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Resumo

Definir e implementar refatoramentos não é uma tarefa trivial, pois é difícil definir todas as

pré-condições necessárias para garantir que a transformação preserve o comportamento ob-

servável do programa. Com isso, ferramentas de refatoramentos podem ter condições muito

fracas, condições muito fortes e podem aplicar transformações que não seguem a definição

do refatoramento. Na prática, desenvolvedores escrevem casos de testes para checar suas im-

plementações de refatoramentos e se preocupam em evitar esses tipos de bugs, pois 84% das

asserções de testes do Eclipse e JRRT testam as ferramentas com relação aos bugs citados

anteriormente. No entanto, as ferramentas ainda possuem esses bugs. Existem algumas téc-

nicas automáticas para testar ferramentas de refatoramentos, mas elas podem ter limitações

relacionadas com tipos de bugs que podem ser detectados, geração de entradas de testes, au-

tomação e performance. Este trabalho propõe uma técnica para escalar testes de ferramentas

de refatoramentos. A técnica contém DOLLY um gerador automático de programas Java e C,

no qual foram adicionadas mais construções de Java (classes e métodos abstratos e interface)

e uma estratégia de pular algumas entradas de testes com o propósito de reduzir o tempo

de testar as implementações de refatoramentos. Foi proposto um conjunto de oráculos para

avaliar a corretude das transformações, dentre eles SAFEREFACTORIMPACT que identifica

falhas relacionadas com mudanças comportamentais. SAFEREFACTORIMPACT gera testes

apenas para os métodos impactados pela transformação. Além disso, foi proposto um novo

oráculo para identificar transformações que não seguem a definição do refatoramento e uma

nova técnica para identificar condições muito fortes. A técnica proposta foi avaliada em 28

implementações de refatoramentos de Java (Eclipse e JRRT) e C (Eclipse) e detectou 119

bugs relacionados com erros de compilação, mudanças comportamentais, condições muito

fortes, e transformações que não seguem a definição do refatoramento. Usando pulos de

10 e 25 no gerador de programas, a técnica reduziu em 90% e 96% o tempo para testar as

implementações de refatoramentos, enquanto deixou de detectar apenas 3% e 6% dos bugs,

respectivamente. Além disso, detectou a primeira falha geralmente em alguns segundos. Por

fim, com o objetivo de avaliar a técnica proposta com outras entradas de testes, foram avali-

adas implementações do Eclipse e JRRT usando os programas de entrada das suas coleções

de testes. Neste estudo, nossa técnica detectou mais 31 bugs não detectados pelos desen-

volvedores das ferramentas.
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Abstract

Defining and implementing refactorings is a nontrivial task since it is difficult to define

preconditions to guarantee that the transformation preserves the program behavior. There-

fore, refactoring engines may have overly weak preconditions, overly strong preconditions,

and transformation issues related to the refactoring definition. In practice, developers man-

ually write test cases to check their refactoring implementations. We find that 84% of the

test suites of Eclipse and JRRT are concerned with identifying these kinds of bugs. However,

bugs are still present. Researchers have proposed a number of techniques for testing refac-

toring engines. Nevertheless, they may have limitations related to the bug type, program

generation, time consumption, and number of refactoring engines necessary to evaluate the

implementations. In this work, we propose a technique to scale testing of refactoring engines

by extending a previous technique. It automatically generates programs as test inputs using

Dolly, a Java and C program generator. We add more Java constructs in DOLLY, such ab-

stract classes and methods and interface, and a skip parameter to reduce the time to test the

refactoring implementations by skipping some consecutive test inputs. Our technique uses

SAFEREFACTORIMPACT to identify failures related to behavioral changes. It generates test

cases only for the methods impacted by a transformation. Also, we propose a new oracle to

evaluate whether refactoring preconditions are overly strong by disabling a subset of them.

Finally, we present a technique to identify transformation issues related to the refactoring

definition. We evaluate our technique in 28 refactoring implementations of Java (Eclipse and

JRRT) and C (Eclipse) and find 119 bugs related to compilation errors, behavioral changes,

overly strong preconditions, and transformation issues. The technique reduces the time in

90% and 96% using skips of 10 and 25 in Dolly while missing only 3% and 6% of the bugs,

respectively. Additionally, it finds the first failure in general in a few seconds using skips.

Finally, we evaluate our proposed technique by using other test inputs, such as the input

programs of Eclipse and JRRT refactoring test suites. We find 31 bugs not detected by the

developers.
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Chapter 1

Introduction

During its life cycle, a software may change due to introduce new features and enhancements,

improve its internal structure, or make its processing more efficient. Systems continue to

evolve over time and become more complex as they grow. Developers can take some actions

to avoid that, such as code refactoring, a kind of perfective maintenance [82]. The term

Refactoring was originally coined by Opdyke and Johnson [56], and popularized in practice

by Fowler [14], as the process of changing the internal structure of a program to improve its

internal quality while preserving its external behavior.

Refactorings can be manually applied, which may be time consuming and error prone,

or automatically by using a refactoring engine, such as Eclipse [12], NetBeans [54], and Jas-

tAdd Refactoring Tools (JRRT) [68]. Refactoring engines may contain a number of refac-

toring implementations, such as Rename Class, Pull Up Method, and Encapsulate Field. For

correctly applying a refactoring, and thus ensure behavior preservation, the refactoring im-

plementations usually need to consider preconditions, such as checking for naming conflicts.

However, defining and implementing refactorings is a nontrivial task since it is difficult to de-

fine all preconditions to guarantee that the transformation1 preserves the program behavior.

In fact, proving refactoring correctness for entire languages, such as Java and C, constitutes

a challenge [70].

In practice, refactoring engine developers may implement the refactoring preconditions

based on their experience, some previous work [16] or formal specifications [68]. How-

1Hereafter, we refer to transformation as a modification to a program and refactoring transformation as a

transformation that preserves the program behavior.

1
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ever, the implemented preconditions may be overly weak, allowing non-behavior preserv-

ing transformations or overly strong, preventing developers from applying useful transfor-

mations. Also, the implementation may not follow the refactoring definition [64; 55; 14;

68] (what a specific kind of refactoring transformation must and must not do). Then, refac-

toring engines may have bugs [80; 77].

1.1 Problem

In general, developers of refactoring engines manually write test cases to detect overly weak

preconditions, overly strong preconditions, and transformations that do not follow the refac-

toring definition (transformation issues), which may be time consuming and error prone. We

investigate the test suites of 20 refactoring implementations of Eclipse JDT 4.5 and JRRT

(02/03/13) and find that 84% of the test assertions are concerned with identifying those

kinds of bugs. Nevertheless, the bugs are still present. Testing refactoring engines is not

trivial since it requires complex inputs, such as programs, and an oracle to define the cor-

rect resulting program or whether the transformation must be rejected. Manually writing

test cases may be costly, and thus it may be difficult to create a good test suite considering

all language constructs. Researchers have proposed a number of automated techniques for

testing refactoring engines [10; 22; 77; 21]. They may automate four major steps of the test-

ing process: (i) generating test inputs; (ii) applying the refactoring; (iii) checking the output

correctness; (iv) and classifying the detected failures into distinct bugs.

For example, to automate test input generation, Gligoric et al. [22] propose UDITA (an

extension of ASTGEN [10]), a Java-like language to write program generators so that de-

velopers can generate programs as test inputs. They used UDITA to generate about 5,000

programs with up to 3 classes as test inputs [22]. However, as the authors of UDITA stated

later [21], configuring UDITA to generate specific programs demands a considerable effort.

Soares et al. [80; 77] propose a Java program generator called JDOLLY for exhaustively

generating programs. By using JDOLLY, developers can specify the number of some Java

constructs and constraints for the generated programs by using Alloy [27], a formal spec-

ification language. They used JDOLLY to generate more than 100,000 programs. Alloy

logic presented, as expected, a higher level of abstraction than Java-like code. For exam-
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ple, the results of the closure operator in Alloy can only be achieved programmatically after

considerable additional effort. Their technique has an oracle that uses Differential Testing

(DT) to automatically identify overly strong preconditions in refactoring implementations.2

It applies the same refactoring to each test input using two different implementations, and

compares the results. The DT technique needs at least two refactoring engines. When both

engines under test reject to apply a transformation due to overly strong preconditions the DT

technique cannot detect them. Additionally, automating another engine may be costly, as the

developer might not be familiar with its code. Finally, this approach can only be used if the

engines implement the same refactoring. Exhaustively generating programs, even for a small

number of Java constructs, may require a lot of time. To alleviate this problem, Jagannath et

al. [29] propose the Sparse Test Generation technique (STG), which skips some test inputs.

They reduce the time to find the first failure.

Later, Gligoric et al. [21] propose to use real programs as test inputs, automatically ap-

plying the refactoring under test in every possible location of the program. They found 141

bugs related to compilation errors and engine crash in the refactoring implementations of

Eclipse JDT and CDT by using 8 real systems in Java and C as test inputs. Although this

approach can reduce the effort to create test inputs, testing refactoring engines in large pro-

grams may increase the costs of checking the output correctness. For example, to identify

bugs related to behavioral changes, Soares et al. [77] use SAFEREFACTOR, a tool that ana-

lyzes a transformation and generates tests to compare the program behavior before and after

the transformation. SAFEREFACTOR was useful for finding 63 bugs related to behavioral

changes in the programs generated by JDOLLY. However, using SAFEREFACTOR to evalu-

ate transformations on large real programs would require a much higher time for analyzing

the transformation and generating tests. Additionally, understanding a failure in a large trans-

formation demands more time. Gligoric et al. [21] take 1-60 minutes to analyze each failure

in order to categorize them into distinct bugs. In summary, the previous approaches have

limitations related to the kinds of bugs that can be detected, program generator (exhaustive-

ness, setup, expressiveness), time consumption, or number of refactoring engines necessary

to evaluate a refactoring implementation.

2Hereafter, we refer to the technique that uses DT oracle as DT technique.
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1.2 Solution

In this work, we propose a technique to scale testing of refactoring engines by improving

limitations of techniques discussed in the previous section [77; 80; 22; 21]. It automati-

cally generates programs as test inputs using DOLLY, an automated and exhaustive Java and

C program generator. Our technique can find bugs related to overly weak preconditions

(compilation errors and behavioral changes), overly strong preconditions, and transforma-

tion issues. We improve the previous technique [77] with respect to DOLLY’s expressive-

ness, reduction of the time to test the refactoring implementations, and new oracles to detect

behavioral changes and transformation issues. We add more Java constructs in DOLLY to

improve its expressiveness, propose a technique to skip some consecutive test inputs to re-

duce the costs and improve performance [47], present a new technique to identify overly

strong preconditions that does not need other refactoring engine, refine an oracle to identify

behavioral changes [46], and introduce two oracles to identify a new kind of bug related to

transformation issues.

Our technique may reduce the time to test the refactoring implementations by skipping

some consecutive test inputs. Consecutive programs generated by DOLLY tend to be very

similar, potentially detecting the same kind of bug. Thus, developers can set a parameter to

skip some programs to reduce the time to test the refactoring implementations. By skipping

these programs, we can reduce the Time to First Failure (TTFF), reducing the developer idle

time [29]. We improve the expressiveness of DOLLY by adding abstract classes, abstract

methods, and interfaces. By improving the expressiveness of the program generator, the

technique may find more bugs. For example, all transformation issues that our technique

finds in this work, were related to these new DOLLY’s constructs.

We propose a new technique to identify overly strong preconditions by disabling some

preconditions (DP technique). For each program generated by DOLLY, we apply the trans-

formation using the refactoring engine under test. Next, we collect the different kinds of

messages reported by the refactoring engine when it rejects transformations. For each kind

of message, we inspect the refactoring engine and manually identify the refactoring precon-

ditions that can raise it. We change the refactoring engine code to allow disabling the precon-

ditions that prevent the refactoring. If the engine, with some preconditions disabled applies
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the transformation, and it preserves the program behavior according to SAFEREFACTORIM-

PACT [46], then we classify the set of disabled preconditions as overly strong. SAFEREFAC-

TORIMPACT [46] automatically checks whether a transformation preserves the program be-

havior.

We propose two oracles to identify transformation issues in refactoring implementations:

Differential Testing (DT) and Structural Change Analysis (SCA) oracles. DT oracle com-

pares the outputs of two refactoring implementations. For this, we implement a program

that compares two Java programs concerning their Abstract Syntax Tree (AST). When the

outputs compile and preserve the program behavior, we use our comparator to check if they

are different. If the comparator identifies some difference, we manually inspect the transfor-

mations to analyze if one of them (or both) has issues. SCA oracle automatically analyzes

whether the input and output programs have some expected properties necessary to satisfy

the refactoring definition. We implement a program to check the refactoring definitions. For

each output that compiles and preserves the program behavior, the technique checks whether

the transformation follows the refactoring definition.

We use SAFEREFACTORIMPACT as the oracle to detect behavioral change transforma-

tions. SAFEREFACTORIMPACT generates test cases only for the methods impacted by a

transformation. It reduces the time to test the refactoring implementations and generates

more relevant tests than SAFEREFACTOR. Previously [45], we proposed SAFEREFAC-

TORIMPACT and used it to detect faults related to overly weak preconditions. In this work,

we made minor improvements and also used it to detect faults related to overly strong pre-

conditions and transformation issues. Also, we evaluated it in new subjects, including real

case studies, considering Object-Oriented (OO) and Aspect-Oriented (AO) constructs with

respect to two new defined metrics (change coverage and relevant tests), time to evaluate a

transformation, and detected behavioral change transformations. The evaluation in the con-

text of Aspects showed evidence that the technique is useful to evaluate transformations in

AspectJ programs.

After identifying the failures, the proposed technique uses a set of automated bug cate-

gorizers to classify all failing transformations into distinct bugs. In our previous work [80]

we used an approach similar to the approach proposed by Jagannath et al. [29] (Oracle-based

Test Clustering) to automate the classification of failures related to overly strong precondi-
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tions. We implement an automated issue categorizer to classify the outputs of DT and SCA

oracles into different kinds of issues. It is based on the kinds of differences between the out-

puts (for DT oracle) and the kinds of refactoring definitions that the transformations do not

follow (for SCA oracle). Soares et al. [77] specified a systematic, but manual approach to

categorize failures related to behavioral changes. We automate it in this work. For simplicity

we use the term transformation to refer to a refactoring or a failing transformation.

Table 1.1 summarizes the comparison among our technique and previous techniques to

test refactoring engines. It illustrates an overview of previous technique’s limitation and our

contribution to improve some of them in this work. Our technique has DOLLY, an automated

program generator for Java (JDOLLY [77]) and C (CDOLLY) (Column 2). DOLLY extends

JDOLLY by adding more Java constructs to improve its expressiveness (Column 3). We also

included a skip parameter to reduce the number of generated programs and thus, reduce

the time to test the refactoring implementations (Column 4). Our technique uses SAFER-

EFACTORIMPACT to automatically detect behavioral changes using change impact analysis

(Column 6). We propose the DP technique to detect overly strong preconditions by disabling

some of them. It does not need other refactoring engine that implements the same refactor-

ing to test a refactoring implementation (Column 7). Finally, we propose a new automated

oracle to detect transformation issues related to the refactoring definition (Column 8).

1.3 Evaluation

We evaluated our proposed technique to scale testing of refactoring engines in 28 refactoring

implementations of JRRT [68], Eclipse JDT (Java), and Eclipse CDT (C). We found 119 bugs

in a total of 49 bugs related to compilation errors, 17 bugs related to behavioral changes,

35 bugs related to overly strong preconditions (30 bugs using DP technique and 24 using

DT technique), and 18 transformation issues related to the refactoring definition. We also

compared the impact of the skip on the time consumption and bug detection in our technique.

The technique reduces the time in 90% and 96% using skips of 10 and 25 in DOLLY while

missing only 3% and 6% of the bugs, respectively. By using skips, we found the first failure

related to compilation error, behavioral change, or overly strong preconditions in general in

a few seconds. So, the refactoring engine developer can quickly find a bug in the refactoring
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Table 1.1: Comparison between techniques to test refactoring engines. Express. = Expres-

siveness of the test inputs; CE = Compilation Errors; BC = Behavioral Changes; OSC =

Overly Strong Conditions; TI = Transformation Issues; Yes = the technique contains the

oracle/program generator; No = otherwise; CIA = Change Impact Analysis.

implementation, fix it, run our technique again to find another bug, and so on. Before a

release, tool developers can run the technique without skip to find the missed bugs.

We evaluated the DP technique in 10 refactorings from Eclipse JDT 4.5 and the same

10 of the latest JRRT version (02/03/13). We generated more than 150,000 programs as test

inputs and detect 30 overly strong preconditions in the refactoring implementations. So far,

Eclipse developers confirmed 47% of them. It took around 1h and 35h to detect all overly

strong preconditions of JRRT and Eclipse, respectively. Our current setup to the test the

refactoring implementations of Eclipse is costlier than the JRRT ones. The DP technique

took on average a few seconds to find the first overly strong precondition in JRRT and on

average 17.41 minutes in Eclipse.

We compared the DP technique with our previous one (DT technique) by using the same

input programs. The DP technique detected 11 bugs (37% of new bugs) not detected by the

DT technique, while missing 5 bugs (21% of the bugs detected by the DT technique). In

addition, the DP technique did not require using another engine with the same refactorings

to compare the results. So, whenever possible, developers can run the DP technique and after

fixing the detected bugs, they run the DT technique to find more bugs.

We also performed another study in which we used programs from the Eclipse and JRRT
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refactoring test suite as inputs for our technique instead of the automatically generated ones

from JDOLLY. Our goal was to analyze if our technique can find bugs using other input pro-

grams. We evaluated the same refactoring implementations evaluated before. We detected

23 overly strong preconditions (17 of them were not detected using the programs generated

by DOLLY), 6 bugs related to compilation errors, and 2 bugs related to behavioral changes

previously undetected by the developers. We reported the bugs to the Eclipse developers and

so far, they did not answer. The developers did not find these bugs because they may not have

a systematic strategy to detect overly strong preconditions, even with useful input programs

in their test suite. Additionally, they may not have an automated oracle to check behavior

preservation. We use SAFEREFACTORIMPACT as the oracle to help us in this activity.

We evaluated our oracles to identify transformation issues in eight refactoring implemen-

tations of Eclipse JDT 4.5 and JRRT using DOLLY with abstract classes and methods, and

interface. We scale the new version of DOLLY to deal with a million Alloy instances. We

used skip of 25 to reduce the costs and found 10 transformation issues in Eclipse and 8 in

JRRT.

1.4 Summary of Contributions

The main contributions of this work [46; 47] are the following:

• A technique to scale testing of refactoring engines by reducing the costs and improving

bug detection:

– New features in the program generator, DOLLY (Chapter 4);

⇤ New Java constructs, such as abstract classes and methods, and interface;

⇤ A skip mechanism to reduce the set of test inputs [47];

– A new technique to identify overly strong preconditions in refactoring implemen-

tations by disabling some preconditions (Chapter 6);

– Two oracles to identify transformation issues (Chapter 5);

– An oracle to detect behavioral change transformations based on change impact

analysis and test generation [46] (Chapter 3);
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• An evaluation of the technique on testing 28 kinds of refactorings implemented by

Eclipse JDT, Eclipse CDT, and JRRT with respect to overly weak (compilation errors

and behavioral changes) and strong preconditions (using DT and DP techniques) using

no skip and skips of 10 and 25 to generate programs (Chapters 4 and 6);

• An evaluation of our oracle to identify transformation issues in eight refactoring im-

plementations of Eclipse JDT and JRRT (Chapter 5);

• A more extensive evaluation of SAFEREFACTORIMPACT in new subjects, including

real case studies, considering OO and AO constructs with respect to two new defined

metrics (change coverage and relevant tests), time and detected behavioral changes

(Chapter 3).

1.5 Organization

This thesis is organized as follows. In Chapter 2, we provide some background on program

refactoring, testing, Alloy, and a previous automated technique for testing refactoring en-

gines [77; 80], which we use and extend in this work. In Chapter 3, we give an overview of

SAFEREFACTORIMPACT, and present an evaluation of SAFEREFACTORIMPACT on a num-

ber of Java and AspectJ transformations and comparing it with SAFEREFACTOR. Chapter 4

presents our technique to scale testing of refactoring engines and an evaluation in 28 kinds

of refactoring implementations with respect to compilation errors, behavioral changes, and

overly strong preconditions using DT technique. In Chapter 6, we describe our new tech-

nique to identify overly strong preconditions in refactoring engines by disabling some pre-

conditions. Moreover, we show its evaluation by testing real Java refactoring engines. Next,

we explain our technique to identify transformation issues in Chapter 5. Chapter 7 presents

related work. Finally, Chapter 8 summarizes the contributions of this thesis and presents

future work.



Chapter 2

Background

In this chapter we present the background of some concepts needed for understanding this

work. First, we explain program refactoring in Section 2.1. Next, Section 2.2 presents an

overview about testing activities. Finally, we describe an Alloy overview in Section 2.3.

2.1 Program Refactoring

Opdyke originally coined the term refactoring in his PhD thesis [55]. Later, Fowler [14]

popularized it. They define code refactoring as the process of modifying a software system

in order to improve its internal quality while preserving the observable behavior. The essence

of code refactoring consists of a number of small changes that preserve the program behavior.

A sequence of small changes (known as refactorings) produces a substantial restructuring.

According to Mens and Tourwé [44], the process of code refactoring consists of the following

activities:

1. Identifying where the software should be refactored;

2. Determine which refactoring(s) should be applied to the identified places;

3. Guarantee that the applied refactoring preserves behavior;

4. Apply the refactoring;

5. Assess the effect of the refactoring on quality characteristics of the software or the

process;

10
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6. Maintain the consistency between the refactored program code and other software ar-

tifacts.

2.1.1 Example

Fowler [14] introduced the term bad smells to identify code structures that suggest the pos-

sibility of refactoring. Bad smells indicate that some code structures are not good and need

to be improved. After identifying a bad smell, we need to apply an adequate refactoring in

order to improve the code. Examples of bad smells are: duplicate code, long method, large

class, long parameter list, and switch statements.

The following example presents a code with bad smell and an application of a refactoring

to remove it. Listing 2.1 illustrates the original program with a bad smell. The program

contains the printDebt() method that prints client debt. First, it prints the header that contains

information about the client, such as name and address. Next, it computes the client debt by

adding the cost of each order. Finally, the method prints the client orders and its total debt.

The method contains a bad smell: it deals with many concerns and thus, needs a number of

comments to facilitate its understanding. The Extract Method refactoring is appropriate to

be applied. This kind of refactoring extracts parts of the method and makes a new method.

Listing 2.2 shows the refactored code. We extracted three methods: printHeader, com-

puteDebt, and printDetails. After the refactoring, the method printDebt() became easier to

understand and improved the chances of code reuse.

2.1.2 Conditions

Refactoring implementations must implement a set of preconditions to secure that the trans-

formations preserve the program behavior. For example, the Rename Type refactoring changes

the original name of a class to a new name proposed by the user. This refactoring implemen-

tation must check if there is another type in the same package with the new name. Otherwise,

the transformation may generate a program that does not compile.



2.1 Program Refactoring 12

Listing 2.1: Program with bad smell: long method.

void p r i n t D e b t ( ) {

L i s t <Order > o r d e r s = c l i e n t . g e t O r d e r ( ) ;

double d e b t = 0 . 0 ;

/ / p r i n t header

System . o u t . p r i n t l n ( “ ⇤⇤⇤ Debts ⇤⇤⇤⇤ ” ) ;

System . o u t . p r i n t l n ( “Name : ”+ c l i e n t . name ) ;

System . o u t . p r i n t l n ( “Address : ”+ c l i e n t . a d d r e s s ) ;

/ / compute d e b t

f o r ( Order o r d e r : o r d e r s ) {

d e b t += o r d e r . v a l u e ( ) ;

}

/ / p r i n t d e t a i l s

System . o u t . p r i n t l n ( “Order");

printOrders(orders);

System.out.println (“Debt value: " + d e b t ) ;

}

However, defining all of the necessary preconditions to guarantee that a transformation

preserves the program behavior or to prevent applying a behavioral change transformation is

not trivial. Indeed, proving the correctness of the preconditions with respect to a formal se-

mantics for complex languages such as Java and C, constitutes a challenge [70]. Refactoring

engine developers use informal sets of preconditions as the basis for implementing refac-

torings. Then, the engines can have overly weak or overly strong conditions. Overly weak

conditions allow applying transformations that change the program behavior, while overly

strong conditions reject behavior preserving transformation.

2.1.3 Equivalence Notion

The term equivalence notion refers whether two programs have the same behavior. There

are different notions about equivalence of programs. The notion depends upon the context in

which it is applied. William Opdyke [55] defines semantic equivalence between programs as

follows: “Let the external interface of the program be the main function. If the main function

is called twice (once before and once after a refactoring) with the same set of inputs, the

resulting set of output values must be the same (p. 40).”



2.1 Program Refactoring 13

Listing 2.2: Method printDebt() of the refactored program 2.1.

void p r i n t D e b t ( ) {

p r i n t H e a d e r ( ) ;

double d e b t = computeDebt ( ) ;

p r i n t D e t a i l s ( d e b t ) ;

}

void p r i n t H e a d e r ( ) {

System . o u t . p r i n t l n ( “ ⇤⇤⇤ Debts ⇤⇤⇤⇤ ” ) ;

System . o u t . p r i n t l n ( “Name : ”+ c l i e n t . name ) ;

System . o u t . p r i n t l n ( “Address : ”+ c l i e n t . a d d r e s s ) ;

}

double computeDebt ( ) {

L i s t <Order > o r d e r s = c l i e n t . g e t O r d e r ( ) ;

double d e b t = 0 . 0 ;

f o r ( Order o r d e r : o r d e r s ) {

d e b t += o r d e r . v a l u e ( ) ;

}

re turn d e b t ;

}

void p r i n t D e t a i l s ( double d e b t ) {

System . o u t . p r i n t l n ( “Order");

printOrders(orders);

System.out.println (“Debt value: " + d e b t ) ;

}

Fowler’s [14] notion is similar as the Opdyke’s one: “The second thing I want to highlight

is that refactoring does not change the observable behavior of the software. The software

still carries out the same function that it did before. Any user, whether an end user or another

programmer, cannot tell that things have changed (p. 47).”

However, as Don Roberts [64] writes, there are several problems with this informal def-

inition because for some application domains the equivalence notion is not only related to

methods outputs. For example, a program that changes the execution time of a routine by 10

milliseconds, without altering its inputs or outputs, would normally be considered behavior

preserving. However, in a hard real-time application, such transformation is not considered

behavior preserving. Another problem is related to embedded systems. In those systems,
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properties like memory, space, and energy consumption may be crucial to define behavior

preservation.

In practice, for most programs, developers use regression tests to evaluate if a program

preserves its behavior after a change made in it. If the regression tests pass before and

after a transformation, they consider that the program behavior was preserved. Based on

this notion, Soares et al. [77] consider that a transformation preserves the program behavior

when public methods with unchanged signatures (before and after a transformation) have the

same outputs for the same inputs after a change in the program. They argue that methods

with changed signatures may be called by the unchanged methods, which exercise a potential

change of behavior. Otherwise, methods not called by others are not considered part of the

overall behavior of the system under test; changes in these methods will not affect the system

behavior. In this work, we use the same equivalence notion.

2.2 Testing Overview

In this section, we give an overview about software testing activities. Section 2.2.1 describes

some concepts and definitions about testing. Next, Section 2.2.2 explains about test data

adequacy. Section 2.2.3 presents some techniques of test case generation. Finally, we explain

about testing of refactoring engines in Section 2.2.4.

2.2.1 Definition

A software system must be predictable and consistent, offering no surprise to the user.

Software testing consists of a process of executing a program in order to assess whether

it works correctly according to its specification [52]. The main objective of a test activity is

to reveal many failures as possible with a minimal effort. Binder [3] clarifies some important

concepts to software testing activity: failure, fault, and system error. A failure is an exter-

nal, incorrect behavior with respect to the expected behavior; a fault is a static defect in the

software; and a system error is an incorrect internal state (the manifestation of some fault).

The test execution takes place at different levels throughout the software development.

According to Rock et al. [66], the main software levels are:

• Unit Test: aims to explore the smallest unit of the project. The goal is to search for
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failures, in each module separately, caused by defects in the logic implementation.

In this type of test, the target universe are the methods of objects or even small code

snippets.

• System Test: aims to evaluate the entire software by using it as an end user. Thus, the

tests are executed in the same environment, with the same conditions, and using the

same inputs that a user may use in practice.

• Integration Test: aims to induce failures associated with the interfaces among module

systems that were integrated to build the software structure established in the design

phase.

• Regression Test: does not consist of a test level, but it is an important strategy to reduce

the side effects of a change in the program. It is the process of testing changes to a

program to make sure that it still works correctly with the new changes.

2.2.2 Test Data Adequacy

Testing is essential to control software quality. It is widely recognized in the software en-

gineering the importance of tests to evaluate the system. But some questions about test

activities remain: Is the test suite adequate? When to finish the test activity and integrate? Is

all the possible scenarios being tested? A criteria of test data adequacy can help to answer

those questions.

An important issue about managing a software testing activity is to ensure that we know

and can define the goals of the tests in terms of what can be measured. A test criteria defines

what constitutes an adequate test suite. It identifies the properties of a program needed

to be exercised in order to ensure that the test suite is complete [23]. Most test criteria

proposed in the literature explicitly specify requirements of the test. They are objective rules

applied by project managers for this purpose [96]. For example, branch coverage is a testing

requirement, which states that all branches of the program need to be exercised by the test

suite. So if this is the test criteria used, the test goal should satisfy this requirement.

The code coverage measures the rate of code exercised by the test suite [23]. The main

strategies to measure code coverage are Statement Coverage, Branch Coverage, and Path
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Coverage [96]. Statement Coverage indicates the rate, from all program statements, of state-

ments exercised by a test suite, whether it includes comments or not; Branch Coverage

represents the rate of control transfers in the program executed by the test suite; and Path

Coverage states the rate of execution paths from the program’s entry to its exit executed by

the test suite.

2.2.3 Test Case Generation

Manual testing activities are tedious, time consuming, and mainly, error prone. Manual tests

may not be enough to make a quality testing activity. Unlike manual testing, automated tests

can be performed whenever desired, requiring less human effort. Indeed, the main goal of

test automation is to reduce the human effort in test activities [30]. Nowadays, there are

some techniques to automatically generate test cases to a system program.

The main strategies to generate tests are: (i) systematic generation and (ii) random gen-

eration [24] of test cases. Within systematic generation, we highlight some techniques: ex-

haustive generation of test cases [42], chaining [13] and symbolic execution [90]. Other

techniques have been proposed using evolutionary algorithms [2] and development guided

by contracts [38]. In what follows, we describe Randoop [58] and EvoSuite [15], two auto-

matic test generators.

Randoop

Randoop is an automatic unit test generator for Java. It automatically creates unit tests

in JUnit format [58]. Randoop generates unit tests using feedback-directed random test

generation. In a nutshell, this technique randomly, generates sequences of methods and

constructor invocations for the classes under test, and uses the sequences to create tests.

Randoop executes the sequences that it creates, using the results of the execution to create

assertions that capture the behavior of the program and that catch bugs.

Randoop can generate two types of tests: error-revealing tests and regression tests. Error-

revealing tests are tests that fail when executed, indicating a potential error in one or more

classes under test. Regression tests are tests that pass when executed, and can be used to

augment a regression test suite.
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The error-revealing tests show the specific use of a tested class that violates a contract in

execution time. A contract is a class or method property that must be preserved. The viola-

tion of a contract suggests code errors. For example, Listing 2.3 illustrates a test generated

by Randoop revealing a violation of the contract reflexivity of equality. This test found a bug

in the API of the JDK Collection. It shows that classes of Collection can create an object not

equal to itself. A TreeSet is an ordered collection. According to the Sun API, a call to its con-

structor giving a List as parameter (line 5), must throw an exception, as it is not possible to

compare the list elements. However, the constructor accepts the list as parameter. Therefore,

this contract was violated and the assertion shown in line 7 fails in execution time.

Listing 2.3: Test case generated by Randoop to test the API of the JDK Collection.

1 p u b l i c s t a t i c vo id t e s t ( ) {

2 L i n k e d L i s t l i s t = new L i n k e d L i s t ( ) ;

3 O b j e c t o1 = new O b j e c t ( ) ;

4 l i s t . a d d F i r s t ( o1 ) ;

5 T r e e S e t t 1 = new T r e e S e t ( l i s t ) ;

6 S e t s1 = C o l l e c t i o n s . s y n c h r o n i z e d S e t ( t 1 ) ;

7 A s s e r t . a s s e r t T r u e ( s1 . e q u a l s ( s1 ) ) ;

8 }

Randoop [58] considers the following contracts:

• Equals to null: o.equals(null) should return false;

• Reflexivity of equality: o.equals(o) should return true;

• Symmetry of equality: o1.equals(o2) implies o2.equals(o1);

• Equals-hashcode: If o1.equals(o2)==true, then o1.hashCode() == o2.hashCode();

• No null pointer exceptions: No NullPointerException is thrown if no null inputs are

used in a test.

The regression tests generated by Randoop are useful to be run after a code change. If

the test passes right after its generation and it fails after a code change, then the change may

have altered the program behavior.
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Evosuite

EvoSuite [15] is a tool that automatically generates test cases with assertions for classes

written in Java. To achieve this, EvoSuite applies a hybrid approach that generates and

optimizes whole test suites towards satisfying a coverage criterion. For the produced test

suites, EvoSuite suggests possible oracles by adding small sets of assertions that concisely

summarize the current behavior; these assertions allow the developer to detect deviations

from expected behavior, and to capture the current behavior in order to protect against future

defects breaking this behavior.

EvoSuite implements two novel techniques to achieve its objectives: complete test suite

generation and mutation-based assertion generation. The whole test suite generation uses an

evolutionary search approach that evolves whole test suites with respect to an entire coverage

criterion at the same time. Optimizing with respect to a coverage criterion, rather than in-

dividual coverage goals, achieves that the result is neither adversely influenced by the order

nor by the difficulty or infeasibility of individual coverage goals. The mutation-based asser-

tion generation uses mutation testing to produce a reduced set of assertions that maximizes

the number of seeded defects in a class that are revealed by the test cases. These assertions

highlight the relevant aspects of the current behavior in order to support developers in iden-

tifying defects, and the assertions capture the current behavior to protect against regression

faults.

2.2.4 Testing Refactoring Engines

In practice, developers of refactoring engines manually write test cases. To specify a test, the

developer needs to create a program to be refactored, as test input. The developer also needs

to specify the expected output. For that, he needs an oracle to define the correct resulting

program or whether the transformation must be rejected.

For example, Listing 2.4 illustrates two test cases created by JRRT [68] developers to

evaluate the Push Down Method refactoring implementation. The first test case (test1) con-

tains an input program with classes A, B (subclass of A), and C. Class A has a method m.

The expected output program contains the same classes A, B, and C but with the m method

in the B class. After performing this test, if the engine produces an output different from the
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expected one, the test fails.

Listing 2.4: Test cases of JRRT (02/03/13) to evaluate the Push Down Method

refactoring.

1 p u b l i c vo id t e s t 1 ( ) {

2 t e s t S u c c (

3 Program . f r o m C l a s s e s (

4 "class A { void m() {} }" ,

5 "class B extends A {}" ,

6 "class C {}" ) ,

7 Program . f r o m C l a s s e s (

8 "class A {}" ,

9 "class B extends A { void m() {} }" ,

10 "class C {}" ) ) ;

11 }

12 p u b l i c vo id t e s t 2 ( ) {

13 t e s t F a i l (

14 Program . f r o m C l a s s e s (

15 "class A { void m() {} }" ,

16 "class B extends A {}" ,

17 "class C { { new A().m(); } }" ) ) ;

18 }

The second test case (test2) describes a situation in which the refactoring engine cannot

apply the transformation. The input program has the same classes and methods of the input

program of test1 but with a call to the method A.m() from class C. If the engine applies

the refactoring moving method m from class A to class B, the resulting program does not

compile. Therefore, the refactoring should not be applied.

Manually writing test cases may be costly, and thus it may be difficult to create a good

test suite considering combinations of all language constructs. Researchers have proposed

a number of automated techniques for testing refactoring engines [10; 22; 77; 21]. They

may automate four major steps of the testing process: (i) generating test inputs (except the

technique proposed by Gligoric et al. [21]); (ii) applying the refactoring implementation; (iii)

checking the output correctness; (iv) and classifying the detected failures into distinct bugs.

For example, to automate the test input generation, Gligoric et al. [22] propose UDITA

(an extension of ASTGEN [10]), a Java-like language to write program generators so that
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developers can generate programs as test inputs. They used UDITA to generate about 5,000

programs with up to 3 classes as test inputs [22]. Soares et al. [80; 77] propose a Java pro-

gram generator called JDOLLY for exhaustively generating programs. By using JDOLLY,

developers can specify the number of some Java constructs and constraints for the gener-

ated programs by using Alloy [27], a formal specification language. They used JDOLLY to

generate more than 100,000 programs. Later, Gligoric et al. [21] propose real programs as

test inputs, automatically applying the refactoring under test in every possible location of the

program in which the refactoring under test can be applied. They found 141 bugs related to

compilation errors and engine crash in 8 real systems in Java and C. In this work, we propose

a technique to scale testing of refactoring engines.

There are several kinds of bugs in the refactoring implementations, such as bugs related

to overly weak and overly strong conditions. Next, we explain those kinds of bugs.

Overly Weak Conditions

Overly weak conditions cause the refactoring engine to apply transformations that do not

compile or preserve the program behavior. Overly weak conditions can also lead to a system

crash when the engine tries to apply a transformation. Soares et al. [77] catalogued a number

of bugs related to overly weak conditions in refactoring implementations. Next, we show

two of them.

Listings 2.5 and 2.6 show a transformation applied by Eclipse 3.7 that does not compile.

Consider the class hierarchy presented in Listing 2.5. Classes A and B declare fields f and

n, respectively. Class C declares m method, which accesses f. By using Eclipse JDT 3.7

to apply the Rename Field refactoring to change the name of n to f, results in the program

presented in Listing 2.6. However, the resulting program does not compile. After the trans-

formation, B.f hides A.f, and since the first one is private, it cannot be accessed from C. The

following compilation error is introduced: “The field B.f is not visible.” The precondition

should check if the new field can change the binding of a field call.

Figure 2.2.4 illustrates another example of bugs related to overly weak conditions. It

shows a transformation applied by Eclipse 3.7 that does not preserve the program behavior.

Consider class A and its subclass B as illustrated in Listing 2.7. Class A declares k method,

and class B declares methods k, m, and test. The latter yields 1. Suppose we want to apply
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Listing 2.5: Before refactoring.

p u b l i c c l a s s A {

i n t f = 1 ;

}

p u b l i c c l a s s B ex tends A {

p r i v a t e i n t n = 2 ;

}

p u b l i c c l a s s C ex tends B {

p u b l i c i n t m( ) {

re turn super . f ;

}

}

Listing 2.6: After refactoring: applying Re-

name Field in Eclipse JDT 3.7 leads to a com-

pilation error due to field hiding.

p u b l i c c l a s s A {

i n t f = 1 ;

}

p u b l i c c l a s s B ex tends A {

p r i v a t e i n t f = 2 ;

}

p u b l i c c l a s s C ex tends B {

p u b l i c i n t m( ) {

re turn super . f ;

}

}

the Pull Up Method refactoring to move m from class B to class A. This method contains

a reference to A.k using the super access. Performing this refactoring using Eclipse JDT

3.7 produces the program presented in Listing 2.8. The transformation updates the super

qualifier to this. Then, a compilation error is avoided with this change. Nevertheless, a

behavioral change was introduced: method test yields 2 instead of 1. Since m is invoked

by an instance of B, its call is dispatched to B.k method implementation. The precondition

should check whether changing a super modifier to this can change the dynamic binding of

a method call.

Overly Strong Conditions

Overly strong conditions cause the refactoring engine to reject applying a transformation that

preserves the program behavior. For example, Listings 2.9 and 2.10 illustrate a behavioral

preserving transformation rejected by JRRT [68] (02/03/13) due to overly strong conditions.

Consider the class A and its subclass B presented in Listing 2.9. Class A declares method

m(int) and class B declares method m(long). Method B.test calls method m from an object

of class B. As the methods A.m(int) and B.m(long) are overloaded, B.test calls A.m(int) to

avoid using an implicit cast. By using JRRT to apply the Move Method refactoring to move
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A.m(int) to class B, it rejects this transformation. It reports the following warning message:

Cannot adjust accessibilities.

Listing 2.7: Before refactoring.

p u b l i c c l a s s A {

i n t k ( ) {

re turn 1 ;

}

}

p u b l i c c l a s s B ex tends A {

i n t k ( ) {

re turn 2 ;

}

i n t m( ) {

re turn super . k ( ) ;

}

p u b l i c i n t t e s t ( ) {

re turn m( ) ;

}

}

Listing 2.8: After refactoring: applying Pull

Up Method in Eclipse JDT 3.7 leads to a be-

havioral change due to incorrect change of

super to this.

p u b l i c c l a s s A {

i n t k ( ) {

re turn 1 ;

}

i n t m( ) {

re turn t h i s . k ( ) ;

}

}

p u b l i c c l a s s B ex tends A {

i n t k ( ) {

re turn 2 ;

}

p u b l i c i n t t e s t ( ) {

re turn m( ) ;

}

}

However, we can apply this transformation without changing the program behavior. List-

ing 2.10 illustrates a resulting program after removing a subset of overly strong conditions in

JRRT that raises this warning message. Method test yields 0 in both versions of the program.

In our previous work [80], we proposed a technique to identify overly strong conditions

in refactoring implementations based on differential testing. It needs at least two engines to

apply the same kind of refactoring. If an engine rejects a transformation, and the other one

applies it and preserves behavior according to SAFEREFACTOR [79], the technique estab-

lishes that the former engine contains an overly strong condition. In this work, we propose

a new technique to identify overly strong conditions by detecting restrictive preconditions

within the engine’s code and turning them off (disabling them).
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Listing 2.9: Original version.

p u b l i c c l a s s A {

p u b l i c B f = n u l l ;

p r o t e c t e d long m( i n t b ) {

re turn 0 ;

}

}

p u b l i c c l a s s B ex tends A {

long m( long b ) {

re turn 1 ;

}

p u b l i c long t e s t ( ) {

re turn B . t h i s .m( 2 ) ;

}

}

Listing 2.10: Correct target’s version after re-

moving a subset of overly strong conditions.

p u b l i c c l a s s A {

p u b l i c B f = n u l l ;

}

p u b l i c c l a s s B ex tends A {

long m( long b ) {

re turn 1 ;

}

p r o t e c t e d long m( i n t b ) {

re turn 0 ;

}

p u b l i c long t e s t ( ) {

re turn B . t h i s .m( 2 ) ;

}

}

2.3 Alloy Overview

Alloy is a formal specification language, based on first order logic that allows users to specify

software systems by abstracting their key characteristics [27]. An Alloy specification is a

sequence of signatures and constraints paragraphs declarations. A signature introduces a

type and can declare a set of relations. Alloy relations have a multiplicity that is specified

using qualifiers, such as one (exactly one), lone (zero or one), set (zero or more), and seq

(sequence of elements). In Alloy, one signature can extend another, establishing that the

extended signature is a subset of the parent signature. Next we specify a list of objects in

Alloy. Each list (List) may have a sequence of objects (Object) in the relation objs.

sig Object {}

sig List {

objs: seq Object

}

Facts are used to package formulas that always hold. The fact listSize specifies that all

lists must have at most 10 elements.
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fact listSize {

all l: List | #l.objs < = 10

}

The keywords all, some, and no denote the universal, existential, and non-existential

quantifiers, respectively. Predicates are used to package reusable formulas and specify op-

erations. The predicate noEmptyList specifies that all lists are non-empty. The relation objs

yields the elements of the sequence and the relation isEmpty checks whether a sequence is

empty. The keyword no, when applied to an expression, denotes that the expression is empty.

pred noEmptyList[] {

no l: List | l.objs.isEmpty

}

Moreover, we can declare functions (fun) in Alloy. For example, the function getFirstEle-

ment yields the first element of a list by using the helper function first.

fun getFirstElement [l: List] : one Object {

l.objs.first

}

The predicate addElement adds an element in a sequence. For this purpose, the helper

functions add[o] is used.

pred addElement [l: List, o: Object] {

l.objs.add[o]

}

The Alloy Analyzer tool allows us to perform analysis on an Alloy specification [28]. A

run command is applied to a predicate, specifying a scope for all declared signatures. For

example, in the following command the Alloy Analyzer searches for an instance with at

most three objects (scope) for List and Object satisfying all signature and fact constraints,

in addition to the constraints specified in noEmptyList. The Alloy Analyzer has a feature to

find all valid instances for a given scope.

run noEmptyList for 3
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2.4 Technique to Test Refactoring Engines

In this section, we explain the technique to test refactoring engines [77; 80] that we extend

in this work. First, Section 2.4.1 shows an overview of the technique. Next, Section 2.4.2

explains how to create the test inputs. Sections 2.4.3, 2.4.4, and 2.4.5 describe the process of

refactoring application, oracles and bug categorizers.

2.4.1 Overview

First, the technique uses an automated program generator, DOLLY, to generate the test inputs

(Step 1). It exhaustively generates Java and C programs. Next, the technique automatically

applies the transformations under test using a refactoring engine (Step 2). It uses a set of

automated oracles to evaluate the correctness of the transformations (Step 3). Finally, a set

of bug categorizers is used for classifying the detected failures into distinct bugs (Step 4).

Figure 2.1 illustrates the main steps of the technique.

Figure 2.1: Technique for testing refactoring engines.

2.4.2 Test Input Generation

Manually creating test inputs for refactoring engines is costly and thus, time consuming,

since developers need to provide complex inputs, such as programs. This may lead to a

test suite with a low level of code coverage, potentially leaving many hidden faults. So, the

technique uses DOLLY, an automated program generator to generate the test inputs. DOLLY
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is a program generator that exhaustively generates programs, up to a given scope. DOLLY

generates programs for Java (JDOLLY) and C (CDOLLY).

In this section, we explain JDOLLY. CDOLLY follows a similar approach. Next we

present the Java meta-model used by JDOLLY (Section 2.4.2) and describe how to trans-

late each Alloy instance to Java and how to use JDOLLY for generating more specific Java

programs (Section 2.4.2).

Java Meta-Model

Soares et al. [77] specified a Java meta-model in Alloy considering a subset of Java con-

structs. This Java meta-model is used by JDOLLY to generate Java programs. From Java,

JDOLLY considers the primitive types long and int. A class is the only non-primitive type.

A Java class has an identifier, field and method declarations, and can extend another class.

Moreover, each class is located into a package. If a class is not explicitly related to a pack-

age, the default package is assumed. Each field is associated with one identifier, one type,

and at most one modifier, which can be public, protected, and private. A method declaration

contains a return type, an identifier, a number of parameters, a body, and a modifier related to

its accessibility. The methods can have at most one parameter and one statement in its body

(a return statement). A return statement can have a FieldAccess, a ConstructorFieldAccess,

a MethodInvocation, or a LiteralValue. A MethodInvocation and FieldAccess may contain

a qualifier, such as super and this. Figure 2.2 illustrates the UML diagram representing the

subset of the Java metamodel specified in Alloy.

The Alloy specification of JDOLLY also contains well-formedness rules within Alloy

facts to reduce the rate of uncompilable programs. For example, the following fact speci-

fies that no class can extend itself directly or indirectly. The operator ˆ represents the non-

reflexive transitive closure.

fact noClassExtendsItself {

no c:Class | c in c.^extend

}

There are some additional rules specified to cope with state explosion. For example, the

predicate optimization does not allow non-primitive parameters. The well-formedness rules

aim to reduce the state space of the Java meta-model used by JDOLLY. It intends to limit the
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programs to some constructs of the language and scope in order to avoid state explosion of

the Alloy instances. Similarly, there are other elements of Java’s abstract syntax and other

well-formedness rules.

pred optimization [] {

all m: Method | (#m.param = 1) ) (m.param in Int_ + Long_)

···

}

Figure 2.2: UML class diagram of JDOLLY’s meta-model.

Program Generation

JDOLLY uses this Alloy specification to generate Java programs. The specification contains a

run command with a scope and a predicate to be satisfied. JDOLLY uses the Alloy Analyzer

API to execute the run command for generating all solutions for the given scope. Each

solution is an Alloy instance found by the Alloy Analyzer. DOLLY translates each Alloy

instance into a Java program.

We can specify additional constraints to guide the program generation. For example, the

following specification fragment states that the generated programs must have at least two

classes and one field. The classes must be in the same direct hierarchy. The subclass must

contain the field. Notice that the instances generated by the Alloy Analyzer may be used as

input to test the Pull Up Field refactoring.
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fact PullUpField {

some c1,c2:Class, f:Field | c1 in c2.extend && f in c2.fields

}

2.4.3 Refactoring Application

The step of refactoring application consists of automatically applying the refactoring under

test to each program generated as test input. For this purpose, the previous techniques [77;

80] implemented a program that uses the engine API to apply the refactorings automatically.

The engine checks a set of preconditions before applying the transformation. If they are

satisfied the transformation is applied. Otherwise, the transformation is rejected.

2.4.4 Test Oracle

After generating the test inputs and applying the refactorings, the technique must check

whether the outputs were generated as expected. Refactoring engines can have overly weak

and strong conditions [77; 80]. The technique uses a set of automated oracles to evaluate

correctness of the transformations. It uses a compiler to identify bugs related to compilation

errors, and SAFEREFACTOR [79] to identify behavioral changes. SAFEREFACTOR checks

whether a transformation introduces behavioral changes. First, it analyzes the transformation

to identify the methods with matching signature (methods with exactly the same modifier,

return type, qualified name, parameter types and exceptions thrown) before and after the

transformation. Next, the tool generates a test suite for those methods. Finally, it runs the

tests before and after the transformation, and evaluates the results. If the results are different,

the tool reports a behavioral change and displays the set of unsuccessful tests.

In our previous work, we proposed a technique [80] to identify overly strong conditions in

refactoring implementations based on differential testing [43]. It needs at least two engines to

apply the same kind of refactoring. If an engine rejects a transformation, and the other one

applies it and preserves behavior according to SAFEREFACTOR, the technique establishes

that the former engine contains an overly strong condition.
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2.4.5 Bug Categorizer

In the previous step, the automated oracles may detect a number of failures in the refactoring

implementations. A single bug in the refactoring may cause several of those failures. Next,

we explain how to classify failures related to compilation errors, behavioral changes, and

overly strong conditions.

Compilation Errors

Soares et al. [77] implemented a tool to categorize failures related to compilation errors and

overly strong conditions. They use a similar technique proposed by Jagannath et al. [29] to

automatically classify failures related to compilation errors into distinct bugs. It is based on

splitting the failing tests based on messages from the test oracle (Oracle-based Test Cluster-

ing).

For instance, Listing 2.11 shows a program generated by DOLLY. If we apply the Rename

Type refactoring by using Eclipse 3.7, the tool produces the output program shown in List-

ing 2.12, which contains the compilation error: “The hierarchy of the type B is inconsistent.”

If another transformation results in an output program that contains the same compilation

error message, even with another type name, the technique groups both transformations to-

gether by using the template of the compilation error: “The hierarchy of the type [Type] is

inconsistent”. It ignores the parts inside quotes, which contain names of packages, classes,

methods, and fields.

Listing 2.11: Original program.

package p1 ;

p u b l i c c l a s s A ex tends B{}

package p1 ;

import p2 . ⇤ ;

p u b l i c c l a s s B ex tends C {}

package p2 ;

p u b l i c c l a s s C {}

Listing 2.12: Resulting program.

package p1 ;

p u b l i c c l a s s C ex tends B{}

package p1 ;

import p2 . ⇤ ;

p u b l i c c l a s s B ex tends C {}

package p2 ;

p u b l i c c l a s s C {}
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Behavioral Changes

Soares et al. [77] specified a systematic, but manual approach to categorize failures related to

behavioral changes based on structural characteristics of the transformation. The approach

is based on a set of filters; a filter checks whether the programs follow a specific structural

pattern, such as overloading, overriding, and implicit cast. All filters are presented in Ta-

ble 2.1. The filters may be applied in any order. The fault category of a behavior-changing

transformation is designated by the filters matched by its input and output programs. When

a transformation does not match any of these filters, conventional debugging is demanded by

the refactoring engine developers.

Table 2.1: Filters for classifying behavioral changes.

Overly Strong Conditions

Manually analyzing each rejected behavior-preserving transformation to identify whether

they show the same kind of overly strong condition is time consuming and error prone. In a

previous work [80] we used a similar approach than the one used to classify the compilation

errors failures, to automate the classification of failures related to overly strong conditions.

For example, when we apply the Rename Method refactoring of Eclipse to the program
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illustrated in Listing 2.13 the tool yields the following warning message: “Method A.k(long)

will be shadowed by the renamed declaration B.k(int)”. The approach ignores the parts inside

quotes, which contain names of packages, classes, methods, and fields. If there is another

message reported by the same engine that has the same template, the rejected transformations

are automatically classified in the same category of overly strong condition.

Listing 2.13: Renaming the n method to k is not allowed using Eclipse 3.7.

p u b l i c c l a s s A {

p u b l i c long k ( long a ) {

re turn 1 0 ;

}

}

p u b l i c c l a s s B ex tends A {

p u b l i c long n ( i n t a ) {

re turn 2 0 ;

}

p u b l i c long t e s t ( ) {

re turn k ( 2 ) ;

}

}



Chapter 3

SAFEREFACTORIMPACT

In this chapter, we present an overview of SAFEREFACTORIMPACT, the oracle used by our

proposed technique to identify bugs related to behavioral changes in refactoring implemen-

tations. As we showed before, the refactoring engines can apply transformation that in-

troduce behavioral changes. This problem is even worse with the presence of aspects (see

Section 3.1). Previously, we proposed SAFEREFACTORIMPACT to evaluate transformations

applied by refactoring engines in Java programs [45]. Here, we perform a new and more

extensive evaluation in the context of Aspects to compare SAFEREFACTORIMPACT with

SAFEREFACTOR [79] in new subjects considering OO and AO constructs, with respect to

two new defined metrics (change coverage and relevant tests). Additionally, we combine

SAFEREFACTORIMPACT to the oracles proposed to detect faults related to overly strong

conditions (Chapters 4 and 6) and transformation issues (Chapter 5).

We organized this chapter as follows. Section 3.1 presents a motivating example. Next,

Section 3.2 explains the technique of SAFEREFACTORIMPACT. Finally, Section 3.3 de-

scribes the evaluation of SAFEREFACTORIMPACT in 45 transformations applied in Java and

AspectJ programs.

3.1 Motivating Example

In this section, we present a defective refactoring performed by Eclipse 4.2 with AJDT 2.2.3,

which introduces a behavioral change. Consider classes A, B, C, and aspect AspectA pre-

sented in Listing 3.1. Class C extends B, which declares method test. AspectA declares

32
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the method n in B through an inter-type declaration, which provides a way to express cross-

cutting concerns affecting the structure of modules. By using Eclipse to apply the (aspect-

aware) Rename Intertype Declaration refactoring to B.n, changing its name to B.k, we have

as a result the program presented in Listing 3.2. Eclipse changed the intertype’s name and

updated its references. However, this transformation introduces a behavioral change: the

test method in the target program now yields 20 (Listing 3.2) instead of 10 (Listing 3.1).

After the transformation, test calls B.k, instead of the A.k method.

Listing 3.1: Original program.

p u b l i c c l a s s A {

p u b l i c i n t k ( ) {

re turn 1 0 ;

}

}

p u b l i c c l a s s B ex tends A {

p u b l i c i n t t e s t ( ) {

re turn k ( ) ;

}

}

p u b l i c c l a s s C ex tends B {

p u b l i c i n t x ( ) {

re turn 3 0 ;

}

}

a s p e c t AspectA {

p u b l i c i n t B . n ( ) {

re turn 2 0 ;

}

}

Listing 3.2: Resulting program.

p u b l i c c l a s s A {

p u b l i c i n t k ( ) {

re turn 1 0 ;

}

}

p u b l i c c l a s s B ex tends A {

p u b l i c i n t t e s t ( ) {

re turn k ( ) ;

}

}

p u b l i c c l a s s C ex tends B {

p u b l i c i n t x ( ) {

re turn 3 0 ;

}

}

a s p e c t AspectA {

p u b l i c i n t B . k ( ) {

re turn 2 0 ;

}

}

Figure 3.1: Applying the Rename Intertype Declaration refactoring of Eclipse 4.2 with AJDT

2.2.3 leads to a behavioral change.

Suppose that the developer has a test suite consisting of the test cases presented in List-

ing 3.3. It contains three test cases test1, test2, and test3 that call methods A.k, B.test, and

C.x, respectively. As explained, the transformation changed the behavior of method B.test.
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Then, test2 exposes the behavioral change in the resulting program. However, the other tests

(test1 and test3) are not relevant to test the transformation because the methods A.k and C.x

are not impacted by the transformation.

Since only some test cases may be relevant to test the transformation, running all test

cases may be a waste of time. Rachatasumrit and Kim [59] investigate the impact of refac-

toring edits on regression tests using the version history of Java open source projects. The

results on three projects, JMeter, XMLSecurity, and ANT, show that existing regression tests

exercise only 22% of refactored methods and fields and only 38% of tests are relevant to

refactorings. In the previous example, the test suite only contains 33% of relevant tests. Fur-

thermore, the tests may not exercise all entities impacted by the transformation. Therefore,

to evaluate whether a transformation preserves the program behavior, it is more efficient to

test only the methods impacted by the transformation.

Listing 3.3: Test suite of the program presented in Listing 3.1.

p u b l i c vo id t e s t 1 ( ) {

A a = new A( ) ;

long k = a . k ( ) ;

a s s e r t T r u e ( k == 10) ;

}

p u b l i c vo id t e s t 2 ( ) {

B b = new B ( ) ;

long i = b . t e s t ( ) ;

a s s e r t T r u e ( i == 10) ;

}

p u b l i c vo id t e s t 3 ( ) {

C c = new C ( ) ;

long x = c . x ( ) ;

a s s e r t T r u e ( x == 30) ;

}

3.2 SafeRefactorImpact

SAFEREFACTORIMPACT uses change impact analysis to generate tests only for the entities

impacted by the transformation. By comparing two versions of a program, it identifies the
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methods impacted by the transformation (Step 1.1). We implemented a tool, called SAFIRA,

to perform the change impact analysis, which identifies the public and common impacted

methods in both program versions from the impacted set (Step 1.2). Next, SAFEREFAC-

TORIMPACT generates a test suite for the previously identified impacted methods using an

automatic test suite generator (Step 2). Since the tool focuses on identifying common meth-

ods, it executes the same test suite before (Step 3.1) and after the transformation (Step 3.2).

Finally, the tool evaluates the results after executing the test cases: if the results are differ-

ent, the tool reports a behavioral change, and yields the test cases that reveal it. Otherwise,

we improve confidence that the transformation is behavior preserving (Step 4). Figure 3.2

illustrates the described process.

Figure 3.2: SAFEREFACTORIMPACT’s technique.

In what follows, we describe the change impact analysis (Section 3.2.1) and test gener-

ation steps (Section 3.2.2) of SAFEREFACTORIMPACT. Then, we describe a test data ade-

quacy criteria [23] useful in the refactoring context, and define when a test case is relevant

in Section 3.2.3.

3.2.1 Change Impact Analysis

In this section, we explain the change impact analysis performed by SAFEREFACTORIM-

PACT. The goal is to analyze the original and modified programs, and yield the set of meth-

ods impacted by the transformation. First, we decompose a coarse-grained transformation

into smaller transformations. For each small-grained transformation, we identify the set of

impacted methods. We formalized the impact of small-grained transformations in laws that

specify the methods impacted by the transformation. Then, we identify the union of the set
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of impacted methods of each small-grained transformation. Moreover, we also identify the

methods that exercise an impacted method directly or indirectly. Finally, we yield the set

of impacted methods by the transformation, which is the union of directly and indirectly

impacted methods.

Identifying Small-Grained Transformations

We decompose the transformation into a set of small-grained transformations to analyze the

impact of each one separately in the resulting program. We do this because it is simpler to

analyze the impact of a small-grained transformation. Other change impact analyzers, such

as Chianti [63] and FaultTracer [95], follow a similar approach but they depend on a test

suite. They identify the tests cases impacted by a change. Our approach identifies the set of

impacted methods.

To perform this step, we make a diff between the original and modified programs and

identify the different kinds of transformations applied to the program. For example, if a

transformation adds a method to a program, we consider it as the AM small-grained trans-

formation. Another example is the CMB small-grained transformation, which modifies any

part of a method body (adding, removing or changing a statement in a method body). More-

over, the CMM and CFM small-grained transformations add, remove or change a method and

field modifier, respectively. Finally, the CFI and CSFI small-grained transformations add or

remove field initializers or change the initialization value of instance and static fields, respec-

tively. There may be other small-grained transformations not considered by our approach,

such as changes in static blocks. Table 3.1 describes all small-grained transformations con-

sidered by our approach.

Identifying Impacted Methods

After decomposing the coarse-grained transformation into smaller ones, we identify the im-

pacted methods. We formalized the impact of each small-grained transformation described

in Table 3.1. We grouped them into laws which define two small-grained transformations

(from left to right and vice-versa), declaring two programs. The meta-variables cds, fds and

mds define a set of class, field and method declarations, respectively. Each law specifies

how we obtain the set of impacted methods when applying it in a particular direction.
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Table 3.1: Small-grained transformations considered by SAFIRA.

Next, we specify the impact of adding or removing a method. Law 1 adds the method m

in the class C when applying it from left to right, and removes the method when applying

it from right to left. The set of impacted methods is the same in both directions. We use

$ to specify the impacted set for both directions. The transformation may change other

program components but this law only identifies the impact of adding m method. If class B

is Object, and C does not have a subclass, the set of impacted methods is C.m. Otherwise,

other methods may be impacted due to overloading and overriding. For example, suppose

that C has a superclass different than Object implementing m, and has a subclass D that

does not implement m. Before the transformation, D.m resolves to B.m, but C.m is called

after the transformation. So, D.m may change its behavior. We consider as impacted all

methods that inherit m from C. We denote the subclass relation by <.

We specified other laws for the small-grained transformations presented in Table 3.1 sim-

ilarly. After decomposing the coarse-grained transformation into smaller ones, we identify

the impacted methods of each of them using our laws. The set of directly impacted meth-

ods is the union of the impacted set of each small-grained transformation. After that, we

also identify the set of indirectly impacted methods that exercise an impacted method di-

rectly or indirectly. Finally, the union of directly and indirectly impacted methods defines

the resulting set of impacted methods.

We implemented the change impact analyzer in a tool called SAFIRA. It takes as input

two Java or AspectJ programs (the original program and the program modified by a transfor-

mation) and reports the set of methods that can change behavior after the transformation. It
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Law 1 hAdd/Remove Methodi

cds

class C extends B {

fds;

mds;

}

,

cds0

class C extends B {

fds0;

mds0;

m(. . .) {. . .}

}

($) {n:Method | 9 E:Class · (F < E ^ E  C) ^ (n 2 methods(cds0) [ mds0) ^ n = E.m},

where F is the closest subclass of C such that overrides m.

uses ASM,1 a framework to analyze and manipulate Java bytecode, to identify small-grained

transformations and methods impacted. Since the tool analyzes Java bytecode and the As-

pectJ compiler translates an AspectJ program to Java bytecode, we do not specify laws for

AspectJ constructs. This way, we can analyze the transformation using Safira.

3.2.2 Test Generation

From the impacted methods set identified by SAFIRA, we identify the public and common

methods in both program versions. We pass them to an automatic test suite generator. Finally,

we execute the same generated test suite before and after the transformation. If the results

are different, we show a test case exposing the behavioral change. Otherwise, we improve

confidence that the transformation is behavior preserving. SAFEREFACTORIMPACT uses

Randoop [65; 58] to automatically generate a test suite for the methods impacted by the

transformation. Randoop can receive as parameter a set of methods and randomly generates

unit tests for these methods within a time limit.

3.2.3 Change Coverage and Relevant Tests

Rachatasumrit and Kim [59] provide evidence that refactorings are not well tested. They

found that existing regression test suites may not cover the impacted entities, and a num-

1http://asm.ow2.org/
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ber of test cases may not be relevant for testing the refactorings. Based on their work, we

define two metrics for evaluating the test suites generated by SAFEREFACTORIMPACT and

SAFEREFACTOR: Change Coverage and Relevant Tests.

The change coverage represents the percentage of impacted methods exercised by the

test suite. We consider as impacted a method identified in the SAFIRA’s analysis. We define

change coverage (C) as C = #E
#I

, where I is the set of impacted methods, and E is the set of

impacted methods exercised by the test suite.

We define a test case as relevant if and only if it successfully executes an impacted method

identified by SAFIRA. It is important to mention that if a test case throws an exception before

or during the method execution, it is not considered relevant. We define the percentage of

relevant test cases (R) as R = T
S

, where S is the number of test cases, and T is the number of

test cases that successfully execute at least an impacted method.

Considering the transformation presented in Figure 3.1, suppose that the test suite con-

sists of the test cases presented in Listings 3.4 and 3.5. The first test case calls method

B.test, that calls A.k in the original program and B.k in the modified one. The second test

case calls the method C.x. The set of impacted methods by this transformation is: B.k, C.k,

B.n, C.n, B.test and C.test. The test suite exercises two out of six impacted methods. So,

the change coverage is: C = 2
6

= 33%. Since the second test case does not exercise any im-

pacted method, it is not relevant. So, the percentage of relevant tests in this example is: R =

1
2

= 50%. Notice that some impacted methods do not belong to both programs, such as B.n

and C.n, and they are not called by other methods. Sometimes it is not possible to generate

tests for them since SAFEREFACTORIMPACT generates a test suite that must execute in both

versions of the program.

Listing 3.4: A unit test revealing a behavioral change in the transformation presented in

Figure 3.1.

p u b l i c vo id t e s t ( ) {

B b = new B ( ) ;

long x = b . t e s t ( ) ;

a s s e r t T r u e ( x == 10) ;

}

Listing 3.5: A non-relevant unit test generated by Randoop in SAFEREFACTOR used to



3.3 Evaluation 40

evaluate the transformation presented in Figure 3.1.

p u b l i c vo id t e s t ( ) {

C c = new C ( ) ;

long x = c . x ( ) ;

a s s e r t T r u e ( x == 30) ;

}

3.3 Evaluation

In this section, we present our experiment to compare two approaches for identifying behavior-

preserving transformations. First, we present the experiment definition and planning. Then,

we present the results and discussion. Next, we describe some threats to validity. Finally, we

summarize the main findings. All tools and experimental data are available online.2

3.3.1 Definition

We have structured the experiment definition using the goal, question, metric (GQM) ap-

proach. The goal of this experiment is to analyze two approaches (SAFEREFACTOR and

SAFEREFACTORIMPACT) for the purpose of evaluation with respect to identifying behav-

ior preserving transformations from the point of view of researchers in the context of Java

and AspectJ transformations. In particular, our experiment addresses the following research

questions:

• Q1. Do SAFEREFACTORIMPACT and SAFEREFACTOR detect the same behavioral

changes?

For each approach, we identify and compare the number of behavioral changes de-

tected in a given time limit.

• Q2. Is SAFEREFACTORIMPACT faster than SAFEREFACTOR to evaluate a transfor-

mation?

For each approach, we measure the total time to evaluate a transformation.

2http://www.dsc.ufcg.edu.br/~spg/mongiovi_thesis.html
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• Q3. Does SAFEREFACTORIMPACT generate a test suite with better change coverage

than SAFEREFACTOR?

For each approach, we measure the change coverage of the test suite, that is, the per-

centage of methods impacted by the transformation identified by SAFIRA that the test

suite executes to evaluate the transformation.

• Q4. Does SAFEREFACTORIMPACT use a test suite to evaluate a transformation with

more relevant test cases than SAFEREFACTOR?

For each approach, we measure the percentage of relevant test cases in a test suite to

evaluate a transformation. A test case is relevant if and only if it successfully executes

at least one method impacted by a transformation identified by SAFIRA.

3.3.2 Planning

In this section, we present the hypothesis formulation and describe the subjects used in the

experiment, its design and instrumentation.

3.3.2.1 Hypothesis formulation

In order to answer the research questions Q2, Q3, and Q4 we formulate, respectively, the

following hypotheses:

• To answer Q2, concerning the time to evaluate a transformation:

H0 : T imeSRI ≥ T imeSR (3.1)

H1 : T imeSRI < TimeSR (3.2)

• To answer Q3, concerning the change coverage of the generated tests:

H0 : ChangeCoverageSRI  ChangeCoverageSR (3.3)

H1 : ChangeCoverageSRI > ChangeCoverageSR (3.4)

• To answer Q4, concerning the percentage of relevant tests:

H0 : RelevantTestsSRI  RelevantTestsSR (3.5)

H1 : RelevantTestsSRI > RelevantTestsSR (3.6)
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We perform statistical analysis for each group of subjects that contains at least eight

transformations. We use Shapiro-test [75] to analyze data normality because it is more ad-

equate for small samples. Then, if the data are normal, we use T-test [7], otherwise we use

Wilcoxon-test [89]. We use the level of significance 0.5.

Selection of subjects

We evaluated SAFEREFACTOR and SAFEREFACTORIMPACT in eight defective refactorings

applied by Eclipse 4.2 using AJDT 2.2.3 that introduce behavioral changes in AO programs,

23 design patterns implemented in Java and AspectJ [25], in two programs compiled by two

Java Modeling Language (JML) [37] compilers [61; 60], and 12 transformations applied to

real OO and AO programs (JHotDraw and CheckStylePlugin 4.2). We selected these subjects

in order to evaluate the tools in transformations with different granularities and applied to

programs with different sizes and constructs. Experienced developers and researchers in the

OO and AO field applied the transformations, which have different granularities, to programs

with different sizes (ranging from 10 LOC to 79 KLOC). The transformations change OO

(classes, methods, fields, inheritance, overloading, overriding, packages, accessibility) and

AO (aspects, intertype declarations, pointcuts, advices) constructs. We analyzed local and

global transformations. Some of them affect classes, aspects and method signatures, while

others change blocks of code only within methods.

Experiment design

In our experiment, we evaluate one factor (approaches for detecting behavior-preserving

transformations) with two levels (SAFEREFACTOR and SAFEREFACTORIMPACT). We choose

a paired comparison design for the experiment, that is, we apply both treatments to all sub-

jects. We evaluate the approaches on 45 transformations. The results can be “Yes” (behavior-

preserving transformation) and “No” (non-behavior-preserving transformation).

Instrumentation

We ran the experiment on a 2.7 GHz core i5 with 8 GB RAM and running Mac OS 10.8. We

used the command line interfaces of SAFEREFACTOR 1.1.4 and SAFEREFACTORIMPACT

1.0 using Java 1.6. They receive as parameters the original and the target program paths, and
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the time limit to generate tests. We used SAFIRA 1.0, which uses ASM 3.0. We used a time

limit of 0.2s, 0.5s and 0.2s to generate tests for the defective refactorings, design patterns,

and bytecode generated by two JML compilers, respectively. These limits are enough to

test transformations applied to small programs [77]. We used a time limit of 20s for the

larger case studies (up to 79 KLOC). Both tools use Randoop 1.3.3, configured to avoid

generating non-deterministic test cases. Since we do not know beforehand which versions

contain behavior-preserving transformations, we compared the results of all approaches in all

transformations to establish a Baseline to check the results of each approach. For instance, if

SAFEREFACTOR yielded “Yes” and SAFEREFACTORIMPACT “No”, we checked whether the

test case showing the behavioral change reported by SAFEREFACTORIMPACT was correct.

If so, the correct result was “No”.

3.3.3 Results

Next, we summarize the main results of our evaluation in the defective refactorings, design

patterns, bytecode generated by two JML compilers, and larger case studies.

Defective Refactorings

SAFEREFACTOR and SAFEREFACTORIMPACT correctly identified all behavioral changes

but one, Subject 2, that only SAFEREFACTOR identified. As expected, SAFEREFACTORIM-

PACT evaluated the subjects faster than SAFEREFACTOR. Furthermore, both tools had almost

the same change coverage in all subjects but Subject 4 in which SAFEREFACTORIMPACT

had 100% of change coverage and SAFEREFACTOR 25%. Finally, all test cases generated

by SAFEREFACTORIMPACT are relevant to test the change different from SAFEREFACTOR.

Table 3.2 summarizes the results.

Design Patterns

SAFEREFACTORIMPACT correctly identified behavioral changes in 5 out of 23 the design

patterns implementations [25]. SAFEREFACTOR identified all of these behavioral changes

but one (the Mediator design pattern), which can only be detected using a time limit of three

seconds. Hannemann and Kiczales [25], which applied these transformations, did not expect
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Table 3.2: Results using a time limit of 0.2s. Methods = number of methods passed to

Randoop to generate tests; Time = the total time of the analysis in seconds; Change Coverage

= the percentage of impacted methods covered; Relevant Tests = the percentage of relevant

tests; Result = it states whether the transformation is behavior-preserving.

to introduce behavioral changes in none of them. However, we found behavioral changes in

the Mediator, Prototype, State, Template and Visitor design patterns. SAFEREFACTORIM-

PACT evaluated the subjects faster than SAFEREFACTOR. Both tools have almost the same

change coverage except for Subjects 9, 18 and 30, but SAFEREFACTORIMPACT generated

more relevant tests than SAFEREFACTOR. Table 3.3 summarizes the results.

JML Compiler

SAFEREFACTOR and SAFEREFACTORIMPACT correctly identified behavioral changes in

both transformations (Subjects 32 and 33). Both tools took almost the same time to evaluate

Subject 32. However, SAFEREFACTORIMPACT took more time to evaluate Subject 33 since

the change impact analysis is more expensive because the transformation impacted more

than 6,000 methods. Table 3.4 summarizes the results. Moreover, both tools had similar low

change coverage. Finally, SAFEREFACTORIMPACT generated more relevant test cases than

SAFEREFACTOR.

Larger Case Studies

SAFEREFACTORIMPACT correctly evaluated all transformations but two (Subjects 38 and

39), while SAFEREFACTOR correctly evaluated seven transformations. Both tools took al-

most the same time to evaluate the subjects. As expected, SAFEREFACTORIMPACT had
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Table 3.3: Results using a time limit of 0.5s. Impacted Methods = number of methods

identified by SAFIRA; Methods = number of methods passed to Randoop to generate tests;

Time = the total time of the analysis in seconds; Change Coverage = the percentage of

impacted methods covered; Relevant Tests = the percentage of relevant tests; Result = it

states whether the transformation is behavior preserving.

Table 3.4: Results using a time limit of 0.2s. Impacted Methods = number of methods

identified by SAFIRA; Methods = number of methods passed to Randoop to generate tests;

Time = the total time of the analysis in seconds; Change Coverage = the percentage of

impacted methods covered; Relevant Tests = the percentage of relevant tests; Result = it

states whether the transformation is behavior preserving.
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higher percentage of change coverage in nine subjects, since it focuses on testing the meth-

ods impacted by the change. In the other three subjects, they had almost the same change

coverage. SAFEREFACTORIMPACT generated at least 95% of relevant tests. In Subjects 39,

43 and 44, SAFEREFACTOR generated less than 10% of relevant tests since it passed more

than 30,000 methods to Randoop generate tests. Table 3.5 summarizes the results.

Table 3.5: Results using a time limit of 20s. Impacted Methods = number of methods iden-

tified by SAFIRA; Methods = number of methods passed to Randoop to generate tests; Time

= the total time of the analysis in seconds; Change Coverage = the percentage of impacted

methods covered; Relevant Tests = the percentage of relevant tests; Result = it states whether

the transformation is behavior preserving.

3.3.4 Discussion

Next, we discuss the results of our evaluation in the defective refactorings, design patterns,

bytecode generated by two JML compilers, and larger case studies. We perform the statistical

analysis for each group of subjects, since we used different time limits. Therefore, we cannot

compare their results.

Defective Refactorings

SAFEREFACTORIMPACT does not detect the behavioral change in Subject 2, since SAFIRA

does not perform data flow analysis. The original program is presented in Listing 3.6. It

contains class A that declares field x and methods getX, setX, m (which calls setX) and test
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(which calls m). This program also contains the aspect Update that changes the value passed

to setX when it is called by A.k(int) (this method does not exist in this program version). The

transformation renames A.m to k. The resulting program is illustrated in Listing 3.7. The

behavioral change is detected by a test case that calls A.test(a); A.getX (a 6= 1). Since the

aspect only changes the value passed to setX in the modified program, getX returns different

values in the original and modified programs after a call to A.test. SAFEREFACTORIMPACT

did not identify this behavioral change because it did not generate tests for getX. It has a

parameter that, when enabled, allows us to consider all getter methods during the test suite

generation. By enabling this parameter, SAFEREFACTORIMPACT correctly identifies the

behavioral change in Subject 2. However, when using such option, the number of methods

passed to the test suite generator may increase in some transformations.

SAFEREFACTORIMPACT was faster than SAFEREFACTOR, since it generated test cases

considering less methods. SAFEREFACTORIMPACT uses ASM to perform analysis on the

programs instead of reflection used by SAFEREFACTOR. Both tools achieved 100% change

coverage in Subject 3. By inspecting the test cases, we observed that for some impacted

methods, Randoop generated test cases that throw IllegalArgumentException when

invoking them. Since the impacted methods are not executed in those test cases, SAFER-

EFACTORIMPACT also cannot yield 100% of change coverage in some subjects. Finally,

notice that SAFEREFACTOR generated less relevant test cases than SAFEREFACTORIMPACT

even for transformations applied to small programs. For example, in Subject 1, only 20% of

the generated tests are relevant.

Table 3.6 describes the statistical analysis results. We considered all data to run the tests.

Column Shapiro Test indicates the Shapiro–Wilk test results. When we ran Shapiro-test in

relevant tests data of SAFEREFACTORIMPACT an error occurred, because all data are equal

(100% of relevant tests). Then, we consider it as non-normal. Notice that only the change

coverage data of SAFEREFACTOR and SAFEREFACTORIMPACT are normal. Columns T-

test and Wilcoxon-test present the results of the tests to evaluate the hypotheses presented in

Section 3.3.2.1.

Due to non-normality of data, we use Wilcoxon-test for time, and percentage of relevant

tests data. It reached small p-values to all of them: 2.3⇥ 10−4 and 2.0⇥ 10−4, respectively.

The results give us evidence that SAFEREFACTORIMPACT reduces time and generates more
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Listing 3.6: Original program.

p u b l i c c l a s s A {

i n t x ;

p u b l i c vo id t e s t ( i n t x ) {

m( x ) ;

}

p u b l i c vo id m( i n t x ) {

se tX ( x ) ;

}

p u b l i c vo id se tX ( i n t x ) {

t h i s x = x ;

}

p u b l i c i n t getX ( ) {

re turn t h i s . x ;

}

}

p u b l i c a s p e c t Update {

void a round ( i n t x ) : c a l l (

void A. k ( . . ) ) && a r g s ( x ) {

x = 1 ;

p r o c e e d ( x ) ;

}

}

Listing 3.7: Resulting program after the

transformation applied in Subject 2.

p u b l i c c l a s s A {

i n t x ;

p u b l i c vo id t e s t ( i n t x ) {

k ( x ) ;

}

p u b l i c vo id k ( i n t x ) {

se tX ( x ) ;

}

p u b l i c vo id se tX ( i n t x ) {

t h i s x = x ;

}

p u b l i c i n t getX ( ) {

re turn t h i s . x ;

}

}

p u b l i c a s p e c t Update {

void a round ( i n t x ) : c a l l (

void A. k ( . . ) ) && a r g s ( x ) {

x = 1 ;

p r o c e e d ( x ) ;

}

}

relevant tests than SAFEREFACTOR for these subjects. To evaluate change coverage we

use T-test due to normality of data. It reached a p-value of 0.25 which indicates that the

change coverage of SAFEREFACTORIMPACT is less than or similar to the change coverage

of SAFEREFACTOR. Then, we execute another test (T-test) assuming a null hypothesis that

the change coverage is equal for both tools. It reached a p-value of 0.51, which indicates

that there is no statistical difference between the change coverage of SAFEREFACTOR and

SAFEREFACTORIMPACT.
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Table 3.6: Statistical analysis for defective refactoring data. Shapiro Test = analyze data

normality; T-test = evaluate hypothesis test when data are normal; Wilcoxon-test = evaluate

hypothesis test when data are non-normal; Result = final results of the statistical analysis;

SR = SAFEREFACTOR; SRI = SAFEREFACTORIMPACT.

Design Patterns

SAFEREFACTORIMPACT found a behavioral change in the Mediator pattern implementa-

tions that SAFEREFACTOR cannot find using the same time limit. Developers implemented

a GUI application and used the mediator pattern to deal with changes to GUI components

that require updates. In the OO version, they implemented this pattern as a field of the com-

ponent, which must be set by using a setter method. Notice that SAFEREFACTOR cannot

detect this behavioral change. The time limit of 0.5s passed to Randoop is not enough to

generate tests considering 714 methods. So, it did not generate relevant test cases and cover

the change different from SAFEREFACTORIMPACT. Also, both tools found simple behav-

ioral changes in three design patterns (Prototype, Template Method, and Visitor). Some

methods yield different String messages.

Both tools had low change coverage. The number of impacted methods (see Column Im-

pacted Methods in Table 3.3) identified by SAFIRA is larger (90%) than the number of meth-

ods passed to Randoop by SAFEREFACTORIMPACT. The transformation adds or removes

most impacted methods. SAFEREFACTORIMPACT cannot pass them to Randoop because

they do not belong to both versions of the program. As mentioned, our goal is to generate

a test suite to be executed before and after the transformation. Furthermore, some methods

contain parameter types declared in external libraries, such as Java AWT, in some subjects.

Randoop does not generate test inputs for them unless we pass them as parameters, or some

method being tested yields an object of the library’s type. In the Chain of Responsibility

implementations, all test cases generated by SAFEREFACTORIMPACT throw exceptions be-

fore executing the impacted method. We may increase the time limit, or this may indicate
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a limitation of the test suite generator that cannot handle some kinds of Java constructions,

such as GUI elements. So, the tool does not generate relevant tests to exercise the change

in this subject. In Subjects Chain of Responsibility and Mediator, a similar scenario hap-

pens in SAFEREFACTOR. In some subjects, SAFEREFACTORIMPACT passed more methods

in common to Randoop than SAFEREFACTOR. Different from SAFEREFACTOR, SAFER-

EFACTORIMPACT takes into consideration methods that are moved from a class to an aspect,

that introduces it in the same class using an intertype declaration.

Table 3.7 describes the statistical analysis results. Column Shapiro Test consists of

Shapiro-Wilk test results. The results indicate that all data are non-normal. Then, we use

Wilcoxon-test for all of them. Column Wilcoxon-test presents the results of the test to eval-

uate the hypothesis presented in Section 3.3.2.1.

The tests reached small p-values to time and relevant tests data (1.4⇥10−9 and 1.0⇥10−3,

respectively). The results give us evidence that SAFEREFACTORIMPACT reduces time and

generates more relevant tests than SAFEREFACTOR. For change coverage, the tests reached

p-values of 0.19. The result indicates that the change coverage of SAFEREFACTORIMPACT

is less than or similar to the change coverage of SAFEREFACTOR. Then, we execute another

test (Wilcoxon-test) assuming a null hypothesis that the samples are equal to each metric. It

reached a p-value of 0.27 for number of methods and 0.38 for change coverage. Then, we

conclude that there is no statistical difference between the change coverage of SAFEREFAC-

TOR and SAFEREFACTORIMPACT.

Table 3.7: Statistical analysis for design patterns data. Shapiro Test = analyze data normality;

Wilcoxon-test = evaluate hypothesis test when data are non-normal; Result = final results of

the statistical analysis; SR = SAFEREFACTOR; SRI = SAFEREFACTORIMPACT.

JML Compiler

Different from what Rêbelo et al. [61] expected, the programs compiled using the standard

JML compiler (jmlc) and ajmlc are not equivalent. They must check invariants after creating
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an object, and before and after a method call. By analyzing the tests reported by our tools,

we detected that ajmlc checks invariants before each constructor. This led to false invariant

violation warnings, which represents a bug in the ajmlc. The tools also detected a behavioral

change during a postcondition evaluation of a method declared in JAccount.

Both tools had low change coverage. Although we found behavioral changes in Subjects

32 and 33, we may exercise more impacted methods by increasing the time limit. However,

it is also important to mention that the test suite cannot exercise most impacted methods

detected by SAFIRA since they do not belong to both versions of the program. Finally,

SAFEREFACTORIMPACT generated more relevant test cases than SAFEREFACTOR.

Larger Case Studies

In Subject 35, we evaluated the OO’ and AO versions, and both tools also detected this behav-

ioral change. SAFEREFACTOR and SAFEREFACTORIMPACT detected behavioral changes

between the OO and AO versions of CheckStylePlugin (Subjects 36 and 37) using a time

limit of 20s. In Subjects 38 and 39, both tools did not identify behavioral changes using

a time limit of 20s. Randoop does not generate tests that exercise the impacted methods

that change behavior using this time limit. Different from SAFEREFACTOR, SAFEREFAC-

TORIMPACT identified the behavioral changes in both subjects using a time limit of 120s,

since it reduces by more than 90% the number of methods passed to Randoop to generate

tests.

Soares et al. [78], evaluated Subjects 40-45 using SAFEREFACTOR and a manual inspec-

tion performed by experts [50]. SAFEREFACTOR did not identify the behavioral changes

using a time limit of 20s in Subjects 40, 42, 43, 44 and 45 different from SAFEREFAC-

TORIMPACT. However, it detected three of them (Subjects 40, 43 and 45) using a time

limit of 120s. Both manual inspection [50] and SAFEREFACTOR classified Subject 42 as

behavior preserving. However, SAFEREFACTORIMPACT identified a previously undetected

behavioral change in Subject 42. SAFEREFACTOR did not identify this behavioral change

because Randoop does not generate tests to expose them using the time limit of 120s, since

the number of methods to test is much greater (90%) than in SAFEREFACTORIMPACT. It is

also important to notice that finding behavioral changes is not an easy task, even when using

a well-defined manual inspection conducted by experts [50; 51].
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Both tools had low change coverage. Randoop does not generate test cases to many

methods because they depend on classes from libraries that are not passed as parameter.

Moreover, some methods have parameters, such as arrays, that Randoop does not handle

well when generating tests. They are limitations of Randoop. Finally, there are some added

and removed methods that are not common to both versions of the program. In some sub-

jects, SAFEREFACTORIMPACT did not yield 100% of relevant tests since it may throw an

exception before or while executing the impacted method in a test case. Finally, SAFER-

EFACTORIMPACT was slower than or similar to SAFEREFACTOR to evaluate these subjects,

because the change impact analysis performed by SAFEREFACTORIMPACT is more expen-

sive in larger programs than the analysis of SAFEREFACTOR. However, it detected some

behavioral changes undetected by SAFEREFACTOR.

Table 3.8 describes the statistical analysis results. Column Shapiro Test indicates the

Shapiro–Wilk test results. Notice that only the change coverage data of SAFEREFACTOR

and SAFEREFACTORIMPACT are normal. Columns T-test and Wilcoxon-test present the

results of the tests to evaluate the hypothesis presented in Section 3.3.2.1.

Due to non-normality of data, we use Wilcoxon-test for percentage of relevant tests. We

use T-test for change coverage due to data normality. The tests reached small p-values to

change coverage and relevant tests (4.7 ⇥ 10−3, and 1.3 ⇥ 10−5, respectively) The results

give us evidence that SAFEREFACTORIMPACT has a better change coverage, and generates

more relevant tests than SAFEREFACTOR. The test reached a p-value of 0.44 indicating that

SAFEREFACTORIMPACT is slower than or similar to SAFEREFACTOR. Then, we execute

another test (Wilcoxon-test) assuming a null hypothesis that the time of both tools are equal.

It reached a p-value of 0.88, which indicates that there is no statistical difference between the

time to evaluate a transformation between SAFEREFACTOR and SAFEREFACTORIMPACT.

3.3.5 Threats to Validity

There are some limitations to this study. Next we describe some threats to the validity of our

evaluation.
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Table 3.8: Statistical analysis for larger subjects data. Shapiro Test = analyze data normality;

T-test = evaluate hypothesis test when data are normal; Wilcoxon-test = evaluate hypoth-

esis test when data are non-normal; Result = final result of the statistical analysis; SR =

SAFEREFACTOR; SRI = SAFEREFACTORIMPACT.

Construct validity

We created the baseline by comparing the approaches’ results, since we did not know before-

hand which versions contain behavior-preserving transformations to evaluate the correctness

of the results of each approach.

With respect to SAFEREFACTOR and SAFEREFACTORIMPACT, they do not evaluate the

developer’s intention to refactor, but whether a transformation changes behavior. Moreover,

in the closed world assumption, we have to use the test suite provided by the program that

is being refactored. SAFEREFACTORIMPACT follows an open world assumption, in which

every public method can be a potential target for the test suite generated by Randoop. Ran-

doop may generate a test case that exposes a behavioral change. However, the test case may

show an invalid scenario according to the software domain.

Our change coverage and the percentage of relevant test metrics are based on the im-

pacted methods identified by SAFIRA. However, SAFIRA may fail to identify some impacted

methods, or include a method that does not change behavior. For example, it may not include

a method since it does not perform data flow analysis.

SAFIRA does not analyze anonymous classes. It does not identify all impacted methods

related to them. Moreover, SAFIRA does not perform data flow analysis. Due to this limita-

tion, it does not identify the behavioral change in Subject 2. Although it does not implement

data flow analysis, SAFEREFACTORIMPACT has a parameter that allows us to include all

common getter methods in the test generation. However, this may decrease its performance,

and require to increase the time limit.
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Internal validity

Another threat is related to the time limit to generate the tests. The time limits used in

SAFEREFACTOR and SAFEREFACTORIMPACT may have influence on the detection of be-

havioral changes. We used the default values for most of Randoop parameters. By changing

them, we may improve SAFEREFACTOR and SAFEREFACTORIMPACT results. Moreover,

since Randoop randomly generates a test suite, there might be different results each time we

run the tool. We ran the experiment only once due to time constraints. Owing to the random-

ness nature of the tests, different executions may have different results. As future work, we

plan to execute the tools multiple times to improve the confidence on the results.

Finally, compilers may have introduced behavioral changes during the optimization pro-

cess [93]. Since SAFEREFACTORIMPACT analyzes the Java bytecode, this may have an

influence on the results if the compilers have bugs.

External validity

To mitigate threats to external validity, we evaluated different kinds of software, such as a

GUI application (JHotDraw) and an Eclipse Plugin (CheckStylePlugin), ranging from few

lines of codes to thousands of lines of code. We also evaluate a number of different refactor-

ings targeting different OO and AO constructs.

Randoop does not deal with concurrency. In those situations, SAFEREFACTOR and

SAFEREFACTORIMPACT may yield non-deterministic results. Also, they do not take into

account characteristics of some specific domains. For instance, currently, they do not de-

tect the difference in the standard output (System.out.println) message. Neither could the

tool generate tests that exercise some changes related to the graphical interface (GUI) of

JHotDraw. We can use another test generator to generate test cases from a set of methods.

Conclusion validity

We use statistical tests to evaluate small samples (up to 23 data), which can reduce the power

of the tests. This is a threat because low statistical power increases the likelihood of making

a Type II error (accepting null hypothesis when it is false). To minimize this threat, we met

the assumptions underlying the tests (e.g., normality) and choose T-test when the data come
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from a population, that has a normal distribution, and Wilcoxon-test otherwise.

3.3.6 Answers to the Research Questions

From the evaluation results, we make the following observations:

• Q1. Do SAFEREFACTORIMPACT and SAFEREFACTOR detect the same behavioral

changes?

No. SAFEREFACTORIMPACT does not identify the behavioral change in Subject 2

due to a limitation in SAFIRA. If we pass all getter methods as parameter in the test

generation, SAFEREFACTORIMPACT detects it. Moreover, it does not detect behav-

ioral changes in Subjects 38 and 39 using a time limit of 20s. If we increase the time

limit to 120s, it detects the behavioral change different from SAFEREFACTOR. On the

other hand, SAFEREFACTORIMPACT detects behavioral changes in Subjects 22, 40,

42, 43, 44 and 45 that SAFEREFACTOR does not identify them using a time limit of

20s. SAFEREFACTOR detects the behavioral changes in Subjects 40, 43 and 45 using

a time limit of 120s. SAFEREFACTORIMPACT finds a behavioral change in Subject

42 undetected by SAFEREFACTOR and a well-defined manual inspection conducted

by experts. We calculate the precision and recall metrics for SAFEREFACTORIMPACT

and SAFEREFACTOR. SAFEREFACTORIMPACT has a precision of 0.86 while SAFER-

EFACTOR has a precision of 0.7. As expected, the precision of SAFEREFACTORIM-

PACT is higher than the precision of SAFEREFACTOR, since SAFEREFACTORIMPACT

identifies less false-positives. Both tools have a recall of 1, since they do not have

false-negatives.

• Q2. Is SAFEREFACTORIMPACT faster than SAFEREFACTOR to evaluate a transfor-

mation?

In the transformations applied to small programs, SAFEREFACTORIMPACT is faster

than SAFEREFACTOR. However, both tools take almost the same time to evaluate

transformations applied to larger programs. Figure 3.3 illustrates the distribution of the

total time to evaluate transformations by SAFEREFACTOR and SAFEREFACTORIM-

PACT in the subjects of defective refactorings, designs patterns, and larger case studies.
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Figure 3.3: Distribution of the total time to evaluate transformations by SAFEREFACTOR

and SAFEREFACTORIMPACT.
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• Q3. Does SAFEREFACTORIMPACT generate a test suite with better change coverage

than SAFEREFACTOR?

The test cases generated by SAFEREFACTORIMPACT increase the change coverage

in larger subjects. For small ones, there is no significant difference, but in most of

the subjects, it is similar or better than SAFEREFACTOR. Figure 3.4 illustrates the

distribution of the change coverage of the tests generated by SAFEREFACTOR and

SAFEREFACTORIMPACT in the subjects of defective refactorings, designs patterns,

and larger case studies.

Figure 3.4: Distribution of the change coverage of the tests generated by SAFEREFACTOR

and SAFEREFACTORIMPACT.
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• Q4. Does SAFEREFACTORIMPACT use a test suite to evaluate a transformation with

more relevant test cases than SAFEREFACTOR?
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Yes. SAFEREFACTORIMPACT generates more relevant tests in all subjects. Almost

90% of test cases generated by SAFEREFACTORIMPACT are relevant to evaluate the

change. Some test cases are not relevant because they throw an exception before or

while executing an impacted method. Figure 3.5 illustrates the distribution of the per-

centage of relevant tests generated by SAFEREFACTOR and SAFEREFACTORIMPACT

in the subjects of defective refactorings, designs patterns, and larger case studies.

Figure 3.5: Distribution of the percentage of relevant tests generated by SAFEREFACTOR

and SAFEREFACTORIMPACT.
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Chapter 4

A Technique to Scale Testing of

Refactoring Engines

In this chapter we present our technique to scale testing of refactoring engines by extending

a previous technique [77; 80]. The previous technique uses DOLLY to generate programs

as test inputs and contains a set of oracles and bug categorizers to identify bugs related

to compilation errors, behavioral changes, and overly strong preconditions. Our goal is to

scale it by improving expressiveness of the program generator, reducing costs, improving

performance and bug detection, and also detecting more bug types.

First, Section 4.1 presents an overview of the technique. Next, Section 4.2 explains the

new features added in DOLLY. Finally, Section 4.3 describes the evaluation of the technique

using skips to generate programs with respect to overly weak preconditions (compilation

errors and behavioral changes) and overly strong preconditions using Differential Testing

Technique (DT technique) [80].

4.1 Overview

In this section, we explain the main steps of our technique. First, it automatically gener-

ates programs as test inputs for a refactoring using DOLLY, an automated program generator

(Step 1). DOLLY receives as input the refactoring type to be tested, a skip number to re-

duce the number of generated programs, and an Alloy specification, which includes specific

constraints to a refactoring type and the scope of the programs. DOLLY can generate Java

58
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(JDOLLY) or C (CDOLLY) programs. Next, the refactoring under test is automatically ap-

plied to each generated program. When there are more than one refactoring engine, the

technique uses all of them to apply the transformation (Step 2). To evaluate the correctness

of the transformations, our technique uses a set of oracles that can identify overly weak pre-

conditions and transformation issues. It also contains an oracle to evaluate overly strong

preconditions (Step 3). Finally, the detected failures are automatically categorized into dis-

tinct bugs (Step 4). Figure 6.1 illustrates the main steps.

Bugs related to compilation errors and behavioral changes occur when the refactoring

engine has overly weak preconditions, which allow applying transformations that do not

compile or preserve the program behavior. On the other hand, overly strong preconditions

prevent the refactoring engine from applying safe transformations. When a transformation

compiles and preserves the program behavior, but do not follow its refactoring definition, it

may be a bug in the refactoring engine or a bad smell introduced in the program. We call

them as transformation issues.

Figure 4.1: A technique for scaling testing of refactoring engines.

4.2 DOLLY 2.0

In this section, we explain the modified DOLLY (see Section 2.4.2). We add new features

to increase its expressiveness, allow larger scopes, and reduce the cost to test the refactor-

ing implementations. We increase the expressiveness of DOLLY by generating programs
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considering more Java constructs, such as abstract classes and methods, and interface (Sec-

tion 4.2.1). We also add a new feature to skip some Alloy instances to reduce the number

of generated programs and consequently the time to test the refactoring implementations

(Section 4.2.2).

4.2.1 New Java Program Constructs

We add more Java constructs in DOLLY to increase its expressiveness and find more kinds

of bugs. The first step is modifying the Java meta-model in Alloy used by DOLLY. We need

to take care to avoid state explosion when generating the Alloy instances, even with a small

scope. Next we explain how we add the new features related to abstract classes and methods,

and interface in the Java meta-model. Also, we explain the new well-formedness rules.

Abstract Classes and Methods

To represent an abstract method in the Java meta-model used by DOLLY, we allow creating

methods without body. We change the multiplicity of the relation Method -> Body from

one to lone (see the following fragment of the specification).

sig Method {

···

b: lone Body

}

Abstract methods can only belong to abstract classes or interfaces as specified next.

fact abstract_methods {

all m: Method, c: Class |

m in c.methods && isAbstract[m] )

(isAbstract[c] || isInterface[c])

}

When a method does not have a body, DOLLY considers it as an abstract method. The

following predicate specifies whether a method is abstract.

pred isAbstract[m:Method] {

no m.b
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DOLLY considers a class as abstract when it contains at least one abstract method. The

following predicate specifies whether a class is abstract.

pred isAbstract[c: Class] {

some m: c.methods | isAbstract[m]

Adding new Alloy signatures or relations may increase the number of Alloy instances for

a given scope. We implement the new specification by focusing on minimizing this effect.

Interface

DOLLY considers interfaces as a special type of class because adding a new Alloy signature

in the model may be costly. We add the relation implement in the Class signature to

allow a class to implement an interface. The following specification fragment illustrates this

relation.

sig Class extends Type {

···

implement: lone Class

}

DOLLY recognizes an interface when there is a class implementing it. The following fact

specifies this rule.

fact interface {

all c: Class | isInterface[c.implement]

All methods of an interface must be abstract as specified in the next predicate.

pred isInterface[c: Class] {

all m: c.methods | isAbstract[m]

We do not implement a new signature representing interfaces to avoid state explosion of

Alloy instances. A new signature without relations may increase the number of instances of

a specification to: #instances ⇤ 2n, where instances is the number of instances without

the new signature and n is the scope of the added signature. We can guide the scope of the

interface by specifying an additional constraint to define that a program must have a specific

number of classes in which all methods are abstract.
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Well-Formedness Rules

In this new version of DOLLY we investigate the failures related to the generated programs

that do not compile for the purpose of reducing the rate of uncompilable programs. We add

some well-formedness rules to reduce the number of uncompilable programs considering

all the specified constructs without reducing the expressiveness of DOLLY. For example,

an abstract method cannot be called. The following fact specifies that there is no abstract

method related to a method invocation.

fact noAbstractMethodInvocation {

no m: Method | some mi: MethodInvocation |

mi.id = m.id && isAbstract[m]

}

If a concrete class implements an interface, it also must implement all interfaces’ meth-

ods. We specify this well-formedness rule in the following fact.

fact allClassesMustImplementMethodsOfItsInterface {

all c: Class | (#c.implement = 1 && !isAbstract[c]) )

(all m: Method | some m2: Method | (m in c.implement.methods) )

(m2.id = m.id && m2.param = m.param &&

m2.acc = m.acc && m2 in c.methods && !isAbstract[m2]))

}

There is a similar well-formedness rule specifying that if a concrete class extends an

abstract class, it must implement all abstract methods of the abstract class. We specify other

well-formedness rules related to abstract classes and methods, and interface in the Java meta-

model. We provide them in the dissertation’s website.

4.2.2 Skipping Programs

By default, DOLLY exhaustively searches for all possible combinations yielded by the run

command. Even for a small scope, DOLLY may generate thousands of programs. However,

the Alloy Analyzer may generate a number of similar consecutive instances [86]. Inspired on

the STG technique [29], we allow developers to guide the program generation by skipping

some instances. By skipping some consecutive programs we can reduce the number of fail-

ures related to the same bug. For a skip n, which n is a positive integer, DOLLY generates one
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program from an Alloy instance, and jumps the following n-1 Alloy instances. It follows

this approach until the Alloy Analyzer has no more instances to generate. We implement

the skip mechanism by modifying the DOLLY’s source code to discard the skipped Alloy

instances instead of translating each one into a program. Figure 4.2 illustrates our technique

to skip test inputs.

Figure 4.2: Technique used by DOLLY 2.0 to skip programs.

4.3 Evaluation

We evaluate our technique to skip programs in 18 Java (Eclipse and JRRT) and C (Eclipse)

refactoring implementations with respect to time consumption and bug detection. We present

the evaluation of the technique to identify bugs related to overly weak preconditions (compi-

lation errors and behavioral changes) and overly strong preconditions using the Differential

Testing technique (DT technique) [80]. We use the oracles explained in Section 2.4.4 to

identify the overly weak and overly strong preconditions. All tools and experimental data

are available online.1

First, we present the experiment definition (Section 6.3.1) and planning (Section 6.3.2).

Next, Sections 6.3.3 and 6.3.4 present and discuss the results, respectively. Section 6.3.5

describes some threats to validity and Section 4.3.6 summarizes the main findings.

1http://www.dsc.ufcg.edu.br/~spg/mongiovi_thesis.html
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4.3.1 Definition

The goal of this experiment is to analyze our technique to skip programs for the purpose

of evaluating it with respect to time consumption and bug detection using skips to generate

programs from the point of view of the developers of refactoring engines in the context of

Java and C refactoring implementations. In particular, we address the following research

questions:

• Q1 How many bugs, for each refactoring type, the proposed technique can detect bugs?

We measure the number of bugs related to compilation errors, behavioral changes, and

overly strong preconditions for each kind of refactoring implementation assessed by

our technique.

• Q2 What is the rate of time reduction and undetected bugs using skips in the technique?

We measure the number of detected bugs and the total time to test the refactoring

implementations without skip and using skips of 10 and 25 to generate programs. The

total time includes the time to generate the programs, apply the transformations, and

execute the automated oracles and bug categorizers.

• Q3 What is the impact of using skip to generate programs on the time to find the first

failure?

We measure the time to find the first failure related to compilation error or behavioral

change without skip and using skips of 10 and 25 to generate programs.

4.3.2 Planning

In this section, we describe the subjects used in the experiment and its instrumentation.

Selection of Subjects

We tested 18 refactoring implementations of Java (Eclipse and JRRT) and C (Eclipse).

Eclipse is a widely used refactoring engine in practice and JRRT was proposed to improve

the correctness of refactorings by using formal techniques. The evaluated refactorings focus

on a representative set of program structures. Moreover, a survey carried out by Murphy et



4.3 Evaluation 65

al. [49] shows the Eclipse JDT refactorings that Java developers use most: Rename, Move

Method, Extract Method, Pull Up, and Add Parameter. Three of them are evaluated in this

chapter. In a future work we intend to evaluate more kinds of refactorings. We also evaluated

all refactoring implementations of Eclipse CDT (C) but one: toggle function. This refactor-

ing needs more than one C file to apply the refactoring, which is not supported by the current

version of CDOLLY [47]. Table 4.1 summarizes all evaluated refactorings for Java and C.

Instrumentation

We ran the experiment on a Desktop 3.0 GHz core i5 with 8 GB RAM running Ubuntu 12.04

with JDK 1.6. We tested the refactoring implementations of Eclipse JDT 4.3, Eclipse CDT

8.1, and JRRT (02/03/13). We use SAFEREFACTORIMPACT [46] to evaluate whether a trans-

formation preserves the program behavior and SAFEREFACTOR for C to detect behavioral

changes in C refactoring implementations [47]. We use DT technique to detect the overly

strong preconditions. The time limit used by SAFEREFACTORIMPACT and SAFEREFACTOR

generate tests is 0.3 second. This time limit is enough to test transformations applied to small

programs [46]. Finally, we use DOLLY with the skip feature but without the new constructs

to generate the programs.

We used the same Alloy specifications proposed before [77] as input parameter of JDOLLY

to test the Java refactoring implementations. We did not use the new specification of DOLLY

with the new constructs to avoid greatly increasing the number of Alloy Instances. We

wanted a baseline to compare the time and bug detection without using skips to generate

programs. We used the scope of two packages, three classes, and at most two fields and

three methods to JDOLLY generate the programs. We used the scope of two functions, two

variables, two defines, and three statements to CDOLLY generate the programs. We defined

some additional constraints for guiding DOLLY to generate programs with certain character-

istics needed to apply the refactorings. They prevent the generation of programs from which

the refactoring under test is not applicable. For example, to test the Pull Up Field refactoring,

the program must have at least two classes in a hierarchy, which a subclass contains a field

that the super class does not contain. Finally, the oracles save the results in files, which are

used by the bug categorization module to categorize the failures in distinct bugs.
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4.3.3 Results

DOLLY generated 96,129 compilable programs to evaluate all refactorings implementations

without skip. We used skips of 10 and 25 to reduce the set of generated programs. DOLLY

generated 9,371 and 3,932 compilable programs to those skips, respectively (see Table 4.1).

Table 4.1: Summary of the number of generated programs and the time to evaluate the

refactoring implementations.

Table 4.2: Summary of the detected bugs related to compilation errors.

The proposed technique detected a total of 74 bugs, from which 49 bugs are related to

compilation errors (48 in Eclipse and 1 in JRRT), 17 to behavioral changes (14 in Eclipse and

3 in JRRT), and 8 to overly strong preconditions (7 in Eclipse and 1 in JRRT). Using skips of
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Table 4.3: Summary of the detected bugs related to behavioral changes.

Table 4.4: Summary of the detected bugs related to overly strong preconditions using DT

technique.

10 and 25 the technique missed two bugs. The missed bugs are related to compilation errors,

and behavioral changes in the Move Method refactoring. Tables 4.2, 4.3, and 4.4 summarize

the results of the detected bugs related to compilation errors, behavioral changes, and overly

strong preconditions, respectively.

Since we tested newer versions of Eclipse JDT and JRRT comparing with our previous

works [77; 80], we detected some new bugs that our previous works did not detect. But, we

also detected some bugs that we have already detected (those bugs have not been fixed yet in

the engines). We reported all new bugs found in the bug tracker of Eclipse and we sent them

by email to the JRRT developers.

The total time to evaluate all refactoring implementations without skip to generate pro-

grams was 61.61hrs. Using skips of 10 and 25, the technique took 5.89hrs (90% of time

reduction) and 2.34hrs (96% of time reduction), respectively. By using both skips the tech-

nique missed only 2.7% of the bugs. Table 4.1 summarizes the results related to the time to

test the refactoring implementations.



4.3 Evaluation 68

We measured the Time To Find the First Failure (TTFF) in the refactoring implementa-

tions under test. The technique took in general a few seconds to find the first failure, which

can be related to compilation error or behavioral change (see Table 4.5). In some refactor-

ings, such as Push Down Field and Encapsulate Field, it took some minutes to find the first

failure without skip. In case of no failure, we show “n/a”. We show “-” if we do not evaluate.

Table 4.5: Summary of the Time to Find the First Failure (TTFF).

4.3.4 Discussion

Now we discuss issues of the detected bugs related to compilation errors, behavioral changes,

overly strong preconditions, and the time to test the refactoring implementations.

Compilation Errors

A total of 29,118 transformations applied by Eclipse failed due to compilation errors with-

out skip. Those failures were categorized in 48 bugs. We missed no bug in the refactoring

implementations of Eclipse using the skips of 10 and 25. We detected the same bugs in

the C refactoring implementations using no skip, a skip of 10, and a skip of 25 to generate

programs. Almost half of the transformations failed due to compilation errors in those imple-

mentations. So, the skip was useful to reduce the time to test them. For example, the Eclipse

CDT does not check whether the new names are keywords and, then introduces compilation

errors when applying the transformation. JRRT applied only three transformations (Move

Method) with compilation errors. The failures were categorized in one bug.
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We found a new bug in the Push Down Field refactoring of Eclipse JDT not detected by

previous techniques. The resulting program is presented in Listing 4.1. The transformation

moved the field f from class B to class C. Method C.m calls the field B.f, which is inherited

from A. However, the field A.f is not visible from class B because its visibility is package

and the classes are in different packages. Then, the resulting program does not compile.

Listing 4.1: Uncompilable output program generated by the Push Down Field refactoring of

Eclipse JDT 4.3.

package p1 ;

p u b l i c c l a s s A {

i n t f = 1 0 ;

}

package p0 ;

import p1 ;

p u b l i c c l a s s B ex tends A {}

package p1 ;

import p0 ;

p u b l i c c l a s s C ex tends B {

p u b l i c i n t f = 1 1 ;

p u b l i c long m( ) {

re turn new B ( ) . f ;

}

}

Behavioral Changes

JRRT applied 6,320 behavioral changes transformations. We categorized them in three dis-

tinct bugs. Eclipse JDT applied 3,744 transformations that change the program behavior

while Eclipse CDT applied 2,425 ones. We found 14 distinct bugs related to behavioral

changes in the refactorings of Eclipse. For example, we found a new bug in the Pull Up

Field of Eclipse JDT. The transformation enables a field to hide another field, which changes

the program behavior. Listing 4.2 illustrates the original program generated by JDOLLY and

Listing 4.3 shows the resulting program after the Pull Up Field refactoring of Eclipse. In the
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original program, the method k calls field A.f yielding 0. After the transformation, it calls

B.f yielding 1. The transformation enables the field B.f hides field A.f. We reported the

new bugs to Eclipse. Until the writing of this, we have no feedback from them.

Listing 4.2: Before refactoring.

c l a s s A {

p r o t e c t e d i n t f = 0 ;

}

c l a s s B ex tends A {

p u b l i c i n t k ( ) {

re turn f ;

}

}

c l a s s C ex tends B {

p r i v a t e i n t f = 1 ;

}

Listing 4.3: After the Pull Up Field Refactor-

ing of Eclipse JDT 4.3.

c l a s s A {

p r o t e c t e d i n t f = 0 ;

}

c l a s s B ex tends A {

p r i v a t e i n t f = 1 ;

p u b l i c i n t k ( ) {

re turn f ;

}

}

c l a s s C ex tends B {}

Overly Strong preconditions

We found 7 bugs related to overly strong preconditions in Eclipse JDT and 1 bug in JRRT.

We found two new bugs in the Move Method refactorings of Eclipse and JRRT. Listing 4.4

shows the original program generated by JDOLLY and Listing 4.5 illustrates the resulting

program after the Move Method refactoring of Eclipse JDT. The transformation moved the

method m(int) from class B to class A. This transformation does not change the program

behavior. All methods of the program yield the same value before and after the transfor-

mations. JRRT rejected applying this transformation and reported the following warning:

cannot adjust accessibilities.

Time

Our technique took 61.61 hours to evaluate all refactoring implementations under test with-

out skips. DOLLY generates a number of similar programs that may increase the time for

testing refactoring engines and potentially detect the same kind of bug. We have observed
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Listing 4.4: Before refactoring.

c l a s s A {}

c l a s s B ex tends A {

A f = n u l l ;

long m( i n t a ) {

re turn 0 ;

}

}

c l a s s C ex tends B {

long m( i n t a ) {

re turn 1 ;

}

long k ( ) {

re turn super .m( 2 ) ;

}

}

Listing 4.5: After the Move Method Refac-

toring of Eclipse JDT 4.3.

c l a s s A {

long m( i n t a ) {

re turn 0 ;

}

}

c l a s s B ex tends A {

A f = n u l l ;

}

c l a s s C ex tends B {

long m( i n t a ) {

re turn 1 ;

}

long k ( ) {

re turn super .m( 2 ) ;

}

}

that similar programs tend to be generated consecutively by DOLLY. To alleviate this prob-

lem we implemented a feature that allows skipping consecutive test inputs.

When using skips, the refactoring engine developer can detect a number of bugs in a few

hours. For example, the technique evaluated 18 refactoring implementations and detected

72 bugs in 2.34 hours using a skip of 25 to generate programs. The developer can run the

technique again without skipping while fixing the detected bugs in order to find some missed

bugs. Moreover, we can reduce even more the idle time of the developer since the technique

found the first failure in the refactoring implementations in a few seconds using a skip of 10

or 25. When there are many failures transformations in a refactoring implementation, the

TTFF is similar even varying the skip to generate programs. So, the developer can find a

bug in a few seconds, fix the bug, run it again to find another bug, and so on. By using this

strategy, the bug categorization step is no longer needed since there is only one failure in

each execution. Before a new release, the developer can run the technique without skip to

improve confidence that the implementation is correct.
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4.3.5 Threats to Validity

Next we present the threats to validity of our evaluation.

Construct Validity

We reported all bugs found by our technique. Developers accepted some of them and marked

others as duplicate or new bugs.

Internal Validity

We specify some additional constraints in Alloy for guiding the program generation to each

kind of refactoring. Those constraints aim to generate programs with certain characteristics

needed to apply the refactoring. It also avoids a state explosion of Alloy instances. However,

the additional constraints may hide possibly detectable bugs. We categorize the bugs related

to compilation errors and overly strong preconditions by splitting the failing tests based on

messages from the engine. We classify behavioral changes based on the program’s structure.

However, we can miss some bugs if the engine reports the same message to different kinds

of bugs. Developers can mitigate this threat when they execute the technique a number of

times after fixing the bugs.

External Validity

We have only considered a subset of Java and C and a small scope to generate programs.

Some of the generated programs may be artificial. We cannot assert that all bugs actually

happen in practice. Nevertheless, the technique is useful to warn developers about some

overly weak and strong preconditions in the refactoring implementations.

4.3.6 Answers to the Research Questions

We now answer our research questions.

• Q1 How many bugs, for each refactoring type, the proposed technique can detect bugs?

The technique detected a total of 74 bugs, from which 49 bugs are related to com-

pilation errors, 17 to behavioral changes, and 8 to overly strong preconditions using
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DT. Yet, to apply some kinds of refactorings the program must have some language

constructs currently not supported by the program generator.

• Q2 What is the rate of time reduction and undetected bugs using skips in the technique?

Using skips of 10 and 25, the technique took 5.89hrs (90% of time reduction) and

2.34hrs (96% of time reduction), respectively. Using both skips the technique missed

only 2.7% of the bugs.

• Q3 What is the impact of using skip to generate programs on the time to find the first

failure?

The technique reduced on average 47% and 60% (it took a few seconds) the time to

find the first failure using skips of 10 and 25, respectively.



Chapter 5

Detecting Transformation Issues in

Refactoring Engines

Refactoring transformations have been subject to previous researches [64; 55; 14; 68]. Al-

though there is no unique formal definition for each kind of refactoring, there are common

characteristics among them that developers of refactoring engines should follow. For exam-

ple, a transformation needs to move a field from its original class to a direct superclass to

follow the Pull Up Field refactoring definition. Here, we focus on detecting transformations

applied by refactoring engines that the resulting program compiles and preserves behavior,

but do not follow its refactoring definition. Hereafter, we refer to this kind of problem as

transformation issues. In this chapter, we present our oracles to detect transformation issues

in refactoring engines and the issue categorizers to classify the failures into distinct issues.

Section 5.1 presents some motivating examples. Sections 5.2 and 5.3 explain the oracles

and issues categorizers used in the technique, respectively. Finally, we present our experi-

ment to evaluate the technique in Section 5.4.

5.1 Motivating Examples

In this section, we present two examples of transformation issues applied by refactoring

engines. First, consider a program presented in Listing 5.1. It contains an abstract class B

implementing an interface A. Class B declares an abstract method m. By applying the Pull

Up Method refactoring using Eclipse JDT 4.5, the transformation creates m in interface A,

74



5.1 Motivating Examples 75

but does not remove m from class B (see Listing 5.2).

Listing 5.1: Original version.

p u b l i c i n t e r f a c e A { }

a b s t r a c t c l a s s B implements A {

p u b l i c a b s t r a c t i n t m( ) ;

}

Listing 5.2: Resulting program.

p u b l i c i n t e r f a c e A {

i n t m( ) ;

}

a b s t r a c t c l a s s B implements A {

@Override

p u b l i c a b s t r a c t i n t m( ) ;

}

Figure 5.1: Pulling up method B.m() using Eclipse JDT 4.5 does not remove the method

from its original class.

According to some refactoring definitions proposed in the literature [64; 55; 14; 68], the

Pull Up Method refactoring intends to remove a method from its original class, create it in

the super class, and update all method calls. The transformation presented in Figure 5.1 does

not move a method to a super class, but it creates a new method in the super class. It is an

issue in the Pull Up Method implementation of Eclipse JDT 4.5. We reported this issue to

Eclipse and its developers confirmed it.1

The second transformation issue is presented in Figure 5.2. The source program contains

two packages: p1 and p2. The first one contains two classes A and its subclass B. Class A

declares a method m. Package p2 contains class B that also extends class A (see Listing 5.3).

By applying the Push Down Method refactoring in method A.m using JRRT (02/03/13), it

removes a class from the program. The transformation moves the method to only one of

its subclasses (p2.B) and removes the other subclass (p1.B). Listing 5.4 illustrates the

resulting program. Notice that Eclipse JDT 4.5 correctly applies this same transformation. It

pushes down m to p1.B and p2.B. Listing 5.5 illustrates the resulting program.

The Push Down refactoring does not intend to remove classes from the program, this

is neither the case of an overly strong condition nor an overly weak condition, but it is a

transformation issue in the refactoring implementation. There are other similar scenarios

that JRRT applies the transformations without removing entities. For example, JRRT would

1https://bugs.eclipse.org/bugs/show_bug.cgi?id=473653
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not remove class (p1.B) if it had a different name.

Listing 5.3: Original version.

package p1 ;

p u b l i c c l a s s A {

p u b l i c i n t m( ) {

re turn 1 ;

}

}

package p2 ;

import p1 . ⇤ ;

p u b l i c c l a s s B ex tends A {}

package p1 ;

p u b l i c c l a s s B ex tends A {}

Listing 5.4: Resulting program.

package p1 ;

p u b l i c c l a s s A {}

package p2 ;

import p1 . ⇤ ;

p u b l i c c l a s s B ex tends A {

p u b l i c i n t m( ) {

re turn 1 ;

}

}

Figure 5.2: Pushing down method A.m() using JRRT (02/03/13) removes a class from the

program.

Listing 5.5: Resulting program after Eclipse JDT 4.5 pushes down method A.m() in the

program presented in Listing 5.3.

package p1 ;

p u b l i c c l a s s A {}

package p2 ;

import p1 . ⇤ ;

p u b l i c c l a s s B ex tends A {

p u b l i c i n t m( ) {

re turn 1 ;

}

}

package p1 ;

p u b l i c c l a s s B ex tends A {

p u b l i c i n t m( ) {

re turn 1 ;

}

}

As we see, refactoring engines can apply transformations that compile and preserve the
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program behavior, but they do not follow its refactoring definitions.

Transformations can be global and change parts of the code that they are not supposed to.

When this scenario happens in practice, mainly for large subjects, the user cannot be aware

of all transformation changes. Also, refactoring engines may perform additional transforma-

tions they should not do according to its refactoring definition, as we can see in Figure 5.2.

Daniel et al. [10] presented a technique for automatically testing refactoring engines

using ASTGEN, a Java program generator, and a set of programmatic oracles that can syn-

tactically compare the programs. Among other kinds of bugs, they found 3 transformation

issues in a total of 42 refactoring implementations evaluated. In this chapter, we propose

automated oracles to find transformation issues in refactoring engines.

5.2 Oracles

In this section, we explain the oracles used by our technique to detect transformation issues:

Differential Testing (Section 5.2.1) and Structural Change Analysis (Section 5.2.2).

5.2.1 Differential Testing Oracle

This oracle receives as input two pairs of programs resulting from transformations applied

by refactoring engines for the same input and refactoring type. The same input is provided

to both engines. Figure 5.3 illustrates the main steps of this oracle. First, the oracle executes

SAFEREFACTORIMPACT to evaluate whether the transformations applied by both engines

under test preserve the program behavior (Step 1). The following step is only executed if

both transformations compile and preserve the program behavior. In Step 2, the technique

compares the outputs generated by the engines. We implement a program to compare two

programs concerning their AST (Abstract Syntax Tree). First, it executes a parser and creates

the abstract syntactic tree of both programs using the Eclipse JDT API. The comparator

checks if the programs contain the same set of packages, classes, interfaces, methods and

fields. Next, it compares each pair of classes, methods and fields concerning their modifiers,

types (fields and methods), parameters (methods), method bodies (methods), initialization

(fields), and imports (classes). It yields the differences between the programs if they exist. If

there are differences between the outputs, the oracle reports them and we check if there is a
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transformation issue. We manually inspect one pair of programs of each kind of difference to

analyze if there is a transformation issue in both or one of the programs. Table 5.1 presents

the changes that our comparator considers.

For example, consider that DT oracle receives as input two pairs of programs: the pro-

grams presented in Listings 5.3 and 5.4 and the programs presented in Listings 5.3 and 5.5.

First, it checks whether both transformations preserve the program behavior using SAFER-

EFACTORIMPACT. Since SAFEREFACTORIMPACT reports that a transformation preserves

the program behavior, the oracle compares their outputs (output 1: Listing 5.4, output 2:

Listing 5.5). In this example, the oracle reports the following messages: “output 2 con-

tains a class (p1.B), which the output 1 does not contain" and “output 2 contains a method

(p1.B.m), which the output 1 does not contain." We manually analyze these pairs of pro-

grams and find that the output 1 is incorrect, since the Push Down refactoring does not intend

to remove classes from the program.

Figure 5.3: Differential Testing oracle. In Step 1 the oracle executes SAFEREFACTORIM-

PACT in both pairs of programs related to transformations of same refactoring type. If the

output programs compile and preserve the program behavior, it compares the outputs con-

cerning their AST (Step 2). The oracle reports the differences between the outputs if they

exist.

5.2.2 Structural Change Analysis Oracle

This oracle receives as input a transformation (pair of programs) applied by a refactoring en-

gine and the refactoring type of the transformation. We implement a program to analyze the

program structure of a transformation for each refactoring type. We are based on the trans-
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Table 5.1: Changes considered by our program comparator.

formations that each refactoring type must or must not perform. For example, for the Pull Up

Method refactoring we analyze if a method was removed from its original class and added in

the super class. We also analyze additional transformations that must not be performed, such

as removing an entity from the program. First, we check if the output program preserves

the program behavior using SAFEREFACTORIMPACT (Step 1). If the transformation com-

piles and preserves the program behavior, we check if it is applied correctly by analyzing the

structural changes of the modified program (Step 2). Figure 5.4 illustrates the main steps of

this oracle.

Figure 5.4: Structural Change Analysis oracle. In Step 1 the oracle executes SAFEREFAC-

TORIMPACT in the pair of programs related to a refactoring transformation. If the output

program compiles and preserves the program behavior, the oracle checks the transformation

concerning its refactoring definition.
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Next, we explain the definitions used by the technique for four kinds of refactorings. We

also define some changes that no transformation must perform. We consider the common

characteristics among some refactorings already proposed in the literature [64; 55; 14; 68].

Pull Up Method

The transformation must: remove the method from its original class, add the removed

method in the direct superclass of its original class, pull up all methods that are in the direct

subclasses of the target class (the methods must have the same name, return type, parameters,

and body of the refactored method), and update all calls to the refactored methods. The

transformation must not: move the method when there is another method with the same

signature in the target class and apply the transformation when there is no superclass.

Push Down Method

The transformation must: remove the method from its original class, add the removed

method in the subclass(es) of its original class, and update all calls to the refactored method.

The transformation must not: move the method when there is another method with the

same signature in the target class, and apply the transformation when there is no subclass to

push down the method.

Pull Up Field

The transformation must: remove the field from its original class, add the removed field

to the direct superclass of its original class, pull up all fields that are in the direct subclasses

of the target class (the fields must have the same name, type and initializer value of the

refactored field), and update all calls to the refactored fields. The transformation must not:

move the field when there is another field with the same name in the target class, and apply

the transformation when there is no superclass.

Encapsulate Field

The transformation must: change the field accessibility to private, create a get method that

returns the field, create a void set method that changes the field value, and update all field

accesses. The field can only be accessed by the get and set methods. The transformation
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must not: encapsulate a private field or apply the transformation when there is a get or set

method with the same signature as the methods to be created.

For All Refactoring considered by our technique

Here, we group some transformations that no refactoring considered by our technique can

perform. A change is related to a transformation when it follows its refactoring definition.

The transformation must not: remove a package, class, method or field of the program

that is not related to the transformation, add a package, class, method or field in the program

that is not related to the transformation, make a class (without an abstract method) or method

abstract, reduce class, method or field accessibility.

For example, consider that SCA oracle receives as input the programs presented in List-

ings 5.1 and 5.2. First, it checks whether they have the same behavior using SAFEREFAC-

TORIMPACT. Since this transformation preserves the program behavior, the oracle checks

whether the transformation follows the Pull Up Method refactoring definition described

above. It identifies that the m method was not removed from its original class B and re-

ports the missed definition: “The m method was not removed from its original class."

5.3 Issue Categorization

In this section, we explain how to categorize failures detected by the oracles into distinct

issues.

5.3.1 Technique using DT oracle

The output of DT oracle is the set of differences between the outputs of two refactoring

engines for the same input and refactoring type. A difference between two programs is a part

of the code that one program contains and the other does not contain. We implemented in

Java an automated categorizer that clusters the differences. For each kind of difference we

define a message. For example, by analyzing the outputs presented in Listings 5.4 and 5.5,

DT oracle reports: “output 2 contains a class (p1.B), which the output 1 does not contain"

and “output 2 contains a method (p1.B.m), which the output 1 does not contain." To classify

the failures, we ignore the names of packages, classes, methods, and fields in the messages.
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If there is another pair of outputs that contains the same differences, it is flagged with this

same message (“output 2 contains a class, which the output 1 does not contain and output 2

contains a method, which the output 1 does not contain.") and we classify them as the same

issue. Finally, we manually inspect one pair of programs of each kind of message to analyze

if there is a transformation issue in both or one of the programs.

5.3.2 Technique using the SCA oracle

The output of SCA oracle for one pair of programs is the set of missed refactoring defini-

tions. As we explained in Section 5.2.2, we use a set of refactoring definitions to analyze

each kind of refactoring. We check if the transformation follows all definitions. For exam-

ple, we categorize the transformation issue presented in Figure 5.1 by the following missed

definition: “‘The m method was not removed from its original class." To classify the failures,

we ignore the names of packages, classes, methods, and fields in the messages. When two

or more transformations contain the same missed definitions we categorize them as the same

issue.

5.4 Evaluation

We evaluate our technique using the oracles proposed in this chapter to detect transforma-

tion issues in eight refactoring implementations of Eclipse and JRRT. First, we present the

experiment definition (Section 5.4.1) and planning (Section 5.4.2). Sections 5.4.3 and 5.4.4

present and discuss the results, respectively. Section 5.4.5 describes some threats to validity

and Section 5.4.6 summarizes the main findings.

5.4.1 Definition

The goal of our experiment is to analyze our technique concerning the transformation issues

detection in refactoring engines for the purpose of evaluating it with respect to issues related

to transformations that do not follow the properties of each refactoring type. For this goal,

we address the following research questions:

• Q1 Can the proposed technique using the DT oracle detect transformation issues in the
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refactoring engines?

We measure the number of transformation issues detected by the technique using the

DT oracle for each kind of refactoring implementation.

• Q2 Can the proposed technique using the SCA oracle detect transformation issues in

the refactoring engines?

We measure the number of transformation issues detected by the technique using the

SCA oracle for each kind of refactoring implementation.

• Q3 Do the DT and SCA oracles detect the same issues?

We analyze the transformation issues detected by both oracles: DT and SCA.

• Q4 What is the time to test the refactoring implementation using the technique with

DT and SCA oracles?

We measure the total time to test each refactoring implementation using the technique

with DT and SCA oracles.

5.4.2 Planning

In this section, we describe the subjects used in the experiment and its instrumentation. We

tested eight refactoring implementations (of four refactoring types) of Eclipse and JRRT.

We ran the experiment on a Desktop computer 3.0 GHz core i5 with 8 GB RAM running

Ubuntu 12.04 and JDK 1.6. We tested the refactoring implementations of Eclipse JDT 4.5

and JRRT (02/03/13). We used SAFEREFACTORIMPACT [46] 2.0 with a time limit of 0.5s

to generate tests and the change impact analysis parameter activated to evaluate whether a

transformation preserves the program behavior. We used a scope of two packages, three

classes, up to four methods, and up to two fields to generate the programs for each kind of

refactoring. We used DOLLY 2.0 to generate the programs.

5.4.3 Results

DOLLY used the Alloy Analyzer to generate up to 1,051,608 instances (Pull Up Field refac-

toring), which corresponded to 42,064 generated programs using skip of 25. The rate of
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compilable generated programs was at least 97% in each refactoring. For some kinds of

refactorings, the number of rejected transformations was high. For example, in the Pull

Up Field refactoring, both engines did not apply 41,721 transformations, among the set of

42,064 generated programs. On the other hand, JRRT applied all transformations in the Push

Down Method refactoring.

The technique using the SCA oracle found 10 and 8 transformation issues in the refac-

toring implementations of Eclipse and JRRT, respectively. We found no issue in the Pull Up

Field refactoring. It took 39.26hrs to evaluate the refactoring implementations of Eclipse and

36.91hrs to evaluate the refactoring implementations of JRRT. Table 5.2 illustrates the result

of the technique using the SCA oracle.

The technique using DT oracle found two and three transformation issues in the refactor-

ing implementations of Eclipse and JRRT, respectively. We also found no issue in the Pull

Up Field refactoring. It took a total of 75.83hrs to evaluate all refactoring implementations.

Table 5.3 illustrates the result of the technique using DT oracle.

Table 5.2: Summary of the evaluation results of Eclipse and JRRT refactoring implementa-

tions with our technique using the SCA oracle; Refactoring = kind of refactoring; Scope =

scope used by DOLLY to generate programs; P = package; C = class; M = method; F = field;

Alloy Instances = number of Alloy instances generated by the Alloy Analyzer; GP (using

skip of 25) = number of generated programs using skip of 25 in DOLLY 2.0; CP = compil-

able generated programs; Transformation Issues = number of different kinds of issues related

to incorrect transformations; Time = total time to evaluate the refactoring implementations.

5.4.4 Discussion

In this section, we discuss the results of our evaluation concerning the transformation issues

detected, issue report, time to test the refactoring implementations, and Dolly 2.0.
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Table 5.3: Summary of the evaluation results of Eclipse and JRRT refactoring implemen-

tations with our technique using DT oracle; GP (using skip of 25) = number of generated

programs using skip of 25 in DOLLY 2.0; App. = applied transformations; BP = behavioral

preserving applied transformations; Reject. by = rejected transformations; Different/Equal

transf. applied = the outputs of the engines are different/equal; Transf. Issues = number of

different kinds of issues related to incorrect transformations.

Transformation Issues Detected by Both Oracles

We detected some transformation issues using this oracle. For example, Figure 5.5 shows

an issue in the Pull Up Field refactoring of Eclipse JDT 4.5 detected by the technique using

DT oracle. The original program presented in Listing 5.6 contains three classes: A, B that

extends A, and C that extends B. Class B declares field f initialized by 1 and class C declares

field f initialized by 2. Applying the Pull Up Field refactoring to move field f from class B

to class A introduces an issue. In addition to the desired transformation, it removes field C.f

from the program. Listing 5.7 presents the resulting program.

Listing 5.6: Original version.

p u b l i c c l a s s A {}

p u b l i c c l a s s B ex tends A {

p u b l i c i n t f = 1 ;

}

p u b l i c c l a s s C ex tends B {

p u b l i c i n t f = 2 ;

}

Listing 5.7: Resulting program.

p u b l i c c l a s s A {

p u b l i c i n t f = 1 ;

}

p u b l i c c l a s s B ex tends A {}

p u b l i c c l a s s C ex tends B {}

Figure 5.5: Pulling Up Field B.f using Eclipse JDT 4.5 removes field C.f.

Since the DT oracle can only analyze transformations that both engines apply and the

outputs compile and preserve the program behavior, we may miss some issues. Despite
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this, the detected issues assisted us to improve the refactoring definitions used to analyze the

transformations in the SCA oracle. For example, the transformations presented in Figures 5.2

and 5.5 remove a class and a field from the program, respectively. Based on those detected

issues, we added a refactoring definition that no transformation can remove an entity from

the program. In addition to reading some proposed informal refactoring definitions, we

suggest executing the technique using DT oracle before implementing the SCA oracle for

each refactoring type. As we explained before, the detected issues can assist us to define

the set of refactoring definitions used by the SCA oracle. We implemented the SCA and

DT oracles in Java and executed the experiment using the new version of DOLLY that can

generate programs with abstract classes and methods, and interfaces.

The technique using the SCA oracle detected all issues detected by the technique us-

ing DT oracle. The technique using the DT oracle did not detect some issues because we

only analyze the transformations applied by both engines that compile and preserve the pro-

gram behavior. Figure 5.6 shows an issue in the Encapsulate Field refactoring of Eclipse

JDT 4.5 detected by the technique using the SCA oracle. The original program presented

in Listing 5.8 contains class A, which declares field f and method getF returning 0. Ap-

plying the Encapsulate Field refactoring in field f, choosing the default get/set names, the

transformation does not create the correct getF method because there is a method with the

same signature in the class (see Listing 5.9). So, the field is not correctly encapsulated. The

engine should ask the user if he would like to choose other get/set names or to cancel the

transformation.

Issue Report

We reported all transformation issues detected in Eclipse. So far, they confirmed some issues

and rejected or marked others as duplicate. We did not report the issues detected in JRRT

since there is no one in charge of it. One of the issues that we reported to Eclipse is related

to encapsulating a private field. According to Fowler, only public fields can be encapsu-

lated [14]. We cited Fowler’s book to Eclipse developers and they answered that this book is

out of date. On the other hand, NetBeans suggests to its developers this book to understand

the refactorings.2 Another issue that we reported to Eclipse was rejected and after our ar-

2http://wiki.netbeans.org/Refactoring
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Listing 5.8: Original version.

p u b l i c c l a s s A {

i n t f ;

p u b l i c i n t ge tF ( ) {

re turn 0 ;

}

}

Listing 5.9: Resulting program.

p u b l i c c l a s s A {

p r i v a t e i n t f ;

p u b l i c i n t ge tF ( ) {

re turn 0 ;

}

p u b l i c vo id s e t F ( i n t f ) {

t h i s . f = f ;

}

}

Figure 5.6: Encapsulating field B.f using Eclipse JDT 4.5 does not implement a correct get

method because there is a method with the same signature.

gumentation they confirmed it. This kind of issue or anomaly introduced by the refactoring

engine is still somewhat difficult to confirm by refactoring engine developers, because they

implement the refactorings based on their own definitions.

Time to Test the Refactoring Implementations

The time to evaluate the technique using SCA and DT oracles in the refactoring implementa-

tions of Eclipse and JRRT was almost the same. So, the oracles have a similar cost to execute.

For some kinds of refactorings, the time to evaluate one engine is higher than the time to eval-

uate the other engine. The time may be related to the number of transformations evaluated.

For example, in the Push Down Method refactoring, Eclipse rejected 8,094 transformations,

while JRRT applied all transformations. So, the time to evaluate the transformations applied

by JRRT is higher than the time of Eclipse. In the Pull Up Field refactoring the engines re-

jected the same number of transformations and the time of Eclipse is higher than the JRRT’s

time. Testing the refactorings implementations of Eclipse is costlier than testing JRRT’s ones

because we need to create an Eclipse plugin application. Also, we find that the Eclipse API

used to execute the experiment has memory leak, which can make slower its execution.
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Dolly 2.0

To avoid state explosion, we adapted the scope for each kind of refactoring and added some

new constraints. We specified the new constraints focusing on reducing the number of non-

compilable inputs. For example, a class cannot implement another class. The following fact

specifies this constraint.

fact aClassCannotImplementAnotherClass {

no c1: Class | some c2: Class | !isInterface[c2] && c2 in c1·implement

}

The average rate of compilable programs in DOLLY 1.0 is 68.8% [77]. We added some

constraints related to all constructs of the Java metamodel implemented in DOLLY 2.0 to re-

duce this rate of uncompilable programs. After adding the new constraints, we have reached

a rate of 99.5% of compilable programs generated by DOLLY 2.0. In the Encapsulate Field

refactoring 100% of the generated programs compile. The lowest rate is 97.2% in the Pull

Up Method refactoring.

Despite the fact that the new constraints have reduced the number of Alloy instances,

the Pull Up Field specification has 1,051,608 instances using a scope of three classes and

two methods, fields, and packages. This small scope coupled with a high number of Alloy

instances indicates the expressiveness of DOLLY 2.0. In the previous technique, DOLLY 1.0

generated at most 30,186 Alloy instances to generate useful programs to find bugs in the

refactoring implementations [77]. After the addition of the new constructs, DOLLY 2.0 had

to deal with a number of Alloy instances 30 times higher than DOLLY 1.0, which increased

the cost to test the refactoring implementations. Furthermore, we have to deal with mem-

ory leaks in the Eclipse API. To alleviate these problems and reduce the costs to run the

experiment we choose a skip of 25 to generate programs.

5.4.5 Threats to Validity

Next, we identify some threats to validity for the evaluation performed.
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5.4.5.1 Construct Validity

Construct validity refers to whether the transformation issues that we have detected are in-

deed incorrect transformations performed by the refactoring engines. The definition of a

transformation issue is strictly related to the refactoring definition used by developers of

refactoring engines. They are not only concerned with implementing the pure refactoring.

Sometimes, they include features that are not presented in the refactoring definitions. For ex-

ample, the developers of Eclipse agree on encapsulating a private field while Fowler asserts

in his book that only public fields can be encapsulated [14].

5.4.5.2 Internal Validity

Our set of conditions to define the refactoring engines is not complete. Our technique using

the SCA oracle may hide possibly detectable transformation issues. The technique using DT

oracle may hide some issues when one engine applies a transformation that contains an issue

and the other engine does not apply or the output does not compile or preserve the program

behavior. Our issue categorizer may also hide some issues. The set of conditions and the

issue categorization rules can always evolve. The diversity of the generated programs is

strictly related to the number of detected issues. The higher the diversity, more issues we can

find. So, the scope, constraints, and skip used by DOLLY control the number of generated

programs, and consequently may also hide possible issues.

5.4.5.3 External Validity

We evaluated eight refactoring implementations of Eclipse and JRRT. A survey carried out

by Murphy et al. [49] shows that Java developers commonly use Pull Up refactoring. We

evaluated Pull Up Field and Pull Up Method refactorings. We plan to evaluate more kinds of

refactorings and other refactoring engines, such as NetBeans.

5.4.6 Answers to the Research Questions

Next, we answer our research questions.

• Q1 Can the proposed technique using the DT oracle detect transformation issues in the

refactoring engines?
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Yes. The technique using DT oracle found one issue related to transformation issue in

the Pull Up Method of Eclipse, one in the Push Down Method of Eclipse, one in the

Encapsulate Field of JRRT, one in the Pull Up Method of JRRT, and one in the Push

Down Method of JRRT.

• Q2 Can the proposed technique using the SCA oracle detect transformation issues in

the refactoring engines?

Yes. The technique using the SCA oracle found three issues related to transformation

issue in the Encapsulate Field of Eclipse, five in the Pull Up Method of Eclipse, two

in the Push Down Method of Eclipse, two in the Encapsulate Field of JRRT, one in the

Pull Up Method of JRRT, and five in the Push Down Method of JRRT.

• Q3 Do the DT and SCA oracles detect the same issues?

The technique using the SCA oracle detected all issues related to transformation issues

detected by the technique using DT oracle. DT technique did not detect three issues

in the Encapsulate Field of Eclipse, four in the Pull Up Method of Eclipse, one in the

Push Down Method of Eclipse, one in the Encapsulate Field of JRRT, and four in the

Push Down Method of JRRT.

• Q4 What is the time to test the refactoring implementation using the technique with

DT and SCA oracles?

The oracles had a similar cost to test the refactoring implementations in this study by

using the technique with DT and SCA oracles. The technique using DT oracle took

75.83hrs to evaluate the refactoring implementations of Eclipse and JRRT, while the

technique using the SCA oracle took 76.17hrs to evaluate the same implementations.



Chapter 6

Detecting Overly Strong Preconditions in

Refactoring Engines

Previous work proposes techniques for detecting overly strong preconditions in refactoring

implementations. For example, Vakilian and Johnson [87] use refactoring alternate paths

to identify usability problems related to overly strong preconditions in refactoring engines.

They discover usability problems by analyzing the interactions of users that had problems

with tools in general. Our previous work uses Differential Testing [43] to automatically

identify transformations rejected by refactoring engines due to overly strong preconditions

(DT technique) [80]. To use this technique, developers need to implement a program that

automatically applies the refactorings of at least two refactoring engines. However, it can

only be used if the engines implement the same refactoring. Additionally, setting up other

refactoring engine to automatically apply the transformations may be costly, if the developer

is not familiar with the other refactoring engine code.

In this chapter, we present our technique to identify overly strong preconditions in refac-

toring engines by disabling some preconditions. Section 6.1 presents a motivating example.

Next, Section 6.2 describes each step of our technique. Finally, Section 6.3 explains our

experiment to evaluate the technique.

6.1 Motivating Example

In this section, we present a transformation rejected by Eclipse due to overly strong precon-
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dition. Consider part of a program that handles queries to a database, which provides sup-

port for two database versions. Each database version is implemented in a class: QueryV1

(database version 1) and QueryV2 (database version 2). They make it easy for client code to

swap in support for one version, or another. Those classes extend a common abstract class

Query, which declares an abstract method createQuery. This method is implemented in each

subclass in a different way. A query created by createQuery method is executed by doQuery

method. Notice that, this method is duplicated in both subclasses: QueryV1 and QueryV2.

Listing 6.1 illustrates part of the program.

We can pull up the doQuery method to remove duplication. Using Eclipse JDT 2.1 to

apply this refactoring, it warns that the doQuery method does not have access to createQuery

method. This precondition checks whether after the transformation the pulled up method

still has access to all methods that it calls. However, createQuery method already exists

as an abstract method in the Query class, which indicates that this precondition is overly

strong. This bug was reported in Eclipse’s bug tracker.1 Kerievsky reported it when he was

working out mechanics for a refactoring to introduce the Factory Method pattern [31]. He

argued that “there should be no warnings as the transformation is harmless and correct.” The

Eclipse developers fixed this bug. Listing 6.2 illustrates a correct resulting program applied

by Eclipse JDT 4.5. We found more than 40 bugs related to overly strong preconditions in

the bug tracker of Eclipse. As of this writing, the Eclipse developers have already confirmed

and fixed more than 50% of them.

We also investigated the test suite of 10 refactorings from Eclipse JDT 4.5 and JRRT:

Rename Method, Rename Field, Rename Type, Add Parameter, Encapsulate Field, Move

Method, Pull Up Method, Pull Up Field, Push Down Method, and Push Down Field. We

classified a total of 2,559 assertions and find that 32% of them are concerned to overly strong

preconditions. We consider the following kind of assertion as concerned to overly strong

preconditions in the test suite of Eclipse. It checks if Eclipse applies the transformation.

1 a s s e r t T r u e ("precondition was supposed to pass" ,

2 ! r e s u l t . h a s E r r o r ( ) )

In the test suite of JRRT we identified one kind of assertion related to overly strong precon-

ditions as presented next. A test failure indicates that the refactoring implementation may

1https://bugs.eclipse.org/bugs/show_bug.cgi?id=39896
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Listing 6.1: Pulling Up doQuery method is

rejected by Eclipse JDT 2.1.
p u b l i c a b s t r a c t c l a s s Query {

p r o t e c t e d a b s t r a c t SDQuery c r e a t e Q u e r y ( ) ;

}

p u b l i c c l a s s QueryV1 ex tends Query {

p u b l i c vo id doQuery ( ) {

SDQuery sd = c r e a t e Q u e r y ( ) ;

/ / e x e c u t e query

}

p r o t e c t e d SDQuery c r e a t e Q u e r y ( ) {

/ / c r e a t e query f o r t h e d a t a b a s e v e r s i o n 1

}

}

p u b l i c c l a s s QueryV2 ex tends Query {

p u b l i c vo id doQuery ( ) {

SDQuery sd = c r e a t e Q u e r y ( ) ;

/ / e x e c u t e query

}

p r o t e c t e d SDQuery c r e a t e Q u e r y ( ) {

/ / c r e a t e query f o r t h e d a t a b a s e v e r s i o n 2

}

}

Listing 6.2: Correct resulting program ver-

sion.
p u b l i c a b s t r a c t c l a s s Query {

p r o t e c t e d a b s t r a c t SDQuery c r e a t e Q u e r y ( ) ;

p u b l i c vo id doQuery ( ) {

SDQuery sd = c r e a t e Q u e r y ( ) ;

/ / e x e c u t e query

}

}

p u b l i c c l a s s QueryV1 ex tends Query {

p r o t e c t e d SDQuery c r e a t e Q u e r y ( ) {

/ / c r e a t e query f o r t h e d a t a b a s e v e r s i o n 1

}

}

p u b l i c c l a s s QueryV2 ex tends Query {

p r o t e c t e d SDQuery c r e a t e Q u e r y ( ) {

/ / c r e a t e query f o r t h e d a t a b a s e v e r s i o n 2

}

}

have overly strong preconditions.

1 f a i l ("Refactoring was supposed to succeed;

2 failed with " + r f e )

This way, we observe that Eclipse and JRRT developers are indeed concerned with iden-

tifying overly strong preconditions in their refactoring implementations. Moreover, they may

not seem to have a systematic way to create the test cases to test the refactoring implementa-

tions with respect to overly strong preconditions. In this chapter, we propose a technique to

help developers of refactoring engines to identify them.

6.2 Detecting Overly Strong Preconditions by Disabling Pre-

conditions

In this section, we explain the technique we propose to detect overly strong preconditions

in refactoring implementations. Section 6.2.1 presents an overview of our technique and

Section 6.2.2 describes it by using an example. Next, we explain in more details some

steps of it: identification of different kinds of messages reported by the refactoring engine
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(Section 6.2.3), and the process of applying transformations to allow disabling the execution

of the identified preconditions (Section 6.2.4).

Figure 6.1: A technique to identify overly strong preconditions. First, we generate the pro-

grams using JDOLLY (Step 1). For each generated program, we try to apply the transforma-

tion (Step 2). Next, for each kind of message reported by the engine, we inspect its code and

manually identify the refactoring preconditions that can raise it. We perform transformations

in the refactoring engine code to allow disabling the execution of the identified preconditions

that prevent the refactoring application (Step 3). Then, for each rejected transformation we

try to apply the transformation again using the refactoring engine with the preconditions that

raise the reported messages disabled (Step 4). If the transformation preserves the program

behavior according to SAFEREFACTORIMPACT, we classify the disabled preconditions as

overly strong (Step 5).

6.2.1 Overview

Our technique receives as input a refactoring engine, the Disabling Precondition (DP) trans-

formations used to allow disabling the preconditions, and some parameters to JDOLLY, such

as skip, scope, and additional constraints. The DP transformations facilitate and systematize

the process of changing the code to allow disabling preconditions. Each precondition checks
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whether the transformation may introduce a specific problem in the program, which can re-

sult in compilation errors or behavioral changes. The technique reports the set of overly

strong preconditions identified in the refactoring engine. Figure 6.1 illustrates the main steps

of our technique.

First, JDOLLY automatically generates programs as test inputs (Step 1). Next, the refac-

toring engine under test attempts to apply the transformations to each generated program. If

the refactoring engine rejects a transformation, we collect the messages reported to the user

(Step 2). For each kind of message, we inspect the refactoring implementation code and

manually identify the code fragments related to a precondition that raise it. We assume, for

each refactoring type, that there is one precondition related to each kind of message. Then,

we change the refactoring engine code, by adding an if statement, to allow disabling the

execution of the identified precondition using the DP transformations (Step 3).

Once we have already changed the refactoring implementation code to allow automat-

ically disabling the preconditions, we evaluate them. For each refactoring transformation

rejected by the refactoring engine, the technique automatically disables in the refactoring

engine code the preconditions that raise the reported messages. Next, the refactoring engine

automatically tries to apply the same refactoring transformation again with some precondi-

tions disabled (Step 4). If the refactoring engine reports other message, it repeats the process

until the engine applies a transformation. If the modified refactoring implementation applies

the transformation and the result preserves the program behavior according to SAFEREFAC-

TORIMPACT [46], then the technique classifies the set of disabled preconditions as overly

strong (Step 5). Otherwise, it analyzes the next rejected refactoring transformation. Once

we classify a precondition as overly strong, we do not evaluate it again using other inputs

generated by JDOLLY. All steps are automated, except Step 3.

6.2.2 Example

In this section, we explain all steps of our technique by using the program presented in

Listing 6.3 as input. It contains class A and its subclass B. Class A declares method k and

class B declares methods k, m, and test. Method B.test calls method B.m, which calls method

B.k yielding 92. If we try to apply the Pull Up Method refactoring to move B.m to class A

using Eclipse JDT 4.6, it reports the following message: Method “B.k(...)” referenced in one
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of the moved elements is not accessible from type “A.” The Eclipse developers may prevent

the refactoring application because the method to be moved (m) calls a method from its origin

class (B.k). Therefore, when we pull up the method, the transformation could introduce

compilation errors if B.k was not accessible from the destination class A. However, in this

case, all methods are public, and thus they are accessible from any class, which indicates that

this precondition may be overly strong. We can apply this transformation without changing

the program behavior. Listing 6.4 illustrates a possible correct resulting program. Methods

B.test and B.m yield value 92 in both versions of the program. In what follows, we explain

how we can identify this overly strong precondition using our proposed technique.

Listing 6.3: Pulling Up method B.m() to class

A is rejected by Eclipse JDT 4.6.

p u b l i c c l a s s A {

p r o t e c t e d long k ( long a ) {

re turn 6 ;

}

}

p u b l i c c l a s s B ex tends A {

p u b l i c long m( ) {

re turn new B ( ) . k ( 2 ) ;

}

p u b l i c long k ( i n t a ) {

re turn 9 2 ;

}

p u b l i c long t e s t ( ) {

re turn m( ) ;

}

}

Listing 6.4: A possible correct resulting pro-

gram version.

p u b l i c c l a s s A {

p r o t e c t e d long k ( long a ) {

re turn 6 ;

}

p u b l i c long m( ) {

re turn new B ( ) . k ( 2 ) ;

}

}

p u b l i c c l a s s B ex tends A {

p u b l i c long k ( i n t a ) {

re turn 9 2 ;

}

p u b l i c long t e s t ( ) {

re turn m( ) ;

}

}

Suppose we want to test the Pull Up Method implementation of Eclipse. First, our tech-

nique generates the input programs using JDOLLY. The program presented in Listing 6.3 is

one of the programs generated by JDOLLY to test Pull Up Method refactoring implementa-

tions. Next, it attempts to apply the transformations, collects the messages reported by the
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refactoring engine when it rejects transformations, and inspect the refactoring engine code

to identify the refactoring preconditions that raise the messages. Initially, we search in the

refactoring.properties file for each reported message. In this example, we find the following

declaration: This message is represented by the PullUpRefactoring_method_not_accessible

field from the RefactoringCoreMessages class. We search for the methods in the refactoring

implementation code that use this field. Only checkAccessedMethods method uses this field.

P u l l U p R e f a c t o r i n g _ m e t h o d _ n o t _ a c c e s s i b l e =

Method {0} r e f e r e n c e d i n one of t h e moved

e l e m e n t s i s n o t a c c e s s i b l e from t y p e {1}

Listing 6.5 illustrates part of this method. It contains code fragments of a precondition,

which checks if each method called from the moved method is accessible from the destina-

tion class. The precondition result is stored in the isAccessible variable. If this precondition

is not satisfied (Line 4), Eclipse creates the appropriate message (Line 5) and adds an er-

ror status in the result of this transformation (Line 6). Before applying the transformation,

Eclipse checks if the result variable contains some warning or error messages and reports to

them.

Listing 6.6 illustrates the same method after we change the code to allow disabling the

precondition. It only disables the error status addition (Line 6). By disabling Line 7 (by

setting cond1.isEnable to false), Eclipse does not report the message and can continue its ex-

ecution. Notice that, we only need to find a code fragment (inside a method) adding a warn-

ing or error status related to the reported message to allow disabling the precondition. When

there is more than one method in the refactoring engine code using the field representing the

reported message, we need to change the refactoring engine code to allow disabling all of

them. For each refactoring type, we change the refactoring engine code to allow disabling

the preconditions for all kinds of messages that we collect when it rejects transformations in

the programs generated by JDOLLY.

Step 4 automatically disables some preconditions to evaluate whether they are overly

strong. For each program generated by JDOLLY that the refactoring engine rejects the trans-

formation, our technique disables the preconditions that prevent the refactoring application.

To disable the precondition of our example, our technique automatically sets isEnabled field

of ConditionsPullUpMethod.cond1 to false. After disabling this precondition, it attempts
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Listing 6.5: Original code snippet of Eclipse JDT.

1 p r i v a t e R e f a c t o r i n g S t a t u s checkAccessedMethods ( . . . ) throws

JavaMode lE xcep t ion {

2 f i n a l R e f a c t o r i n g S t a t u s r e s u l t = new R e f a c t o r i n g S t a t u s ( ) ;

3 . . .

4 i f ( ! i s A c c e s s i b l e ) {

5 f i n a l S t r i n g msg = Msgs . f o r m a t ( R e f a c t o r i n g C o r e M e s s a g e s .

P u l l U p R e f a c t o r i n g _ m e t h o d _ n o t _ a c c e s s i b l e , . . . ) ;

6 r e s u l t . a d d E r r o r ( message , J a v a S t a t u s C o n t e x t . c r e a t e ( method ) ) ;

7 }

8 . . .

9 }

Listing 6.6: Code snippet after disabling a Pull Up Method refactoring precondition using

Transformation 2.

1 p r i v a t e R e f a c t o r i n g S t a t u s checkAccessedMethods ( . . . ) throws

JavaMode lE xcep t ion {

2 f i n a l R e f a c t o r i n g S t a t u s r e s u l t = new R e f a c t o r i n g S t a t u s ( ) ;

3 . . .

4 i f ( ! i s A c c e s s i b l e ) {

5 f i n a l S t r i n g msg = Msgs . f o r m a t ( R e f a c t o r i n g C o r e M e s s a g e s .

P u l l U p R e f a c t o r i n g _ m e t h o d _ n o t _ a c c e s s i b l e , . . . ) ;

6 i f ( p r e c o n d i t i o n s P u l l U p M e t h o d . cond1 . i s E n a b l e d ( ) )

7 r e s u l t . a d d E r r o r ( message , J a v a S t a t u s C o n t e x t . c r e a t e ( method ) ) ;

8 }

9 . . .

10 }
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to apply the Pull Up Method transformation again. In this example, Eclipse can apply this

transformation with this precondition disabled (Listing 6.4).

The last step of our technique consists of analyzing whether the output program com-

piles and preserves behavior according to SAFEREFACTORIMPACT (Chapter 3). To analyze

this transformation, SAFEREFACTORIMPACT receives as input the programs shown in List-

ings 6.3 and 6.4. First, it identifies the public and common impacted methods [46]. It

decomposes a coarse-grained transformation into smaller transformations and for each one,

it identifies the set of impacted methods. In this example, we have two small-grained trans-

formations: remove method B.m and add method A.m. Since there is no other m method in

the hierarchy, the small-grained transformations only impact these methods. Next, it identi-

fies the methods that directly or indirectly call the impacted methods. In this example, B.test

calls B.m (original program) and A.m (modified program). Therefore, B.m, A.m, and B.test

are impacted by the transformation. Only these methods may change the behavior after

the transformation. SAFEREFACTORIMPACT generates tests only for the impacted methods

common to both programs (B.m and B.test). Finally, it runs the test suite on both program

versions and evaluates the results. The test cases pass in both programs and SAFEREFAC-

TORIMPACT reports that the transformation preserves the program behavior.

Since SAFEREFACTORIMPACT classifies this transformation as a refactoring, our tech-

nique classifies this precondition as overly strong. In this example, this precondition checks

whether the B.k method (called from the moved method m) is accessible from A class. The

precondition should be satisfied, but it is not. This same precondition may be needed to avoid

some incorrect transformations that introduce compilation errors in the resulting program for

other inputs. Developers need to reason about adjusting the precondition for avoiding pre-

venting correct transformations, such as this transformation. Eclipse developers confirmed

this bug.2

6.2.3 Identifying Messages

This section explains how to identify the different kinds of messages reported by the refac-

toring engine when it rejects refactoring transformations. The first step of our technique

consists of generating programs as test inputs using JDOLLY. For each generated program,

2https://bugs.eclipse.org/bugs/show_bug.cgi?id=399788
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we attempt to apply the transformation using the refactoring engine under test. It may apply

some transformations and reject others. We collect all messages reported by the refactoring

engine when it rejects transformations. Next, we identify the different kinds of messages,

among the set of reported messages. To automate this process, we implement a message

classifier using a similar approach proposed by Jagannath et al. [29]. The approach ignores

the parts of the message that contain names of packages, classes, methods, and fields. For ex-

ample, the template of the message reported by Eclipse in Listing 6.3 is: Method referenced

in one of the moved elements is not accessible from type.

6.2.4 Disabling Refactoring Preconditions

In this step, we change the refactoring implementation code to allow disabling the execution

of some refactoring preconditions that prevent the engine from applying the refactorings.

For example, a Rename Field refactoring implementation must check if there is another

field in the same class with the same name. Without this precondition, a transformation

can introduce compilation errors in the resulting program. Despite some preconditions avoid

incorrect transformations, they may also prevent correct ones because they are too restrictive.

We classify this kind of precondition as overly strong precondition. A precondition may be

implemented as a set of code fragments of the refactoring implementation, consecutive or

not, which can prevent the transformation and report a specific message to the user. A

precondition implementation may involve a set of checks in one or more methods.

We disable the code fragment that prevents the refactoring engine to apply a transforma-

tion due to an unsatisfied precondition. For each kind of message reported by the refactoring

engine, we search for all occurrences of the message in the code to identify the precondition.

We automate disabling the preconditions using AspectJ by following the specified transfor-

mation templates. Next, we explain how we can manually disable the preconditions using

the templates and automatically using aspects.

6.2.4.1 Templates

A DP transformation represents a change in the refactoring implementation code that allows

disabling the execution of a refactoring precondition. Each DP transformation specifies a

Java program template before and after the change. The left hand side template specifies
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the method body in a Java program. When the code fragment that we want to disable the

precondition, matches the left hand side template, we change the refactoring engine code

by following the right hand side template. We specified one DP transformation for JRRT

and two for Eclipse. Each DP transformation adds an if statement in the refactoring engine

code and is applied within a method body. If there is no DP transformation to match, we

analyze the minimum changes necessary to allow disabling the code fragments that prevent

the refactoring precondition to propose a new kind of DP transformation. If this new kind

of DP transformation cannot be used to allow disabling other preconditions, we leave it as a

particular case.

The DP transformations contain some Java constructs and meta-variables. The DP trans-

formations from JRRT and Eclipse have the following common meta-variables: C specifies

a class (it extends a D class); ds specifies a set of class and interface declarations of the

refactoring engine code; m specifies a method name; T specifies a type name; Stmts specifies

a sequence of statements; msg specifies a message reported to the user by the refactoring

engine when it rejects a transformation; and cs specifies a set of class structures, such as

methods, attributes, inner classes, and static blocks. Meta-variables equal on both sides of

a DP transformation means that the transformation does not change them. We create the

ConditionsManagement class to manipulate the execution of each refactoring precondition

(cond1, cond2, ..., condN). For each refactoring type, we create a class (CM) that extends

ConditionsManagement.

JRRT rejects a refactoring transformation when a precondition is not satisfied. As JRRT

does not have a graphical user interface, it always throws a RefactoringException (RefExc)

to terminate the execution and report the error message to the user. To disable a refactor-

ing precondition, we apply a transformation for preventing JRRT from throwing the Refac-

toringException when this precondition is unsatisfied. We specify DP Transformation 1 to

allow disabling code fragments that prevent preconditions of JRRT.

Eclipse implements a class (RefactoringStatus) that stores the outcome of the precondi-

tions checking operation. It contains methods, such as addError, addEntry, addWarning,

createStatus, createFatalErrorStatus, createErrorStatus, and createWarningStatus. Those

methods receive a message and other arguments, describing a particular problem detected

during the precondition checking. The methods starting with create return a RefactoringSta-
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DP Transformation 1 hAvoid throwing an exception in JRRTi

ds

class C extends D {

cs

T m(...) {

Stmts

throw new RefExc(msg);

Stmts0

}

}

!

ds

class C extends D {

cs

T m(...) {

Stmts

if (CM.condN.isEnabled()) {

throw new RefExc(msg);

}

Stmts0

}

}

tus object. The messages are stored in the refactoring.properties file. They are represented

by a field of the RefactoringCoreMessages class. They can be directly accessed by a field

call or through a variable, parameter of the method, or the return of a method call. The

refactoring implementations of Eclipse check the status of a refactoring transformation, in a

RefactoringStatus object, after evaluating the preconditions. If it contains some warning or

error messages, Eclipse rejects the transformation and reports the messages to the user.

We propose the Eclipse DP transformations by analyzing the smallest code fragment,

which we need to disable for avoiding the engine to add a new error or warning status in a

RefactoringStatus object. DP Transformation 2 allows disabling code fragments that prevent

preconditions of Eclipse. It has the following specific meta-variables: status specifies an

object of RefactoringStatus type and s specifies a method of RefactoringStatus.

We use DP Transformation 2 to disable the precondition illustrated in Listing 6.5. T

matches RefactoringStatus, m matches checkAccessedMethods, Stmts matches the sequence

of statements from the beginning of the method until Line 5; status matches the result vari-

able of type RefactoringStatus; m matches the addError method; WarnMsg matches mes-

sage; arg matches JavaStatusContext.create(method); and Stmts’ matches the sequence of

statements from Line 7 until the end of the method. We use the right hand side of this same

DP transformation to change the code to allow disabling the precondition. Listing 6.6 il-
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DP Transformation 2 hAvoid adding a refactoring status in Eclipsei

ds

class C extends D {

cs

T m(...) {

Stmts

status.s(...,msg, ...);

Stmts0

}

}

!

ds

class C extends D {

cs

T m(...) {

Stmts

if (CM.condN.isEnabled()) {

status.s(...,msg, ...);

}

Stmts0

}

}

lustrates the modified program. We also implement the transformations specified by the DP

transformations using AspectJ. The aspects are available at the article’s website.

6.2.4.2 Aspect-Oriented Implementation

Aspect-Oriented Programming aims to increase modularity by allowing the separation of

crosscutting concerns [33]. Disabling refactoring preconditions can be seen as a cross-

cutting concern of the refactoring engine. We implemented in AspectJ [32] all DP trans-

formations. The abstract aspect DisablingPreconditions (Listing 6.7), declares an abstract

pointcut methodMsg to collect calls to methods with a String parameter (msg). It also

declares an around advice to allow executing only the methods collected in methodMsg,

which the list Messages.reportedMsgs does not contain msg (executePrecond method). Mes-

sages.reportedMsgs stores the messages related to the preconditions we want to disable and

msg is the message related to the evaluated precondition. We implement specific aspects to

disable the preconditions of Eclipse and JRRT. They extend DisablingPreconditions. De-

velopers can extend the aspects if they need to create more DP transformations. They need

to specify the pointcut to collect specific method calls and implement the advice to allow

disabling the preconditions.
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Listing 6.7: Abstract aspect to disable preconditions.
p u b l i c a b s t r a c t a s p e c t D i s a b l i n g P r e c o n d i t i o n s {

a b s t r a c t p o i n t c u t methodMsg ( S t r i n g msg ) ;

void around ( S t r i n g msg ) : methodMsg ( msg ) {

i f ( e x e c u t e P r e c o n d ( msg ) ) {

proceed ( msg ) ;

}

}

p u b l i c boolean e x e c u t e P r e c o n d ( S t r i n g msg ) {

re turn ! Messages . r e p o r t e d M s g s . c o n t a i n s ( msg ) ;

}

}

The specific aspect to disable the preconditions of Eclipse avoids adding a new warning

or error status in a RefactoringStatus object. The RefactoringStatus class declares some void

methods that add a new status in a RefactoringStatus object (methods starting with add). It

also declares methods that create a new RefactoringStatus object, add the status, and return

this object (methods starting with create). We specify a pointcut and implement an advice for

both kinds of methods. The methodMsg pointcut collects calls to the addError, addWarning,

and addEntry methods of RefactoringStatus and the methodMsgNonVoid pointcut collects

calls to the createStatus, createErrorsStatus, createWarningStatus, and createFatalErrorSta-

tus methods. We create this pointcut because those methods return a RefactoringStatus ob-

ject. The refactoring implementations of Eclipse do not add or create a new status when

setting the Messages.reportedMsgs list with the messages related to the preconditions that

we want to disable. Listing 6.8 illustrates the aspect used to disable preconditions of Eclipse.

Similarly, we implement the aspect to disable JRRT preconditions.

6.2.5 Evaluating Preconditions

In Steps 4 and 5, we evaluate whether the identified preconditions are overly strong. These

steps are fully automated. For each rejected transformation, we disable the execution of the

preconditions that raise the reported messages. Next, we try to apply the transformation

again using the refactoring engine with these preconditions disabled. If it rejects the trans-

formation, we repeat the same process until the refactoring engine applies the transformation

(Step 4). When it applies the transformation, we evaluate whether the output compiles and

the transformation preserves the program behavior according to SAFEREFACTORIMPACT. If

SAFEREFACTORIMPACT identifies a behavioral change, we conclude that the disabled pre-

conditions are needed to prevent unsafe transformations. Otherwise, we conclude that the
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Listing 6.8: Aspect to disable refactoring preconditions in Eclipse.
p u b l i c a s p e c t D i s a b l i n g P r e c o n d i t i o n s E c l i p s e ex tends D i s a b l i n g P r e c o n d i t i o n s {

p o i n t c u t methodMsg ( S t r i n g msg ) :

c a l l ( void R e f a c t o r i n g S t a t u s . a d d E r r o r ( S t r i n g , . . ) ) && args ( msg , . . ) | |

c a l l ( void R e f a c t o r i n g S t a t u s . addWarning ( S t r i n g , . . ) ) && args ( msg , . . ) | |

c a l l ( void R e f a c t o r i n g S t a t u s . a d d E n t r y ( i n t , S t r i n g , . . ) ) && args ( i n t , msg , . . ) ;

p o i n t c u t methodMsgNonVoid ( S t r i n g msg ) :

c a l l ( R e f a c t o r i n g S t a t u s R e f a c t o r i n g S t a t u s . c r e a t e E r r o r S t a t u s ( S t r i n g , . . ) ) && args ( msg , . . ) | |

c a l l ( R e f a c t o r i n g S t a t u s R e f a c t o r i n g S t a t u s . c r e a t e W a r n i n g S t a t u s ( S t r i n g , . . ) ) && args ( msg , . . ) | |

c a l l ( R e f a c t o r i n g S t a t u s R e f a c t o r i n g S t a t u s . c r e a t e F a t a l E r r o r S t a t u s ( S t r i n g , . . ) ) && args ( msg , . . ) | |

c a l l ( R e f a c t o r i n g S t a t u s R e f a c t o r i n g S t a t u s . c r e a t e S t a t u s ( i n t , S t r i n g , . . ) ) && args ( i n t , msg , . . ) ;

R e f a c t o r i n g S t a t u s around ( S t r i n g msg ) : methodMsgNonVoid ( msg ) {

i f ( e x e c u t e P r e c o n d ( msg ) ) {

re turn proceed ( msg ) ;

} e l s e {

re turn new R e f a c t o r i n g S t a t u s ( ) ;

}

}

}

disabled preconditions are overly strong (Step 5). We then proceed to analyze the next input

generated by JDOLLY, for which the refactoring implementation rejected the transformation.

Once we classify a precondition overly strong, we do not evaluate it again using other inputs

generated by JDOLLY, which the refactoring engine rejects the transformation due to it.

6.3 Evaluation

6.3.1 Research Questions

Our experiment has two goals. The first goal is to analyze the DP technique to detect overly

strong preconditions for the purpose of evaluating it with respect to detection of overly strong

preconditions and performance from the point of view of the refactoring engine developers in

the context of refactoring implementations from Eclipse and JRRT. For this goal, we address

the following research questions:

• Q1 Can the DP technique detect bugs related to overly strong preconditions in the

refactoring implementations?

We measure the number of bugs related to overly strong preconditions for each refac-

toring implementation.
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• Q2 What is the average time to find the first failure using the DP technique?

We measure the time to find the first failure in all refactoring implementations.

• Q3 What is the rate of overly strong preconditions detected by the DP technique among

the set of assessed preconditions?

We measure the rate of preconditions that are overly strong in each refactoring imple-

mentation.

The second goal is to analyze two techniques (DP and DT [80]) to detect overly strong

preconditions in refactoring implementations for the purpose of comparing them with re-

spect to detection of overly strong preconditions from the point of view of the developers of

refactoring engines in the context of refactoring implementations of Eclipse and JRRT. We

address the following research question for this goal:

• Q4 Do DP and DT techniques detect the same bugs?

We measure the bugs detected by both techniques: DP and DT techniques.

6.3.2 Planning

In this section, we describe the subjects used in our study and the setup of the experiment.

6.3.2.1 Subject selection

We tested 10 refactoring implementations of Eclipse JDT 4.5 and 10 of JRRT (02/03/2013) [68].

Among the evaluated refactorings (Column Refact. of Table 6.1), we evaluated popular

refactorings, such as the Rename Method [51; 50] and refactorings that are predominantly

performed automatically by developers, such as Encapsulate Field and Rename Class [53].

6.3.2.2 Setup

We ran the experiment on two computers with 3.0 GHz Core i5 with 8 GB RAM running

Ubuntu 12.04. We used SAFEREFACTORIMPACT [46] 2.0 with a time limit of 0.5 second

to generate tests. This time limit is enough to test transformations applied to small pro-

grams [46]. We executed the experiment using JDOLLY 1.0 with Alloy Analyzer 4 and
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SAT4J solver 2.0.5 to generate the programs with no skip and skips of 10 and 25. To al-

low disable the preconditions in this experiment, we manually applied the transformations to

Eclipse and JRRT code by using the DP transformations.

We used the same Alloy specifications defined before [77; 47] as input parameter of

JDOLLY to generate the programs. JDOLLY generates programs with at most two pack-

ages, three classes, two fields and three methods to test the refactoring implementations of

Eclipse and JRRT. The specification defines some main constraints for guiding JDOLLY to

generate programs with certain characteristics needed to apply the refactoring. To test the

Rename Class, Method, and Field refactorings, we specified that the programs must declare

at least one Class, Method, and Field, respectively. To test the Push Down Method/Field

refactorings, the programs must declare a method/field in a superclass. To test the Pull Up

Method/Field refactorings, the programs must declare a method/field in a subclass. To test

Encapsulate Field and Add Parameter refactorings, the programs must declare at least one

public field and method, respectively. Finally, to test the Move Method refactoring, the pro-

grams must declare at least two classes. One of the classes must declare a method and a field

of the same type of the other class.

The Alloy specification used by JDOLLY also defines additional constraints to mini-

mize the number of generated programs, such as some overloading or overriding methods

and some primitive fields. Furthermore, we specified that the programs must have at least

one public method for enabling SAFEREFACTORIMPACT to generate tests for evaluating the

transformations. We specified a total of nine additional constraints. We automated the refac-

toring applications of Eclipse and JRRT by investigating the refactoring test suites of them

to learn how to apply the refactorings using their source code. We implemented in the same

way, only replacing the input programs with the programs generated by JDOLLY. We used

the same setup for both evaluated techniques (DP and DT).

6.3.3 Summary of the Results

Concerning the JRRT evaluation, we identified 24 refactoring preconditions and found 15

(62%) overly strong preconditions in its refactoring implementations. The DP technique did

not detect 3 bugs using a skip of 25 in the Move Method and Push Down Field refactorings of

JRRT. It took 0.89h to evaluate all refactoring implementations of JRRT without skip to gen-
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erate programs. Using skips of 10 and 25, the technique took 0.28h and 0.09h, respectively.

It took on average a minute to find the first failure.

Concerning the Eclipse evaluation, we identified 25 refactoring preconditions and found

15 (60%) different kinds of bugs in its refactoring implementations. The DP technique did

not detect 1 bug using skips of 10 and 25 in the Add Parameter refactoring of Eclipse. It

took 35.72h to evaluate all refactoring implementations of Eclipse without skip to generate

programs. Using skips of 10 and 25, the technique took 4.22h and 1.75h, respectively. It

took on average 17.41min to find the first failure using no skip. Using skips of 10 and 25,

the technique took on average 2.35min and 1.01min to find the first failure, respectively.

JDOLLY generated 154,040 programs to evaluate all refactorings without skip. Con-

sidering all generated programs, the percentage of compilable programs was 72.8%. For

future work, we intend to specify more well-formed constraints to minimize uncompilable

programs and the cost of analysis. Still, the uncompilable programs do not affect our re-

sults concerning the bug detection. Table 6.1 summarizes the evaluation results of JRRT and

Eclipse refactoring implementations.

We also compared the proposed technique with the DT technique. The DP technique

found nine new bugs that the DT technique cannot find in the refactoring implementations

of JRRT and two new bugs in the refactoring implementations of Eclipse. It did not detect

five bugs that the DT technique detected in the refactoring implementations of Eclipse. Con-

cerning the use of skips, the DP technique did not detect four bugs using a skip of 25 and

one bug using a skip of 10. The DT technique missed no bug using skips of 10 and 25. We

calculated the number of missed bugs using skips by comparing with the number of detected

bugs using no skip. We need to execute the same technique without skip to find the missed

bugs. Table 6.2 summarizes the evaluation results of the comparison between DP and DT

techniques.

6.3.4 Discussion

In this section, we discuss the results of our evaluation.



6.3 Evaluation 109

Table 6.1: Summary of the DP technique evaluation in the JRRT and Eclipse refactoring im-

plementations; Refact. = Kind of Refactoring; Skip = Skip value used by JDOLLY to reduce

the number of generated programs; GP = Number of Generated Programs by JDOLLY; CP =

rate of compilable programs (%); N o of assessed preconditions = Number of assessed refac-

toring preconditions in our study; Overly Strong Preconditions = Number of detected overly

strong preconditions in the refactoring implementations; Time (h) = Total time to evaluate

the refactoring implementations in hours; Time to First Failure (min) = Time to find the first

failure in minutes; "na" = not assessed.
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Table 6.2: Summary of the comparison between DP and DT techniques using input programs

generated by JDOLLY; Refact. = Kind of Refactoring; Skip = Skip value used by JDOLLY to

reduce the number of generated programs; DP = DP Technique; DT = DT Technique; Overly

Strong Preconditions = Number of detected overly strong preconditions in the refactoring

implementations; "na" = not assessed.

6.3.4.1 Assessed Preconditions

We identified 24 preconditions of JRRT and 25 preconditions of Eclipse from the messages

reported by them when they reject transformations. We relate each reported message to one
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precondition for each refactoring type. Table 6.3 illustrates some of the Eclipse and JRRT

assessed preconditions considered in our evaluation. For each one, we explain what the

precondition checks (fourth column), the message reported by the refactoring engine when

the precondition is unsatisfied (fifth column), and if our technique classified it as overly

strong in this study (sixth column).

For example, Precondition 1 prevents JRRT to move a method when it overrides (or is

overwritten by) different methods before and after the transformation. Without this precon-

dition, the transformation may change the program behavior. However, our technique clas-

sified this precondition as overly strong because it also prevents from moving an overwritten

method when there is no other method in the program calling it. Precondition 4 avoids the

same problem in the Add Parameter refactoring of JRRT, since changing a method signature

may change method overriding. Our technique also classified it as overly strong for this

refactoring. Preconditions 2 and 3 prevent JRRT to push down or pull up a field to a class

that already contains a field with the same name, respectively. Both preconditions avoid in-

troducing compilation errors in the resulting program, since a class cannot declare two fields

with the same name. According to this evaluation they are not overly strong.

Precondition 7 prevents Eclipse to move a method to a class that already declares a

method with the same name. It avoids introducing compilation errors and behavioral changes

in the resulting program. However, our technique found that this precondition is overly

strong because the methods can have different types of parameters. Preconditions 8 and 9

prevent Eclipse to rename a method when there is another method in the same package or

type in the renamed method hierarchy, with the same name but different parameter types

and with the same signature, respectively. They also avoid introducing compilation errors

and behavioral changes in the resulting program. For example, it can introduce compilation

errors related to reduction of inherited method visibility or can introduce behavioral changes

when the renamed method changes the binding of a method call. Our technique classified

both preconditions as overly strong because in some cases the renamed method is not public

and there is no other method in the program calling it.

Precondition 10 prevents Eclipse to push down a field when there is a method referencing

it. It avoids introducing compilation errors when the field does not hide other field, and

behavioral changes, otherwise. Precondition 12 prevents Eclipse from adding a parameter
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in a method when there is another method in the same class with the same signature. It

avoids introducing compilation errors in the resulting program, since a class cannot declare

two methods with the same signature. Both preconditions (10 and 12) are not overly strong

in this evaluation.

This set of assessed preconditions is a subset of the existing preconditions. The evaluated

refactoring implementations may have more overly strong preconditions. Developers may

consider programs with different program constructs to detect them. In some cases, pre-

conditions of different refactoring types, such as Preconditions 1 and 4, and Preconditions

2 and 3, are implemented by the same code fragments. The refactoring engine reports the

same message when the preconditions are unsatisfied. Even so, we consider them as differ-

ent preconditions because we analyze each refactoring implementation separately. To test all

preconditions of a refactoring implementation, we need to select a set of input programs that

leads the refactoring implementation to report all messages when it rejects transformations.

Table 6.3: Subset of Eclipse and JRRT assessed preconditions. Engine = Refactoring engine

that contains the precondition; Refactoring = Kind of refactoring; Precondition = precondi-

tion checking; Message = reported message when the precondition is unsatisfied; OS (DP) =

yes if the DP technique found this precondition as overly strong in this experiment, otherwise

no.

6.3.4.2 Disabling the Assessed Preconditions

We consider some transformations as particular cases because the developers do not follow a

pattern to reject a refactoring transformation due to an unsatisfied precondition. We applied
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58 DP transformations (22 in JRRT and 36 in Eclipse) and 25 particular cases, which we can-

not apply the proposed DP transformations, to allow disabling the execution of the Eclipse

and JRRT assessed preconditions in this study. In some places of the code we may apply

more than one transformation, since some preconditions of different refactoring types report

the same message. Developers can restructure the refactoring engine code to enable using

the DT transformations to disable the code fragments of preconditions that we classified as

particular cases.

For each precondition, we may apply more than one DP transformation or the same DP

transformation more than once because each message may appear in a number of places in

the code. The number of messages may impact the performance of Steps 3 and 4 of our

technique because we need, for each message, to identify the precondition that raises it and

change the refactoring engine code to allow disabling the precondition.

Since JRRT does not have graphical user interface, it throws an exception with the mes-

sage in 100% of cases and aborts its execution. Eclipse opens a dialog to report the message

describing the problem to the user. The user can cancel the refactoring application or con-

tinue in some cases. In our study, 36%, 46%, and 14% of the changes we made in the Eclipse

code prevent warning, error, and fatal error problems, respectively. Only one change (6%)

we cannot assert by static analysis whether it prevents a warning or error message.

Listings 6.9 and 6.10 illustrate the original and modified code of JRRT to allow dis-

abling the execution of a Move Method refactoring precondition (Precondition 1 of Ta-

ble 6.3), respectively. We can use the DP Transformation 1 to disable this precondition.

The transformation was applied to the unlockOverriding method from the AST.MethodDecl

class. This precondition evaluates if a set of overridden methods in the original program

(old_overridden.equals) is equal to the set of overridden methods in the program after the

transformation (overriddenMethods). JRRT rejects the transformation by throwing a Refac-

toringException if the precondition is not satisfied. Our technique classified this precondi-

tion as overly strong. We reported this overly strong precondition to the JRRT developers

and they classified it as bug due to imprecise analysis. So far, the bug has not been fixed yet.

Among the 25 transformations applied without any DP transformation, there are 6 dif-

ferent kinds of transformations. For example, in some cases we included in the then clause

of the if statement, which disables the precondition, some statements to avoid crashing the



6.3 Evaluation 114

Listing 6.9: Original code snippet of JRRT.

,

1 p u b l i c vo id u n l o c k O v e r r i d i n g ( ) {

2 . . .

3 i f ( ! o l d _ o v e r r i d d e n . e q u a l s ( o v e r r i d d e n M e t h o d s ( ) ) )

4 throw new R e f a c t o r i n g E x c e p t i o n ("overriding has changed" ) ;

5 . . .

6 }

Listing 6.10: Code snippet after we change the engine code by using Trans-

formation 1, to allow disabling the execution of a Move Method refactoring

precondition.

,

1 p u b l i c vo id u n l o c k O v e r r i d i n g ( ) {

2 . . .

3 i f ( ! o l d _ o v e r r i d d e n . e q u a l s ( o v e r r i d d e n M e t h o d s ( ) ) )

4 i f ( p recond i t i onsMoveMethod . cond1 . i s E n a b l e d )

5 throw new R e f a c t o r i n g E x c e p t i o n ("overriding has changed" ) ;

6 . . .

7 }
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refactoring engine. We also had to add in some cases a return null command after the if

statement, which disables the precondition, to avoid compilation errors in the refactoring

implementation code.

In some cases, when we disabled a precondition, the refactoring engine reported other

message and we needed to disable other precondition that raises the other reported message,

and so on. For seven refactoring implementations, we detected a number of overly strong

preconditions at the same time: Move Method, Push Down Method, and Add Parameter of

JRRT and Move Method, Pull Up Method, Rename Method, and Rename Type of Eclipse.

In the Move Method refactoring of JRRT we needed to disable up to four preconditions at the

same time to find a bug (among the set of six assessed preconditions). In the other refactoring

implementations, we disabled up to two preconditions.

Regarding Step 3, the first author took around one day of work to understand how Eclipse

and JRRT check their refactoring preconditions, raise messages, and reject transformations.

After that, she took some minutes to manually change the refactoring engine code to al-

low disabling each refactoring precondition using the proposed templates. Concerning the

particular cases, she also took some minutes.

6.3.4.3 Bugs Detected by DP Technique

Among the 49 assessed preconditions, we identified 30 overly strong preconditions (61%)

in the Eclipse and JRRT refactoring implementations using the DP technique. For example,

Listing 6.3 illustrates a Pull Up Method refactoring rejected by Eclipse due to overly strong

precondition (Precondition 11 of Table 6.3). Most of the overly strong preconditions of

Eclipse and JRRT found by our technique are related to method accessibilities and name

conflicts. Others are related to changes in overriding methods, type constraints violations,

shadow declarations, unimplemented features, transformation issues, and changes in method

invocations.

JRRT applied transformations to all programs generated by JDOLLY in three refactoring

implementations: Encapsulate Field, Rename Field, and Rename Type. We did not de-

tect overly strong preconditions in those refactoring implementations. Different from JRRT,

Eclipse rejected some transformations in these refactoring implementations and we found

some overly strong preconditions. In both of the refactoring engines we identified 15 overly
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strong preconditions using the DP technique.

We reported all detected bugs to the Eclipse developers. So far, they confirmed 47% of

them (seven bugs), and did not answer 27% (four bugs). The remaining four bugs were con-

sidered duplicate (13%) or invalid (13%). We investigated the duplicated bugs (IDs 434881

and 399183) and reopened them because we think they are not duplicated as the reported

messages are different. We also reopened a bug considered invalid by the developers (ID

399181). Developers argued that the refactoring engine does not show a message in this

case. However, we tested the same bug in the newest version of Eclipse JDT 4.6 and it still

reports the message. So far, they have not answered us. The other invalid bug was in the

Pull Up Field refactoring (ID 462994). Developers marked it as invalid because the transfor-

mation changes the value of a field not called by any method in the original program. The

equivalence notion we adopted does not consider that this kind of change modifies the pro-

gram behavior. SAFEREFACTORIMPACT only evaluates the behavior of the common public

impacted methods. Developers did not fix all confirmed bugs because they have very limited

resources who are active committers on the refactoring module. We reported the new bugs of

JRRT, not detected by previous technique, to its developers and they consider most of them

as bugs due to imprecise analysis or unimplemented features. So far, they left unanswered

two of them.

The goal of our technique is to propose a systematic way to evaluate the implemented

preconditions. We do not suggest removing the overly strong preconditions found by our

technique. By removing them, the refactoring engine may apply incorrect transformations.

The developers need to reason about the preconditions and choose the best strategy to slightly

weak them without making them overly weak. They can use the DP and DT techniques

and our previous technique [77] to detect overly weak preconditions to reason about their

preconditions.

6.3.4.4 Time

We computed the time for the automated steps of the DP technique. The time to evaluate the

refactoring implementations of JRRT was smaller than the time to evaluate the Eclipse ones

in all cases but two: Rename Method and Pull Up Field refactorings. In those refactoring

implementations all assessed preconditions of Eclipse are overly strong while this is not true
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for JRRT. The execution of the technique finishes when we find that all preconditions under

test are overly strong. The execution to evaluate Eclipse finished earlier than the JRRT ones

in the Rename Method and Pull Up Field refactorings. However, the total time to evaluate

all refactoring implementations of JRRT and Eclipse was 0.89h and 35.72h, respectively.

Our previous study [47] showed that using skips the technique can substantially reduce

the time to test the refactoring implementations while missing a few bugs related to overly

weak and overly strong preconditions using the DT technique. In this study, we evaluated

the influence of skip in the time reduction and bug detection of the DP technique. Using

skips of 10 and 25, the total time to evaluate all refactoring implementation reduced in 87%

and 94%, while missing 13% and 3% of the bugs, respectively. The total time to evaluate

the Move Method refactoring of JRRT and Rename Method refactoring of Eclipse using a

skip of 25 was higher than using a skip of 10. In those cases, the technique found that all

preconditions under test are overly strong using a skip of 10 earlier than using a skip of 25.

Eclipse took 11.48h and 7.15h to evaluate the Add Parameter and Push Down Method

refactorings, respectively. These times were higher than the time to evaluate the other refac-

toring implementations. JDOLLY generated more programs to evaluate these refactoring

types (30,186 for Add Parameter and 20,544 for Push Down Method) and only some of the

assessed preconditions of them were classified as overly strong.

The average time to find the first failure in the refactoring implementations of JRRT (few

seconds) was also smaller than in the Eclipse ones (17.41min). The average time to find the

first failure in Eclipse was affected by some values much higher than the average time, such

as the time to first failure in the Push Down Method and Add Parameter refactorings. In

the Push Down Method refactoring, JRRT and Eclipse found the first failure after generating

255 and 2,898 programs, respectively. In the Add Parameter refactoring, JRRT and Eclipse

found the first failure after generating 328 and 8,258 programs, respectively. The average

time to first failure of Eclipse without considering these two higher values is 2.62min. Using

skips of 10 and 25, the average time to find the first failure in all refactoring implementations

reduced in 85% and 93%, respectively.

Using skips, the developers can run the technique and find a bug in a few seconds or

minutes, fix the bug, run the technique again to find another bug, and so on. Or, developers

can run the technique to find a number of bugs in a few minutes or hours. Before a release,
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they may run the technique without skipping instances to find some missed bugs and improve

confidence that the implementations are correct.

6.3.4.5 Comparison of DP and DT techniques using input programs generated by

JDOLLY

The techniques are complementary in terms of bug detection. The DP technique detected 11

new bugs (37% of the bugs) that DT technique cannot detect in the Pull Up Field and Add

Parameter refactorings of Eclipse and in the Move Method, Rename Method, Push Down

Method, and Push Down Field refactorings of JRRT. The DT technique cannot detect some

bugs when the other refactoring engine used in the differential testing has overly weak pre-

conditions or also has overly strong preconditions. In the former case, the other refactoring

engine applies a transformation that does not preserve the program behavior or the resulting

program does not compile. In the latter case, the other refactoring engine also rejects to

apply the transformation.

For example, Listing 6.11 presents a program generated by JDOLLY. It contains class A

and its subclasses B and C. Classes A and B contain the field f and class B declares method

test that calls field B.f, yielding value 1. By using JRRT to apply the Push Down Field

refactoring to move A.f to class C, it rejects this transformation due to an overly strong

precondition. By disabling the precondition that prevents the refactoring application, we can

apply the transformation without changing the program behavior. Listing 6.12 illustrates the

resulting program. Method B.test yields value 1 before and after the refactoring. We only

detected this overly strong precondition using the DP technique. The DT technique cannot

detect it because Eclipse also rejects this transformation. We reported this bug to the JRRT

developers and they agreed that this transformation should be applied.

DT technique detected five bugs that DP technique cannot detect in the Push Down

Method and Rename Field refactorings of Eclipse. The DP technique cannot detect those

bugs because when we disable the code fragments of a precondition, JRRT applies a trans-

formation that includes a cast (two bugs in the Rename Field) or a super modifier (one bug

in the Rename Field) in a field call to preserve the program behavior.

For example, Listing 6.13 presents an input program generated by JDOLLY. It contains

class B, and its subclass C. Class B contains the field f1. Class C contains the field f0 and
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declares method test that calls f1 yielding 0. By using Eclipse to rename field C.f0 to f1, it

rejects this transformation due to an overly strong precondition. JRRT applies this transfor-

mation without changing the program behavior. Listing 6.14 illustrates a resulting program

applied by JRRT. Method C.test yields 0 before and after the refactoring. We only detected

this overly strong precondition using the DT technique. The DP technique cannot detect it

because when we disable the precondition, Eclipse applies a non-behavior preserving trans-

formation. It does not include a cast of class B in the field call inside method test. Without

this cast, method test calls C.f1 instead of B.f1 yielding 1.

Listing 6.11: Pushing down field A.f to class

C is rejected by JRRT. Bug detected by DP

technique and not detected by DT technique

because Eclipse also rejects to apply the

transformation.

p u b l i c c l a s s A {

p r i v a t e i n t f = 0 ;

}

p u b l i c c l a s s B ex tends A {

p r o t e c t e d i n t f = 1 ;

p u b l i c long t e s t ( ) {

re turn f ;

}

}

p u b l i c c l a s s C ex tends A {}

Listing 6.12: A possible correct resulting pro-

gram version applied by JRRT.

p u b l i c c l a s s A {}

p u b l i c c l a s s B ex tends A {

p r o t e c t e d i n t f = 1 ;

p u b l i c long t e s t ( ) {

re turn f ;

}

}

p u b l i c c l a s s C ex tends A {

p r i v a t e i n t f = 0 ;

}

The DP technique has some advantages. It reports the set of overly strong preconditions,

which may facilitate the weakening of the preconditions and it does not need another refac-

toring engine. The effort to set up the DP technique consists of the manual step of applying

the transformations to disable the preconditions. We modified 1-3 LOC per transformation.

Although in the DP technique we need to manually identify the preconditions from the set

of reported messages, we propose a systematic strategy to perform this activity by using the

DP transformations.
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Listing 6.13: Renaming C.f0 to f1 is rejected

by Eclipse JDT 4.5. Bug detected by DT

technique and not detected by DP technique.

p u b l i c c l a s s B {

p r o t e c t e d i n t f1 = 0 ;

}

p u b l i c c l a s s C ex tends B {

p r i v a t e i n t f0 = 1 ;

p u b l i c long t e s t ( ) {

re turn t h i s . f 1 ;

}

}

Listing 6.14: A possible correct resulting pro-

gram version applied by JRRT.

p u b l i c c l a s s B {

p r o t e c t e d i n t f1 = 0 ;

}

p u b l i c c l a s s C ex tends B {

p r i v a t e i n t f1 = 1 ;

p u b l i c long t e s t ( ) {

re turn ( ( B) t h i s ) . f 1 ;

}

}

An advantage of the DT technique is that it can show useful transformations performed by

other refactoring engine (see example in Listing 6.14), which can help developers to identify

and fix the overly strong preconditions. However, it needs at least two refactoring engines.

When it is possible, developers can run the DP technique and after fixing the detected bugs,

they run the DT technique to find more bugs.

The DT technique took on average 17h and 66.2h to test the refactoring implementations

of JRRT and Eclipse, respectively. The DP technique took on average 0.89h and 35.7h to

test the same refactoring implementations of JRRT and Eclipse. DT technique takes some

time to apply the transformations using two refactoring engines.

6.3.4.6 Comparison of DP and DT techniques using input programs of Eclipse and

JRRT refactoring test suites

We evaluated the DP technique by replacing the programs generated by JDOLLY with in-

put programs used by developers in the test suites of Eclipse and JRRT. The goal was to

analyze if our technique can find overly strong preconditions using other input programs in

refactoring implementations of Eclipse and JRRT already evaluated in the previous study

(see Section 6.3.2.1). We selected only the input programs used in the test cases that the

refactoring engine rejects applying the transformation. We identified 272 input programs to
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evaluate the refactoring implementations. The engines reported a total of 71 messages when

we attempted to apply the transformations in the evaluated refactoring implementations of

Eclipse and JRRT. We related the messages to 71 refactoring preconditions.

The DP technique detected 18 overly strong preconditions not detected by the Eclipse and

JRRT developers. The DP technique detected at least one overly strong precondition in 70%

and 20% of the evaluated refactoring implementations of Eclipse and JRRT, respectively. We

also evaluated the same refactoring implementations using the DT technique and the same

input programs. The DT technique detected 15 overly strong preconditions not detected by

the Eclipse and JRRT developers. The DT technique detected at least one overly strong

precondition in 60% and 10% of the evaluated refactoring implementations of Eclipse and

JRRT, respectively.

The DP technique detected eight overly strong preconditions not detected by DT tech-

nique in the Pull Up Method, Pull Up Field, Add Parameter, Rename Method, and En-

capsulate Field refactorings of Eclipse and in the Push Down Method and Pull Up Method

refactorings of JRRT. DT technique detected five overly strong preconditions not detected by

DP technique in the Move Method, Pull Up Method, Push Down Method, Rename Field, and

Rename Method refactorings of Eclipse. In total, we assessed 71 preconditions and detected

23 overly strong preconditions not detected by the developers.

We cannot detect 17 of the bugs using the current version of JDOLLY. We need to add

more Java constructs in JDOLLY to detect them. Besides the 23 detected bugs, we found 12

false-positives in this study. In these bugs, the input programs used by the Eclipse and JRRT

test suites do not have public methods. SAFEREFACTORIMPACT did not identify any public

method to generate tests and classified the transformations as behavior preserving. We did

not have this problem with the input programs generated by JDOLLY, as they have at least

one public method. We reported all new bugs to the Eclipse developers but until now they

left unanswered. Table 6.4 illustrates the main results of this evaluation.

The developers did not find those overly strong preconditions because they do not seem

to have a good support to reason about their preconditions and a systematic strategy to eval-

uate whether a precondition is overly strong. Furthermore, as they expect the refactoring

engine to reject those transformations, they believe that the transformations may change the

program behavior. In fact, developers may not have an automated oracle to check behavior
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preservation, such as SAFEREFACTORIMPACT.

We also evaluated our technique to detect overly weak preconditions by replacing the

programs generated by JDOLLY with input programs used by developers in the test suites of

Eclipse and JRRT. We selected only the input programs used in the test cases concerned to

overly strong preconditions. In this kind of test case, it is expected that the engine applies

a correct transformation. We detected six bugs of compilation errors in the refactoring im-

plementations of Eclipse. The bugs are related to reduction of inherited method visibility,

wrong use of generics, and use of undeclared fields and methods. We detected one bug re-

lated to behavioral change in the Move Method refactoring of Eclipse and one in the same

refactoring of JRRT. In both bugs, the resulting program of the test case throws a NullPoint-

erException. Table 6.5 illustrates the main results of this evaluation. Developers did not find

these bugs because they may not check whether the expected output of each test case com-

piles and they may not have an automated oracle to check for behavior preservation, such as

SAFEREFACTORIMPACT.

Table 6.4: Summary of the comparison between DP and DT techniques using input pro-

grams of Eclipse and JRRT refactoring test suite; Refactoring = Kind of Refactoring; Input

programs = Number of selected input programs of the JRRT and Eclipse refactoring test

suite; N o of assessed preconditions = Number of assessed refactoring preconditions in our

study; Overly Strong Preconditions = Number of detected overly strong preconditions in the

refactoring implementations; DP = DP Technique; DT = DT Technique.
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Table 6.5: Summary of the evaluation results of our technique to detect overly weak pre-

conditions using input programs of Eclipse and JRRT refactoring test suite; Refactoring =

Kind of Refactoring; Input programs = Number of selected input programs of the JRRT and

Eclipse refactoring test suite; Compilation Errors = Number of detected bugs related to com-

pilation errors in the refactoring implementations; Behavioral Changes = Number of detected

bugs related to behavioral changes in the refactoring implementations.

6.3.5 Threats to Validity

In this section, we discuss some threats to the validity of our evaluation.

6.3.5.1 Construct Validity

Construct validity refers to whether the overly strong preconditions that we have detected are

indeed overly strong preconditions. Eclipse considered two bugs reported by us as invalid.

Some preconditions that we found may not be overly strong with respect to the equivalence

notion adopted by the developers. Different from them, our equivalence notion is related to

the behavior of the public methods with unchanged signatures. These methods can exercise

methods with changed signatures. Otherwise, the methods with changed signatures may not

affect the overall system behavior. So far, they confirmed 47% of the reported bugs.

We have no prior knowledge over the refactoring engines code, since we are not their

developers. We may not identify all code fragments related to the preconditions under test.

Developers may identify a different set of preconditions and may have better results when
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using our technique. Additionally, changing the refactoring engine code may introduce prob-

lems in the refactoring engine. It may apply incorrect transformations that do not follow the

refactoring definition. We minimize this threat by systematizing the process of disabling the

preconditions. We propose DP transformations that each one alters one line of code. Even

the special cases change a few lines of code.

Finally, we specify in Table 6.3 some preconditions based on the available source code

and documentation of JRRT and Eclipse [16; ?; 72; 73; 71; 74; 68; 67]. Still, some definitions

may be incomplete or incorrect as we are not developers of the refactoring engines.

6.3.5.2 Internal Validity

A false-positive result of SAFEREFACTORIMPACT indicates that it did not detect a behav-

ioral change. In our technique, a false-positive may incorrectly classify a precondition as

overly strong. However, in this study, we manually analyzed each overly strong precondi-

tion before reporting it. We only found some false-positives in the experiment using the

input programs of the refactoring engines’ test suites. The false-positives were related to

changes in the standard output or changes in non-public methods that cannot be detected by

SAFEREFACTORIMPACT 2.0.

Additional constraints in JDOLLY may hide possibly detectable overly strong precon-

ditions. These constraints can be too restrictive with respect to the programs that can be

generated by JDOLLY, which shows that one must be cautious when specifying constraints

for JDOLLY. Our current setup for testing Eclipse may have memory leaks. This may have

an impact in the time to test its refactoring implementations. Another threat is related to the

bugs detected only by DP technique. The DT technique did not identify some bugs because

the other engine (JRRT or Eclipse) used to perform differential testing also has overly strong

preconditions or overly weak preconditions that allow applying incorrect transformations.

Using another refactoring engine to perform differential testing may identify some of those

bugs.

6.3.5.3 External Validity

We can use our technique to evaluate other kinds of refactorings than the ones evaluated

in this article because it does not rely on specific properties of the transformation. We just
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have to change the Alloy specification in JDOLLY [77] to generate programs that exercise a

specific kind of refactoring. For example, we can adapt our technique to test the Move Field

refactoring by reusing our Java meta-model and well-formed rules. We need generating

programs with at least two classes (C1 and C2) and one field (F1) in one of the classes. The

following Alloy fragment specifies it.

1 one sig C1, C2 extends Class DP{}

2 one sig F1 extends Field DP{}

3 pred generate[] {

4 F1 in C1·fields

5 }

Currently, JDOLLY generates programs considering a subset of the Java constructs. We

found input programs in the test suite of Eclipse and JRRT that have some constructs, which

JDOLLY does not deal with, such as anonymous class, enumeration, annotation, and syn-

chronized. We can extend JDOLLY to consider more Java constructs and test more kinds of

refactorings. In our previous work [77], we explained how we can extend the Java meta-

model specified in Alloy to generate richer method bodies. We also explained the well-

formed rules specified in Alloy to remove some uncompilable programs. In addition, we

proposed CDOLLY, a C program generator [47]. Richer method bodies in Java can be spec-

ified similarly in Alloy to the approach used in CDOLLY to specify C functions.

6.3.6 Answers to the Research Questions

Next, we answer our research questions.

• Q1 Can the DP technique detect bugs related to overly strong preconditions in the

refactoring implementations?

We found a total of 30 bugs (11 new bugs) related to overly strong preconditions in 14

(70%) refactoring implementations. We did not find bugs in the Push Down Field and

Rename Field refactorings of Eclipse, and Pull Up Field, Encapsulate Field, Rename

Field, and Rename Type refactorings of JRRT.

• Q2 What is the average time to find the first failure using the DP technique?
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The technique can find the first bug in each refactoring implementation of JRRT on

average in 0.59min. Finding the first bug in the Eclipse evaluation took on average

17min. The average time to find the first failure in Eclipse was affected by some

values, such as the time to first failure in the Push Down Method and Add Parameter

refactorings.

• Q3 What is the rate of overly strong preconditions detected by the DP technique among

the set of assessed preconditions?

In the refactoring implementations of Eclipse and JRRT, 60% and 62% of the evaluated

preconditions in this study are overly strong, respectively.

• Q4 Do DP and DT techniques detect the same bugs?

The techniques detect 19 bugs in common. DT technique cannot detect 11 bugs that

the DP technique detected in the Add Parameter and Pull Up Field refactorings of

Eclipse, and in the Move Method, Push Down Field, Rename Method, and Push Down

Method refactorings of JRRT. When both refactoring engines under test have overly

strong preconditions, the DT technique fails to detect bugs. The DT technique detected

5 bugs in Eclipse that the DP technique cannot detect in the Push Down Method and

Rename Field refactorings of Eclipse.



Chapter 7

Related Work

In this chapter, we relate our work to a number of approaches for verifying and testing refac-

torings (Section 7.2), approaches for automated testing of refactoring engines (Section 7.2),

and approaches of change impact analysis (Section 7.3).

7.1 Refactoring

Preconditions are a key concept of research studies on the correctness of refactorings.

Opdyke [55] proposed a number of refactoring preconditions to guarantee behavior preser-

vation. However, there was no formal proof of the correctness and completeness of these

preconditions. In fact, later, Tokuda and Batory [85] showed that Opdyke’s preconditions

were not sufficient to ensure behavior preservation. Roberts [64] automated the basic refac-

torings proposed by Opdyke.

Garrido and Johnson [19; 20] proposed CRefactory, a refactoring engine for C. They

specified a set of refactoring preconditions that support programs in the presence of condi-

tional compilation directives and implemented the refactorings. However, they did not prove

them sound. We can use our technique to test their refactoring implementations with respect

to overly strong preconditions. We evaluated Eclipse CDT with respect to overly weak pre-

conditions by using DOLLY to generate C programs and SAFEREFACTOR for C. We just

need to create some transformation DP, similar to the one created to Eclipse JDT, to disable

preconditions of the Eclipse CDT refactoring test suite.

Kim et al. [34] conducted surveys, interviews, and quantitative analysis to evaluate refac-
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toring challenges and benefits at Microsoft. Although participants of the survey mentioned

that refactorings help on improving maintainability, 77% of them mentioned regression bugs

as risks for applying refactorings. Also, except for the rename refactoring, most of the

participants mentioned that they manually perform refactorings, despite the awareness of

automated tools. This study indicates that tool support for refactoring should go beyond au-

tomated transformations. For example, they need to use a better tool support for checking

behavior preservation correctness, as SAFEREFACTORIMPACT does.

Rachatasumrit and Kim [59] studied the impact of a transformation on regression tests

by using the version history of Java open source projects. Among the evaluated research

questions, they investigated whether the regression tests are adequate for refactorings in

practice. They found that refactoring changes are not well tested: regression test cases cover

only 22% of impacted entities. Moreover, they found that 38% of affected test cases are

relevant for testing the refactorings. We proposed SAFEREFACTORIMPACT that uses change

impact analyses to guide the test suite generation for only testing the methods impacted

by a transformation. Most of the tests generated by our tool are relevant for evaluating the

transformations considered in our work. Although our tool has low change coverage in larger

subjects, it focuses only on generating tests to run on both versions of the program. There

are a number of added or removed methods that are not exercised indirectly. So, it cannot

generate tests for them.

Steimann and Thies [81] showed that by changing access modifiers (public, protected,

package, private) in Java one can introduce compilation errors and behavioral changes. They

proposed a constraint-based approach to specify Java accessibility, which favors checking

refactoring preconditions and computing the changes of access modifiers needed to preserve

the program behavior. Such specialized approach is useful for detecting bugs regarding

accessibility-related properties. On the other hand, our approach is general enough for de-

tecting bugs with respect to other OO and AO constructs.

Schäfer et al. [69] proposed refactorings for concurrent programs. They have proved the

correctness based on the Java memory model. Currently, we do not deal with concurrency

since SAFEREFACTORIMPACT can only evaluate sequential Java programs. However, they

have demonstrated that some useful refactorings are not influenced by concurrency. In those

situations, we can use SAFEREFACTORIMPACT. Later, they [68] implemented a number of
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Java refactoring implementations in JRRT. They aim to improve correctness of the refactor-

ing implementations of Eclipse. They included some of the results presented by Steimann

and Thies [81]. We evaluated five JRRT implementations and found some bugs.

Tip et al. [84] presented an approach that uses type constraints to verify preconditions

of those refactorings, determining which part of the code they may modify. Using type con-

straints, they also proposed the refactoring Infer Generic Type Arguments [17], which adapts

a program to use the Generics feature of Java 5, and a refactoring to migration of legacy li-

brary classes [1]. Eclipse implemented these refactorings. Their technique allows sound

refactorings with respect to type constraints. However, a refactoring may have preconditions

related to other constructs. Our tool may be helpful in those situations.

Borba et al. [6] proposed a set of refactorings for a subset of Java with copy semantics

(ROOL). They proved the refactoring correctness based on a formal semantics. Silva et

al. [76] proposed a set of behavior preserving transformation laws for a sequential object-

oriented language with reference semantics (rCOS). They proved the correctness of each

of the laws with respect to rCOS semantics. Some of these laws can be used in the Java

context. Yet, they have not considered all Java constructs, such as overloading and field

hiding. SAFEREFACTORIMPACT may be useful when their work may not be applicable.

Li and Thompson [39] introduced a technique to test refactorings using a tool, called

Quvid QuickCheck, for Erlang. They evaluated a number of implementations of the Wran-

gler refactoring engine. For each refactoring, they state a number of properties that it must

satisfy. If a refactoring applies a transformation, but does not satisfy a property, they indicate

a bug in the implementation. They found four bugs. We use SAFEREFACTOR to evaluate be-

havior preservation. Our technique uses a similar approach for testing refactorings for Java

and C. Their approach applies refactorings to a number of real case studies and toy examples.

In contrast, we apply refactorings to a number of programs generated by DOLLY.

Overbey and Johnson [57] proposed a technique to check for behavior preservation. They

implement it in a library containing preconditions for the most common refactorings. Refac-

toring engines for different languages can use their library to check refactoring preconditions.

The preservation-checking algorithm is based on exploiting an isomorphism between graph

nodes and textual intervals. They evaluated their technique for 18 refactorings in refactoring

engines for Fortran 95, PHP 5 and BC. In our approach, we use SAFEREFACTORIMPACT
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to evaluate whether any transformation is behavior preserving. Proving refactorings with

respect to a formal semantics constitutes a challenge [70].

In our previous work [80] we proposed a technique to identify overly strong precondi-

tions based on differential testing [43]. If a tool correctly applies a refactoring according to

SAFEREFACTOR and another tool rejects the same transformation, the latter has an overly

strong precondition. In a sample of 42,774 programs generated by JDOLLY, we evaluated 27

refactorings of Eclipse, NetBeans and JastAdd Refactoring Tools (JRRT) [68], and found 17

and 7 types of overly strong preconditions in Eclipse and JRRT, respectively. This approach

is useful for detecting whether the set of refactoring preconditions is minimal. Later, Soares

et al. [77] introduced a technique to test refactoring tools and found more than 100 bugs in

the best academic (JRRT) and commercial Java refactoring implementations (Eclipse and

NetBeans). This approach is based on a program generator (JDOLLY) and SAFEREFACTOR.

In this work, we extend SAFEREFACTOR to consider AO constructs, and use change impact

analysis to generate tests only for the methods impacted by a transformation.

Monteiro and Fernandes [48] presented a catalog of 27 AO refactorings. They can be

useful for implementing aspect-aware refactoring tools. However, they did not prove their

soundness. We can apply their refactorings and use SAFEREFACTORIMPACT to improve

confidence that the transformation is correct.

Wloka et al. [91] introduced a tool support for extending currently OO refactoring im-

plementations for considering aspects. They employ change impact analysis to identify

pointcuts impacted by a transformation that can change the program behavior. The tool

can change pointcuts to preserve program behavior in some cases. SAFEREFACTORIMPACT

does not apply a transformation to a program. It only evaluates whether a transformation

preserves behavior. SAFIRA also considers aspects during the analysis. Moreover, SAFER-

EFACTORIMPACT evaluates any kind of transformation, while their tool evaluates only some

Java refactorings, such as rename, move, extract and inline.

Binkley et al. [4; 5] presented a human guided automated approach to refactor OO to AO

program. They implement six kinds of refactorings. Each refactoring defines a set of precon-

ditions to guarantee behavior preservation. They refactored four OO real systems to mod-

ularize it in aspects (JHotDraw, PetStore, JSpider and JAccouting). Hannemann et al. [26]

introduced a role-based refactoring approach to help programmers modularize crosscutting
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concerns into aspects. Malta and Valente [41] presented a collection of transformations used

to enable the extraction of crosscutting statements to aspects. Each refactoring defines a set

of preconditions. Their work may contribute for improving tool support for applying refac-

torings to AO programs. However, they did not prove them sound with respect to a formal

semantics. Developers can use our tool together with their approaches to improve confidence

that the transformation preserves behavior. Moreover, SAFEREFACTORIMPACT can evaluate

any kind of transformation.

Yokomori et al. [94] analyzed two software applications that have been refactored into

aspects (JHotDraw and Berkeley DB) to determine circumstances when such activities are

effective at reducing component relationships and when they are not. They found that AO

refactoring is successful in improving the modularity and complexity of the base code. In

our work, we propose a tool based on change impact analysis to improve confidence that a

transformation preserves behavior. SAFEREFACTORIMPACT does not evaluate whether the

resulting program improves the quality of the original program.

Hannemann and Kiczales [25] implemented 23 design patterns [18] in Java and AspectJ.

Their study concludes that some patterns are better implemented using OO constructs and

others using AO constructs. Taveira et al. [83] modularized exception handling in OO and

AO code by using test suite and pair programming. The study indicates that the AO version

promotes reuse of exception handling code. We used SAFEREFACTORIMPACT to analyze

some transformations they evaluated, and found some behavioral changes that developers

were unaware. SAFEREFACTORIMPACT does not evaluate whether the resulting program

improves the quality of the original program.

Van Deursen et al. [88] used an existing well-designed open-source system (JHotDraw)

and modified it to an equivalent AO version (AJHotDraw). In this work, we analyzed some

transformations applied to JHotDraw collected from its SVN repository history and from

studies that aimed to modularize the exception handling mechanism.

Cole and Borba [8] formally specified AO programming laws (each law defines a bidirec-

tional semantics-preserving transformation) for AspectJ. By composing them, they derived

AspectJ refactorings. Each law formally states preconditions. They proved one of them

sound with respect to a formal semantics for a subset of Java and AspectJ [9]. They can be

useful for implementing aspect-aware refactoring tools. However, they did not consider all
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AspectJ constructs and their catalog is incomplete. In those situations, we can use our tool.

Testing refactoring correctness can be useful in other contexts as well. Dig and John-

son [11] studied the API changes of some frameworks. They have discovered that more than

80% of the changes that break API clients are refactorings. This suggests that refactoring-

based migration engines should be used to update applications. API users can use SAFER-

EFACTORIMPACT for checking whether API changes modify their programs’ behavior. Fur-

thermore, Reichenbach et al. [62] proposed the program metamorphosis approach for pro-

gram refactoring. It breaks a coarse-grained transformation into small transformations. Al-

though these small transformations may not preserve behavior individually, they guarantee

that the coarse-grained transformation preserves behavior. Our approach can be used to in-

crease confidence that the set of small transformations, applied in sequence, indeed preserve

behavior.

7.2 Automated Testing of Refactoring Engines

Daniel et al. [10] proposed an approach for automated testing refactoring engines. The tech-

nique is based on ASTGEN, a Java program generator, and a set of programmatic oracles. To

evaluate the refactoring correctness, they implemented six oracles that evaluate the output of

each transformation. For instance, the oracles check for compilation errors and warning mes-

sages. There is one oracle that evaluates behavior preservation. It checks whether applying a

refactoring to a program, its inverse refactoring to the target program yields the same initial

program. If they are syntactically different, the refactoring engine developer has to manually

check whether they have the same behavior. For example, consider the classes A, B (sub-

class of A) and C (subclass of B) presented in Listing 7.1. The class A declares the field k,

which is initialized with 10. The class C has the field k hiding A.k, which is initialized with

20, and the method test calls super.k. This method yields 10. By using Eclipse JDT 4.3

to apply the Pull Up Field refactoring to C.k moving it to class B, the transformation yields

the program presented in Listing 7.2. This transformation introduces a behavioral change:

the method test now calls B.k yielding 20 instead of 10 in the initial program. Applying

the Push Down Field refactoring to B.k in the modified program presented in Listing 7.2,

the resulted program is equal to the initial program presented in Listing 7.1. So, their oracle
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does not detect this behavioral change, different from SAFEREFACTORIMPACT.

Figure 7.1: Pulling up a field introduces a behavioral change in Eclipse JDT 4.3.

Listing 7.1: Original Program

p u b l i c c l a s s A {

p u b l i c i n t k = 1 0 ;

}

p u b l i c c l a s s B ex tends A {

}

p u b l i c c l a s s C ex tends B {

p u b l i c i n t k = 2 0 ;

p u b l i c i n t t e s t ( ) {

re turn super . k ;

}

}

Listing 7.2: Resulting Program

p u b l i c c l a s s A {

p u b l i c i n t k = 1 0 ;

}

p u b l i c c l a s s B ex tends A {

p u b l i c i n t k = 2 0 ;

}

p u b l i c c l a s s C ex tends B {

p u b l i c i n t t e s t ( ) {

re turn super . k ;

}

}

They used the oracles Differential Testing, Inverse Transformations, and Custom Oracles

to identify transformation issues. The Custom oracle is aware of the structural changes that

their corresponding refactorings should make and thus check that the refactored program

exhibits the expected changes. Our SCA oracle is based on their Custom oracle. But they

did not make available the refactoring definitions used to implement this oracle. They evalu-

ated the technique by testing 42 refactoring implementations and found three transformation

issues using Differential Testing and Inverse oracles, and only one bug using the Custom

oracle. We evaluated 8 refactoring implementations and found 18 transformation issues (18

using SCA oracle and 5 using DT oracle).

They identified a total of 21 bugs in Eclipse JDT and 24 in NetBeans. In Eclipse JDT, 17

bugs were related to compilation errors, 3 bugs were related to incomplete transformations

(e.g. the Encapsulate field refactoring did not encapsulate all field accesses), and 1 bug was

related to behavioral change. We found 17 bugs related to behavioral change in 18 refactoring

implementations of JRRT and Eclipse.

Jagannath et at. [29] presented the STG technique to reduce the costs of bounded-

exhaustive testing by skipping some test inputs. They randomly select a skip up to 20 after

generating each program. They evaluated it using ASTGEN and found that the technique
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took some seconds to find the first failure related to compilation error or engine crash in the

refactoring implementations using STG. We also included the skip parameter in DOLLY to

reduce the time to test the refactoring implementations and to find the first failure, which

can be related to compilation error or behavioral change. Different from them we use skips

to identify overly strong preconditions and transformation issues. Also, we use a fixed skip

that is set by the user while they use a random skip. As our results are deterministic, we can

execute the tests again using the same skip to evaluate whether we have already fixed the

bugs. Moreover, we can execute using a different skip to find some missed bugs. Finally,

they did not measure the rate of missed bugs using skips to generate programs different from

our work.

Later, Gligoric et al. [22] proposed UDITA, a Java-like language that extends ASTGEN

allowing users to describe properties in UDITA using any desired mix of filtering and gen-

erating style in opposed to ASTGEN that uses a purely generating style. UDITA evolved

ASTGEN to be more expressive and easier to use, usually resulting in faster program gen-

eration as well. They found four new bugs related to compilation errors in Eclipse in a few

minutes. However, the technique requires substantial manual effort for writing test genera-

tors [21] since they are specified in a Java-like language. Soares et al. [77] found that UDITA

does not generate some programs that JDOLLY generates using the same scope and without

skipping.

More recently Gligoric et at. [21] used real systems to reduce the effort for writing

test generators using the same oracles [22]. They found 141 bugs related to compilation

errors in refactoring implementations for Java and C in 285 hours. However, the tech-

nique may be costly to apply the refactorings in large systems and to minimize the fail-

ure into a small program to categorize the bugs. Moreover, evaluating transformations on

large real programs is time consuming, and it would produce less accurate results. We

can use SAFEREFACTORIMPACT to automatically detect behavioral changes in their tech-

nique. SAFEREFACTORIMPACT detected behavioral transformations applied on real sys-

tems that even a well-defined manual inspection conducted by experts did not detect [78;

46].

In our previous work [80; 77] we proposed a technique to test refactoring engines by

detecting bugs related to compilation errors, behavioral changes, and overly strong precon-
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ditions. It is based on JDOLLY, an exhaustive program generator, a set of automated oracles,

such as SAFEREFACTOR [79], and differential testing to identify overly strong preconditions.

As opposed to ASTGEN and UDITA that use a Java-like language, JDOLLY only needs to

declaratively specify the structures of the programs. However, it may be costly to evaluate all

test inputs. It took a total of 590 hours to detect 106 bugs related to compilation errors and

behavioral changes in 39 refactoring implementations. Moreover, the technique does not test

refactorings applied within method level. In this work, we optimize the technique to reduce

the costs of testing. For example, using a skip of 25 in the program generator, it reduces in

95% the time to test the refactoring implementations while missing only 5.2% of the bugs.

Vakilian and Johnson [87] presented a technique to detect usability problems in refactor-

ing engines. It is based on refactoring alternate paths. They adapt critical incident technique

to refactoring tools and show that alternate refactoring paths are indicators of the usability

problems of refactoring tools. Their technique manually found two usability problems re-

lated to overly strong preconditions. We use SAFEREFACTORIMPACT to evaluates whether

the applied transformation is behavior preserving. Our technique automatically found 10

bugs related to overly strong preconditions in Eclipse JDT and JRRT.

7.3 Change Impact Analysis

Law and Rothermel [36] proposed an approach based on static and dynamic partitioning and

recursive algorithms of calls graphs to identify methods impacted by a change. Different

from SAFIRA, the analysis estimates the change impact before applying the transformation.

Our change impact analyzer performs static analysis in any kind of transformation applied

to Java or AspectJ programs. In addition, it does not need additional information to evaluate

a transformation.

Chianti [63] is a change impact analyzer tool for Java. Based on a test suite and the

changes applied to a program, it decomposes the change into atomic changes and gener-

ates a dependency graph. The tool indicates the test cases that are impacted by the change.

Only these test cases need to be executed again. Zhang et al. [95] proposed a change im-

pact analyzer tool (FaultTracer) that improves Chianti by refining the dependencies between

the atomic changes, and adding more rules to calculate the change impact. Both tools re-
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ceive two program versions as parameters, and decompose the change into small-grained

transformations, similar to SAFIRA. However, different from SAFIRA, Chianti and Fault-

Tracer depend on a test suite to assess the change impact. They execute the test cases,

and identify the impacted test cases that must be executed again based on the call graphs.

SAFEREFACTORIMPACT automatically generates test cases for the methods impacted by a

transformation.

Kung et al. [35] presented an approach to identify impacted classes due to structural

changes in library classes of OO languages. It is based on a reverse engineering approach

that extracts information from the library classes and their relationships. This information is

represented in dependency graphs used to automatically identify changes and their effects.

Li and Offut [40] conducted a study to evaluate how changes applied to OO programs can

affect program classes. They proposed an algorithm that computes the transitive closure of

the program dependency graph. They analyzed changes in a program to identify impacted

classes. SAFIRA also identifies the methods impacted by a change.

Wloka et al. [92] proposed a tool called JUnitMX. It uses a change impact analysis tool

to yield all entities impacted by a transformation. After executing a test suite, it indicates

whether the test suite exercises all entities impacted by a transformation. If all test cases

pass, but they do not cover all entities impacted by a transformation, the tool yields a yellow

bar. The tool yields a green bar if and only if the test cases pass and exercise all entities

impacted by a transformation. Otherwise, it yields a red bar. As a future work, we intend to

include this functionality in SAFEREFACTORIMPACT.
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Conclusions

In this work, we propose a technique to scale testing of refactoring engines by extending a

previous technique [77; 80]. We improve it with respect to expressiveness of the program

generator, reduction of costs, and detection of more kinds of bugs. We propose a new version

of DOLLY with two new features: skip parameter and new Java constructs (Chapter 4). We

present a strategy to reduce the time to test the refactoring implementations by skipping some

consecutive test inputs [47]. Consecutive programs generated by DOLLY tend to be very

similar, potentially detecting the same kind of bug. Thus, developers can set a parameter to

skip some programs to reduce the time to test the refactoring implementations. By skipping

those programs, we can reduce the Time to First Failure (TTFF), reducing the developer idle

time. To improve the expressiveness of DOLLY we add new Java constructs, such as abstract

classes and methods, and interface.

The previous technique [77; 80] uses a set of oracles to evaluate the correctness of the

transformations related to overly strong preconditions, compilation errors, and behavioral

changes. It uses Differential Testing (DT technique) to identify faults related to overly strong

preconditions. We propose a new oracle to identify overly strong preconditions by disabling

some preconditions (Chapter 6). We also refine the oracle to identify behavioral changes [46]

by including a change impact analysis step (Chapter 3). Finally, we present new oracles to

identify a new kind of bug related to transformation issues in refactoring implementations

(Chapter 5). The oracles are based on Differential Testing (DT) and Structural Change Anal-

ysis (SCA).

We perform a more extensive evaluation to compare SAFEREFACTORIMPACT with
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SAFEREFACTOR with respect to two new defined metrics (change coverage and relevant

tests), time to evaluate the refactoring implementations, and behavioral change transforma-

tion detected. Additionally, we evaluate SAFEREFACTORIMPACT in the context of Aspects,

which shows evidence that the technique is useful to evaluate transformations in AspectJ

programs. SAFEREFACTORIMPACT found a number of behavioral change transformations

applied by developers in real systems up to 79 KLOC. It found behavioral changes that

SAFEREFACTOR cannot detect using the same time limit because SAFEREFACTORIMPACT

generates much more relevant tests than SAFEREFACTOR. We can adapt our technique to

use real systems as test inputs such as Gligoric et al. [21] proposed using their technique. In

this case, we can use SAFEREFACTORIMPACT as an oracle to evaluate the correctness of the

transformations. We only need to increase SAFEREFACTORIMPACT’s timelimit.

After identifying the failures, the proposed technique uses a set of automated bug cate-

gorizers to classify all failing transformations into distinct bugs. In our previous work [80]

we used a similar approach than the proposed by Jagannath et al. [29] (Oracle-based Test

Clustering - OTC) to automate the classification of failures related to overly strong precondi-

tions. The previous technique [77] uses the OTC approach to automatically classify failures

related to compilation errors into distinct bugs. They specified a systematic, but manual

approach to categorize failures related to behavioral changes. We automate it in this work.

Also, we propose automated issue categorizers for classify the issues identified by DT and

SCA oracles.

We evaluated our technique to scale testing of refactoring engines in 28 kinds of refac-

toring implementations of JastAdd Refactoring Tools (JRRT) [68], Eclipse JDT (Java) and

Eclipse CDT (C). We found 119 bugs in a total of 49 bugs related to compilation errors, 17

bugs related to behavioral changes, 35 bugs related to overly strong preconditions using DP

and DT techniques, and 18 transformation issues using SCA and DT oracles. We also com-

pared the impact of the skip on the time consumption and bug detection in our technique.

The technique reduces the time in 90% and 96% using skips of 10 and 25 in Dolly while

missing only 3% and 6% of the bugs, respectively.

When using skips, the refactoring engine developer can detect a number of bugs in a few

hours. The developer can run the technique again without skipping while fixing the detected

bugs in order to find some missed bugs. Moreover, we can reduce even more the idle time
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of the developer. The technique finds the first failure in the refactoring implementations in

a few seconds using a skip of 10 or 25. When there are many failures transformations in a

refactoring implementation, the TTFF is similar even varying the skip to generate programs.

So, the developer can find a bug in a few seconds, fix the bug, run it again to find another

bug, and so on. By using this strategy, the bug categorization step is no longer needed since

there is only one failure in each execution. Before a new release, the developer can run the

technique without skip to improve confidence that the implementation is correct.

We evaluated the new oracle to identify overly strong preconditions (DP technique) in

20 refactoring implementations of Eclipse and JRRT [68]. Among the set of 49 evaluated

preconditions, we detected 30 (61%) overly strong preconditions in the refactoring imple-

mentations. So far, the developers of Eclipse confirmed 47% of them. The technique took on

average from a few seconds or even minutes to find the first failure. We also compared the

DP technique with our previous technique based on differential testing (DT technique) [80].

The techniques are complementary in terms of bug detection. The DP technique found 11

bugs (37% of new bugs) that the DT technique cannot detect while missed 5 bugs (21% of

the bugs detected by the DT technique). However, the DP technique does not need another

refactoring engine to evaluate the refactoring implementations. Additionally, the DP tech-

nique can facilitate debugging in the sense of it gives to the refactoring engine developers the

set of overly strong preconditions. DT technique only yields the warning messages reported

by the engine after it rejects a transformation.

We changed our techniques (DP and DT) to use some input programs of the Eclipse

and JRRT refactoring test suites instead of programs generated by JDOLLY. We assessed 71

preconditions and detected 23 overly strong preconditions not detected by the developers. We

did not detect 17 of them using as input the programs generated by JDOLLY. The developers

did not find these overly strong preconditions because they do not seem to have a systematic

strategy to detect them. Additionally, they do not have an automated oracle to check behavior

preservation. We use SAFEREFACTORIMPACT as the oracle to help us in this activity.

Developers can improve their testing process to identify overly strong preconditions by

using the DP and DT techniques. When it is possible, they can run the DP technique and

after fixing the detected bugs, they run the DT technique to find more bugs. DT technique can

show some additional changes that a refactoring engine can perform to enable applying a safe
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transformation, such as replace super with this (or this with super) or add a cast in a field or

method call. They can also run our techniques using their input programs instead of programs

generated by JDOLLY, as we did in part of our evaluation. If the refactoring engine is not

for Java, they can replace SAFEREFACTOR by other automated oracle to check behavior

preservation. Each precondition avoids incorrect transformations. Therefore, all of them

may be needed in the refactoring engines. Our technique reports to the developers a set of

overly strong preconditions. After that, they can reason about their proposed preconditions to

refine and slightly weak them. As a result, they improve the applicability of their refactoring

implementations by avoiding the current scenario of only implementing the preconditions

without evaluating them.

We evaluated our technique with respect to detect bugs related to transformation issues

in eight refactoring implementations of Eclipse JDT 4.5 and JRRT. We used DOLLY with

abstract classes and methods, and interface to evaluate the technique using SCA and DT

oracles. The new Alloy specifications of the refactorings generated up to 1,051,608 Alloy

instances. We used skip of 25 to reduce the time to test the refactoring implementations

and found 18 kinds of transformation issues. In addition to reading some proposed informal

refactoring definitions, we suggest executing the technique using DT oracle before imple-

menting the SCA oracle for each refactoring type.

In summary, we scale a technique to test refactoring engines by improving limita-

tions of previous techniques. These limitations are related to the kinds of bugs that

can be detected (some techniques do not identify transformation issues [77] or overly

strong preconditions [22; 21]), time consumption [77; 80], program generator (some tech-

niques do not have an automated program generator to generate the test inputs [21;

87] or the program generator is not exhaustive [10; 22], has a costly setup [10; 22], or has

a low expressiveness [77]), or some techniques need more than one refactoring engine to

evaluate a refactoring implementation [80]. Our technique uses an automated and exhaustive

program generator, DOLLY to generate the test inputs. We add some features in DOLLY to

reduce the time to test the refactoring implementations by skipping some input programs and

improve its expressiveness by adding more Java constructs. We refine the oracle to identify

bugs related to behavioral changes by proposing SAFEREFACTORIMPACT and propose two

new oracles to identify bugs related to transformations issues. Finally, we propose a new
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technique to identify overly strong preconditions by disabling some preconditions. This new

technique only needs one engine and although it has the manual step of disabling the pre-

conditions, we automate this step by using aspects. Developers can restructure the code to

enable using the aspects to also automatically disable the preconditions that we classified as

particular cases.

8.1 Future Work

As future work, we aim at evaluating the new constructs added in DOLLY (abstract classes

and methods, and interface) with respect to overly weak and overly strong preconditions.

Adding new Java constructs in the Java meta-model increased the number of Alloy instances

generated by the new specification using the same scope. To alleviate this problem without

reducing the expressiveness of DOLLY, we aim at refining the new Alloy specification to

deal with the state explosion of Alloy instances. The Java meta-model that we specified

in Alloy [27] to generate programs, does not include some kinds of constructs such as the

static modifier, inner classes, generics, and richer method bodies. Also, the specified scopes

and constraints limit the number of entities in the generated programs. Then, we aim at

specifying more language constructs in DOLLY to generate different programs as test inputs

enabling to find other bugs in the refactoring implementations.

We plan to implement the oracle to detect transformation issues in more refactoring types,

such as Rename (Class, Method, and Field), Push Down Field, and Add Parameter. We also

intend to test the refactoring implementations of NetBeans. We evaluated the refactoring im-

plementations with respect to transformation issues using skip of 25 to reduce the costs due

to the increase number of instances generated by DOLLY with the new constructs. Using this

skip, we may lose on average 3.9% of the bugs [47]. In order to find some potential missed

bugs, we aim to run the experiment by starting the program generation at other instances,

such as 5, 15, and 20. We also intend to measure the time to find the first failure. Finally, we

aim to improve our refactoring definitions used to implement the SCA oracle.

We intend to investigate the refactoring engines test suites to identify limitations related

to the input programs, assertion types, test strategies, and oracles. To identify them, we will

conduct a survey to reach the refactoring engines developers (see Appendix A) and evaluate
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their implementations using our technique. We altered our technique by replacing DOLLY

with the input programs of the refactoring engines test suites and found 31 bugs related to

compilation errors, behavioral changes, and overly strong preconditions not found by the

developers. We will evaluate our technique with respect to transformation issues using the

input programs of the refactoring engines test suites. Moreover, we aim at evaluating other

refactoring types not evaluated by our technique using DOLLY, such as Extract Method.

As we showed in the evaluation presented in Section 3.3, SAFEREFACTORIMPACT does

not detect the behavioral change in a defective refactoring because SAFIRA does not perform

data flow analysis. So, SAFEREFACTORIMPACT may not generate test cases containing

some getter methods that may be useful to expose the behavioral change. It has a parameter

that, when enabled, allows us to consider all getter methods during the test suite generation.

However, when using such option, the number of methods passed to the test suite genera-

tor may increase in some transformations. To alleviate this problem, we intend to improve

the analysis performance and investigate whether it is worth including a data flow analysis

in Safira. Additionally, we aim at defining other small-grained transformations to reduce

the set of impacted methods identified by Safira. We are also interested in evaluating other

automatic test suite generators in SAFEREFACTORIMPACT, such as EvoSuite [15] and Test-

ful [2]. Finally, we intend to create an Eclipse plugin for SAFEREFACTORIMPACT.
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Implementing and Testing Refactorings
The goal of the survey is to understand the process of implementing and testing refactorings. It 
consists of three parts:

i.  Participant background (4 questions) 
ii.  Implementation of refactorings (14 questions)
iii.  Evaluation of the implemented refactorings (6 questions)

Answering the survey should take around 10 minutes of your time.  All the data collected from the 
survey is anonymous. The results of the survey may be reported in academic publications. If you 
have any questions or concerns, please contact Melina Mongiovi <melina@copin.ufcg.edu.br>. 

Thanks,

Melina Mongiovi, Federal University of Campina Grande, Brazil 
Rohit Gheyi, Federal University of Campina Grande, Brazil 
Sarah Nadi, University of Alberta, Canada 
Márcio Ribeiro, Federal University of Alagoas, Brazil

* Required

The following is the terminology that we use in the rest of the
survey

1. Refactoring transformation: a transformation which has a goal of refactoring a program 
 
2. Refactoring test case: a unit test included with the source code of the refactoring tool 
 
3. Input program: program used as input by a refactoring test case 
 
4. Resulting program: the output program produced after applying a refactoring transformation 
 
5. Refactoring definition: structural changes that a specific refactoring is supposed to do  
 
6. Transformation issues: incorrect transformations regarding the refactoring transformation definition 
 
7. Refactoring conditions: conditions implemented in the refactoring tool, which goal is to prevent 
incorrect transformations 
 
8. Overly weak conditions: refactoring conditions that allow to apply some incorrect transformations, 
which can introduce compilation errors or behavioral changes 
 
9. Overly strong conditions: refactoring conditions that prevent applying some correct transformations 
 

Participant Background

1. Which refactoring tool do/did you work on? *
Mark only one oval.

 Eclipse

 IntelliJ

 JRRT

 NetBeans
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2. For how long have you been involved as a committer to the above refactoring tools?
Mark only one oval.

 Less than a year

 13 years

 46 years

 710 years

 More than 10 years

3. How many years of Java programming experience do you have?
Mark only one oval.

 Less than a year

 13 years

 46 years

 710 years

 More than 10 years

4. How many years of software testing experience do you have?
Mark only one oval.

 Less than a year

 13 years

 46 years

 710 years

 More than 10 years

Refactorings Specification

5. Do you have any document (besides the source code) that specifies what the refactoring
transformations are supposed to do?
Mark only one oval.

 Yes

 No  Skip to question 9.

Refactorings Specification

6. Could you provide it for us (through a link or
email <melina@copin.ufcg.edu.br>)?

Refactorings Specification
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7. Does the implementation follow the specification of the refactoring transformations?
Mark only one oval.

 The implementation closely follows the specification  Skip to question 9.

 The implementation slightly follows the specification  Skip to question 8.

 The implementation does not follow the specification  Skip to question 8.

 I do not know  Skip to question 9.

Refactorings Specification

8. Why does the implementation not follow the specification?
 

 

 

 

 

Implementation of refactorings

9. How do you determine that a refactoring transformation is correct? You can choose more
than one answer.
Check all that apply.

 The resulting program compiles

 The resulting program has the same observable behavior of the original program

 The transformation improves the quality of the original program

 The transformation follows the expected refactoring transformation definition

 Other: 

10. Do you think in some cases the refactoring tool can apply transformation that introduces
compilation errors or behavioral changes? Please, if you say "yes", justify your answer.
 

 

 

 

 

11. How do you specify the conditions necessary to prevent incorrect refactoring
transformations? You can choose more than one answer.
Check all that apply.

 Based on my knowledge in refactoring transformations

 Based on the reported bugs

 Based on refactoring books

 Based on refactoring papers

 Bases on the Java Specification Language

 Other: 
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12. How do you evaluate whether two versions of a program have the same observable
behavior? You can choose more than one answer.
Check all that apply.

 By compiling the resulting program

 By performing a manual evaluation

 By using a tool to evaluate behavior preservation

 Other: 

13. Does Transformation 1 preserve the program behavior?
Mark only one oval.

 Yes  Skip to question 15.

 No

Implementation of refactorings

14. Why does Transformation 1 change the program behavior?
 

 

 

 

 

Implementation of refactorings

15. Does Transformation 2 preserve the program behavior?
Mark only one oval.

 Yes

 No

16. Mark only one oval.

 Option 1
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Implementation of refactorings

17. Why does Transformation 2 change the program behavior?
 

 

 

 

 

Implementation of refactorings

18. Does Transformation 3 preserve the program behavior?
Mark only one oval.

 Yes  Skip to question 20.

 No

Implementation of refactorings
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19. Why does Transformation 3 change the program behavior?
 

 

 

 

 

Evaluation of the implemented refactorings

20. Rate the following kinds of bugs on a scale of 1 to 5, with 1 being the least important to
test and 5 being the most important.
Mark only one oval per row.

1 2 3 4 5

Compilation errors
Behavioral changes
Transformation issues
Overly strong conditions
Usability problems
System crash

21. How do you select the input programs of the test cases for your refactoring engine? You
can choose more than one answer.
Check all that apply.

 Based on my experience

 Based on expert opinion concerning refactoring and testing

 Based on the reported bugs

 Using lines of code, branch or instruction coverage metrics

 Using grammar coverage metric

 Other: 

22. How do you determine that a bug is duplicated? You can choose more than one answer.
Check all that apply.

 By manually analyzing the source code to understand the fault related to each bug

 By using an automated tool

 By analyzing the compiler messages: different messages refer to different bugs

 By analyzing the program structure: different structures refer to different bugs

 By analyzing the messages reported by the engine when it rejects transformations: different
messages refer to different bugs

 Other: 

23. Do you use any automated tool to generate
the input programs of the test cases?
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Powered by

24. Do you use any automated tool to check for
behavior preservation?

25. Do you use any automated tool to divide the
identified failures into distinct bugs?

Additional comments

26. Please, let us know if you have any additional comments about the process of
implementing and testing refactorings.
 

 

 

 

 

27. If you would like to receive the results of our
survey, please leave your email address.
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