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Resumo

Aprender a programar é um desafio enfrentado pelos alunos na maioria dos cursos de in-

trodução à programação. Por este motivo, diversas ferramentas têm sido propostas com o

propósito de ajudar os alunos a superar dificuldades conceituais durante o seu aprendizado.

Existem ferramentas que utilizam algoritmos de agrupamento e técnicas de reparo de pro-

gramas para gerar feedback personalizado para os alunos. Em contraste, alguns professores

optam por apresentar aos alunos alguma ferramenta de visualização de programas com o

intuito de ajudá-los a entender a execução dinâmica de um código-fonte. Estas ferramentas

são utilizadas para auxiliar alunos na obtenção de soluções para problemas de programação.

No entanto, devido à limitações nas avaliações, ainda não está claro o quão efetivo é o feed-

back fornecido por elas. Neste estudo, analisamos a eficácia de duas ferramentas, uma de

geração de dicas personalizadas e outra de visualização de programas. Para tanto, realizamos

um estudo de usuários em que os alunos, auxiliados por essas ferramentas, implementaram

soluções para três problemas de programação. Nossos resultados mostram que dicas person-

alizadas podem reduzir significativamente o esforço do aluno para obter soluções corretas.

Além disso, dicas personalizadas podem fornecer aos alunos uma compreensão da solução

de problemas semelhante ao uso de casos de teste. Em contrapartida, os alunos que usaram a

ferramenta de visualização de programas obtiveram desempenho inferior comparado ao uso

de outras abordagens.
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Abstract

Learning to program is a challenge faced by students in most introductory programming

courses. Recently, several tools have been proposed in order to provide guidance and help

students overcome conceptual difficulties in programming education. Some tools leverage

clustering algorithms and program repair techniques to automatically generate personalized

hints for students’ incorrect programs. In contrast, some teachers choose to present stu-

dents with program visualization tools to help them understand the dynamic execution of a

source code. These tools are used to help students get correct solutions for programming

assignments. However, due to limitations in assessments, it is still unclear how effective

the feedback provided by these tools is. In this study, we analyzed the effectiveness of a

tool for generating personalized hints and a tool for visualizing programs. To do so, we

conducted a user study in which students, assisted by these tools, implemented solutions

for three programming problems. Our results show that personalized hints can significantly

reduce student’s effort to get correct solutions. In addition, personalized hints can provide

students with an understanding of problem solving similar to when using test cases. On the

other hand, students who used the program visualization tool got lower performance than

using other approaches.
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Chapter 1

Introduction

Learning to program is a challenge faced by students in most introductory programming

courses [22]. In online and face-to-face classroom, students need to put the acquired knowl-

edge into practice through practical programming assignments. To assist in these activities,

teachers need to provide guidance and assistance, especially to novice learners who are get-

ting their first programming experiences and need to overcome conceptual difficulties [4].

Feedback from teachers can help students get unstuck and correct their misconceptions

[5], [13]. However, personalized attention does not scale easily, especially in massive pro-

gramming classrooms [6], [9]. One of the most common practices used by teachers to pro-

vide feedback at scale is to present the student with a test-case suite. In this way, students

can run their programs against test cases and receive reports from failing tests. However, it

can be difficult for a novice programmer to map failed test results back to a specific fault in

their code.

Recently, several tools have been proposed to support programming education [11], [37],

[34], [14], [28], [18], [7], [24], [12]. These tools use different approaches to generate, scale

and personalize feedback to help teachers and students in programming classes. For exam-

ple, CLARA [11] can automatically repair incorrect programs, indicate the location of bugs

(e.g., line number), and provide an exactly textual description of required changes. The ap-

proach used by CLARA consists of clustering the existing solutions for a given assignment;

selecting a target program from each cluster; and executing a trace-based repair procedure to

repair new incorrect attempts. The PYTHON TUTOR [12] allows users to step forwards and

backwards through execution to visualize the run-time state of a program’s data structures.

1



1.1 Problem 2

The approach used by this tool is to analyze an input program under the supervision of the

standard Python debugger module (bdb), which stops execution after every executed line and

records the program’s run-time state. Using the PYTHON TUTOR, students can debug their

programs and, as a result, they can fix bugs and get correct solutions for programming as-

signments. These types of tools are often used in programming education and can be useful

in reducing the teacher’s effort to provide feedback.

1.1 Problem

Feedback tools are widely used in introductory programming classes to assist students in

their assignments [10]. However, it is still unclear how effective these tools are, especially

when the user is a novice programmer. The reason for the lack of clarity on this subject

is due to the limitations in evaluations of these tools. The most common limitations found

in papers are related to: (1) the lack of user studies, especially with beginners, e.g., [24],

[31]; (2) fail to get insight into learning improvement or skill acquisition, e.g., [11], [34]; (3)

the lack of comparative studies with other existing tools, e.g., [14], [20]; and (4) focus only

on evaluating the tool’s performance in generating hints, but does not evaluate its usefulness,

e.g., [7], [28]. Therefore, it is necessary to investigate to what extent the feedback approaches

provided by these tools can be effective.

1.2 Solution

In this study, we evaluated the effectiveness of CLARA and PYTHON TUTOR in assisting

novice programmers in problem solving. Our goal is to analyze whether using these tools

students can solve programming assignments better than when using only test-case suites.

We selected CLARA for our evaluation because it is a state-of-the-art tool for automatic hints

generation. This tool can generate a large number of repairs without any manual interven-

tion, can perform complicated repairs, can be used in an interactive teaching setting, and

generates good quality repairs in a large percentage of cases. On the other hand, we selected

PYTHON TUTOR because it is widely used in programming classes to visualize program ex-

ecution. It is a free, open-source, web-based tool following in the long tradition of program
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visualizations for Computer Science education. Moreover, it is the only Python program

visualization tool that runs within a web browser without any required software or plugin

installation.

In our evaluation, we recruited 42 undergraduate students and asked them to implement

Python solutions for three classic problems. For each problem, students were able to use

CLARA or PYTHON TUTOR, and a test-case suite to assist them in the resolution process.

Subsequently, in order to evaluate the impact of the tools on the student’s understanding of

how to solve the problems, we proposed a post-test in which students should review four

solutions for a specific problem and indicate whether each solution is correct or not. Specif-

ically, we analyzed the effectiveness of these tools with respect to three aspects: (i) whether

the tool leads students to faster results when compared to test cases alone; (ii) what is the

impact of the tool on the student’s understanding of how to solve the problem; (iii) whether

the tool is more useful than using test cases alone.

1.3 Evaluation

Our results show that, when considering getting correct solutions faster, CLARA can sig-

nificantly reduce the student’s effort, in number of attempts, compared to PYTHON TUTOR

and TEST CASES. In the post-test results, we did not find a significant difference compar-

ing the performance of students who used CLARA (score of 2.4 on average) with those who

used only test cases (score of 2.3 on average). This may mean that students who used these

tools understood problem solving at the same level. However, students who used PYTHON

TUTOR got lower post-test performance than using CLARA or TEST CASES (score of 1.8

on average). This highlights a difficulty for novice programmers in performing debugging

activities. Finally, students scored CLARA (score of 5.9 on average) as more useful than test

cases (score of 5.3 on average) to fix bugs in their programs. They mentioned that finding

bugs using only test cases is difficult, but using CLARA, they can figure out where the bugs

are and immediately reflect on the hints provided.
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1.4 Contribution

In summary, this master thesis proposes an evaluation of feedback tools in introductory pro-

gramming classes. We conducted user studies with novice programming students to evaluate

the effectiveness of a tool for generating personalized hints and a program visualization tool.

There is a lack of studies evaluating and comparing different feedback approaches. This

work contributes with quantitative and qualitative results of a controlled experiment with

42 undergraduate students where we compare CLARA, PYTHON TUTOR, and TEST CASES

[26]. Our results show that more specific feedback can benefit beginner students’ program-

ming learning. However, TEST CASES should not be excluded. On the other hand, teachers

should be careful when providing beginning students with debugging tools such as PYTHON

TUTOR. These results contribute to studies on the effect of feedback tools in programming

education.

1.5 Organization

The following chapters are organized as follows. In Chapter 2, we present the background

needed to better understand this work. We describe the concepts related to formative feed-

back and present the feedback tools covered in this study. Chapter 3 describes in detail the

experiment conducted with students from introductory programming classes. We present

the methodology used, the results obtained, discussions and threats to validity. Finally, we

present the works related to ours (Chapter 4), the concluding remarks (Chapter 5), and the

appendices (A and B).



Chapter 2

Background

In this chapter, we present an overview of the concepts needed to better understand this

work. Section 2.1 presents the definition of formative feedback and how it is classified.

Next, Section 2.2 describes in more detail the feedback tools covered in our study.

2.1 Formative Feedback

Shute et al. [30] define and classify feedback through an extensive literature review on

this subject. In their work, formative feedback is defined as information communicated to

the learner that is intended to modify his or her thinking or behavior for the purpose of

improving learning. In the educational context, feedback is considered crucial for improving

the acquisition of knowledge and skills. The following describes the types of feedback and

when they should be used.

Directive and Facilitative Feedback

There are two main functions of feedback: directive and facilitative. Directive feedback is

the one which tells the student what needs to be fixed or revised. Such feedback tends to be

more specific compared to facilitative feedback, which provides comments and suggestions

to help guide students in their own revision and conceptualization. Novices or struggling

students need support and explicit guidance during the learning process. For these students,

more directive feedback is recommended. However, for high-achieving learners, facilita-

tive feedback is more appropriate. High-achieving or more motivated students benefit from

5



2.1 Formative Feedback 6

feedback that challenges them, such as hints, cues, and prompts.

Specific Feedback

Feedback specificity is defined as the level of information presented in feedback messages.

In other words, specific (or elaborated) feedback provides information about particular re-

sponses or behaviors beyond their accuracy and tends to be more directive than facilitative.

Several researchers have reported that feedback is significantly more effective when it pro-

vides details of how to improve the answer rather than just indicating whether the student’s

work is correct or not. For students with low learning orientation, more specific feedback

is recommended. If students are oriented more toward performance (trying to please others)

and less toward learning (trying to achieve an academic goal), specific and goal-oriented

feedback should be provided.

Verification and Elaboration Feedback

Effective feedback provides the learner with two types of information: verification and elab-

oration. Verification is defined as the simple judgment of whether an answer is correct,

and elaboration is the informational aspect of the message, providing relevant cues to guide

the learner toward a correct answer. Researchers appear to be converging toward the view

that effective feedback should include elements of both verification and elaboration. High-

achieving students learn more efficiently if permitted to proceed at their own pace. For these

students, verification feedback may be sufficient. This type of feedback provides the level of

information most helpful in this endeavor. However, for low-achieving learners, the correct

response and some kind of elaboration feedback is recommended. Low-achieving students

should be given a concrete and directive form of feedback support.

Scaffolding Feedback

Scaffolding enables learners to do more advanced activities and to engage in more advanced

thinking and problem solving than they could without such help. Eventually, high-level func-

tions are gradually turned over to the students as the teacher (or computer system) removes

the scaffolding and fades away. Scaffolding feedback should be considered for low-achieving
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learners. Providing early support and structure for low-achieving students (or those with low

self-efficacy) can improve learning and performance.

Delayed and Immediate Feedback

The timing of feedback literature concerns whether feedback should be delivered immedi-

ately or delayed. Immediately may be defined as right after a student has responded to an

item or problem or, in the case of summative feedback, right after a quiz or test has been

completed. Delayed is usually defined relative to immediate, and such feedback may occur

minutes, hours, weeks, or longer after the completion of some task or test. High-achieving

students may construe a moderate or difficult task as relatively easy and hence benefit by

delayed feedback. However, for low-achieving learners, more immediate feedback is recom-

mended. These students need the support of immediate feedback in learning new tasks they

may find difficult.

2.2 Feedback Tools

The following describes the feedback tools covered in our study. Section 2.2.1 describes

how test cases suites are used as feedback. Next, we present CLARA, an automated feedback

generation tool (Section 2.2.2), and PYTHON TUTOR, an interactive visual debugging tool

(Section 2.2.3). Table 2.1 summarizes the tools evaluated in this study and their feedback

characteristics.

Table 2.1: Summary of tools by type of feedback provided by them.

TOOLS AND THEIR FEEDBACK CHARACTERISTICS

FUNCTION SPECIFICITY INFORMATION TIMING

TEST CASES facilitative low verification immediate

CLARA directive high elaboration immediate

PYTHON TUTOR facilitative low elaboration immediate
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2.2.1 Test Case Suites

It is one of the most common practices used by teachers to provide feedback in program-

ming classes. Generally, the teacher provides a set of test cases that describes the expected

behavior of student programs for a given assignment. The student program is run on a set of

test cases and the failing test cases are reported back to the student. Thus, students can check

whether their programs are returning the expected results. However, the feedback of failing

test cases is not ideal; especially for beginner programmers who find it difficult to map the

failing test cases to faults in their code. This is reflected by the number of students who post

their submissions on the discussion boards to seek help from instructors and other students

after struggling for hours to correct the mistakes themselves [31].

The feedback generated by test cases consists of indicating to which inputs a given pro-

gram does not return the expected result. For example, consider a student program that

should indicate whether a number is prime or not, however, the program does not return the

expected result when the input value equals seven. Feedback based on test cases indicates

which input value caused the test failure, as well as the result obtained and the expected

result. Figure 2.1 presents an example of feedback based on the failure of a test case. This

example shows that the is_prime_number function did not return the expected result when

the input value was equal to seven. In addition, it indicates that the expected result was True,

but the result obtained was False.

Test Result

>>>	is_prime_number(7)
>>>	Expected:	True
>>>	But	got:	False

Figure 2.1: Example of a test case result.

Feedback based on TEST CASES is classified as facilitative, non-specific, verifica-

tion, and immediate.
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2.2.2 CLARA

It is a fully automated program repair tool for introductory programming assignments. The

key idea of CLARA’s approach is to use the wisdom of the crowd: It uses the existing correct

student solutions to repair the new incorrect student attempts. This tool explores the fact that

MOOC courses already have tens of thousands of existing student attempts; this was already

noticed by Drummond et al. [8].

Figure 2.2: High-level overview of CLARA’s approach.

Figure 2.2 gives a high-level overview of CLARA’s approach: (A) For a given program-

ming assignment, it automatically clusters the correct student solutions (A-F in the figure),

based on a notion of dynamic equivalence; (B) Given an incorrect student attempt (G in the

figure) CLARA runs a repair algorithm against all clusters, and then selects a minimal repair

(R2 in the figure) from the generated repair candidates (R1-R3 in the figure). The repair

algorithm uses expressions from multiple correct solutions to generate a repair.

Intuitively, the clustering algorithm groups together similar correct solutions. The repair

algorithm can be seen as a generalization of the clustering approach of correct solutions

to incorrect attempts. The key motivation behind this approach is as follows: to help the

student, with an incorrect attempt, CLARA’s approach finds the set of most similar correct

solutions, written by other students, and generates the smallest modifications that get the

student to a correct solution.

As a result, CLARA can synthesize repairs to the student’s incorrect programs, indicate

the location of bugs (e.g., line number), and provide an exact textual description of the re-

quired changes. For example, consider the Source Code 2.1 as an incorrect attempt for the
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Sum of Squares problem:

Source Code 2.1: Example of an incorrect implementation for the Sum of Squares problem.

1 def s u m _ o f _ s q u a r e s ( n ) :

2 t o t a l = 1

3 f o r i in range ( n ) :

4 t o t a l = t o t a l + i ∗2

5 re turn t o t a l

In this example, CLARA is able to identify three bugs in the given program as input. The

first bug can be found in the assignment of the variable total at line 2. The second bug is

in the parameters of the range iterative expression at line 3. Finally, the third bug refers to

updating the total variable at line 4. As feedback, CLARA synthesizes the following repairs

that describe exactly what changes are needed:

• In assignment at line 2, change total = 1 to total = 0.

• In iterator expression at line 3, change range(n) to range(1, n+1).

• In assignment at line 4, change total = total + i*2 to total = total + i**2.

In evaluation conducted by Gulwani et al. [11], CLARA was able to repair 97% of student

attempts, in 3.2s on average (on 12,973 correct and 4,293 incorrect student attempts); the

authors studied the quality of the generated repairs by manual inspection and found that 81%

of the generated repairs are of good-quality and the size of the generated repair matches the

size of the required changes to the student’s program.

Feedback provided by CLARA is classified as directive, specific, elaboration and

immediate.

2.2.3 Online Python Tutor

It is a web-based program visualization tool for Python. This tool allows students to step

forwards and backwards through execution to view the runtime state of a program’s data
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structures. Students can use these features to debug their programs. As a consequence, they

can fix bugs, and get correct solutions to programming assignments.

The PYTHON TUTOR backend takes the source code of a Python program as input and

produces an execution trace as output. The backend executes the input program under su-

pervision of the standard Python debugger module (bdb), which stops execution after every

executed line and records the program’s runtime state. The trace is an ordered list of execu-

tion points, where each point contains the state right before a line of code is about to execute,

including: (1) The line number of the line that is about to execute; (2) the instruction type

(ordinary single step, exception, function call, or function return); (3) a map of global vari-

able names to their current values at this execution point; (4) an ordered list of stack frames,

where each frame contains a map of local variable names to current values; (5) the current

state of the heap; and (6) the program’s output up to this execution point.

The following describes each labeled component of the PYTHON TUTOR interface

(shown in Figure 2.3) and its respective functionality:

• (A) The source code display shows the program that is being visualized. A red arrow

in the left margin points to the next line to be executed (line 4 in this example). A

light green arrow points to the line that has just executed, which helps users track

non-contiguous control flow (e.g., function calls).

• (B) A slider bar and text indicate the current execution point being visualized (in this

example, step 12 of 17). Each point represents a single executed line. The user can

click on or drag the mouse over the slider bar to jump to a particular point or use the

VCR-style navigation buttons to step forwards and backwards over executed lines.

• (C) The frames pane shows global variables and stack frames at the current execution

point, with the stack growing downward. Each frame shows the function name and a

list of local variables. Each variable’s value is an arrow that points to a heap object.

• (D) The objects pane shows visual representations of Python objects and their pointer

references to one another. Online Python Tutor renders all compound data types nec-

essary for teaching CS1, including list, tuple, set, dict, class, object instance, and

closures.
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Figure 2.3: PYTHON TUTOR Graphical User Interface (GUI).

Feedback provided by PYTHON TUTOR is classified as facilitative, non-specific,

elaboration and immediate.



Chapter 3

Evaluating Feedback Tools in

Introductory Programming Classes

In this chapter, we explain in detail our study design. First, we describe our goals (Section

3.1), the background of the participants (Section 3.2), and the method used in our experi-

ments (Section 3.3). Then, Sections 3.4, 3.5 and 3.6 respectively describe the programming

problems covered, the post-test and post-survey applied to participants. Finally, we present

our results (Section 3.7), a discussion about them (Section 3.8), and some threats to validity

(Section 3.9).

3.1 Study Definition

The goal of our experiment is to evaluate the effectiveness of CLARA and PYTHON TUTOR

in assisting novice programmers in problem solving. We are interested in analyzing whether

using these tools students can solve programming assignments better than when using only

TEST CASES. For this purpose, we address the following research questions:

• RQ1: Do students using CLARA or PYTHON TUTOR solve problems faster than

using only TEST CASES? We are interested in analyzing whether CLARA or PYTHON

TUTOR can reduce the number of attempts needed to get a correct solution. This can

be an indicator that the student is actually being helped by the tool.

13
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• RQ2: What is the impact of using the tools in terms of understanding problem solving

when compared to using TEST CASES alone? We are interested in analyzing whether

CLARA or PYTHON TUTOR can impact the student’s understanding of how to solve

the problem. It is important to investigate whether the tool is harming or benefiting

student learning.

• RQ3: Do students find CLARA or PYTHON TUTOR more useful to fix bugs than TEST

CASES? Given the purposes of each tool, we are interested in finding out which ap-

proach students find most useful in bug fixing.

3.2 Participants

We recruited 42 undergraduate students from UFCG and IFPB introductory programming

classes. All participants are from Computer Science or Engineering courses and are getting

their first programming experiences with the Python language. They have knowledge in

assigning variables, mathematical and boolean expressions, conditional structures (if / elif

/ else) and iteration using loops (for / while). To participate in this study students signed

a informed consent form (Appendix A: Informed Consent Form). This research was also

approved by the UFCG research ethics committee (Appendix B: Consubstantiated Opinion

of the Research Ethics Committee).

Figure 3.1: Problem description panel in our integration platform.
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In order to enable interaction with the tools, we developed an integration platform where

participants can write their programs and get feedback for incorrect attempts. Our platform

includes a panel to describe the programming assignment (Figure 3.1), a text box to write

the program code (Figure 3.2 - A), a section to show test case results (Figure 3.2 - B), and a

section to present the feedback provided by the tools (Figure 3.2 - C).

Figure 3.2: User interaction panels in our integration platform.

3.3 Method

At the start of each study session, we gave each participant an 8-minute video tutorial on

TEST CASES, CLARA, and PYTHON TUTOR. The tutorial describes the use of each tool and

test cases, and presents a concrete example of solving a factorial problem. Students were

able to follow the tutorial video and also implementing their own factorial solutions. This

assignment was not considered in our analysis. We expected that after the tutorial, students

were able to understand and interpret the feedback provided by the tools and test cases.

Next, we asked students to implement solutions for three programming problems: Sum

of Squares, Prime Numbers, and Fibonacci. We evaluated only three programming problems

because we had a time limitation in the study sections. Participants were able to choose the

order in which problems would be solved, however, we recommend that they begin with the

problem that they find easiest. To provide better leveling of the students, we do not allow

the implementation of recursive algorithms on the problem solutions. For each problem,

participants were asked to implement a solution using one of the following conditions:
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• Condition 1 - They could use only the TEST CASES as assistant;

• Condition 2 - They could use CLARA and TEST CASES as assistants;

• Condition 3 - They could use PYTHON TUTOR and TEST CASES as assistants.

All conditions were randomly assigned to the problems. In addition, the same condition can

not be attributed to different problems of the same participant.

We presented the participants with a description of each problem and asked them to solve

everything within class time (two hours). Whenever the participant submits an incorrect

attempt, the assigned tool will provide some feedback to help with the solution. Participants

were able to submit as many times as needed until a correct solution was reached. We also

did not allow them to run their programs on other platforms beyond our integration platform.

To verify that a solution is correct, our platform runs the code against a test suite related to

the problem.

Once the participants got a correct solution, they should do a post-test related to the

problem solved. The post-test consists of four solutions to the same problem. The participant

needs to review the solutions and indicate whether each solution is correct or not. Finally,

we conducted a post-survey where participants could rate which tools they found most useful

for fixing bugs.

3.4 Programming Problems

The programming problems used in this study were selected from exercise repositories of in-

troductory programming courses. We chose to select problems that are common in program-

ming assignment lists that have submission data available (correct and incorrect programs).

These problems explore programming concepts such as variable assignment, mathematical

expressions, conditional commands, and loops. The following describes each programming

problem proposed to participants in our implementation challenge.

Sum of Squares

Write a program that receives a positive integer n as input and returns the sum of the squares

of the first n terms in a sequence: 12 + 22 + 32 + ...+ n
2.
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Examples:

• sum_of_squares(1) = 12 = 1

• sum_of_squares(3) = 12 + 22 + 32 = 14

• sum_of_squares(5) = 12 + 22 + 32 + 42 + 52 = 55

Source Code 3.1: Example of solution for Sum of Squares problem using for iteration loop.

1 def s u m _ o f _ s q u a r e s ( n ) :

2 t o t a l = 0

3 f o r i in range ( 1 , n +1) :

4 t o t a l = t o t a l + i ∗∗2

5 re turn t o t a l

Source Code 3.2: Example of solution for Sum of Squares problem using while iteration

loop.

1 def s u m _ o f _ s q u a r e s ( n ) :

2 t o t a l = 0

3 whi le n >= 1 :

4 t o t a l = t o t a l + ( n ∗∗2)

5 n = n − 1

6 re turn t o t a l

Prime Numbers

Write a program that receives a positive integer n as input and returns True if n is a prime

number, or False otherwise.

Examples:

• is_prime_number(1) = False

• is_prime_number(7) = True

• is_prime_number(10) = False
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Source Code 3.3: Example of solution for Prime Numbers problem using for iteration loop.

1 def i s_p r ime_number ( n ) :

2 c o u n t = 0

3 f o r i in range ( 1 , n +1) :

4 i f n % i == 0 :

5 c o u n t += 1

6 re turn c o u n t == 2

Source Code 3.4: Example of solution for Prime Numbers problem using while iteration

loop.

1 def i s_p r ime_number ( n ) :

2 i = 2

3 whi le n > i :

4 i f n % i == 0 :

5 re turn F a l s e

6 i += 1

7 re turn True and n != 1

Fibonacci

Write a program that receives a positive integer n as input and returns the nth element of the

Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...).

Since some students may not know how the Fibonacci sequence is produced, we pro-

vided the following definition in the problem description: "The Fibonacci sequence is a

set of numbers that starts with a one or a zero, followed by a one, and proceeds based on

the rule that each number is equal to the sum of the preceding two numbers". In addition,

we found that the Fibonacci problem can be very difficult for some students. Therefore,

we provided the following suggestion on how to get started: "Declare in your program two

variables: current = 0 and next_ = 1. From these two variables it is possible to calculate

the following elements of the sequence".
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Examples:

• fibonnaci(0) = [0] = 0

• fibonnaci(2) = [0, 1, 1] = 1

• fibonnaci(6) = [0, 1, 1, 2, 3, 5, 8] = 8

• fibonnaci(7) = [0, 1, 1, 2, 3, 5, 8, 13] = 13

Source Code 3.5: Example of solution for Fibonacci problem using for iteration loop.

1 def f i b o n a c c i ( n ) :

2 c u r r e n t = 0

3 n e x t _ = 1

4 f o r i in range ( n ) :

5 temp = c u r r e n t

6 c u r r e n t = n e x t _

7 n e x t _ = temp + n e x t _

8 re turn c u r r e n t

Source Code 3.6: Example of solution for Fibonacci problem using while iteration loop.

1 def f i b o n a c c i ( n ) :

2 c u r r e n t = 0

3 n e x t _ = 1

4 whi le ( n > 0) :

5 temp = c u r r e n t

6 c u r r e n t = n e x t _

7 n e x t _ = temp + n e x t _

8 n = n − 1

9 re turn c u r r e n t

3.5 Post-test

We proposed a post-test to measure the impact of tools on students’ understanding of how to

solve the problems. The post-test is presented immediately after the student has reached a

correct solution to a problem. For each problem, we collected a set of correct and incorrect

programs, and then we created a data source from them. The programs were obtained from

a pilot study session and also from storage bases of programming assignments.
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A post-test for a specific problem contains four different solutions for it, which may be

correct or incorrect solutions. The proportion of correct/incorrect and selection of solutions

are randomly defined by our platform. It is not possible that the same solutions are presented

in the same post-test. The participant needs to review the solutions and indicate whether each

solution is correct or not (as shown in Figure 3.3). It was not necessary to repair the incorrect

programs. Since we are interested in measuring student‘s understanding based only on their

knowledge, we did not allow participants to run the programs presented in the post-test.

For each correct statement in the post-test, one point is accumulated in the participant’s

score on the problem addressed. As a result of the post-test, a range score of zero to four

is generated to represent the student’s understanding of how to solve a given problem. This

score is associated with the test cases or tool that the participant used to help solve the

problem.

Post-Test 
Review each of the following sum_of_squares programs and indicate whether each one is 
correct or not.

def	sum_of_squares(n):	
		total	=	0	
		count	=	1	
		while	count	<	n:	
				total	=	total	+	(count*2)	
				count	=	count	+	1	
		return	total

def	sum_of_squares(n):	
		total	=	0	
		for	i	in	range(1,	n+1):	
				total	=	total	+	i**2	
		return	total

def	sum_of_squares(n):	
		total	=	0	
		for	i	in	range(1,	n):	
				total	=	total**2	
		return	total

def	sum_of_squares(n):	
		total	=	0	
		while	n	>=	1:	
				total	=	total	+	(n**2)	
				n	=	n	-	1	
		return	total

Figure 3.3: Post-test example for the Sum of Squares problem.

We analyzed the post-test scores as an indicator of student’s understanding of how to

solve the problems addressed. This metric is based on one of Bloom’s taxonomy levels,

which is comprehension. Bloom’s taxonomy [2] is a set of three hierarchical models used to
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classify educational learning objectives into levels of complexity and specificity. The level

of comprehension involves demonstrating an understanding of facts and ideas by organizing,

comparing, translating, interpreting, giving descriptions, and stating the main ideas.

3.6 Post-survey

Once students complete the post-test they are directed to a survey related to the problem

solved and the tool used. In this survey the following question is presented to the participant:

"How much did the [tool] used help you fix the bugs found in your program?". The [tool]

pattern in the question was replaced by the name of the tool that the participant used, such as

TEST CASES, CLARA, or PYTHON TUTOR. Students answered our question using a 7-point

Likert scale, where one point means that the tool did not help and seven points means that

the tool was indispensable for bug fixing. The scores from students’ answers were associated

with the tools used to solve problems. Subsequently, we analyzed the scores as an indicator

of the usefulness of the tool in bug fixing.

3.7 Results

Overall, 42 undergraduate student from introductory programming classes participated in

this study. In total, all participants produced 876 submissions. Our integration platform was

able to provide feedback for 387 incorrect submissions. However, among other submissions,

9 failed in generation, 114 were correct and 366 had syntax errors. The tools evaluated in

this study are not able to produce feedback when a submission contains syntax errors. In this

case, we present the student with the compiler error message. However, students seem to

have difficulty understanding what is wrong with their code through these messages. Becker

et al. [1] propose to improve feedback through the use of enhanced compiler error messages.

For purposes of analysis, we considered only student solutions that received some feed-

back in at least one of the submissions. For this reason, we discarded data from 42 student

solutions. In total, we analyzed 72 student solutions, of which 23 were obtained using only

TEST CASES (TC), 21 were obtained working with CLARA (CL), and 28 were obtained

by interacting with PYTHON TUTOR (PT). To better understand the effect of the tools on
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student performance, we segmented our data into datasets, as shown in Table 3.1.

Table 3.1: Datasets segmented by combining the Sum of Squares (SS), Prime Numbers (PN),

and Fibonacci (FIB) problems.

DATASETS

N˚ PROBLEMS COMBINATION TC CL PT TOTAL

# 1 SS 7 4 9 20

# 2 PN 12 7 10 29

# 3 FIB 4 10 9 23

# 4 SS + PN 19 11 19 49

# 5 SS + FIB 11 14 18 43

# 6 PN + FIB 16 17 19 52

# 7 SS + PN + FIB 23 21 28 72

NUMBER OF SOLUTIONS

3.7.1 Overall analysis

This analysis refers to dataset #7, which contains all 72 students’ solutions for the program-

ming problems addressed in this study. Table 3.2 shows an overview of the results from our

overall analysis. First, we analyzed how many submissions students made using each tool.

In this analysis, students who used only TEST CASES required an average of 8.3 attempts

to get a correct solution. This number decreased when they used CLARA (4.05) or PYTHON

TUTOR (6.68). These differences are statistically significant when comparing CLARA with

TEST CASES (Z = -2.5, p < 0.02) and also when comparing CLARA with PYTHON TUTOR

(Z = -2.65, p < 0.01) by Wilcoxon-Mann-Whitney test.

The results of the post-test were analyzed as an indicator of the student’s understanding

of how to solve the problems addressed. Our overall analysis shows that there is no sig-

nificant difference when comparing the post-test scores of students who used TEST CASES

(2.39) with students who used CLARA (2.43). However, we observed statistically signifi-

cant differences in scores obtained using PYTHON TUTOR (1.79), when compared to TEST
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CASES (Z = -1.88, p < 0.05) and also when compared to CLARA (Z = 2.01, p < 0.05) by

Wilcoxon-Mann-Whitney test.

Finally, in our post-survey, participants were asked how much each tool was useful for

fixing bugs in their programs. Students scored the usefulness of TEST CASES for bug fixes

with an average of 5.3. The CLARA and PYTHON TUTOR average scores were 5.9 and 5.4,

respectively. There is a statistically significant difference when comparing TEST CASES

with CLARA (Z = 2.10, p < 0.04) by the by Wilcoxon-Mann-Whitney test.

Table 3.2: Results of the overall analysis (dataset #7).

OVERALL ANALYSIS

TC CL PT TC - CL TC - PT CL - PT

NUMBER OF ATTEMPTS 8.3 (7.2) 4.0 (2.5) 6.7 (5.3) 0.012 0.510 0.008

POST-TEST SCORES 2.3 (1.2) 2.4 (1.1) 1.8 (0.8) 0.903 0.049 0.043

UTILITY IN BUG FIXES 5.3 (1.4) 5.9 (1.8) 5.4 (1.7) 0.035 0.650 0.171

AVERAGE (SD) P-VALUE

3.7.2 Individual analysis

In this analysis, we analyzed the tools considering each programming problem individually,

which refers to datasets #1, #2, and #3. Through this analysis, we observed the effect of the

tools in each problem addressed. In total, the dataset from the Sum of Squares problem (#1)

contains 20 students’ solutions; the dataset from the Prime Numbers problem (#2) contains

29 students’ solutions; and the dataset from the Fibonacci problem (#3) contains 29 students’

solutions. In the following, we describe the results found for each of these problems.

Sum of Squares (dataset #1): Table 3.3 shows an overview of the results obtained from

this dataset. In particular, most participants found this problem easy. Students who used

only TEST CASES required an average of 3.4 attempts to get a correct solution, when those

using CLARA and PYTHON TUTOR required averages of 3.0 and 5.3 attempts, respectively.

These differences are not statistically significant. In the post-test analysis, students using

TEST CASES got an average score of 2.3, while those using CLARA and PYTHON TUTOR

scored averages of 2.7 and 1.9, respectively. There is no statistically significant differences
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when comparing the post-test scores. Finally, in this dataset, we also did not find significant

differences when analyzing the answers of our post-survey.

Table 3.3: Results of the analysis of the Sum of Squares problem (dataset #1).

INDIVIDUAL ANALYSIS: SUM OF SQUARES

TC CL PT TC - CL TC - PT CL - PT

NUMBER OF ATTEMPTS 3.4 (1.9) 3.0 (1.4) 5.3 (2.5) 0.763 0.067 0.071

POST-TEST SCORES 2.3 (1.1) 2.7 (0.9) 1.9 (0.8) 0.492 0.469 0.139

UTILITY IN BUG FIXES 6.2 (0.7) 6.7 (0.5) 6.0 (1.1) 0.194 0.900 0.236

AVERAGE (SD) P-VALUE

Prime Numbers (dataset #2): Table 3.4 shows an overview of the results obtained from

this dataset. Students who used only TEST CASES required an average of 9.2 attempts to get

a correct solution, while those using CLARA and PYTHON TUTOR required averages of 3.7

and 7.6 attempts, respectively. There is a statistically significant difference when comparing

TEST CASES with CLARA (Z = -2.59, p < 0.01) by the by Wilcoxon-Mann-Whitney test. In

the post-test analysis, students using TEST CASES got an average score of 2.6, while those

using CLARA and PYTHON TUTOR scored averages of 2.4 and 1.5, respectively. These

differences are statistically significant when comparing TEST CASES with PYTHON TUTOR

(Z = -2.21, p < 0.03) by Wilcoxon-Mann-Whitney test. Finally, in this dataset, we did not

find significant differences when analyzing the answers of our post-survey.

Table 3.4: Results of the analysis of the Prime Numbers problem (dataset #2).

INDIVIDUAL ANALYSIS: PRIME NUMBERS

TC CL PT TC - CL TC - PT CL - PT

NUMBER OF ATTEMPTS 9.2 (7.3) 3.7 (1.6) 7.6 (7.3) 0.009 0.196 0.071

POST-TEST SCORES 2.6 (1.2) 2.4 (1.3) 1.5 (0.7) 0.793 0.026 0.104

UTILITY IN BUG FIXES 5.2 (1.2) 5.0 (1.8) 5.0 (1.6) 0.871 0.725 0.952

AVERAGE (SD) P-VALUE
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Fibonacci (dataset #3): Table 3.5 shows an overview of the results obtained from this

dataset. In particular, most participants found this problem difficult. Students who used only

TEST CASES required an average of 14.2 attempts to get a correct solution, while those using

CLARA and PYTHON TUTOR required averages of 4.7 and 7.0 attempts, respectively. We

observed a statistically significant difference when comparing TEST CASES with CLARA (Z

= -2.00, p < 0.05) by the by Wilcoxon-Mann-Whitney test. In the post-test analysis, students

using TEST CASES got an average score of 2.0, while those using CLARA and PYTHON TU-

TOR got averages of 2.3 and 2.0, respectively. These differences are not statistically signifi-

cant. Finally, students scored the usefulness of TEST CASES for bug fixes with an average of

4.0. The CLARA and PYTHON TUTOR average scores were 6.2 and 5.0, respectively. There

is a statistically significant difference when comparing TEST CASES with CLARA (Z = 2.45,

p < 0.02) by the by Wilcoxon-Mann-Whitney test.

Table 3.5: Results of the analysis of the Fibonacci problem (dataset #3).

INDIVIDUAL ANALYSIS: FIBONACCI

TC CL PT TC - CL TC - PT CL - PT

NUMBER OF ATTEMPTS 14.2 (8.4) 4.7 (3.2) 7.0 (4.9) 0.045 0.134 0.213

POST-TEST SCORES 2.0 (1.4) 2.3 (1.2) 2.0 (0.9) 0.606 0.807 0.609

UTILITY IN BUG FIXES 4.0 (2.0) 6.2 (2.0) 5.0 (2.3) 0.014 0.385 0.180

AVERAGE (SD) P-VALUE

3.7.3 Paired analysis

In this analysis, we evaluated the tools considering the programming problems in pairs,

which refers to datasets #4, #5, and #6. It is important to analyze in pairs to identify which

problems the tool effects occur most frequently. Since paired analysis ignores data from one

of the problems, we can see how much this problem affects the results found in the overall

analysis. In total, the dataset from Sum of Squares and Prime Numbers problems (#4) con-

tains 49 students’ solutions; the dataset from sum of squares and Fibonacci problems (#5)

contains 43 students’ solutions; and the dataset from Prime numbers and Fibonacci problem
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(#6) contains 52 students’ solutions. In the following, we describe the results found for each

of these datasets.

Sum of Squares and Prime Numbers (dataset #4): Table 3.6 shows an overview of the

results obtained from this dataset. Students who used only TEST CASES required an average

of 7.0 attempts to get a correct solution, when those using CLARA and PYTHON TUTOR

required averages of 3.4 and 6.5 attempts, respectively. These differences are statistically

significant when comparing CLARA with TEST CASES (Z = -2.03, p < 0.05) and also when

comparing CLARA with PYTHON TUTOR (Z = -2.54, p < 0.01) by Wilcoxon-Mann-Whitney

test. In the post-test analysis, students using TEST CASES got an average score of 2.4, while

those using CLARA and PYTHON TUTOR scored averages of 2.5 and 1.6, respectively. There

is no statistically significant difference when comparing the post-test scores of TEST CASES

and CLARA. However, we observed statistically significant differences in scores obtained

using PYTHON TUTOR, when compared to TEST CASES (Z = -2.23, p < 0.03) and also

when compared to CLARA (Z = 2.11, p < 0.04) by Wilcoxon-Mann-Whitney test. Finally,

in this dataset, we did not find significant differences when analyzing the answers of our

post-survey.

Table 3.6: Results of paired analysis of the Sum of Squares and Prime Numbers problems

(dataset #4).

PAIRED ANALYSIS: SUM OF SQUARES AND PRIME NUMBERS

TC CL PT TC - CL TC - PT CL - PT

NUMBER OF ATTEMPTS 7.0 (6.5) 3.4 (1.5) 6.5 (5.5) 0.042 0.837 0.010

POST-TEST SCORES 2.4 (1.1) 2.5 (1.1) 1.6 (0.7) 0.876 0.025 0.034

UTILITY IN BUG FIXES 5.6 (1.1) 5.6 (1.6) 5.5 (1.4) 0.591 0.953 0.731

AVERAGE (SD) P-VALUE

Sum of Squares and Fibonacci (dataset #5): Table 3.7 shows an overview of the results

obtained from this dataset. Students who used only TEST CASES required an average of 7.3

attempts to get a correct solution, while those using CLARA and PYTHON TUTOR required

averages of 4.2 and 6.1 attempts, respectively. These differences are not statistically sig-

nificant. In the post-test analysis, students using TEST CASES got an average score of 2.1,
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while those using CLARA and PYTHON TUTOR got averages of 2.4 and 1.9, respectively.

These differences are not statistically significant. Finally, students scored the usefulness of

TEST CASES for bug fixes with an average of 5.3. The CLARA and PYTHON TUTOR average

scores were 6.3 and 5.5, respectively. There is a statistically significant difference when com-

paring TEST CASES with CLARA (Z = 2.59, p < 0.01) by the by Wilcoxon-Mann-Whitney

test.

Table 3.7: Results of paired analysis of the Sum of Squares and Fibonacci problems (dataset

#5).

PAIRED ANALYSIS: SUM OF SQUARES AND FIBONACCI

TC CL PT TC - CL TC - PT CL - PT

NUMBER OF ATTEMPTS 7.3 (7.3) 4.2 (2.8) 6.1 (3.8) 0.353 0.509 0.057

POST-TEST SCORES 2.1 (1.1) 2.4 (1.0) 1.9 (0.8) 0.551 0.687 0.216

UTILITY IN BUG FIXES 5.3 (1.7) 6.3 (1.6) 5.5 (1.7) 0.009 0.512 0.072

AVERAGE (SD) P-VALUE

Prime Numbers and Fibonacci (dataset #6): Table 3.8 shows an overview of the results

obtained from this dataset. Students who used only TEST CASES required an average of 10.4

attempts to get a correct solution, while those using CLARA and PYTHON TUTOR required

averages of 4.2 and 7.3 attempts, respectively. These differences are statistically significant

when comparing CLARA with TEST CASES (Z = -3.19, p < 0.01) and also when comparing

CLARA with PYTHON TUTOR (Z = -2.13, p < 0.04) by Wilcoxon-Mann-Whitney test. In the

post-test analysis, students using TEST CASES got an average score of 2.4, while those using

CLARA and PYTHON TUTOR got averages of 2.3 and 1.7, respectively. These differences

are not statistically significant. Finally, students scored the usefulness of TEST CASES for

bug fixes with an average of 4.8. The CLARA and PYTHON TUTOR average scores were 5.6

and 5.0, respectively. There is a statistically significant difference when comparing TEST

CASES with CLARA (Z = 1.90, p < 0.05) by the by Wilcoxon-Mann-Whitney test.
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Table 3.8: Results of paired analysis of the Prime Numbers and Fibonacci (dataset #6).

PAIRED ANALYSIS: PRIME NUMBERS AND FIBONACCI

TC CL PT TC - CL TC - PT CL - PT

NUMBER OF ATTEMPTS 10.4 (7.7) 4.2 (2.6) 7.3 (6.1) 0.001 0.071 0.032

POST-TEST SCORES 2.4 (1.2) 2.3 (1.1) 1.7 (0.8) 0.852 0.079 0.109

UTILITY IN BUG FIXES 4.8 (1.5) 5.6 (1.9) 5.0 (1.9) 0.049 0.721 0.235

AVERAGE (SD) P-VALUE

3.8 Discussion

Through the results we found that CLARA can significantly reduce student’s effort, in number

of attempts, to get correct solutions (RQ1). This result was observed in our overall analysis

and in most other datasets. This was already expected, since CLARA provides specific hints

on how to get the correct solutions to programming problems. However, we also expected

that the PYTHON TUTOR could reduce the number of attempts to get correct solutions. This

was not observed in any of our analyzes. We thought that by debugging the code with

PYTHON TUTOR, students would solve problems faster than using TEST CASES. We believe

that there are two possible explanations for this result: (i) although we have provided a

tutorial on PYTHON TUTOR, students may need more practice with the tool for better results;

and (ii) as our study was conducted in introductory programming classes, students may not

have enough experience for debugging activities.

In the post-test results, we found that students who used CLARA and those who used only

TEST CASES got approximate scores (RQ2). No significant difference was observed when

comparing these tools. This may mean that although CLARA provides specific hints on how

to correct program bugs, the student’s understanding of problem solving is not impaired. We

noticed that, most of the time, students were trying to understand why they should apply the

hints given by CLARA. This behavior may have led students to better understand how to

solve problems, resulting in better performance in our post-test. This result is also supported

by recent studies that have found that specific hints, such as those provided by CLARA, may

be good for learning [29], [23].
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In contrast, students who used PYTHON TUTOR got lower post-test performance than

CLARA or TEST CASES. This result was observed in our overall analysis and in some other

datasets. This is an unexpected result. We thought that by debugging the code, students

would have an better overview of how to solve the problem. This result may be due to

the unexpectedness of students with debugging activities. Another possible reason for this

result would be that, when debugging their code, students focus only on a particular way of

solving a problem. However, our post-test consists of analyzing different solutions to the

same problem. Recent studies have found that for more effective pedagogical results using

program visualization tools, such as PYTHON TUTOR, students need to be actively engaged

with the tool [16], [33].

Finally, students scored CLARA as more useful than TEST CASES to fix bugs in their

programs (RQ3). This result was observed in our overall analysis and in some other datasets,

especially in datasets composed of solutions of the Fibonacci problem. Students mentioned

that finding bugs in their programs using only TEST CASES was difficult, but using CLARA,

they could easily find out where the bugs were.

3.9 Threats to Validity

In this section, we discuss possible threats to validity of our study. Our evaluation design

sought to minimize the threats discussed whenever possible.

Internal validity

Since the study involves the active participation of humans, it is subject to internal threats.

It is possible that the results were affected due to the moment and place where the experi-

ments were conducted. Some of our study sessions happened in the classroom during class

time. Participants were not previously advised that they would participate in this experi-

ment. However, we let students know that their participation was not mandatory and that

they could participate in the study in a private session. It is important to consider that stu-

dents were solving programming problems, so it is possible that at some moment they are

too tired or bored to perform their activities with involvement.

Participants in this study were recruited from Computer Science and Engineering
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courses. Although they are all enrolled in introductory programming classes, they may have

different motivations and knowledge. Therefore, it is possible that some students were more

experienced than others. To minimize this threat, we considered only in our analyzes the

solutions that were correct, this ensures that the student was experienced enough to solve the

problem. In addition, we discarded solutions from students who did not need any feedback

to solve the problems, they were considered more experienced.

Construct validity

This study proposes a post-test to evaluate the student’s understanding of the problem solu-

tion. However, the post-test score may not fully represent the student’s understanding. There

are many social aspects that can partially or totally affect the measurement of this construct.

In addition, although we have observed a significant effect of the tools on the metrics, it is

possible that the results found may not be entirely due to the tools used.

External validity

Participants in this study are representative only for the introductory programming context of

our local universities (UFCG and IFPB). We also considered test cases as the baseline in our

study because this is adopted in the programming courses of our local universities. However,

the subjects and the baseline may not be representative for all educational institutions.

Conclusion validity

In our experiment, only three programming problems were addressed. However, a greater

variety of programming problems may be required to generalize the conclusions. Other

assignments that address different data structures and programming concepts may yield dif-

ferent results for different tools. Therefore, we may not be able to generalize the results of

this experiment to other contexts. For more general results, this study should be replicated

in other introductory programming subjects.

Due to time constraints and availability of participants, it was only possible to evaluate

the tools for a short period of time. Perhaps the results would be different if students had

more time to practice and learn about the tools. This study could draw further conclusions if

carried out continuously over a long period of time.
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3.10 Answers to the Research Questions

Next, we answer our research questions.

• RQ1: Do students using CLARA or PYTHON TUTOR solve problems faster than using

only TEST CASES? ANSWER: Our results show that students using CLARA can solve

problems faster, in number of attempts, than using TEST CASES. However, the same

was not observed when students used PYTHON TUTOR.

• RQ2: What is the impact of using the tools in terms of understanding problem solving

when compared to using TEST CASES alone? ANSWER: Students using CLARA or

TEST CASES got approximate scores in our post-test. This may mean that they under-

stood problem solving at the same level. However, in some of our analyzes, we found

that students scored lower when using PYTHON TUTOR. This may mean that their

understanding of problem solving was impaired or limited.

• RQ3: Do students find CLARA or PYTHON TUTOR more useful to fix bugs than TEST

CASES? ANSWER: In some of our analyzes, students scored Clara’s utility for bug

fixes better than TEST CASES, especially in the problems they found most difficult.

However, the same was not observed when students used PYTHON TUTOR.
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Related Work

In this chapter, we present the works related to ours. Section 4.1 describes related works on

automated feedback generation. Next, Section 4.2 presents the works on visual and interac-

tive debugging.

4.1 Automated Feedback Generation

Recent years have seen the emergence of automated feedback generation for programming

assignments as a new, active research topic. Intelligent Tutoring Systems (ITSs) often supply

a sequence of hints that descend from high-level pointers down to specific, bottom-out hints

that spell out exactly how to generate the correct solution. For example, in the ANDES

PHYSICS TUTORING SYSTEM, hints were delivered in a sequence: pointing, teaching, and

bottom-out [36]. These systems have been historically expensive and time-consuming to

build because they rely heavily on experts to construct hints.

Researchers have recently demonstrated how program synthesis, program repair tech-

niques, and clustering algorithms can generate personalized and automated feedback for

programming assignments (e.g., [18], [7], [27], [28], [31], [37], [11], [24]). For example,

AUTOGRADER [31] can identify and fix bugs in incorrect code submissions, and then au-

tomatically generate sequences of increasingly specific hints about where the bugs are and

what a student needs to change to fix them.

High-level hints that point to relevant class materials or attempt to reteach a concept can

be difficult to automatically generate because they require more context or the deep domain

32
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knowledge of a teacher. To leverage the teacher’s high-level feedback at scale, CODEOP-

TICON [13] provides a tutoring interface that helps teachers provide synchronous feedback

for multiple students at once. Moreover, recent work has also demonstrated how program

analysis and synthesis can be used as an aid for a teacher to scale feedback grounded in their

deep domain knowledge [9], [14]. While reducing the teacher’s effort, these systems still

require teachers to manually review and write hints for incorrect student work.

Ihantola et al. [17] present a systematic literature review of the recent development of au-

tomatic assessment tools for programming assignments. They provide an overview of newly

developed and currently available automated assessment systems. The systems included can

be roughly divided into two categories: (1) automatic assessment systems for programming

competitions; and (2) automatic assessment systems for (introductory) programming educa-

tion. They discussed the key features of automatic assessment systems. From these, they

pointed out that the differences in how tests are defined, how resubmissions are handled, and

how the security is guaranteed were the most significant.

4.1.1 Automated Feedback Tools and Evaluations

Singht et al. [31] propose AUTOGRADER, a program synthesis based automated feedback

generation for programming assignments. Their approach is to get a reference solution and

an error model consisting of potential corrections to students errors, and search for the min-

imum number of corrections using a SAT-based program synthesis technique. This technol-

ogy makes it possible to provide students with a measure of exactly how incorrect a given

solution was, as well as feedback about what they did wrong. The researchers evaluated AU-

TOGRADER on thousands of student solutions on programming problems. They analyzed

the effectiveness of AutoGrader in generating appropriate corrections as feedback for incor-

rect attempts. As a result, AUTOGRADER was able to provide feedback on more than 64%

of incorrect solutions.

Gulwani et al. [11] present CLARA (Cluster And RepAir), a fully automated program

repair tool for introductory programming assignments. This tool can automatically repair

incorrect programs, indicate the location of bugs (e.g., line number), and provide an exact

textual description of required changes. Its approach is to cluster the correct programs for

a given assignment and select a canonical program from each cluster to form the reference
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solution set. Then, CLARA runs a trace-based repair procedure w.r.t. each program in the so-

lution set and selects a minimal repair from the repair candidates. The researchers evaluated

the number, size and quality of the generated repairs on thousands of incorrect student at-

tempts, and then compared the results with AUTOGRADER using the same data. In addition,

they conducted a user study about performance and usefulness of CLARA in an interactive

teaching setting. In this study, participants solved six programming programs and answered

a question about how useful the feedback provided by the tool was. As a result, CLARA

was able to repair 97% of student attempts, in 3.2s on average, while 81% of those are small

repairs of good quality. In addition, the tool got the average usefulness grade 3.4 on a scale

from 1 to 5.

Wang et al. [37] propose SARFGEN (Search, Align, and Repair for Feedback

GENeration), a data-driven program repair framework for generating feedback in introduc-

tory programming assignments. SARFGEN leverages the large number of available student

solutions to generate instant, minimal, and semantic fixes to incorrect student submissions

without any instructor effort. Its approach is to search for reference solutions similar to

a given incorrect program, and then align each statement in the incorrect program with a

corresponding statement in the reference solutions to identify discrepancies for suggesting

changes. Finally, using this information, it can point out the minimum corrections to correct

the incorrect program. The researchers analyzed the scalability and efficiency of SARFGEN

in generating corrections on thousands of incorrect student attempts, and then compared the

results with CLARA. In addition, they conducted a user study to measure the usefulness of

the tool in a programming course. They analyzed the number of submissions and time that

participants needed to get correct solutions. As a result, SARFGEN was able, within two

seconds on average, generate concise, useful feedback for 89.7% of the incorrect student

submissions. In addition, 96% of students using the tool completed their assignment within

next two attempts and 97% of them finished within 30 minutes.

Head et al. [14] present MISTAKEBROWSER, a mixed-initiative system that allows teach-

ers to combine their deep domain knowledge with the results of data-driven program syn-

thesis techniques. This system relies on REFAZER [28], a data-driven program synthesis

technique that learns code transformations from examples of bug fixes. In the MISTAKE-

BROWSER system, code transformations are learned from examples of student-written bug
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fixes. Then, the teacher reviews the incorrect student submissions that were clustered by

the code transformations that corrected them. This way, the teacher can infer the shared

misconception and write feedback for the whole cluster that includes explanations, hints,

or references to relevant course materials. The researchers recruited 17 current and former

teachers from the staff of an introductory programming class. Teachers had 40 minutes to

review clusters of incorrect submissions and write feedback for each cluster. They then an-

swered a few questions about the semantic coherence of the cluster, e.g., “Do these incorrect

submissions share the same misconception?”. Finally, teachers also answered Likert scale

questions about their confidence in their descriptions and the depth of domain knowledge

they added in the process. The results suggested that MISTAKEBROWSER helps teachers

understand what mistakes and algorithms are common in student submissions. Teachers ap-

preciated the generated fixes, but confirmed that a human in the loop is needed to review and

annotate them with conceptual or high-level feedback.

Our study differs from others because we focus on analyzing the effectiveness of tools

from the beginner student’s perspective. We also developed a post-test to assess the impact of

the tools on students’ understanding of problem solving, as well as analyzed the usual met-

rics, such as number of attempts and student’s perception of the usefulness of the feedback

provided.

4.2 Design of Interactive Debugging Tools

One of the major challenges in learning to program is to relate code to the dynamics of

program execution [3]. In an introductory programming course, many novice students have

difficulties and misconceptions due to a lack of understanding of dynamic program execu-

tion [25]. One practical way to alleviate this cognitive difficulty is to visualize execution.

Recently, researchers have proposed many program visualization tools (see [32] for a com-

prehensive review). These tools typically execute the program, store a snapshot of internal

states at each execution step, and show a visual representation of runtime states such as

stack frames, heap objects, and data structures [12]. Most educational tools are focused on

visualizing and animating program aspects based on its runtime execution. Recent studies

have found that using program visualization tools can be pedagogically effective if students
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actively engage with the tool [16], [33].

However, as program complexity increases, such visualizations can become confusing

[35], and navigating the traces may become-time consuming. One design challenge is how

to focus a student’s attention on the differences between what the code does and what it is

expected to do. Alternatively, recent debugging interfaces like WHYLINE [20], THESEUS

[21] and TRACEDIFF [34] provide an overview of execution behavior and let a user find

the cause of a bug through interactive question-answering, retroactive logging or execution

traces.

One way visual and end-user programming environments have attempted to facilitate

this exploratory programming process is through their support of “live” editing models, in

which immediate visual feedback on a program’s execution is provided automatically at edit

time. The notion of “liveness” actually encompasses two distinct dimensions: (a) the amount

of time a programmer must wait between editing a program and receiving visual feedback

(feedback delay); and (b) whether such feedback is provided automatically, or whether the

programmer must explicitly request it (feedback self-selection).

Hundhausen et al. [15] conducted an experimental study that investigated the impact

of feedback self-selection on novice imperative programming. Their experiment adopted a

within-subjects design that compared three different levels of syntactic and semantic feed-

back: (a) no syntactic or semantic feedback at all (the no feedback treatment); (b) syntactic

and visual semantic feedback provided on demand when a “run” button is hit (the self-select

treatment); and (c) syntactic and visual semantic feedback updated on every keystroke (the

automatic treatment). They found that the self-select and automatic treatments promoted the

development of programs with significantly fewer syntactic and semantic errors than those

promoted by the no feedback treatment. However, they did not find significant differences

between the self-select and automatic treatments with respect to either syntactic or semantic

correctness.

4.2.1 Interactive Debugging Tools and Evaluations

Ko et al. [20] present WHYLINE, a debugging tool that lets a user find the cause of a bug

through interactive question-answering. WHYLINE allows developers to choose a "why did"

or "why didn’t" question derived from the program’s code and execution. The tool then
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finds one or more possible explanations for the output in question, using a combination of

static and dynamic slicing, precise call graphs, and new algorithms for determining potential

sources of values and explanations for why a line of code was not reached. The research

analyzed four aspects of WHYLINE traces empirically: slow down (comparing normal run-

ning time to tracing time, as well as to profiling time), trace size, compressed trace size,

and trace loading time. They also conducted a user study where participants had to find the

cause of incorrect behaviors in programming assignments. The results showed that novice

programmers with the WHYLINE were twice as fast as expert programmers without it.

Lieber et al. [21] propose THESEUS, an IDE extension that visualizes runtime behav-

ior within a JavaScript code editor. This tool visualizes the program’s runtime state using

code coloring and marginal notes, allowing the programmer to perceive that information un-

obtrusively as they read the code. In addition, THESEUS organizes the log entries into a

call tree that accounts for asynchronous invocations (such as event handlers), allowing pro-

grammers to quickly answer many time-consuming reachability questions. The researchers

ran a lab study with undergraduate students, and interviewed nine professional program-

mers who were asked to use THESEUS in their day-to-day work. Participants in the first

lab study performed programming tasks with and without the tool activated. In the second

study, professional software developers were interviewed to see how THESEUS fit into their

programming activities. The results showed that programmers enjoyed the availability of

reachability coloring and call counts, and adopted new problem-solving strategies to take

advantage of their strengths.

Guo et al. [12] present PYTHON TUTOR, a web-based program visualization tool for

Python. This tool allows users to step forwards and backwards through execution to visu-

alize the runtime state of a program’s data structures. The PYTHON TUTOR backend takes

the source code of a Python program as input and produces an execution trace as output. It

executes the input program, stores a snapshot of internal states at each execution step, and

shows a visual representation of runtime states such as stack frames, heap objects, and data

structures. Karnalim et al. [19] evaluate PYTHON TUTOR based on a questionnaire sur-

vey applied in Basic Data Structures classes. Their purpose was to evaluate the impact of

the tool to complete assignments, understand programming aspects, and collect information

about the students’ experience. According to the results, PYTHON TUTOR provides positive
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impacts for completing Basic Data Structures laboratory tasks and understanding general

programming aspects (i.e. execution flow, variable content change, method invocation se-

quence, object reference, syntax error, and logic error). In addition, such tool also provides

positive feedback when perceived from student experiences in general.

Suzuki et al. [34] propose TRACEDIFF, an automated feedback system that leverages

both program synthesis and program visualization techniques to provide interactive person-

alized hints for introductory programming assignments. Given the student’s incorrect code

and a synthesized code fix, TRACEDIFF performs dynamic program analysis to capture the

execution of both the incorrect and fixed code, comparing internal states and runtime behav-

iors. Then, it highlights how and where the trace of the incorrect code diverges from the trace

of the fixed code. The student can inspect these behavioral differences further by clicking

on an item in the trace, triggering the PYTHON TUTOR interactive visualization interface

to render the stack frames and objects at that point of execution and indicate which line of

code was just executed. The researchers conducted a controlled experiment with 17 students

(with various levels of experience) where participants were asked to debug incorrect student

code from introductory programming assignments. They compared student performance

using TRACEDIFF with those using PYTHON TUTOR. During a 60-minute session, each

participant was asked to perform two bug-fixing tasks for each incorrect code: (1) locate the

bug and (2) fix the bug. They evaluated whether or not each participant correctly answered

these questions and measured the time spent to complete these tasks. After the session, each

participant rated and explained their experience using each tool. Although no statistically

significant differences were found in the quantitative measures of the two groups, 64.7% of

the participants believed that TRACEDIFF was the more valuable to identify and fix the bugs

and 29.4% thought that both tools were equally important (only 5.9% preferred PYTHON

TUTOR).

Our study differs from others because besides evaluating an interactive visual debugging

tool (PYTHON TUTOR) only with novice programmers, we also compared the effectiveness

of this tool with an automated feedback generation tool (CLARA) that provides specific hints.

There are few works studies like ours that compare two completely different feedback ap-

proaches.



Chapter 5

Conclusions

In this work, we conduct user studies in introductory programming classes to evaluate the ef-

fectiveness of a tool for generating personalized hints (CLARA) and a program visualization

tool (PYTHON TUTOR). We investigate whether using these tools students can solve pro-

gramming assignments better than using only test case suites. Specifically, we analyze the

effectiveness of these tools with respect to three aspects: (i) whether the tool leads students

to faster results when compared to test cases alone; (ii) what is the impact of the tool on the

student’s understanding of how to solve the problem; (iii) whether the tool is more useful

than using test cases alone.

In our study, we recruited 42 undergraduate students from Computer Science and En-

gineering courses enrolled in introductory programming classes. We asked participants to

implement Python solutions for three programming problems. For each problem, they were

able to use a feedback tool and a test-case suite to assist in the resolution process. Once the

participants got a correct solution, they did a post-test related to the problem solved. The

results of the post-test were analyzed as an indicator of the student’s understanding of how

to solve the problems addressed. Finally, we conducted a survey where participants were

able to rate which tools they found most useful for fixing bugs.

Our results show that, when considering getting correct solutions faster, CLARA can sig-

nificantly reduce the student’s effort, in number of attempts, compared to PYTHON TUTOR

and TEST CASES. We also observed that students who used CLARA and those who used

only TEST CASES got approximate scores. In other words, it seems that the specific hints

of CLARA does not limit student understanding about the problem solution. However, stu-

39
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dents using PYTHON TUTOR got lower post-test performance than CLARA or TEST CASES.

This may highlight a difficulty for novice programmers in performing debugging activities.

Finally, students scored CLARA as more useful than test cases to fix bugs in their programs.

They mentioned that finding bugs using only test cases is difficult, but using CLARA, they

can find out where the bugs are and immediately reflect on the hints provided.

In practice, more specific feedback can benefit beginner students’ programming learn-

ing. It is therefore interesting that introductory programming teachers provide students with

some tool that generates more specific feedback, such as CLARA or similar. However, TEST

CASES should not be excluded. Ideally, students should also receive support from verifica-

tion feedback. In this way, by combining these two types of feedback, students can better

understand their mistakes and learn more effectively. On the other hand, teachers should

be careful when providing beginning students with debugging tools such as PYTHON TU-

TOR. Since debugging activities require more experience and practice, students may have

difficulty understanding their mistakes through a debugging tool.

This work contributes to studies about the effectiveness of tools that assist in program-

ming education. We evaluated a personalized hints generation tool and a program visual-

ization tool, however, studies still need to be done to assess the effectiveness of other types

of tools. In addition, our results are based on a perspective of beginning students, however,

other subjects as more experienced students should be considered in future studies. After all,

feedback has an important role in cognitive learning and is essential for improving knowl-

edge and skills acquisition [30].

5.1 Future Work

As future work, we intend to evaluate other feedback tools commonly used in programming

education. There are many other tools that need to be evaluated and compared with existing

ones. Then, we intend to establish guidelines for the use of feedback tools at each stage of

programming learning. It is important to establish which types of tools are most effective at

each stage of learning, so programming teaching can be improved in educational institutions.

Finally, we want to develop a new post-test capable of assessing other aspects of learning

outcomes and also conduct a longitudinal study based on this new post-test.
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TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO 
 

Você está sendo convidado(a) a participar, como voluntário(a), da pesquisa          

intitulada UM ESTUDO SOBRE A EFETIVIDADE DE ABORDAGENS DE FEEDBACK NO ENSINO            

DE PROGRAMAÇÃO DE COMPUTADORES, conduzida pelos pesquisadores em Ciência da          

Computação: Mestrando Ruan Victor Bertoldo Reis de Amorim e Profa. Melina Mongiovi -             

Universidade Federal de Campina Grande. Este estudo tem por objetivo investigar a            

efetividade de abordagens de feedback no processo de ensino e aprendizagem de            

programação de computadores e algoritmos. 

Você foi selecionado(a) por ser um(a) estudante universitário (maior de 18 anos) que             

está cursando a disciplina de Introdução à Ciência da Computação na Universidade Federal             

de Campina Grande (UFCG). Sua participação não é obrigatória, bem como não é             

remunerada. A qualquer momento, você poderá desistir de participar e retirar seu            

consentimento. Sua recusa, desistência ou retirada de consentimento não acarretará          

prejuízos para você. 

Sua participação nesta pesquisa consiste em resolver três problemas de          

programação utilizando um ambiente virtual desenvolvido pelos pesquisadores. Este         

ambiente virtual será responsável por lhe ajudar, através do fornecimento de feedback            

automático, no processo de resolução destes problemas. Logo após solucionar algum dos            

problemas propostos, você será redirecionado para um quiz contendo um desafio extra com             

relação ao problema resolvido. Por fim, será aplicado um questionário eletrônico para saber             

sua opinião sobre as funcionalidades do ambiente virtual. 

Dado que este estudo requer que sejam realizadas atividades de programação para            

resolução de problemas, eventualmente, você poderá sentir cansaço, estresse ou          

aborrecimento ao se deparar com dificuldades. Em razão da minimização desses efeitos            

indesejados, você pode, a qualquer momento, desistir de resolver alguns dos problemas de             

programação ou até desistir de participar do estudo por completo. Para lhe garantir uma              

experiência mais agradável, recomendamos que inicie suas atividades pelos problemas de           

programação os quais você acredite serem mais fáceis, e que lhe deixe mais confortável em               

resolvê-los. Em caso de dúvidas ou dificuldades, por favor, entre em contato com um dos               

pesquisadores disponíveis durante a execução do estudo. Em caso de danos decorrentes            

desta pesquisa, você receberá assistência integral e imediata, de forma gratuita, pelo tempo             

que for necessário, bem como terá direito a indenização pelos danos causados. 

Esta pesquisa beneficia diretamente o seu aprendizado de programação, uma vez           

que lhe permite uma experiência prática na resolução de problemas no âmbito da             

computação, bem como lhe apresenta os principais meios tecnológicos utilizados para a            

resolução de erros no código-fonte. Os resultados obtidos através deste estudo também            

pode ajudar os professores a melhorar a qualidade do ensino de programação,            

direcionando-os para a utilização de abordagens e sistemas de feedback mais eficazes. 



Os dados obtidos por meio desta pesquisa serão confidenciais e não serão            

divulgados em nível individual, visando assegurar o sigilo da sua participação. Estes dados             

serão armazenados e protegidos em um servidor local, o qual somente o pesquisador             

principal possui acesso. O pesquisador responsável se comprometeu a tornar públicos nos            

meios acadêmicos e científicos os resultados obtidos de forma consolidada sem qualquer            

identificação de indivíduos participantes.  

Caso você concorde em participar desta pesquisa, assine ao final deste documento,            

que possui duas vias, sendo uma delas sua, e a outra, do pesquisador responsável da               

pesquisa. Quaisquer dúvidas sobre a pesquisa ou sua participação nela podem ser tiradas             

diretamente com Ruan Victor Bertoldo Reis de Amorim ou Melina Mongiovi, pelos e-mails             

ruanvictor@copin.ufcg.edu.br e melina@computacao.ufcg.edu.br, ou diretamente com      

Comitê de Ética em Pesquisa com Seres Humanos - CEP/ HUAC. Rua: Dr. Carlos Chagas, s/n,                

São José. Campina Grande- PB. Telefone: (83) 2101-5545. 

 

Consentimento Livre e Esclarecido 

Declaro que compreendi os objetivos desta pesquisa, como ela será realizada, os riscos e              

benefícios envolvidos e concordo em participar voluntariamente da pesquisa UM ESTUDO           

SOBRE A EFETIVIDADE DE ABORDAGENS DE FEEDBACK NO ENSINO DE PROGRAMAÇÃO DE            

COMPUTADORES. 

Caso você concorde em participar da pesquisa, leia com atenção os seguintes pontos: 

(a) você é livre para, a qualquer momento, recusar-se a participar do estudo e retirar              

seu consentimento. Sua recusa, desistência ou retirada de consentimento não          

acarretará prejuízo; 

(b) você pode deixar de participar da pesquisa, não precisando apresentar justificativas           

para isso; 

(c) sua identidade será mantida em sigilo, não sendo coletado nenhum dado de            

identificação pessoal; 

(d) caso deseje, você poderá ser informado(a) de todos os resultados obtidos com a 

pesquisa. 

 

 

_______________________________________ 

Assinatura do(a) participante  

 



Como pesquisador responsável pelo estudo UM ESTUDO SOBRE A EFETIVIDADE DE           

ABORDAGENS DE FEEDBACK NO ENSINO DE PROGRAMAÇÃO DE COMPUTADORES, declaro          

que assumo a inteira responsabilidade de cumprir fielmente os procedimentos          

metodologicamente e direitos que foram esclarecidos e assegurados ao participante desse           

estudo, assim como manter sigilo e confidencialidade sobre a identidade do mesmo. 

Declaro ainda estar ciente que na inobservância do compromisso ora assumido estarei            

infringindo as normas e diretrizes propostas pela Resolução 466/12 do Conselho Nacional de             

Saúde – CNS, que regulamenta as pesquisas envolvendo o ser humano. 

 

_______________________________________ 

Assinatura do(a) pesquisador(a) 

 

 

 

Campina Grande, 30 de novembro de 2018 
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