UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS E TECNOLOGIA CURSO DE MESTRADO EM ENGENHARIA ELÉTRICA

FLUXO DE POTÊNCIA TRIFÁSICO RADIAL PARA SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA

WALMERAN JOSÉ TRINDADE JÚNIOR

CAMPINA GRANDE DEZEMBRO - 1994

WALMERAN JOSÉ TRINDADE JÚNIOR

FLUXO DE POTÊNCIA TRI<mark>FÁSICO RADIAL</mark> PARA SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA

Dissertação apresentada ao Curso de MESTRADO EM ENGENHARIA ELÉTRICA da Universidade Federal da Paraíba, em cumprimento às exigências para obtenção do Grau de Mestre.

ÁREA DE CONCENTRAÇÃO: PROCESSAMENTO DE ENERGIA

WELLINGTON SANTOS MOTA WASHINGTON EVANGELISTA MACEDO Orientadores

> CAMPINA GRANDE DEZEMBRO - 1994

T832f Trindade Júnior, Walmeran José. Fluxo de potência trifásico radial para sistemas de distribuição de energia elétrica / Walmeran José Trindade Júnior. - Campina Grande, 1994. 95 f. Dissertação (Mestrado em Engenharia Elétrica) -Universidade Federal da Paraíba, Centro de Ciências e Tecnologia, 1994. "Orientação : Prof. Wellington Santos Mota, Prof. Washington Evangelista Macedo". Referências. 1. Sistema de Distribuição - Energia Elétrica. 2. Reguladores de Tensão. 3. Método Soma de Potências. 4. Dissertação - Engenharia Elétrica. I. Mota, Wellington Santos. II. Macedo, Washington Evangelista. III. Universidade Federal da Paraíba - Campina Grande (PB). IV. Título CDU 621.317.7(043)

FLUXO DE POTÊNCIA TRIFÁSICO RADIAL PARA SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA

WALMERAN JOSÉ TRINDADE JÚNIOR

DISSERTAÇÃO APROVADA EM 21/12/94

WELLINGTON SANTOS MOTA (Orientador, DEE/UFPB)

WASHINGTON EVANGELISTA MACEDO (Orientador, DEE/UFPB)

MISAEL DE MORAIS (Componente da Banca, DEE/UFPB)

MANOEL FIRMINO (Componente da Banca, DEE/UFRN)

> CAMPINA GRANDE DEZEMBRO - 1994

AGRADECIMENTOS

- Aos meus pais que sempre me apoiaram durante toda a trajetória da minha vida.

- Ao Professores Washington Macedo e Wellington Mota pela orientação desenvolvida neste trabalho

- Ao Professor Roberto da Silva, da Escola Técnica Federal da Paraíba, pela revisão do texto.

 Ao Professor Antônio Epaminondas e a Alessandro pela colaboração nos trabalhos de editoração.

- Aos Colegas-amigos pelo companherismo irrestrito.

RESUMO

Este trabalho apresenta o desenvolvimento de um programa computacional de Fluxo de Potência Trifásico para Sistemas de Distribuição de Energia Elétrica Radiais, e tem a finalidade de investigar os efeitos do desequilíbrio do sistema, da queda de tensão e da modelagem das cargas nas perdas elétricas. O processo de solução do Fluxo de Potência Trifásico Radial baseia-se no Método Soma de Potências adotado por sua rigorosa representação matemática dos componentes do sistema, por sua simplicidade de implementação e ainda por sua rápida convergência, refletindo em reduzido esforço computacional. Foram utilizados sistemas reais de alta e baixa tensão, como aplicações do programa desenvolvido.

ABSTRACT

This work presents the development of a computational program of a Three Phase Power Flow to Radial Distribution Systems and its purpose is to investigate the effects of Systems unbalance, voltage drop and load modeling in the power losses. The process of Three Phase Radial Power Flow solution is based on the Power Sumnation Method, adopted by its rigorous mathematic representation of the systems Components by its easy implementation, as well by its fast convergency, reflecting in a short Computational effort. It was used high and low voltage real systems as aplications of the developed program.

SUMÁRIO

CAPÍTULO PÁGINA
1. INTRODUÇÃO
1.1 Generalidades1
1.2 Características dos SDEE'S2
1.2.1 Conceitos básicos2
1.2.2 Tipos de SDEE'S
1.2.3 Tipos de cargas5
1.2.4 Comparação entre SDEE'S e Sistemas de Transmissão 6
1.3 Fluxo de Potência para SDEE6
1.4 Objetivo do trabalho7
1.5 Revisão bibliográfica
2. O MÉTODO SOMA DE POTÊNCIAS
2.1 Modelo do SDEE 10
2.2 Fluxo de Potência radial11
2.3 Sistema de numeração para nós e ramos

CAPÍTULO

PÁGINA

3. APLICAÇÃO DO MÉTODO SOMA DE POTÊNCIAS PARA O FLUXO DE POTÊNCIA TRIFÁSICO

	3.1.1 Modelo para linha de distribuição2	21
	3.1.2 Modelo para carga e capacitores Shunt	24
	3.1.3 Modelo para reguladores de tensão	25
3.2	Fluxo de Potência Radial Trifásico	25

4. PROGRAMA COMPUTACIONAL:CARACTERÍSTICAS E APLICAÇÕES

4.1 O Programa Computacional
4.1.1 Modelos implementados
4.1.2 Dados do Sistema
4.1.3 Funcionamento do Programa
4.2 Aplicações
4.2.1 Utilização do Programa
4.2.1.1 Caso 1: Efeito do desequilíbrio das cargas
4.2.1.2 Caso 2:Efeito da variação da tensão e da modelagem
das cargas

CAPÍTULO	PÁGINA
4.2.2 Aplicações práticas	
4.2.2.1 Sistema teste Kersting	
4.2.2.2 Alimentador primário (SAELPA)	
4.2.2.3 Circuito secundário (SAELPA)	
5. CONCLUSÕES	
CAPITULO 4.2.2 Aplicações práticas 4.2.2.1 Sistema teste Kersting 4.2.2.1 Sistema teste Kersting 4.2.2.2 Alimentador primário (SAELPA) 4.2.2.3 Circuito secundário (SAELPA) 4.2.2.3 Circuito secundário (SAELPA) 5. CONCLUSÕES REFERÊNCIAS BIBLIOGRÁFICAS BIBLIOGRAFIAS CONSULTADAS ANEXO I ANEXO II ANEXO II	
BIBLIOGRAFIAS CONSULTADAS	
ANEXO I	
ANEXO II	
ANEXO III	
ANEXO IV	80

LISTA DE FIGURAS

FIGURA	PÁGINA
Figura 1: Componentes funcionais de um SDEE	2
Figura 2: (a) Sistema radial. (b) Sistema malhado	4
Figura 3: Trecho de um SDEE	
Figura 4: Fluxograma do Método Soma de Potências	
Figura 5: SDEE Radial	19
Figura 6: Sistema da Figura 5 renumerado	19
Figura 7: Modelo para uma linha trifásica	
Figura 8: Modelo para uma linha bifásica	
Figura 9: Modelo para uma linha monofásica	23
Figura 10: Modelo para carga trifásica	24
Figura 11: Modelo para regulador de Tensão	25
Figura 12: Esquema de um nó típico	
Figura 13: Sistema Primário	
Figura 14: Sistema Primário (Carga equilibrada)	
Figura 15: Efeito do desequilíbrio nas perdas de potência ativa	

FIGURA

PÁGINA

Figura 16: Sistema Secundário	
Figura 17: Sistema secundário (carga equilíbrada)	
Figura 18: Efeito do desequilíbrio nas perdas de potência ativa	
Figura 19: Sistema primário (Vse=1.0 pu e carga tipo 1)	
Figura 20: Perdas de potência ativa vs. tensão da subestação	
Figura 21: Sistema secundário (Vse=1.0 pu e carga tipo 4)	
Figura 22: Perdas de potência ativa vs. tensão da subestação	41
Figura 23: Sistema teste Kersting modificado	
Figura 24: Sistema SAELPA STR 01L1	45
Figura 25: Sistema SAELPA de baixa tensão (380V)	46
Figura 26: Arquivo de dados modelo	54

LISTA DE TABELAS

ABELA Ibela 1: Classificação funcional do SDEE Ibela 2: Relação R/X de alimentadores típicos Ibela 3: Conectividade do sistema da figura 6 Ibela 3: Conectividade do sistema da figura 6	PÁGINA
Tabela 1: Classificação funcional do SDEE	
Tabela 2: Relação R/X de alimentadores típicos	6
Tabela 3: Conectividade do sistema da figura 6	
Tabelas 4: Tipos de cargas utilizados na simulação	
Tabela 5: Codificação das configurações de linha	
Tabela 6: Codificação para tipos de cargas	

CAPÍTULO 1

INTRODUÇÃO

1.1 GENERALIDADES :

A energia elétrica é hoje o insumo básico para toda e qualquer atividade industrial ou comercial. O seu nível de consumo por determinada região indica o estado de desenvolvimento desse local.

As atividades de produção, transmissão e distribuição da energia elétrica, que compõem um sistema elétrico de potência, tornaram-se estratégicas para todos os países que almejaram aumentar o seu ritmo de desenvolvimento.

Apesar dessas três etapas pelas quais a energia elétrica passa, até chegar ao seu ponto de consumo, terem o mesmo nível de importância para sua boa utilização, apenas as duas primeiras etapas do processo (produção e transmissão) sempre tiveram a prioridade de investimentos e a preferência para os estudos acadêmicos na área da Engenharia de Sistemas de Potência em nosso país.

A etapa da distribuição da energia elétrica, na maioria das vezes, foi relegada ao segundo plano, quase não existindo estudos técnicos de planejamento, operação ou manutenção.

Por causa da preocupação pela qualidade de fornecimento da energia, por parte das concessionárias, e em razão do crescente interesse pela conservação da energia elétrica, aumentou a motivação para a realização de estudos dos Sistemas de Distribuição de Energia Elétrica (SDEE), levando a

distribuição ao seu verdadeiro nível de igualdade no processo de produção, transmissão e distribuição.

1.2 CARACTERÍSTICAS DOS SDEE'S :

1.2.1 CONCEITOS BÁSICOS :

Um SDEE inclui uma subestação de distribuição, alimentadores primários (alta tensão), transformadores de distribuição e circuitos secundários (baixa tensão), (Westinghouse, 1959). Ver figura 1.

Figura 1 : Componentes funcionais de um SDEE

A tabela abaixo descreve os elementos e componentes de um SDEE típico.

COMPONENTE	FUNÇÃO				
Subestação (SE) de Distribuição	Recebe potência dos circuitos d subtransmissão e a transforma para o níve de tensão dos alimentadores primários (4 15kV).				
Alimentadores Primários	Circuitos que emanam da SE de distribuição e proporcionam caminhos para o fluxo de potência até os transformadores de distribuição.				
Transformador de distribuição	Reduz a tensão para o nível dos circuitos secundários (440V, 380V, 220V)				
Circuitos Secundários	Distribuem a potência a partir do transformador de distribuição para os consumidores propriamente ditos.				

Tabela 1 : Classificação funcional do SDEE

1.2.2 TIPOS DE SDEE :

Com relação à topologia de rede, existem dois tipos fundamentais: radial e malhado. Um sistema radial tem um único caminho para o fluxo de potência até a carga; um sistema malhado apresenta mais de um caminho simultâneo para o fluxo de potência chegar até a carga.

A figura 2 ilustra de forma simples os sistemas radial e malhado emergindo de uma fonte de potência, com um circuito alimentador primário suprindo transformador(es) de distribuição. 1

ï

Figura 2 : (a) Sistema radial. (b) Sistema malhado

Os sistemas radiais são mais utilizados nos circuitos alimentadores primários, enquanto os sistemas malhados compôem os circuitos secundários, na sua grande maioria.

Cada um dos dois tipos de sistemas apresentam variações e modificações, cujas utilizações dependem dos custos de instalação e manutenção e índices de continuidade de serviço. Essas variações são :

a) Radial com interligação de emergência.

b) Radial seletivo.

c) Sistema secundário interligado.

d) Sistema secundário reticulado.

e) Sistema secundário reticulado exclusivo.

1.2.3 THPOS DE CARGAS :

De forma simplificada, pode-se relacionar os tipos de cargas em SDEE como sendo:

- a) Residencial
 - a.1) Urbano
 - a.2) Suburbano
 - a.3) Rural
- b) Comercial
 - b.1) Áreas Centrais das cidades
 - b.2) Shopping Centers
 - b.3) Prédios comerciais
- c) Industrial
 - c.1) Grandes plantas
 - c.2) Pequenas plantas

Todos esses tipos de cargas podem ter, em princípio, configurações trifásicas (em Δ ou em Y), bifásicas ou monofásicas.

As cargas ainda podem ter comportamento variável, ou seja, a potência consumida por elas dependende do nível de tensão a que estão submetidas. (Cargas variando com a tensão). Assim, têm-se cargas com potência constante, corrente constante ou com impedância constante.

1.2.4 COMPARAÇÃO ENTRE SDEE'S E SISTEMAS DE TRANSMISSÃO:

Devido aos tipos de sistemas e aos tipos de cargas, os SDEE'S apresentam características singulares que os diferenciam por completo dos sistemas de transmissão, a saber : Configuração predominantemente radial, múltiplas conexões (monofásicas, bifásicas e trifásicas), cargas de natureza distinta, linhas não-transpostas e com resistências comparáveis às reatâncias (ver tabela 2).

Essas características inviabilizam o aproveitamento de ferramentas de análise para Sistemas de Transmissão e Sistemas de Distribuição, principalmente o estudo de fluxo de potência.

TIPO	BITOLA	R / X
Α	4 AWG	3.20
С	а	а
S		
R	336.6 MCM	0.50
С	6 AWG	3.12
Ο		
В	а	а
R		
E	300.0 MCM	0.33

Tabela 2 : Relação R / X de alimentadores típicos

1.3 FLUXO DE POTÊNCIA PARA SDEE :

O estudo de fluxo de potência é um dos mais freqüentes em sistemas elétricos, sejam estes de transmissão sejam de distribuição.

Para esse tipo de estudo foram desenvolvidos algoritmos computacionais eficientes baseados nos Métodos Gauss-Seidel e Newton-Raphson. Todavia, esses métodos foram concebidos pensando-se exclusivamente em Sistemas de

6

Transmissão e uma vez aplicados em SDEE, não trazem bons resultados e, muitas vezes, a convergência não é obtida.

As características que distinguem os SDEE'S dos Sistemas de Transmissão produzem neles, isto é, nos primeiros, efeitos de desbalanceamento, impossibilitando a aplicação de métodos de fluxo de potência próprios para transmissão. Esses métodos se baseiam no balanceamento do sistema elétrico trifásico que é representado pelo seu equivalente monofásico.

Assim, faz-se necessária a utilização de métodos de fluxo de potência específicos para distribuição que contemplem todas as características que os diferenciam dos outros sistemas.

Métodos de fluxo de potência próprios para SDEE foram desenvolvidos, sendo os mais usados o Método Escalonado (Kersting, 1984), o Método Soma de Correntes e o Método Soma de Potências (Rudnick, 1990).

Estudos especializados concluiram que com o Método Soma de Potências consegue-se melhor convergência, mesmo em caso de sobrecarga dos SDEE's (Rudnick, 1990).

1.4 OBJETIVO DO TRABALHO :

O propósito deste trabalho é verificar os efeitos do desequilíbrio, da variação da tensão e da modelagem das cargas sobre as perdas elétricas de SDEE's. Com essa finalidade, um programa computacional implementando um método de fluxo de potência foi elaborado.

Esse método de fluxo de potência, além de ser próprio para SDEE, tem que modelar o sistema trifásico para levar em consideração os seus desequilíbrios

7

.....

inerentes. Assim, foi desenvolvido um programa computacional de fluxo de potência radial trifásico utilizando o Método Soma de Potências (Rudnick, 1990).

1.5 REVISÃO BIBLIOGRÁFICA :

Um estudo rigoroso de perdas elétricas em SDEE impulsionou o desenvolvimento e o uso de métodos de fluxo de potência para esses sistemas, pelo fato de que a solução do problema de fluxo de potência fornece o montante das perdas elétricas de forma detalhada em todo o sistema e, além disso, fornece o perfil de tensão e os fluxos de potência nesse sistema.

Em (Sun, 1980) foi apresentado um método para calcular perdas em SDEE de uma maneira rigorosa. Esse método é baseado no fluxo de potência trifásico Gaus-Seidel com Y-bus. A utilização de métodos de fluxo de potência mais simples e específicos para SDEE veio em seguida.

Uma solução de fluxo de potência radial monofásico e trifásico usando o Método Escalonado foi apresentado por Kesrting em 1984. Esse método, apesar de simples, não é muito eficiente, principalmente quando o número de sub-ramais do SDEE é muito grande (Rudnick, 1990).

O Método Soma de Potências para solução de fluxo de potência radial trifásico foi apresentado por Rudnick, em 1990. Esse método inclui o efeito do acoplamento magnético entre as fases, tornando-se uma das principais ferramentas para a análise do desbalanceamento nos SDEE's.

Uma apresentação bastante simples do Método Soma de Potências, com base no artigo (Rajagopalan, 1978) foi feita em (Cespedes, 1990). Ele utilizou o Método Soma de Potências para determinar o perfil de tensão de uma rede de distribuição, levando em consideração apenas o módulo da tensão.

- - - - - - - - -

v

No seu artigo, Rajagopalan mostrou uma técnica de numeração dos nós do sistema, tornando o Método Soma de Potências simples e eficiente. Nessa numeração os nós e os ramos são numerados em conjunto, permitindo a elaboração de uma tabela de conectividade, cuja linha ou coluna referente aos nós é suficiente para descrever a topologia do sistema.

CAPÍTULO 2

O MÉTODO SOMA DE POTÊNCIAS

2.1 MODELO DO SDEE :

Seja um SDEE trifásico, podendo ser representado através do seu equivalente monofásico. Assim, as linhas de distribuição são representadas pela impedância série (resistência e reatância indutiva), sendo desprezada a capacitância shunt. Caso seja necessária a consideração dessa capacitância, ela pode ser modelada como carga reativa.

As cargas, incluindo os capacitores shunt para compensação de reativos, são representados através das potências ativa e reativa. O efeito da variação da tensão pode ser incluido nessa modelagem como sendo (Cespedes, 1990) :

$$\mathbf{P} = \mathbf{P}_{o} * \mathbf{V}^{k} \tag{2.1}$$

$$\mathbf{Q} = \mathbf{Q}_{a} * \mathbf{V}^{k} \tag{2.2}$$

Onde :

 $P_{\rm o}$ e $Q_{\rm o}$: Potências ativa e reativa para a tensão nominal.

V : Módulo da tensão, em pu.

K = 0: Para cargas cujos modelos são o de potência constante.

K = 1: Para cargas cujos modelos são o de corrente constante.

K = 2: Para cargas cujos modelos são o de impedância constante.

2.2 FLUXO DE POTÊNCIA RADIAL :

A solução do problema de fluxo de potência em um sistema radial, usando o Método Soma de Potências, consiste em resolver, para cada trecho da rede, uma equação do quarto grau em termos de tensão nodal.

A figura 3 mostra o esquema de um trecho contendo um nó fonte, uma linha de distribuição e uma barra de carga.

Figura 3 : Trecho de um SDEE

Onde :

s : Nó do lado da fonte.

r : Nó do lado da carga.

 \overline{V}_{s} : Tensão do nó da fonte $(\overline{V}_{s} = V_{s} \angle \rho_{s})$

 $\overline{\mathrm{V}}_r$: Tensão do nó da carga $\left(\overline{\mathrm{V}}_r = \overline{\mathrm{V}}_r \angle \rho_r\right)$

R, X : Resistência e reatância da linha.

P, Q : Carga ativa e reativa, calculada conforme as eqs. 2.1 e 2.2.

Desse modo,

$$\overline{V}_{s} - \overline{V}_{r} = \overline{I}(R + jX)$$
(2.3)

$$\bar{I} = \frac{P - jQ}{\overline{V}_{r}^{*}}$$
(2.4)

Logo,

$$\overline{V}_{s} - \overline{V}_{r} = (P - jQ)(R + jX)\frac{1}{\overline{V}_{r}^{*}}$$
(2.5)

$$V_{s} \angle \rho_{s} - V_{r} \angle \rho_{r} = (P - jQ)(R + jX) \frac{1}{V_{r} \angle -\rho_{r}}$$

$$(2.6)$$

Multiplicando por $V_r \angle -\rho_r$:

$$V_{s}V_{r} \angle (\rho_{s} - \rho_{r}) - V_{r}^{2} = (P - jQ)(R + jX)$$
 (2.7)

Transformando para a forma retangular :

$$V_{s}V_{r}[Cos(\rho_{s}-\rho_{r})+jSen(\rho_{s}-\rho_{r})]-V_{r}^{2}=(P-jQ)(R+jX)$$
 (2.8)

Separando parte real e parte imaginária e fazendo $\rho_{\rm S} - \rho_{\rm T} = \theta$ fica :

$$V_{s}V_{r}Cos\theta - V_{r}^{2} = PR + QX$$
(2.9)

$$V_{\rm s} V_{\rm s} {\rm Sen} \theta = {\rm PX} - {\rm QR}$$
(2.10)

Evidenciando $\cos\theta$ e $\sin\theta$ nas eqs. 2.9 e 2.10, respectivamente, e elevando-os ao quadrado, temos :

$$\cos^{2}\theta = \frac{V_{r}^{4} + 2(PR + QX)V_{r}^{2} + (PR + QX)^{2}}{(V_{s}V_{r})^{2}}$$
(2.11)

$$Sen^{2}\theta = \frac{(PX - QR)^{2}}{(V_{s}V_{r})^{2}}$$
(2.12)

Somando as equações 2.11 e 2.12, multiplicando por $(V_s V_r)$ e simplificando:

$$V_{r}^{4} + \left[2(PR + QX) - V_{s}^{2}\right]V_{r}^{2} + \left(P^{2} + Q^{2}\right)\left(R^{2} + X^{2}\right) = 0$$
(2.13)

A cquação 2.13 fornece o módulo da tensão no nó da carga conhecendo-se a tensão no nó fonte, a impedância da linha e a potência da carga. Essa equação é a parte fundamental no processo do cálculo do fluxo de potência para sistemas radiais.

A fase da tensão no nó da carga pode ser calculada pela expressão :

$$\rho_{\rm r} = \rho_{\rm s} - \mathrm{Sen}^{-1} \left(\frac{\mathrm{PX} - \mathrm{QR}}{\mathrm{V_{\rm s}V_{\rm r}}} \right)$$
(2.14)

As equações 2.13 e 2.14 dão a solução direta para o módulo e a fase da tensão para um SDEE radial que contém apenas duas barras, sendo uma fonte e outra de carga.

Para um sistema que contém várias barras, a potência equivalente de cada barra de carga deve ser calculada de modo a permitir o uso das equações 2.13 e 2.14, tomando-se as barras duas a duas.

O processo do cálculo da potência equivalente para uma determinada barra consiste em somar as potências (daí o nome do método) referentes às cargas e às perdas de potência dos ramos (trechos) que estão depois da barra de interesse. Na soma das cargas é incluida a carga própria. Esse processo é realizado do nó terminal ao nó fonte, ou seja, é um processo " de baixo para cima ".

Uma vez calculada a potência equivalente para cada barra do sistema, inicia-se o cálculo das tensões através das equações 2.13 e 2.14. Esse processo começa no nó fonte e vai em direção ao nó terminal, tomando-se as barras duas a duas. Uma barra que se comporta como sendo de carga numa primeira fase do processo vem a ser o nó fonte na fase seguinte, após o cálculo da tensão nodal. Repete-se essa sistemática até o nó terminal. Nesse processo, a rede de distribuição é percorrida " de cima para baixo ".

Dessa forma, o algoritmo do Método Soma de Potências para a solução do fluxo de potência radial consiste em :

- Ler os dados da rede, incluindo parâmetros de linha, topologia, tensão do nó fonte (módulo e fase) e cargas para a tensão nominal.
- 2. Renumerar os nós segundo Rajagopalan (ver seção 2.3).
- Assumir um perfil de tensão inicial para cada nó e calcular as cargas que dependem da tensão.
- Calcular a potência equivalente de cada barra (processo " de baixo para cima ").
- Calcular o novo perfil de tensão para cada nó usando as eqs. 2.13 e 2.14 (processo " de cima para baixo ").
- 6. Com o novo perfil de tensão calcular as perdas e as cargas que variam com a tensão.
- 7. Controlar a convergência pela tensão (módulo e fase). Não convergindo, voltar para o passo 4.
- 8. Calcular os fluxos de potência.

As perdas ativa e reativa do trecho podem ser calculadas pela equações :

.

$$P_{\rm P} = R \left(P^2 + Q^2 \right) / V_{\rm r}^2$$
 (2.15)

$$P_q = X \left(P^2 + Q^2 \right) / V_r^2$$

Onde :

 $P_P \ e \ P_q$: Perdas ativa e reativa do trecho.

R e X : Resistência e reatância do trecho.

P e Q : Cargas ativa e reativa.

 V_r : Módulo da tensão no nó da carga.

A figura 4 mostra o fluxograma do Método Soma de Potências.

Para a realização dos processos de cálculo das potências equivalentes e do cálculo das tensões nodais é necessária uma maneira sistemática para percorrer as barras a rede.

Um sistema de numeração especial apresentado por (Rajagopalan, 1978) simplifica e dá eficiência a tais processos.

(2.16)

Figura 4 : Fluxograma do Método Soma de Potências

2.3 SISTEMA DE NUMERAÇÃO PARA NÓS E RAMOS :

Os processos de cálculo das potências equivalentes e das tensões nodais, no Método Soma de Potências, exigem que a rede de distribuição seja percorrida nos sentidos ascendente e descendente, respectivamente.

Fazendo-se uma numeração criteriosa para nós e ramos esses dois processos tornam-se simples e rápidos, refletindo em eficiência para o método de fluxo de potência.

Nesse sistema de numeração os nós e os ramos da rede são numerados conjuntamente, ou seja, cada ramo recebe um número que coincide com um dos seus dois nós terminais.

Os artigos de (Rajagopalan, 1978) e (Cespedes, 1990) não trazem maiores detalhes sobre esse sistema de numeração. Mas, a partir de uma investigação cuidadosa chega-se as seguintes características :

i. A numeração deve seguir a sequência 0,1,2,3,...

ii. O nó fonte recebe o número 0 (zero).

iii. A barra que tem origem na linha do nó fonte deve ser numerada com 1 (um).

iv. Os ramos devem estar organizados (numerados) em ordem crescente.

v. O último ramo deve ser associado, obrigatoriamente, a um nó terminal.

Como um exemplo, seja o SDEE radial mostrado na figura 5 :

Renumerando esse sistema, teremos :

Figura 6 : Sistema da figura 5 renumerado

Uma tabela de conectividade de ramo e nó pode ser montada na forma :

RAMO	1	2	3	4	5	6
NÓ	0	1	2	2	2	1

Tabela 3 : Conectividade do sistema da figura 6

Através dessa tabela, o diagrama unifilar do sistema pode ser desenhado. Outra vantagem desse sistema de numeração é que a rede pode ser representada através de um único vetor, quando da implementação computacional, armazenando somente as informações referentes à linha " nó " da tabela de conectividade. A numeração dos ramos é uma informação implícita, não necessitando armazená-la.

CAPÍTULO 3

APLICAÇÃO DO MÉTODO SOMA DE POTÊNCIAS PARA O FLUXO DE POTÊNCIA TRIFÁSICO

3.1 MODELAGEM TRIFÁSICA DO SDEE:

As características especiais que diferenciam os SDEE's dos Sistemas de Transmissão exigem modelos específicos para representar seus componentes em estudos de fluxo de potência.

O desequilíbrio natural do SDEE deve ser considerado, principalmente na modelagem das linhas de distribuição e das cargas.

3.1.1 MODELO PARA LINHA DE DISTRIBUIÇÃO:

Em SDEE as correntes trifásicas não são balanceadas, devido ao desequilíbrio das cargas. As linhas não são transpostas, impossibilitando a consideração de sua configuração como sendo equilateral simétrica.

Consequentemente, não se pode utilizar as equações simples para o cálculo de parâmetros de linhas apresentado em (Stevenson, 1982). Assim, é necessário um método mais sofisticado e preciso para calcular impedâncias de linhas e que leve em consideração o acoplamento magnético mútuo entre as fases, como também o efeito da terra.

Esse problema é resolvido usando-se as equações de Carson (Anderson, 1973) para o cálculo de parâmetros de linha. Tais equações levam em consideração o tipo do cabo do qual é feita a linha, as distâncias entre eles e a resistividade do solo.

Para uma linha trifásica, com neutro ou não, o modelo fica resumido em uma matriz quadrada de ordem 3, de modo, que na diagonal principal ficam representadas as impedâncias próprias das três fases (a, b, c). Nas demais posições ficam representadas as impedâncias mútuas entre fases.

Assim, a equação matricial para as tensões torna-se:

$$\begin{bmatrix} V_{a} \\ V_{b} \\ V_{c} \end{bmatrix} = \begin{bmatrix} Z_{a} & \dot{Z}_{ab} & Z_{ac} \\ Z_{ab} & Z_{b} & Z_{bc} \\ Z_{ac} & Z_{bc} & Z_{c} \end{bmatrix} \begin{bmatrix} I_{a} \\ I_{b} \\ I_{c} \end{bmatrix}$$
(3.1)

A figura 7 mostra o modelo para uma linha trifásica.

Figura 7 : Modelo para uma linha trifásica

Para linhas bifásicas ou monofásicas, o mesmo modelo pode ser utilizado. A representação matricial ainda é válida, bastando preencher com zeros as posições referentes à(s) fase(s) ausente(s).

No caso de uma linha bifásica que envolve as fases a e c por exemplo, a representação matricial fica:

$$\begin{bmatrix} V_{a} \\ 0 \\ V_{c} \end{bmatrix} = \begin{bmatrix} Z_{a} & 0 & Z_{ac} \\ 0 & 0 & 0 \\ Z_{ac} & 0 & Z_{c} \end{bmatrix} \begin{bmatrix} I_{a} \\ 0 \\ I_{c} \end{bmatrix}$$
(3.2)

A figura 8 mostra o diagrama desse modelo.

Figura 8 : Modelo para uma linha bifásica

As linhas monofásicas só apresentam impedâncias próprias e já levam em consideração o efeito da terra. A figura 5 apresenta o modelo para uma linha monofásica.

Figura 9 : Modelo para uma linha monofásica

Portanto, utilizando as equações de Carson e a representação matricial, qualquer linha seja ela trifásica, seja bifásica, seja ainda monofásica, pode ser modelada de forma sistemática e conveniente.
3.1.2 MODELO PARA CARGA E CAPACITORES SHUNT:

As cargas são representadas por fase e ligadas em estrela aterrada (figura 10). Desse modo, pode-se levar em consideração possíveis desequilíbrios. Além disso, as cargas podem ser modeladas como sendo de potência constante, corrente constante ou impedância constante, sem aumentar a complexidade do modelo.

Figura 10 : Modelo para carga trifásica

Para cargas bifásicas ou monofásicas, basta igualar a zero a(s) potência(s) referente(s) à(s) fase(s) ausente(s).

Os capacitores shunt para compensação de reativos são modelados como cargas de impedância constante, ligadas em estrela aterrada.

A potência reativa que um capacitor fornece ao sistema depende do nível de tensão a que ele está submetido. Por isso, não é recomendável que seu modelo seja o de potência constante. A observação referente às cargas bifásicas e monofásicas também é válida para o modelo de capacitores shunt.

3.1.3 MODELO PARA REGULADORES DE TENSÃO:

O circuito equivalente para um regulador de tensão por fase é mostrado na figura 11.

Figura 11 : Modelo para regulador de tensão

Onde a é relação de espiras (tap) dada pela relação entre as tensões V_m e V_k . A admitância do regulador é Y_{km} .

As informações necessárias sobre o regulador de tensão são: sua localização, sua admitância ou impedância e o seu tap.

3.2 FLUXO DE POTÊNCIA RADIAL TRIFÁSICO:

O Método Soma de Potências pode ser empregado para solução do problema de fluxo de potência trifásico para sistemas radiais.

O SDEE trifásico é resolvido como sendo três sistemas monofásicos, um para cada fase, sendo o acoplamento magnético entre eles considerado nos cálculos das perdas de potência nas linhas. A figura 12 mostra um esquema para fase a de um nó k característico, com o conjunto de ramos que chegam e que saem dele.

Figura 12 : Esquema de um nó típico

Onde:

a: subíndice que indica a fase a.

i, m: subíndices que indicam os ramos i e m.

k, j, α : subíndices que indicam os nós k, j e α .

 S_{cak} , S_{eaj} : potência equivalente na fase a vista desde k e j.

Scak: carga no nó k na fase a.

S_{sak}: potência reativa shunt injetada no nó k na fase a.

Z_{ai}, Z_{am}: impedância própria das linhas i e m.

 $V_{a\alpha}$, V_{ak} : tensão dos nós α e k na fase a.

I_{ai}, I_{am}: corrente na fase a nos ramos i e m.

Definindo:

S_{pai}: perdas de potência na linha i na fase a.

 Z_{abi} : impedância mútua entre as fases **a** e **b** da linha i.

 Z_{aci} : impedância mútua entre as fases a e c da linha i.

 I_{bi}, I_{ci} : correntes nas fases **b** e **c** na linha i.

A potência equivalente do nó k se obtém pela equação:

$$S_{eak} = \sum_{i} S_{eaj} + \sum_{i} S_{pai} + S_{sak} + S_{cak} = P_{eak} + jQ_{eak}$$
(3.3)

Onde as perdas de potência são dadas por:

$$S_{pai} = (Z_{abi}I_{bi} + Z_{aci}I_{ci})I_{ai}^{*} + Z_{ai}I_{ai}^{2}$$
(3.4)

Assim, a equação fundamental do fluxo de potência radial para a fase a fica:

$$V_{ak}^{4} + \left[2(P_{eak}R_{am} + Q_{eak}X_{am}) - V_{a\alpha}^{2}\right]V_{ak}^{2} + \left(P_{eak}^{2} + Q_{eak}^{2}\right)\left(R_{am}^{2} + X_{am}^{2}\right) = 0$$
(3.5)

A fase da tensão no nó k se obtém por:

$$\rho_{ak} = \rho_{a\alpha} - \operatorname{Sen}^{-1} \left(\frac{P_{eak} \cdot X_{am} - Q_{eak} \cdot R_{am}}{V_{a\alpha} \cdot V_{ak}} \right)$$
(3.6)

Essas equações são repetidas para outras duas fases (b, c) trocando os índices convenientemente.

Com isso, a cada iteração do processo de cálculo das tensões, a equação fundamental é aplicada três vezes, uma para cada fase. Mesmo assim, o algoritmo básico do Método Soma de Potências (apresentado no capítulo anterior) permanece inalterado.

CAPÍTULO 4

PROGRAMA COMPUTACIONAL: CARACTERÍSTICAS E APLICAÇÕES

4.1 O PROGRAMA COMPUTACIONAL :

O programa computacional para o cálculo do fluxo de potência radial trifásico foi implementado em linguagem FORTRAN, seguindo o algoritmo do Método Soma de Potências apresentado no capítulo 2. A capacidade do programa é de 100 barras, sem incluir a barra fonte.

4.1.1 MODELOS IMPLEMENTADOS :

Os modelos implementados no programa correspondem aos vistos no capítulo 3. As linhas são modeladas pelas fórmulas de Carson, bastando para isso informar a sua configuração, ou seja, o tipo de cabo e os espaçamentos entre eles. A resistividade do solo também é um dado fornecido.

As cargas podem ser representadas como potência constante ou impedância constante. Para a última modelagem é necessário informar a percentagem da carga total que é de impedância constante.

Os reguladores de tensão que apesar de serem modelados por fase, representam as ligações em delta aberto e delta fechado. Para representar a ligação em delta fechado basta colocar o valor do tap como sendo 50% superior ao tap da ligação delta aberto.

4.1.2 DADOS DO SISTEMA :

Os dados do sistema a ser analisado são fornecidos em um único arquivo. Esses dados são separados em dados de linha, de barra e complementares.

Os dados de linha são fornecidos no formato tradicional, baseado no padrão PECO. Algumas modificações foram incluídas, principalmente a que se referem à configuração das linhas e às características de reguladores de tensão.

Assim, os dados de linha são: barra início e barra fim de cada trecho, configuração da linha (trifásica, bifásica ou monofásica) indicando a(s) fase(s), tipo do cabo, comprimento do trecho (em Km), distâncias entre os cabos (em m), tap e impedância percentual do regulador de tensão.

Caso um trecho tenha um regulador de tensão, as informações referentes à linhas não são preenchidas.

Os dados de barra também seguem o formato PECO, incluindo algumas modificações . O número da barra, o seu nome, o tipo da carga (trifásica, bifásica ou monofásica) indicando a(s) fase(s), a potência aparente da carga (kVA por fase), o fator de potência, a percentagem de impedância constante e as potências dos capacitores shunt são fornecidos.

Os dados complementares são: resistividade média do solo, tensão e potência bases (kV e kVA), tolerância para convergência, número máximo de iterações e a tensão do nó fonte.

4.1.3 FUNCIONAMENTO DO PROGRAMA :

Com os dados fornecidos, o programa inicialmente testa se o número de linhas é igual ao número de barras, condição para o sistema ser radial. Em caso de negativa, o programa é abortado.

Passando pelo teste inicial, o programa renumera as barras de acordo com Rajagopalan (Rajagopalan, 1978). A partir dessa renumeração, o sistema é representado apenas por um vetor unidimensional. A numeração original não é destruída, sendo preservada para a impressão do relatório final.

Durante a renumeração alguns testes de consistência de dados são realizados. O principal é aquele que verifica se só existe um único nó fonte.

Após a renumeração é atribuido o valor de tensão inicial (módulo e fase) para cada fase de cada barra do sistema. O valor inicial assumido é o mesmo do nó fonte. Considerado por Cespedes (Cespedes, 1990) uma boa estimativa inicial.

Em seguida, as cargas que dependem da tensão são calculadas. As perdas iniciais são consideradas nulas e o processo iterativo é iniciado.

No processo iterativo, as tensões (módulo e fase) são calculadas para cada fase de cada barra. Com o novo perfil de tensão, as perdas são atualizadas, juntamente com as cargas.

O teste de convergência é feito. Caso não atinja a precisão desejada, o processo é repetido, sendo registrado o número de repetições.

Atingida a convergência, os fluxos de potência por fase em todos os trechos são calculados. Em termos de potência (ativa e reativa) e corrente.

O relatório final mostra o perfil de tensão por fase em todas as barras, os fluxos e as perdas de potência nos trechos por fase. Bem como o número de iterações para convergência, as perdas totais por fase e no sistema.

No anexo I está descrito o manual de utilização do programa de fluxo de potência trifásico desenvolvido.

4.2 APLICAÇÕES :

O propósito desta seção é ilustrar a funcionalidade do método soma de potências, aplicado na solução de fluxo de potência trifásico radial. Bem como analisar os efeitos do nível de desequilíbrio do sistema, da variação da tensão e da modelagem das cargas nas perdas elétricas.

As aplicações foram divididas em duas partes, a saber : utilização do programa e aplicações práticas.

Na primeira parte foram investigados os efeitos do nível de desequilíbrio do sistema, da variação da tensão e da modelagem das cargas nas perdas elétricas. Para essas análises foram utilizados dois sistemas testes : um de baixa tensão (380 V) e outro de alta tensão (13,8 kV).

Na parte de aplicações práticas foram utilizados o sistema do artigo (Kersting, 1984), um sistema secundário (baixa tensão) e outro primário (alta tensão), ambos da SAELPA (Sociedade Anônima de Eletrificação da Paraíba).

4.2.1 UTILIZAÇÃO DO PROGRAMA :

Verificação dos efeitos sobre as perdas elétricas de um SDEE motivados por : nível de desequilíbrio do sistema , variação da tensão e modelagem das cargas. O nível de desequilíbrio do sistema será representado pelo desequilíbrio da carga, por ser mais simples e direta a sua modificação.

A variação da tensão será provocada pela mudança na tensão da subestação, pois o seu efeito será sentido em todo o sistema.

A modelagem da carga será modificada entre potência constante e impedância constante, com diversas percentagens.

4.2.1.1 CASO 1 : EFEITO DO DESEQUILÍBRIO DAS CARGAS :

A distribuição desigual das correntes em um circuito polifásico geralmente resulta em um total de perdas muito alto.

O efeito do desequilíbrio das cargas no total das perdas elétricas do sistema foram estudados através dos seguintes sistemas.

a) Sistema primário

A figura apresenta o SDEE primário utilizado.

A seguir é mostrado o arquivo de dados desse sistema para o caso da carga equilibrada.

DADOS GERAIS : *----* <branco> Nome da subestacao : SEAT Nome do alimentador : ALIAT ***.** ** ** VSE (kV) = 13.8 DATA : 28 04 94 <branco> DADOS DE LINHA : ----> <branco> de para conf. cabo dist dab dbc dca dan dbn dcn tap xreq ***** ***** ** ----- **.*** -.-- *.*** -.-- *.*** -.-- *.*** 100 200 1 1/0 CAA 3.0 1.90 0.40 2.30 9999 <branco> DADOS DE BARRA : ----> <branco> barra nombar tipcar kva_a kva_b kva_c fp pz qz capa capb capc ***** ------ **** ----- *****.** ----.- **.**** ---.- ***.** ----.- ***.** ----.-100 SUBEST 0.0 0.0 0.0 0.0 25.0 25.0 0.9 40.0 40.0 200 CARGA 3 25.0 9999 <branco> rho vbase sbase tol itermax *** ** --- - *** ** -- ----- **** 100.0 13.8 100.0 0.00001 20

Figura 14 :Sistema primário (carga equilibrada)

O nível de desequilíbrio das cargas foi simulado através da variação do valor de X (ver equações abaixo) em : 0, 11, 22, 33, 44, 55 e 66%; resultando na variação das perdas representadas na figura 15.

Carga na fase a

$$a = \frac{X}{100} \cdot S_{3\phi}$$

b

Carga na fase b

$$=\frac{67-X}{100}\cdot S_{3\phi}$$

Carga na fase c $c = \frac{33}{100} \cdot S_{3\phi}$

34

Figura 15 : Efeito do desequilíbrio nas perdas de potência ativa

b) Sistema secundário

A figura mostra o SDEE secundário utilizado :

35

A seguir é mostrado o arquivo de dados desse sistema para o caso da carga equilibrada.

```
DADOS GERAIS :
 <branco>
                  *----×
Nome da subestacao : SEBT
Nome do alimentador : ALIBT
    ***** ** ** **
VSE ( kV ) = 0.38 DATA : 28 04 94
<branco>
DADOS DE LINHA :
                                                             ---->
 <branco>
 de para conf. cabo dist dab dbc dca dan dbn dcn tap
                                                                    xreq
***** ***** ** ------ **.*** -.--- *.*** -.--- *.*** -.--- *.***
 100 200 1 4 CAA 0.100 0.20 0.20 0.40 0.20 0.40 0.60
 9999
 <branco>
DADOS DE BARRA :
                                                             ---->
<branco>
barra nombar tipcar kva_a kva_b kva_c fp pz qz capa
                                                                     capb
                                                                             capc
***** ------ **** ----- *****.** ----- **.**** ---.- ***.** ----.- ***.** ----.

        100 SUBEST
        0.0

        3
        25.0

                   0.0 0.0 0.0 0.0
                           25.0 25.0 0.9
 9999
 <branco>
 rho vbase sbase tol
                          itermax
***.** ---. ***.** --.---- ****
                               20
100.0 0.38
             1.0 0.00001
```

Figura 17 : Sistema secundário (carga equilibrada)

Para o sistema secundário foram feitos as mesmas simulações, resultando no gráfico da figura 18.

Figura 18 : Efeito do desequilíbrio nas perdas de potência ativa.

Nos dois sistemas analisados (primário e secundário) os gráficos Nível de desequilíbrio X Perdas de potência ativa mostram que as perdas são mínimas quando a carga é equilibrada (nível de desequilíbrio X=33%).

Com o desequilíbrio das cargas correntes circularão pela terra , encontrando maiores obstáculos (resistências) fazendo com que as perdas aumentem consideravelmente.

4.2.1.2 CASO 2 : EFEITO DA VARIAÇÃO DA TENSÃO E DA MODELAGEM DAS CARGAS :

Com a capacidade para modelar as características das cargas (potência constante e impedância constante) e para modelar os circuitos de distribuição multifases , o método implementado nesse trabalho serve perfeitamente para a verificação desses efeitos.

37

A variação da tensão no sistema pode ser simulada através da alteração na tensão da subestação, pois essa modificação vai ser sentida por todo o sistema.

A variação da tensão na subestação, em pu, utilizada na simulação foi : 0.9, 0.95, 1.0, 1.05 e 1.10.

Para a análise dos efeitos das características das cargas, foram considerados quatro tipos delas, descritas na tabela abaixo :

Tipo	Potência Cte.	Impedância Cte.			
1	60%	40%			
2	100%	0%			
3	0%	100%			
4	50%	50%			

Tabela 4 : Tipos de cargas utilizadas na simulação

Os mesmos sistemas utilizados na investigação dos efeitos do nível de desequilíbrio das cargas (Caso 1) foram usadas nessa simulação.(figuras 13 e 16)

a) Sistema primário

O arquivo de dados referente à tensão da subestação igual a 1.0 pu e tipo de carga 1 é mostrado abaixo :

```
DADOS GERAIS :
                   *----*
 <branco>
Nome da subestacao : SEAT
Nome do alimentador : ALIAT
            ***.** ** ** **
 VSE ( kV ) = 13.8 DATA : 28 04 94
 <branco>
 DADOS DE LINHA :
 <branco>
                                                               ---->
                          dist dab dbc dca dan dbn dcn tap
       para conf. cabo
  de
                                                                       xreq
 ***** ***** ** ------ **.*** -.-- *.*** -.-- *.*** -.-- *.*** -.-- *.***
        200 1 1/0 CAA 3.0 1.90 0.40 2.30
  100
 9999
  <branco>
 DADOS DE BARRA :
```

Conti	nuação)									
<bran< td=""><td>co></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>></td><td></td><td></td></bran<>	co>								>		
barra	nombar	tipcar	kva_a	kva_b	kva_c	fp	pz	qz	capa	capb	capc
*****		- **** -		********	,	**.****		*** **		*******	
100	SUBEST		0.0	0.0	0.0	0.0					
200	CARGA	3	25.0	25.0	25.0	0.9	60.0	40.0			
9999											
<brar< td=""><td>nco></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></brar<>	nco>										
rho	vbase	sbase	tol	iterma	Х						
.**		***.**		*							
100.0	13.8	100.0	0.00001	L 20							

Figura 19 : Sistema primário (Vse=1.0 pu e carga tipo 1)

Utilizando o programa de fluxo de potência para cada valor de tensão da subestação e modificando o tipo de carga, foram anotadas os valores de perdas de potência ativa total do sistema.

Com esses resultados foram montados os seguintes gráficos.

Figura 20 : Perdas de potência ativa vs. Tensão da subestação

b) Sistema secundário

O arquivo de dados referente à tensão da subestação igual a 1.0 pu e tipo de carga 4 é mostrado abaixo :

```
DADOS GERAIS :
<branco>
                 *----*
Nome da subestacao : SEBT
Nome do alimentador : ALIBT
          ***.** ** **
VSE ( kV ) = 0.38 DATA : 28 04 94
<branco>
DADOS DE LINHA :
                                                         ---->
<branco>
 de para conf. cabo dist dab dbc dca dan dbn dcn tap
                                                              xreq
***** ***** ** _____*.**** _.__* **** _.__* *.*** _.__- *.*** _.___ *.***
      200 1 4 CAA 0.100 0.20 0.20 0.40 0.20 0.40 0.60
 100
 9999
 <branco>
DADOS DE BARRA :
                                                         ---->
  <branco>
barra nombar tipcar kva_a kva_b
                                kva_c fp pz qz
                                                        capa
                                                              capb
                                                                       capc
***** ------ **** ----- *****.** ----- **.*** ---.- ***.** ----- ***.**
 100 SUBEST 0.0 0.0 0.0 0.0
 200 CARGA 3
                25.0
                          25.0
                                 25.0 0.9 50.0 50.0
 9999
 <branco>
 rho vbase sbase
                  tol
                        itermax
***.** ---. ***.** --.--- ****
                            20
100.0
       0.38 1.0 0.00001
```

Figura 21 :Sistema secundário (Vse=1.0 pu e carga tipo 4)

Procedendo da mesma maneira, como no sistema primário, foram obtidos os seguintes gráficos.

100

Figura 22 : Perdas de potência ativa vs. Tensão da subestação

Os gráficos das figuras 20 e 22 mostram, para ambos os sistemas, que a variação das perdas de potência em função da variação da tensão, depende também da composição do modelo de carga.

Para uma carga modelada como potência constante, um aumento na tensão provoca a diminuição das perdas. Isto ocorre devido a redução da corrente para compensar o aumento da tensão, mantendo a potência constante.

Se a carga é modelada como impedância constante, o comportamento das perdas é diferente. As perdas aumentam com o crescimento da tensão.

O comportamento das perdas devido a uma carga modelada parte como potência constante e parte como impedância constante , vai depender dessa composição, ou seja, a percentagem de potência constante ou de impedância vai definir o comportamento das perdas face a variação da tensão.

Para o tipo de carga 1 (60% potência constante e 40% impedância constante) as perdas diminuem com o aumento da tensão, porém com uma taxa de descréscimo menor.

41

Com a composição equilibrada, carga do tipo 4 (50% potência constante e 50% impedância constante), praticamente as perdas ficam constantes com a variação da tensão.

4.2.2 APLICAÇÕES PRÁTICAS :

Três sistemas de distribuição de maior porte foram utilizados como aplicações do programa de fluxo de potência trifásico desenvolvido.

O primeiro é o sistema teste do artigo " A Method to toach the design and greration of a distribution system " de W. H. Kersting (Kersting, 1984), com a inclusão de um regulador de tensão.

Os outros dois sistemas são alimentadores reais da SAELPA. Um é de alta tensão (alimentador primário) com 30 barras. O outro é um circuito secundário (baixa tensão) apresentando 53 barras.

Os diagramas unifilares são apresentados abaixo.

4.2.2.1 SISTEMA TESTE KERSTING :

O diagrama unifilar do sistema utilizado por Kersting em seu artigo (Kersting, 1984) é mostrado na figura 23.

Os dados e os resultados dos fluxos de potência referentes a esse sistema estão listados no Anexo II.

CAPÍTULO 5

CONCLUSÕES

O principal objetivo deste trabalho foi verificar os efeitos do desequílibrio, da variação da tensão e da modelagem das cargas sobre as perdas elétricas em SDEE's. Para isso, um programa computacional de fluxo de potência trifásico para sistemas radiais foi implementado.

O método Soma de Potências escolhido para implementação foi detalhado, sendo evidenciadas as suas vantagens para a solução do problema de fluxo de potência trifásico radial.

Os efeitos do desequilíbrio do sistema, da variação da tensão e da modelagem das cargas nas perdas elétricas foram investigados, chegando-se aos seguintes resultados :

- Quanto maior for o nível de equilíbrio do sistema, menor serão as perdas elétricas.
- ii. A variação das perdas com a tensão depende fortemente do modelo de carga que está sendo adotado.

Esses resultados vêm a fortalecer a necessidade do uso de ferramentas de análise de SDEE que utilizem modelos representativos dos desequilíbrios desses sistemas e das cargas o mais fiel possível com a realidade.

O autor deste trabalho considera que o método adotado contempla, satisfatoriamente, os parâmetros citados acima.

Sugestões para trabalhos futuros :

A principal sugestão para a continuidade deste trabalho seria a extensão do método soma de potências para a solução do problema de fluxo de potência trifásico para SDEE malhados. Outras sugestões :

i. Confrontar a simulação do fluxo de potência trifásico radial com medições feitas no campo.

ii. Implementar um modelo para regulador de tensão com TAP variável.

REFERÊNCIAS BIBLIOGRÁFICAS

- ANDERSON, M.P. Analysis of Faulted Power Systems. Ames, Iowa State Univ. Press., 1973.
- CESPEDES, R. New Method for the Analysis of Distribution Networks. IEEE Transactions on Power Delivery, V. 5, n.1, pp.391-396, Jan. 1990.
- KERSTING, W.H A Method to Teach the Design and Operation of a Distribution Systems. IEEE Transaction on Power Apparatus and Systems, V. PAS-103, n.7, pp. 1945-1952, Jul. 1984.
- RAJAGOPALAN, S. A New Computational Algorithm for load Flow Study of Radial Distribution Systems. Computer and Electr. Eng., V.5, pp.225-231, Pergamon Press, 1978.
- RUDNICK, H. & MUNOZ, M. Three Phase Load Flow Analysis in Radial Power Systems. I SIDEE, 1990.
- SUN, D.I.H et al. Calculation of Energy Losses in a Distribution Systems. IEEE Transaction on Power Apparatus and Systems, V. PAS-99, n.4, pp.572-576, Jul./ Ago. 1980.
- STEVESON, W.D. Elements of Power Systems Analysis. 4^a ed., New York : Mcgraw-Hill, 1982.

BIBLIOGRAFIA CONSULTADA

- BALDICK, R. & WU, F.F. Approximation Formulas for the Distribution Systems : The Loss Function and Voltage Dependence. IEEE Transactions on Power Delivery, V.6, n.1, pp. 252-259, Jan 1991.
- BERG, R. et al. Mechanized Calculation of Unbalanced Load Flow on Radial Distribution Circuits. IEEE Transaction on Power Apparatus and Systems, V.PAS-86, n.4,pp.415-421, Abr. 1967.
- BIRT,K.A et al. Three Phase Load Flow Program. IEEE Transactions on Power Apparatus and Systems, V.PAS-95, n.1, pp.59-65, Jan./ Fev.1976.
- BRODSKY, S.F.J. et al. Comparison of Distribution Circuit Voltage Modeling and Calculation Methods. IEEE Transactions on Power Delivery, V.PWRD-2, n.2, pp.572-576, Abr.1987.
- CHANG, NE Determination of Primary Feeder Losses. IEEE Transactions on Power Apparatus and Systems, V.PAS-87, n.12, pp. 1991-1994, Dez.1968.
- CHEN, T et al. Distribuition System Power Flow Analysis-A Rigid Approach. IEEE Transactions on Power Delivey, V.6, n.3, pp. 1146-1152, Jul. 1991.
- ERICKSON, J.C & GILLIGAN, S.R. The Effects of Voltage Reduction on Distribution Circuit Loads. IEEE Transactions on Power Apparatus and Systems, V.PAS-101, n.7, pp.2014-2018, Jul. 1982.
- GOSWAMI, SK. & BASU, S.K. Direct Solution of Distribution Systems. IEEE Proceedings-C, V.138, n.1, pp. 78-88, Jan. 1991.

UFPD/BIRLIOTECA/ PBAI

<u>A New Algorithm for the Reconfiguration of</u> Distribution Feeders for loss Minimization. Transactions on Power Delivey, V.7, n.3, pp.1484-1491, Jul. 1992.

- KRUPA, T.J. & ASGEIRSSON, H. The Effects of Reduced Voltage on Distribution Circuit Loads. IEEE Transactions on Power Systems, V.PWRS-2, n.4, pp.1013-1018, Nov. 1987.
- LEE, R.E. et al. Analysis of Time Varying Distribution Circuit Current and Loss Characteristics. IEEE Transactions on Power Delivey, V.PWRD-2, n.4, pp.1249-1254,Out.1987.
- LUO, G.X & SEMLYEN, A.Efficient Load Flow for Large Weakly Meshed Networks.IEEE Transactions on Power Systems, V.5, n.4, pp.1309-1316, Nov.1990.
- MONTICELLI, A.J. Fluxo de carga em Redes de Energia Elétrica. São Paulo : Edgard Bliicher, 1983.
- SHIRMOHAMMADI, O.etal. A Compensation Based Power Flow Method for Weakly Meshed Distribution and Transmission Networks. IEEE Transactions on Power Systems, V.3, n.2, pp.753-762, Mai. 1988.
- SHULTZ, N.R. Distribution Primary Feeder 1²R Losses. IEEE Transactions on Power Apparatus and Systems, V.PAS-97, n.2, pp.603-609, Mar./Abr.1978.
- VEMPATI, N.et al. Simplified Feeder Modeling for Load Flow Calculations. IEEE Transactions on Power Systems, V.PWRS-2, n.1, pp.168-174, Fev.1987.

WAGNER, C.F & EVANS, R.D.Symmetrical Components.New York : Macgraw-Hill, 1993.

WESTINGHOUSE ELETRIC, Distributon System, Eletric Utilitg Engineering Reference Book, V.3, 1959.

ANEXO I

MANUAL DE UTILIZAÇÃO

I.1 INTRODUÇÃO:

A utilização do programa computacional para o cálculo do fluxo de potência trifásico radial (FPTR) para SDEE é bastante simples.

Um microcomputador IBM/PC ou compatível, com ambiente DOS é necessário para a sua execução.

Após comando < FPTR >,digitado depois do prompt do DOS, o programa pede duas informações pelo teclado: nome do arquivo de entrada e de saída.

A seguir serão detalhadas as informações contidas nesses dois arquivos.

I.2 O ARQUIVO DE DADOS :

Nesse arquivo estão todos os dados necessários para a solução do problema de fluxo de potência radial trifásico, que são: dados gerais, dados de linha e dados de barras.

Para facilitar a digitação dos dados no arquivo, existem réguas que permitem a localização de cada dado no arquivo, bem como os seus formatos. (Ver figura 26).

A seguir serão relacionadas as três classes de dados (gerais, linha e barra), juntamente com suas localizações e formatos.

A codificação utilizada para especificar os formatos é a mesma utilizada na linguagem de programação FORTRAN.

DADOS GERAIS : <branco> *----* Nome da subestacao : Nome do alimentador : ***.** ** ** ** VSE (kV) = DATA : <branco> DADOS DE LINHA : <branco> ----> de para conf. cabo dist dab dbc dca dan dbn dcn tap xreq ***** ***** ** ------ **.*** -.--- *.*** -.--- *.*** -.--- *.*** 9999 <branco> DADOS DE BARRA : ----> <branco> barra nombar tipcar kva_a kva_b kva_c fp pz qz capa capb capc ***** ------ **** ----- *****.** ----- **.**** ---.- ***.** ----.- ***.** -----.--9999 <branco> rho vbase sbase tol itermax ***.** ---. ***.** --.--- ****

Figura 26 : Arquivo de dados modelo

I.2.1 DADOS GERAIS :

Os dados gerais compreendem: nomes da subestação e do alimentador, tensão da subestação, tensão e potências bases, tolerância para convergência, resistividade média do solo, data (dia, mês e ano) e número máximo de iterações.

Os formatos e posições dos campos referentes a esses dados são:

a) Nome da subestação

Formato: A8

Coluna: 23

b) Nome do alimentador

Formato: A6

Coluna: 24

c) Tensão da subestação (em kV)

d) Data (dia, mês, ano)

Formato: 3 (I2, 1X) Coluna: 29

Coluna: 15

e) Resistividade média do solo (em Ω m)

Formato: F6.2 Coluna: 02

f) Tensão base (em kV)

Formato: F6.2 Coluna: 09

g) Potência base (em kVA)

Formato: F6.2 Coluna: 16

h) Tolerância para convergência

Formato: F11.8 Coluna: 23

i) Número máximo de iterações

Formato: 14

Coluna: 35

A localização desses campos por linha pode ser obtida pelo arquivo de dados modelo (Ver figura 26).

1.2.2 DADOS DE LINHA :

Nos dados de linha são fornecidos as seguintes informações: Topologia da rede (barra-origem e barra-fim de cada trecho), tipo de configuração da linha (trifásica, bifásica ou monofásica), tipo de cabo, comprimento do trecho, distâncias entre os cabos e características de reguladores de tensão (reatância e tap).

Os formatos e posições dos campos referentes a esses dados são:

a) Barra-origem (de)

Formato: A5 Coluna: 02

b) Barra-fim (para)

Formato: A5 Coluna: 09

Os campos barra-origem e barra-fim são tratados pelo programa como sendo cadeias de caracteres. Após a renumeração das barras é associado um número para cada uma delas.

c) Configuração da linha

A configuração da linha (trecho) é informada por meio de códigos numéricos. A tabela abaixo relaciona esses códigos.

Configuração	Código
a, b, c, (n)	1
a, (n)	2
b, (n)	3
c, (n)	4
a, c, (n)	5
a, b, (n)	6
b, c, (n)	7

Tabela 5 : Codificação das Configurações de linha

Obs.: (n) significa com ou sem neutro.

Formato: I2 Coluna: 16

d) Tipo de cabo

Através do tipo de cabo do qual o trecho de linha é feito, juntamente com a configuração, com as distâncias entre os cabos e com a resistividade média do solo, o programa calcula a impedância da linha.

Os tipos de cabos que o programa considera são: 4 CAA, 2 CAA, 1/0 CAA, 4/0 CAA, 266.8 CAA, 336.4 CAA, 397.5 CAA, 477.0 CAA, 6 Cu, 1/0 Cu, 4/0 Cu, 300 Cu.

Esses cabos são os mais utilizados pelas nossas concessionárias de distribuição de energia elétrica do Nordeste.

Ao ser digitado o tipo do cabo no arquivo, alinhar o dado no campo pela esquerda e usar letras maiúsculas.

Formato: A9 Coluna: 20

e) Comprimento do trecho (em Km)

Formato: F6.3 Coluna: 30

f) Distâncias entre os cabos (em m)

f.1) Distâncias entre as fases a e b

Formato: F5.3 Coluna: 37

f.2) Distâncias entre as fases b e c

Formato: F5.3 Coluna: 43

f.3) Distâncias entre as fases c e a

Formato: F5.3 Coluna: 49

f.4) Distância entre a fase a e o neutro n

Formato: F5.3 Coluna: 55

f.5) Distância entre a fase b e o neutro n

Formato: F5.3 Coluna: 61

f.6) Distância entre a fase c e o neutro n

Formato: F5.3

Coluna: 67

Os campos referentes às fases que não fizerem parte da configuração da linha ficam em branco.

g) Dados de Reguladores de Tensão

Os dados de reguladores de tensão são de uma unidade monofásica. Dependendo da configuração do trecho, o programa monta o banco de reguladores.

No caso de um trecho com regulador, os dados referentes a cabo e distâncias são deixados em branco.

O modelo implementado no programa considera o TAP como sendo a relação de espiras entre secundário e primário. Um TAP maior que 1 significa que a ação do regulador é de aumentar a tensão.

Formato: F6.3 Coluna: 73

g.2) Reatância do regulador de tensão (em pu)

Formato: F6.3 Coluna: 80

Os dados de linha são encerrados com o número da barra origem igual a 9999.

A localização dos campos dos dados de linha por linha no arquivo pode ser obtida pelas réguas de posição e formato.

1.2.3 DADOS DE BARRA :

Os dados de barra são formados por: nº da barra, nome da barra, tipo de carga, potência aparente da carga por fase, fator de potência da carga, percentagem da carga que são de impedância constante (ativa e reativa), potência(s) nominal(is) do(s) capacitor(es) para compensação de reativos.

Os formatos e posições dos campos referentes a esses dados são:

a) Número de barra

A observação feita para os campos dos dados de linha, barra-origem e barra-fim, também é válida para esse campo. Formato: A5 Coluna: 02

b) Nome da barra

Formato: A8 Coluna: 08

c) Tipo de carga

No SDEE pode aparecer cargas trifásicas, bifásicas ou monofásicas. Para o programa identificar um desses três tipos e associá-los às fases correspondentes é utilizado um conjunto de códigos que é:

Código	Carga	Fases			
3	trifásica	a, b, c			
1a	monofásica	а			
1b	monofásica	b			
1c	monofásica	С			
2ab	bifásica	a, b			
2bc	bifásica	b, c			
2ca	bifásica	c, a			

Tabela 6 : Codificação para tipos de cargas

Formato: A4 Coluna: 17

d) Potência aparente da carga por fase (em kVA)

d.1) Potência aparente da carga na fase a

Formato: F8.2 Coluna: 22

d.2) Potência aparente da carga na fase b

Formato: F8.2 Coluna: 31

1

Formato: F8.2 Coluna: 40

A(s) potência(s) referente(s) à(s) fase(s) ausente(s) são deixados em branco.

e) Percentagens da carga que são de impedância constante (ativa e reativa)

Esses campos permitem a modelagem da carga como sendo de impedância constante. Para isso, basta informar as percentagens de carga (ativa e reativa) que se comportam como impedância constante.

Por exemplo, suponha que uma carga monofásica da fase a é de 75 kVA e fator de potência 0.9. Desse total, 30% é de impedância constante. Assim, os campos referentes a esses dados serão preenchidos como:

fp barra nombar tipcar kva_a kva_b capa capb capc kva_c pz q٢ ~ ***** ** ***** ----- **** ----- **** ** **** *** ** ____ _ ---- ~ 75.00 0.9 30.0 30.0 100 Barra100 1a

e.1) Percentagem da parte ativa

Formato: F6.2 Coluna: 57

e.2) Percentagem da parte reativa

Formato: F6.2 Coluna: 64

f) Capacitores para compensação de reativos

A potência reativa nominal dos capacitores é informada em kVAr.

f.1) Para a fase a

Formato: F8.2

Coluna: 71

f.2) Para a fase b

Formato: F8.2

Coluna: 80

f.3) Para a fase c

Formato: F8.2 Coluna: 89

Os dados de barra são encerrados com o número da barra igual a 9999.

A localização dos campos dos dados de barra por linha no arquivo pode ser obtida pelas réguas de posição e formato.

I.3 O ARQUIVO DE SAÍDA :

O arquivo de saída é o próprio relatório gerado pelo programa. Nele está contido o perfil de tensão por barra e por fase, em pu e em quilovolts (kV).

Os fluxos de potência (kW e kVAr) e de corrente (A) é mostrado por fase. As perdas de potência (kW e kVAr) também listados.

As informações gerais compreendem: Critério de convergência, número de iterações efetuadas, total de perdas ativas (kW) por fase, total de perdas reativas (kVAr) por fase e o total de perdas no sistema(kW e kVAr).

ANEXO II

SISTEMA TESTE KERSTING MODIFICADO

II.2 DADOS DE ENTRADA :

DADOS GERAIS : *-----* Nome da subestacao : SE_ARTG Nome do alimentador : Al_ART ***.** ** ** ** VSE (kV) = 4.16 DATA : 29 04 94

DADOS DE LINHA :

de	para	conf	. cabo	dist	dab	dbc	dca	dan	dbn	dcn	tap	xreg	
****	*****	*×		**.***		*.***		*.***		*.***		**.***	
500	350	1	336.4 CAA	0.305	1.372	0.762	2.134	1.835	1.219	1.438			
350	130	1	1/0 CAA	0.152	1.372	0.762	2.134	1.835	1.219	1.438			
130	160	1	1/0 CAA	0.305	1.372	0.762	2.134	1.835	1.219	1.438			
130	20	1	1/0 CAA	0.152	1.372	0.762	2.134	1.835	1.219	1.438			
20	70	1	1/0 CAA	0.152	1.372	0.762	2.134	1.835	1.219	1.438			
70	10	1	1/0 CAA	0.091	1.372	0.762	2.134	1.835	1.219	1.438			
70	60	4	1/0 CAA	0.091						1.524			
20	200	1	1/0 CAA	0.152	1.372	0.762	2.134	1.835	1.219	1.438			•
200	180	1	1/0 CAA	0.152	1.372	0.762	2.134	1.835	1.219	1.438			
180	210	6	1/0 CAA	0.091	2.134			1.835	1.438				
210	50	2	1/0 CAA	0.061				1.524					
210	190	3	1/0 CAA	0.061					1.524				
20	400	1	1/0 CAA	0.152	1.372	0.762	2.134	1.835	1.219	1.438			
350	110	1	336.4 CAA	0.152	1.372	0.762	2.134	1.835	1.219	1.438			
110	140	1	1/0 CAA	0.152	1.372	0.762	2.134	1.835	1.219	1.438			
140	40	4	1/0 CAA	0.122						1.524			
40	80	4	1/0 CAA	0.122						1.524			
140	90	1	1/0 CAA	0.152	1.372	0.762	2.134	1.835	1.219	1.438			
90	30	3	1/0 CAA	0.122					1.524				
110	115	1									1.053	2.0	
115	220	1	336.4 CAA	0.152	1.372	0.762	2.134	1.835	1.219	1.438			
220	170	1	1/0 CAA	0.122	1.372	0.762	2.134	1.835	1.219	1.438			
170	150	7	1/0 CAA	0.122		2.134			1.835	1.438			
150	120	3	1/0 CAA	0.122					1.524				
220	100	1	1/0 CAA	0.152	1.372	0.762	2.134	1.835	1.219	1.438			
9999													
DADOS	DE BAR	RA :											
											>		
barra	nombar	tip	ocar kvaa	kvat)	kvac	fp	р	Z	qz	capa	capb	capc
*****		**	**	- *****	**	,	**.**	**	**	*.** -		****.*	*
500	subest	t											
350	deriv												
130	b 130												
	Contir	iuação											
------	--------	--------	--------	---------	---------	--------	-----	--					
	160	b 160	3	50.0	50.0	50.0	0.9						
	20	b 20											
	70	b 70	1c			75.0	0.9						
	10	b 10	3	166.67	166.67	166.67	0.9						
	60	b 60	1c			50.0	0.9						
	200	b 200	1a	75.0			0.9						
	180	b 180	1b		50.0		0.9						
	210	b 210	1a	50.0			0.9						
	50	b 50	1a	75.0			0.9						
	190	b 190	lb		50.0		0.9						
	400	inter.											
	110	deriv.											
	115	reg.											
	140	b 140	3	50.0	50.0	50.0	0.9						
	40	b 40	1c			50.0	0.9						
	80	b 80	lc			75.0	0.9						
	90	b 90	1a	50.0			0.9						
	30	b 30	1b		75.0		0.9						
1000	220	deriv.											
	170	b 170	1a	75.0			0.9						
	150	b 150	1c			50.0	0.9						
	120	b 120	1b		100.0		0.9						
	100	fim	3	50.0	50.0	50.0	0.9						
	9999												
	rho	vbase	sbase	tol	itermax								
	.**		***.**		*								
	100.0	4.16	100.0	0.00001	20								

II.2 RESULTADOS DOS FLUXOS DE POTÊNCIA :

	Sistem	a Kersting	modificad	o(V = 4.1	L6 KV)		
			PERFIL DE	TENSAO -			
Barra	Nome	Fas	e a	Fas	se b	Fas	e c
500	tasta	(pu)	(GRAUS)	(pu)	(GRAUS)	(pu)	(GRAUS)
250	doriv	001270	- 022	002266	-120.000	1.000000	120.000
120	h 120	.9013/9	922	.903200	-120.780	.982400	119.152
150	b 160	.900505	-1.191	.9/3033	-120.970	.9/2020	110.940
20	b 100	.905550	-1.422	065527	-121.03/	.900990	110.0/0
20	b 20	.957209	-1.433	960440	-121.140	.903077	110./00
10	b 10	.952104	-1.544	. 900440	-121.245	.904120	110.570
10	b 10	.949095	-1.012	. 95/595	-121.305	.901000	110,000
200	b 200	051110	-1 567	062400	-121 201	.903211	110.000
200	b 200	.951119	-1.650	.902400	-121,201	.903077	110.750
210	b 180	.94/203	-1.702	050510	-121.203	.9030//	110./50
210	b 210	.944940	-1.703	. 928218	-121.283		
100	D 50 h 100	.944009	-1.723	057000	101 000		
190	D 190	057300	1 422	.95/900	-121.290	0/2027	110 750
400	inter.	.95/289	-1.433	.905527	-121.140	.963077	118./56
110	deriv.	.9/8039	-1.082	.9/9283	-120.967	.9/8484	118.964
140	D 140	.9/5043	-1.146	.9/5528	-121.042	.9/3212	118.856
40	D 40					.9/0188	118./93
80	08 0	070544	1 100	000000	101 007	.968372	118./55
90	D 90	.9/3544	-1.1/8	.9/32/0	-121.08/	.9/3212	118.856
30	D 30	01(500	0 600	.9/1461	-121.125	010500	110 050
115	reg.	.916530	-2.600	.915028	-122.796	.919502	117.756
220	deriv.	.914696	-2.705	.912851	-122.914	.918056	117.676
170	D 170	.912//1	-2./49	.910257	-122.970	.916//6	117.648
150	b 150			.90/668	-123.029	.915496	11/.619
120	b 120		0.740	.9050/7	-123.08/	016460	110 (41
100	I1M	.913098	-2.742	.911248	-122.949	.916462	11/.641
			PERFIL DI	E TENSAO			
Barra	Nome	Fas	se a	Fa	se b	Fas	se c
		(kV)	(GRAUS)	(kV)	(GRAUS)	(kV)	(GRAUS)
500	teste	2.4018	.000	2.4018	-120.000	2.4018	120.000
350	deriv	2.3571	922	2.3616	-120.786	2.3596	119.152
130	b 130	2.3263	-1.191	2.3385	-120.976	2.3346	118.940
160	b 160	2.3190	-1.256	2.3312	-121.037	2.3273	118.878
20	b 20	2.2992	-1.433	2.3190	-121.140	2.3131	118.756
70	b 70	2.2869	-1.544	2.3068	-121.243	2.2916	118.570
10	b 10	2.2795	-1.612	2.2994	-121.305	2.2842	118.505
60	b 60					2.2894	118.550
200	b 200	2.2844	-1.567	2.3117	-121.201	2.3131	118.756

Continuação			
180 b 180	2.2751 -1.652	2.3043 -121.263	2,3131 118,756
210 b 210	2.2695 -1.703	2.3021 -121.283	
50 b 50	2.2673 -1.723		
190 b 190		2.3007 -121.296	
400 inter.	2.2992 -1.433	2.3190 -121.140	2.3131 118.756
110 deriv.	2.3490 -1.082	2.3520 -120.967	2.3501 118.964
140 b 140	2.3418 -1.146	2.3430 -121.042	2.3374 118.856
40 b 40			2.3302 118.793
80 b 80			2.3258 118.755
90 b 90	2.3382 -1.178	2.3376 -121.087	2.3374 118.856
30 b 30		2.3332 -121.125	
115 reg.	2.2013 -2.600	2.1977 -122.796	2,2084 117,756
220 deriv.	2.1969 -2.705	2.1925 -122.914	2,2050 117,676
170 b 170	2.1923 -2.749	2.1862 -122.970	2,2019 117,648
150 b 150		2.1800 -123.029	2.1988 117.619
120 b 120		2,1738 -123,087	5.1,00 11,001
100 fim	2.1931 -2.742	2.1886 -122.949	2,2011 117,641
	SOLUCAO FLUXO	DE CARGA RADIAL DE CARGA	
		h	
Barra Nome	(KW) (KVAr)	(KW) (KVAr)	rase c (KW) (KVAr)
500 teste		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
P/ Barra 350	593.658 317.989	544.185 291.261	568.307 302.097
Corrente (A):	280.40	256.99	267.97
Barra Nomo	Faco a	Faco h	Faco c
Dalla NUME	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
350 deriv	() ()	(/ (/	(/ (/
P/Barra 130	384.679 190.515	289,996 142,288	314.267 154.826
Corrente (A):	182.12	136.78	148.47
P/Barra 110	203.431 113.681	249.496 138.320	249.129 135.363
Corrente (A):	98.87	120.80	120.16
Darra Nama	Page 2	Paga h	Faco c
Dalla NOME	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
130 b 130	, / , /	,	,, , <u>,</u> ,
P/ Barra 160	45.117 21.915	45.118 21.911	45.116 21.911
Corrente (A):	21.56	21,45	21.48
P/ Barra 20	335.819 165.242	242,954 118,855	266,669 131.087
Corrente (A):	160.89	115.66	127.28
Barra Nome	Fase a	Fase b	Fase c
Darra Nome	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
20 h 20		() ()	
P/Barra 70	151.018 73.602	151.018 73.539	264.893 129.484
Corrente (1).	73.07	72.43	127.47
P/ Barra 200	181.721 88.727	90.380 44.104	.000 .000

the second s		the local division in the second division of	
Corrente (A):	87.95	43.37	.00
P/ Barra 400	.000 .000	.000 .000	.000 .000
Corrente (A):	.00	.00	.00
Barra Nome	Fase a	Fase b	Fase c
70 b 70	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
<pre>P/ Barra 10 Corrente (A): P/ Barra 60 Corrente (A):</pre>	150.405 73.064 73.12	150.403 73.043 72.48	150.401 73.056 72.96 45.034 21.837 21.84
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
<pre>P/ Barra 180 Corrente (A):</pre>	113.181 55.139	90.264 43.884	.000 .000
	55.11	43.42	.00
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 210	112.783 54.777	45.061 21.849	
Corrente (A):	55.11	21.73	
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 50 Corrente (λ): P/ Barra 190 Corrente (λ):	67.554 32.747 33.08	45.025 21.819 21.73	
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 140	90.307 43.854	113.062 55.077	158.605 77.396
Corrente (λ):	42.74	53.47	75.10
P/ Barra 115	112.826 58.533	135.830 71.761	90.095 46.171
Corrente (λ):	54.11	65.31	43.08
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 40 Corrente (A): P/ Barra 90 Corrente (A):	45.056 21.853 21.38	67.734 32.925 32.14	112.894 54.888 53.70 .000 .000 .00
Barra Nome	Fase a	Fase b	Fase c
40 b 40	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Dalia 80			07.000 32.797

Corrente (A):			32.25				
Barra Nome 90 b 90 P/ Barra 30 Corrente (A):	Fase a (KW) (KVAr)	Fase b (KW) (KVAr) 67.600 32.799 32.14	Fase c (KW) (KVAr)				
Barra Nome 115 reg. P/ Barra 220 Corrente (A):	Fase a (KW) (KVAr) 112.810 54.912 57.00	Fase b (KW) (KVAr) 135.874 66.433 68.82	Fase c (KW) (KVAr) 90.165 43.894 45.41				
Barra Nome 220 deriv. P/Barra 170 Corrente (A): P/Barra 100 Corrente (A):	Fase a (KW) (KVAr) 67.617 32.812 34.21 45.063 21.860 22.80	Fase b (KW) (KVAr) 90.664 44.201 46.01 45.067 21.857 22.85	Fase c (KW) (KVAr) 45.068 21.894 22.72 45.067 21.860 22.72				
Barra Nome 170 b 170 P/ Barra 150 Corrente (A):	Fase a (KW) (KVAr)	Fase b (KW) (KVAr) 90.426 44.028 46.00	Fase c (KW) (KVAr) 45.050 21.849 22.74				
Barra Nome 150 b 150 P/ Barra 120 Corrente (A):	Fase a (KW) (KVAr)	Fase b (KW) (KVAr) 90.209 43.808 46.00	Fase c (KW) (KVAr)				
SOLUCAO FLUXO DE CARGA RADIAL							
Barra Nome 500 teste P/ Barra 350	Fase a (KW) (KVAr) 4.970 10.492	Fase b (KW) (KVAr) 4.220 6.959	Fase c (KW) (KVAr) 3.371 8.419				
Barra Nome 350 deriv P/Barra 130 P/Barra 110	Fase a (KW) (KVAr) 3.650 3.113 .305 .552	Fase b (KW) (KVAr) 1.821 1.283 .586 .826	Fase c (KW) (KVAr) 2.373 1.560 .237 .914				
Barra Nome	Fase a	Fase b	Fase c				

130 b 130 P/ Barra 160 P/ Barra 20	(KW) (KVAr) .102 .077 2.852 2.467	(KW) (KVAr) .103 .069 1.268 .903	(KW) (KVAr) .090 .073 1.773 1.125
Barra Nome 20 b 20 P/ Barra 70 P/ Barra 200 P/ Barra 400	Fase a (KW) (KVAr) .393 .424 1.086 .839 .000 .000	Fase b (KW) (KVAr) .725 .213 .042 .211 .000 .000	Fase c (KW) (KVAr) 1.780 1.614 .000 .000 .000 .000
Barra Nome 70 b 70 P/ Barra 10 P/ Barra 60	Fase a (KW) (KVAr) .349 .266	Faše b (KW) (KVAr) .349 .233	Fase c (KW) (KVAr) .310 .251 .036 .036
Barra Nome 200 b 200 P/ Barra 180	Fase a (KW) (KVAr) .455 .293	Fase b (KW) (KVAr) .116 .221	Fase c (KW) (KVAr) .000 .000
Barra Nome 180 b 180 P/ Barra 210	Fase a (KW) (KVAr) .247 .206	Fase b (KW) (KVAr) .002 .033	Fase c (KW) (KVAr)
Barra Nome 210 b 210 P/ Barra 50 P/ Barra 190	Fase a (KW) (KVAr) .055 .056	Fase b (KW) (KVAr) .024 .024	Fase c (KW) (KVAr)
Barra Nome 110 deriv. P/Barra 140 P/Barra 115	Fase a (KW) (KVAr) .148 .126 .000 3.557	Fase b (KW) (KVAr) .390 .165 .000 5.183	Fase c (KW) (KVAr) .572 .554 .000 2.254
Barra Nome 140 b 140 P/ Barra 40 P/ Barra 90	Fase a (KW) (KVAr) .079 .031	Fase b (KW) (KVAr) .095 .125	Fase c (KW) (KVAr) .291 .295 .000 .000
Barra Nome 40 b 40 P/ Barra 80	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr) .105 .106
Barra Nome	Fase a	Fase b	Fase c

	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
90 b 90 P/Barra 30		, ,	,	.104	.106	(/ (Num 1
Barra Nome		Fase	a	Fase	b	Fase	с
115 800	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/Barra 220	.1	42	.194	.142	.312	.011	.098
Barra Nome		Fase	a	Fase	b	Fase	С
220 deriv	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 170	.1	.27	.066	.181	.167	.022	.021
P/ Barra 100	.0)57	.043	.058	.039	.050	.041
Barra Nome		Fase	a	Fase	b	Fase	с
170 b 170	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 150				.236	.186	.012	.049
Barra Nome		Fase	a	Fase	b	Fase	с .
150 b 150	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 120				.213	.216		
			INFORMA	COES GERAIS			
CRITERIO DE (CONVER	GENCI	A : Vari	acao da ten	isao (moc	lulo e fase).
NUMERO MAXIM	D DE I	TERAC	OES :	20			
TOLERANCIA M	ODULO	DA TE	NSAO :	.0000100000)		
TOLERANCIA F	ASE DA	TENS	AO: .0	000100000			
NUMERO DE ITERACOES : 6 TOTAL PERDAS ATIVA (KW) : Fase a Fase b Fase c 15.017 10.675 11.032							
TOTAL PERDAS	SISTE	CMA :	(KW) 36.723	(KVA: 57.6	r) 86		

ANEXO III

SISTEMA SAELPA DE ALTA TENSÃO (13,8 KV)

III.1 DADOS DE ENTRADA:

DADOS	GERAIS	:							logo and					
<bran< td=""><td colspan="12"><branco> **</branco></td></bran<>	<branco> **</branco>													
Nome d	a subes	staca	o : SEAT											
Nome d	o alime	entad	or : ALIAT											
		***.	** :	** ** *	*									
VSE (kV) =	13.	8 DATA : (02 05 9	4									
<bran< td=""><td>C0></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></bran<>	C0>													
DADOS	DE LINH	IA :												
<bran< td=""><td>co></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>></td><td></td><td></td><td></td></bran<>	co>										>			
de	para	conf	. cabo	dist	dab	dbc	dca	dan	dbn	dcn	tap	xreg		
****	*****	**		**.***		*.***		*.***		*.***		**.***		
01	02	1	1/0 CAA	3.0	1.90	0.40	2.30							
02	03	1	1/0 CAA	0.75	1.90	0.40	2.30							
03	04	1	4 CAA	1.25	1.90	0.40	2.30							
03	05	1	1/0 CAA	6.50	1.90	0.40	2.30							
05	06	1	4 CAA	2.0	1.90	0.40	2.30							
06	07	1	4 CAA	2.0	1.90	0.40	2.30							
06	08	1	4 CAA	2.0	1.90	0.40	2.30							
05	09	1	1/0 CAA	3.50	1.90	0.40	2.30							
09	10	1	1/0 CAA	1.0	1.90	0.40	2.30							
10	11	1	1/0 CAA	3.0	1.90	0.40	2.30							
11	12	1	6 CU	2.0	1.90	0.40	2.30							
11	13	1	1/0 CAA	1.5	1.90	0.40	2.30							
13	14	1	1/0 CAA	1.5	1.90	0.40	2.30							
14	15	1	1/0 CAA	1.4	1.90	0.40	2.30							
15	16	1	1/0 CAA	2.5	1.90	0.40	2.30							
15	17	1	1/0 CAA	2.75	1.90	0.40	2.30							
17	18	1	1/0 CAA	1.25	1.90	0.40	2.30							
18	19	1	4 CAA	3.00	1.90	0.40	2.30							
18	20	1	1/0 CAA	1.75	1.90	0.40	2.30							
15	21	1	1/0 CAA	5.5	1.90	0.40	2.30							
21	22	1	1/0 CAA	1.75	1.90	0.40	2.30							
22	23	1	4 CAA	1.0	1.90	0.40	2.30							
23	24	1	4 CAA	0.40	1.90	0.40	2.30							
22	27	1	4 CAA	1.25	1.90	0.40	2.30							
27	25	1	4 CAA	2.50	1.90	0.40	2.30							
25	26	1	4 CAA	1.0	1.90	0.40	2.30							
27	28	1	4 CAA	2.50	1.90	0.40	2.30							
28	29	1	4 CAA	3.5	1.90	0.40	2.30							
29	30	1	4 CAA	1.50	1.90	0.40	2.30							
9999														
 	nco>													
DADOS	DE BAR	RA :												
 br an	nco>										>			
barra	nombar	tip	ocar kva_a	kva	_b	kva_c	fp	p	Z	qz	capa	capb	car	C

*****		****	,	***** ** •		**.***	 ***.**	 *****.**	
01	SUBEST		0.0	0.0	0.0	0.0			1.65
02	CARGA02	3	4.57	4.57	4.57	0.89			
03	CRGDRV03	3	10.29	10.29	10.29	0.89			
04	CRGFIM04	3	3.26	3.26	3.26	0.89			
05	DERV05								
06	CGRDRV06	3	2.74	2.74	2.74	0.89			
07	CRGFIM07	3	3.43	3.43	3.43	0.89			
08	CRGFIM08	3	2.92	2.92	2.92	0.89			
09	CARGA09	3	10.98	10.98	10.98	0.89			
10	CARGA10	3	1.03	1.03	1.03	0.89			
11	CRGDRV11	3	4.12	4.12	4.12	0.89			
12	CRGFIM12	3	2.74	2.74	2.74	0.89			
13	CARGA13	3	0.69	0.69	0.69	0.89			
14	CARGA14	3	6.86	6.86	6.86	0.89			
15	CRGDRV15	3	0.69	0.69	0.69	0.89			
16	CRGFIM16	3	62.67	62.67	62.67	0.89			
17	CARGA17	3	11.66	11.66	11.66	0.89			
18	CRGDRV18	3	0.34	0.34	0.34	0.89			
19	CRGFIM19	3	2.40	2.40	2.40	0.89			
20	CRGFIM20	3	52.72	52.72	52.72	0.89			
21	CARGA21	3	1.60	1.60	1.60	0.89			
22	DEV22								
23	CARGA23	3	2.74	2.74	2.74	0.89			
24	CRGFIM24	3	8.58	8.58	8.58	0.89			
27	CRGDRV27	3	7.09	7.09	7.09	0.89			
25	CARGA25	3	0.69	0.69	0.69	0.89			
26	CRGFIM26	3	0.57	0.57	0.57	0.89			
28	DERV28								
29	CARGA29	3	148.10	148.10	148.10	0.89			
30	CRGFIM30) 3	8.01	8.01	8.01	0.89			
9999									
<brain <br="" <brain=""></brain>	nco>								
rho	vbase	sbase	tol	iterma	Х				
.*	*	***.**		*					
100.0	13.8	100.0	0.0000	1 20					-

III.2 RESULTADOS DOS FLUXOS DE POTÊNCIA :

PERFIL DE TENSAO Barra None Fase a Fase b Fase c (pu) (GRAUS) (pu) (GRAUS) (pu) (GRAUS) (pu) (GRAUS) 01 SEAT 1.000000 .000 1.000000 120.000 02 CARADO2 .976741 -616 .976742 -120.636 .977370 119.400 03 CREDRV03 .970955 772 .970997 -120.798 .971148 119.248 04 CREFIN04 .970867 773 .970869 -122.185 .923988 117.922 06 CGRBV06 .921603 -2125 .921552 -122.185 .923161 17.922 08 CREFIN07 .921410 -2.126 .921365 117.933 10 CARCA09 .986506 -2.20185 .923195 117.933 10 CARCA10 .887391 -3.097 .889374 -123.148 .870623 116.320 11 CREGPINI3 .86799 -4.093 .857477 -24.187 .840763		Sistema SAELPA STR O1L1 (13.8 KV)										
PERFIL DE TENSAO Barra Nome Fase a Fase b Fase c (pu) (GRUS) (pu) (GRUS) (pu) (GRUS) 01 SEAT 1.000000 .000 1.000000 1.000000 1.000000 02 CARGA02 .976741 616 .976742 -120.636 .971370 119.400 03 CRGDRV03 .970995 772 .970997 -120.798 .971648 119.248 04 CRGFUN05 .922204 -2.123 .922193 -122.185 .923388 117.926 06 CGRDRV06 .921410 -2.126 .921365 -122.186 .923176 117.923 07 CRGFIM08 .921410 -2.126 .921365 -122.186 .921376 117.923 09 CARCA09 .895606 -2.880 .867971 -123.848 .870623 116.370 12 CRGPTM12 .867981 -123.548 .870623 116.320 12 .620813												
Barra Nome Fase a Fase b Fase c (pu) (GRAUS) (pu) (GRAUS) (pu) (GRAUS) 01 SEAT 1.000000 .000 1.000000 120.000 1000000 02 CARGA02 .976741 616 .976742 -120.636 .977370 119.400 03 CROBRV03 .970995 772 .970997 -120.798 .971776 119.248 04 CRGFIM04 .970867 773 .970869 -120.798 .971776 119.248 05 DERVO5 .9221047 -2123 .922185 .923185 117.922 06 CGRDRV06 .921603 -2.126 .921399 -122.186 .923185 117.922 09 CARGA09 .98506 -2.800 .867971 -123.484 .870623 116.320 10 CARGA10 .889391 -3.097 .889374 -123.484 .870623 115.323 10 CARGA10 .887991 -1				DEDELL DE	TENCLO							
Barra Nome Fase a Fase b Fase c (pu) (GRAUS) (pu) (GRAUS) (pu) (GRAUS) 01 SEAT 1.000000 .000 1.000000 120.0000 120.0000 02 CARGA02 .976741 -6.16 .976742 -120.363 .977370 119.400 03 CRGDRV03 .970995 772 .970869 -120.798 .971776 119.248 04 CREFIMO4 .970867 773 .970869 -120.798 .97176 119.248 05 DERV05 .922204 -2.125 .921592 -122.185 .923388 117.922 06 CCGRDRV06 .92660 -2.880 .896491 -122.755 .987322 117.183 10 CARGA10 .889391 -3.097 .88974 -123.184 .870623 116.320 12 CRGPN11 .867808 -3.760 .867781 -123.187 .800257 115.930 14 CARGA14				PERFIL DE	IENSAO							
(Pu) (CRAUS) (Pu) (CRAUS) (Pu) (CRAUS) 01 SEAT 1.000000 .000 1.000000 120.000 120.000 02 CARGA02 .976741 616 .976742 -120.786 .971370 119.440 03 CREDRV03 .970995 772 .970997 -120.798 .971764 119.248 04 CREFIN04 .970867 773 .970869 -120.798 .971764 119.248 05 DERVO5 .922204 -2.125 .921932 122.185 .923381 117.923 06 CGRDRV06 .921376 -2.126 .921365 -122.185 .923195 117.923 09 CARGA0 .896506 -2.880 .896491 -123.176 .891734 116.970 11 CREDRV11 .867980 -3.760 .867971 -123.848 .870623 116.320 12 CRGFIM12 .867808 -3.760 .867477 -124.187 .860257 115.990<	Barra	Nome	Fas	e a	Fase b	Fas	e c					
01 SEAT 1.000000 1.000	01	cram	(pu)	(GRAUS)	(pu) (GRAUS)	(pu)	(GRAUS)					
02 CARGA2	01	SLAI	1.000000	.000	1.000000 -120.00	0 1.000000	120.000					
03 CK6DFIN03 .970295 772 .970869 .97120.798 .971648 119.248 04 CKGFIH04 .970867 .972193 .922193 .922193 .922193 .922182 .923988 117.926 06 CGRDRV06 .921307 -2.125 .921952 -122.185 .92388 117.922 07 CKGFIM07 .921376 -2.126 .921365 -122.185 .923182 117.923 09 CARGA0 .896506 -2.880 .896491 -122.955 .898732 117.183 10 CARGA10 .889391 -3.097 .889771 -123.849 .870440 116.318 13 CARGA11 .867991 -3.759 .867971 -124.187 .860257 115.990 14 CARGA14 .847009 -4.433 .84696 -124.961 .837028 115.521 16 CKGFIM16 .834039 -4.631 .834034 -124.961 .837493 115.212 18 CRGFIM16 <	02	CARGAUZ	.9/0/41	010	.9/6/42 -120.63	6 .97/3/0	119.400					
04 CRGF IN04 .970867 -2.123 .92193 -121.782 .923988 117.926 05 DERV05 .92204 -2.125 .92193 -122.185 .92388 117.923 07 CRGFIM07 .921376 -2.126 .921392 -122.185 .923185 117.923 07 CRGFIM08 .921410 -2.126 .921395 -122.185 .923195 117.923 09 CARGA09 .889506 -2.880 .886491 -122.955 .889732 117.183 10 CARGA10 .889391 -3.097 .889374 -123.176 .891734 116.970 11 CRGRV11 .867991 -3.759 .86771 -123.176 .891734 116.970 12 CRGFIM12 .867308 -3.760 .867788 -124.849 .870440 116.318 13 CARGA13 .857499 -4.093 .83762 -24.849 .840365 115.343 16 CRGFIM16 .834059 -4.861 .8340	03	CKGDKV03	.970995	//2	.970997 -120.79	8 .9/1//6	119.248					
05 DERV05 .92204 -2.123 .92193 -122.182 .92388 117.926 06 CGRDRV06 .921603 -2.125 .921365 -122.185 .923182 117.922 07 CRGFIM07 .921317 -2.126 .921365 -122.185 .923195 117.923 09 CARGA09 .896506 -2.880 .896491 -122.955 .898732 117.183 10 CARGA10 .889391 -3.097 .889774 -123.848 .870623 116.320 12 CRGFIM12 .867988 -3.750 .867781 -123.848 .870404 116.318 13 CARGA13 .857499 -4.093 .857477 -124.187 .860257 115.990 14 CARGA14 .847009 -4.433 .846986 -124.931 .840365 115.343 16 CRGFIM16 .834043 -124.981 .830421 115.212 17 CARGA17 .831448 -4.881 .833423 -124.981 .	04	CKGF1MU4	.9/086/	//3	.970869 -120.79	8 .9/1648	119.248					
06 CGR0FN06 .921003 -2.126 .921365 -122.185 .923162 117.923 07 CRGFIM07 .921376 -2.126 .921365 -122.185 .923162 117.923 08 CRGFIM08 .921410 -2.126 .921397 117.923 09 CARGA09 .896506 -2.880 .896491 -122.955 .898732 117.923 09 CARGA10 .889391 -3.097 .889374 -123.176 .891734 116.970 11 CRGFIM12 .867088 -3.760 .867787 -124.187 .860257 115.990 12 CRGFIM12 .87499 -4.033 .857477 -124.187 .860257 115.990 14 CARGA14 .847009 -4.433 .846986 -124.961 .837028 115.232 17 CARGA14 .847009 -4.861 .833403 -124.961 .837028 115.232 17 CARGA17 .833448 -4.861 .834034 -124.961 <td< td=""><td>05</td><td>DERVUS</td><td>.922204</td><td>-2.123</td><td>.922193 -122.18</td><td>2 .923988</td><td>117.926</td></td<>	05	DERVUS	.922204	-2.123	.922193 -122.18	2 .923988	117.926					
07 CRGFIN08 .921376 -2.126 .921399 -122.186 .923195 117.922 08 CRGFIN08 .921410 -2.126 .921399 -122.185 .923195 117.923 09 CARGA09 .896506 -2.880 .896491 -122.185 .898732 117.183 10 CARGA10 .889391 -3.097 .889374 -123.176 .891734 116.970 11 CRGPIM12 .867308 -3.760 .867788 -123.848 .870623 116.320 12 CRGFIM14 .857499 -4.093 .857477 -124.187 .860257 115.990 14 CARGA14 .847099 -4.093 .857477 -124.187 .860257 115.990 14 CARGA14 .847099 -4.093 .83732 -124.849 .840365 115.343 16 CRGFIM16 .834059 -4.861 .834034 -124.961 .837028 115.162 17 CARGA17 .831466 -125.901 <	06	CGRDRVUG	.921603	-2.125	.921592 -122.18	5 .923388	117.923					
08 CKGTHN08 -921410 -2.126 .921399 -117.923 09 CARGA09 .896506 -2.880 .896491 -122.955 .898732 117.183 10 CARGA10 .889391 -3.097 .889374 -123.956 .898732 116.320 12 CRGFIM12 .867308 -3.760 .867788 -123.849 .870440 116.318 13 CARGA13 .857499 -4.093 .857477 -124.187 .860257 115.990 14 CARGA14 .847009 -4.433 .846986 -124.501 .849365 115.343 16 CRGFIN16 .834059 -4.431 .834034 -124.849 .840365 115.232 17 CARGA17 .833448 -4.881 .83423 -124.961 .837028 115.232 18 CRGDRV18 .831960 -4.931 .831936 -125.01 .834671 115.162 20 CRGFIN20 .829979 -4.997 .829955 -125.097 <td< td=""><td>07</td><td>CRGFIMU/</td><td>.9213/6</td><td>-2.126</td><td>.921365 -122.18</td><td>6 .923162</td><td>117.922</td></td<>	07	CRGFIMU/	.9213/6	-2.126	.921365 -122.18	6 .923162	117.922					
09 CARGAD9 .896506 -2.880 .896491 -122.955 .89732 117.183 10 CARGAIO .889391 -3.097 .889374 -123.176 .891734 116.970 11 CRGDRVI1 .867981 -3.759 .867788 -123.849 .870440 116.318 13 CARGA13 .857499 -4.093 .857477 -124.187 .860257 115.990 14 CARGA14 .847009 -4.433 .846986 -124.530 .849878 115.655 15 CRGDRV15 .837407 -4.749 .837322 -124.849 .840365 115.343 16 CRGFIM16 .834059 -4.881 .833423 -124.981 .836421 115.212 18 CRGDRV18 .831960 -4.931 .831936 -125.031 .834939 115.162 20 CRGFIM20 .829979 -4.997 .829955 -125.097 .83266 115.097 21 CARGA21 .814922 -5.506 .814894 -125.102 .810808 114.556 22 DEV22	08	CRGFIMU8	.921410	-2.126	.921399 -122.18	5 .923195	117.923					
10 CARGALU .889391 -3.059 .889374 -123.176 .89734 116.320 11 CRGDRV11 .867991 -3.759 .867971 -123.848 .870623 116.320 12 CRGFIM12 .867808 -3.760 .867788 -123.849 .870440 116.318 13 CARGAL3 .857499 -4.093 .857477 -124.187 .860257 115.990 14 CARGAL4 .847009 -4.433 .846986 -124.530 .849878 115.655 15 CRGDRV15 .837407 -4.749 .837382 -124.849 .840365 115.343 16 CRGFIM16 .834059 -4.861 .834034 -124.961 .837028 115.232 17 CARGA17 .831960 -4.931 .831672 -125.031 .834939 115.163 19 CRGFIM20 .829979 -4.997 .829955 -125.031 .834939 115.162 20 CRGFIM20 .82979 -4.932 .831672 -125.037 .832966 115.097 21 CARGA21	09	CARGAUS	.896506	-2.880	.896491 -122.95	5 .898/32	11/.183					
11 CRGPIM12 .86/991 -3.759 .86/79/1 -123.848 .870623 116.320 12 CRGFIM12 .867808 -3.760 .867788 -123.849 .870440 116.318 13 CARGA13 .857499 -4.093 .857477 -124.187 .860257 115.990 14 CARGA14 .847009 -4.433 .846986 -124.530 .849878 115.655 15 CRGDRV15 .837407 -4.749 .837382 -124.849 .840365 115.343 16 CRGFIM16 .834059 -4.861 .834034 -124.961 .837028 115.232 17 CARGA17 .833448 -4.881 .833423 -124.981 .836421 115.212 18 CRGDRV18 .831960 -4.931 .831936 -125.031 .834939 115.163 19 CRGFIM20 .829979 -4.997 .829955 -125.097 .832936 115.02 20 CRGFIM20 .829979 -4.997 .829955 -125.097 .832966 115.097 21 CARGA21 <td>10</td> <td>CARGAIO</td> <td>.889391</td> <td>-3.09/</td> <td>.8893/4 -123.1/</td> <td>6 .891/34</td> <td>116.970</td>	10	CARGAIO	.889391	-3.09/	.8893/4 -123.1/	6 .891/34	116.970					
12 CRGFIM12 .86788 -3.760 .867788 -123.849 .870440 116.318 13 CARGA13 .857499 -4.093 .857477 -124.187 .860257 115.990 14 CARGA14 .847009 -4.749 .83732 -124.849 .840365 115.343 16 CRGFIM16 .834059 -4.861 .834034 -124.949 .840365 115.232 17 CARGA17 .833448 -4.881 .833423 -125.031 .834939 115.163 19 CRGFIM19 .831696 -4.932 .831672 -125.032 .834677 115.162 20 CRGFIM20 .829797 -4.997 .829955 -125.097 .832966 115.097 21 CARGA23 .807409 -5.756 .807807 -125.860 .811060 114.353 22 DEV22 .807836 -5.756 .807380 -125.963 .810635 114.351 24 CRGFIM24 .807280 -5.756 .807251 -125.963 .810635 114.351 23 CARGA25	11	CRGDRV11	.867991	-3.759	.867971 -123.84	8 .870623	116.320					
13 CARGA13 .85/499 -4.093 .85/47/ -124.187 .860257 115.990 14 CARGA14 .847009 -4.433 .846986 -124.530 .849878 115.655 15 CRGDRV15 .837407 -4.749 .837382 -124.849 .840365 115.343 16 CRGFIM16 .834059 -4.861 .8304034 -124.961 .837028 115.232 17 CARGA17 .833448 -4.861 .833423 -124.961 .837028 115.232 18 CRGDRV18 .831960 -4.931 .831936 -125.031 .834939 115.163 19 CRGFIM20 .829979 -4.997 .829955 -125.097 .832966 115.097 21 CARGA21 .814922 -5.506 .814894 -125.612 .818088 114.556 22 DEV22 .807836 -5.755 .807380 -125.863 .810635 114.351 23 CARGA23 .807409 -5.756 .807251 -125.908 .802859 114.307 26 CRGFIM26	12	CRGF1M12	.867808	-3.760	.867788 -123.84	9 .870440	116.318					
14 CARGA14 .847009 -4.433 .846986 -124.530 .849878 115.655 15 CRGDRV15 .837407 -4.749 .837382 -124.849 .840365 115.343 16 CRGFIM16 .834059 -4.861 .834034 -124.981 .837028 115.232 17 CARGA17 .833468 -4.881 .833423 -124.981 .836421 115.212 18 CRCDRV18 .831960 -4.931 .831936 -125.031 .834939 115.163 19 CRGFIM19 .831696 -4.932 .831672 -125.032 .834677 115.162 20 CRGFIM19 .831696 -5.756 .807807 -125.612 .818088 114.596 21 CARGA23 .807409 -5.755 .807380 -125.863 .810605 114.351 24 CRGFIN24 .807280 -5.756 .807281 -125.907 .802979 114.308 25 CARGA25 .799572 -5.799 .799534 -125.908 .802859 114.307 26 CRGFIM26 <td>13</td> <td>CARGA13</td> <td>.857499</td> <td>-4.093</td> <td>.857477 -124.18</td> <td>7.860257</td> <td>115.990</td>	13	CARGA13	.857499	-4.093	.857477 -124.18	7.860257	115.990					
15 CRCDRV15 .83/407 -4.749 .837382 -124.849 .840365 115.343 16 CRGFIN16 .834059 -4.861 .834034 -124.961 .837028 115.232 17 CARGA17 .833448 -4.881 .833423 -124.981 .836421 115.232 18 CRGDRV18 .831960 -4.931 .831936 -125.032 .834477 115.162 20 CRGFIM19 .831696 -4.932 .831672 -125.032 .832966 115.097 21 CARGA21 .814922 -5.506 .814894 -125.612 .81088 114.596 22 DEV22 .807836 -5.753 .807807 -125.860 .811060 114.351 24 CRGFIM24 .807280 -5.756 .807251 -125.863 .810635 114.351 24 CRGPIM24 .807280 -5.756 .807251 -125.903 .802859 114.307 26 CARGA25 .799572 -5.799 .799534 -125.908 .802838 114.307 28 DERV28	14	CARGA14	.847009	-4.433	.846986 -124.53	0.849878	115.655					
16 CRGFIM16 .834059 -4.861 .834034 -124.961 .837028 115.232 17 CARGA17 .833448 -4.881 .833423 -124.981 .836421 115.212 18 CRGDRV18 .831960 -4.931 .831936 -125.031 .834939 115.163 19 CRGFIM19 .831696 -4.932 .831672 -125.032 .834677 115.162 20 CRGFIM20 .829979 -4.997 .829955 -125.097 .832966 115.097 21 CARGA21 .814922 -5.506 .814894 -125.612 .818088 114.596 22 DEV22 .807836 -5.755 .807380 -125.863 .810605 114.351 24 CRGFIM24 .807280 -5.756 .807251 -125.863 .810506 114.350 27 CRGDRV27 .799692 -5.799 .799534 -125.908 .802859 114.307 26 CRGFIM26 .799550 -5.799 .799513 -125.908 .802838 114.307 28 DERV28	15	CRGDRV15	.837407	-4.749	.83/382 -124.84	9 .840365	115.343					
17 CARGAI7 .833448 -4.881 .833423 -124.981 .836421 115.212 18 CRGDRV18 .831960 -4.931 .831936 -125.031 .834939 115.163 19 CRGFIM19 .831696 -4.932 .831672 -125.032 .834677 115.162 20 CRGFIM20 .829979 -4.997 .829955 -125.097 .832966 115.097 21 CARGA21 .814922 -5.066 .814894 -125.612 .818088 114.596 22 DEV22 .807836 -5.753 .807807 -125.863 .810601 114.353 23 CARGA23 .807409 -5.756 .807251 -125.863 .810506 114.350 27 CRGDRV27 .799692 -5.799 .799534 -125.908 .802859 114.307 26 CRGFIM26 .799550 -5.799 .799513 -125.908 .802838 114.307 28 DERV28 .784156 -5.884 .784109 -125.994 .787546 114.223 29 CARGA29	16	CRGF1M16	.834059	-4.861	.834034 -124.96	1 .83/028	115.232					
18 CKGDRV18 .831960 -4.931 .831936 -125.031 .834939 115.163 19 CRGFIM19 .831696 -4.932 .831672 -125.032 .834677 115.162 20 CRGFIM20 .829979 -4.997 .829955 -125.097 .832966 115.097 21 CARGA21 .814922 -5.506 .814894 -125.612 .818088 114.596 22 DEV22 .807836 -5.753 .807807 -125.863 .811060 114.353 23 CARGA23 .807409 -5.755 .807380 -125.863 .810635 114.351 24 CRGFIM24 .807280 -5.756 .807251 -125.863 .810635 114.350 27 CRGDRV27 .799692 -5.799 .799534 -125.907 .802859 114.307 26 CRGFIN26 .799570 -5.799 .799513 -125.908 .802838 114.307 28 DERV28 .784156 -5.884 .784109 -125.994 .78546 114.223 29 CARGA29	1/	CARGA17	.833448	-4.881	.833423 -124.98	1 .836421	115.212					
19 CRGFIM19 .831696 -4.932 .831672 -125.032 .834677 115.162 20 CRGFIM20 .829979 -4.997 .829955 -125.097 .832966 115.097 21 CARGA21 .814922 -5.506 .814894 -125.612 .818088 114.596 22 DEV22 .807836 -5.753 .807807 -125.860 .811060 114.353 23 CARGA23 .807409 -5.755 .807380 -125.863 .810635 114.351 24 CRGFIM24 .807280 -5.756 .807251 -125.863 .810635 114.351 24 CRGPIM24 .807280 -5.798 .799654 -125.907 .802979 114.308 25 CARGA25 .799572 -5.799 .799513 -125.908 .802838 114.307 28 DERV28 .784156 -5.884 .784109 -125.994 .787546 114.223 29 CARGA29 .762323 -6.001 .76274 -126.114 .765334 114.107 30 CRGFIM30	18	CRGDRV18	.831960	-4.931	.831936 -125.03	1 .834939	115.163					
20 CRGFIM20 .829979 -4.997 .829955 -125.097 .832966 115.097 21 CARGA21 .814922 -5.506 .814894 -125.612 .818088 114.596 22 DEV22 .807836 -5.753 .807807 -125.860 .811060 114.353 23 CARGA23 .807409 -5.755 .807380 -125.863 .810635 114.351 24 CRGFIM24 .807280 -5.756 .807251 -125.863 .810635 114.350 27 CRGDRV27 .799692 -5.798 .799654 -125.907 .802979 114.308 25 CARGA25 .799572 -5.799 .799513 -125.908 .802838 114.307 28 DERV28 .784156 -5.884 .784109 -125.994 .787546 114.223 29 CARGA29 .762323 -6.001 .762274 -126.111 .765812 114.107 30 CRGFIM30 .761843 -6.003 .761794 -126.114 .765334 114.105 Wine	19	CRGFIM19	.831696	-4.932	.831672 -125.03	2 .834677	115.162					
21 CARGA21 .814922 -5.506 .814894 -125.612 .818088 114.596 22 DEV22 .807836 -5.753 .807807 -125.860 .811060 114.353 23 CARGA23 .807409 -5.755 .807380 -125.863 .810635 114.351 24 CRGFIM24 .807280 -5.756 .807251 -125.863 .810506 114.350 27 CRGDRV27 .799692 -5.798 .799654 -125.907 .802979 114.308 25 CARGA25 .799572 -5.799 .799534 -125.908 .802859 114.307 26 CRGFIM26 .799550 -5.799 .799513 -125.908 .802838 114.223 29 CARGA29 .762323 -6.001 .762274 -126.111 .765812 114.107 30 CRGFIM30 .761843 -6.003 .761794 -126.114 .765334 114.105 Earra Nome Fase a Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) (k	20	CRGFIM20	.829979	-4.997	.829955 -125.09	7 .832966	115.097					
22 DEV22 .807836 -5.753 .807807 -125.860 .811060 114.353 23 CARGA23 .807409 -5.755 .807380 -125.863 .810635 114.351 24 CRGFIM24 .807280 -5.756 .807251 -125.863 .810506 114.350 27 CRGDRV27 .799692 -5.798 .799654 -125.907 .802979 114.308 25 CARGA25 .799572 -5.799 .799534 -125.908 .802859 114.307 26 CRGFIM26 .799550 -5.799 .799513 -125.908 .802838 114.307 28 DERV28 .784156 -5.884 .784109 -125.994 .787546 114.223 29 CARGA29 .762323 -6.001 .762274 -126.111 .765812 114.107 30 CRGFIM30 .761843 -6.003 .761794 -126.114 .765334 114.105	21	CARGA21	.814922	-5.506	.814894 -125.61	2 .818088	114.596					
23 CARGA23 .807409 -5.755 .807380 -125.863 .810635 114.351 24 CRGFIM24 .807280 -5.756 .807251 -125.863 .810506 114.350 27 CRGDRV27 .799692 -5.798 .799654 -125.907 .802979 114.308 25 CARGA25 .799572 -5.799 .799534 -125.908 .802859 114.307 26 CRGFIM26 .799550 -5.799 .799513 -125.908 .802838 114.307 28 DERV28 .784156 -5.884 .784109 -125.994 .787546 114.223 29 CARGA29 .762323 -6.001 .762274 -126.111 .765812 114.107 30 CRGFIM30 .761843 -6.003 .761794 -126.114 .765334 114.105 PERFIL DE TENSAO	22	DEV22	.807836	-5.753	.807807 -125.86	0.811060	114.353					
24 CRGFIM24 .807280 -5.756 .807251 -125.863 .810506 114.350 27 CRGDRV27 .799692 -5.798 .799654 -125.907 .802979 114.308 25 CARGA25 .799572 -5.799 .799534 -125.908 .802859 114.307 26 CRGFIM26 .799550 -5.799 .799513 -125.908 .802838 114.307 28 DERV28 .784156 -5.884 .784109 -125.994 .787546 114.223 29 CARGA29 .762323 -6.001 .762274 -126.111 .765812 114.107 30 CRGFIM30 .761843 -6.003 .761794 -126.114 .765334 114.105 PERFIL DE TENSAO PERFIL DE TENSAO Barra Nome Fase a Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) 01 SEAT 7.9674 .000 7.9674 -120.000 7.9674 120.000 02 CARGA02 7.7821 616 7.7821 -120.636 <	23	CARGA23	.807409	-5.755	.807380 -125.86	3 .810635	114.351					
27 CRGDRV27 .799692 -5.798 .799654 -125.907 .802979 114.308 25 CARGA25 .799572 -5.799 .799534 -125.908 .802859 114.307 26 CRGFIM26 .799550 -5.799 .799513 -125.908 .802838 114.307 28 DERV28 .784156 -5.884 .784109 -125.994 .787546 114.223 29 CARGA29 .762323 -6.001 .762274 -126.111 .765812 114.107 30 CRGFIM30 .761843 -6.003 .761794 -126.114 .765334 114.105	24	CRGFIM24	.807280	-5.756	.807251 -125.86	3 .810506	114.350					
25 CARGA25 .799572 -5.799 .799534 -125.908 .802859 114.307 26 CRGFIM26 .799550 -5.799 .799513 -125.908 .802838 114.307 28 DERV28 .784156 -5.884 .784109 -125.994 .787546 114.223 29 CARGA29 .762323 -6.001 .762274 -126.111 .765812 114.107 30 CRGFIM30 .761843 -6.003 .761794 -126.114 .765334 114.105 Barra Nome Fase a Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) (kV) (GRAUS) 01 SEAT 7.9674 .000 7.9674 -120.000 7.9674 120.000 02 CARGA02 7.7821 616 7.7821 -120.636 7.7871 119.400 03 CRGDRV03 7.7363 772 7.7364 -120.798 7.7426 119.248	27	CRGDRV27	.799692	-5.798	.799654 -125.90	7 .802979	114.308					
26 CRGFIM26 .799550 -5.799 .799513 -125.908 .802838 114.307 28 DERV28 .784156 -5.884 .784109 -125.994 .787546 114.223 29 CARGA29 .762323 -6.001 .762274 -126.111 .765812 114.107 30 CRGFIM30 .761843 -6.003 .761794 -126.114 .765334 114.105 Barra Nome Fase a Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) (kV) (GRAUS) 01 SEAT 7.9674 .000 7.9674 -120.000 7.9674 120.000 02 CARGA02 7.7821 616 7.7821 -120.636 7.7871 119.400 03 CRGDRV03 7.7363 772 7.7364 -120.798 7.7426 119.248	25	CARGA25	.799572	-5.799	.799534 -125.90	8 .802859	114.307					
28 DERV28 .784156 -5.884 .784109 -125.994 .787546 114.223 29 CARGA29 .762323 -6.001 .762274 -126.111 .765812 114.107 30 CRGFIM30 .761843 -6.003 .761794 -126.114 .765334 114.105 PERFIL DE TENSAO PERFIL DE TENSAO Barra Nome Fase a Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) 01 SEAT 7.9674 .000 7.9674 -120.000 7.9674 120.000 02 CARGA02 7.7821 616 7.7821 -120.636 7.7871 119.400 03 CRGDRV03 7.7363 772 7.7364 -120.798 7.7426 119.248	26	CRGFIM26	.799550	-5.799	.799513 -125.90	8 .802838	114.307					
29 CARGA29 .762323 -6.001 .762274 -126.111 .765812 114.107 30 CRGFIM30 .761843 -6.003 .761794 -126.114 .765334 114.105 PERFIL DE TENSA0 Barra Nome Fase a Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) 01 SEAT 7.9674 .000 7.9674 -120.000 7.9674 120.000 02 CARGA02 7.7821 616 7.7821 -120.636 7.7871 119.400 03 CRGDRV03 7.7363 772 7.7364 -120.798 7.7426 119.248	28	DERV28	.784156	-5.884	.784109 -125.99	4 .787546	114.223					
30 CRGFIM30 .761843 -6.003 .761794 -126.114 .765334 114.105 PERFIL DE TENSAO Barra Nome Fase a Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) (kV) (GRAUS) 01 SEAT 7.9674 .000 7.9674 -120.000 7.9674 120.000 02 CARGA02 7.7821 616 7.7821 -120.636 7.7871 119.400 03 CRGDRV03 7.7363 772 7.7364 -120.798 7.7426 119.248	29	CARGA29	.762323	-6.001	.762274 -126.11	1 .765812	114.107					
Barra Nome Fase a Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) (kV) (GRAUS) 01 SEAT 7.9674 .000 7.9674 -120.000 7.9674 120.000 02 CARGA02 7.7821 616 7.7821 -120.636 7.7871 119.400 03 CRGDRV03 7.7363 772 7.7364 -120.798 7.7426 119.248	30	CRGFIM30	.761843	-6.003	.761794 -126.11	.4 .765334	114.105					
Barra Nome Fase a Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) (kV) (GRAUS) 01 SEAT 7.9674 .000 7.9674 -120.000 7.9674 120.000 02 CARGA02 7.7821 616 7.7821 -120.636 7.7871 119.400 03 CRGDRV03 7.7363 772 7.7364 -120.798 7.7426 119.248												
Barra Nome Fase a Fase b Fase c 01 SEAT 7.9674 .000 7.9674 -120.000 7.9674 120.000 02 CARGA02 7.7821 616 7.7821 -120.636 7.7871 119.400 03 CRGDRV03 7.7363 772 7.7364 -120.798 7.7426 119.248												
Barra Nome Fase a Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) (kV) (GRAUS) 01 SEAT 7.9674 .000 7.9674 -120.000 7.9674 120.000 02 CARGA02 7.7821 616 7.7821 -120.636 7.7871 119.400 03 CRGDRV03 7.7363 772 7.7364 -120.798 7.7426 119.248												
Barra Nome Fase a Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) (kV) (GRAUS) 01 SEAT 7.9674 .000 7.9674 -120.000 7.9674 120.000 02 CARGA02 7.7821 616 7.7821 -120.636 7.7871 119.400 03 CRGDRV03 7.7363 772 7.7364 -120.798 7.7426 119.248				PERFIL DE	TENSAO							
(kV) (GRAUS) (kV) (GRAUS) (kV) (GRAUS) 01 SEAT 7.9674 .000 7.9674 -120.000 7.9674 120.000 02 CARGA02 7.7821 616 7.7821 -120.636 7.7871 119.400 03 CRGDRV03 7.7363 772 7.7364 -120.798 7.7426 119.248	Barra	Nome	Fas	se a	Fase b	Fas	se c					
01 SEAT 7.9674 .000 7.9674 -120.000 7.9674 120.000 02 CARGA02 7.7821616 7.7821 -120.636 7.7871 119.400 03 CRGDRV03 7.7363772 7.7364 -120.798 7.7426 119.248	Durru	nviac	(kV)	(GRAUS)	(kV) (GRAUS)	(kV)	(GRAUS)					
02 CARGA02 7.7821616 7.7821 -120.636 7.7871 119.400 03 CRGDRV03 7.7363772 7.7364 -120.798 7.7426 119.248	01	SEAT	7.9674	, 000	7.9674 -120 00	7.9674	120.000					
03 CRGDRV03 7.7363772 7.7364 -120.798 7.7426 119.248	02	CARGA02	7,7821	616	7.7821 -120.63	7,7871	119.400					
05 0R08R105 111505 1116 111501 1201150 111120	03	CRGDRV03	7,7363	772	7.7364 -120.79	8 7.7426	119.248					
04 CRGFIM04 7.7353773 7.7353 -120.798 7.7415 119.248	04	CRGFTM04	7,7353	773	7.7353 -120.79	7.7415	119.248					
05 DERV05 7.3476 -2.123 7.3475 -122.182 7.3618 117.926	05	DERV05	7.3476	-2.123	7.3475 -122.18	32 7.3618	117.926					

Continu	ação											
06	CGRDRV06	7.3428	-2.125	7.3427	-122,185	7,3570	117,923					
07	CRGFIM07	7.3410	-2.126	7.3409	-122.186	7.3552	117,922					
08	CRGFIM08	7.3413	-2.126	7.3412	-122.185	7.3555	117,923					
09	CARGA09	7.1429	-2.880	7.1427	-122.955	7.1606	117,183					
10	CARGA10	7.0862	-3.097	7.0860	-123,176	7,1048	116.970					
11	CRGDRV11	6.9157	-3.759	6.9155	-123.848	6.9366	116.320					
12	CRGFIM12	6.9142	-3.760	6.9140	-123.849	6,9352	116 318					
13	CARGA13	6.8321	-4.093	6.8319	-124.187	6.8540	115,990					
14	CARGA14	6.7485	-4.433	6.7483	-124.530	6.7713	115,655					
15	CRGDRV15	6.6720	-4.749	6.6718	-124.849	6,6955	115.343					
16	CRGFIM16	6.6453	-4.861	6.6451	-124,961	6,6690	115.232					
17	CARGA17	6.6404	-4.881	6.6402	-124,981	6,6641	115.212					
18	CRGDRV18	6.6286	-4.931	6.6284	-125.031	6,6523	115,163					
19	CRGFIM19	6.6265	-4.932	6.6263	-125.032	6,6502	115,162					
20	CRGFIM20	6.6128	-4.997	6.6126	-125.097	6.6366	115,097					
21	CARGA21	6.4928	-5.506	6.4926	-125.612	6.5181	114 596					
22	DEV22	6.4364	-5.753	6.4362	-125,860	6.4621	114 353					
23	CARGA23	6.4330	-5.755	6.4327	-125,863	6.4587	114 351					
24	CRGFTM24	6.4319	-5.756	6.4317	-125 863	6 4577	114.350					
27	CRGDRV27	6.3715	-5.798	6.3712	-125.005	6 3977	114.300					
25	CARGA25	6.3705	-5.799	6 3702	-125 908	6 3967	114.300					
26	CRGFTM26	6.3704	-5.799	6 3701	-125 908	6 3966	114.307					
28	DERV28	6.2477	-5.884	6 2473	-125.994	6 2747	114.307					
29	CARGA29	6.0738	-6.001	6 0734	-126 111	6 1016	114.225					
30	CRGFTM30	6.0699	-6.003	6.0695	-126 114	6 0977	114.107					
	SOLUCAO FLUXO DE CARGA RADIAL											
	 Nomo		·	 Eaco		 Page		•				
Dalla	моще	(KW) (H	(VAr)	(KW) (b KVAr)	(KW) (KVAr)					
01 :	SEAT	, , , ,		,, , , ,		· · ·						
P/ Bar	ra 02	376.596 20	07.660	381.318	204.169	366.617 2	01.855					
Cor	rente (A):	53.98	3	54.	29	52.5	i3					
								•				
Barra	Nome	Fase a	a .	Fase	b	Fase	С					
		(KW) (I	(VAr)	(KW) (KVAr)	(KW) (KVAr)					
02	CARGA02											
P/ Bar	ra 03	365.993 1	97.737	370.519	194.290	356.661 1	.92.521					
Cor	rente (A):	53.4	6	53.	76	52.0)5					
				Page		Paga		•				
Barra	Nome	rase		/ WEI) /		rase	C VUID					
0.0	ODODDUOD	(\ \ \) (KVAC)	(KW) (KVAL)	(KW) (KVAL)					
D / D ===	CKGDKV03	2 002	1 407	2 000	1 400	2 001	1 400					
P/ Bar	ranta (λ) .	2.902	1.40/ 2	2.900	1.400	2.901	1.409					
D/ Par	ra OF	352 020 1	2 97 357	356 312	195 059	346 098	193 300					
Cor	rente (1).	52.520 1	7	52.	51	51 51	20					
								_				

	Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)	
	<pre>P/ Barra 06 Corrente (A):</pre>	8.096 4.148 1.24	8.097 4.146 1.24	8.096 4.147 1.24	
	P/ Barra 09 Corrente (A):	331.749 179.485 51.34	334.391 177.628 51.53	326.714 176.685 50.45	
	Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)	•
	P/ Barra 07 Corrente (A):	3.055 1.565 .47	3.055 1.564	3.054 1.565	
_	P/ Barra 08 Corrente (A):	2.601 1.332	2.600 1.333 .40	2.600 1.333 .40	_
	Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)	
	P/ Barra 10 Corrente (A):	315.101 166.314 49.88	317.519 164.549 50.07	310.640 163.978 49.06	
	Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)	2)
	10 CARGA10 P/ Barra 11 Corrente (A):	312.597 166.720 50.00	314.454 165.423 50.14	309.199 164.889 49.32	
	Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)	-
	11 CRGDRV11 P/ Barra 12 Corrente ()):	2.439 1.250	2.438 1.251	2.438 1.249	
	P/ Barra 13 Corrente (A):	300.971 157.678 49.13	302.523 156.571 49.26	298.205 156.257 48.53	
	Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)	3
	13 CARGA13 P/ Barra 14 Corrente (A):	297.772 155.358 49.16	299.024 154.465 49.26	295.552 154.226 48.64	
	Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)	
	14 CARGA14 P/ Barra 15 Corrente (A):	289.062 150.053 48.26	290.049 149.356 48.34	287.328 149.188 47.81	
	Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)	-
	15 CRGDRV15 P/ Barra 16	55.943 28.798	55.945 28.798	55.944 28.796	

Corrente (A):	9.43	9.43	9.40
P/ Barra 17	60.091 30.998	60.109 30.986	60.065 30.983
Corrente (A):	10.13	10.14	10.09
P/ Barra 21	170.162 88.949	170.715 88.576	169.169 88.438
Corrente (A):	28.78	28.83	28.51
Barra Nome	Fase a	Fase b	Fase c
17 CARGA17	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 18	49.507 25.440	49.518 25.428	49.488 25.431
Corrente (A):	8.38	8.38	8.35
Barra Nome	Fase a	Fase b	Fase c
18 CRGDRV18	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 19	2.136 1.095	2.136 1.095	2.137 1.094
Corrente (A):	.36	.36	.36
P/ Barra 20	47.003 24.148	47.007 24.151	47.005 24.150
Corrente (A):	7.97	7.97	7.94
Barra Nome	Fase a	Fase b	Fase c
21 CARGA21	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 22	165.358 84.281	165.785 83.983	164.617 83.936
Corrente (A):	28.58	28.62	28.35
Barra Nome	Fase a	Fase b	Fase c
22 DEV22	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 23	10.081 5.165	10.081 5.164	10.081 5.165
Corrente (A):	1.76	1.76	1.75
P/ Barra 27	154.237 78.089	154.584 77.845	153.632 77.817
Corrente (A):	26.86	26.89	26.65
Barra Nome	Fase a	Fase b	Fase c
23 CARGA23	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 24	7.636 3.912	7.634 3.914	7.640 3.911
Corrente (A):	1.33	1.33	1.33
Barra Nome	Fase a	Fase b	Fase c
27 CRGDRV27	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 25	1.122 .575	1.121 .575	1.122 .574
Corrente (A):	.20	.20	.20
P/ Barra 28	145.384 74.116	145.590 73.973	145.014 73.946
Corrente (A):	25.61	25.63	25.44
Barra Nome	Fase a	Fase b	Fase c

Corrente (A):	.09	.09	.09
Barra Nome	Fase a	Fase b	Fase c
28 DERV28	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 29	142.772 73.512	142.772 73.513	142.736 73.490
Corrente (A):	25.70	25.70	25.59
Barra Nome 29 CARGA29 P/ Barra 30	Fase a (KW) (KVAr) 7 133 3 655	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
Corrente (A):	1.32	1.32	1.31
	SOLUCAO FLUXO PERDAS I	DE CARGA RADIAL DE POTENCIA	
Barra Nome	Fase a	Fase b	Fase c
01 SEAT	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/Barra 02	6.339 4.900	6.886 4.415	4.772 3.910
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 03	1.554 1.201	1.689 1.082	1.171 .961
Barra Nome	Fase a	Fase b	Fase c
03 CRGDRV03	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 04	.000 .000	.000 .000	.000 .000
P/ Barra 05	12.806 9.914	14.047 8.902	9.837 8.150
Barra Nome	Fase a	Fase b	Fase c
05 DERV05	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/Barra 06	.005 .002	.005 .002	.005 .002
P/Barra 09	6.632 5.139	7.310 4.605	5.147 4.288
Barra Nome	Fase a	Fase b	Fase c
06 CGRDRV06	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 07	.001 .000	.001 .000	.001 .000
P/ Barra 08	.001 .000	.001 .000	.000 .000
Barra Nome	Fase a	Fase b	Fase c
09 CARGA09	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 10	1.788 1.386	1.973 1.241	1.390 1.160

Barra Nome	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (K	Var)
10 CARGA10 P/ Barra 11	5.373 4.168 5.955 3.725 4.219	3.537
Barra Nome	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (K	 VAr)
11 CRGDRV11 P/ Barra 12 P/ Barra 13	.000 .000 .001 .000 .000 2.591 2.011 2.877 1.795 2.044	.000 1.717
Barra Nome	Fase a Fase b Fase c	Var)
13 CARGA13 P/ Barra 14	2.590 2.011 2.883 1.793 2.053	1.730
Barra Nome	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (K	VAr)
14 CARGA14 P/ Barra 15	2.327 1.808 2.595 1.610 1.852	1.564
Barra Nome	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (K	WAr)
15 CRGDRV15 P/ Barra 16 P/ Barra 17 P/ Barra 21	.158.123.177.109.128.201.156.225.138.1623.2502.5253.6252.2492.587	.109 .138 2.186
Barra Nome 17 CARGA17	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (F	; (VAr)
P/ Barra 18	.062 .049 .070 .043 .051	.043
Barra Nome	Fase aFase bFase a(KW) (KVAr) (KW) (KW) (KW) (H)	: (VAr)
P/ Barra 19 P/ Barra 20	.001 .000 .001 .000 .001 .079 .061 .089 .054 .064	.000 .055
Barra Nome	Fase a Fase b Fase ((KW) (KVAr) (KW) (KVAr) (KW) ()	c KVAr)
P/ Barra 22	1.019 .792 1.138 .705 .814	.689
Barra Nome	Fase a Fase b Fase (KW) (KVAr) (KW) (c KVAr)
P/Barra 23 P/Barra 27	.005 .002 .005 .002 .005 1.455 .501 1.533 .446 1.314	.002 .437
Barra Nome	Fase a Fase b Fase	С

Continuação.

e ominiaa yao			
23 CARGA23	KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 24	.001 .000	.001 .000	.001 .000
Barra Nome	Fase a	Fase b	Fase c
(27 CRGDRV27	KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/Barra 25	.000 .000	.000 .000	.000 .000
P/ Dalla 28	2.645 .910	2.786 .809	2.396 .798
Barra Nome (Fase a KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
25 CARGA25	000 000		() (
P/ Dalla 20	.000 .000	.000 .000	.000 .000
Barra Nome (Fase a KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
28 DERV28 P/Barra 29	3 725 1 281	3 927 1 136	3 302 1 134
Barra Nome (rase a KW) (KVAr)	Fase D (KW) (KVAr)	Fase c (KW) (KVAr)
29 CARGA29 P/ Barra 30	.004 .001	.004 .001	.004 .001
	TNEODUACO	PC CPDATE	
	INFORMACO	LO GERRIO	
CRITERIO DE CON	IVERGENCIA : Variac	ao da tensao (mod	dulo e fase).
NUMERO MAXIMO D	DE ITERACOES : 20		
TOLERANCIA MODU	JLO DA TENSAO : .0	000100000	
TOLERANCIA FASH	E DA TENSAO : .000	00100000	
NUMERO DE ITERA	ACOES : 6		
		Paca a Paca h	Pago C
TUTAL PERDAS A	IIVA (KW) : 1	54.612 59.804	43.411
TOTAL PERDAS R	EATIVA (KVAr) :	Fase a Fase 38.942 34.8	b Fase c 63 32.611
TOTAL PERDAS S	ISTEMA : (KW) 157.827	(KVAr) 106.417	

ANEXO IV

SISTEMA SAELPA DE BAIXA TENSÃO (380 V)

IV.1 DADOS DE ENTRADA :

DADOS	GERAIS	:		-								
<pre><branco> **</branco></pre>												
Nome da subestacao : SEBT												
Nome d	Nome do alimentador : ALIBT											
search and the	***.** ** **											
VSE (kV) =	0.	38 DATA :	28 04 94			(e)					
<bran< td=""><td>co></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></bran<>	co>											
DADOS	DE LINH	IA :										
<bran< td=""><td>C0></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>></td><td></td><td></td></bran<>	C0>									>		
de	para	conf	. cabo	dist da	dbc	dca	dan	dbn	dcn	tap	xreg	
****	*****	**		**.***	- *.***		*.***		*.***		**.***	
54	38	1	1/0 CAA	0.001 0.2	0.20	0.40	0.20	0.40	0.60			
38	36	1	1/0 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
36	37	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
36	35	1	1/0 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
35	34	1	1/0 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
34	53	1	1/0 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
53	33	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
53	25	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
25	24	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
24	23	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
23	22	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
22	6	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
6	7	3	4 CAA	0.040				0.20				
53	31	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
31	30	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
30	29	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
29	51	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
51	50	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
50	49	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
49	48	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
48	47	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
38	39	1	1/0 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
39	40	5	4 CAA	0.040		0.20	0.20		0.40			
40	41	5	4 CAA	0.040		0.20	0.20		0.40			
39	42	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
42	43	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
43	44	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
44	45	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
45	46	3	4 CAA	0.040				0.20				
39	28	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
28	27	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
27	26	1	4 CAA	0.040 0.2	0.20	0.40	0.20	0.40	0.60			
26	52	1	4 CAA	0.040 0.2	0 0.20	0.40	0.20	0.40	0.60			

Conti	nuação													
52	14	7	4	CAA		0.040	0.20			0 20	0 40			
14	15	7	4	CAA		0.040	0.20			0.20	0.40			
52	16	1	4	CAA		0.040 0.20	0.20	0.40	0 20	0.20	0.40			
16	17	1	4	CAA		0.040 0.20	0.20	0.40	0.20	0.40	0.60			
17	18	1	4	CAA		0.040 0.20	0.20	0.40	0.20	0.40	0.60			-
18	19	1	4	CAA		0.040 0.20	0.20	0.40	0.20	0.40	0.00			
19	20	6	4	CAA		0 040 0 20	0.20	0.40	0.20	0.40	0.60			
20	21	2	4	CAA		0.040 0.20			0.20	0.40				
52	13	1	4	CAA		0.040 0.20	0 20	0 40	0.20	0.40	0.00			
13	12	1	4	CAA		0.040 0.20	0.20	0.40	0.20	0.40	0.60			
12	11	1	4	CII		0.040 0.20	0.20	0.40	0.20	0.40	0.60			
11	10	1	4	CAA		0.040 0.20	0.20	0.40	0.20	0.40	0.60			
10	9	1	4	CAA		0.040 0.20	0.20	0.40	0.20	0.40	0.60			-
9	8	1	4	CAA		0.040 0.20	0.20	0.40	0.20	0.40	0.60			
8	5	1	4	CAA		0.040 0.20	0.20	0.40	0.20	0.40	0.60			
5	4	1	4	CAA		0.040 0.20	0.20	0.40	0.20	0.40	0.60			
4	3	1	4	CAA		0.040 0.20	0.20	0.40	0.20	0.40	0.60			
3	2	1	4	CAA		0.040 0.20	0.20	0.40	0.20	0.40	0.60			
2	1	1	4	CAA		0.040 0.20	0.20	0.40	0.20	0.40	0.60			
9999		-	1	om		0.040 0.20	0.20	0.40	0.20	0.40	0.60			
<pre> <bran< pre=""></bran<></pre>	co>													
DADOS	DE BARRA													
<pre> <bran< pre=""></bran<></pre>	CO>	·												
barra	nomhar	ting	ar	kva	a	kva h	kva c	fn			a a	,	aanh	
Nulla	nombur	CTNC	JUL	NVU	u	nva_b	NVa U	Th		6	Q 2	Capa	Capp	capc
*****		***	**			**** **		** **	**	++	- + + -		*****	
*****		***	**			****.**	·	**.**	**	**	*.** -	·	*****.**	
***** 54 38	TRAFO CRG DERV	***	**	 0. 0	0	*****.** 0.0 1 2	0.0	**.**	**	**	*.** -		*****.**	
***** 54 38 36	TRAFO CRG_DERV DERV	***	**	0. 0.	 0 9	*****.** 0.0 1.2	0.0 0.6	**.** 0.0 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37	TRAFO CRG_DERV DERV FIM 1	***	**	0. 0.	 0 9	*****.** 0.0 1.2	0.0 0.6	**.** 0.0 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35	TRAFO CRG_DERV DERV FIM_1 CARGA 35	***	**	 0. 0.	 0 9	*****.** 0.0 1.2	0.0 0.6	**.** 0.0 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34	*** 3 3 3	**	0. 0. 1.	 0 9 2 6	*****.** 0.0 1.2 0.6 0.3	0.0 0.6 1.2 0.3	**.** 0.0 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV	*** 3 3 3	**	0. 0. 1. 0.	0 9 2 6	*****.** 0.0 1.2 0.6 0.3	0.0 0.6 1.2 0.3	**.** 0.0 0.9 0.9 0.9	**	**	*.** -		****.**	
***** 54 38 36 37 35 34 53 33	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM	*** 3 3 3 3	**	0. 0. 1. 0.	0 9 2 6 3	*****.** 0.0 1.2 0.6 0.3	0.0 0.6 1.2 0.3	**.** 0.0 0.9 0.9 0.9	**	**	*.** -		****.**	
***** 54 38 36 37 35 34 53 33 25	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25	*** 3 3 3 3 2at	**		0 9 2 6 3 3	*****.** 0.0 1.2 0.6 0.3 0.3 0.6	0.0 0.6 1.2 0.3 0.3	**.** 0.0 0.9 0.9 0.9 0.9	**	**	*.** -		****.**	
***** 54 38 36 37 35 34 53 33 25 24	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_24	*** 3 3 3 2al	**	1. 0. 0. 0. 0. 0. 0.	 0 9 2 6 3 3 6	*****.** 0.0 1.2 0.6 0.3 0.3 0.3 0.6 1.2	0.0 0.6 1.2 0.3 0.3	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53 33 25 24 23	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_24 CARGA_23	**** 3 3 3 2 al 3 2 al	**		 0 9 2 6 3 6 6	*****.** 0.0 1.2 0.6 0.3 0.3 0.3 0.6 1.2	0.0 0.6 1.2 0.3 0.3 0.6 1.8	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_24 CARGA_23 CARGA_22	*** 3 3 3 2 al 3 2 al 3 2 ac	€*	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	 0 9 2 6 3 6 6 3	*****.** 0.0 1.2 0.6 0.3 0.3 0.6 1.2 0.6	0.0 0.6 1.2 0.3 0.3 0.3 0.6 1.8 0.3	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_24 CARGA_23 CARGA_22 CARGA_22 CARGA_26	**** 3 3 3 2al 3 2ac 3 2ac	5 ×	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	 0 9 2 6 3 6 6 3 3 6 3 3	*****.** 0.0 1.2 0.6 0.3 0.3 0.6 1.2 0.6	0.0 0.6 1.2 0.3 0.3 0.3 0.6 1.8 0.3 0.3	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6 7	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_24 CARGA_23 CARGA_22 CARGA_22 CARGA_6 CRG7FIM	*** 3 3 3 2 at 3 2 at 3 2 at 3 2 at 1 b	6 **	1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 9 2 6 3 6 6 3 3 6 3 3	*****.** 0.0 1.2 0.6 0.3 0.3 0.6 1.2 0.6	0.0 0.6 1.2 0.3 0.3 0.3 0.6 1.8 0.3 0.3	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6 7 31	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_24 CARGA_23 CARGA_22 CARGA_22 CARGA_22 CARGA_22 CARGA_23 CARGA_23 CARGA_23 CARGA_23	*** 3 3 3 2 al 3 2 ac 3 2 ac 1 b	0 C	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	 0 9 2 6 3 6 6 3 3 6 3 3	*****.** 0.0 1.2 0.6 0.3 0.3 0.6 1.2 0.6 0.6	0.0 0.6 1.2 0.3 0.3 0.3 0.6 1.8 0.3 0.3	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6 7 31 30	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_23 CARGA_23 CARGA_22 CARGA_22 CARGA_22 CARGA_23 CARGA_31 CARGA_31 CARGA_30	*** 3 3 3 2 3 2 a 0 3 2 a 0 3 2 a 0 1 b 1 c 3	6 **	 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	 0 9 2 6 3 6 6 3 3 3 3	*****.** 0.0 1.2 0.6 0.3 0.3 0.3 0.6 1.2 0.6 0.6 0.6	0.0 0.6 1.2 0.3 0.3 0.3 0.6 1.8 0.3 0.3 0.3	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6 7 31 30 29	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_23 CARGA_23 CARGA_22 CARGA_22 CARGA_22 CARGA_23 CARGA_31 CARGA_30 CARGA_29	*** 3 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	** 0 2	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	 0 9 2 6 3 6 6 3 3 6 6 3 3 3 6	*****.** 0.0 1.2 0.6 0.3 0.3 0.6 1.2 0.6 1.2 0.6 0.6 1.2 0.6	0.0 0.6 1.2 0.3 0.3 0.3 0.6 1.8 0.3 0.3 0.3 0.3 0.9	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53 33 25 24 22 6 7 31 30 29 51	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_22 CARGA_22 CARGA_22 CARGA_22 CARGA_22 CARGA_22 CARGA_31 CARGA_31 CARGA_30 CARGA_29 CARGA_51	**** 3 3 3 2 al 3 2 ac 1 b 1 c 3 3 3	** 0 2	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	 0 9 2 6 3 3 6 6 3 3 6 6 3 3 6 6	*****.** 0.0 1.2 0.6 0.3 0.3 0.6 1.2 0.6 0.6 1.2 0.6 1.2 0.6	0.0 0.6 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.9 1.2	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6 7 31 30 29 51 50	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_22 CARGA_22 CARGA_22 CARGA_22 CARGA_23 CARGA_23 CARGA_31 CARGA_30 CARGA_30 CARGA_25 CARGA_51 CARGA_50	*** 3 3 3 2 al 3 2 ac 3 2 ac 3 2 ac 1 b 1 c 3 3 3 3 3	** D C	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	 0 9 2 6 3 3 6 6 3 3 6 6 3 3 6 6 3 3 6 6 9	***** 0.0 1.2 0.6 0.3 0.3 0.6 1.2 0.6 0.6 1.2 0.6 0.6 1.2 0.6 0.6 0.3 0.6 0.3	0.0 0.6 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.9 1.2 0.6 0.9	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6 7 31 30 29 51 50 49	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_22 CARGA_22 CARGA_22 CARGA_22 CARGA_23 CARGA_23 CARGA_30 CARGA_30 CARGA_29 CARGA_51 CARGA_50 CARGA_50	**** 3 3 2at 3 2ac 3 2ac 3 2ac 1b 1c 3 3 3 3 3	** 0 2	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	 0 9 2 6 3 3 6 6 3 3 6 6 9 6	***** 0.0 1.2 0.6 0.3 0.3 0.6 1.2 0.6 0.6 1.2 0.6 0.6 1.2 0.3 0.6 0.3 0.6 0.3 0.6	0.0 0.6 1.2 0.3 0.3 0.3 0.6 1.8 0.3 0.3 0.3 0.3 0.9 1.2 0.6 0.9 0.2	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6 7 31 30 29 51 50 49	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_24 CARGA_23 CARGA_22 CARGA_23 CARGA_22 CARGA_6 CRG7FIM CARGA_31 CARGA_30 CARGA_29 CARGA_51 CARGA_50 CARGA_50 CARGA_49 CARGA_49	**** 3 3 2at 3 2ac 3 2ac 3 2ac 1b 1c 3 3 3 3 3 3 3	** 0 2		 0 9 2 6 3 3 6 6 3 3 6 6 3 3 6 6 9 6 2	***** 0.0 1.2 0.6 0.3 0.3 0.6 1.2 0.6 0.6 1.2 0.6 0.6 1.2 0.6 0.6 0.3 0.6 0.3 0.6 0.3 0.6	0.0 0.6 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.9 1.2 0.6 0.9 0.3 1.2	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6 7 31 30 29 51 50 49 48	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_25 CARGA_23 CARGA_22 CARGA_22 CARGA_22 CARGA_23 CARGA_31 CARGA_32 CARGA_31 CARGA_31 CARGA_31 CARGA_32 CARGA_33	**** 3 3 2at 3 2ac 3 2ac 1b 1c 3 3 3 3 3 3 3 3	** 0 0		 0 9 2 6 3 3 6 6 3 3 6 6 3 3 6 6 9 6 2 6	***** ** 0.0 1.2 0.6 0.3 0.6 1.2 0.6 0.6 1.2 0.6 0.6 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3	0.0 0.6 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.9 1.2 0.6 0.9 0.3 1.2	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6 7 31 30 29 51 50 49 48 47 30	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_25 CARGA_22 CARGA_22 CARGA_22 CARGA_22 CARGA_22 CARGA_22 CARGA_23 CARGA_31 CARGA_31 CARGA_30 CARGA_31 CARGA_50 CARGA_51	**** 3 3 2at 3 2ac 3 2ac 1b 1c 3 3 3 3 3 3 3 3 3 3 3 3	** 0 2		 0 9 2 6 3 3 6 6 3 3 6 6 9 6 2 6 3 3 6 6 9 6 2 6 3	***** 0.0 1.2 0.6 0.3 0.3 0.6 1.2 0.6 1.2 0.6 1.2 0.6 0.6 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3	0.0 0.6 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6 7 31 30 29 51 50 49 48 47 39	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_25 CARGA_23 CARGA_22 CARGA_23 CARGA_23 CARGA_23 CARGA_23 CARGA_30 CARGA_30 CARGA_51	**** 3 3 3 2 3 2 2 3 2 2 3 2 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 2 2 4 3 2 2 4 5 3 2 2 4 5 3 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5	** 0 2			***** ** 0.0 1.2 0.6 0.3 0.3 0.6 1.2 0.6 1.2 0.6 0.6 1.2 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.9	0.0 0.6 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6 7 31 30 29 51 50 49 48 47 39 40	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_25 CARGA_22 CARGA_22 CARGA_23 CARGA_23 CARGA_23 CARGA_23 CARGA_30 CARGA_30 CARGA_30 CARGA_51 CARGA_51 CARGA_51 CARGA_51 CARGA_51 CARGA_51 CARGA_48 CRG47FIM CRG_DERV CARGA_40 CARGA_40	*** 3 3 3 2 3 2 2 3 2 2 3 2 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	· · · · · · · · · · · · · · · · · · ·			***** ** 0.0 1.2 0.6 0.3 0.3 0.6 1.2 0.6 1.2 0.6 0.6 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.9	0.0 0.6 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6 7 31 30 29 51 50 49 48 47 39 40 41 42	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_22 CARGA_22 CARGA_22 CARGA_23 CARGA_22 CARGA_23 CARGA_22 CARGA_6 CRG7FIM CARGA_30 CARGA_30 CARGA_50 CARGA_50 CARGA_50 CARGA_49 CARGA_48 CRG47FIM CRG_DERV CARGA_40 CRG41FIM	**** 3 3 3 2 2 3 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	5 C C C C L		-09 26 336633 36696263 33	***** ** 0.0 1.2 0.6 0.3 0.3 0.6 1.2 0.6 0.6 1.2 0.6 0.6 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.9	0.0 0.6 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	
***** 54 38 36 37 35 34 53 33 25 24 23 22 6 7 31 30 29 51 50 49 48 47 39 40 41 42	TRAFO CRG_DERV DERV FIM_1 CARGA_35 CARGA_34 DERV CRG33FIM CARGA_25 CARGA_25 CARGA_22 CARGA_22 CARGA_22 CARGA_22 CARGA_22 CARGA_22 CARGA_22 CARGA_31 CARGA_31 CARGA_31 CARGA_31 CARGA_30 CARGA_29 CARGA_51 CARGA_50 CARGA_51 CARGA_50 CARGA_48 CRG47FIM CRG_DERV CARGA_40 CRG41FIM CARGA_42	**** 3 3 2at 3 2ac 3 2ac 3 2ac 1b 1c 3 3 3 3 3 3 3 3 1c 2ac 1 2 2 3 2 2 2 2 3 2 2 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 2 2 3 2	5 C D			*****.** 0.0 1.2 0.6 0.3 0.6 1.2 0.6 0.6 1.2 0.6 0.6 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.9 0.3	0.0 0.6 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	**.** 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	**	**	*.** -		*****.**	

A	~
(ontin	110000
V V 1 1 1 1 1	114(.40)
CONCINE	unquo .

_								
	44 (CARGA_44	3	0.6	0.9	2.4	0.9	
	45 (CARGA_45	3	0.6	2.1	0.6	0.9	
	46 (CRG46FIM	1b		1.5		0.9	
	28 (CARGA_28	2ac	0.3		0.9	0.9	
	27 (CARGA_27	3	0.3	1.8	0.6	0.9	
	26 (CARGA_26	3	0.9	0.3	0.6	0.9	
	52 I	DERV						
	14 (CARGA_14	1c			0.3	0.9	
	15 (CRG15FIM	2bc		0.3	0.6	0.9	
	16 (CARGA_16	1a	0.6			0.9	
	17 (CARGA_17	2bc		0.6	1.2	0.9	
	18 (CARGA_18	3	0.6	0.6	1.8	0.9	
	19 (CARGA_19	3	0.6	1.2	0.9	0.9	*
	20 (CARGA_20	2ab	0.6	0.9		0.9	
	21 (CRG21FIM	1a	0.6			0.9	22
	13 (CARGA_13	3	0.9	0.6	0.6	0.9	
	12 (CARGA_12	3	0.9	0.6	1.2	0.9	
	11 (CARGA_11	3	0.6	0.9	0.6	0.9	
	10 (CARGA_10	3	0.3	1.2	1.5	0.9	
	9 (CARGA_9	2bc		0.3	0.6	0.9	
	8 (CARGA_8	2bc		0.3	0.3	0.9	
	5 (CARGA_5	3	0.3	0.3	0.6	0.9	
	4 0	CARGA_4	3	0.6	0.3	1.2	0.9	
	3 (CARGA_3	2ac	0.3		0.3	0.9	
	2 0	CARGA_2	3	0.3	0.3	0.3	0.9	
	1	CRG1FIM	3	0.6	0.3	0.3	0.9	
	9999							
	<bran< td=""><td>co></td><td></td><td></td><td></td><td></td><td></td><td></td></bran<>	co>						
	rho	vbase	sbase	tol	itermax			
	.**		***.**		*			
	100.0	0.38	1.0 0	.00001	20			
_	the second se							

IV.2 RESULTADOS DOS FLUXOS DE POTÊNCIA :

Sistema de baixa Tensao (380 V)								
-				PERFIL DE	TENSÃO -			
-	Barra	Nomo	Fac		Fac	a h	Fac	
	Dalla	Nome	(nu)	(CRAUS)	(nu)		(nu)	(CRAUS)
	54	SEBT	1,000000	000	1,000000	-120 000	1.000000	120 000
	34	CRG DERV	999468	- 007	999361	-120.000	999192	119 986
	36	DEBN	990732	- 123	991582	-120.137	988640	119 803
	37	PTM 1	990732	- 123	991588	-120.137	988640	119.803
	37	CARGA 35	981972	- 241	983707	-120.157	978064	119.605
	34	CARGA_33	97/332	- 345	976557	-120.204	968604	119.010
	53	DERV	.967248	- 442	.969589	-120.303	959412	119 282
	33	CRG33FTM	966730	- 442	.969077	-120,498	958896	119 282
	25	CARGA 25	.963601	- 442	.964412	-120.490	954186	119 276
	24	CARGA 24	.960470	- 441	.960263	-120.502	942055	119 270
	23	CARGA 23	958380	- 441	952123	-120.505	944765	119 265
	23	CARCA 22	957334	- 441	956102	-120,500	9/2716	119.205
	6	CARCA 6	956811	- 441	955061	-120.508	943103	119.205
	7	CREATEN	. 990011	441	95/012	-120.508	. 943192	119.205
	31	CARCA 31	958684	- 112	962803	-120.508	948727	119 267
	30	CARCA 30	950103	- 112	956006	-120.504	932512	119 253
	20	CARCA_30	942034	- 442	951280	-120.510	920040	119.200
	51	CARGA 51	935017	- 441	947070	-120.514	923450	119 233
	50	CARCA 50	929065	- 430	943906	-120.517	912045	119 226
	10	CARGA_JO	02/725	- 138	0/1265	-120.520	01/2/5	119.220
	49	CARCA 49	921465	- 430	939679	-120.522	910925	119 217
	47	CRG47FIM	920377	- 437	939150	-120.523	909898	119,216
	30	CDC DEDV	027650	- 172	002500	-120.325	077030	119.210
	40	CARGA 40	987152	- 172	. 102309	120.290	976303	119 605
	40	CRG41FTM	986645	- 171			975284	119 605
	41	CARCA 42	984090	- 172	973739	-120 303	970110	119 598
	42	CARCA 42	981025	- 171	965307	-120.303	962391	119 589
	43	CARCA 43	978979	- 171	957560	-120.310	957223	119 583
	44	CARCA 45	977955	- 171	951205	-120.310	956188	119 582
	45	CRGAGETM	. 977933	•1/1	948657	-120.319	. , , , 0100	117.302
	28	CARCA 28	970931	- 179	962807	-120.319	950298	119,561
	20	CARCA 27	954636	- 184	942975	-120.354	924205	119.519
	26	CARGA 26	938783	- 186	926262	-120.300	. 899083	119.481
	52	DEBA	924459	- 197	910050	-120.331	.874964	119 445
	14	CARGA 14	.724430	.10/	909499	-120.411	.873256	119 444
	14	CRC15FTM			.908948	-120.411	.872116	119.443
	16	CARGA 16	918962	- 187	. 903938	-120.417	.867470	119 435
	17	CARGA 17	.914549	- 187	.897802	-120 422	.859964	119.425
	18	CARGA 18	.910131	- 186	.892778	-120.425	.854753	119,418
	19	CARGA 19	.906813	- 185	.888864	-120.428	.853013	119,416
	20	CARGA 20	904598	- 185	.887184	-120.429	.000010	117.110
	20	CRG21FIM	. 903490	- 185	.00/104	1001107		
	13	CARGA_13	.915591	187	.900486	-120.423	.859991	119.423

12 CARGA_12 .908343 186 .892017 -120.433 .846138 119.403 11 CARCA_10 .902734 186 .884657 -120.440 .834661 119.371 10 CARCA_0 .894263 185 .87558 -120.449 .816861 119.371 9 CARCA_8 .890296 184 .872703 -120.451 .810666 119.350 5 CARCA_4 .882355 183 .866498 -120.451 .800513 119.342 4 CARCA_4 .882915 182 .866494 -120.455 .798948 119.334 2 CARCA_2 .87927 182 .866494 -120.456 .797066 119.331	Co	ontinua	ição						
11 CARGA_11 .902734 186 .884657 -120.440 .834601 119.386 10 CARGA_9 .894233 185 .87558 -120.449 .816861 119.360 3 CARGA_9 .894235 183 .86698 -120.451 .810696 119.350 5 CARGA_4 .882915 183 .86698 -120.455 .798948 119.334 2 CARGA_2 .87927 182 .866531 -120.455 .79706 119.332 1 CRGIFIM .877787 182 .866531 -120.456 .797086 119.331 PERFIL DE TENSA0		12	CARGA_12	.908343	186	.892017 -120.433	.846138 119.403		
10 CARGA_10 894223 185 .87578 -120.445 .824234 119.371 9 CARGA_9 .894263 185 .87558 -120.445 .816861 119.360 8 CARGA_8 .890265 183 .870415 -120.453 .806138 119.342 4 CARGA_3 .880637 182 .865751 -120.455 .798948 119.333 2 CARGA_2 .87927 182 .866404 -120.456 .797707 119.332 1 CRGIFIM .877787 182 .865831 -120.456 .797707 119.331 TERFIL DE TENSAO		11	CARGA 11	.902734	186	.884657 -120.440	.834601 119.386		
9 CARGA_9 .894263 185 .875558 -120.451 .810696 119.360 8 CARGA_5 .866325 183 .87045 -120.451 .810696 119.350 4 CARGA_4 .882915 183 .870457 .182 .866404 -120.455 .799448 119.334 2 CARGA_2 .87927 182 .866404 -120.456 .797707 119.332 1 CRGIFIM .877787 182 .866581 -120.456 .7977086 119.331 PERFIL DE TENSA0 TENSA TENSA .2194 .000 .2194 -120.000 .2194 120.000 38 CRC DERV .2193 007 .2193 -120.011 .2192 119.803 37 FILM .2174 123 .2175 -120.137 .2169 119.803 35 CARGA_25 .2154 241 .2155 .2024 .120.33 .2125 119.		10	CARGA 10	.898223	185	.878978 -120.445	.824234 119.371		
8 CARGA_8 890296 184 .872703 -120.451 .810696 119.350 5 CARGA_4 .882915 183 .86689 -120.451 .8005138 119.336 3 CARGA_3 .880637 182 .867551 -120.455 .798948 119.334 2 CARGA_2 .878927 182 .866404 -120.456 .797707 119.332 1 CRGIFIM .877787 182 .865831 -120.456 .797086 119.331 TENERID DE TENSAO		9	CARGA 9	.894263	185	.875558 -120.449	.816861 119.360	1	
5 CARGA_5 .886325 183 .870415 -120.453 .800807 119.332 3 CARGA_3 .880637 182 .866755 -120.455 .799484 119.334 2 CARGA_3 .880637 182 .866404 -120.455 .79707 119.332 1 CRGLFIM .877787 182 .866404 -120.456 .797086 119.331 TERFIL DE TENSAO PERFIL DE TENSAO TENSAO <td c<="" td=""><td></td><td>8</td><td>CARGA 8</td><td>.890296</td><td>184</td><td>.872703 -120.451</td><td>.810696 119.350</td><td>1</td></td>	<td></td> <td>8</td> <td>CARGA 8</td> <td>.890296</td> <td>184</td> <td>.872703 -120.451</td> <td>.810696 119.350</td> <td>1</td>		8	CARGA 8	.890296	184	.872703 -120.451	.810696 119.350	1
4 CARGA_4 .882915 183 .866698 -120.455 .798948 119.334 2 CARGA_2 .878927 182 .866404 -120.455 .797086 119.332 1 CRCHTIM .877787 182 .866831 -120.456 .797086 119.331 PERFIL DE TEMSA0 TENERIC CRUEN Barra Nome Fase a Fase b Fase C (kV) (GRAUS) (kV) (GRAUS) (kV) (GRAUS) (2kV) (GRAUS)		5	CARGA 5	.886325	183	.870415 -120.453	.805138 119.342		
3 CARGA_3 .880637 182 .867551 -120.455 .798948 119.334 2 CARCA_2 .878927 182 .866404 -120.456 .797707 119.332 1 CR0IFIM .877787 182 .865831 -120.456 .797086 119.331 PERFIL DE TENSAO PERFIL DE TENSAO DERFI COLSPANE Barra Nome Fase a Kase b Fase b Fase c (KV) (CRAUS) (KV) (GRAUS) (LV) (GRAUS) 54 SEBT .2194 .000 .2194 -120.000 .2194 120.000 38 CRG_DERV .2193 007 .2133 -120.137 .2169 119.803 35 CARGA_35 .2154 241 .2158 -120.137 .2169 119.803 34 CARGA_23 .2138 345 .2142 -120.137 .2169 119.803 35 CARGA_24 .2107 442 .2126 .2041 119.282 35 CARGA_23 .2114 442		4	CARGA 4	.882915	183	.868698 -120.454	.800807 119.336		
2 CARGA_2 .878927 182 .866404 -120.456 .797707 119.332 1 CRGIFIM .877787 182 .865831 -120.456 .797086 119.331 TERFIL DE TENSAO TERFIL DE TENSAO TENTA Nome Fase a Fase b Fase c GARGA_23 .2194 .000 .2194 -120.000 .2194 120.000 38 CRG_DERV .2193 007 .2193 -120.011 .2192 119.986 36 DERV .2174 123 .2175 -120.137 .2169 119.803 37 FIM .2174 .123 .2175 -120.137 .2169 119.803 35 CARGA_35 .2154 .241 .2158 .120.264 .2146 119.618 34 CARGA_23 .2103 .441 .2107 .120 119.265 33 CRG3FIM .2121 .442 .2126 -120.505		3	CARGA 3	.880637	182	.867551 -120.455	.798948 119.334		
I CRCHTHM .877787 182 .865831 -120.456 .797086 119.331 PERFIL DE TENSAO PERFIL DE TENSAO DERFU DE TENSAO SEBT .2194 .000 .2194 -120.000 .2194 120.000 38 CRG_DERV .2193 .007 .2193 -120.011 .2192 119.803 37 FIM_1 .2174 123 .2175 -120.137 .2169 119.803 35 CARGA_35 .2154 241 .2158 .2122 119.409 53 DERV .2122 442 .2127 -120.333 .2125 119.449 53 DERV .2122 442 .2126 120.203 .205 119.282 25 CARGA_23 .2103 441 .2016 120.508 .2069 119.263 26 CARGA_23 .2103 441 .2093 -120.508 .2069 119.263 <td colspai<="" td=""><td></td><td>2</td><td>CARGA 2</td><td>.878927</td><td>182</td><td>.866404 -120.456</td><td>797707 119 332</td><td>,</td></td>	<td></td> <td>2</td> <td>CARGA 2</td> <td>.878927</td> <td>182</td> <td>.866404 -120.456</td> <td>797707 119 332</td> <td>,</td>		2	CARGA 2	.878927	182	.866404 -120.456	797707 119 332	,
PERFIL DE TENSA0 Barra Nome Fase a Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) (kV) (GRAUS) 54 SEBT .2194 .000 .2194 -120.001 .2192 119.803 37 FIM_1 .2174 .123 .2175 -120.137 .2169 119.803 35 CARGA_35 .2154 .241 .2158 -120.264 .2146 119.803 35 CARGA_34 .2138 .345 .2142 -120.333 .2125 119.449 53 DERV .2122 .442 .2126 -120.498 .2104 119.282 25 CARGA_24 .207 442 .2126 -120.498 .2104 119.282 24 CARGA_23 .2103 441 .2007 -120.505 .2023 119.276 24 CARGA_23 .2103 441 .2095 -120.508 .2070 119.263 31 CARGA_6		1	CRGIFIM	.877787	- 182	.865831 -120.456	797086 119 331	6	
PERFIL DE TENSA0 Barra Nome Fase a Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) (kV) (GRAUS) 54 SEBT .2194 .000 .2194 .120.000 .2194 120.000 38 CRG_DERV .2193 -007 .2193 -120.011 .2192 119.803 37 FIM_1 .2174 123 .2175 -120.137 .2169 119.803 35 CARGA_35 .2154 .2411 .2158 .1242 .120.313 .2125 119.449 53 DERV .2122 .442 .2126 120.498 .2104 119.282 25 CARGA_24 .2107 .441 .2102 .2033 119.265 22 CARGA_23 .2103 .441 .2092 .2050 .2021 119.263 7 CARGA_23 .2103 .442 .2017 119.263 .2069 119.263 20 CARGA_23									
PERFIL DE TENSAO Barra Nome Fase à Fase b Fase c (kV) (CRAUS) (kV) (GRAUS) (kV) (GRAUS) 54 SEBT .2194 .000 .2194 -120.010 .2194 .120.000 36 DERV .2174 123 .2175 -120.011 .2192 119.803 37 FIM_1 .2174 123 .2175 -120.317 .2169 119.803 35 CARGA_35 .2154 241 .2158 -120.438 .2125 119.449 53 DERV .2122 442 .2126 -120.343 .2125 119.282 33 CRG33FIN .2121 442 .2126 -120.498 .2104 119.282 25 CARGA_25 .2114 -442 .2106 -120.505 .2022 119.276 24 CARGA_24 .2107 -441 .2095 -120.508 .2070 119.263 6 CARGA_6<									
Barra Nome Fase a Fase b Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) (kV) (GRAUS) 54 SEBT .2194 .000 .2194 .120.001 .2194 120.000 38 CRG_DERV .2193 007 .2193 -120.011 .2192 119.986 36 DERV .2174 123 .2175 -120.137 .2169 119.803 37 FIN_1 .2174 123 .2175 -120.137 .2169 119.803 35 CARGA_34 .2138 241 .2158 -120.564 .2146 119.618 34 CARGA_23 .2122 .442 .2126 -120.498 .2105 119.282 25 CARGA_24 .2107 .441 .2107 -2003 119.270 23 CARGA_23 .2103 .441 .2005 .2007 119.263 26 CARGA_21 .2100 .441 .2095									
Barra None Fase a Fase b Fase b Fase c (kV) (GRAUS) (kV) (GRAUS) (kV) (GRAUS) 54 SEBT .2194 .000 .2194 -120.000 .2194 120.000 38 CRG_DERV .2193 007 .2193 -120.011 .2192 119.986 36 DERV .2174 123 .2175 -120.137 .2169 119.803 37 FIM_1 .2174 123 .2175 -120.137 .2169 119.803 34 CARGA_34 .2138 345 .2142 -120.383 .2125 119.449 53 DERV .2122 442 .2126 -120.498 .2104 119.282 25 CARGA_24 .2107 441 .2107 -120.505 .2093 119.270 23 CARGA_22 .2100 441 .2097 -120.508 .2070 119.263 7 CRGFFIM .2093					PERFIL DE	TENSAO			
Barra Fase a Fase b Fase c (kV) (GRUS) (kV) (GRUS) (kV) (GRUS) 54 SEBT .2194 .000 .2194 -120.000 .2194 120.000 38 CRG_DERV .2193 007 .2193 -120.011 .2192 119.803 36 DERV .2174 123 .2175 -120.137 .2169 119.803 35 CARGA_35 .2154 241 .2158 -120.264 .2166 119.618 34 CARGA_34 .2138 345 .2142 -120.383 .2125 119.449 53 DERV .2122 442 .2126 -120.498 .2104 119.282 25 CARGA_23 .2103 441 .2105 .2093 119.276 24 CARGA_23 .2107 441 .2005 .2003 119.263 7 CRGTFIM .2009 441 .2098 -120.508 .2070						n h			
54 SEBT .2194 .000 .2194 .120.000 .2194 120.000 38 CRC_DERV .2193 007 .2193 -120.011 .2192 119.986 36 DERV .2174 123 .2175 -120.137 .2169 119.803 37 FIM_1 .2174 123 .2175 -120.137 .2169 119.803 35 CARGA_35 .2154 241 .2128 -120.083 .2125 119.449 53 DERV .2122 442 .2126 -120.498 .2105 119.282 25 CARGA_25 .2114 442 .2116 -120.505 .2082 119.270 24 CARGA_24 .2107 441 .2007 -120.508 .2070 119.265 22 CARGA_23 .2103 441 .2095 -120.508 .2070 119.265 24 CARGA_26 .2099 441 .2087 -120.504 .2081 119		Barra	Nome	Fas	e a	fase D	Fase C		
54 SLBT .2194 .1000 .2194 -120.000 .2194 120.000 38 CRG_DERV .2174 .123 .2175 -120.011 .2194 120.000 36 DERV .2174 123 .2175 -120.137 .2169 119.803 37 FIM_1 .2174 123 .2175 -120.137 .2169 119.803 35 CARGA_35 .2154 241 .2158 -120.264 .2146 119.618 34 CARGA_34 .2138 345 .2126 -120.498 .2105 119.282 35 CARGA_25 .2114 442 .2126 -120.498 .2104 119.282 25 CARGA_24 .2107 441 .2107 -120.505 .2082 119.265 22 CARGA_23 .2103 441 .2102 -120.508 .2070 119.263 31 CARGA_21 .2107 441 .2095 -120.508 .2069 119.267 30 CARGA_23 .2067 .441 .2078 -12		54	CEDE	(KV)	(GRAUS)	(KV) (GRAUS)	(KV) (GRAUS)		
38 CKG_DERV .2193 -1.00.7 .2193 -1.20.011 .2192 119.986 36 DERV .2174 123 .2175 -120.137 .2169 119.803 37 FIM_1 .2174 123 .2175 -120.137 .2169 119.803 35 CARGA_35 .2154 241 .2158 -120.264 .2146 119.618 34 CARGA_34 .2122 442 .2127 -120.498 .2105 119.282 23 CRG33FIM .2121 442 .2126 -120.498 .2104 119.282 25 CARGA_24 .2107 441 .2106 -120.505 .2028 119.270 23 CARGA_23 .2103 441 .2102 -120.506 .2073 119.265 22 CARGA_23 .2100 441 .2098 -120.508 .2069 119.263 6 CARGA_30 .2084 442 .2097 -120.510 .2081 119.267 30 CARGA_51 .2067 441 .2087		54	SEBT	.2194	.000	.2194 -120.000	.2194 120.000)	
36 DERV .21/4 123 .21/5 -120.137 .2169 119.803 37 FIM_1 .2174 123 .2175 -120.137 .2169 119.803 35 CARGA_35 .2154 241 .2158 -120.264 .2146 119.618 34 CARGA_34 .2122 442 .2127 -120.498 .2105 119.282 33 CRG33FIM .2121 442 .2126 -120.498 .2104 119.282 25 CARGA_25 .2114 442 .2116 -120.505 .2082 119.276 24 CARGA_23 .2103 441 .2107 -120.506 .2073 119.265 22 CARGA_23 .2103 441 .2095 -120.508 .2070 119.263 36 CARGA_6 .2099 441 .2087 -120.510 .2081 119.267 30 CARGA_30 .2084 442 .2017 -120.510 .2051 119.263 31 CARGA_31 .2103 442 .2012 <t< td=""><td></td><td>38</td><td>CRG_DERV</td><td>.2193</td><td>007</td><td>.2193 -120.011</td><td>.2192 119.986</td><td>2</td></t<>		38	CRG_DERV	.2193	007	.2193 -120.011	.2192 119.986	2	
37 FIM_1 .2174 123 .2175 -120.137 .2169 119.803 35 CARGA_35 .2154 241 .2158 -120.264 .2146 119.618 34 CARGA_34 .2138 345 .2142 -120.383 .2125 119.449 53 DERV .2122 442 .2127 -120.498 .2105 119.282 23 CRG33FIM .2121 442 .2116 -120.502 .2093 119.276 24 CARGA_23 .2107 441 .2107 -120.505 .2022 119.270 23 CARGA_23 .2103 441 .2102 -120.508 .2070 119.263 6 CARGA_23 .2103 442 .2112 -120.508 .2069 119.263 7 CRG7FIM .2093 -120.508 .2061 119.263 7 CARGA_30 .2084 442 .2097 -120.510 .2051 119.267 30 CARGA_29 .2067 441 .2087 -120.510 .2051 <t< td=""><td></td><td>36</td><td>DERV</td><td>.2174</td><td>123</td><td>.2175 -120.137</td><td>.2169 119.803</td><td>\$</td></t<>		36	DERV	.2174	123	.2175 -120.137	.2169 119.803	\$	
35 CARGA_35 .2154 241 .2158 -120.264 .2146 119.618 34 CARGA_34 .2138 345 .2142 -120.383 .2125 119.449 53 DERV .2122 442 .2127 -120.498 .2104 119.282 33 CRG33FIM .2121 442 .2116 -120.502 .2033 119.276 24 CARGA_23 .2107 441 .2107 -120.505 .2082 119.270 23 CARGA_23 .2103 441 .2098 -120.506 .2073 119.265 22 CARGA_22 .2100 441 .2095 -120.508 .2069 119.263 6 CARGA_6 .2099 441 .2095 -120.508 .2069 119.263 7 CRG7FIM .2093 -120.508 .2070 119.263 30 CARGA_51 .2051 .442 .2077 -120.504 .2081 119.267 30 CARGA_51 .2051 .442 .2077 -120.510 .2081 <		37	FIM_1	.2174	123	.2175 -120.137	.2169 119.803	}	
34 CARGA_34 .2138 345 .2142 -120.383 .2125 119.449 53 DERV .2122 442 .2126 -120.498 .2105 119.282 25 CARGA_25 .2114 442 .2116 -120.502 .2093 119.276 24 CARGA_23 .2107 441 .2102 -120.505 .2082 119.270 23 CARGA_23 .2103 441 .2009 -120.506 .2073 119.265 22 CARGA_22 .2100 441 .2098 -120.508 .2070 119.263 6 CARGA_6 .2099 441 .2095 -120.508 .2069 119.263 7 CRG7FTM .2093 -120.504 .2081 119.267 30 CARGA_51 .2051 442 .2097 -120.510 .2059 119.253 29 CARGA_51 .2051 440 .2077 -120.510 .2014 119.267 30 CARGA_64 .2022 437 .2065 -120.501 .2014		35	CARGA_35	.2154	241	.2158 -120.264	.2146 119.618	3	
53 DERV .2122 442 .2127 -120.498 .2105 119.282 33 CRG33FIM .2121 442 .2126 -120.498 .2104 119.282 25 CARGA_25 .2114 442 .2116 -120.502 .2093 119.276 24 CARGA_24 .2107 441 .2107 -120.505 .2082 119.270 23 CARGA_23 .2103 441 .2102 -120.506 .2073 119.265 22 CARGA_6 .2099 441 .2098 -120.508 .2069 119.263 6 CARGA_6 .2099 441 .2098 -120.508 .2069 119.263 7 CRG7FIM .2093 -120.504 .2081 119.267 30 CARGA_30 .2084 442 .2097 -120.510 .2059 119.253 29 CARGA_51 .2051 441 .2087 -120.514 .2040 119.241 51 CARGA_51 .2051 440 .2078 -120.517 .2026		34	CARGA_34	.2138	345	.2142 -120.383	.2125 119.449)	
33 CRG33FIM .2121 442 .2126 -120.498 .2104 119.282 25 CARGA_25 .2114 442 .2116 -120.502 .2093 119.276 24 CARGA_24 .2107 441 .2107 -120.505 .2082 119.270 23 CARGA_23 .2103 441 .2102 -120.506 .2073 119.265 22 CARGA_22 .2100 441 .2098 -120.508 .2070 119.263 6 CARGA_6 .2099 441 .2095 -120.508 .2069 119.263 7 CRG7FIM .2013 442 .2112 -120.504 .2081 119.267 30 CARGA_30 .2084 442 .2097 -120.510 .2059 119.253 29 CARGA_29 .2067 441 .2087 -120.514 .2040 119.241 51 CARGA_50 .2038 439 .2071 -120.520 .2014 119.226 49 CARGA_48 .2022 437 .2062		53	DERV	.2122	442	.2127 -120.498	.2105 119.282	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		33	CRG33FIM	.2121	442	.2126 -120.498	.2104 119.282	2	
24 CARGA_24 .2107 441 .2107 -120.505 .2082 119.270 23 CARGA_23 .2103 441 .2102 -120.506 .2073 119.265 22 CARGA_22 .2100 441 .2098 -120.508 .2070 119.263 6 CARGA_6 .2099 441 .2095 -120.508 .2069 119.263 7 CROTFIM .2093 -120.508 .2069 119.263 30 CARGA_30 .2084 442 .2112 -120.504 .2081 119.267 30 CARGA_29 .2067 441 .2087 -120.510 .2059 119.233 50 CARGA_51 .2051 440 .2078 -120.517 .2026 119.233 50 CARGA_49 .2029 438 .2065 -120.522 .2006 119.221 48 CARGA_48 .2022 437 .2060 -120.523 .1999 119.216 39 CRG_DERV .2167 172 .2156 -120.303 .2145		25	CARGA_25	.2114	442	.2116 -120.502	.2093 119.276	5	
23 CARGA_23 .2103 441 .2102 -120.506 .2073 119.265 22 CARGA_22 .2100 441 .2098 -120.508 .2070 119.263 6 CARGA_6 .2099 441 .2095 -120.508 .2069 119.263 7 CRG7FIM .2093 -120.508 .2081 119.267 30 CARGA_30 .2084 442 .2097 -120.510 .2059 119.253 29 CARGA_29 .2067 441 .2087 -120.514 .2040 119.241 51 CARGA_51 .2051 440 .2078 -120.517 .2026 119.233 50 CARGA_49 .2029 438 .2065 -120.522 .2006 119.221 48 CARGA_48 .2022 437 .2062 -120.523 .1999 119.217 47 CRGAGA48 .2022 437 .2060 -120.523 .1996 119.216 39 CR_DERV .2167 .172 .2156 -120.296 .2145		24	CARGA_24	.2107	441	.2107 -120.505	.2082 119.270)	
22 CARGA_22 .2100 441 .2098 -120.508 .2070 119.263 6 CARGA_6 .2099 441 .2095 -120.508 .2069 119.263 7 CRG7FIM .2093 -120.508 .2081 119.263 30 CARGA_30 .2084 442 .2017 -120.510 .2059 119.253 29 CARGA_29 .2067 441 .2087 -120.514 .2040 119.241 51 CARGA_50 .2038 439 .2071 -120.517 .2026 119.233 50 CARGA_49 .2029 438 .2065 -120.522 .2006 119.221 48 CARGA_48 .2022 437 .2062 -120.523 .1999 119.216 39 CRG_DERV .2167 172 .2156 -120.296 .2145 119.605 41 CRG41FIM .2165 171 .2140 119.605 .2142 119.605 42 CARGA_43 .2152 171 .2136 -120.303 .2128		23	CARGA_23	.2103	441	.2102 -120.506	.2073 119.265	5	
6 CARGA_6 .2099 441 .2095 -120.508 .2069 119.263 7 CRG7FIM .2093 -120.508 .2081 119.267 30 CARGA_30 .2084 442 .2097 -120.510 .2059 119.253 29 CARGA_29 .2067 441 .2087 -120.514 .2040 119.241 51 CARGA_50 .2038 439 .2071 -120.520 .2014 119.226 49 CARGA_49 .2029 438 .2065 -120.522 .2006 119.221 48 CARGA_48 .2022 437 .2062 -120.523 .1999 119.216 39 CRG_DERV .2167 172 .2156 -120.296 .2145 119.606 40 CARGA_40 .2166 172 .2142 119.605 41 CRG41FIM .2165 171 .2140 119.605 42 CARGA_43 .2152 171 .2142 119.605 44 CARGA_44 .2148 171		22	CARGA_22	.2100	441	.2098 -120.508	.2070 119.263	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	CARGA_6	.2099	441	.2095 -120.508	.2069 119.263	3	
31 CARGA_31 .2103 442 .2112 -120.504 .2081 119.267 30 CARGA_30 .2084 442 .2097 -120.510 .2059 119.253 29 CARGA_29 .2067 441 .2087 -120.514 .2040 119.241 51 CARGA_51 .2051 440 .2078 -120.517 .2026 119.233 50 CARGA_50 .2038 439 .2071 -120.520 .2014 119.226 49 CARGA_49 .2029 438 .2065 -120.522 .2006 119.221 48 CARGA_48 .2022 437 .2060 -120.523 .1999 119.216 39 CRG_DERV .2167 172 .2156 -120.296 .2145 119.606 40 CARGA_40 .2166 172 .2142 119.605 41 CRG41FIM .2165 171 .2140 119.583 42 CARGA_43 .2152 171 .2140 119.583 43 CARGA_44		7	CRG7FIM			.2093 -120.508			
30 CARGA_30 .2084 442 .2097 -120.510 .2059 119.253 29 CARGA_29 .2067 441 .2087 -120.514 .2040 119.241 51 CARGA_51 .2051 440 .2078 -120.517 .2026 119.233 50 CARGA_50 .2038 439 .2071 -120.520 .2014 119.226 49 CARGA_49 .2029 438 .2065 -120.522 .2006 119.221 48 CARGA_48 .2022 437 .2062 -120.523 .1999 119.217 47 CRG47FIM .2019 437 .2060 -120.523 .1996 119.216 39 CRG_DERV .2167 172 .2156 -120.296 .2145 119.606 40 CARGA_40 .2166 172 .2142 119.605 41 CRG41FIM .2165 171 .2140 119.605 42 CARGA_43 .2152 171 .2118 -120.303 .2128 119.598		31	CARGA_31	.2103	442	.2112 -120.504	.2081 119.267	7	
29 CARGA_29 .2067 441 .2087 -120.514 .2040 119.241 51 CARGA_51 .2051 440 .2078 -120.517 .2026 119.233 50 CARGA_50 .2038 439 .2071 -120.520 .2014 119.226 49 CARGA_49 .2029 438 .2065 -120.522 .2006 119.221 48 CARGA_48 .2022 437 .2062 -120.523 .1999 119.217 47 CRG47FIM .2019 437 .2060 -120.523 .1996 119.216 39 CRG_DERV .2167 172 .2156 -120.296 .2145 119.606 40 CARGA_40 .2166 172 .2142 119.605 41 CRG41FIM .2165 171 .2140 119.605 41 CRGA_42 .2159 172 .2136 -120.303 .2128 119.598 43 CARGA_43 .2152 171 .2118 -120.310 .2111 119.589		30	CARGA_30	.2084	442	.2097 -120.510	.2059 119.253	3	
51 CARGA_51 .2051 440 .2078 -120.517 .2026 119.233 50 CARGA_50 .2038 439 .2071 -120.520 .2014 119.226 49 CARGA_49 .2029 438 .2065 -120.522 .2006 119.221 48 CARGA_48 .2022 437 .2060 -120.523 .1999 119.217 47 CRG47FIM .2019 437 .2060 -120.523 .1996 119.216 39 CRG_DERV .2167 172 .2156 -120.296 .2145 119.606 40 CARGA_40 .2166 172 .2142 119.605 41 CRG41FIM .2165 171 .2140 119.605 42 CARGA_42 .2159 172 .2136 -120.303 .2128 119.598 43 CARGA_43 .2152 171 .2140 119.589 44 CARGA_44 .2148 171 .20310 .2111 119.583 45 CARGA_245 .2146 <		29	CARGA_29	.2067	441	.2087 -120.514	.2040 119.241	1	
50 CARGA_50 .2038 439 .2071 -120.520 .2014 119.226 49 CARGA_49 .2029 438 .2065 -120.522 .2006 119.221 48 CARGA_48 .2022 437 .2062 -120.523 .1999 119.217 47 CRG47FIM .2019 437 .2060 -120.523 .1996 119.216 39 CRG_DERV .2167 172 .2156 -120.296 .2145 119.606 40 CARGA_40 .2166 172 .2142 119.605 41 CRG41FIM .2165 171 .2140 119.605 42 CARGA_42 .2159 172 .2136 -120.303 .2128 119.598 43 CARGA_43 .2152 171 .2118 -120.310 .2111 119.589 44 CARGA_44 .2148 171 .2087 -120.315 .2100 119.583 45 CARGA_45 .2146 171 .2087 -120.319 .2098 119.582		51	CARGA_51	.2051	440	.2078 -120.517	.2026 119.233	3	
49 CARGA_49 .2029 438 .2065 -120.522 .2006 119.221 48 CARGA_48 .2022 437 .2062 -120.523 .1999 119.217 47 CRG47FIM .2019 437 .2060 -120.523 .1996 119.216 39 CRG_DERV .2167 172 .2156 -120.296 .2145 119.606 40 CARGA_40 .2166 172 .2156 -120.303 .2128 119.605 41 CRG41FIM .2165 171 .2136 -120.303 .2128 119.598 43 CARGA_42 .2159 172 .2136 -120.303 .2128 119.598 43 CARGA_43 .2152 171 .2118 -120.310 .2111 119.589 44 CARGA_44 .2148 171 .2087 -120.319 .2098 119.582 45 CARGA_45 .2146 171 .2087 -120.319 .2098 119.582 46 CRG46FIM .2081 179 .2112		50	CARGA_50	.2038	439	.2071 -120.520	.2014 119.220	6	
48 CARGA_48 .2022 437 .2062 -120.523 .1999 119.217 47 CRG47FIM .2019 437 .2060 -120.523 .1996 119.216 39 CRG_DERV .2167 172 .2156 -120.296 .2145 119.606 40 CARGA_40 .2166 172 .2142 119.605 41 CRG41FIM .2165 171 .2140 119.605 42 CARGA_42 .2159 172 .2136 -120.303 .2128 119.598 43 CARGA_43 .2152 171 .2118 -120.310 .2111 119.589 44 CARGA_44 .2148 171 .2101 -120.315 .2100 119.583 45 CARGA_45 .2146 171 .2087 -120.319 .2098 119.582 46 CRG46FIM .2081 -120.334 .2085 119.561 27 CARGA_27 .2094 184 .2069 -120.366 .2028 119.519 26 CARGA_26		49	CARGA_49	.2029	438	.2065 -120.522	.2006 119.22	1	
47 CRG47FIM .2019 437 .2060 -120.523 .1996 119.216 39 CRG_DERV .2167 172 .2156 -120.296 .2145 119.606 40 CARGA_40 .2166 172 .2156 -120.296 .2142 119.605 41 CRG41FIM .2165 171 .2140 119.605 42 CARGA_42 .2159 172 .2136 -120.303 .2128 119.598 43 CARGA_43 .2152 171 .2118 -120.310 .2111 119.589 44 CARGA_44 .2148 171 .2101 -120.315 .2100 119.583 45 CARGA_45 .2146 171 .2087 -120.319 .2098 119.582 46 CRG46FIM .2081 -120.319 .2085 119.581 27 CARGA_27 .2094 184 .2069 -120.366 .2028 119.519 26 CARGA_26 .2060 186 .2032 -120.391 .1973 119.481		48	CARGA_48	.2022	437	.2062 -120.523	.1999 119.21	7	
39 CRG_DERV .2167 172 .2156 -120.296 .2145 119.606 40 CARGA_40 .2166 172 .2142 119.605 41 CRG41FIM .2165 171 .2140 119.605 42 CARGA_42 .2159 172 .2136 -120.303 .2128 119.598 43 CARGA_43 .2152 171 .2118 -120.310 .2111 119.589 44 CARGA_44 .2148 171 .2101 -120.315 .2100 119.583 45 CARGA_45 .2146 171 .2087 -120.319 .2098 119.582 46 CRG46FIM .2081 -120.319 .2098 119.581 27 CARGA_28 .2130 179 .2112 -120.334 .2085 119.561 27 CARGA_27 .2094 184 .2069 -120.366 .2028 119.519 26 CARGA_26 .2060 186 .2032 -120.391 .1973 119.481 52 DERV <		47	CRG47FIM	.2019	437	.2060 -120.523	.1996 119.21	6	
40 CARGA_40 .2166 172 .2142 119.605 41 CRG41FIM .2165 171 .2140 119.605 42 CARGA_42 .2159 172 .2136 -120.303 .2128 119.598 43 CARGA_43 .2152 171 .2118 -120.310 .2111 119.589 44 CARGA_44 .2148 171 .2101 -120.315 .2100 119.583 45 CARGA_45 .2146 171 .2087 -120.319 .2098 119.582 46 CRG46FIM .2081 -120.319 .2098 119.581 28 CARGA_28 .2130 179 .2112 -120.334 .2085 119.561 27 CARGA_27 .2094 184 .2069 -120.366 .2028 119.519 26 CARGA_26 .2060 186 .2032 -120.391 .1973 119.481 52 DERV .2028 187 .1997 -120.411 .1920 119.445		39	CRG_DERV	.2167	172	.2156 -120.296	.2145 119.60	6	
41 CRG41FIM .2165 171 .2140 119.605 42 CARGA_42 .2159 172 .2136 -120.303 .2128 119.598 43 CARGA_43 .2152 171 .2118 -120.310 .2111 119.589 44 CARGA_44 .2148 171 .2101 -120.315 .2100 119.583 45 CARGA_45 .2146 171 .2087 -120.319 .2098 119.582 46 CRG46FIM .2081 -120.334 .2085 119.561 27 CARGA_27 .2094 184 .2069 -120.366 .2028 119.519 26 CARGA_26 .2060 186 .2032 -120.391 .1973 119.481 52 DERV .2028 187 .1997 -120.411 .1920 119.445		40	CARGA 40	.2166	172		.2142 119.60	5	
42 CARGA_42 .2159 172 .2136 -120.303 .2128 119.598 43 CARGA_43 .2152 171 .2118 -120.310 .2111 119.589 44 CARGA_44 .2148 171 .2101 -120.315 .2100 119.583 45 CARGA_45 .2146 171 .2087 -120.319 .2098 119.582 46 CRG46FIM .2081 -120.334 .2085 119.561 27 CARGA_28 .2130 179 .2112 -120.334 .2085 119.519 26 CARGA_27 .2094 184 .2069 -120.366 .2028 119.519 26 CARGA_26 .2060 186 .2032 -120.391 .1973 119.481 52 DERV .2028 187 .1997 -120.411 .1920 119.445		41	CRG41FIM	.2165	171		.2140 119.60	5	
43 CARGA_43 .2152 171 .2118 -120.310 .2111 119.589 44 CARGA_44 .2148 171 .2101 -120.315 .2100 119.583 45 CARGA_45 .2146 171 .2087 -120.319 .2098 119.582 46 CRG46FIM .2081 -120.319 .2085 119.561 27 CARGA_28 .2130 179 .2112 -120.334 .2085 119.561 27 CARGA_27 .2094 184 .2069 -120.366 .2028 119.519 26 CARGA_26 .2060 186 .2032 -120.391 .1973 119.481 52 DERV .2028 187 .1997 -120.411 .1920 119.445		42	CARGA 42	.2159	172	.2136 -120.303	.2128 119.59	8	
44 CARGA_44 .2148 171 .2101 -120.315 .2100 119.583 45 CARGA_45 .2146 171 .2087 -120.319 .2098 119.582 46 CRG46FIM .2081 -120.319 .2085 119.582 28 CARGA_28 .2130 179 .2112 -120.334 .2085 119.561 27 CARGA_27 .2094 184 .2069 -120.366 .2028 119.519 26 CARGA_26 .2060 186 .2032 -120.391 .1973 119.481 52 DERV .2028 187 .1997 -120.411 .1920 119.445		43	CARGA 43	.2152	171	.2118 -120.310	.2111 119.58	9	
45 CARGA_45 .2146 171 .2087 -120.319 .2098 119.582 46 CRG46FIM .2081 -120.319 .2098 119.582 28 CARGA_28 .2130 179 .2112 -120.334 .2085 119.561 27 CARGA_27 .2094 184 .2069 -120.366 .2028 119.519 26 CARGA_26 .2060 186 .2032 -120.391 .1973 119.481 52 DERV .2028 187 .1997 -120.411 .1920 119.445		44	CARGA 44	.2148	171	.2101 -120.315	.2100 119.58	3	
46 CRG46FIM .2081 -120.319 28 CARGA_28 .2130 179 .2112 -120.334 .2085 119.561 27 CARGA_27 .2094 184 .2069 -120.366 .2028 119.519 26 CARGA_26 .2060 186 .2032 -120.391 .1973 119.481 52 DERV .2028 187 .1997 -120.411 .1920 119.445		45	CARGA 45	.2146	171	.2087 -120.319	.2098 119.58	2	
28 CARGA_28 .2130 179 .2112 -120.334 .2085 119.561 27 CARGA_27 .2094 184 .2069 -120.366 .2028 119.519 26 CARGA_26 .2060 186 .2032 -120.391 .1973 119.481 52 DERV .2028 187 .1997 -120.411 .1920 119.445		46	CRG46FIM			.2081 -120.319			
27 CARGA_27 .2094 184 .2069 -120.366 .2028 119.519 26 CARGA_26 .2060 186 .2032 -120.391 .1973 119.481 52 DERV .2028 187 .1997 -120.411 .1920 119.445		28	CARGA 28	.2130	179	.2112 -120.334	.2085 119.56	1	
26 CARGA_26 .2060 186 .2032 -120.391 .1973 119.481 52 DERV .2028 187 .1997 -120.411 .1920 119.445		27	CARGA 27	,2094	184	.2069 -120.366	.2028 119.51	9	
52 DERV .2028187 .1997 -120.411 .1920 119.445		26	CARGA 26	,2060	- 186	.2032 -120.391	.1973 119.48	1	
		52	DERV	,2028	187	.1997 -120.411	.1920 119.44	5	

Con	tinuação				
	14 CARGA_14		.1995 -120.411	.1916 119.444	٦
	15 CRG15FIM		.1994 -120.411	.1913 119.443	
	16 CARGA_16	.2016187	.1983 -120.417	.1903 119.435	
	17 CARGA_17	.2006187	.1970 -120.422	.1887 119.425	
	18 CARGA_18	.1997186	.1959 -120.425	.1875 119.418	
	19 CARGA 19	.1989185	.1950 -120.428	.1871 119.416	
	20 CARGA_20	.1985185	.1946 -120.429		
	21 CRG21FIM	.1982185	j		
	13 CARGA 13	.2009187	.1976 -120.423	.1887 119.423	
	12 CARGA 12	.1993186	.1957 -120.433	.1856 119.403	
	11 CARGA 11	.1981186	.1941 -120.440	.1831 119.386	
	10 CARGA 10	.1971185	.1928 -120.445	.1808 119.371	
	9 CARGA 9	.1962185	.1921 -120.449	.1792 119.360	
	8 CARGA 8	.1953184	.1915 -120.451	.1779 119.350	
	5 CARGA 5	.1945183	.1910 -120.453	.1766 119.342	
	4 CARGA 4	.1937183	.1906 -120.454	.1757 119.336	
	3 CARGA 3	.1932182	.1903 -120.455	.1753 119.334	
	2 CARGA 2	.1928182	.1901 -120.456	.1750 119.332	
	1 CRG1FIM	.1926182	.1900 -120,456	.1749 119.331	
		SOLUCAO FLUXO	DE CARGA RADIAL		
		FLUXO	DE CARGA		
Ba P/	rra Nome 54 SEBT Barra 38	Fase a (KW) (KVAr) 20.682 9.847	Fase b (KW) (KVAr) 25.126 11.704	Fase c (KW) (KVAr) 31.496 15.201	
	Corrente (A):	104.41	126.34	159.40	
 Ва Р/ Р/	rra Nome 38 CRG_DERV Barra 36 Corrente (A): Barra 39 Corrente (A):	Fase a (KW) (KVAr) 8.439 4.097 42.78 11.488 5.441 57.97	Fase b (KW) (KVAr) 7.566 3.631 38.28 16.461 7.694 82.87	Fase c (KW) (KVAr) 10.242 4.999 51.99 20.811 10.053 105.43	
	Nama	Page a	Page h	Eaco a	
Bd	36 DERV	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)	
1					
P/	/ Barra 37 Corrente (A):	.000 .000	.000 .000. .00	.000 .000 .00	
P/ P/	/ Barra 37 Corrente (A): / Barra 35 Corrente (A):	.000 .000 .00 8.392 4.068 42.90	.000 .000 .00 7.522 3.615 38.36	.000 .000 .00 10.166 4.947 52.12	
P/ P/	/ Barra 37 Corrente (A): / Barra 35 Corrente (A):	.000 .000 .00 8.392 4.068 42.90	.000 .000 .00 7.522 3.615 38.36	.000 .000 .00 10.166 4.947 52.12	
Р/ Р/ ——— Ва	/ Barra 37 Corrente (A): / Barra 35 Corrente (A): arra Nome 35 CARGA 35	.000 .000 .00 8.392 4.068 42.90 Fase a (KW) (KVAr)	.000 .000 .00 7.522 3.615 38.36 Fase b (KW) (KVAr)	.000 .000 .00 10.166 4.947 52.12 Fase c (KW) (KVAr)	

			and the second se
Corrente (A):	37.43	35.65	46.65
Barra Nome	Fase a	Fase b	Fase c
34 CARGA_34	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 53	6.683 3.225	6.624 3.186	8.678 4.189
Corrente (A):	34.71	34.31	45.34
Barra Nome	Fase a	Fase b	Fase c
53 DERV	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
<pre>P/ Barra 33</pre>	$\begin{array}{rrrr} .270 & .131 \\ 1.41 \\ 1.904 & .920 \\ 9.96 \\ 4.474 & 2.152 \\ 23.40 \end{array}$.270 .131	.270 .131
Corrente (A):		1.41	1.43
P/ Barra 25		2.730 1.318	2.737 1.324
Corrente (A):		14.25	14.44
P/ Barra 31		3.585 1.716	5.607 2.686
Corrente (A):		18.68	29.54
Barra Nome	Fase a	Fase b	Fase c
25 CARGA_25	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 24	1.628 .788	2.175 1.052	2.724 1.319
Corrente (A):	8.55	11.42	14.46
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
24 CARGA_24 P/ Barra 23 Corrente (λ):	1.083 .524 5.71	1.086 .526 5.73	2.170 1.051 11.58
Barra Nome	Fase a	Fase b	Fase c
23 CARGA 23	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 22	.541 .262	1.083 .525	.541 .262
Corrente (A):	2.86	5.73	2.90
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 6	.270 .131	.541 .262	.270 .131
Corrente (A):	1.43	2.87	1.45
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 7 Corrente (A):		.541 .262 2.87	
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 30	4.442 2.142	3.562 1.713	5.278 2.536

······································		and the second se	
Corrente (A):	23.45	18.71	28.13
Barra Nome	Fase a	Fase b	Fase c
30 CARGA_30	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 29	4.138 1.998	2.458 1.184	4.413 2.125
Corrente (A):	22.05	13.01	23.79
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 51	3.567 1.724	2.178 1.051	3.293 1.588
Corrente (A):	19.17	11.59	17.92
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
<pre>51 CARGA_51 P/ Barra 50 Corrente (A):</pre>	3.003 1.453	1.630 .787	2.730 1.319
	16.26	8.71	14.97
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
50 CARGA_50 P/ Barra 49 Corrente (A):	2.175 1.053 11.86	1.355 .656 7.27	1.904 .921 10.50
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
49 CARGA_49 P/ Barra 48 Corrente (A):	1.626 .788 8.91	.811 .393 4.37	1.626 .788 9.01
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
48 CARGA_48 P/ Barra 47 Corrente (\alpha):	.541 .262 2.97	.270 .131 1.46	.541 .262 3.01
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
39 CRG_DERV P/ Barra 40 Corrente (A):	.270 .131 1.39		.812 .393 4.20
P/ Barra 42	1.904 .916	4.733 2.277	4.114 1.994
Corrente (A):	9.75	24.36	21.31
P/ Barra 28	8.959 4.221	10.672 4.901	14.750 7.002
Corrente (A):	45.70	54.48	76.11
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
40 CARGA_40 P/ Barra 41	.270 .131		.541 .262

Corrente (A):	1.39		2.80
Barra Nome	Fase a	Fase b	Fase c
42 CARGA_42	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 43	1.628 .785	4.417 2.134	4.091 1.983
Corrente (A):	8.37	22.96	21.36
Barra Nome	Fase a	Fase b	Fase c
43 CARGA_43	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 44	1.083 .524	4.108 1.989	2.714 1.315
Corrente (A):	5.59	21.55	14.28
Barra Nome	Fase a	Fase b	Fase c
44 CARGA_44	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 45	.541 .262	3.265 1.582	.541 .262
Corrente (A):	2.80	17.27	2.86
Barra Nome 45 CARGA_45 P/ Barra 46 Corrente (A):	Fase a (KW) (KVAr)	Fase b (KW) (KVAr) 1.354 .656 7.21	Fase c (KW) (KVAr)
Barra Nome	Fase a	Fase b	Fase c
28 CARGA_28	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 27	8.568 4.066	10.457 4.869	13.575 6.469
Corrente (A):	44.52	54.61	72.13
Barra Nome	Fase a	Fase b	Fase c
27 CARGA_27	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 26	8.187 3.907	8.621 4.038	12.700 6.081
Corrente (A):	43.31	46.02	69.44
Barra Nome	Fase a	Fase b	Fase c
26 CARGA_26	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 52	7.268 3.486	8.195 3.887	11.851 5.699
Corrente (A):	39.14	44.63	66.67
Barra Nome 52 DERV P/ Barra 14 Corrente (A): P/ Barra 16 Corrente (A): P/ Barra 13	Fase a (KW) (KVAr) 2.744 1.321 15.01 4.427 2.130	Fase b (KW) (KVAr) .270 .131 1.50 3.032 1.459 16.85 4.749 2.253	Fase c (KW) (KVAr) .812 .393 4.70 3.580 1.729 20.71 7.159 3.443

Corrente (A):	24.22	26.33	41.38
Barra Nome 14 CARGA_14 P/ Barra 15 Corrente (A):	Fase a (KW) (KVAr)	Fase b (KW) (KVAr) .270 .131 1.50	Fase c (KW) (KVAr) .541 .262 3.14
Barra Nome	Fase a	Fase b	Fase c
16 CARGA_16	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 17	2.190 1.055	3.011 1.455	3.554 1.719
Corrente (A):	12.06	16.86	20.74
Barra Nome	Fase a	Fase b	Fase c
17 CARGA_17	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 18	2.181 1.053	2.452 1.187	2.446 1.184
Corrente (A):	12.07	13.83	14.40
Barra Nome	Fase a	Fase b	Fase c
18 CARGA_18	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 19	1.630 .789	1.899 .920	.812 .393
Corrente (A):	9.07	10.77	4.81
Barra Nome 19 CARGA_19 P/ Barra 20 Corrente (A):	Fase a (KW) (KVAr) 1.083 .525 6.05	Fase b (KW) (KVAr) .811 .393 4.62	Fase c (KW) (KVAr)
Barra Nome 20 CARGA_20 P/ Barra 21 Corrente (A):	Fase a (KW) (KVAr) .541 .262 3.03	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
Barra Nome	Fase a	Fase b	Fase c
13 CARGA_13	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 12	3.584 1.727	4.157 1.983	6.508 3.136
Corrente (A):	19.80	23.31	38.29
Barra Nome	Fase a	Fase b	Fase c
12 CARGA_12	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 11	2.751 1.327	3.576 1.714	5.332 2.570
Corrente (A):	15.33	20.26	31.89
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)

11 CARGA_11 P/ Barra 10 Corrente (A):	2.198 1.062 12.32	2.734 1.315 15.63	4.726 2.279 28.65
Barra Nome	Fase a	Fase b	Fase c
10 CARGA_10	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 9	1.920 .928	1.636 .787	3.319 1.600
Corrente (A):	10.82	9.41	20.38
Barra Nome	Fase a	Fase b	Fase c
9 CARGA 9	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 8	1.914 .926	1.360 .655	2.750 1.327
Corrente (A):	10.84	7:86	17.04
Barra Nome	Fase a	Fase b	Fase c
8 CARGA 8	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 5	1.908 .923	1.085 .524	2.460 1.189
Corrente (A):	10.85	6.30	15.36
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 4	1.631 .789	.813 .393	1.903 .921
Corrente (A):	9.32	4.73	11.97
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 3	1.085 .525	.541 .262	.813 .393
Corrente (\lambda):	6.22	3.16	5.14
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 2	.812 .393	.541 .262	.541 .262
Corrente (λ):	4.67	3.16	3.43
Barra Nome	Fase a	Fase b	Fase c
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)
P/ Barra 1	.541 .262	.270 .131	.270 .131
Corrente (A):	3.12	1.58	1.72
	SOLUCAO FLUXC PERDAS	DE CARGA RADIAL - DE POTENCIA	

Barra Nome	Fase a	Fase b	Fase c	
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)	
54 SEBT	· · · ·		,, , , ,	
P/ Barra 38	.007 .003	014 005	016 012	
		.014 .005	.010 .015	
Parra Nomo	Page e	Dese h		
Dalla Nome	rase a	Fase D	Fase c	
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)	
38 CRG_DERV				
P/ Barra 36	.047 .029	.045 .016	.076 .052	
P/ Barra 39	.073 .029	.250 .085	279 251	
Barra Nome	Faco a	Faco h	Page a	
Durra Home			rase c	
AC DEDU	(NW) (NVAL)	(KW) (KVAr)	(KW) (KVAr)	
36 DERV				
P/ Barra 37	.000 .000	.000 .000	.000 .000	
P/ Barra 35	.047 .030	.045 .016	.076 .053	
Barra Nome	Fase a	Fase b	Fase c	
	(KW) $(KVAr)$	(KW) (KV)r)	(KM) (KUNE)	
25 01001 25	(KW) (KVAL)	(NW) (NVML)	(KW) (KVAL)	
D D CARGA_33				
P/ Barra 34	.036 .021	.040 .015	.060 .043	
Barra Nome	Fase a	Fase b	Fase c	
	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)	
34 CARGA 34	(/ (/	(/ (/	() ()	
D/ Darma E2	010	020 012	056 041	
P/ Dalla 55	.030 .010	.030 .015	.056 .041	
				£5
Harra Nomo	Fase a		200 C	
Dalla Nome	Tube u	rase D	Tase C	
Dalla Nome	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)	
53 DERV	(KW) (KVAr)	(KW) (KVAr)	(KW) (KVAr)	
53 DERV P/ Barra 33	(KW) (KVAr) .000 .000	- ASE D (KW) (KVAr) .000 .000	(KW) (KVAr)	
53 DERV P/ Barra 33 P/ Barra 25	(KW) (KVAr) .000 .000	- ASE D (KW) (KVAr) .000 .000 .014 .003	(KW) (KVAr) .000 .000	
53 DERV P/ Barra 33 P/ Barra 25 D/ Barra 31	(KW) (KVAr) .000 .000 .006 .001 032 010	rase b (KW) (KVAr) .000 .000 .014 .003	(KW) (KVAr) .000 .000 .012 .004 .058 .018	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31	(KW) (KVAr) .000 .000 .006 .001 .032 .010	rase b (KW) (KVAr) .000 .000 .014 .003 .023 .002	.000 .000 .012 .004 .058 .018	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31	(KW) (KVAr) .000 .000 .006 .001 .032 .010	rase b (KW) (KVAr) .000 .000 .014 .003 .023 .002	(KW) (KVAr) .000 .000 .012 .004 .058 .018	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a	Fase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr)	Fase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr)	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr)	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA 25	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr)	Fase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr)	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr)	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001	Fase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr) .010 .002	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001	Fase D (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr) .010 .002	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001	Fase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr) .010 .002	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KUAr)	Fase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr) .010 .002 Fase b	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr)	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KVAr)	Fase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr) .010 .002 Fase b (KW) (KVAr)	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr)	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome 24 CARGA_24	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KVAr)	Fase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr) .010 .002 Fase b (KW) (KVAr)	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr)	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome 24 CARGA_24 P/ Barra 23	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KVAr) .002 .000	Fase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr) .010 .002 Fase b (KW) (KVAr) .003 .000	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr) .009 .004	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome 24 CARGA_24 P/ Barra 23	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KVAr) .002 .000	Fase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr) .010 .002 Fase b (KW) (KVAr) .003 .000	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr) .009 .004	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome 24 CARGA_24 P/ Barra 23 Barra Nome	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KVAr) .002 .000 Fase a	<pre>rase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr) .010 .002 Fase b (KW) (KVAr) .003 .000 Fase b</pre>	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr) .009 .004 Fase c	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome 24 CARGA_24 P/ Barra 23 Barra Nome	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KVAr) .002 .000 Fase a (KW) (KVAr)	<pre>rase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr) .010 .002 Fase b (KW) (KVAr) .003 .000 Fase b (KW) (KVAr)</pre>	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr) .009 .004 Fase c (KW) (KVAr)	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome 24 CARGA_24 P/ Barra 23 Barra Nome	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KVAr) .002 .000 Fase a (KW) (KVAr)	rase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KVAr) .010 .002 Fase b (KVAr) .010 .002 Fase b (KVAr) .003 .000 Fase b (KW) (KW) (KVAr)	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr) .009 .004 Fase c (KW) (KVAr)	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome 24 CARGA_24 P/ Barra 23 Barra Nome 23 CARGA_23	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KVAr) .002 .000 Fase a (KW) (KVAr)	rase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KVAr) .010 .002 Fase b (KVAr) .010 .002 Fase b (KVAr) .003 .000 Fase b (KW) (KW) (KVAr) .003 .000	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr) .009 .004 Fase c (KW) (KVAr)	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome 24 CARGA_24 P/ Barra 23 Barra Nome 23 CARGA_23 P/ Barra 22	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KVAr) .002 .000 Fase a (KW) (KVAr) .001 .000	rase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KVAr) .010 .002 Fase b (KVAr) .010 .002 Fase b (KVAr) .003 .000 Fase b (KW) .003 .000 .002 .001	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr) .009 .004 Fase c (KW) (KVAr) .000 .000	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome 24 CARGA_24 P/ Barra 23 Barra Nome 23 CARGA_23 P/ Barra 22	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KVAr) .002 .000 Fase a (KW) (KVAr) .001 .000	<pre>rase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr) .010 .002 Fase b (KW) (KVAr) .003 .000 Fase b (KW) (KVAr) .002 .001</pre>	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr) .009 .004 Fase c (KW) (KVAr) .000 .000	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome 24 CARGA_24 P/ Barra 23 Barra Nome 23 CARGA_23 P/ Barra 22 Barra Nome	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KVAr) .002 .000 Fase a (KW) (KVAr) .001 .000 Fase a	<pre>rase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr) .010 .002 Fase b (KW) (KVAr) .003 .000 Fase b (KW) (KVAr) .002 .001 Fase b</pre>	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr) .009 .004 Fase c (KW) (KVAr) .000 .000 Fase c	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome 24 CARGA_24 P/ Barra 23 Barra Nome 23 CARGA_23 P/ Barra 22 Barra Nome	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KVAr) .002 .000 Fase a (KW) (KVAr) .001 .000 Fase a (KW) (KVAr)	<pre>rase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KW) (KVAr) .010 .002 Fase b (KW) (KVAr) .003 .000 Fase b (KW) (KVAr) .002 .001 Fase b (KW) (KVAr)</pre>	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr) .009 .004 Fase c (KW) (KVAr) .000 .000 Fase c (KW) (KVAr)	
53 DERV P/ Barra 33 P/ Barra 25 P/ Barra 31 Barra Nome 25 CARGA_25 P/ Barra 24 Barra Nome 24 CARGA_24 P/ Barra 23 Barra Nome 23 CARGA_23 P/ Barra 22 Barra Nome	(KW) (KVAr) .000 .000 .006 .001 .032 .010 Fase a (KW) (KVAr) .004 .001 Fase a (KW) (KVAr) .002 .000 Fase a (KW) (KVAr) .001 .000 Fase a (KW) (KVAr)	rase b (KW) (KVAr) .000 .000 .014 .003 .023 .002 Fase b (KVAr) .010 .002 Fase b (KVAr) .010 .002 Fase b (KVAr) .003 .000 Fase b (KW) .002 .001 Fase b (KW) .002 .001	(KW) (KVAr) .000 .000 .012 .004 .058 .018 Fase c (KW) (KVAr) .013 .005 Fase c (KW) (KVAr) .009 .004 Fase c (KW) (KVAr) .000 .000 Fase c (KW) (KVAr)	

P/Barra 6	.000	.000	.001 .000	.000	.000
Barra Nome 6 CARGA 6	Fase (KW) (a KVAr)	Fase b (KW) (KVAr)	Fase (KW) (c KVAr)
P/ Barra 👘 7			.001 .000		
Barra Nome	Fase (KW) (a KVAr)	Fase b (KW) (KVAr)	Fase (KW) (c KVAr)
P/ Barra 30	.033	.010	.023 .002	.053	.016
Barra Nome	Fase (KW) (a KVAr)	Fase b (KW) (KVAr)	Fase (KW) (c KVAr)
P/ Barra 29	.029	.011	.010 .000	.040	.011
Barra Nome	Fase (KW) (a KVAr)	Fase b (KW) (KVAr)	Fase (KW) (c KVAr)
P/ Barra 51	.023	.008	.008 .001	.022	.005
Barra Nome	Fase (KW) (a KVAr)	Fase b (KW) (KVAr)	Fase (KW) (c KVAr)
P/ Barra 50	.016	.006	.004 .000	.016	.004
Barra Nome 50 CARGA_50	Fase (KW) (a KVAr)	Fase b (KW) (KVAr)	Fase (KW) (c KVAr)
P/ Barra 49	.009	.003	.003 .000	.008	.002
Barra Nome 49 CARGA_49 P/ Barra 48	Fase (KW) (e a KVAr) .002	Fase b (KW) (KVAr .001 .000	Fase (KW) () .006	c KVAr) .001
Barra Nome	(KW)	(KVAr)	(KW) (KVAr) (KW) (KVAr)
48 CARGA_48 P/ Barra 47	.001	.000	.000 .00	0.001	.000
Barra Nome 39 CRG_DERV	Fas (KW)	e a (KVAr)	Fase b (KW) (KVAr	Fase) (KW) (c KVAr)
P/ Barra 40 P/ Barra 42 P/ Barra 28	.000	001 .023	.045 .01 .217 .02	2 .024 9 .363	.011 .136
Barra Nome 40 CARGA_40	Fas (KW)	e a (KVAr)	Fase b (KW) (KVAr	Fase) (KW) (e C KVAr)

P/ Barra 41	.000 .000 .001 .000
Barra Nome 42 CARGA 42	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (KVAr)
P/ Barra 43	.004001 .041 .010 .024 .012
Barra Nome 43 CARGA_43	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (KVAr)
P/ Barra 44	.002001 .035 .011 .009 .005
Barra Nome 44 CARGA_44	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (KVAr)
P/ Barra 45	.001001 .021 .010 .000 .000
Barra Nome 45 CARGA_45	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (KVAr)
P/ Barra 46	.004 .002
Barra Nome 28 CARGA_28	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (KVAr)
P/Barra 27	.113 .020 .216 .033 .322 .120
Barra Nome 27 CARGA_27	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (KVAr)
P/Barra 26	.104 .024 .154 .016 .309 .113
Barra Nome 26 CARGA_26	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) 082 018 147 016 282 106
P/ Balla 52	.065 .016 .147 .010 .262 .100
Barra Nome 52 DERV	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (KVAr)
P/ Barra 14 P/ Barra 16 P/ Barra 13	.000 .000 .001 .001 .014 .003 .020 .003 .027 .009 .031 .007 .051 .005 .110 .041
Barra Nome 14 CARGA_14 P/ Barra 15	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (KVAr) .000 .001 .000
Barra Nome 16 CARGA_16	Fase a Fase b Fase c (KW) (KVAr) (KW) (KVAr) (KW) (KVAr)

	the second s		
P/ Barra 17	.008 .001	.021 .004	.026 .010
Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
P/ Barra 18	.009 .002	.013 .003	.013 .004
Barra Nome 18 CARGA_18	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
P/ Barra 19	.006 .001	.007 .003	.001 .000
Barra Nome 19 CARGA_19	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
P/Barra 20	.003 .001	.001 .001	
Barra Nome 20 CARGA_20	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
P/ Barra 21	.001 .000		
Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
P/ Barra 12	.020 .004	.042 .003	.094 .037
Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
P/ Barra 11	.012 .002	.032 .003	.064 .026
Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
P/ Barra 10	.007 .001	.020 .001	.053 .022
Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
P/ Barra 9	.006 .002	.007 .000	.028 .011
Barra Nome	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
P/ Barra 8	.006 .002	.004 .000	.020 .007
Barra Nome 8 CARGA 8	Fase a (KW) (KVAr)	Fase b (KW) (KVAr)	Fase c (KW) (KVAr)
P/Barra 5	.006 .003	.003 .000	.017 .005

Continuação			
Barra Nome 5 CARGA_5	Fase a (KW) (KVAr) (Fase b KW) (KVAr) (1	Fase c KW) (KVAr)
P/ Barra 4	.005 .002	.001 .000	.010 .003
Barra Nome 4 CARGA_4	Fase a (KW) (KVAr) (Fase b KW) (KVAr) (1	Fase c KW) (KVAr)
P/ Barra 3	.002 .001	.001 .000	.002 .000
Barra Nome 3 CARGA 3	Fase a (KW) (KVAr) (Fase b KW) (KVAr) ()	Fase c KW) (KVAr)
P/ Barra 2	.001 .000	.001 .000	.001 .000
Barra Nome	Fase a (KW) (KVAr) (Fase b KW) (KVAr) (Fase c KW) (KVAr)
P/ Barra 1	.001 .000	.000 .000	.000 .000
CRITERIO DE O	CONVERGENCIA : Variaca	ao da tensao (modulo	e fase).
TOLERANCIA M	ODULO DA TENSAO : .00	000100000	
TOLERANCIA F.	ASE DA TENSAO : .0000	0100000	
NUMERO DE IT	ERACOES : 5		
TOTAL PERDAS	ATIVA (KW): F	ase a Fase b .968 1.636	Fase c 2.601
TOTAL PERDAS	REATIVA (KVAr) :	Fase a Fase b	Fase c 1.204
TOTAL PERDAS	SISTEMA : (KW) 5.205	(KVAr) 1.822	

•