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Resumo

Refatoramento é uma atividade que visa melhorar a qualidade do design e a legibilidade

do código de um sistema sem alterar seu comportamento externo. Refatoramentos são res-

ponsáveis por quase 30% de todas as edições de um software. Embora os refatoramen-

tos sejam edições que preservam o comportamento, estudos mostram que desenvolvedores

tendem a aplicar mudanças comportamentais intencionais ao lado de refatoramentos (floss-

refactoring). Floss-refactorings são conhecidos por serem propensos a erros e requererem

revisão de código. No entanto, pouco foi feito para entender como os desenvolvedores rela-

cionam refatoramentos às edições extras. Deste modo, neste trabalho propomos uma estra-

tégia para a extração de dados de floss-refactorings, que pode ser usada para extrair infor-

mações detalhadas sobre os refatoramentos e edições extras aplicadas ao longo do histórico

de versões do repositório de um projeto Java. Além disso, para entender melhor como os

desenvolvedores realizam floss-refactorings no mundo real, conduzimos uma investigação

empírica para descobrir como as edições extras são aplicadas com base nos refatoramentos

encontrados em um commit. Nós analisamos os commits de 45 repositórios em que as edi-

ções de refatoramentos foram aplicadas juntamente com edições extras. Nossos resultados

mostraram que, dependendo do refatoramento realizado, há mudanças na probabilidade de

algumas edições extras serem aplicadas. Por exemplo, a introdução de novos métodos é

mais comum quando um Extract Method ou um Rename Method é executado. Outras edi-

ções, como a remoção de um método, a introdução de um novo atributo em uma classe ou

mesmo edições específicas dentro de métodos, também apresentaram mudanças significati-

vas em sua probabilidade. Além disso, 14,4% das edições extras foram realizadas dentro

de entidades refatoradas, das quais as entidades alteradas mais comuns foram Invocação de

Método, If Statement, Declaração da Variável, Atribuição e Statement de Retorno. No en-

tanto, a probabilidade de cada tipo de entidade específica a ser alterada varia dependendo

do refatoramento executado. Em geral, os padrões de relacionamento entre refatoramentos e

edições extras encontrados neste trabalho podem ser usados para guiar a revisão de código,

ajudar os desenvolvedores a evitar a introdução de faltas relacionadas a floss-refactorings, e

orientar outras pesquisas relacionadas a refatoramentos.
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Abstract

Refactoring is an activity that aims at improving design quality and code readability of a

system without changing its external behavior. It accounts for nearly 30% of all edits in a

software life cycle. Although refactorings are behavior-preserving edits, studies show that

developers tend to apply intentional behavioral change edits alongside refactorings (floss-

refactoring). Floss-refactorings are known to be error-prone and require code revision.

However, Little has been done to understand how developers relate refactorings to extra

edits. Thus, in this work we propose a strategy for floss-refactoring data extraction, which

can be used for extracting detailed information about the refactorings and extra edits ap-

plied throughout the versioning history of a Java project repository. In addition, to better

understand how developers perform floss refactoring in real world, we conducted an empiri-

cal investigation to find out how extra edits are applied based on the refactoring found in a

commit. We mined repositories of 45 open-source projects and analyzed all commits where

refactoring edits were performed along with non-refactoring edits. Our results showed that,

depending on the refactoring performed, there are changes on the likelihood of some extra

edits to be applied. For instance, the introduction of new methods is more common when

an Extract Method or a Rename Method is performed. Other edits, such as the removal of

a method, introduction of a new attribute to a class, or even specific inner method edits,

also presented significant change on its likelihood. Moreover, 14,4% of the extra edits were

performed inside refactored entities, from which, the most common entities changed were

Method Invocation, If Statement, Variable Declaration, Assignment, and Return Statement.

However the likelihood of each specific entity type to be changed varies depending on the

refactoring performed. Overall, the relationship patterns between refactorings and extra edits

found in this work can be used to guide code revision, help developers to avoid faults related

to floss refactoring, and to guide other refactoring-related researches.

Keywords: Floss Refactoring, Extra Edits, Software Repositories, Empirical Study.
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Chapter 1

Introduction

A software should provide the functionality and performance required by its users and also be

easy to maintain [51]. In this sense, the main purpose of Software Engineering is to support

professional software development, helping developers throughout all aspects of software

production. The main activities of software engineering, present in most of the processes,

are specification, development, validation, and evolution of the software [51].

Software evolution plays an important role during software development, and continues

to be important through the whole software lifetime. The system requirements tend to be

adapted according to the client’s needs, as well as its environment. Therefore, the develop-

ment continues in order to attend these changes, even after the system delivery. Moreover, it

may be necessary to fix bugs that appear during its execution.

The modifications made in a system, after it is released, are called software evolution.

According to Sommerville [51], there are three types of software evolution: Bug Fix, Envi-

ronmental Adaptation and Feature Introduction. Bug Fix consists in fixing a bug that passed

unnoticed through the system validation. Environmental Adaptation is necessary when the

client needs to use the system in a different environment from the one it was first intended.

For instance, adapt an Android app to run on iOS. Feature Introduction consists in adding

new functionalities required by the client. In practice, these three types often happen to-

gether. For instance, a new environment might allow the introduction of a new feature that

was not possible before.

During software evolution, it is common for the code to deteriorate, which might turn

it challenging to maintain, and error-prone. Long methods and duplicate code fragments

1



1.1 Problem Definition 2

are examples of bad smells that might make the code difficult to maintain (e.g., hard to

understand and reuse). Preventive maintenance is another kind of maintenance that intends to

prevent bugs from being introduced. That is, to improve the system’s future maintainability

by changing its structure without adding/removing functionalities [7].

In this context, refactoring is an activity that aims at removing bad smells by updating

the structure of a software without changing its external behavior [15]. It is often applied to

improve aspects such as design quality, code readability, etc. Studies show that refactoring

can avoid code deterioration [26; 31]; reduce energy consumption [42]; and maintenance

costs [23], specially in agile projects where requirement changes are frequent during devel-

opment. Due to its positive impact on the development cycle, refactorings are widely applied,

accounting for approximately 30% of all performed edits [47].

1.1 Problem Definition

Despite the intention of improving software quality, the refactoring application often leads

to error-proneness. For instance, when a developer applies a Rename Method refactor-

ing without proper care, he might end-up overriding a method from a superclass. In or-

der to prevent chaos during refactoring activities, Fowler [15] assembled a catalog with

the mechanics of 72 refactorings types. However, several studies have found there is

a strong correlation between the timing and location of refactorings and bug fixes [2;

24]. A field study run with Microsoft developers [25] shows that 77% of the survey

participants perceived that refactoring comes with a risk of introducing subtle bugs and

functionality regression. The risk of bug introduction is even higher, since most refactor-

ings are manually performed [1; 32; 33; 55]. Murphy et al. [32] found that about 90%

of refactoring edits are done manually. Expert developers prefer manual to automated

refactoring [34]. Moreover, even refactoring tools are not free of bug introduction [30;

49].

Even simple refactorings, such as an Extract Method can be tricky. An Extract Method

refactoring encompasses the extraction of a code fragment into a separate method. It is

known to be one of the most widely performed refactorings since it can be used for fixing

a variety of design problems [52]. Fowler [15] proposes the mechanics for a systematic
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Extract Method. It comprises nine steps and combines microcode edits with several runs of

an existing test suite. However, practical circumstances (e.g., time shortage) often prevents

the use of Fowler’s mechanics every time an Extract Method is needed. Therefore, subtle

faults can be introduced when an Extract Method is intended. For instance, the newly created

method may add/break override/overload contract. Bavota et al. [2] found that the Extract

Method refactoring often induces bug fixes.

On top of all, studies have shown that, in practice, developers often interweave refac-

toring and non-refactoring edits - floss-refactoring [33; 45; 50]. By combining behavior

changing edits alongside refactorings (e.g., an edit for improving readability and the intro-

duction of new features), a developer might increase the likelihood of introducing faults. For

instance, Silva et al. [45] stated that developers often perform Extract Methods for avoiding

code replication. After refactoring, the newly created method is then called in several places.

However, suppose a developer, aiming at attending a requirement from one of the callers, in-

troduces a new condition checking in the newly added method. If this extra edit is performed

without the proper impact analysis, it may negatively impact other callers.

Refactoring-aware code revision is an emerging topic that has gained notoriety due to its

practical benefits [1; 10; 18]. Due to its complexity, and possible impact, developers should

review their edits considering the refactorings performed. The goal is to both detecting

possible faults, and/or confirming their intentions. This need is even more evident when

floss-refactoring, since different concerns may be mixed in a single commit. Alves et al. [1]

discussed two types of refactoring anomalies that require revision: missing and extra edits.

The latter are the edits that go beyond a pure refactoring transformation. Therefore, even

intentional extra edits require special attention. Recent works [1; 9; 18] highlight this issue

and propose new tools for helping developers to review and/or confirm the intention of extra

edits.

However, little has been done on characterizing extra edits on floss-refactoring. We be-

lieve that, by better understanding how developers often relate refactoring to extra edits,

advances can be done to assist refactoring related activities, such as refactoring fault de-

tection, refactoring revision, and to guide developers on when and how to perform floss-

refactoring. For instance, Kim et al. [24] pointed out that a support for floss-refactoring

is needed, due to frequent errors. The current tool support in this sense is quite lim-
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ited by focusing only on refactoring detection (e.g., [39; 46; 53]), and/or on highlight-

ing extra edit between two versions of a code (e.g., [1; 18]). We believe that before

any tool support, it is important to better understand developers common practices and

how they combine refactorings and extra edits. Conclusions in this sense can then help

the development of new solutions/tools for refactoring review, validation, and/or system-

atic analysis. Such information can also help other researches. For instance, empiri-

cal investigations tend to use random code changes to simulate real refactoring faults [1;

14]. By discovering how developers combine refactorings with other edits in the real world,

researchers can then provide a better simulation on floss-refactoring faults.

1.2 Motivating Example

In this section, we present a situation where a refactoring is applied together with other ed-

its that change the behavior of a method. To exemplify how Extract Method refactorings

are often combined with extra edits, and the need for proper revision, consider the code

in Figure 1.11 from the BroadleafCommerce repository23. The BroadleafCommerce project

is an e-commerce framework designed for facilitating the development of enterprise and

commerce-driven websites. Figure 1.1(a) shows the original version of the persistCopyOb-

jectTree method, which is responsible for persisting the copy object provided as parameter.

For that, the method performs a sequence of analyzes in order to decide the adequate treat-

ment for the provided object (lines 2 and 7).

In a single commit, a series of edits were performed (Figure 1.1(b)). Code insertions are

marked with ‘+’, deletion with ‘−’, extra edits are underlined. As we can see, an Extract

Method edit was performed: the If Statement, along with its body (Figure 1.1(a) - lines 7-

9), was extracted to the persistPart method (Figure 1.1(b)). However, in the same commit,

a series of other extra edits were included: a new persistence strategy was introduced, the

method signature and some condition expressions were updated.

Comparing the two versions of the persistCopyObjectTree method, we can see that there

is a big difference in how the system stores the object. In its previous version, the method

1The code has been adapted for didactic purposes
2https://github.com/BroadleafCommerce/BroadleafCommerce
3Commit: a270461a25509c9b6bfc2396e416ef4f58d9a4ce
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1 persistCopyObjectTree(Object copy,Set library, MultiTenantCopyContext context) {

2 if (library.contains(copy)) {

3 return;

4 }

5 library.add(copy);

6 ...

7 if (!genericEntityService.sessionContains(copy)) {

8 [if body]

9 }

10 context.checkLevel1Cache();

11 }

(a) original code

1 persistCopyObjectTree(Object copy,Set<Integer> library, MultiTenantCopyContext context){

2 if (library.contains(System.identityHashCode(copy))) {

3 return;

4 }

5 library.add(System.identityHashCode(copy));

6 ...

7 - if (!genericEntityService.sessionContains(copy)) {

8 - [if body]

9 + if (copy.getClass().getAnnotation(Embeddable.class) == null) {

10 + persistPart(copy, context);

11 }

12 - context.checkLevel1Cache();

13 }

14

15 + persistPart(final Object copy, Context context) {

16 + if (!genericEntityService.sessionContains(copy) &&

17 + !genericEntityService.idAssigned(copy)) {

18 + IdentityExecutionUtils.runOperationByIdentifier(

19 + [if body]);

20 + }

21 + }

(b) Extract Method refactoring with extra edits

Figure 1.1: An example floss refactoring. (a) The original code. (b) Code after an Extract

Method refactoring. Lines 7-9 are extracted to create a new method persistPart. In the

same commit the developer adds a series of extra edits (underlined statements).

saves the object itself (Figure 1.1(a) - line 5), in its new version it stores only the hash code

(Figure 1.1(b) - line 5). As a consequence, the verification of the method was changed to
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check the hash code (Figure 1.1(b) - line 2).

Even though those extra edits might be intentional, they may lead to subtle faults and

are worth double-checking. For instance, the developer could forget to update some verifi-

cations dealing with the library throughout the code. This fault would not throw an excep-

tion because the contains method compares instances of Object. Therefore, an unchanged

verification may pass unnoticed. Moreover, the cache verification at the end of the source

method (Figure 1.1(a) - line 10) was deleted in the new version (Figure 1.1(b) - line 12).

A refactoring-aware revision would require the developer to confirm the intention of these

extra edits and carefully analyze their impact.

Figure 1.1(b) (lines 15-21) presents the extracted method. Again, the extracted code also

includes several extra edits. The condition expression was updated to verify the object’s

ID (line 17). With this edit, some of the objects that previously would be persisted by this

method may not pass the new verification. Moreover, the extracted statements now run in a

particular thread (line 18). This extra edit alone, if not well treated, might open the system

to a set of unforeseen faults related to concurrent programming.

In summary, the presented commit was clearly a non-behavior-preserving refactoring.

Several extra edits were applied along with an Extract Method (i.e., Statement Insert, State-

ment Delete, Statement Update, and Condition Expression Change), which increased the

likelihood of fault introduction. By analyzing the relationship between refactoring and extra

edits, we intend to help researchers/developers to better understand how developers perform

refactorings in the real world, improving code review activities, and, therefore, provide new

solutions to minimize the error-proneness of floss-refactoring. For instance, as future work,

we intend to develop a mutation tool for introducing faults based on the refactorings found in

a given system. Such tool may help other works that need to run controlled empirical studies

using refactoring faults.

1.3 Objective

During refactoring activities, developers usually do not follow the mechanics proposed by

Fowler [15] to prevent unexpected behavior changes. According to Silva et al. [45], refac-

torings are mainly driven by requirements changes instead of bad smells, as it was initially
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proposed. As discussed in the previous section, it is common for developers to apply extra

edits during the refactoring process - floss-refactoring.

Therefore, the main goal of this work is to help researchers and developers to better

understand how floss refactorings are performed in practice. For that, we focused on investi-

gating the relationship between refactorings and extra edits, regarding their appearance4 and

number5, as well as analyze how these extra edits are performed. To achieve this goal, we

split it into more specifics ones:

• Investigate which extra edits are more likely to appear in a commit with the presence

of a given refactoring;

• Investigate how the refactorings performed by developers affects the number of extra

edits in a commit;

• Investigate details about how extra edits are applied.

Regarding the relevance of our work, we believe that, by identifying what extra edits

are related to the presence of refactoring and how its number is affected, we can help the

development of new tool support for floss-refactoring review, validation and/or impact anal-

ysis. Also, analysing how extra edits are performed can help on floss-refactoring analysis,

by finding how frequent extra edits appear inside refactored entities, and what entities are

usually changed. We choose to analyze the whole commit when analyzing the presence and

number of extra edits to better understand what happens with a system when it is refactored,

while the analysis on how extra edits are applied focuses on the edits applied on refactored

entities. All this information can also help researchers better design and model their studies.

Thus, their simulation of code change would reflect real world scenarios.

1.4 Contributions

In summary, the main contributions presented in this work are:

• An approach for automatic floss-refactoring data extraction;

4Whether the extra edit appears on a commit with refactoring.
5The number of occurrences of the extra edit in a commit with refactoring.
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• Findings on the extra edit presence along with refactorings;

• An analysis on how these extra edits are performed;

• A dataset extracted from git repositories for future floss-refactoring studies.

In this work, we describe our approach for automatically extracting floss-refactoring data,

and we discuss the reasoning behind each choice. Our findings showed that depending on the

refactoring performed, there are changes on the likelihood of some extra edits to be applied,

as well as in its number of occurrences. For instance, there were 27% increase in chances

of appearing an Additional Functionality in a system during the Extract Method refactoring,

and, after its first occurrence, there was 13% increase in the number of occurrence for each

Extract Method refactoring.

As for the inner method changes, some types of statements are more likely to be modified.

For instance, there was approximately 13% more Method Invocation statements introduced

in a system for this refactoring, while the increase for the Return Statement was only 7%.

Last but not least, we provided the dataset extracted during our exploratory study.

1.5 Structure

In Chapter 2, we provide some background to help understand this work. In Chapter 3

we explain our strategy for floss-refactoring data extraction. In Chapter 4, we describe the

empirical study carried out in this work to understand extra edits patterns when developers

apply different types of refactoring transformations. In Chapter 5 we investigate how these

extra edits are performed. In Chapter 6, we present some related work. Finally, in Chapter

7, we present the concluding remarks of this dissertation, as well as possible future works.



Chapter 2

Background

In this chapter, we present the background of concepts used in this document, necessary for

understanding this work. First, we describe program refactoring on its basic, explaining their

implementation and related faults. Then, we describe the tools used in the analysis.

2.1 Program Refactoring

During software development, as the system grows, its complexity tend to grow as well.

Methods too long, duplicated code fragments, unclear method and field names are examples

of code problems that hinder its readability. In 1992, Opdyke [35] coined the term refac-

toring in his Ph.D. thesis as a way to minimize such problems. A set of structural changes

applied to a software aiming to improve quality aspects, such as readability, reusability, and

maintainability, while its observed behavior remains unchanged.

Opdyke formally defined refactorings as generalizing the inheritance hierarchy, special-

izing the inheritance hierarchy and using aggregations to model the relationships among

classes. Later, Fowler [15] assembled a catalog1 with 72 refactorings types, each one with

specificities regarding purpose and granularity. Fowler also introduced the term bad smells

to represent code problems related to quality, which are indicators for code structures that

need improvements.

Refactorings are widely used during software development, accounting for nearly 30%

of the modification of a system [47]. In Agile Methods, such as XP [3] and TDD [4], refac-

1https://refactoring.com/catalog/

9
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torings are even more crucial for the development process, since it is used to improve the

system architecture and readability continuously.

In the past years, there have been many initiatives for developing refactoring tools. The

first refactoring tool was proposed by Roberts [41] for the Smalltalk language [19]. After-

ward, researchers have improved correctness and applicability of refactorings. Nowadays,

most popular Integrated Development Environments (IDEs), such as Eclipse, IntelliJ, Net-

Beans, and Visual Studio, include support for automated refactoring. However, even with

all the support provided by the refactoring tools, studies have shown that developers usually

apply refactoring operations manually [32; 33; 34]. According to Vakilian et al. [55], there

are many reasons for the underuse of refactoring tools, such as usability, awareness, trust,

among others.

2.1.1 Refactoring implementation

Fowler’s catalog describes over seventy different types of refactorings. In his catalog, he

describes the motivation and mechanics for each refactoring type. To demonstrate the me-

chanics presented by Fowler, consider the code in Figure 2.1(a). By analyzing this code,

a developer can see a comment in the method’s body. According to Fowler, comments are

often used as a deodorant for bad smells in the code. That is, even though code comments

improve code readability, their presence can indicate the need to restructure the code. If the

comment explains what a code block does, Fowler recommends the application of an Extract

Method refactoring, where the newly created method’s name should explain its function.

In a Extract Method refactoring, a code fragment is extracted to a new method with a

meaningful name, capable of explaining the method’s purpose. To perform this edit, Fowler’s

mechanics suggest a procedure comprised of nine steps:

1. Create a new method with a name that explain what it does;

2. Copy the extracted code from the source method into the newly created method;

3. Scan the extracted code for references to any variables that are local in scope to the

source method. These are going to be local variables and parameters in the new

method;
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1 public class C1{

2 public void printOwing(Invoice invoice) {

3 printBanner();

4 double amount = calculateAmount(invoice);

5

6 //print details

7 System.out.println("name: " + invoice.client);

8 System.out.println("amount: " + amount);

9 }

10 ...

11 }

(a) original code

1 public class C1{

2 public void printOwing(Invoice invoice) {

3 printBanner();

4 double amount = calculateAmount(invoice);

5

6 - //print details

7 - System.out.println("name: " + invoice.client);

8 - System.out.println("amount: " + amount);

9 + printDetails(invoice,amount);

10 }

11

12 + public void printDetails(Invoice invoice, double amount) {

13 + System.out.println("name: " + invoice.client);

14 + System.out.println("amount: " + amount);

15 + }

16 ...

17 }

(b) Code after Extract Method refactoring

Figure 2.1: Example of Extract Method refactoring (Fowler [15], Adapted by the author).

4. See whether any temporary variables are used only within this extracted code. If so,

declare them in the new method as temporary variables;

5. Look to see whether any of these local-scope variables are modified by the extracted

code. If one variable is modified, see whether the extracted code can be treated as a

query and assign the return to the variable concerned. If this is inconvenient, or if there

is more than one such variable, the method cannot be extracted as it stands;

6. Pass into the target method as parameters local-scope variables that are read from the

extracted code;



2.1 Program Refactoring 12

7. Compile after dealing with all the locally-scoped variables;

8. Replace the extracted code in the source method with a call to the new method;

9. Compile and test.

In Figure 2.1(b) a Extract Method refactoring was performed. A commented code frag-

ment was extracted to a new method whose name explains the code purpose, making a com-

ment unnecessary. Usually, in the Extract Method refactoring, only the refactored method

is modified. However, there are refactorings that may have implications across multiple

classes, where a developer might need to update all the affected classes, such as a Move

Method refactoring. As its name suggests, in a Move Method refactoring, a developer moves

a method from a class to another where it makes more sense. The mechanics proposed by

Fowler for this refactoring is comprised of 11 steps, including the update of all references to

the refactored method:

1. Examine all features used by the source method that are defined in the source class.

Consider whether they also should be moved. If a feature is used only by the method

you are about to move, you might as well move it too;

2. Check the sub- and super-classes of the source class for other declarations of the

method;

3. Declare the method in the target class;

4. Copy the code from the source method to the target. Adjust the method to make it

work in its new home;

5. Compile the target class;

6. Determine how to reference the correct target object from the source;

7. Turn the source method into a delegating method;

8. Compile and test;

9. Decide whether to remove the source method or retain it as a delegating method;
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10. If you remove the source method, replace all the references with references to the

target method;

11. Compile and test.

To demonstrate the mechanics for the Move Method refactoring, consider the code

present in Figure 2.2(a). The overdraftCharge method takes into account the type of ac-

count to determine the form of calculation to be used. If more account types are added,

and new rules for calculating the overdraft for each type, it would make more sense for the

overdraftCharge method to be in the AccountType Class. In Figure 2.2(b), a Move Method

refactoring was performed. Some adjustments were necessary to make the method fit in its

new place, such as adding a parameter (Figure 2.2(b) - line 26) and updating a method call

from within the method (Figure 2.2(b) - line 27). In addition, since the source method was

deleted, it was necessary to update all its references to refer the new one (Figure 2.2(b) -

lines 16-17).

2.1.2 Refactoring Faults

Despite the intention of improving software quality, the refactoring application often leads

to error-proneness [25]. Studies have found that refactored code segments are usually the

target of bug fix after the refactoring application [2; 24]. Moreover, developers perform most

refactorings manually, even though most popular IDEs offer built-in refactoring tools, which

increases the risk of bug introduction [1; 32; 33; 55]. According to Murphy et al. [32],

about 90% of all refactorings edits are manually applied. Nevertheless, recent studies have

shown that even widely used tools perform incorrect refactorings, unexpectedly changing

the system behavior [30; 49]. Therefore, manual refactoring remains developers’ standard

procedure for performing refactoring tasks [25].

By decomposing the refactorings into micro steps, including compiling and testing,

Fowler’s mechanics [15] tries to turn refactoring a systematic process. However, even with

the high acceptance of these mechanics, they do not prevent developers from introducing

faults in the system. There are many cases where the developer’s expertise and knowledge

about the system have an impact on the refactoring’s outcome [17]. For instance, Figure 2.3
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1 public class Account{

2 public double overdraftCharge() {

3 if (type.isPremium()) {

4 double result = 10;

5 if (daysOverdrawn > 7)

6 result+=(daysOverdrawn -7)*0.85;

7 return result;

8 }

9 else

10 return daysOverdrawn * 1.75;

11 }

12

13 public double bankCharge() {

14 double result = 4.5;

15 if (daysOverdrawn > 0)

16 result += overdraftCharge();

17 return result;

18 }

19

20 private AccountType type;

21 private int daysOverdrawn;

22 }

23

24 public class AccountType{

25 ...

26 }

(a) original code

1 public class Account{

2 - public double overdraftCharge() {

3 - if (type.isPremium()) {

4 - double result = 10;

5 - if (daysOverdrawn > 7)

6 - result+=(daysOverdrawn -7)*0.85;

7 - return result;

8 - }

9 - else

10 - return daysOverdrawn * 1.75;

11 - }

12

13 public double bankCharge() {

14 double result = 4.5;

15 if (daysOverdrawn > 0)

16 - result += overdraftCharge();

17 + result += type.overdraftCharge();

18 return result;

19 }

20

21 private AccountType type;

22 private int daysOverdrawn;

23 }

24

25 public class AccountType{

26 + public double overdraftCharge(int

daysOverdrawn) {

27 + if (isPremium()) {

28 + double result = 10;

29 + if (daysOverdrawn > 7)

30 + result += (daysOverdrawn - 7) *

0.85;

31 + return result;

32 + }

33 + else

34 + return daysOverdrawn * 1.75;

35 + }

36 ...

37 }

(b) Code after Move Method refactoring

Figure 2.2: Example of Move Method refactoring (Fowler [15], Adapted by the author).

shows a situation where a developer with little knowledge about the system applies a Move

Method refactoring and ends up changing the system behavior.

In this example, consider the code presented in Figure 2.3(a). Suppose that, by some rea-
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1 public class C1 {

2 public int calculate(int x, int y){

3 return x * y;

4 }

5 ...

6 }

7 public class C2 {

8 public int calculate(int x, int y){

9 return x + y;

10 }

11 ...

12 }

13 public class C3 extends C1{

14 ...

15 }

(a) original code

1 public class C1 {

2 public int calculate(int x, int y){

3 return x * y;

4 }

5 ...

6 }

7 public class C2 {

8 - public int calculate(int x, int y){

9 - return x + y;

10 - }

11 ...

12 }

13 public class C3 extends C1{

14 + public int calculate(int x, int y){

15 + return x + y;

16 + }

17 ...

18 }

(b) Code after Move Method refactoring

Figure 2.3: Example of Move Method refactoring changing a system behavior.

son, a developer decides to apply a Move Method refactoring, moving the method calculate

from class C2 (Figure 2.3(a) - lines 8-11) to class C3 (Figure 2.3(b) - lines 14-16). Appar-

ently, the system behavior remains unchanged, since the system is free of compilation errors.

However, the method recently placed in class C3 overrides a method with the same signature

but different behavior from the super class C1 (Figure 2.3(b) - lines 2-4). As consequence,

all entities that uses the method from class C1 through objects from class C3, will receive a

return different from the expected.

Another common reason for refactoring faults is floss-refactoring [24], which refers

to scenarios when developers apply refactoring edits alongside other changes, i.e. non-

refactorings changes. As shown previously, even following Fowler’s mechanics, there still is

a chance of introducing fault. By applying non-refactoring changes simultaneously, a devel-

oper increases the chances of fault introduction, since it is necessary to analyze the impact

of all changes in other code entities. To show how extra edits can introduce subtle faults,

consider the code present in Figure 2.4(a).

In the example, the method getStr (Figure 2.4(a) - lines 2-9) analyses if there is a certain

character in a given string. In a positive case, it returns a sub-string of the original string.

In a negative case, it returns an empty string. Then, the printStrLen method (Figure 2.4(a) -



2.2 Analysis tools 16

1 public class C1{

2 public String getStr(String str){

3 if(str.contains(":")){

4 int index = str.indexOf(":") + 1;

5 return str.substring(index);

6 }else{

7 return "";

8 }

9 }

10 public int printStrLen(String str){

11 String aux = getStr(str);

12 return aux.length();

13 }

14 }

(a) original code

1 public class C1{

2 - public String getStr(String str){

3 + public String getString(String str){

4 if(str.contains(":")){

5 int index = str.indexOf(":") + 1;

6 return str.substring(index);

7 }else{

8 - return "";

9 + return null;

10 }

11 }

12 public int printStrLen(String str){

13 - String aux = getStr(str);

14 + String aux = getString(str);

15 return aux.length();

16 }

17 }

(b) Code after Rename Method refactoring

Figure 2.4: Example of floss refactoring (Rename Method).

lines 10-13) returns the length of the returned string. In order to improve code readability, a

developer decides to perform a Rename Method refactoring (Figure 2.4(b) - lines 2,3,13,14).

However, instead of following strictly Fowler’s mechanics, the developer also changes the

the method return (Figure 2.4(b) - lines 8,9). Now, instead of returning an empty string, it

returns a null object.

This change has no apparently impact on the system behavior, since it does not present

any compilation error. However, depending on the argument provided to the printStrLen

method, it can throw a RuntimeException, breaking the system. For instance, if the string

provided as argument is "abcd", the getString method will return a null object (Figure 2.4(b)

- line 9). Then, the printStrLen method will try to call a method from the object returned

(Figure 2.4(b) - line 15), but, since it is a null object, the system will throw a NullPointerEx-

ception, which is a RuntimeException.

2.2 Analysis tools

In this section, we present an overview of the tools used to support our investigation.
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2.2.1 RefDiff

The knowledge about refactoring changes in a system can help researchers and developers

to understand a software evolution. This information has helped researchers investigate why

developers refactor [45], how they refactor [33], when refactorings induce bugs [2], and

when developers use tool to support the refactoring activity [55].

The information about refactoring activities can also help developers during code revision

and system integration. During a field study at Microsoft, Kim et al. [25] verified that,

when large refactorings operations are applied, the developers present difficulty in reviewing

or integrating code changes. The difficulty presented by developers is basically related to

rename and move of code elements. Thus, by automatically identifying the refactorings

operations, it is possible to develop visual support for reviewing refactorings, automatically

adapt the source code to a refactored API, merge conflicts, among others.

However, many of the existing approaches faced problems such as precision, recall, or

the need to compile the code before identifying the refactorings. Thus, to fill this gap, Silva et

al. [46] proposed an automated approach that identifies refactorings through a combination

of static analysis and code similarity. The RefDiff tool runs directly on version history

repository and is capable of identifying 13 refactoring types that are among the most used.

The tool’s algorithm consists basically in two main phases: Source Code Analysis and

Relationship Analysis. The first phase builds a model to represent high level code entities

before and after code changes (e.g. classes, attributes and methods). The second phase finds

relationships between the entities present in the code before and after the changes through

code similarity heuristics. One key aspect of the algorithm is the use of an adaptation of

TF-IDF (Term Frequency-Inverse Document Frequency) [43] as the similarity index. The

TF-IDF is a well-known information retrieval technique, which reflects the importance of a

term to a document, while taking into account the collection the document belongs.

Therefore, the tool is able to find refactorings throughout the whole commit, regardless

of the refactoring type2 and whether it contains extra edits. As output, the tool not only pro-

vide the refactoring type applied, but the complete signature of the refactored entity before

and after the refactoring. For instance, if a developer executes the tool on the code exam-

ples presented throughout this chapter, its output would contain the information presented in

2Considering the 13 refactoring types it can identify
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Table 2.1.

Table 2.1: RefDiff Output
Code Example Refactoring Entity Before Entity After

Figure 2.1 Extract Method C1.printOwing(Invoice)) C1.printDetails(Invoice,double)

Figure 2.2 Move Method Account.overdraftCharge() AccountType.overdraftCharge(int)

Figure 2.3 Move Method C2.calculate(int,int) C3.calculate(int,int)

Figure 2.4 Rename Method C1.getStr(String) C1.getString(String)

2.2.2 SafeRefactor

In order to ensure the safe application of refactorings, Soares et al. [48] proposed SafeRefac-

tor, a tool for checking the safety application of refactorings in sequential Java programs.

SafeRefactor is an Eclipse plugin3 that receives a program version and the refactoring to

be applied using the Eclipse refactoring API. By generating and running unit test suites, it

decides whether the refactoring to be applied by Eclipse will change the system’s behavior.

Also, it has the alternative of receiving a refactored program version instead the refactoring

to be applied. The data can be provided to the tool through its GUI or by command line,

which can be useful for automated experiments.

After receiving the input data, if it receives refactoring to be applied, the SafeRefactor

first refactors the source code using the Eclipse refactoring API. Otherwise, it continues to

the next step. In the second step, it identifies the common methods between the source and

refactored programs through static analysis. To check the programs’ behavior, SafeRefactor

generates a test suite for the common methods using Randoop [36], a tool for automatic

random generation of unit tests. The next step is to run the tests in both source and target

programs. For the refactoring to be considered safe, the test’s outcome has to be the same

for both programs. That is, if a test passes in one version, but fail in the other, the refactoring

is considered not safe, that is, the transformation changed the system behavior.

Saferefactor has also been used for testing refactoring engines (e.g., [29]), which have

several faults in well-known tools (e.g., Eclipse Refactoring tool).

3www.dsc.ufcg.edu.br/~spg/saferefactor
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2.2.3 ChangeDistiller

In order to keep a software useful as long as possible, it is necessary to adapt it to

new requirements and new environments. To aid developers and researchers on under-

standing the changes applied to a software, many techniques were developed [16; 56;

57]. These techniques relate changes based on the developers who applied them and de-

tect maintainability hot spots. However, these techniques do not consider structural changes

in the source code. In this context, Fluri et al. [12] developed ChangeDistiller, a tool that

extracts fine-grained source code changes from two versions of a program. The authors

improved the Chawathe’s algorithm [8] for extracting changes in hierarchically structured

data.

The ChangeDistiller’s algorithm uses the Abstract Syntax Trees (AST) representation

of a source code to extract detailed information about statements editing. It analyses the

changes based on basic tree edit operations such as insert, delete, update or move of tree

nodes. To compute these operations between two ASTs, the algorithm uses bigram string

similarity to match string between nodes (e.g., variable declaration, method invocation, and

so forth), and, for matching source code structures (such as if statements or loops), it uses

the subtree similarity of Chawathe et al.[8].

After the matching process, the algorithm calculates the edit script necessary to transform

the source tree into the changed one. The edit is composed by insert, delete, update or move

of statements in the code. The edit operations are then classified as source code changes. For

that, the authors use the taxonomy presented in their previous work [13], which defines 35

change types. In this work, Fluri et al. present a taxonomy for classifying source code change

types based on code revision. The taxonomy can differentiate different levels on the code,

as well as their impact on other code entities. Table 2.2 presents a subset of ChangeDistiller

edit classification, as well as their description.

If we run ChangeDistiller in source codes previously shown, it would yield which

changes were applied. For instance, consider a developer executes the tool in class C1 present

in Figure 2.1. Table 2.3 shows the edits found by the tool.

The tool identifies five edits in the code. The tool also provides some information about

the found edits besides the edit’s classification and the changed entity, such as the parent en-

tity, which is important for analysing the context where the edit was applied. However, when
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dealing with entities like methods and classes, the tool only provides the entity’s signature,

lacking information about the entity’s body structure.

2.3 Concluding Remarks

In this chapter, we covered the main concepts related to our research such as program refac-

toring, which is an activity that aims to improve the source design while its external behavior

remains unchanged. We explained Fowler’s mechanics for implementing some refactorings

that are among the most common, and how the developer’s lack of knowledge about the

system, as well as intentional extra edits, can compromise the system behavior.

Moreover, we showed some tools useful for floss-refactoring analysis such as RefDiff, for

detecting refactoring across software repository versioning history, SafeRefactor, for check-

ing the safety of refactoring implementations, and ChangeDistiller, for listing source code

edits.

Table 2.2: Extra Edit Types Description
Extra edit Description

Statement Insert A new statement was inserted to a certain method’s body.

Statement Delete A statement from a certain method is not present in its new version.

Statement Update A statement from a certain method was updated.

Additional Functionality A new method was added to a certain class.

Statement Parent Change A statement was moved to a different code structure.

Removed Functionality A method no longer exists in a certain class.

Condition Expression Change The condition of a certain loop/control was updated.

Additional Object State A new field was added to a certain class.

Removed Object State A field no longer exists in a certain class.

Table 2.3: ChangeDistiller Output
Extra edit Changed Entity Parent Entity

Comment Delete //print details printOwing(Invoice invoice)

Statement Delete System.out.println("name: " + invoice.client); printOwing(Invoice invoice)

Statement Delete System.out.println("amount: " + amount); printOwing(Invoice invoice)

Statement Insert printDetails(invoice,amount); printOwing(Invoice invoice)

Additional Functionality printDetails(Invoice invoice, double amount) class C1
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In the next chapter, we explain how we use the concepts and tools presented in this

chapter to develop a strategy for floss-refactoring data extraction.



Chapter 3

Floss-Refactoring Extraction Strategy

Based on the background presented in the previous chapter, we developed a strategy for auto-

matically extracting floss-refactoring data where detailed information about the refactorings

and the non-refactoring edits are extracted from versioning history of maven java projects. In

this strategy, we considered floss-refactoring the software versions that contain refactorings

and presented behavior change, intentionally or not. We describe this process in the next

sections.

3.1 Approach

In this section, we explain our approach for the floss-refactoring extraction. The extraction

process is based on analysing commits from available open source projects and their reposi-

tories. In order to mine the repositories, we defined the data extraction process presented in

Figure 3.1, which comprises three steps.

For each project P :

1. From P ’s repository, get SCr, where SCr = sc1, sc2, ..., scn and sci is a pair of

sequential commits that includes at least one refactoring edit;

2. From SCr, find SCe, where SCe is a subset of SCr containing only non-behavior-

preserving pairs of commits, e.g., commits that include extra edits;

3. For each sci in SCe, decompose the change edits and analyze which edits are part of

the refactoring performed in the commit, and which edits are extra.
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Figure 3.1: Data Extraction Process

The first activity consists of filtering commits that contain refactoring edits. This activity

is extremely important because the remaining activities depend on this output. For that, we

used the RefDiff tool [46]. RefDiff is a tool that detects refactorings performed between

two versions of a Java program. It supports 13 types of refactorings that are listed among

the most common ones [33]. The refactorings detectable by the RefDiff tool are: Extract

Method, Inline Method, Rename Method, Move Method, Extract Superclass, Extract Inter-

face, Move Attribute, Pull Up Method, Pull Up Attribute, Push Down Method, Push Down

Attribute, Rename Class, Move Class, and Move And Rename Class (this is a specific case

where developers apply both refactorings as if it was one). It is worth to mention that the

tool can detect refactorings even when multiple refactoring types are applied in a single com-

mit. Regarding RefDiff accuracy on detecting refactorings, we refer to its reported precision

(100%) and recall (88%) [46].

Although other tools are designed for the same purpose (e.g., [11; 39; 53]), we chose

RefDiff due to its high precision and because it works directly on software repositories. The

refactoring detection tool RMiner [53] also works on software repositories and claims to have

higher accuracy. However, by the time the tool was released, our study was in a later stage

and we could not use it. Nevertheless, we run a manual validation of samples of refactorings
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detected by RefDiff, which provide similar accuracy for our dataset. To exemplify this step,

if this step is executed in the code in Figure 2.4, it would detect a Rename Method refactoring,

where the getStr method is renamed to getString (Figure 2.4(b) - lines 2,3).

After mining the projects’ repositories, we filtered the commits to work only with the

ones with behavioral changes, i.e., a pair of commits that are not pure-refactoring. For that,

we used the SafeRefactor tool [48], which checks for safe refactoring edits. It analyzes two

versions of a program and, by generating and running sets of unit tests, it indicates whether

the program’s behavior remained unchanged. Thus, in the context of our study, only pairs of

commits that failed in SafeRefactor’s analysis were used, since that means there are refac-

toring edits combined with behavior-changing ones. On the other hand, pass outputs from

SafeRefactor were discarded since it indicates that no behavior-changing edit was performed

between the two versions. In other words, in our study, we consider there is a behavior-

change when the system that used to pass in a regression test suite, fails in the same suite

when edit(s) are performed. Following the example from the previous step, SafeRefactor

would detect a change in the system behavior, since, as we explained in Subsection 2.1.2,

with the edits applied in the code (Figure 2.4(b) - lines 8,9), the system will throw a Null-

PointerException.

Although very helpful, in the context of our study, we faced several issues due to SafeR-

efactor’s practical limitations. For instance, SafeRefactor’s execution requires as input the

directory where the source code files are placed. However, multi-modules projects (projects

composed by the aggregation of two or more modules) often have multiple source code di-

rectories. Therefore, for analysing multi-modules projects, we run SafeRefactor on each

module individually. In this case, if any module presents behaviour change, we classified the

commit as behavior-changing.

SafeRefactor also requires a time limit for the test generation. To guide this definition,

Soares et al. [47] run an empirical study that evaluated the coverage of the test suite generated

by the tool with different time limits. The longer the timeout, the greater the number of tests

generated. However, the coverage of the tests was not linearly proportional to the number

of tests. As the number of tests increases, the coverage grows less. With this evaluation, the

authors found that by doubling the time limit, the generated suites had an increase of only

2%. Thus, in our study, we used Soares’s recommendation with a generation threshold of
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120 seconds.

Moreover, due to practical limitations on its analysis process, SafeRefactor requires com-

pilation error free versions of the project under test. To cope with this limitation, we decided

to work only with Maven projects, which minimizes dependency issues that could be intro-

duced during software evolution [27]. However, even with proper dependency management,

several commits still presented compilation errors. This goes according to Tufano et al.

[54] findings that state that 62% of a change history cannot be successfully compiled (as

we will see in Section 4.2). Those problematic versions were then discarded. In multi-

module projects, many versions presented compiling errors in some modules while others

compiled successfully. For these cases, we classified the whole version based on the com-

piled modules. That is, even if only one module compiled, we classified the entire version as

behavior-changing or behavior-preserving based on the module’s output.

In our third step, we analyzed the extra edits types from commits that combine refac-

torings with behavioral changes. For that, we used the ChangeDistiller tool [12] and its

change type classification [13] (see Table 2.2). ChangeDistiller is a tool that compares two

versions of an Abstract Syntax Tree (AST) and classifies the source code edits performed

between them. We chose this tool due to its fine granularity analyzes and feedback. More-

over, several other change-based empirical studies also use ChangeDistiller [1; 9; 24; 40;

53].

ChangeDistiller receives two versions of a given class (v1 and v2) and lists all edits per-

formed between v1 and v2. However, since our study focuses on extra edits, we needed

to filter ChangeDistiller’s output list to remove all edits that were part of refactorings edits.

For instance, when a Extract Method is performed, ChangeDistiller classifies the extracted

method as an Additional Functionality. Therefore, we extended ChangeDistiller to include a

module that analyzes both ASTs and ChangeDistiller’s output list and, based on the refactor-

ings returned by RefDiff, returns the edits that are not part of refactoring changes. Figure 3.2

shows how our filter interacts with ChangeDistiller during the 3rd step, detecting behavioral

change edits.

The step of detecting behavioral change edits takes as input a commit and its parent.

Then, it uses ChangeDistiller to find all edits applied in all classes in the commit and transfer

them to the filter. However, to enable the filter’s analysis, we added extra information to the
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Figure 3.2: Detecting Behavioral Change Edits Diagram

ChangeDistiller’s output (we will describe them in the next subsection). In the filter, all edits

are analysed based on the refactoring set provided by RefDiff. Finally, as output, we have a

list with the extra edits present in the commit. To exemplify this step, consider the code in

Figure 2.4. Table 3.1 shows the edits ChangeDistiller would yield, and how the filter would

classify them, regarding whether the edit is part of a refactoring or not. Therefore, only the

edit where Part of Refactoring is No is returned by the strategy.

Table 3.1: Strategy Example
Extra edit Changed Entity Parent Entity Part of Refactoring

Method Renaming getStr(String) C1 Yes

Statement Update return ""; getStr(String) No

Statement Update String aux = getStr(str); printStrLen(String) Yes

In the next subsection, we provide details about the changes in ChangeDistiller’s output,

and how the filtering works in the next subsection.

3.1.1 Extra Edits Filter

For filtering extra edits, we first check whether each edit returned by ChangeDistiller is re-

lated to any refactoring returned by RefDiff. When a refactoring related edit is found, a

specific treatment is applied based on the refactoring type it is related to. However, the de-

tails about the changed entities returned by ChangeDistiller were not enough for the analysis.

Thus, we needed to extend ChangeDistiller so it can provide extra information that are im-

portant to our analysis, such as declaration details and body structure, when available. Figure

3.3 shows the ChangeDistiller’s original output information and the additions we made.
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Figure 3.3: ChangeDistiller Output Modification

The original version presented information about the Change Type, Changed Entity, Par-

ent Entity and the Root Entity. The information contained in each attribute, except Change

Type, consists basically in the entity type, its unique name and its modifiers (e.g., private,

public, final, static). The extra information added provide essential information such as the

declaration and body structure of the changed entities (Declaration Structure, Body Struc-

ture), allowing detailed comparisons between entities. It was also necessary to add the

changed entity as root entity (Changed Entity as Root) because some analysis required it

as starting point. In addition, we added the Inside Refactoring attribute to allow us to ana-

lyze how frequent extra edits are carried out inside refactored entities. We marked the Inside

Refactoring whenever an edit was found inside a refactored method or attribute.

ChangeDistiller runs over two versions of a single class, therefore, it was necessary to

map the classes to its respective pair across the system versions. Thus, to address renamed

and moved classes, we mapped the previous and new signatures based on the Rename Class

and Move Class refactorings found by RefDiff. For each class in the source version, we

checked whether its signature was changed by one of the mentioned refactoring, if so, we

compared it with the class with the new signature provided by RefDiff. For new classes, we

checked whether they were extracted entities from Extract Superclass or Extract Interface

refactorings by comparing its signature with the ones in the refactoring set.

Since new classes can contain refactored entities, they were compared to an empty ver-

sion of themselves, in order to list their entities. These entities are then classified as entities
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introduction (e.g., Additional Functionality, Additional Object State). It is important to men-

tion that these changes are used only for future refactoring analysis, and are not listed as

extra edits, but as disposable edits instead, since the edit under analysis in this situation is

an Additional Class. For similar reasons, a similar approach was used for all deleted classes,

with the entities being classified as entities removal (e.g., Removed Functionality, Removed

Object State).

Since ChangeDistiller analyzes one class at a time, refactorings that comprises moving

operations, such as moving an entire method or field to a different class (e.g., Move Attribute,

Pull Up Method), are treated by ChangeDistiller as two separated changes: the removal of the

refactored entity (the field or method to be moved) from the source class, and its introduction

to the target class. In those cases, our module reruns ChangeDistiller specifically on the

refactored entity searching for changes between its previous and new version. The tool

compared the Declaration Structure and Body Structure of both entities, using the Changed

Entity as Root as root of the edits found in the analysis. Any edit found by this analysis

is considered an extra edit, since modifications in its body or signature are not part of the

refactoring, except updated calls for refactored entities. Updated statements containing a call

to any of the refactored entities returned by RefDiff, regarding move and rename refactorings,

are not considered extra edits, since updating callers is part of the refactoring mechanics.

Moreover, if the refactored entity was moved to a new class, or from a removed one, we use

the previously mentioned disposable edits in the analysis.

We used a similar approach for dealing with the Rename Method refactoring. We also re-

run ChangeDistiller on the refactored entity, comparing the Declaration Structure and Body

Structure of source and target entities, but instead of moving the method to a different class,

its name is the only modification expected, while its body should remain unchanged. For

the Extract Method and Inline Method, since they may work with a series of statement trans-

ference, we perform a more complex analysis. Listing 3.1 shows the pseudo-code of the

algorithm used for filtering Extract Method-related edits.

For each Extract Method refactoring found by RefDiff, we run EMFilter to select the

extra edits applied in the extracted and source method. The EMFilter uses the algorithm

in Listing 3.1 to classify whether the edits found by ChangeDistiller are extra edits or not.

The changes classified as part of the refactoring (not an extra edit) are excluded from the
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edit list, remaining, in the end, only extra edits. First, the algorithm tries to match identical

statements between the statements excluded from the source method and the ones present in

the extracted method (lines 2 - 11). The matches found in the first step are considered part

of a refactoring, and, therefore, excluded from the edit list.

Then, it identifies the statements that were updated during the refactoring process by

verifying its similarity (lines 12 - 22). We used a similarity threshold of 60%, which is

the same similarity level of ChangedDistiller. The selected statements are then removed

from their previous lists and added as an update to a different list. To determine the edit

type of the updated statements, we used the ChangeDistiller’s classifier (line 19). The

remaining unmatched statements are considered extra edits (with some exceptions that

will be discussed later). To determine the edit type of the remaining statements from the

extracted method, we also used the ChangeDistiller’s classifier (lines 23 - 25). As for the

remaining changes from the source method, they were added to the final edit list, as well as

the updated statements and the new statements from the extracted method (lines 26 - 28).

1 EMFilter (m1:original Method, m2: extracted Method){

2 l1 = changes in m1

3 l2 = staments from m2

4 changes = {}

5

6 foreach s in l1{

7 if(l2.contains(s)){

8 l1.remove(s)

9 l2.remove(s)

10 }

11 }

12 updates = {}

13 foreach s1 in l1{

14 foreach s2 in l2{

15 if (similarity(s1,s2) >= 0.6){

16 l1.remove(s1)

17 l2.remove(s2)

18 update = newUpdate(s1,s2)

19 updates.add(Distiller.classify(update))

20 }

21 }

22 }

23 inserts = {}

24 foreach s in l2
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25 inserts.add(Distiller.classify(s))

26 changes.addAll(updates)

27 changes.addAll(l1)

28 changes.addAll(inserts)

29 foreach s in changes{

30 if (isCaller(s) OR isSimpleReturn(s))

31 changes.remove(s)

32 }

33 }

Código Fonte 3.1: Extract method filter algorithm

Finally, we verify if any of the final edits make references to any refactored entity. When

an edit refers to a refactored entity, we consider the edit as part of the refactoring, since

update references is a step in the refactoring process (lines 29 - 32). However, since we

work only with static analysis, we do not have binding information. Therefore, we used

the following classification criteria to decide whether a statement calls a refactored entity.

Moreover, we also analyzed all edits returned by ChangeDistiller using these criteria.

For each call to a refactored method:

1. The edit must be an update;

2. The statement must contain a method call with identical name to the refactored

method;

3. The method call must provide the same number of parameters the refactored method

requires1.

For each call to refactored fields:

1. The edit must be an update;

2. The statement must contain a variable call with identical name to the refactored field;

3. The variable called in the statement must not be a local variable:

(a) Called from an object instance (e.g., obj.field); or

1We were not able to analyze the objects type due to polymorphic complications
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(b) There must not be a variable declaration with identical name to the refactored

field in the method where the statement is placed.

For each call to refactored Classes:

1. The edit must be an update;

2. The update must be in:

(a) Field type;

(b) Method’s return type;

(c) Parameter type;

(d) Variable declaration type.

3. The type must be identical to the refactored class.

We also check whether the edit is a Return Statement, once the introduction of Return

Statements is expected in Extract Method refactorings. When a Return Statement is found,

we check whether it is a simple return, i.e., if the statement contains only simple values

(constant/variable) or none. In these cases, the edit is considered part of the refactoring

(lines 29 - 32) and excluded from the final list. It is important to mention that all Return

Statements containing more than simple values (e.g. arithmetic/Boolean operations, method

invocations) were analysed to check whether it was extracted from the source method during

matching process (lines 6 - 22). To better illustrate, in Listing 3.4, we show an example where

a Return Statement is composed by a code extracted during a Extract Method refactoring.

For the example, we used a method that returns the number of days the given year has.

In the example, the leap year verification (line 2) is extracted to a new method and placed

directly on the Return Statement (line 10). During the matching process, the If Statement is

matched with the Return Statement. Since there is no change in the extracted code, the edit

is considered part of the refactoring and, therefore, excluded from the final edit list. If the

condition was changed, then, it would be considered a Condition Expression Change (see

the edit description in Table 2.2).

For the Inline Method refactoring, we analyze the inlined and destiny methods following

a similar process, where it tries to match the statements introduced in the destiny method with
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1 public class C{

2 public int dayInYear(int year){

3 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)

4 return 366;

5 else

6 return 365;

7 }

8 }

(a) Original code

1 public class C{

2 public int dayInYear(int year){

3 - if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)

4 + if (isLeapYear(year))

5 return 366;

6 else

7 return 365;

8 }

9

10 + public boolean isLeapYear(int year){

11 + return ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0);

12 + }

13 }

(b) Code after Extract Method refactoring

Figure 3.4: Return Statement Example.

the statements from the inlined method. Then, the remaining unmatched statements from the

inlined method are classified by the ChangeDistiller’s classifier as deleted statements.

3.2 Limitations

Construct Validity: Our approach for floss-refactoring data extraction relies on three differ-

ent tools (RefDiff, SafeRefactor, and ChangeDistiller) and their accuracy may directly affect

its output. We refer to their work regarding their accuracy [12; 46; 48]. Silva and Valente

[46] evaluation states that RefDiff can detect refactoring edit with 100% precision and 88%

recall. Regarding ChangeDistiller, Fluri et al. [12] evaluate its precision and recall (78% and

98%, respectively). We run a sampling test that validated both tools results in the context

of our investigation. Moreover, since ChangeDistiller does not differentiate code changes

within refactorings entities, we extend it by filtering its outputs based on the refactorings
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found by RefDiff tool. The filtering process was based on ChangeDistiller analysis and the

Fowler’s guide for each refactoring type [15]. Moreover, test cases were run for verifying

the introduced features.

As for SafeRefactor, it uses automatically generated test suites to determine whether

versions of a system are pure-refactoring. Therefore, its analysis might not detect all be-

havior changes. However, since our study works only with non-behavior-preserving pairs of

commits, we used only versions that SafeRefactor presented failing test cases. Therefore,

possible limitation on SafeRefactor analysis does not impact our study, since failing test

cases guarantee behavior changes.

Internal Validity: One may argue that SafeRefactor’s capability of detecting behavior

changes may be influenced by the chosen time limit for test generation. However, Soares

et al. [47] found that when considering generations beyond 120 seconds, the suites do not

present considerable coverage increases. Therefore, our study consider 120 seconds as gen-

eration threshold for SafeRefactor.

3.3 Concluding Remarks

In this chapter, we presented our strategy for extracting floss-refactoring related data. With

this strategy, we are able to extract detailed information about refactoring operations and ex-

tra edits applied simultaneously across the software repository’s versioning history. Our data

extraction process consists of three steps. For each step, we used an state-of-art specialist

tool. We used RefDiff for finding the refactorings operation across all versioning history of

the systems under analysis. SafeRefactor filtered out the commits with refactoring that did

not present behavior change, i.e. pure refactoring commits. Finally, ChangeDistiller was

responsible for listing the edits performed in the commit with behavior change. However,

ChangeDistiller is not able to identify whether an edit is part of a refactoring operation or

not. Thus, we developed a filter able to filter edits that are part of refactorings operations

by taking into account Fowler’s catalog and the refactorings found by RefDiff. In the next

chapter, we present an empirical study conducted to investigate how refactorings and extra

edits relate to each other, i.e. investigate whether there is an association pattern between

them regarding their presence and frequency.



Chapter 4

Empirical Study: What extra edits

should we expect during

floss-refactoring?

By using the data extraction process presented in the previous chapter, we carried out an

empirical study to understand extra edits patterns when developers apply different types of

refactoring edits. In this chapter, we describe the design of this study, as well as its results

and discussion.

4.1 Motivation and Procedure

Even though refactoring’s main purpose is to improve readability without changing the sys-

tem’s behavior, studies have shown that this activity rarely happens alone [33; 45]. It is

common for developers to apply extra edits during the refactoring process, which might in-

crease the error-proneness of the activity. Yet, as far as we know, there is no empirical study

in the literature on the likelihood of specifics types of extra edits to be applied alongside

refactorings

In this context, we conducted an empirical study for analyzing how developers combine

refactorings with extra edits, in order to identify relationship patterns between extra edits

and different refactoring types. In this study, we analysed software repositories, selecting

commits that contain both, refactorings and extra edits, to check whether there is or not any

34
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association pattern. Thus, we defined this study through the GQM approach [6] where the

main goal of our study was to understand the following:

• How developers combine refactorings with extra edits?

Such information could be used to support the development of new tools for floss refac-

toring review, as well as to help researchers better design and model their studies, improving

their simulations of real code changes. Thus, to help us to achieve our goal, we defined two

specific research questions:

• RQ1: Which extra edits are more likely to appear alongside a given refactoring edit?

• RQ2: How the number of extra edits changes based on the refactorings performed by

developers?

To answer these questions we took into account the following metrics:

• M1: The change in the likelihood of an extra edit appear based on the refactorings

performed;

• M2: The change in the amount of an extra edit regarding the amount of refactorings;

The first metric (M1) takes into account the change (increase or decrease) in the odds

of extra edits appear regarding the refactorings performed by the developers, and, it is used

to answer the first research question (RQ1). The second metric (M2) analyzes the change

(increase or decrease) in the number of extra edits presented alongside refactorings. This

second metric is used to answer the second research question (RQ2).

4.2 Subject Selection

In our investigation, we mined 45 open-source Java projects using the data extraction strategy

presented in Chapter 3. The projects used, and its characteristics such as LOC (Lines of

Code), total of commits and compiling errors, are presented in Table 4.1.

As we can see in Table 4.1, the number of extra edits is much higher than refactorings.

Thus, based on the numbers in the table, and on the Silva et al.’s findings [45], which indi-

cates that refactorings are mainly driven by requirements changes rather than bad smells, we
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Table 4.1: Selected Projects
Project LOC Total Commits Compiling Errors Selected Commits Refactorings Extra Edits

codefollower/Lealone 100789 1255 82 175 2249 8601

nutzam/nutz 92671 5883 275 59 153 2798

AsyncHttpClient/async-http-client 30812 3935 126 45 480 2264

BroadleafCommerce/BroadleafCommerce 185869 15545 1 32 129 3093

vkostyukov/la4j 13480 857 20 30 149 2132

thymeleaf/thymeleaf 40910 1645 172 29 174 3612

mrniko/redisson 101069 3743 127 26 129 2386

Athou/commafeed 9037 2521 70 23 52 441

dropwizard/metrics 19098 2375 1 23 101 691

alibaba/druid 296482 5824 397 16 81 1712

graphhopper/graphhopper 60847 3431 383 16 82 1141

Graylog2/graylog2-server 147138 14139 174 15 55 719

clojure/clojure 40728 3167 209 14 32 590

bennidi/mbassador 5520 334 2 14 88 833

apache/incubator-dubbo 101610 2491 212 12 68 284

opentripplanner/OpenTripPlanner 92171 8999 213 10 165 3016

notnoop/java-apns 5626 358 1 9 27 156

jline/jline2 10620 587 16 7 20 270

spring-projects/spring-data-mongodb 11176 2109 152 7 37 865

zeromq/jeromq 46558 348 3 6 26 1790

square/retrofit 20589 861 4 5 15 74

NLPchina/ansj_seg 13612 497 27 4 6 176

apache/giraph 98392 1065 160 4 59 1129

spring-projects/spring-hateoas 18521 400 32 4 6 151

brettwooldridge/HikariCP 12278 1836 32 3 9 169

AdoptOpenJDK/jitwatch 69726 580 2 3 85 68

jopt-simple/jopt-simple 9350 241 0 3 21 153

Kailashrb/scribe-java 5821 254 4 3 7 58

selendroid/selendroid 35201 960 2 3 26 580

xetorthio/jedis 30861 723 3 2 5 8

belaban/JGroups 122196 10124 840 2 2 33

HubSpot/Singularity 64665 2182 53 2 10 294

spring-projects/spring-data-neo4j 4530 538 47 2 20 78

undertow-io/undertow 138964 4042 5 2 14 212

Atmosphere/atmosphere 41453 4861 14 1 4 25

crashub/crash 40531 1844 125 1 1 31

cucumber/cucumber-jvm 28972 1929 0 1 1 16

HdrHistogram/HdrHistogram 9996 490 19 1 8 148

addthis/hydra 91989 2066 15 1 1 34

jayway/rest-assured 30967 1529 1 1 2 20

robovm/robovm 923138 1746 108 1 179 1494

scobal/seyren 6993 385 2 1 1 35

spring-projects/spring-data-jpa 18621 1059 49 1 2 24

spring-projects/spring-data-rest 2295 960 58 1 1 25

square/wire 31486 632 0 1 9 103

Total 3283358 121350 4238 621 4791 42532

could say that refactorings appeared to facilitate or supplement extra edits. Figure 4.1 shows

the frequency of each refactoring type considering all analyzed commits. The refactoring

types found in the projects used in our study go along with Murphy-Hill et al.’s findings

regarding most common refactorings, such as Move Method, Extract Method and Rename

Method refactorings [33]. Moreover, the column Compiling Errors shows the number of

commits that were not able to be compiled, which does not include commits from multi-
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module projects where at least one module compiled.

Figure 4.1: Refactoring frequency

Regarding the commits containing each refactoring type, we can take a look at Figure 4.2.

One interesting fact is that the ranking of most common refactorings considering the number

of refactoring performed was not the same of the ranking of refactoring considering the

number of commit containing each refactoring type. This indicates that some refactorings,

when used, are performed many times in few commits, while others are performed a few

times in many commits. For instance, there are few commits with the presence of the Move

Method refactoring, however, in these commits, the number of occurrences of this refactoring

is high.

As for the extra edits, due to the time constraints, we considered the eight extra edit

types with the highest number of occurrences. Moreover, the number of commits used goes

according Peduzzi recommendation of [38] for sample sizes. Figure 4.3 shows the extra edits

frequency throughout the selected commits. The description of the selected extra edit types

can be found in Table 2.2. Moreover, the dataset collected during this empirical investigation

is available online1 for future floss-refactoring studies.

1Dataset available at: https://github.com/moreiraJS/Floss-refactoring-data
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Figure 4.2: Commits with each refactoring type.

Figure 4.3: Extra Edits Frequency
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4.3 Analysis Method

To analyze how developers combine refactorings with extra edits, we performed a series

of regression analysis. Regression is a powerful statistical method for examining the re-

lationship between two or more variables. We built regression models that relate refac-

torings to each extra edit. It is important to highlight that, although a regression model

is often used as a prediction artifact, it can also be used as a describing tool for evidenc-

ing how the variables (dependent and independent) relate to each other. Several works use

regression models to describe the relationship between two or more variables [5; 28; 37;

44], where the coefficients of the regression model represent the impact of the independent

variables on the dependent variables.

Since we want to describe the extra edits based on the refactorings operations, our inde-

pendent variable is the refactoring type, while the extra edit is the response (or dependent)

variable. Before building the regression models, we first run a normality test that attested

that the collected data does not follow a normal distribution. Then, we investigated what

regression method best fits our data, based on its distribution. According to Hilbe [22], the

most common distributions for counting data are Poisson and Negative Binomial. However,

we could not use Poisson since it assumes a data where mean and variance are the same, and

our data variance is at least 19 times greater than the mean (Table 4.2). On the other hand,

the Negative Binomial estimates both parameters independently, allowing the distribution

to deal with overdispersion (variance greater than the mean) and underdispersion (variance

lower than the mean) [20].

Table 4.2: Data Details
Extra Edits Zero Count Mean Variance

Statement Insert 145 15.07 1217.08

Statement Delete 178 13.76 1465.53

Statement Update 154 8.25 396.14

Additional Functionality 236 4.30 107.22

Statement Parent Change 362 3.59 133.46

Removed Functionality 359 2.83 66.15

Condition Expression Change 365 2.06 42.79

Additional Object State 348 1.88 35.74
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Another common problem when dealing with counting data is the great number of zero

counts. Considering that our dataset with 621 observations, the number of zero counts per

extra edit type is very high (Table 4.2). According to Hilbe [21], Hurdle models are typically

used to model the zero count. Therefore, for our analysis, we used Hurdle Negative Binomial

models.

A Hurdle Negative Binomial model is divided into two parts, its Logit and Count models.

The first is a regular logistic regression, which relates dependent variables with independent

variables in order to predict the probability of the dependent variable being different from

zero [0;1], i.e., its presence or absence. The Count model predicts the frequency of the

dependent variable based on the independent variable starting from one ([1,∞]). Equation

4.1 shows the general structure of the models we built, where ExtraEdit is the predicted

frequency of an extra edit2, Refactoring is the number of refactorings of a specific type in a

given commit, and β0 and β1 are the found statistical coefficients.

ExtraEdit =
eβ0+β1Refactoring

1 + eβ0+β1Refactoring
(4.1)

A Hurdle model is based on the assumption that the data is generated by two distinct

processes, one before crossing the zero barrier and another process after, even though the

processes’ nature is not specified [21]. In practice, this means that factors that influence the

first occurrence of an event may not influence how often this event occurs and vice versa.

In other words, the significant predictors in predicting if an extra edit appears in a commit

might not be significant in predicting the frequency it appears. As a result, predictors usually

achieve different coefficients and significance levels in each model.

Moreover, we analyzed whether the independent variables generate significant impact

on the dependent variables. To better understand our results, we analyzed the relation be-

tween the variables using Odds Ratios (OR), which is given by eC , where C represents the

coefficient of the independent variable in each model [21]. The Odds Ratios indicate the

increase, or decrease, in the likelihood of the dependent variable for a unit increase of the

independent variable. For instance, if the Logit model relates the Extract Method refactoring

with a Statement Insert extra edit with an OR of 1.1, it means that for each Extract Method

refactoring, there are 10% higher chances of appearing a Statement Insert edit in the same

2The logit model varies from [0;1], while the count model ranges from [1; ∞]
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commit. Considering a Count Model in the same scenario with an OR of 1.2, it means a

20% increase in the number of Statement Inserts for each Extract Method. On the following

subsections, we describe the relationship between refactorings and extra edits based on the

analysis method described.

4.4 Results and Discussions

4.4.1 Which extra edits are more likely to appear alongside a given

refactoring edit?

To answer the first research question, we used the Logistic part of the Hurdle Negative Bi-

nomial model. Table 4.3 reports the Odds Ratio (OR) obtained by each model. It contains

the selected extra edits for each refactoring that achieved significance for at least one extra

edit. The significance of the ORs is represented by the number of “ * ” after each value,

where “ *** ” represents a significance level higher than 99.9%, while “ ** ” represents a

significance level higher than 99%, and “ * ” a significance level higher than 95%.

To answer our first research question, we focused on the Logit model ORs presented

in Table 4.3. The values in the Logit column represent the change in the likelihood of a

respective extra edit appear in a commit (Section 4.1 - M1). Interestingly, all significant OR

were higher than one, indicating an increase in the likelihood of the extra edit to be applied.

Following, we discuss the results considering each model, independently. Moreover, we gave

special attention to the Extract Method, Rename Method and Inline Method refactoring, since

they had more significant ORs.

Extract Method

As we can see, all selected extra edits presented significant ORs for the Extract Method

refactoring. Interestingly, all ORs values were higher than one, which means that there is an

increase in the likelihood of these extra edits appearing in the same commit when a developer

performs an Extract Method refactoring. For instance, the OR for Additional Functionality

edit was 1.266680, which means that there are approximately 27% more chances of a new

method to appear alongside an Extract Method, besides the extracted one. This finding sug-
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Table 4.3: ORs from Logistic models between refactorings and extra edits.
Refactoring Extra edit Logit (M1) Refactoring Extra edit Logit (M1)

Extract Method Statement Insert 1.431857 *** Rename Method Statement Insert 1.026465

Extract Method Statement Delete 1.455638 *** Rename Method Statement Delete 1.130114

Extract Method Statement Update 1.401631 *** Rename Method Statement Update 1.041945

Extract Method Additional Functionality 1.266680 *** Rename Method Additional Functionality 1.249350 **

Extract Method Statement Parent Change 1.088286 ** Rename Method Statement Parent Change 1.086418

Extract Method Removed Functionality 1.087413 ** Rename Method Removed Functionality 1.205934 ***

Extract Method Condition Expression Change 1.116335 *** Rename Method Condition Expression Change 1.127316 *

Extract Method Additional Object State 1.124656 *** Rename Method Additional Object State 1.111510 *

Move Attribute Statement Insert 1.006585 Inline Method Statement Insert 1.229395

Move Attribute Statement Delete 1.014015 Inline Method Statement Delete 1.302112 *

Move Attribute Statement Update 1.021679 Inline Method Statement Update 1.588910 *

Move Attribute Additional Functionality 1.015841 Inline Method Additional Functionality 1.057116

Move Attribute Statement Parent Change 1.051892 Inline Method Statement Parent Change 1.261771 **

Move Attribute Removed Functionality 1.090687 * Inline Method Removed Functionality 2.038140 ***

Move Attribute Condition Expression Change 1.071811 Inline Method Condition Expression Change 1.221231 **

Move Attribute Additional Object State 1.048800 Inline Method Additional Object State 1.265517 **

Rename Class Statement Insert 0.880308 Pull Up Method Statement Insert 1.201190

Rename Class Statement Delete 0.896036 Pull Up Method Statement Delete 1.316673

Rename Class Statement Update 1.288226 Pull Up Method Statement Update 1.334808

Rename Class Additional Functionality 0.873339 Pull Up Method Additional Functionality 1.422740

Rename Class Statement Parent Change 1.011210 Pull Up Method Statement Parent Change 1.061242

Rename Class Removed Functionality 1.047473 Pull Up Method Removed Functionality 1.229994

Rename Class Condition Expression Change 1.273402 * Pull Up Method Condition Expression Change 1.309655 *

Rename Class Additional Object State 0.970098 Pull Up Method Additional Object State 1.152468

gests that developers often combine Extract Method edits with feature introductions and/or

updates, which corroborates with Palomba et al. [37] that state that this refactoring is re-

lated to the introduction of new features. Listing 4.1 shows an example from the Broadleaf-

Commerce3 project where in the same commit there is an Extract Method and an all new

non-refactoring-related method was introduced.

1 + public static <G extends Throwable, J extends

2 + RuntimeException> RuntimeException

3 + refineException(Throwable e) {

4 + return refineException(RuntimeException.class,

5 + RuntimeException.class, null, e);

6 }

Código Fonte 4.1: Method created to overload an extracted method.

The refineException method, which is called in line 4, was created during an Extract

3https://github.com/BroadleafCommerce/BroadleafCommerce
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Method edit. This method was extracted to be used by two other methods, besides the origi-

nal one. All these changes were applied as part of a system update. The introduction of new

methods can be error-prone, once it can override or be overridden by other methods, making

the system behavior different from the expected. In this context, a code review is recom-

mended, where the developer would give it a second look to ensure that the new method

does not impact on the refactoring, and/or does not override, or is overridden, by any other

method. Even though method overriding may be a reason for this refactoring [45], this can

still be error-prone since the method that overrides the extracted method might not meet

requirements from the source method.

The Additional Object State edit presented 12% increase in its likelihood. This edit

increases the number of possible states of an object, which can directly impact comparison

functions. Comparison functions takes into account specific aspects of an object, or the

whole object, to return its result. However, by adding a new object state, the comparison

function might return a different result from the expected. For instance, if the software uses

a comparison function that compares the whole object, it might be necessary to develop

a specific function to compare the other aspects except the new one. As for the Remove

Functionality edit, its OR presented approximately 9% increase.

As we can see in Table 4.3, the Statement Delete extra edit presents the highest chances

of appearing when an Extract Method is performed. There is a 45% increase on the likeli-

hood of a developer perform a Statement Delete in a commit every time an Extract Method

refactoring is performed. For the Statement Insert extra edit, we found the second highest

OR value, i.e. there is an increase of 43% in the chances of a Statement Insert occur for

each Extract Method. For the Statement Update, the increase is 40%, while it is nearly 12%

for the Condition Expression Change edit, and 8% for the Statement Parent Change edit.

In practice, it means that developers, when applying Extract Method edits, tend to change

both the extracted and non-refactoring-related methods. These extra edits are worth revi-

sion, since often lead to behavior changes. The impact caused by these changes can be even

greater when occurring in the extracted method, once the change made might seem harmless

in the method, but have direct impact on its caller.

Listing 4.2 presents a method from the Druid project4, where, in a single commit, code

4https://github.com/alibaba/druid
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fragments from 26 different methods were extracted with Extract Method edits. However,

even though the Extract Method refactorings were performed to reduce code duplicity, not

all fragments were repetitive. The condition on line 2 was extracted from 24 methods, while

lines 5-8 were extracted from the other two methods. Finally, Line 9 is a new condition

added (extra edit).

1 public static boolean checkParameterize(SQLObject x) {

2 if (Boolean.TRUE.equals(x.getAttribute(ParameterizedOutputVisitorUtils.

ATTR_PARAMS_SKIP))) {

3 return false;

4 }

5 SQLObject parent = x.getParent();

6 if (parent instanceof SQLDataType //

7 || parent instanceof SQLColumnDefinition //

8 || parent instanceof SQLServerTop //

9 + || parent instanceof SQLAssignItem

10 ) {

11 return false;

12 }

13 return true;

14 }

Código Fonte 4.2: Method extracted for reducing code duplicity.

By analyzing these refactorings independently, in the first set of Extract Method refactor-

ings (code extracted from 24 methods), the original code checked whether a specific attribute

from the parameter is true (line 2). However, the updated code extended the condition to

also analyze the object’s parent (lines 5-9). This is an example of an inner-method extra edit

where a developer should consider the impact the edits might generate to its callers. When

it comes to an Extract Method refactoring, if the extracted code is modified with extra edits,

the behavior of the source method is likely to change, and consequently, all callers of the

original method can also be impacted. Moreover, the methods from which the condition in

line 2 was extracted did not present the same behavior since the checkParameterize method

introduced new restrictions. This more restrictive behavior may prevent some previously

accepted events from occurring.

As mentioned, the method in Listing 4.2 is composed of code fragments from different

methods. As a result, the refactorings impacted each others behavior. In other words, a code

fragment can be considered an extra edit depending on the perspective. By the perspective of
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the first Extract Method (code extracted from 24 methods), lines 5-9 are extra edits, once they

were not present on its source method. By the perspective of the other Extract Method, lines

2-4 are extra edits for the same reason: the condition was not present on its source method.

Moreover, in this Extract Method, we also have an example of Condition Expression Change.

The original version of the extracted condition did not verify the instance of SQLAssignItem

(line 9). An error in a condition expression can have a great impact on a method’s behavior,

once it can avoid the execution of an entire code block. Therefore, we believe all those

extra edits deserve proper revision to ensure that all behavior changes were intentional, and,

consequently, no fault was introduced.

Rename Method

To address the edits along the Rename Method refactoring, we built a set of regression mod-

els whose ORs are also presented in Table 4.3. Different from the Extract Method refactor-

ing, where all extra edits had significant increase when the refactoring is performed, for the

Rename Method refactoring, only half of the edits achieve significant values. Interestingly,

with exception of the Condition Expression Change edit, only outer-method edits presented

significant change in its likelihood. It might suggest that the Rename Method refactoring is

related to feature change, with the addition of new functionalities and object states, as well as

the removal of probable obsolete methods. This corroborates with Palomba et al. [37], whose

results showed correlations between the Rename Method refactoring and the introduction of

features in some cases.

The extra edit with the highest OR is the Additional Functionality edit, having 25% more

chances of appearing. Listing 4.3 shows an example of a new method created along with

a renamed method from the Lealone project5. The developer renamed the method to better

describe its functionality, while creating new methods to provide specific signatures.

1 - public Result asyncQuery(int maxRows) {

2 + public Result executeQuery(int maxRows) {

3 return query(maxRows);

4 }

5

6 + public Result executeQueryAsync(int maxRows) {

7 + return executeQuery(maxRows);

5https://github.com/lealone/Lealone
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8 + }

Código Fonte 4.3: Renamed method along with newly created method.

As we said before, the addition of new method can be error-prone, since it can overload,

or be overridden by, other methods, creating an unexpected behavior. Thus, it is necessary for

the developer to thoroughly analyse the class’ hierarchy in order to prevent such unexpected

behavior.

The Removed Functionality edit obtained the second highest OR, having 20% increase

when the refactoring is performed. In the sequence, the Condition Expression Change edit

had 12% more chances of appearing. In the last position, the Additional Object State edit

achieved 11% increase. These evidences may suggests that this refactoring is usually used

followed by, or as a consequence of, a feature update. In this scenario, the developers updates

the method’s behavior while changes its name for a more specific one.

These findings could support future investigations on faults related to refactoring in this

context, which could lead to the development of specific tools for refactoring driven code

review.

Inline Method

The analysis of the edits alongside the Inline Method refactoring resulted in six significant

ORs, in which one presented the highest OR among all Logit models. For each refactoring

performed, the odds of a Removed Functionality appear is doubled. It is important to mention

that the method inlined in the refactoring is not considered for this statistic. This goes along

with Silva et al. [45] findings, whose results showed that the Inline Method is often used

when a method (caller or callee) has become too trivial after code changes, indicating the

removal of all unnecessary components. It also explains why the Statement Update and the

Statement Delete also presented such high ORs, which was 59% and 30% respectively. In

Listing 4.4 we have an example from the La4j project6 with an inlined method that had some

statements deleted.

In this example, the decompose method (lines 1 - 10) was inlined because it was only

used by another method whose function was only to call the inlined method. Thus, the

6https://github.com/vkostyukov/la4j
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developer joined both method through the Inline Method refactoring. However, the inlined

method has an additional parameter that required an applicability verification (Lines 2-3) to

ensure it could be processed by the method, and, after the refactoring, the verification was

deleted.

1 - public Matrix[] decompose(Matrix matrix, Factory factory) {

2 - if (!applicableTo(matrix)) {

3 - fail("This matrix can not be decomposed with Cholesky.");

4 - }

5 - Matrix l = factory.createMatrix(matrix.rows(), matrix.rows());

6 - for (int j = 0; j < l.rows(); j++) {

7 - ...

8 - }

9 - return new Matrix[] { l };

10 - }

11

12 public Matrix[] decompose(Factory factory) {

13 + Matrix l = factory.createMatrix(matrix.rows(), matrix.rows());

14 + for (int j = 0; j < l.rows(); j++) {

15 + ...

16 + }

17 + return new Matrix[] { l };

18 - return decompose(matrix, factory);

19 }

Código Fonte 4.4: Method inlined to trivial caller.

Now, since the decompose method (lines 12 - 19) uses a class’ attribute instead a pa-

rameter, the verification was deleted. Consequently, if the class’ attribute does not have an

appropriate verification, the method might end-up with an unexpected behavior. Thus, it is

necessary for the developer to verify if the attribute always meets the method’s requirements.

Moreover, both edits, the Statement Parent Change and the Additional Object State edit, had

26% increase in its chances of appearing, and the Condition Expression Change edit had

22%.

Other Refactorings

Aside from the refactorings previously mentioned, other three models achieved significant

coefficients, each one from a different refactoring. The first one is the model associating
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the Pull Up Method refactoring and the Condition Expression Change edit, where the extra

edit had 31% more chances of appearing. The second significant model associates the Re-

name Class refactoring and, again, the Condition Expression Change, increasing the odds of

the extra edit appearing in 27%. The last significant regression model associates the Move

Attribute refactoring and the Removed Functionality edit with an OR of 9%.

Moreover, all the remaining refactorings, named Move Method, Move Class, Extract In-

terface, Pull Up Attribute, Push Down Method, Extract Superclass and Push Down Attribute,

did not achieved statistical significance for any of the extra edits under analysis with the lo-

gistic modeling.

4.4.2 How the number of extra edits changes based on the refactorings

performed by developers?

To answer the second research question, we focused on the Odds Ratio values for the Count

part of the Hurdle Negative Binomial models. Table 4.4 shows the ORs of the selected extra

edits for each refactoring that achieved significance for at least one extra edit. We also used

the number of “ * ” to represent the significance level for each value.

The Count model relates the frequency of extra edits to the number of refactorings per-

formed in a commit (Section 4.1 - M2). That is, the increase in the amount of the extra edits

for each refactoring operation. It is important to notice that the significance of the ORs in

the Logit model does not influence the significance of the Count models ORs. The indepen-

dent description of each model is presented in the following subsections. Moreover, we gave

special attention to the Extract Method, Rename Method, Move Method and Inline Method

refactoring, since they had more significant ORs.

Extract Method

The first difference we can notice between the count and logit models is that the Removed

Functionality edit with the Extract Method refactoring was statistically significant for the

Logit model but not for the Count model. This means that the first appearance of this ex-

tra edit is related to the presence of the Extract Method refactoring (Logit model), but its

frequency is not.
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Table 4.4: ORs from Negative Binomial models between refactorings and extra edits.
Refactoring Extra edit Count (M2) Refactoring Extra edit Count (M2)

Extract Method Statement Insert 1.114533 *** Rename Method Statement Insert 1.177633 ***

Extract Method Statement Delete 1.141161 *** Rename Method Statement Delete 1.170552 ***

Extract Method Statement Update 1.094384 *** Rename Method Statement Update 1.259477 ***

Extract Method Additional Functionality 1.134636 *** Rename Method Additional Functionality 1.211437 **

Extract Method Statement Parent Change 1.148790 ** Rename Method Statement Parent Change 1.070850

Extract Method Removed Functionality 1.059898 Rename Method Removed Functionality 1.223966 **

Extract Method Condition Expression Change 1.108380 *** Rename Method Condition Expression Change 1.179107 **

Extract Method Additional Object State 1.124595 ** Rename Method Additional Object State 1.211214 **

Move Method Statement Insert 1.048838 ** Move Attribute Statement Insert 1.044783 *

Move Method Statement Delete 1.078665 ** Move Attribute Statement Delete 1.084910 *

Move Method Statement Update 1.117353 ** move Attribute Statement Update 1.104773

Move Method Additional Functionality 1.072178 * Move Attribute Additional Functionality 1.045734

Move Method Statement Parent Change 1.026005 Move Attribute Statement Parent Change 1.023241

Move Method Removed Functionality 1.093503 * Move Attribute Removed Functionality 1.037910

Move Method Condition Expression Change 1.047443 Move Attribute Condition Expression Change 1.028287

Move Method Additional Object State 1.056980 Move Attribute Additional Object State 1.040554

Inline Method Statement Insert 1.401339 *** Pull Up Method Statement Insert 1.276392 *

Inline Method Statement Delete 1.367791 *** Pull Up Method Statement Delete 1.281887 *

Inline Method Statement Update 1.333152 *** Pull Up Method Statement Update 1.137456

Inline Method Additional Functionality 1.436110 *** Pull Up Method Additional Functionality 1.319140 *

Inline Method Statement Parent Change 1.451596 * Pull Up Method Statement Parent Change 1.642743

Inline Method Removed Functionality 1.274526 ** Pull Up Method Removed Functionality 1.192519

Inline Method Condition Expression Change 1.285870 * Pull Up Method Condition Expression Change 1.195919

Inline Method Additional Object State 1.594564 ** Pull Up Method Additional Object State 1.396251 *

Pull Up Attribute Statement Insert 1.814541 * Extract Superclass Statement Insert 0.458700 **

Pull Up Attribute Statement Delete 2.028691 * Extract Superclass Statement Delete 1.002113

Pull Up Attribute Statement Update 2.036660 Extract Superclass Statement Update 0.832236

Pull Up Attribute Additional Functionality 1.928165 Extract Superclass Additional Functionality 1.120199

Pull Up Attribute Statement Parent Change 2.489300 * Extract Superclass Statement Parent Change 1.457934

Pull Up Attribute Removed Functionality 1.819811 Extract Superclass Removed Functionality 1.290949

Pull Up Attribute Condition Expression Change 2.171890 Extract Superclass Condition Expression Change 1.301950

Pull Up Attribute Additional Object State 2.139534 Extract Superclass Additional Object State 0.671409

Another interesting case is the Statement Parent Change, which was the only extra edit

that got a greater OR value for the Count model. For each occurrence of an Extract Method

refactoring, is expected an increase of approximately 15% in the amount of Statement Parent

Change edits, which was the highest OR for the Count models. As for the Additional Object

State, both models, Logit and Count, achieved basically the same OR, 12% increase. The

Statement Delete extra edit presented an 14% increase in its amount, while, for the Statement

Insert, the increase was 11%.
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The Additional Functionality edit presented 13% increase in its frequency for each Ex-

tract Method performed. For instance, consider the refineException method, which is called

by the method presented in Listing 4.1 (line 4). This method was extracted to allow signa-

ture overload, in which new methods were introduced with a different set of parameters. The

Condition Expression Change got approximately 11% increase and the Statement Update

presented the smallest significant OR, only 9% increase.

These results could support, not only refactoring driven tools, but also tools for simu-

lating floss-refactoring, as well as mutation tools, since it is necessary to know the number

of each extra edit expected alongside specifics refactorings for the changes applied to be

consistent with the real world.

Rename Method

Like the Extract Method refactoring, the edits along with the Rename Method achieved sig-

nificant OR for seven from the eight models presented in Table 4.4. They are the statement

Update, with the highest OR, having an increase of 26% in its amount for each refactoring

performed, followed by the Removed Functionality with 22%, the Additional Functionality

and the Additional Object State, both with 21% increase, the Condition Expression Change

and the Statement Insert, with approximately 18%, and finally the Statement Delete edit,

with an increase of 17% on its count.

The example in Listing 4.3 shows a situation where the number of new functionalities

added to the system increased when the Renamed Method refactoring was performed. Along

with the example, we explained how new functionalities can introduce unexpected behavior

if the developer does not validate the changes carefully. On Listing 4.5, we have another

example of a Rename Method applied along with extra edits that can have great impact on

the system behavior. The code presented here was adapted from the JOpt-Simple repository

7.

1 - private static String typeIndicator( OptionDescriptor descriptor ) {

2 + private String extractTypeIndicator( OptionDescriptor descriptor ) {

3 String indicator = descriptor.argumentTypeIndicator();

4 - if(indicator == null || String.class.getName().equals( indicator ))

5 - return "";

6 - return shortNameOf( indicator );

7https://github.com/jopt-simple/jopt-simple
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7 + if ( !isNullOrEmpty( indicator ) && !String.class.getName().equals( indicator ) )

8 + return shortNameOf( indicator );

9 + return null;

10 }

Código Fonte 4.5: Method renamed alongside inner extra edits

In this example, the method’s name was changed from typeIndicator to extractTypeIndi-

cator. However, the developer not only applied the rename method, but, in the same commit,

he/she included a series of extra edits. First, the condition was modified (lines 4,7). The

developer inverted the condition’s semantic and changed the code structure, by switching

statements’ places. This change, if applied without proper care, could change the system

behavior. Moreover, the developer also replaced a simple boolean operation with a more

complex method call. In addition to the previous conditions, now it checks if the indicator is

empty.

Other change made is an example of a Statement Update, where, instead of returning an

empty String when the indicator is null or equals to java.lang.String, it returns a null pointer.

Although these extra edits might have been intentional, they turn the refactoring revision

and validation tasks hard, since they introduce behavior changes. Moreover, they might

introduce faults. In fact, the last change can generate a RuntimeException if the method’s

caller is not ready to receive a null pointer as a return. This fault can pass unnoticed to the

project’s developer, since it only reveals itself during execution. In this sense, a tool for

floss-refactoring review could identify these extra edits and warn the developers about the

possible impacts the edit might have in the system.

Move Method

In the case of Move Method refactoring, the extra edits presented an interesting phenomenon,

where five Negative Binomial models presented significant OR, but no Logit model achieved

significance. In other words, no extra edit had its first appearance related to the refactoring.

In practice, considering the assumption which Hurdle models are based on (see Section 4.3),

this could indicate that, when the refactoring is applied intending to move a method to an

appropriate class (the refactoring original intention [15]), no extra edits are expected. In the

other hand, if the refactoring is performed to allow other edits to be applied, then certain
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extra edits should be expected.

Moreover, even though the models were statistically significant, the increase on the num-

ber of extra edits are fairly low. The edit with the highest OR was the Statement Update,

having only 12% increase, approximately. All other edits achieved ORs lower than 10%.

The Statement Insert and the Statement Delete got, respectively, 5% and 8%. According

to Silva et al. [45], besides moving a method to an appropriate class, the Move Method

refactoring is also used in a small percentage for enabling reuse, override, and for removing

duplication. This goes along with ours findings, where the Additional Functionality edit got

an OR of 7%, and the Removed Functionality got 9%.

Inline Method

The Inline Method refactoring was the only refactoring to achieve significance in all Neg-

ative Binomial models. Unlike the Move Method refactoring, all edits got fairly high odds

ratio, ranging from 27% to 59%, for the Removed Functionality and the Additional Object

State, respectively. These high values, combined with the significance level above 99.9% for

half edits, suggest that this refactoring is usually performed during complex modifications,

specially since, according to Silva et al. [45], some codes are easier to understand without

the method call.

More generic inner-edits, such as Statement Insert, Statement Delete and the Statement

Update, got 40%, 37% and 33% increase in its frequency for each Inline Method performed

with significance above 99.9%. In Listing 4.6, we have an example of these edits. This

code fragment was extracted from the La4j project8. In the example, the first transformRow

method (lines 1-7) was inlined in the second one (lines 9-19). During the process, several

extra edits were applied.

First, the method call in line 2 was updated, and now, calls a different method. Second,

the For Statement was deleted (line 3), and a While Statement was inserted in its place in the

target method. This changes the code structure, since, the loop control now needs to be done

with the addition of new statements, which leads to other edits, the Statement Inserts in lines

12, 14 and 15. In addition, since now the loop control is made using a VectorInterator, the

statement from line 4 was also updated (line 16). All these changes might impact directly the

8https://github.com/vkostyukov/la4j
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system behavior, either the different loop structure used, which requires a careful review in

order to ensure all loop controls used are fit for the situation, or the different methods called,

which can provide different outcome from the expected.

1 -public Matrix transformRow(int i, VectorFunction function, Factory factory) {

2 - Matrix result = copy(factory);

3 - for (int j = 0; j < columns; j++) {

4 - result.set(i, j, function.evaluate(j, result.get(i, j)));

5 - }

6 - return result;

7 - }

8

9 public Matrix transformRow(int i, VectorFunction function) {

10 - return transformRow(i, function, factory);

11 + Matrix result = copy();

12 + VectorIterator it = result.rowIterator(i);

13 + while (it.hasNext()) {

14 + double x = it.next();

15 + int j = it.index();

16 + it.set(function.evaluate(j, x));

17 + }

18 + return result;

19 }

Código Fonte 4.6: Method inlined alongside inner extra edits

Moreover, the Additional Functionality got even higher OR with the same significance

level, having 44% increase on its count. As for the Statement Parent Change and the Con-

dition Expression Change, they got respectively the second highest and the second smallest

OR, 45% and 28%.

Other Refactorings

Aside from the models previously mentioned, four other refactorings had significant models.

Two models for the Move Attribute refactoring got statistical significance. However, the

values were fairly low, 8% for the Statement Delete, and only 4% for the Statement Insert.

The Pull Up Method had significant values for two inner-method edits, the Statement Insert

and the Statement Delete, both with approximately 28% increase, and two outer-method

edits, the Additional Functionality and the Additional Object State, with respectively 32%

and 40%.



4.5 Threats to Validity 54

Another refactoring with significant models is the Pull Up Attribute, which, even with

its low frequency (see Figure 4.1 and Figure 4.2), got extremely high ORs, from which, for

each refactoring performed, the number of Statement Insert edits increased in 80%, while

the number of Statement Delete edits doubled. The extreme case is the Statement Parent

Change, presenting the highest OR among all models, having an increase of almost 150%

for each Pull Up Attribute applied.

The last refactoring to get a significant model is the Extract Superclass. However, unlike

all other significant models, for each Extract Superclass there has been a decrease in the

number of the extra edit. For each occurrence of the refactoring, it is expected a decrease of

almost half of the Statement Insert edit. We believe that it happened because of its high level.

This goes along with Silva et al. [45], whose result showed that this refactoring is usually

applied to group certain features that can be shared by subclasses.

Moreover, the remaining refactoring, named Move Class, Rename Class, Push Down

Attribute, Push Down Method and Extract Interface, did not achieved statistical significance

for any of the extra edits under analysis with the Negative Binomial modeling method.

4.5 Threats to Validity

Construct Validity: Our study relies on the data extraction strategy presented in Chapter 3,

and, therefore, inherits the limitations we address in its Limitations section (see Subsection

3.2).

Conclusion Validity: To assess the relationship between the refactorings and extra edits,

we relied on Hurdle Negative Binomial models, which require a high number of observa-

tions. However, we used sample sizes bigger than the ones recommended by Peduzzi [38]

for logistic regressions.

External Validity: Our study was restricted to Java-based, Maven projects, hosted on

GitHub. Thus, we cannot generalize our findings beyond the projects used. However, since

we used projects from different sizes and contexts, and we worked with a great number of

projects and commits, we believe our results are representative for understanding how devel-

opers combine extra edits with the refactorings under analysis. Moreover, the commits found

with refactorings were the ones detected by RefDiff. Other refactorings might remain unde-
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tected. However, our conclusions were derived from the refactorings found in the process,

and we do not make any assumptions regarding any other refactoring edit. Finally, commits

that did not compile were discarded since SafeRefactor requires compiled versions of a pro-

gram. For multi-module projects, the behavioral change check was based on the modules

that compiled.

4.6 Concluding Remarks

In this chapter, we presented an empirical study carried out to better understand what extra

edits developers apply when they floss-refactor their code. We used our strategy for floss-

refactoring data extraction, presented in Chapter 3 to extract the data from 45 open-source

Java projects hosted on GitHub. We analysed the floss-refactoring information through Hur-

dle Negative Binomial modeling, which, even though is often used for prediction purposes,

can be used for describing the relationship between two variables. As result, we found ev-

idences that there are certain patterns for the appearance of extra edits depending on the

refactorings applied in the commit. There was an increase on the odds of an extra edit ap-

pear and/or increase its count for most refactoring under analysis. Interestingly, there was

only one OR under one, the Statement Insert for the Extract Superclass. When an Extract

Superclass is performed, is expected a decrease in the number of statements introduced in

the system. In the next chapter, we discuss about how these extra edits are performed.



Chapter 5

How Extra Edits Are Performed?

In order to get a more thorough analysis, we investigate how the extra edits are performed

from two different perspectives: the proportion of extra edits inside refactored entities, and

the type of entities that are more likely to be modified. In this analysis, we used the dataset

collected with our approach during the empirical study.

5.1 How frequent extra edits are performed inside refac-

tored entities?

So far, we have discussed about the extra edits that appears along with different refactorings.

However, how frequent extra edits appears inside refactored entities is still unclear. There-

fore, we analysed our data set to find out the proportion of extra edits inside the refactored

entities.

To better understand these edits, consider the code presented in Listing 5.1. In the ex-

ample, we have a code that prints the status on a screen depending on the grade provided as

parameter. To improve readability, a Rename Method refactoring has been applied, where the

method checkGrade is now called gradeCheck (lines 11-12). However, a series of extra edits

were also applied in both methods, printStatus and gradeCheck. The output string from the

printStatus was updated (lines 5-6), as well as the Return Statement from the gradeCheck

(lines 13-14). In this analysis we refer to edits inside refactored entities, i.e. the Return

Statement updated inside the gradeCheck, since it was the only method refactored in the
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example.

1 public class C{

2 public void printStatus(int grade){

3 - if(checkGrade(grade))

4 + if(gradeCheck(grade))

5 - System.out.println("Approved");

6 + System.out.println("You have been approved");

7 else

8 System.out.println("Failed");

9 }

10

11 - public boolean checkGrade(int grade){

12 + public boolean gradeCheck(int grade){

13 - return grade>5;

14 + return grade>6;

15 }

16 }

Código Fonte 5.1: Inner Refactoring Example

The graph in Figure 5.1 shows the proportion of the edits performed inside refactored

entities. In our data set, we have a total of 42.532 extra edit observations (see Table 4.1).

From these, a total of 6.144 edits were performed inside an entity under refactoring activity,

accounting 14,4%.

Figure 5.1: Proportion of extra edits inside refactored entities and extra edit outside refac-

tored entities.
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5.2 What type of entities are modified more frequently?

We also analyzed what type of entities were often modified in the edits performed inside

the refactored entities. For instance, considering that the Statement Insert edit had a 10%

increase for each Extract Method occurrence, we analyzed the type of those statements (e.g.,

a Variable Declaration Statement, an If Statement, a Method Invocation) when performed

inside refactored entities. With this in mind, for each refactoring and extra edit type, we

considered commits with both, refactorings and extra edits from the types under analysis. In

addition, we considered the Statement Update edit and the Condition Expression Change as a

single extra edit type, once the Condition Expression Change edits are conditional statements

that were updated.

Moreover, in this analysis, we considered just the five most frequent entity types which,

interestingly, were the same for all inner method edits: (Method Invocation, If Statement,

Variable Declaration Statement, Assignment and Return Statement). Figure 5.2 shows the

frequency of the entity types selected for all refactorings under analysis.

Figure 5.2: Entity type frequency for each change type.

As we can see in Figure 5.2, there seems to be a pattern, in which Method Invocation
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is the most frequent type and the Return Statement is the less frequent. The exception was

the Statement Parent Change, once the If Statement appeared more frequently than Variable

Declaration Statement. It is important to notice that in cases where a statement is composed

by multiple types, the entity is classified based on the highest type level. For instance, the

statement in Figure 2.4(b) - line 5 is classified as a Variable Declaration Statement, even

though it is also composed by an Assignment and a Method Invocation.

To analyze the relationship between the refactoring and the entity types, again, we built a

new set of Hurdle Negative Binomial models, but none of the Logit models achieved statis-

tical significance. We believe this happened because, once we filtered the data by the extra

edit type, the second process assumed by the Hurdle assumption became irrelevant. This

filter is enough to change data distribution because, by selecting the commits with both spe-

cific edits, we reduced the number of zeros. Therefore, we used simple Negative Binomial

regression. Table 5.1 shows the OR values for each entity and its respective edit type. The

significant values (considering a significance level of α = 0.5%) are highlighted with “ * ”,

following the same pattern of Table 4.3 and Table 4.4.

As we can see, the majority of the ORs for the Extract Method and the Rename Method

achieved statistical significance, while the remaining refactoring had only one or two signif-

icant values. The N/A presented in Table 5.1 appeared due to its low frequency.

5.2.1 Extract Method

As we can see, all but two ORs were significant, only the Return Statement for the Statement

Update and the Assignment entity type from Statement Parent Change was not significant.

For the Statement Parent Change, the entity with the highest OR was the Return Statement,

also presenting the highest significance. For each Extract Method performed in a commit, it

is expected approximately 10% increase in its frequency, while the others significant entity

types increased approximately 5%.

Among the entities in Statement Insert, the Method Invocation presented the highest OR,

having approximately 13% more occurrences for each refactoring. The Variable Declaration

Statement got the second highest OR, with 11%. The statement in line 5 from Listing 4.2 is

an example of a Variable Declaration Statement inserted during this refactoring. In the same

listing, we also have another example of Statement Insert, but in the form of If Statement,
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Table 5.1: Relation Between Refactorings and Entity Types
Extract Method

Entity Type Statement Insert Statement Delete Statement Update Statement Parent Change

Method Invocation 1.126139 *** 1.168150 *** 1.122285 *** 1.053073 *

If Statement 1.064817 *** 1.101383 *** 1.076528 *** 1.054566 *

Variable Decl. Statement 1.110671 *** 1.125572 *** 1.054875 *** 1.047229 *

Assignment 1.108629 *** 1.107649 *** 1.118541 ** 1.041572

Return Statement 1.072907 *** 1.039767 ** 1.048771 1.095825 ***

Rename Method

Entity Type Statement Insert Statement Delete Statement Update Statement Parent Change

Method Invocation 1.226809 ** 1.244084 ** 1.137083 * 1.131139 **

If Statement 1.127213 * 1.213007 ** 1.142504 * 1.106598

Variable Decl. Statement 1.246723 *** 1.223011 *** 1.124213 * 1.150811 **

Assignment 1.104380 1.137999 * 1.151105 0.962361

Return Statement 1.123182 ** 1.092416 * 1.227473 * 1.042355

Move Method

Entity Type Statement Insert Statement Delete Statement Update Statement Parent Change

Method Invocation 1.043613 1.052229 1.016353 1.023126

If Statement 1.021643 1.048998 1.020157 1.029284

Variable Decl. Statement 1.036153 1.044595 1.003620 1.025575

Assignment 1.062202 ** 1.039351 1.043804 N/A

Return Statement 1.011065 1.015062 0.988781 N/A

Inline Method

Entity Type Statement Insert Statement Delete Statement Update Statement Parent Change

Method Invocation 1.044890 1.052993 1.016713 1.014462

If Statement 1.028301 1.042696 1.027081 N/A

Variable Decl. Statement 1.043437 * 1.039709 1.008257 N/A

Assignment 1.056442 * 1.031887 N/A N/A

Return Statement 1.024384 1.019813 N/A N/A

Move Attribute

Entity Type Statement Insert Statement Delete Statement Update Statement Parent Change

Method Invocation 1.117599 1.187635 1.071990 1.028088

If Statement 0.994708 1.137096 0.975798 1.039786

Variable Decl. Statement 1.150541 1.162600 1.077430 1.062847

Assignment 1.111982 1.019055 1.195739 * 1.053810

Return Statement 0.943340 1.045468 1.002026 1.126560
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which appeared 6% more often for each refactoring. The Assignment and Return Statement

entities presented an increase on its frequency of 11% and 7%, respectively.

For the Statement Delete, the Method Invocation entity is the most likely to be deleted,

it occurred approximately 17% more when an Extract Method is performed, which was

the highest OR from the entity types, regarding the Extract Method refactoring. Listing

5.2 shows a code fragment adapted from the handleProcessingInstruction method in the

Thymeleaf project1, which contains a series of statements that where deleted along with an

Extract Method, including a Method Invocation statement (line 7).

1 public void handleProcessingInstruction(final

2 IProcessingInstruction iprocessingInstruction) {

3 ...

4 - if (this.execLevel >= 0 &&

5 - gatheringType != GatheringType.NONE &&

6 - modelLevel >= gatheringModelLevel) {

7 - gatheringModel.add(iprocessingInstruction);

8 }

9 ...

10 }

Código Fonte 5.2: Statements deleted along with an Extract Method.

In Listing 5.2, we can also see an example of an If Statement that was also deleted in

this commit (Lines 4-6), which is 10% more common when Extract Method is applied. The

Variable Declaration Statement and the Assignment entities, appeared approximately 12%

and 11% more often, respectively.

The Return Statement got the lowest OR, only 4% increase for each Extract Method.

By analyzing the Statement Update2, we found an increase of approximately 12% for the

Method Invocation and the Assignment. For the If Statement entity the increase was 8%,

while it was 5% for the Variable Declaration Statement.

In practice, these results could be useful for static analysis tools, who would have a

starting point during analysis. Most of these edits could introduce unexpected behavior in the

system, specially the If Statement, whose impact could easily pass unnoticed, since it could

change the system behavior without throwing any exception, not even a RuntimeException.

1https://github.com/thymeleaf/thymeleaf
2If the type of entity changes during the Statement Update, the type reported for the analysis is the type

before the edit is applied
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5.2.2 Rename Method

For the Rename Method, 75% of the built models achieved significant values. For the State-

ment Parent Change, only two entities got significant ORs, the Method Invocation and the

Variable Declaration Statement with respectively 13% and 15%.

For the Statement Insert, the Variable Declaration Statement entity was the most likely to

be introduced, occurring approximately 25% more when an Rename Method is performed,

which was also the highest OR from the entity types, regarding the Rename Method refac-

toring. The second highest OR was the Method Invocation, with 22%, followed by the If

Statement and Return Statement, both with approximately 12% increase.

In Listing 5.3, we have another example3 from the Thymeleaf project4, where a Rename

Method was carried out along with extra edits. In the code fragment, we can see a Method

Invocation introduced in the system, which is not part of any refactoring reported by RefDiff.

The method in called in the statement is responsible for validating a boolean expression

provided as parameter. This change, like a Condition Expression Change, can impact directly

the system behavior, since this new method call can prevent the rest of the method from being

executed.

1 - public ParsedFragmentMarkup parseTemplateFragment([parameters...]]) {

2 + private ParsedFragmentMarkup parseFragment([parameters...]]) {

3 Validate.notNull(configuration, "Engine Configuration cannot be null");

4 Validate.notNull(context, "Context cannot be null");

5 Validate.notNull(template, "Template cannot be null");

6 + Validate.isTrue(fragment == null || forcedTemplateMode != null,

7 + "When a textual fragment is specified, (forced)

8 + template mode must be specified too");

9 ...

10 }

Código Fonte 5.3: Statement inserted along with a Rename Method.

From the five entities under analysis, four entities got significant increase for Statement

Update during Rename Method. The Return Statement had the highest OR, with 23% in-

crease. The code present in Listing 4.5 has an example of a Return Statement updated during

a Rename Method (Lines 5 and 9). In this case, the author changed the return from an empty

3Adapted for learning purposes.
4https://github.com/thymeleaf/thymeleaf
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string to a null point, which, as explained before, can break the system if not carefully re-

viewed. When compiling the system, no error is generated, but if one caller is not prepared

for handling null points, it can throw a RuntimeException.

In the same listing, we also have an example of an If Statement that was updated, this en-

tity appeared 14% more often for each refactoring. In the example, the developer inverted the

condition’s semantic and replaced a simple boolean operation with a more complex method

call. By inverting the semantics, it was necessary to change the code structure, moving

statements to different places. Without proper care, this change could completely change the

methods behavior. Moreover, the Method Invocation and the Variable Declaration Statement

got 14% and 12% increase, respectively.

As for the Statement Delete edit, it was the only one to achieve significance values for all

entity types, from which the Method Invocation achieved the highest OR, having an increase

of 24%. It was also the second highest OR from all ORs, regarding the Rename Method. In

the sequence, we have the Variable Declaration Statement and the If Statement, with 22%

and 21% respectively. Finally, we have the Assignment and the Return Statement, with 14%

and 9% respectively, which was the smallest OR for the Rename Method refactoring.

5.2.3 Other Refactorings

Besides the two refactorings previously mentioned, only four more models achieved statis-

tically significant ORs, for three different refactorings. For the Move Method refactoring,

is expected an increase of 6% in the number of Assignment introduced in the code. The

Inline Method refactoring had significant values for two models, the Variable Declaration

Statement and the Assignment, both for the Statement Insert edit, with 4% and 6% increase,

respectively. An example of these edits was presented in Listing 4.6, where three Variable

Declaration Statements appeared along with an Inline Method refactoring. As for the Move

Attribute, it is expected approximately 20% increase in the number of Assignments updated.

5.3 Threats to Validity

Construct Validity: This investigation was carried out using the dataset built during the em-

pirical investigation presented in Chapter 4, and, therefore, inherits the threats we addressed
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in its Threats to Validity section (see Subsection 4.5).

Conclusion Validity: To assess the relationship between the refactorings and entity types

from different extra edits, we relied on Negative Binomial models, which require a high

number of observations, but less than Hurdle Negative Binomial.

External Validity: Since we used the dataset from the empirical investigation previously

reported (Chapter 4), the same threats to the external validity are applied to this analysis.

5.4 Concluding Remarks

In this chapter, we discussed about how the extra edits are performed during Floss-

refactorings. We found that 14,4% of the extra edits were applied inside refactored entities.

From these, the Method Invocation, If Statement, Variable Declaration Statement, Assign-

ment and the Return Statement were the most frequent entities to be modified. Moreover,

these indications can be used by new supporting tools as starting points to guide their anal-

ysis of faulty extra changes. In the next chapter, we discuss about research that is related to

ours.



Chapter 6

Related Work

Due to the importance of refactoring during software development, several studies have tried

to provide a better understanding of how this activity is performed in practice.

To assess the benefits and challenges from refactorings, Kim et al. [25] conducted a field

study at Microsoft. The authors applied surveys and interviews with professional software

engineers and performed analysis on version history data. They found that frequently refac-

tored modules are less likely to have post-release defects. Moreover, the participants em-

phasized the need for a proper tool support for minimizing the costs and risks related to

refactoring. This work shows how important refactorings are for developers and that this

activity can still be improved.

Tsantalis et al. [53] proposed an approach and tool for detecting refactoring between two

versions of a system based on AST matching. It innovates by not requiring the project to

be built nor the definition of any threshold. They compared their tool against RefDiff [46]

(the tool we used in our study) and achieved better accuracy. However, by the time we run

our study Tsantalis et al.’s tool had not been released yet, and we were not able to analyse

its applicability. We run a sample testing in our dataset for checking the impact of the use

of RefDiff, which proved to be an effective refactoring-detection option in the context of our

study.

Bavota et al. [2] run an empirical study that assessed when refactorings induce bugs.

They identified refactoring edits and used the SZZ algorithm to determine whether classes

involved in refactoring are more likely to induce faults. They found that while some refac-

toring are harmless, others tend to induce fault, especially those involving class hierarchies.
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However, their study does not consider any extra edits. We believe extra edits are also re-

sponsible for introducing faults during refactoring.

Murphy-Hill et al. [33] conducted a study on four data sets with more than 140,000

refactorings and 3,400 version control commits. They found that developers often apply

refactorings alongside other edits. Moreover, developers not only apply refactoring edits

alongside extra edits but, according to Silva et al. [45], they are mainly driven by require-

ments changes.

Kim et al. [24] investigated API-level refactorings in three large open source projects to

understand its role on software evolution. They found that the number of bug fixes increases

after API-level refactorings, either because refactoring edits introduced new bugs, or they

helped developers to identify and fix previous bugs. Due to frequent floss-refactoring mis-

takes observed, the authors pointed out the need for tools to support the safe application of

refactoring and non-refactoring edits together.

In this sense, Coelho et al. [10] carried out a systematic literature mapping on refactoring-

awareness during code review. Their study gathered information about existing support,

research trends and possible research topics. As result, the authors’ main finding emphasise

the lack of appropriate characterisation studies, accurate support to change set with multiple

refactorings types simultaneously, as well as the need for studies on the effectiveness of

refactoring-aware solutions for code review.

In this context, Ge et al. [17] proposed a refactoring-aware code review tool that, de-

pending on the use, can separates refactorings and non-refactoring modifications, allowing

the reviewer to focus on one part at a time. It uses the developer’s refactoring tool usage log

file to identify automatic refactorings performed in the code and separate them from non-

refactoring modifications. It also detects manual refactorings applied to the code. However,

in this scenario, it cannot separate refactorings from extra edits.

On the other hand, Alves et al. [1] propose RefDistiller, a static analysis approach for

inspecting manual refactorings that highlights edits that go further than what an automatic

tool consider as pure-refactoring. It also points missing edits that could impact the system

behavior, such as update all references to the refactored entity when necessary.

All four papers, Kim et al. [24], Coelho et al. [10], Ge et al. [17] and Alves et al. [1],

emphasize how extra edits can be tricky and should be carefully considered when performing
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floss-refactorings.

Palomba et al. [37] performed an exploratory study on the relationship between refac-

toring and other change categories1. They classified each commit to the categories based on

the commits’ log and found that refactorings that focus on improving code maintainability

and comprehensibility (e.g., Add Parameter, Consolidate Duplicate Conditional Fragments,

Move Field, Remove Assignment to Parameters, Replace Magic Number with Constant, Re-

place Nested Condition Guard Clauses) are more likely to appear alongside fault repairing

modifications. Refactorings that focus on improving code cohesion (e.g., Add Parameter,

Extract Method, Replace Data with Object) are more likely to appear alongside feature intro-

duction modifications. Finally, developers tend to use refactorings for improving code com-

prehensibility (e.g., Introduce Explaining Variable, Rename Method) during general mainte-

nance modifications. However, the authors considered only commits categories, ignoring all

code edits applied by the developers in their commits.

The works previously listed are essential to the field and provide substantial contribu-

tions. However, none of them focus on investigating the relationship between the refactor-

ings and the extra on the edit-level. Important questions remained open, such as what code

edits should we expect in a commit when a refactoring is performed?; and where and what

statements are more likely to change?. Our empirical study focused on these topics since we

believe that a more in-depth understanding about those relationships may help researchers

to understand how developers perform code evolution in practice, and consequently guide

efforts for developing novel strategies a more safer and systematic code edition.

1Fault Repairing, Feature Introduction, General Maintenance.
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Concluding Remarks

Refactoring is intended to improve software design while keeping its external behavior un-

changed. However, developers often apply refactorings combined with extra edits, either

intentionally or not. This interleaving of refactoring with extra edits is known as floss-

refactoring. By understanding how extra edits are applied during floss-refactoring trans-

formations, one can help the assessment of refactoring code review, by guiding what edits

should be expected depending on the refactoring performed. It can also help other empirical

investigations by providing a deeper understanding on how floss-refactorings are performed,

allowing a more accurate modeling of the real world. However, little has been done on

understanding the relationship between refactorings and extra edits during floss-refactoring.

Thus, in this dissertion work, we present a novel approach for floss-refactoring data ex-

traction where detailed information about refactorings and non-refactoring edits are extracted

from versioning history of Maven Java projects. Our approach is composed by three steps,

in which we used a series of state-of-the-art tools for mining repositories and collecting

non-pure-refactoring commits. Then, it decomposes the commits in fine-grained edits for

analysis. As output, we have refactoring and extra edits details, such as type of edit applied,

the entity that was changed, its location, among others.

Moreover, we used our approach to run an empirical study that investigated how refac-

toring and non-refactoring changes relate to each other. After mining 45 Java projects, we

built a set of regression models to visualize the relationship between refactorings and a se-

ries of extra edits. Our results showed that the introduction of new methods is more common

when an Extract Method or a Rename Method is performed, having an increase in its num-
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ber for the Extract Method, Rename Method, Move Method, Inline Method and the Pull Up

Method refactoring. As for the method removal, it is more common for the Extract Method,

Rename Method, Move Attribute and Inline Method refactoring. These refactorings, except

the Move Attribute, also increases the odds of a new attribute to be introduced. Moreover,

inner method extra edits are very likely to appear, such as the update, removal and, mainly,

the introduction of new statements. While its first appearance is only related to the Extract

Method, there is an increase on its amount for a total of 8 refactoring types. Developers tend

to change condition expressions in both, loops and decision structures, and moved statements

to different structures during some refactorings. The only OR decrease was reported by the

Statement Insert when a Extract Superclass is performed, which decreases almost half of the

number of statements introduced.

A deeper analysis, showed that 14,4% of the extra edits were performed inside refac-

tored entities. From these, the type of statements that are most frequently changed along

with refactorings are Method Invocation, If Statement, Variable Declaration, Assignment,

and Return Statement. However, the likelihood of the change in each specific type varies

depending on the refactoring performed.

As future work, we intend to update our approach for dealing with characteristics that

are currently incompatible. Currently, our approach is only capable of dealing with Maven

projects, and we plan to extend our approach for dealing with other Java build automation

tools, such as Ant and Gradle. Moreover, we plan to extend our analysis to a larger variety

of systems, analyze other refactoring types and extra edit types, as well as investigate how

the intention behind each refactoring can impact the results. We also plan to investigate the

impact that each extra edit may generate during software evolution. Furthermore, we plan to

develop a tool for preventing floss-refactoring faults based on the extra edits patterns found

in this work. Finally, for helping new research works on this field, we intend to work on a

mutation tool for automatically introducing faults based on the refactorings found in a given

system.
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