When the new source code is

available, the modified arcs are evaluated and the most important clusters are selected.

Also to address regression testing, Ma et al. [45] investigate the use of genetic algo-

rithms for defining a minimum test suite for regression testing. The algorithm builds the

initial population based on test history, calculates the fitness value using coverage and cost

8.2 Review of Work on Test Suite Reduction 110

Table 8.1: Kinds of strategies for selecting test cases compared to the Similarity strategy and

WSA strategy

Goal Coverage

Criterion

Scope of Appli-

cation and Ex-

perimentation

Input Required Redundancy

Concept

Combinatory

Selection

Select a minimal

number of combi-

nations of different

factors according to

a pattern defined as

criterion

All com-

binations

according

to a com-

binatory

pattern

Data selection at

Integration Test-

ing Level

Table where

columns are

factors and

lines are values

associated with

the factors

NO

Test Pur-

pose

Select a minimal

part of the model

that covers the test

purpose

All paths

in the

model that

are related

to the test

purpose

Model-based

testing

Labelled Tran-

sition Systems:

a specifica-

tion and a test

purpose

No

Statistical

Testing

Select a given num-

ber of test cases

randomly guided by

a usage profile that

weights the impor-

tance of certain ex-

ecution scenarios

A number

of test

cases to be

selected

Model-based

testing

Markov Chain No

Similarity

Strategy

Select the most dif-

ferent test cases ac-

cording to a per-

centage of test se-

lection goal

A per-

centage of

all-one-

loop-paths

coverage

Model-based

testing

Paths generated

from a Labelled

Transition Sys-

tem

Yes

WSA Select the most dif-

ferent and impor-

tant test cases ac-

cording to a per-

centage of test se-

lection goal

A per-

centage of

all-one-

loop-paths

coverage

Model-based

testing

Paths generated

from a Labelled

Transition Sys-

tem and proba-

bilities

Yes

8.2 Review of Work on Test Suite Reduction 111

information, and selectively produces the successive generations using genetic operations

until found a minimized test suite.

Clustering based strategies are complementary to ours: if we do not have enough re-

sources to execute all test cases, since the test cases in clusters are very similar, we are able

to apply our strategy, within the cluster, and choose only the most different test cases.

Heuristics.

The heuristics are based on the notion of defining the minimal test suites that covers

100% of testing requirements. A set of test requirements is defined for satisfying a given

testing objective/criterion. Some heuristics were presented in Chapter 2:

• Greedy Heuristic (G);

• Heuristic H;

• Heuristic GE;

• Heuristic GRE.

As these heuristics focus on coverage of a specific testing objective, they may be too strict

and discard test cases that are important for other criteria. Our strategy is more flexible in

this sense, since it relies on the general similarity of the test cases that may favor one or more

criteria. However, these heuristics can be used to extend our proposed strategy as a criterion

for discarding similar test cases.

Experimental works.

A number of experimental studies have been conducted to compare different reduction

strategies proposed in the literature. Chen and Lau [20] present the results of a simulation

study of four heuristics - H, G, GE and GRE - applied to compute a representative test suite

that covers a given testing requirement. The results can be used as a guideline for choosing

the most appropriate one for test suite reduction. For using this guideline, it is necessary to

know the satisfiability relation and the overlapping ratio (the average number of test cases

that satisfy one requirement). Since these results were obtained from simulation data, they

may not reflect the real situation [68].

8.2 Review of Work on Test Suite Reduction 112

Zhong et al. [68] present an experimental comparison of test suite reduction techniques

- H, GRE, genetic algorithm-based approach and ILP-based Approach [11]. The conclusion

is that the four techniques can dramatically reduce the test suite size. However H, GRE and

ILP have a better behavior since they can reduce more and the test suite sizes are almost

the same. The smallest test suite is obtained from ILP-approach. This is applied for test

regression, because it requires that error detection information are available.

Wong et al. in [64; 65] present empirical studies conducted to evaluate the effect of

reducing the size of the test suite, keeping the block and all-uses criteria coverage. The idea

is to evaluate the effect on fault detection of reducing the size of a test suite, while keeping

coverage constant. The conclusion is that representative sets have almost the same capability

to reveal defects as the original test suite.

Rothermel et al. [55] present empirical studies of test suite reduction for heuristic H [36].

The test suite size and fault detection capability for the reduced test suite are analyzed and

reveal that the test suite reduction can compromise fault-detection capability.

Heimdahl and George [37] present an experiment where they investigate the effects of

test suite reduction in test suites generated from model based testing. The algorithm used

to reduce the test suite randomly and retrieve a test case in a test suite. This test case is

added to the reduced set if the coverage criterion is improved. The used coverage criteria

were: Variable Domain, Transition, Decision, Decision Usage, MCDC, MCDC usage. They

concluded that there is an unacceptable loss in terms of test suite quality.

Zhang et al. [67] present an empirical evaluation of test suite reduction (heuristics G’,

H’, GE’ and GRE’) for boolean specification-based testing. They show a guideline to choose

among these strategies.

Remarks - Test Suite Reduction

To sum up, we can see that test suite reduction has been extensively experimented, but

results are not conclusive and also divergent. Results depend on the techniques and choice

of requirements and also on the context of application. Further research is needed to identify

the most appropriate ones for MBT. Fraser [32; 31] proposed an algorithm to optimize the

total costs of a test suite with respect to two factors: the test suite size and the test suite

length, using concepts from model checkers. In the resulting test suite, individual test cases

8.2 Review of Work on Test Suite Reduction 113

Table 8.2: Kinds of strategies for reduction test suites compared to the Dissimilarity strategy

Goal Coverage

Criterion

Scope of Appli-

cation and Ex-

perimentation

Input Required Redundancy

Concept

Heuristics

for Test

Suite Re-

duction

Select a minimal

suite that keeps

100% of require-

ments coverage

All testing

require-

ments

deter-

mined by a

testing ob-

jective/cri-

terion

White-box test-

ing

Traceability

Matrix (test

requirements ×

test cases)

Yes

Clustering

Test Cases

Grouping of similar

test cases in a clus-

ter

All test

cases that

can be

grouped in

the cluster

based on

a fitness

function

White-box test-

ing Unit testing

Test cases and

code excerpt

that is targeted

No

Dissimilarity

Strategy

Select the most dif-

ferent test cases

All test

require-

ments

Model-based

testing

Paths generated

from a Labelled

Transition Sys-

tem

Yes

can be longer than in the original test suite.

A related topic is that of test case prioritization. In contrast to test suite reduction strate-

gies which attempt to discard test cases from the test suite, the test case prioritization tech-

niques (such as the ones presented by Elbaum et al. [29], Wong et al. [63], Korel et al. [44],

Kim and Porter [43]) that only re-order the execution of test cases within a suite with the

goal of maximizing some objective function [51].

The Table 8.2 presents a comparison among the test suite reduction strategies of the

literature and Dissimilarity - our test reduction strategy.

For test suite reduction, related works focus on code-based criteria. Test suite reduction

8.3 Concluding Remarks 114

strategies are guided by a test requirement defined in terms of some coverage criteria. They

reduce the size of a test suite by fixing some coverage criterion, in this case a chosen criterion

is favored, however other important test cases (to reveal faults) can be excluded by being

considered redundant in relation to the chosen criteria.

8.3 Concluding Remarks

In general, test selection strategies are guided by some purpose or number of test cases and

they do not consider a redundancy concept. However, test suite reduction take in account

that concept, but, by reducing the test suite, the fault detection capability can be decreased.

The choice of a test requirement can favor or not the fault detection.

Chapter 9

Conclusions and Future Works

This is the concluding Chapter of this thesis. Here, conclusions are drawn in Section 9.1 and,

in Section 9.2 the possible future works are presented.

9.1 Conclusions

In this thesis, we proposed a similarity function to measure redundancy among test cases of

a test suite in the context of model-based testing, focusing on LTSs and test case generation

algorithms guided by structural coverage criteria such as the all-one-loop-paths coverage.

From that function, strategies for test case selection and test suite reduction are proposed.

The idea is to decrease the test suite size by observing redundant parts. We have contribution

in two angles, as follows:

Test Case Selection Strategies

Two strategies for test case selection are proposed and evaluated. These strategies are:

• Similarity-based Selection:

The goal is to apply a similarity function to help on the selection of the most different

test cases among the set of automatically generated ones according to a target number

of test cases (represented by a percentage of the full test suite). To evaluate this strat-

egy, two kinds of coverage criteria (transition and fault coverage) were considered in

order to compare it with a random selection strategy that is largely used in practice.

115

9.1 Conclusions 116

The results show that the similarity strategy is usually more effective to eliminate

redundant test cases according to these criteria. In particular, for the conducted case

studies (system testing of reactive mobile phone and desktop applications), for test

case selection goal equal or higher than 20%, the similarity strategy is clearly more

appropriate for selection considering the investigated criteria. When the percentage

is too small, the use of a random selection can be more appropriate. An experiment

considering a specific configuration of LTS and 50% of the number of test cases shows

that by applying the Similarity strategy we are able to obtain better results than by

applying Random, considering transition coverage.

• Weighted-Similarity Approach:

The main goal of this approach is to exploit the knowledge (expertise) and the simi-

larity concept to minimize the size of a test suite. Those concepts are combined and

a desired number of test cases are selected. To evaluate this strategy two case studies

were executed, considering fault and transition coverage.

The results show evidences that WSA can be an effective strategy for faults detec-

tion, however the results depend on probabilities assignment and also on the ability

of the tester to pinpoint faults. In other hand, for transition coverage Similarity-based

selection presents a better performance - in most of the cases. Considering only the

probabilities based approaches, WSA presents generally a better performance since it

inherits the similarity principles.

Since these strategies are defined for LTSs, they can be largely applied in practice and

adapted to be implemented in different tools. Both strategies are currently implemented in

the LTS-BT Tool [17]. TaRGeT tool [48] implements a version of Similarity-based Selection.

Test Suite Reduction

One strategy for test suite reduction is proposed in this work. This strategy, named Dis-

similarity, is detailed below.

• Dissimilarity: The main goal of this approach is to reach transition coverage as fast

as possible, considering the redundancy concept. As how less similar are the test cases,

more different they are. A case study and an experiment were performed.

9.2 Future works 117

The results of the case study and experiment showed evidences that the Dissimilar-

ity strategy presents the worst percentage of test suite reduction. However, the case

study show that Dissimilarity presents the best percentage of the revealed faults. The

experiment confirms the results of the case study: Dissimilarity presents the worst per-

centage of test suite reduction. In this case, considering 75% of transition coverage, as

the test requirement.

A new perspective in assessing test suite reduction

We propose a new perspective in assessing test suite reduction techniques based on their

rate of fault detection. Our proposal takes in account that, under pressure, testing could be

stopped before all tests in the reduced test suite are run, and in such cases the ordering in the

reduced test suite is also important, since the APFD of an entire test suite is different from

the APFD of a part of the same test suite. Two case studies were performed and they show

that, by considering the rate of fault detection, the reduction strategy to be chosen, when time

is an issue, might be different from the one presenting the best performance, when testing is

completed.

9.2 Future works

Many other problems need to be solved and improvements in our strategies are possible. In

the future, we wish to evaluate the strategies more exhaustively by executing more industrial

case studies and experiments, by considering different LTSs configurations and fault models.

• Test Case Selection

– Similarity-based Selection

A random choice is applied when there is a tie between values of the similarity

matrix. This point can be improved by considering, for example, transition cov-

erage or other criteria, rather than a simple random choice. The other point that

can be improved is when discarding the test cases. In our proposal, the biggest

test cases are kept. We performed a parallel work (presented in Cartaxo et al.

9.2 Future works 118

[14]) that kept the smallest. Further investigation addressing this concern can be

conducted in future works.

– Weighted-Similarity Approach

A guideline to assign the probabilities needs to be proposed, since this is es-

sential to the performance of the WSA strategy. Other point that needs more

investigation is how to combine the probabilities that are assigned by the test

manager. The current strategy considers the multiplication of the values. When

the considered path (test cases) passes by several branches (where the probabil-

ities are assigned), the final weight of the test case can be very small due to the

multiplication.

• Test Suite Reduction

– Dissimilarity

The fact of placing two test cases at a time in the reduced test suite has hampered

the performance, considering the percentage of the test suite reduction. It is

probably that, by analyzing the placement of the test cases, one by one, this

aspect might be improved.

• A new perspective in assessing test suite reduction

A new perspective in assessing test suite reduction was presented and a new way to

choose a test suite reduction strategy is showed. It is necessary to perform further in-

vestigations of this new way of choosing a reduction strategy, since it is still necessary

to execute all strategies in order to pinpoint the best one.

Finally, our scope is MBT approaches and system testing. It is probable that these strate-

gies are good also for regression test. Then more experimentation can be done in this direc-

tion. Besides, we provide, through LTS-BT, a tool support to execute the proposed strategies

presented in this work. Therefore, other strategies can also be implemented in the tool, so

they can be executed, compared and analyzed in regards to our strategies.

Bibliography

[1] Bernhard K. Aichernig. Mutation testing in the refinement calculus. Formal Aspects of

Computing, 15(2-5):280–295, 2004.

[2] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University

Press, 2008.

[3] D. L. Barbosa, H. S. Lima, P. D. L. Machado, J. C. A. Figueiredo, M. A. Jucá, and

W. L. Andrade. Automating functional testing of components from uml specifications.

Int. Journal of Software Eng. and Knowledge Engineering, 17:339–358, 2007.

[4] Francesca Basanieri, Antonia Bertolino, and Eda Marchetti. The cow suite approach to

planning and deriving test suites in uml projects. In UML’02: Proceedings of the 5th

International Conference on The Unified Modeling Language, pages 383–397, London,

UK, 2002. Springer-Verlag.

[5] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New

York, NY, USA, 1990.

[6] A. Bertolino, E. Cartaxo, P. Machado, and E. Marchetti. Weighting influence of user

behavior in software validation. In 19th International Conference on Database and

Expert Systems Application - DEXA 2008 Workshops, pages 495–500. IEEE Computer

Society, 2008.

[7] A. Bertolino, E. Cartaxo, P. Machado, E. Marchetti, and Jo ao Ouriques. Test suite

reduction in good order: Comparing heuristics from a new viewpoint. In Proceedings

of the 22nd IFIP International Conference on Testing Software and Systems: Short

Papers, pages 13–18. CRIM, 2010.

119

BIBLIOGRAPHY 120

[8] Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In

2007 Future of Software Engineering, FOSE ’07, pages 85–103, Washington, DC,

USA, 2007. IEEE Computer Society.

[9] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher. Value-Based Software

Engineering. Springer-Verlag New York, Inc. Secaucus, NJ, USA, 2005.

[10] R. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-

Wesley, 1999.

[11] Jennifer Black, Emanuel Melachrinoudis, and David Kaeli. Bi-criteria models for all-

uses test suite reduction. In ICSE ’04: Proceedings of the 26th International Confer-

ence on Software Engineering, pages 106–115, Washington, DC, USA, 2004. IEEE

Computer Society.

[12] B.W. Boehm. Software Engineering Economics. Prentice Hall PTR Upper Saddle

River, NJ, USA, 1981.

[13] Gustavo Cabral and Augusto Sampaio. Formal specification generation from require-

ment documents. Electron. Notes Theor. Comput. Sci., 195:171–188, 2008.

[14] E. G. Cartaxo, P. D. L. Machado, F. G. O. Neto, and J. F. S. Ouriques. Usando funções

de similaridade para redução de conjuntos de casos de teste em estratégias de teste

baseado em modelos. In Simposio Brasileiro de Engenharia de Software 08 (SBES

2008), Campinas, Sao Paulo, October 2008. SBC.

[15] E. G. Cartaxo, F. G. O. Neto, and P. D. L. Machado. Automated test case selection based

on a similarity function. In Model-based Testing 07 (Motes’07), Bremen, Germany,

September 2007. Lecture Notes in Informatics.

[16] E.G. Cartaxo, F.G.O. Neto, and P.D.L. Machado. Test case generation by means of uml

sequence diagrams and labeled transition systems. In Systems, Man and Cybernetics,

2007. ISIC. IEEE International Conference on, pages 1292 –1297, 2007.

[17] Emanuela G. Cartaxo, Wilkerson L. Andrade, Francisco G. Oliveira Neto, and Patrícia

D. L. Machado. LTS-BT: a tool to generate and select functional test cases for em-

BIBLIOGRAPHY 121

bedded systems. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied

computing, volume 2, pages 1540–1544, New York, NY, USA, 2008. ACM.

[18] Emanuela Gadelha Cartaxo, Patricia Duarte Lima Machado, and Francisco

Gomes Oliveira Neto. On the use of a similarity function for test case selection in

the context of model-based testing. STVR Journal of Software Testing, Verification,

and Reliability, 2009.

[19] T. Y. Chen and M. F. Lau. A new heuristic for test suite reduction. Information &

Software Technology, 40(5-6):347–354, 1998.

[20] T. Y. Chen and M. F. Lau. A simulation study on some heuristics for test suite reduction.

Information & Software Technology, 40(13):777–787, 1998.

[21] T. Y. Chen and M. F. Lau. On the completeness of a test suite reduction strategy.

COMPJ: The Computer Journal, 42, 1999.

[22] T. Y. Chen and M. F. Lau. On the divide-and-conquer approach towards test suite

reduction. Inf. Sci., 152(1):89–119, 2003.

[23] V. Chvatal. A greedy heuristic for the set covering problem. Mathematics of Operations

Research, 4:233–235, 1979.

[24] T D Cook and D T Campbell. Quasi-Experimentation: Design and Analysis Issues for

Field Settings. Houghton Mifflin Company, 1979.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

The MIT Press, New York, 2001.

[26] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and B. M.

Horowitz. Model-based testing in practice. In Proceedings of the 21st international

conference on Software engineering, ICSE ’99, pages 285–294, New York, NY, USA,

1999. ACM.

[27] Rene G. de Vries and Jan Tretmans. On-the-fly conformance testing using SPIN.

In Proceedings of Fourth Workshop on Automata Theoretic Verification with the Spin

Model Checker, pages 115–128, 1998.

BIBLIOGRAPHY 122

[28] I. K. El-Far and J. A. Whittaker. Model-based software testing. Encyclopedia on

Software Engineering, 2001.

[29] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. Test case prioritization:

A family of empirical studies. IEEE Transactions on Software Engineering, 28:159–

182, 2002.

[30] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Prioritizing test

cases for regression testing. In In Proc. of the Int. Symposium on Software Testing and

Analysis, pages 102–112. ACM Press, 2000.

[31] Gordon Fraser. Automated Software Testing with Model Checkers. PhD thesis, Graz

University of Technology, October 2007.

[32] Gordon Fraser and Franz Wotawa. Redundancy based test-suite reduction. In Proceed-

ings of the 10th International Conference on Fundamental Approaches to Software

Engineering, FASE’07, pages 291–305, Berlin, Heidelberg, 2007. Springer-Verlag.

[33] Robert L. Glass. The software-research crisis. IEEE Software.

[34] Mats Grindal, Birgitta Lindström, Jeff Offutt, and Sten F. Andler. An evaluation of com-

bination strategies for test case selection. Empirical Software Engineering, 11(4):583–

611, 2006.

[35] Dick Hamlet. When only random testing will do. In RT ’06: Proceedings of the 1st

international workshop on Random testing, pages 1–9, New York, NY, USA, 2006.

ACM.

[36] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A methodology for controlling the

size of a test suite. ACM Trans. Softw. Eng. Methodol., 2(3):270–285, 1993.

[37] Mats P. E. Heimdahl and Devaraj George. Test-suite reduction for model based tests:

Effects on test quality and implications for testing. In ASE ’04: Proceedings of the

19th IEEE international conference on Automated software engineering, pages 176–

185, Washington, DC, USA, 2004. IEEE Computer Society.

[38] Anders Hessel. Model-based test case generation for real-time systems, 2007.

BIBLIOGRAPHY 123

[39] Wai Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, and François Pennaneac’h. UM-

LAUT: An extendible uml transformation framework. In ASE ’99: Proceedings of the

14th IEEE international conference on Automated software engineering, Washington,

DC, USA, 1999. IEEE Computer Society.

[40] R. K. Jain. The Art of Computer Systems Performance Analysis: Techniques for Exper-

imental Design, Measurement, Simulation, and Modeling. Wiley, 1991.

[41] Claude Jard and Thierry Jeron. Tgv: theory, principles and algorithms: A tool for the

automatic synthesis of conformance test cases for non-deterministic reactive systems.

Int. J. Softw. Tools Technol. Transf., 7(4):297–315, 2005.

[42] Paul Jorgensen. Software Testing: A Craftman’s Approach. CRC Press, Inc., Boca

Raton, FL, USA, 2001.

[43] Jung-Min Kim and Adam Porter. A history-based test prioritization technique for re-

gression testing in resource constrained environments. In ICSE ’02: Proceedings of the

24th International Conference on Software Engineering, pages 119–129, New York,

NY, USA, 2002. ACM.

[44] Bogdan Korel, George Koutsogiannakis, and Luay H. Tahat. Model-based test prioriti-

zation heuristic methods and their evaluation. In A-MOST ’07: Proceedings of the 3rd

International Workshop on Advances in Model-based Testing, pages 34–43, New York,

NY, USA, 2007. ACM.

[45] Xue-ying Ma, Bin-kui Sheng, and Cheng-qing Ye. Test-suite reduction using genetic

algorithm. In Advanced Parallel Processing Technologies, volume 3756 of Lecture

Notes in Computer Science, pages 253–262, 2005.

[46] John D. Musa. Software-reliability-engineered testing. Computer, 29(11):61–68, 1996.

[47] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley & Sons,

2004.

[48] Sidney Nogueira, Emanuela Cartaxo, Dante Torres, Eduardo Aranha, and Rafael Mar-

ques. Model based test generation: An industrial experience. In 1st Brazilian Workshop

BIBLIOGRAPHY 124

on Systematic and Automated Software Testing - SBBD/SBES 2007, Joao Pessoa, PB,

Brazil, 2007.

[49] Alexander Pretschner. Model-based testing. In Proceedings of International Confer-

ence on Software Engineering - ICSE, pages 722–723, 2005.

[50] Stacy J. Prowell, Carmen J. Trammell, Richard C. Linger, and Jesse H. Poore. Clean-

room Software Engineering: Technology and Process. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 1999.

[51] G. Rothermel, R.H. Untch, Chengyun Chu, and M.J. Harrold. Test case prioritiza-

tion: an empirical study. (ICSM ’99) Proceedings. IEEE International Conference on

Software Maintenance, pages 179–188, 1999.

[52] Gregg Rothermel and Mary Jean Harrold. Selecting tests and identifying test coverage

requirements for modified software. In ISSTA ’94: Proceedings of the 1994 ACM

SIGSOFT International Symposium on Software Testing and Analysis, pages 169–184,

New York, NY, USA, 1994. ACM.

[53] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test selection

technique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210, 1997.

[54] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong. An empirical

study of the effects of minimization on the fault detection capabilities of test suites.

In In Proceedings of the International Conference on Software Maintenance, pages

34–43, 1998.

[55] Gregg Rothermel, Mary Jean Harrold, Jeffery Von Ronne, and Christie Hong. Em-

pirical studies of test-suite reduction. Journal of Software Testing, Verification, and

Reliability, 12:219–249, 2002.

[56] Adenilso da Silva Simao, Rodrigo Fernandes de Mello, and Luciano Jose Senger. A

technique to reduce the test case suites for regression testing based on a self-organizing

neural network architecture. In Proceedings of the 30th Annual International Computer

Software and Applications Conference - Volume 02, pages 93–96, Washington, DC,

USA, 2006. IEEE Computer Society.

BIBLIOGRAPHY 125

[57] I. Sommerville. Software Enginnering. Van Nostrand Reinhold, eighth edition, 2007.

[58] Praveen Ranjan Srivastava. Test case prioritization. Journal of Theoretical and Applied

Information Technology, pages 178–181, 2008.

[59] Jan Tretmans. Testing concurrent systems: A formal approach. In CONCUR ’99:

Proceedings of the 10th International Conference on Concurrency Theory, pages 46–

65, London, UK, 1999. Springer-Verlag.

[60] Saif ur Rehman Khan, A. Nadeem, and A. Awais. Testfilter: A statement-coverage

based test case reduction technique. In Multitopic Conference. INMIC ’06. IEEE, pages

275–280. IEEE, 2006.

[61] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

[62] C. Wohlin, P. Runeson, M. Host, C. Ohlsson, B. Regnell, and A. Wesslén. Experimen-

tation in Software Engineering: an Introduction. Kluver Academic Publishers, 2000.

[63] W. Eric Wong, Joseph R. Horgan, Saul London, and Hira Agrawal Bellcore. A study of

effective regression testing in practice. Software Reliability Engineering, International

Symposium on, 0:264, 1997.

[64] W. Eric Wong, Joseph R. Horgan, Saul London, and Aditya P. Mathur. Effect of test set

minimization on fault detection effectiveness. In Proceedings of the 17th International

Conference on Software Engineering, ICSE ’95, pages 41–50, New York, NY, USA,

1995. ACM.

[65] W. Eric Wong, Joseph Robert Horgan, Aditya P. Mathur, and Alberto Pasquini. Test set

size minimization and fault detection effectiveness: A case study in a space application.

Journal of Systems and Software, 48(2):79–89, 1999.

[66] Xue ying MA, Zhen feng He, Bin kui Sheng, and Cheng qing Ye. A genetic algo-

rithm for test-suite reduction. In IEEE International Conference on System, Man and

Cybernetics, pages 133–139, 2005.

BIBLIOGRAPHY 126

[67] Xiaofang Zhang, Baowen Xu, Zhenyu Chen, Changhai Nie, and Leifang Li. An em-

pirical evaluation of test suite reduction for boolean specification-based testing (short

paper). In Hong Zhu, editor, QSIC, pages 270–275. IEEE Computer Society, 2008.

[68] Hao Zhong, Lu Zhang, and Hong Mei. An experimental comparison of four test suite

reduction techniques. In ICSE ’06: Proceedings of the 28th International Conference

on Software Engineering, pages 636–640, New York, NY, USA, 2006. ACM.

Appendix A

Similarity based Selection - Case Studies

The content of this chapter have been published in the paper Cartaxo et al. [18].

A.1 Introduction

In order to evaluate the use of the similarity strategy, three different case studies were con-

ducted, where test cases were selected by the similarity strategy and also by a plain random

selection strategy. The evaluation focused on assessing whether the similarity strategy (when

compared to the random strategy) is suitable for test case selection with the goal of produc-

ing test suites of a given smaller size that still keep effective coverage. The random choice

strategy basically consists in randomly selecting a test case at a time to be removed from the

test suite according to a random function with an even probability distribution. The similarity

strategy has been applied by using the LTS-BT tool [17].

The random selection strategy was chosen because, when coverage and diversified

choices are of concern, random choice has been accepted to be more effective than determin-

istic choice in the model-based testing area [50]. Therefore, this strategy has compatible ex-

pectations when compared to the similarity ones. Also random testing methods have proven

to be more effective in practice in situations where information is lacking to make systematic

approaches applicable [35]. When selecting test cases from plain labelled transition systems

(the context of this work), which is different from selection from high-level specifications,

this situation arises. For example, at system level (the scope of the case studies presented

here), systematic approaches will often require assumptions or information such as opera-

127

A.2 Overview of Case Study Applications 128

tional profile and domain partition. Moreover, random selection is usually applied by other

selection, reduction and prioritisation strategies when they reach an undecided situation and

get blocked due to a tie among test cases to be selected. This makes random selection a very

important and representative selection strategy in practice. Furthermore, random selection is

usually considered as fundamental basis of comparison in most of the empirical studies in

the area.

For the sake of simplicity when explaining the case studies, the term “percentage of

test cases selected" is used with the same meaning as “percentage of all-one-loop-paths

coverage". This comes from the fact that the selected paths are indeed the test cases.

Next sections present an overview of the case studies applications (Section A.2), how the

case studies were defined and conducted (Section A.3), and the results obtained during case

studies execution (Sections A.4 and A.5).

A.2 Overview of Case Study Applications

In this section, the case studies chosen are briefly described. They are named, for further

reference, as Case Study 1, Case Study 2 and Case Study 3. All of them are reactive appli-

cations i.e., applications that react to stimuli of their environment [41]. Particularly, Case

Studies 1 and 2 are mobile phone applications, whereas Case Study 3 is a desktop applica-

tion. The focus is on system testing and test suites are for manual execution. Therefore, the

LTS models represent use scenarios of the applications. In summary, the case studies are

described as follows:

• Case study 1 is an application for adding contacts in a mobile phone’s contact list;

• Case study 2 is a message application that deals with embedded items. An embedded

item can be an URL, phone number or e-mail. For each embedded item, it is possible

to execute certain tasks (See Table A.1);

• Case study 3 is an application that generates test cases automatically from use case

scenarios - the TaRGeT tool [48].

It is important to remark that, for all case studies, the same basic process has been fol-

lowed to obtain the LTS model. Basically the process has the following activities:

A.2 Overview of Case Study Applications 129

Table A.1: Embedded item and available Tasks

Embedded item Tasks

URL Store, Go to

Phone number Send message, Send voice message, Store, Call

E-mail Send message, Store

• Writing use cases from natural language requirement documents according to the for-

mat defined by Cabral and Sampaio [13];

• Use cases inspection and review for consistency, completeness and conformance;

• LTS model generation that combines the behaviours of all use cases [48]. Basically,

each LTS transition represents a use case step. The use case flows may be branched,

resulting in different paths in the LTS.

All case studies have also been conducted by the same team. Therefore, this evaluation

assumed that the level of details and consistency of the LTS models obtained is similar for all

of them. Also, the LTS models cover 100% of the known requirements for each application.

Table A.2 shows some metrics on the case studies in order to illustrate their complexity

such as the number of use cases, the number of branch nodes, the maximum level of nested

sub-branches, the number of loops and the number of transitions. At system use case level

specification, loops are quite rare, unless repetitive interactions are needed in a use. Actu-

ally, since all-one-loop-paths coverage has been considered, loops are not significant here.

Table A.2 also presents the number of test cases, transitions and faults for each case study

considering 100% all-one-loop-paths coverage. Faults are defined according to a fault model

(Subsection A.3.3). Each fault model makes reference to faults that can be included in an

implementation in case programmers do erroneously interpret requirements and, as result,

the implementation produces responses that are not in conformance with the LTS model.

The reason for this is that it is important to obtain a similar level of fault distribution in all

case studies. For Case Study 3, actual faults detected by test execution and debugging were

also considered.

A.2 Overview of Case Study Applications 130

Table A.2: Case Studies - Metrics

Case Study 1 Case Study 2 Case Study 3

Number of Use Cases 1 33 25

Number of Branches 7 34 21

Maximum level of Sub-Branches 5 1 3

Number of loops 1 0 0

Number of Transitions 121 826 631

Number of Test Cases 24 66 130

Smallest Test Case (Number of

Transitions)

6 11 6

Biggest Test Case (Number of

Transitions)

29 27 38

Most Common Test Case Size 24 19 14

Number of Most Effective Test

Cases (Associated with more

faults)

3 33 4

Number of Faults 23 99 127

Table A.3: Faults per Number of Transitions and Test Cases and Test Cases per Transitions

(Similarity Rate)

Case Study 1 Case Study 2 Case Study 3

Faults/Number of Transitions 0,190 0,120 0,201

Faults/Test Cases 0,958 1,500 0,977

Test Cases/Transitions 0,198 0,080 0,206

A.3 Overview of Case Studies Definition 131

Table A.3 presents the rates of faults per number of transitions and test cases as well as

the rate of test cases per transition that may characterize the similarity degree of paths in the

application and, consequently, the similarity degree of test cases.

For the sake of confidentiality and also for the sake of simplicity, the LTS models of

these case studies are not presented in this paper. However, it is important to comment that

Case Studies 1 and 3 have more redundant test cases than Case Study 2, since the latter has

3 disjoint groups of functionalities that are handled in isolation. This can also be observed

by the rate of test cases per transitions for Case Study 2 (see Table A.3), that is, less test

cases for more transitions. The most effective test cases of Case Study 1 are relatively more

redundant than the ones of Case Study 3 since the former is about a single and cohesive use

case.

A.3 Overview of Case Studies Definition

This section presents the evaluation criteria, path selection strategy and fault model structure

defined for conducting and evaluating the case studies.

A.3.1 Evaluation Criteria

In the general research area on test case selection which is the main focus of the case studies,

the main criteria used to evaluate the resulting test suite are:

(i) Structural coverage;

(ii) Fault-coverage;

(iii) The number of faults detected by the most effective test contained in it;

Regarding (i), for the case studies presented in this paper that are of system level testing

(abstracting from code), transition-based coverage criteria are the most appropriate ones

(actually the only ones that make sense), since the focus of this work is on plain labelled

transition systems without either guards or datatypes or parallel composition. In this case,

the only observable behaviours are transitions that represent outputs. Therefore, transition

coverage is a very important metric, since the number of observable behaviours that are

A.3 Overview of Case Studies Definition 132

going to be evaluated at testing time can be measured. The most popular transition-based

coverage criteria that have been applied to model-based testing are: all-states (every state

must be visited at least once), all-configurations (every configuration of a statechart is visited

at least once), all-transitions (every transition must be visited at least once), all-transition-

pairs (every pair of adjacent transition in the model must be traversed at least once), all-

loop-free-paths (every loop-free path must be traverse at least once) , all-one-loop-paths (all

the loop-free paths through the model must be visited at least once, plus all the paths that

loop once), all-round-trips (requires a test for each loop in the model, but do not require that

all the paths the precede or follow a loop to be tested) and all-paths (every path must be

traversed at least once) [61]. For them, it is valid to say that:

• all-paths subsumes all of them, but this is not applicable to the case studies since

the test generation algorithm only guarantees all-one-loop-paths coverage in order to

avoid the state space explosion problem;

• all-transitions subsumes all-states;

• all-transition-pairs subsumes all-transitions;

• all-configurations is not observable in the context of this work;

• all-one-loop-paths subsumes all-round-trips and all-loop-free-paths;

• all-round-trips is based on breadth search that selects the shortest test cases guided

by this search. Even though, the similarity strategy is independent of whether the

generation algorithm is based on depth or breadth search, we used a depth search one

for these case studies. Therefore, all-round-trips is not applicable here.

Regarding (ii) and (iii), faults were abstracted by possible observable failures during test

execution. Faults are associated with test cases that are capable of exhibiting the corre-

sponding failure behaviour. Finally, for (iii), instead of counting the number of faults re-

vealed by one most effective test case, the most effective test cases were defined and counted

(how many of them are included in the selected suite) - a stronger criterion.

In summary, the following criteria were considered to evaluate the test suites obtained

from each strategy:

A.3 Overview of Case Studies Definition 133

• Transition-based coverage - The total number of transitions and pairs of transitions

that are covered by considering all of the selected test cases of a given test suite. The

idea is to measure whether the strategies keep a reasonable coverage of functionalities.

• Fault-based coverage - The total number of faults that are uncovered by the test suite

during test execution. For this, versions of the case studies that include faults were

considered and also fault models were defined. The idea is to measure whether the

strategies preserve the fault detection capability of the original test suite. It was also

measured whether the most effective test cases are kept in the minimised suites.

The reason for choosing these criteria is to make it possible to investigate, in the con-

text of the case studies, questions such as: (i) Is test case selection based on the similarity

strategy more effective than random selection regarding a given criterion? (ii) What are the

limitations of the similarity strategy? (iii) In which circumstances is it more advisable to

apply each strategy?

A.3.2 Test Case Selection Goals

For each case study, the similarity and random selection strategies were applied having test

selection goals ranging from 5% to 95% (increased by 5) of the test cases. The purpose is

to identify which strategy (similarity or random) assures the best selection according to the

criteria mentioned above. This is reflected in the final transition coverage and observable

failures. Also, due to the random choice that is presented in both strategies, for each path

coverage goal, the selection algorithm has been executed 100 times for each strategy. In this

case, the average of the values obtained for each metric is considered.

A.3.3 Fault Model

For each case study, test cases were associated with the faults that they are capable of reveal-

ing. Then, the number of faults covered by a test suite is computed by the total number of

different faults covered by its test cases.

As mentioned before, all case studies are reactive applications. Moreover, their LTS mod-

els represent system level scenarios that are derived from use case specifications. Branches

A.3 Overview of Case Studies Definition 134

in the LTS represent either different expected inputs to the system or different outputs that

can be produced by the system. A choice of input is made by the environment (and this is

usually controlled/pre-defined for each test case), whereas the actual output produced during

a test case execution is defined by internal behaviour of the system that may or not depending

on conditions to be met. Therefore, outputs are the central information to be observed for

deciding on the success of a test execution [59].

In this context, a fault model aimed at generic system scope may consider faults that

lead to: 1) undesirable feature interactions, 2) incorrect output, 3) abnormal termination, 4)

inadequate response time [10]. Since the models considered in the studies do not express

requirements on feature interaction and timing, only faults of type 2 and 3 were considered

to build the fault models.

At system testing specification level, a fault can only be viewed through the failure that

expose it, i.e., an output produced by the system during test execution that is different from

the expected ones. Therefore, the first step is to identify possible points of failure and them

to assume that one or more faults in the code cause them (assuming also that test cases are

sound, i.e., they would not produce false positives). For example, consider the excerpt of

the LTS model of Case Study 1 presented in Figure A.1. Transitions leaving Node 1 are

input actions (input action have “?" as prefix). If “?go to main menu" action occurs,

then the expected output is “!main menu is displayed" (output actions have “!" as

prefix). When a different output is produced, this indicates a failure that is caused by one

or more faults at different points in the code. For the sake of simplicity, the procedure for

constructing the fault model described below assumes that only one fault is associated with

each failure.

One possible way of identifying points of failure, is to consider the possible mutations

that could be made upon output transitions at specification level aiming at anticipating design

errors that could lead to failures [1]. That is, possible ways of mutating the specification in

order to investigate on possible non-conformant implementations that could be produced.

Based on this, the general procedure applied to construct the fault model is as follows. The

main idea is to mark, in the LTS model, all failure-prone occurrences of output transitions,

i.e., the ones where failures are more likely to occur (the expected output is not the one

produced). All marks represent a different fault that can be uncovered. Then, test cases

A.3 Overview of Case Studies Definition 135

Figure A.1: An excerpt of the LTS model for Case Study 1.

that include the transition are marked as the ones that can reveal the corresponding fault. In

summary, the main steps are as follows:

1. Transitions that are part of a branch of outputs are marked. The reason is that these out-

puts are likely to be defined by a combination of conditions. Since whether a condition

is completely faulty cannot be decided (fails for any combination of values in the input

domain), the fact that all outputs can be erroneously produced must be considered.

Therefore, there is a chance of failure at each one.

2. Transitions that represent a single expected output (only one output transition out of

a node) are marked if: 1) there is a chance of abnormal termination; 2) the output is

produced as a result of a risk operation; 3) a failure is very likely to occur.

3. A matrix of faults and test cases is constructed where the intersection of fault i and test

case t is marked if and only if the output transition represented by i is included in test

case t.

The output transition in Figure A.1 is marked in Step 2, because at this point it is likely

that by failure a different menu is displayed. This is often caused by pointer manipulation

faults.

Even though, for the purposes of the case studies, it is important to define as many faults

as possible in order to favour a more coherent evaluation of the results, not all possible

occurrences of outputs were considered since this is not realistic for real systems: test cases

A.4 Case Studies Results 136

are usually designed for revealing specific faults and stable functionality is rarely faulty (Step

2). An example of a fault model defined according to these steps is presented in Table A.4.

A.4 Case Studies Results

This section presents and discusses the results obtained by considering transition-based and

fault-based coverage respectively. For each criterion, results are analysed considering the

questions posed at the end of Subsection A.3.1.

A.4.1 Transition Based Coverage

On the LTS model of the applications, the functionalities are represented as labelled transi-

tions. Then, transition coverage when we applied the similarity and random strategies was

observed. As transition-based criteria, all-transitions and all-transition-pairs coverage were

considered (see Subsection A.3.1).

Transition Coverage. Figure A.2, Figure A.3 and Figure A.4 illustrate the obtained re-

sults for the similarity strategy and the random choice strategy for Case Studies 1, 2 and 3,

respectively.

Figure A.2: Average number of excluded transitions by running each test selection strategy

100 times for each test case selection goal - Case Study 1.

A.4 Case Studies Results 137

T
ab

le
A

.4
:

F
au

lt
M

o
d
el

-
C

as
e

S
tu

d
y

1
.

T
es

t
ca

se
s

0
4
,
1
2
,
1
8

ar
e

th
e

m
o
st

ef
fe

ct
iv

e
te

st
ca

se
s

w
.r

.t
.

th
e

n
u
m

b
er

o
f

fa
u
lt

s
co

v
er

ed

F
au

lt
s/

T
es

t
C

as
es

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

F
0
0
1

-
-

-
-

-
-

-
-

X
X

X
X

X
X

-
-

-
-

-
-

-
-

-
-

F
0
0
2

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
-

-
-

F
0
0
3

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
X

-
-

F
0
0
4

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

X
X

F
0
0
5

X
X

X
X

X
X

X
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

F
0
0
6

-
-

-
-

-
-

-
X

X
X

X
X

X
X

-
-

-
-

-
-

-
-

-
-

F
0
0
7

-
-

-
-

-
-

-
-

-
-

-
-

-
-

X
X

X
X

X
X

X
-

-
-

F
0
0
8

X
-

-
-

-
-

-
-

X
-

-
-

-
-

X
-

-
-

-
-

-
-

-
-

F
0
0
9

-
X

-
-

-
-

-
-

-
X

-
-

-
-

-
X

-
-

-
-

-
-

-
-

F
0
1
0

-
-

X
X

-
-

-
-

-
-

X
X

-
-

-
-

X
X

-
-

-
-

-
-

F
0
1
1

-
-

-
-

X
-

-
-

-
-

-
-

X
-

-
-

-
-

X
-

-
-

-
-

F
0
1
2

-
-

-
-

-
X

-
-

-
-

-
-

-
X

-
-

-
-

-
X

-
-

-
-

F
0
1
3

X
X

X
X

X
X

-
-

-
-

-
-

-
-

X
X

X
X

X
X

-
-

-
-

F
0
1
4

-
-

-
-

-
-

X
-

-
-

-
-

-
-

-
-

-
-

-
-

X
-

-
-

F
0
1
5

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

X
X

F
0
1
6

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
X

F
0
1
7

-
-

X
-

-
-

-
-

-
-

X
-

-
-

-
-

X
-

-
-

-
-

-
-

F
0
1
8

-
-

-
X

-
-

-
-

-
-

-
X

-
-

-
-

-
X

-
-

-
-

-
-

F
0
1
9

-
X

-
-

-
-

-
-

-
X

-
-

-
-

-
X

-
-

-
-

-
-

-
-

F
0
2
0

-
-

-
X

-
-

-
-

-
-

-
X

-
-

-
-

-
X

-
-

-
-

-
-

F
0
2
1

-
-

-
-

X
-

-
-

-
-

-
-

X
-

-
-

-
-

X
-

-
-

-
-

F
0
2
2

-
-

-
-

-
-

X
-

-
-

-
-

-
-

-
-

-
-

-
-

X
-

-
-

F
0
2
3

-
-

-
-

-
-

-
X

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

#
F

au
lt

s
4

5
5

6
5

4
4

3
4

5
5

6
5

4
4

5
5

6
5

4
4

1
2

3

A.4 Case Studies Results 138

Figure A.3: Average number of excluded transitions by running each test selection strategy

100 times for each test case selection goal - Case Study 2.

For each of the figures, the x-axis (or abscissa) represents the intended percentage of test

cases to be selected and the y-axis (or ordinate) represents the average number of excluded

transitions obtained with 100 experiments. The higher the value in the y-axis the worse is

the coverage obtained. Therefore, the most effective strategy regarding this criterion is the

one that present the lower curve.

For Case Study 1 (Figure A.2), the similarity approach is clearly more effective when

25% to 75% of the test cases are selected, with the best case for similarity achieved at 35%:

91% of transitions are preserved in the selected test suite, whereas only 82% are preserved

by the random strategy. From percentages 5 to 20, the performance of the similarity strategy

was similar to the random one. In the worst case, at 5% goal, the similarity strategy kept

24% of the transitions, whereas the random strategy kept only 19%. Particularly, in this case

study, a number of similar paths have the same size. Therefore, when such strict selection

percentages are applied, the choice for discarding one test case is mostly a random one.

From 75% of test case selection goal, all-transitions coverage is achieved by the similarity

strategy.

For Case Studies 2 (Figure A.3) and 3 (Figure A.4), the similarity approach is clearly

more effective. The best case for similarity in Case Study 2 is achieved when 50% of the

test cases are selected: 88% of transitions are preserved in the selected test suite, whereas

A.4 Case Studies Results 139

Figure A.4: Average number of excluded transitions by running each test selection strategy

100 times for each test case selection goal - Case Study 3.

only 62% are preserved by the random strategy. The best case for similarity in Case Study 3

is achieved when 35% of the test cases are selected: 92% of transitions are preserved in the

selected test suite, whereas only 54% are preserved by the random strategy. Also, for this

case study, all-transitions coverage is achieved from a selection of 65% of the test cases.

Regarding the questions put in Section A.3.1:

(i) Is test case selection based on the similarity strategy more effective than random se-

lection regarding this criterion? From Figure A.5, the average of the percentage of

excluded transitions in all case studies is lower for the similarity strategy. As men-

tioned above, Case Studies 1 and 3 present more redundant test cases. Therefore, the

percentage of excluded transitions is lower for these two case studies when compared

to Case Study 2. From 75% of test cases selected, all-transitions coverage is achieved.

This indeed shows that the similarity approach is more effective than random choice

for these case studies. The reason is that the similarity strategy is more systematic

and more precisely pinpoints the similarity, keeping the most different test cases and

therefore the best transition coverage, even for Case Study 2 with less redundant test

cases than the other ones.

(ii) What are the limitations of the similarity strategy? The similarity strategy performs

A.4 Case Studies Results 140

Figure A.5: Percentage of the average number of excluded transitions in all case studies for

each test case selection goal.

as well as random selection whenever the criterion for choosing one test case to be

discarded cannot be decided. In this case, random selection is applied. This happened

in Case Study 1, where some similar paths have the same size and the criterion is based

on keeping the one with the biggest size.

(iii) In which circumstances is it more advisable to apply each strategy? By generally

comparing the results obtained, the figures suggest that, usually for test case selection

goal from 20%, it can more adequate to use the similarity strategy than the random,

even in the case where the application presents a considerable number of redundant

test cases as in Case Studies 1 and 3, where redundancy may favour the random choice

strategy performance.

Transition-Pairs Coverage In order to apply this strategy, all pairs of transitions at each

node of the LTS model are computed. The aim is to check whether the strategies preserve

combinations of transitions in the test cases. The evaluation was conducted in the same

way as for transition coverage and the results are very similar with the same advantages

and limitations for each case study. Therefore, for the sake of simplicity, only a summary

is presented in Figure A.6. In the best case, the similarity approach preserves 23% more

A.4 Case Studies Results 141

pairs of transitions than the random approach. For transition coverage, in the best case, the

similarity approach preserves 24% more transitions than the random approach.

Figure A.6: Percentage of the average number of excluded pairs of transitions in all case

studies for each test case selection goal.

A.4.2 Fault-based Coverage

As fault-based criteria, fault coverage and most effective test cases coverage were considered.

The results are presented in the sequel.

Fault Coverage Figure A.7, Figure A.8 and Figure A.9 show the results obtained. For each

one of the figures, the x-axis represents the intended percentage of test cases to be selected

and the y-axis represents the average of covered faults (faults that can be revealed by one

or more test cases in the suite) when a test case selection goal is applied (this data was also

obtained with 100 experiments). The higher the value in the y-axis the best is the coverage

obtained. Therefore, the most effective strategy regarding this criterion is the one that present

the upper curve. It is important to remark that since only up to 95% of test case selection

goal is considered and fault distribution is such that all test cases are generally associated

with at least one fault (see Table A.4), 100% of faults coverage may not be achieved by any

of the strategies.

A.4 Case Studies Results 142

Figure A.7: Average number of covered faults by running each test selection strategy 100

times for each path coverage goal - Case Study 1.

For Case Study 1 (Figure A.7), the similarity approach is clearly more effective when

25% to 75% of the test cases are selected, with the best case for similarity achieved at 35%:

81% of faults are addressed by the selected test suite, whereas only 70% are addressed by the

random strategy. From percentages 5 to 20, the performance of the similarity strategy was

worse than or similar to the random one. In the worst case, at 20% selection goal, the simila-

rity strategy addresses only 38% of the faults, whereas the random strategy addresses 50%.

The best coverage achieved, 96% or 22 faults out of 23, is reached only by the similarity

strategy from 75% of selection goal.

For Case Studies 2 (Figure A.8) and 3 (Figure A.9), the similarity approach is clearly

more effective. The best case for similarity in Case Study 2 is achieved when 50% of the

test cases are selected: 66% of faults are addressed by the selected test suite of the simila-

rity approach, whereas only 49% are addressed by the random strategy. The best coverage

achieved, 95% or 94 faults out of 99, is reached only by the similarity strategy with 95% of

selection goal.

The best case for similarity in Case Study 3 is achieved when 45% of the test cases

are selected: 92% of faults are addressed by the selected test suite, whereas only 60% are

preserved by the random strategy. The best coverage, 100% or 127 faults, is achieved only

by the similarity strategy from 65% of selection goal.

A.4 Case Studies Results 143

Figure A.8: Average number of covered faults by running each test selection strategy 100

times for each path coverage goal - Case Study 2.

Regarding the questions put in Section 4.2.1:

(i) Is test case selection based on the similarity strategy more effective than random se-

lection regarding this criterion? From Figure A.10, the average of the percentage of

faults addressed by the resulting test suite in all case studies is definitely higher for

the similarity strategy from 20% of test case selection goal. As mentioned above,

Case Studies 1 and 3 present more redundant test cases. Therefore, the percentage

of the number of faults covered is closer to 100% and the best coverage is achieved

from 75% of selection goal. The similarity approach is more effective because it can

more systematically select the most different faults that are associated with the most

different test cases. Case Study 2, with less similar test cases, has also less similar

faults. Therefore, the best coverage is only achieved at 95%. Nevertheless, there are

clear gains to the similarity approach when compared to the random strategy. How-

ever, note that, Case Study 1 presents an open question: in the presence of a severe

path coverage constraint (below 20%), is non-deterministic choice more effective than

similarity based selection with regard to fault detection? This question is related to

a claim of the random testing community (non-determinist selection is more effective

than deterministic selection w.r.t. to fault detection) that deserves further investigation.

A.4 Case Studies Results 144

Figure A.9: Average number of covered faults by running each test selection strategy 100

times for each path coverage goal - Case Study 3.

(ii) What are the limitations of the similarity strategy? Again, whenever the criterion for

defining which test case to discard cannot be decided, then the similarity approach

performs as the random strategy. Also, the less redundant test cases are the lower the

coverage of faults is. For instance, coverage rate at Case Study 2 is, in average, 13%

lower than in the other case studies up to 65%. Furthermore, as the choice for the test

case to be discarded, in this paper, is based on the biggest test case, if faults distribution

is more prevalent amongst the smaller test cases, then the strategy may not have a good

performance. In other words, the performance of the strategy can be influenced by the

choice of the criterion to discard the redundant test case.

(iii) In which circumstances is it more advisable to apply each strategy? Comparing the

obtained results for similarity and random, it is clear that, in the case studies conducted,

for test selection goal bigger than 20%, it is more adequate to use the similarity strategy

than the random one, since the number of excluded test cases that failed for different

faults is smaller than using the random strategy. In other words, the similarity strategy,

by keeping the most different test cases, is more effective in selecting test suites that

preserves fault detection capability of the original suite.

It is important to remark that results obtained in these experiments can also be influenced

A.4 Case Studies Results 145

Figure A.10: Percentage of the average number of faults transitions covered in all case stud-

ies for each test case selection goal.

by the rate of faults per test cases, faults distribution and the size of the application (measured

here by the number of transitions). Table A.3 summarizes these rates. For Case Study

1 (Figure A.7), there is a less significant gain of the similarity strategy over the random

strategy when compared to the other case studies. On the other hand, for Case Study 3 with

a similar rate of faults per transitions and faults per test case to Case Study 1, the similarity

strategy had a considerable gain over the random strategy. This may be explained by the

fact that Case Study 1 has more faults distributed among the smaller test cases and then the

random strategy had more chances to keep them with selection goals less than or equal to

20%. Furthermore, Case Study 2 has the highest rate of faults per test case, but this is also

the case with less redundant test cases and faults. Therefore, similarity is more effective for

Case Study 2 than for Case Study 1.

Most Effective Test Cases For each case study, the most effective test cases were selected

as the ones that are associated with the biggest number of faults. The goal is to measure how

many of the best test cases are preserved at each test case selection goal. Instead of choosing

a limiting number of most effective test cases (for example, 1), all test cases that achieve the

biggest number of faults in the suite of a given case study were considered. Therefore, the

number of most effective test cases is dependent on the case study.

A.4 Case Studies Results 146

For each one of the figures presented below, the x-axis represents the intended percentage

of test cases to be selected and the y-axis represents the minimum number and also the aver-

age number of most effective test cases included in the selection. Again, for each selection

goal, the strategies were performed 100 times.

For Case Study 1 (Figure A.11) with 4 most effective test cases out of 23, the random

approach is more effective in the average case. This can be explained by the fact that the most

effective test cases, in this case study, are very similar (diverging by 1-4 transitions only). The

similarity approach constraints its search space by eliminating redundancy according to each

selection goal, whereas the random approach freely chooses among all possible test cases

for each selection goal. Therefore, the most effective test cases for Case Study 1 cannot be

included in the resulting test suite when the similarity strategy is applied. However, note that,

in the worst case (considering the minimum number of the most effective test cases selected

at one or more of the 100 trials), the similarity approaches presented a better performance,

from 75% of selection goal at least one of them is included.

Figure A.11: Average and minimum number of the most effective test cases that are included

for each test case selection goal - Case Study 1.

It is also important to remark that this is the only case study where the curves of the

similarity strategy for the average and the minimum value are different. The reason is that

the study has similar test cases of the same size. Then random choice is very frequently

applied for choosing the test case to be discarded.

A.4 Case Studies Results 147

For Case Study 2 (Figure A.12), with 33 most effective test cases out of 66, the similarity

approach is clearly more effective, even in the worst case that coincides with the average one.

In this case, the most effective test cases are completely different. Therefore, the similarity

approach, by eliminating redundancy and keeping the biggest test case, selected all 33 most

effective test cases from 50% of selection goal.

Figure A.12: Average and minimum number of the most effective test cases that are included

for each test case selection goal - Case Study 2.

Finally, for Case Study 3 (Figure A.13), with 4 out of 130 most effective test cases, the

random approach is more effective in the average case, from 25% of test selection goal. As

Case Study 1, the most effective test cases are similar (diverging by 4-6 transitions), but

not as much as in Case Study 1. Therefore, there is a gain for the similarity approach up

to 20%. From this point on, the random strategy gets more chance to select the 4 out of

130. Nevertheless, note that the similarity approach (both average and minimum number) is

more effective than the worst case for the random strategy, guaranteeing that, at least one is

selected for each selection goal, even the more restricted ones.

Regarding the questions put in Section A.3.1:

(i) Is test case selection based on the similarity strategy more effective than random se-

lection regarding this criterion? Concerning detection of all most effective test cases,

the similarity strategy is more effective whenever the most effective test cases are not

so similar since the strategy focus on selecting the most different ones (Case Study

2). Nevertheless, if the worst case for random selection is considered, similarity can

A.4 Case Studies Results 148

Figure A.13: Average and minimum number of the most effective test cases that are included

for each test case selection goal - Case Study 3.

be more effective since this strategy is more deterministic and has shorter variations

on results (Case Studies 1 and 3). Indeed, from Figure A.14, note that the similarity

approach is more likely to select at least one of the most effective test cases for all

selection goals. Furthermore, for severe selection percentages such as the ones from 5

to 20%, similarity can present better results than random selection (Case Study 3).

(ii) What are the limitations of the similarity strategy? The limitations of the strategy

are on: a) the criteria for discarding test cases; and b) the similarity degree of the

most effective test cases. The criteria adopted in this paper for discarding test cases

(the biggest test case) may not be directly related to the criteria for choosing the most

effective test cases (here are the ones that cover the biggest number of faults). In

this situation, the strategy is not precisely guiding the choice towards the goal and the

results may not be reasonable unless the most effective test cases are not similar. In

this case, the similarity strategy will preserve them depending on the selection goal.

(iii) In which circumstances is it more advisable to apply each strategy? The similarity

strategy is recommended whenever the criterion for defining the most effective test

cases can influence or is related to the criterion for selecting the test cases to be dis-

carded. If the former are semantics ones, then one possibility is to prioritise test cases,

for instance, following the approach proposed by Bertolino et al. [6]. The random

A.5 Case Studies - General Remarks 149

approach is more recommended otherwise, however, to avoid the worst case, it should

be applied several times. If a guarantee that at least one most effective test case is

preserved is important, than the similarity strategy is recommended.

Figure A.14: Average number of the times (out of 100 executions of each strategy) at least

one of most effective test cases is selected in all case studies for each test case selection goal.

A.5 Case Studies - General Remarks

Concerning transition-based coverage, for the case studies conducted, the similarity ap-

proach can be more effective than the random strategy. There are considerable advantages

from 20% of test case selection goal (see Figures A.5 and A.6).

Even for very restrict selection goals such as 5%, the strategy can be more effective. Full

all-transitions and all-transition-pairs is only achieved by the similarity approach.

Concerning fault coverage, for the cases studies conducted, the similarity approach has

also a superior performance. For all case studies, the highest coverage is only achieved by the

similarity approach. There are also considerable advantages from 20% of test case selection

goal. However, the random choice had a better performance for Case Study 1 with test case

selection goal of less than or equal to 20%. The similarity strategy excludes the most similar

test cases, this means that for cases where it is necessary to exclude several test cases, the

strategy begins well, but the last test cases that will be excluded, usually, does not have

similarity, so the criteria to be used is the path length. Moreover, the criterion for discarding

A.5 Case Studies - General Remarks 150

similar test cases can also influence the results by guiding the strategy for selecting more

faults.

Even though this is not always more effective when detecting all of the most effective

test cases, the similarity approach can be more precise in detecting at least one of them. The

limitations for selecting all of them occur when their degree of similarity do not allow them

to be included in the selected test suite such as for Case Study 1 (see similarity of faults on

Table A.4) and Case Study 3.

It is important to remark that test cases and faults are considered to be equally relevant.

Different results may be reached if experiments are conducted by considering a number of

attributes that may add value to specific test cases and also to the faults. Also, the similarity

approach opts for keeping the biggest test case in the test suite for the sake of improving

transition coverage. This decision is closely related to the fact that the focus of this work is on

functional testing, where thorough coverage is critical. However, it may also be interesting

to investigate the strategy when the smallest test case is kept.

Another key point to consider when analysing the results is the number of faults defined

in the fault models. However, the number of faults do not influence on the results obtained:

increasing or decreasing the number of faults has a very similar effect on both strategies. To

confirm this claim, an experiment was performed aiming at observing the behaviour of both

strategies when from a few to several faults are incrementally included in the model. The

results of this experiment (that are not included in this paper for the sake of space) show

that the number of faults does not bias the results. However, with more faults, clarity of the

results is improved.

Regarding computational complexity, the test case generation algorithm has exponential

complexity, but state space explosion is handled by requiring only all-one-loop-paths cover-

age. The selection algorithm, the main focus of this paper, is O(n3), where n is the number

of test cases. For the case studies conducted, the time consumed for each algorithm (gener-

ation and similarity selection) considering one execution of the similarity strategy with 50%

selection goal is presented in Table A.5. As mentioned before, the suites of these case studies

are for manual test execution. By considering that the average time for executing a test case

is 2 minutes, it would roughly take 48 minutes, 132 minutes, and 260 minutes for executing

100% of the test cases for Case Study 1, 2 and 3, respectively. By selecting 50% of the test

A.5 Case Studies - General Remarks 151

Table A.5: Execution time for full test case generation and also one execution of similarity

selection algorithms with 50% test case selection goal.

Case Study 1 Case Study 2 Case Study 3

Test Case Generation 16ms 15ms 32ms

Similarity Strategy (Computing the Similarity Matrix) 16ms 110ms 484ms

Similarity Strategy (Selecting Test Cases) 0ms 0ms 31ms

Total 30ms 125ms 547ms

cases, half of the time is saved with only an additional test selection time of 32ms, 125ms,

and 547ms for Case Study 1, 2 and 3, respectively. Obviously, in practice the complexity of

test execution grows with the size of the test suite. Also, test selection may require further

analysis, for instance, running the selection algorithm more than once. Therefore, there are

other gains and losses to be considered than only counting the exact time for executing each

test case. Nevertheless, the difference on the magnitude of the numbers points out that the

similarity strategy can be practical and indeed improve test productivity and reliability.

Appendix B

LTS Generator

This Appendix presents the generator that was implemented to generate the inputs - LTS

models - for our experiments. The goal of this generator is to generate different LTS models

using a specific configuration. This configuration considers:

• Depth: The depth of the LTS. It is calculated by consider the biggest path (from initial

state to final state - without loops);

• Number of Loops: One loop is an edge that goes back to any prior state or to itself;

• Number of Forks: A fork is a state with more than one outgoing transitions;

• Number of Joins: A join is a state with more than one incoming transitions.

Loops, forks and joins can add redundancy in an LTS model. The intention is to construct

different LTS models that contains the specified configuration. The steps to construct the LTS

models can be seen in Algorithm 4.

The inputs of this algorithm are: the number of LTS models that will be generated; and

the configuration. The configuration is a number for each of the following elements: Depth,

number of loops, number of joins, and number of forks.

Firstly, an initial sequence is generated following the depth (line 1) constraint. For

example, if the depth is 3, the initial sequence has 4 states (0, 1, 2, 3) and 3 transitions

(0 to 1, 1 to 2 and 2 to 3). The next step is to aggregate the new structures to the ini-

tial sequence (lines 2 - 11). For this, all structures are placed into a list (structures),

e.g. if NumberOfLoops = 2, NumberOfJoins = 1, NumberOfForks = 3, then

152

153

input : NumberOfLTSModels, Depth, NumberOfLoops, NumberOfJoins, NumberOfForks

output: LTSModels

1 buildSequenceOfTranstions(depth);

2 structures = getStructuralPatterns(NumberOfLoops, NumberOfJoins, NumberOfForks);

3 shuffle(structures);

4 for each structure:structures do

5 switch structure do

6 case join

7 putAJoin(depth);

8 case fork

9 putAFork(depth);

10 case loop

11 putALoop(depth);

Algorithm 4: LTS Generator - Algorithm

structures = {loop, loop, join, fork, fork, fork} (line 2). These structures are shuffled

(line 3) to increase the diversity of the generated LTS models, since aggregating these struc-

tures in different orders, increases the probability of generating different LTS models.

After shuffling the structures, each structure is aggregated to an actual LTS, observing

some constraining rules:

• Depth: It is not allowed to aggregate any structure that violates the maximum depth;

• Join: Two states are randomly chosen, and these states can not be adjacent. From each

of these state, one new transition is created, both going to the new state (the joining

state);

• Fork - A state is randomly chosen, and two new transitions (and states) are created,

outgoing from the chosen state;

• Loop - Two states are chosen randomly, however the loop must be placed from the

deeper state to other state selected.

Appendix C

Experiment - Test Suite Reduction

This Appendix shows the comparison among the strategies (G, GE, GRE and H). The vari-

ables are:

• Dependent: The Reduced Test Suite Size (RTSS).

• Independent: The test requirement percentage; the configuration chosen for the depth

and amount of structures (loops, forks and joins) in the objects; and the strategies for

test case selection (factor). For this factor, there are 5 levels: G, GE, GRE, H and

Dissimilarity (DSim).

The experiment definition is formalized as following:

• A null hypothesis (H0) - RTSSG = RTSSGE = RTSSGRE = RTSSH : All tech-

niques have a similar behavior in relation to the reduced test suite size;

• An alternative hypothesis (H1) - RTSSG 6= RTSSGE 6= RTSSGRE 6= RTSSH : All

techniques have a different behavior in relation to the reduced test suite size.

Each technique was executed 200 times. During the analysis we considered a confidence

level of 95% (i.e. a significance level - α - of 0.05). The first step is to analyze if the obtained

data, for each strategy, present a normal distribution. For this, we applied the Anderson-

Darling normality test, using the Minitab tool1. The results can be seen in Figures C.3, C.2,

C.1 and C.4.

1http://www.minitab.com/

154

155

Figure C.1: Anderson-Darling normality test - GRE

Figure C.2: Anderson-Darling normality test - GE

Observe that all p − values are lower than the significance level (α = 0, 05), then the

data do not show a normal distribution. Thus, it is required to apply a non-parametric tests.

Since, there is only 1 factor and more than 2 treatments, a Kruskal-Wallis is applied to check

the null hypothesis.

156

Figure C.3: Anderson-Darling normality test - G

Figure C.4: Anderson-Darling normality test - H

The sample medians for the four treatments (G, GE, GRE, H) were calculated and are

the equal: 4.000.

The test statistic (H) had a p − value of 0.881. Since the p − value is higher than the

significance level (α = 0, 05), the null hypothesis can not be rejected. In other words, the

obtained results, from the strategies, using a confidence level of 95%, indicate that G, GE,

157

Table C.1: Kruskal-Wallis Test - G, GE, GRE, H

Factor N Median Ave Rank Z

G 200 4.000 396.6 -0.27

GE 200 4.000 396.6 -0.27

GRE 200 4.000 396.6 -0.27

H 200 4.000 412.1 0.82

Overall 800 400,5

H = 0.67 DF = 3 P = 0.881

GRE and H can not be considered different.

	Introdução
	Visão Geral da Tese
	Metodologia
	Estrutura da Tese

	Fundamentação Teórica
	Software Testing
	Test Case
	Testing Methods
	Level of Testing

	Model-Based Testing
	Models
	Activities of MBT

	Coverage criteria
	Test Case Selection
	Test Suite Reduction
	Test Case Prioritization
	Value Based approach
	Experimentation in Software Engineering
	Scientific Methods in Software Engineering
	Experiment

	Statistical Analysis
	Descriptive Statistic
	Graphical Visualization
	Hypothesis Testing

	Concluding Remarks

	Similaridade
	Redundancy
	Similarity Function
	Similarity Matrix
	Concluding Remarks

	Seleção baseada em Similaridade
	Definition
	Example - Similarity Selection
	Case Study
	Application
	Case Study - Preparation
	Results of the Case Study
	Concluding Remarks - Case Study

	Experiment - Selection
	Definition
	Planning
	Operation
	Analysis and Interpretation
	Concluding Remarks - Experiment

	Concluding Remarks

	Similaridade Balanceada (WSA)
	Definition
	Example - WSA
	Example - Description

	Case Study
	Applications
	Metrics
	Case Study - Preparation
	Results of the Case Study

	Concluding Remarks

	Redução baseada em Dissimilaridade
	Definition
	Example - Dissimilarity
	Case Study
	Application
	Case Study - Preparation
	Results of the Case Study

	Experiment - Reduction
	Definition
	Planning
	Operation
	Analysis and Interpretation
	Concluding Remarks - Experiment

	Concluding Remarks

	Analisando Redução baseada na Ordem de Seleção
	Motivation
	General definition
	Case Studies
	Case Studies Design
	Results
	Threats to validity

	Discussion
	Concluding Remarks

	Revisão de Trabalhos em Seleção de Casos de Teste e Redução de Suítes de Teste
	Review of Work on Test Case Selection
	Review of Work on Test Suite Reduction
	Concluding Remarks

	Conclusões e Trabalhos Futuros
	Conclusions
	Future works

	Similarity based Selection - Case Studies
	Introduction
	Overview of Case Study Applications
	Overview of Case Studies Definition
	Evaluation Criteria
	Test Case Selection Goals
	Fault Model

	Case Studies Results
	Transition Based Coverage
	Fault-based Coverage

	Case Studies - General Remarks

	LTS Generator
	Experiment - Test Suite Reduction
	Introduction
	Overview of the Thesis
	Methodology
	Outline of the Thesis

	Background
	Software Testing
	Test Case
	Testing Methods
	Level of Testing

	Model-Based Testing
	Models
	Activities of MBT

	Coverage criteria
	Test Case Selection
	Test Suite Reduction
	Test Case Prioritization
	Value Based approach
	Experimentation in Software Engineering
	Scientific Methods in Software Engineering
	Experiment

	Statistical Analysis
	Descriptive Statistic
	Graphical Visualization
	Hypothesis Testing

	Concluding Remarks

	Similarity
	Redundancy
	Similarity Function
	Similarity Matrix
	Concluding Remarks

	Similarity-based Selection
	Definition
	Example - Similarity Selection
	Case Study
	Application
	Case Study - Preparation
	Results of the Case Study
	Concluding Remarks - Case Study

	Experiment - Selection
	Definition
	Planning
	Operation
	Analysis and Interpretation
	Concluding Remarks - Experiment

	Concluding Remarks

	Weighted-Similarity Approach (WSA)
	Definition
	Example - WSA
	Example - Description

	Case Study
	Applications
	Metrics
	Case Study - Preparation
	Results of the Case Study

	Concluding Remarks

	Dissimilarity-based Reduction
	Definition
	Example - Dissimilarity
	Case Study
	Application
	Case Study - Preparation
	Results of the Case Study

	Experiment - Reduction
	Definition
	Planning
	Operation
	Analysis and Interpretation
	Concluding Remarks - Experiment

	Concluding Remarks

	Analysing Reduction based on Selection Order
	Motivation
	General definition
	Case Studies
	Case Studies Design
	Results
	Threats to validity

	Discussion
	Concluding Remarks

	Review of Work on Test Case Selection and Test Suite Reduction
	Review of Work on Test Case Selection
	Review of Work on Test Suite Reduction
	Concluding Remarks

	Conclusions and Future Works
	Conclusions
	Future works

	Similarity based Selection - Case Studies
	Introduction
	Overview of Case Study Applications
	Overview of Case Studies Definition
	Evaluation Criteria
	Test Case Selection Goals
	Fault Model

	Case Studies Results
	Transition Based Coverage
	Fault-based Coverage

	Case Studies - General Remarks

	LTS Generator
	Experiment - Test Suite Reduction

