UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA PÓS-GRADUAÇÃO EM ENGENHARIA DE PROCESSOS

Transferência de Calor e Massa em Materiais com Forma Complexa via Método da Análise Concentrada. Estudo de Caso: Secagem de Materiais Cerâmicos

Autor: Veralúcia Severina da Silva Orientador: Antonio Gilson Barbosa de Lima

Campina Grande, dezembro de 2016

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA PÓS-GRADUAÇÃO EM ENGENHARIA DE PROCESSOS

Transferência de Calor e Massa em Materiais com Forma Complexa via Método da Análise Concentrada. Estudo de Caso: Secagem de Materiais Cerâmicos

Autor: Veralúcia Severina da Silva Orientador: Antonio Gilson Barbosa de Lima

Curso: Engenharia de Processos Área de Concentração: Desenvolvimento de Processos

Tese apresentada ao Programa de Pós-Graduação Engenharia de Processos, como requisito para a obtenção do título de Doutor em Engenharia Processos.

Campina Grande, dezembro de 2016. PB – Brasil

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL DA UFCG

S586t	Silva, Veralúcia Severina da. Transferência de calor e massa em materiais com forma complexa via método da análise concentrada. Estudo de caso: secagem de materiais cerâmicos / Veralúcia Severina da Silva. – Campina Grande, 2016. 199 f. : il. color.
	Tese (Doutorado em Engenharia de Processo) – Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, 2016. "Orientação: Prof. Dr. Antonio Gilson Barbosa de Lima". Referências.
	 Secagem. 2. Geometria Complexa. 3. Análise Concentrada. 4. Sólidos Argilosos. I. Lima, Antonio Gilson Barbosa de. II. Título.
	CDU 66.047(043)

MEMBROS DA BANCA EXAMINADORA DA DEFESA FINAL DE VERALÚCIA SEVERINA DA SILVA APRESENTADA AO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PROCESSOS DO CENTRO DE CIÊNCIAS E TECNOLOGIA DA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE.

Prof. Dr. Antonio Gilson Barbosa de Lima - UFCG Orientador Prof. Dr. Genival da Silva Almeida - IFPB Hxaminador externo Prof. Dr. Vital Araújo Barbosa de Qliveira - UEPB Examinador externo

Prof. Dr. Joseli Barbósa da Silva – Maurício de Nassau Examinador externo

& kant

Prof^a. Dr^a. Wilma Sales Cavalcanti - UFCG Examinadora interna

Campina Grande, 01 de dezembro de 2016.

DEDICATÓRIA

Aos meus familiares, em especial, ao meu avô José Paulino de Freitas (in memorian), que é minha fonte de inspiração familiar, em nome de toda a minha família, sabendo respeitar minha escolha e incentivar na realização desse sonho.

Ao meu esposo, pelo incentivo, apoio, confiança, amor, conselhos e compreensão que me deu/dá forças para realizar este e outros trabalhos, mesmo não sendo merecedora. Não sou nada sem você, és minha vida! Obrigada por tudo!

Veratúcia I. da Oitva.

AGRADECIMENTOS

Agradeço, primeiramente, **a Deus** acima de tudo e de todos, por sempre estar presente na minha vida, dando-me forças para vencer os desafios, me erguendo em cada tropeço, me livrando das ciladas do inimigo, me guiando a cada instante e me abençoando a todo o momento. Sem **Ti, Senhor**, eu nada sou!

A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo apoio financeiro para a realização deste trabalho.

Em especial, ao professor **Antonio Gilson Barbosa de Lima** meus sinceros agradecimentos e eterna gratidão, não apenas pela orientação, mas pela dedicação, incentivo e pelos ensinamentos dignos de um verdadeiro orientador.

Aos professores **Vital Araújo Barbosa de Oliveira, Genival da Silva Almeida, Joselito Barbosa da Silva e Wilma Sales Cavalcanti,** por aceitarem o convite de compor a banca examinadora, enriquecendo o trabalho com as considerações pessoais. À Indústria de **Cerâmica Cincera**, localizada na cidade de Santa Rita – PB, pela atenção, apoio e fornecimento da argila utilizada para a pesquisa.

Ao professor **Mozaniel Gomes**, pela amizade, companheirismo, compreensão, apoio e atenção, fazendo-se presente em todos os momentos e pelos sábios conselhos.

Ao professor **Juscelino de Farias Maribondo**, pelos conselhos, confiança, amizade e atenção, fazendo-se presente em todos os momentos.

Aos professores do curso de pós-graduação em Engenharia de Processos, pela dedicação em transmitir seus conhecimentos dentro e fora da sala de aula.

Aos professores e amigos **Yoge Jerônimo, Celso Rosendo, Marcelo Grilo, Severino Farias Neto, Wanderley Amorim, Manassés Agra, Erinaldo Santos** pela dedicação em transmitir seus conhecimentos dentro e fora da sala de aula e pela confiança e companheirismo nos momentos necessários.

Aos Secretários dos cursos de Pós-graduação em Engenharia de Processos, Pósgraduação em Engenharia Mecânica e Graduação em Engenharia Mecânica e Graduação em Engenharia de Petróleo pela disponibilidade, atenção e dedicação dispensada sempre que solicitados.

Ao **Prof. Dr. Gelmires de Araujo Neves** pela atenção e disponibilidade do Laboratório Tecnologias de Materiais (LTM) - UFCG.

Aos que fazem parte do Laboratório de Tecnologias de Materiais Ester Pires de Almeida Barbosa, Aluizio Sulpino dos Santos e Severino Everaldo dos Santos pelo apoio, atenção e dedicação dispensada durante a fase experimental.

Aos responsáveis pelo Laboratório de Membranas Cerâmicas - LABCEM **Prof. Dr. Kepler Borges França** e **João Utemberg Lucas Bezerra** pela disponibilidade do Laboratório, atenção e auxílio durante os experimentos.

Aos que fazem parte da **Sala de Pesquisa** pelo apoio, incentivo e opiniões nos debates relativos à pesquisa.

Aos amigos e companheiros de todos os momentos Edna, Wilma, Valdeiza, Morgana, Daniel, Cidrônia, Wanessa, Vieira, Antonio, Rodrigo, Verônica, Célia, Brasileiro, Anderson, Kaio, Hallyson, Paulo, João Paulo, Vanderson, Robson, Valneide e Kaline pelo apoio, incentivo, compreensão, tempo dedicado, companheirismo, participação na pesquisa e parceria nos projetos.

Aos amigos e companheiros do IFAP – Campus Oiapoque Valeria Perreira, Eliel Nery, Lucinei Barros, Carla Silva, Romildo Neves, Catiano Gama, Katiana Vidal, Rutiane Cunha, Cristiane Santos, Kaio Martins, Mario Rodrigues, Lutemberg Santana, Glaucia Anacleto, Mayara Reis, Marcos Costa, Jader Morais e Marlete Costa pelo acolhimento, compreensão, companheirismo, momentos de descontração e amizade. Aos novos amigos da cidade de Oiapoque – AP Ana Oliveira, Sonia Saraiva, Renato Gomes, Bruno Alfaia, Jhonatan Nascimento, Michel Gomes, Marcel Amols, Márcia Nery e Elder Carvalho pelo acolhimento, companheirismo, momentos de descontração e amizade.

Aos meus **atuais alunos** e **ex alunos** pelos ensinamentos diários que contribuiram para o meu crescimento pessoal e profissional.

Aos eternos amigos e companheiros de todos os momentos **Bruno Gadé** e **Iran Palmeira** pelo apoio, incentivo, compreensão, tempo dedicado, companheirismo, momentos de descontração. Amizade verdadeira!

Enfim, a **todos** que direta ou indiretamente contribuíram para a realização deste trabalho.

Muito Obrigada!

"Um vencedor não é aquele que sempre vence, mas sim aquele que NUNCA deixa de LUTAR".

Autor desconhecido

SUMÁRIO

1 Introdução	25
2 Revisão da Literatura	
2.1 A secagem	29
2.1.1 Fundamentos	29
2.1.2 Classificação da secagem	30
2.1.3 Teorias de secagem	32
2.2 Modelagem do processo de secagem	35
2.2.1 Modelos baseados no método de análise concentrada	37
2.2.1.1 Conceitos gerais	37
2.2.1.2 Validade do método da análise concentrada	41
2.2.1.3 Modelos empíricos e semiempíricos	43
2.2.2 Modelos baseados no método de análise distribuída	45
2.2.2.1 Modelos difusivos	45
2.2.3 Modelos baseados na Termodinâmica dos processos irreversíveis	47
2.3 Material cerâmico	48
2.3.1 Histórico	48
2.3.2 Conceito de material cerâmico	49
2.3.3 Produção de materiais cerâmicos	50

2.3.4 Caracterização das matérias primas	50
2.3.5 Tipos de produtos cerâmicos para construção civil	52
2.4 Argila	53
2.4.1 Origem, transformação, propriedades e componentes	53
2.4.1.1 Origem e transformação	53
2.4.1.2 Propriedades	55
2.4.1.3 Componentes	61
2.4.2 Tipos de argilas e aplicações	63
2.4.3 Classificação das argilas	65
2.4.4 Argila para produção de cerâmica vermelha	66
2.5 Processo de fabricação de produtos cerâmicos	67
2.5.1 Secagem de produtos cerâmicos	68
2.5.2 Principais defeitos ocorridos durante a secagem de produtos cerâmicos	69
3 Metodologia	74
3.1 Metodologia experimental	74
3.1.1 A matéria prima	74
3.1.2 Procedimentos experimentais	75
3.1.3 Análises química, mineralógica, granulométrica e térmica/gravimétrica	78
3.1.4 Secagem em estufa	82
3.1.4.1 Materiais e equipamentos usados na secagem	82
3.1.4.2 Procedimentos experimentais	86
3.1.4.3 Alguns cálculos essenciais	88
3.2 Metodologia teórica	95
3.2.1 Análise concentrada para transferência de massa	95
3.2.2 Análise concentrada para transferência de calor e massa acoplada	97

3.2.3 Equações auxiliares aplicadas a corpos vazados	99
3.2.3.1 Volume do sólido de revolução	100
3.2.3.2 Área superficial do sólido de revolução	101
3.2.4 Procedimento computacional	101
3.2.5 Casos simulados	101
3.2.5.1 Aplicação a sólidos com forma arbitrária	101
3.3 Estimativa dos coeficientes de transporte	103
4 Resultados e Discussões	105
4.1 Resultados experimentais	105
4.1.1 Caracterização da matéria prima	105
4.1.1.1 Análise química	105
4.1.1.2 Análise mineralógica	107
4.1.1.3 Análise granulométrica	108
4.1.1.4 Análise térmica/gravimétrica	109
4.1.2 Secagem das amostras em estufa	110
4.1.2.1 Cilindro vazado	110
4.1.2.2 Cilindro vazado com sete furos - tambor	117
4.1.2.3 Cilindro vazado com barra transversal	125
4.2 Resultados simulados	135
4.2.1 Aplicação a material arbitrário	135
4.2.2 Aplicação a material cerâmico	139
5 Conclusões e Sugestões	151
5.1 Conclusões	151

5.2 Sugestões para trabalhos futuros	153
Referências Bibliográficas	155
Apêndices	167

RESUMO

SILVA, Veralúcia Severina, Transferência de Calor e Massa em Materiais com Forma Complexa via Método da Análise Concentrada. Estudo de Caso: Secagem de Materiais Cerâmicos, Campina Grande: Pós-Graduação em Engenharia de Processos, Universidade Federal de Campina Grande, 2016. 199 p. Tese (Doutorado).

A secagem é um processo termodinâmico, em que há transferência simultânea de calor e a remoção da umidade de um material poroso. Os produtos argilosos quando expostos a uma secagem sem controle pode sofrer fissuras e deformações, reduzindo sua qualidade póssecagem. Este trabalho tem como objetivo estudar teórico e experimentalmente a transferência de calor e massa em sólidos com forma complexa com, com ênfase a secagem de materiais cerâmicos argilosos. Neste trabalho desenvolveu-se um modelo matemático para descrever as trocas de calor e massa durante o processo de secagem, utilizando o método da capacitância global em corpos vazados. A solução analítica das equações governantes foi feita usando o método de separação de variáveis. Foram realizados experimentos de caracterização química e terrmo-hídrica da argila, e secagem de materiais cerâmicos argilosos vazados e com formas não-convencionais, em diferentes temperaturas (60, 70, 80, 90 e 100°C). Resultados da composição química e granulometria da argila, e cinéticos de perda de massa e aquecimento das peças cerâmicas são apresentados e analisados. Verificou-se que o processo de perda de umidade ocorre a uma velocidade mais baixa do que o aquecimento do material cerâmico, que a temperatura e forma do corpo afetam fortemente os fenômenos de transporte de calor e massa, que a secagem a baixa temperatura favorece a redução de problemas no material póssecagem e melhoramento na qualidade final, e que os números de Biot de transferência de calor e de massa influenciam diretamente no tempo que o produto atinge sua condição de equilíbrio. A comparação entre o teor de umidade e temperatura preditos pelo modelo matemático proposto e os dados experimentais permitiu a estimativa dos coeficientes de transferência de massa e calor na superfície do material, com boa precisão.

Palavras Chave:

Secagem, Geometria Complexa, Análise Concentrada, Sólidos Argilosos.

ABSTRACT

SILVA, Veralúcia Severina, Heat and Mass Transfer in Materials with Complex Shape via Lumped Analysis Method. Case Study: Drying of Ceramic Materials, Campina Grande: Postgraduate in Process Engineering, Federal University of Campina Grande, 2016. 199 p. Thesis (Doctorate).

Drying is a thermodynamic process, in which there is simultaneous heat transfer and moisture removal of a porous material. Clay products exposed to drying without control may suffer cracks and deformations, reducing its quality post-drying. This work aims to study theoretical and experimental the drying of solids with complex shape. It was developed a mathematical model to describe heat and mass transfer during the drying process, using the global capacitance method of hollow bodies. The analytical solution of the governing equations was made using the variable separation method.

It were realized experiments of chemical and thermo-hydric characterization of clay, and drying of hollow and non-conventional clay ceramic materials at different temperatures (60, 70, 80, 90 and 100°C). Results of the chemical composition and granulometry, and mass loss and heating of ceramic parts are presented and analyzed. It was verified that the moisture loss process occurs at a lower velocity than the heating of the ceramic material, the temperature and body shape strongly affect heat and mass transport phenomena, drying at low temperature favors the reduction of the problems in the material post-drying and improvement in the final quality, and that Biot numbers of heat and mass transfer directly affect the time to the product to reach its equilibrium condition. Comparison between predicted and experimental moisture content and temperature permitted estimative of the convective heat and mass transfer coefficients at the surface of the material, with good precision.

Key Words:

Drying, Complex Geometry, Lumped Analysis, Clay Solids.

LISTA DE FIGURAS

Figura 2.1	Esquema representativo do processo de secagem de material baseado	
	numa análise concentrada	38
Figura 2.2	Efeito do número de Biot na distribuição de temperatura em	
	regime permanente numa parede plana com convecção na superfície	42
Figura 2.3	Foto de produto com fissura	70
Figura 2.4	Foto de produto com trinca	70
Figura 2.5	Foto de produto com coração negro	71
Figura 2.6	Foto de produtos empenados	72
Figura 2.7	Foto de produtos com eflorescência	73
Figura 3.1	Argila in natura	74
Figura 3.2	Moinho de martelo	76
Figura 3.3	Peneirador de malha nº 80	76
Figura 3.4	Peneirador de malha nº 200	77
Figura 3.5	Misturador	77
Figura 3.6	Extrusora	77
Figura 3.7	Espectrômetro de fluorescência de raios x	78
Figura 3.8	Difratômetro de Raio x	80
Figura 3.9	Granolômetro a laser (CILAS 1064)	81
Figura 3.10	Equipamento utilizado para análise térmica – BP Engenharia	
	Modelo RB 3000	82
Figura 3.11	Amostra 1: cilindro vazado	83
Figura 3.12	Amostra 2: cilindro vazado com sete furos - tambor	83
Figura 3.13	Amostra 3: cilindro vazado com barra transversal	83
Figura 3.14	Paquímetro digital	84
Figura 3.15	Balança digital	84
Figura 3.16	Termômetro de infravermelho	85
Figura 3.17	Termohigrômetro digital	85
Figura 3.18	Estufa com circulação de ar forçada	86
Figura 3.19	Bandeja de arame galvanizado	86
Figura 3.20	Cilindro vazado com pontos fixos demarcando suas dimensões	88
Figura 3.21	Figura representativa do cilindro vazado	90
Figura 3.22	Figura representativa do cilindro vazado de sete furos – tambor	91
Figura 3.23	Figura representativa do cilindro vazado com barra transversal	92
Figura 3.24	a) Região Plana, b) Revolução da região plana e c) Sólido de revolução	100

Figura 3.25	Ilustração de um corte transversal num esferoide prolato	102
Figura 4.1	Difratograma de raios X da amostra de argila usada nos experimentos	107
Figura 4.2	Curva de distribuição de tamanho da partícula da argila	108
Figura 4.3	Curva termogravimétrica (ATG) e termodiferencial (ADT) da massa	
	cerâmica	109
Figura 4.4	Variação do teor de umidade do cilindro vazado nas diferentes	
	Temperaturas (60°C, 70°C e 80°C) em função do tempo de secagem	110
Figura 4.5	Variação do teor de umidade do cilindro vazado nas diferentes	
	temperaturas (90°C e 100°C) em função do tempo de secagem	111
Figura 4.6	Variação da temperatura superficial do cilindro vazado nas	
	diferentes temperaturas (60°C, 70°C e 80°C) em função do tempo	
	de secagem	112
Figura 4.7	Variação da temperatura superficial do cilindro vazado nas	
	diferentes temperaturas (90°C e 100°C) em função do tempo de	
	secagem	113
Figura 4.8	Variação do teor de umidade e do aquecimento em todas as	
	temperaturas acopladas para o cilindro vazado	113
Figura 4.9	Variação do volume do cilindro vazado durante a secagem para	
	diferentes temperaturas (60°C, 70° e 80°C) em função do tempo de	
	secagem	114
Figura 4.10	Variação do volume do cilindro vazado durante a secagem para	
	diferentes temperaturas (90°C e 100°C) em função do tempo de secagem	114
Figura 4.11	Imagem do cilindro vazado no processo de secagem a 60°C	116
Figura 4.12	Imagem do cilindro vazado no processo de secagem a 70°C	116
Figura 4.13	Imagem do cilíndro vazado no processo de secagem a 80°C	116
Figura 4.14	Imagem do cilíndro vazado no processo de secagem a 90°C	116
Figura 4.15	Imagem do cilíndro vazado no processo de secagem a 100°C	117
Figura 4.16	Variação do teor de umidade do cilindro vazado com sete furos	
	(tambor) nas diferentes temperaturas (60°C, 70°C e 80°C) em função	110
D : 417	do tempo de secagem	118
Figura 4.17	Variação do teor de umidade do cilindro vazado com sete furos	
	(tambor) nas diferentes temperaturas (90°C e 100°C) em função do	110
F' 4 10	tempo de secagem	119
Figura 4.18	Variação da temperatura superficial do cilindro vazado com sete furos	
	(tambor) has diferentes temperaturas (60°C e 70°C) em função	110
E	do tempo de secagem	119
Figura 4.19	variação da temperatura superficial do clinido vazado com sete furos	
	(tambor) has differentes temperaturas (80 C, 90 C e 100 C) em função do	120
Figure 4 20	Variação do toor de umidade e do equecimento em todas es	120
Figura 4.20	temperaturas acontedas para o cilindro vazado com sate furos (tamber)	121
Figure 4 21	Variação do volume do cilindro vazado com sete furos (tambor)	121
1 Igula 4.21	$v_{allação}$ do volume do climato vazado com sete futos (tambol) durante a secarem para diferentes temperaturas (60°C e 70°C) em	
	função do tempo de secarem	121
Figura 4 22	Variação do volume do cilindro vazado com sete furos (tambor)	141
1 iguia 4 .22	durante a secarem para diferentes temperaturas (80° C 90° C e 100° C)	
	em função do tempo de secarem	122
Figura A 22	Imagem do cilindro vazado com sete furos (tambor) no processo de	122
1 15u1u - 1.23	magem do eminaro vazado com sete ruros (tambor) no processo de	

	secagem a 60°C.	124
Figura 4.24	Imagem do cilindro vazado com sete furos (tambor) no processo de secagem a 70°C.	124
Figura 4.25	Imagem do cilindro vazado com sete furos (tambor) no processo de secagem a 80°C.	124
Figura 4.26	Imagem do cilindro vazado com sete furos (tambor) no processo de secagem a 90°C.	125
Figura 4.27	Imagem do cilindro vazado com sete furos (tambor) no processo de secagem a 100°C	125
Figura 4.28	Variação do teor de umidade do cilindro vazado com barra transversal nas diferentes temperaturas (60°C, 70°C e 80°C) em função do tempo de secagem	126
Figura 4.29	Variação do teor de umidade do cilindro vazado com barra transversal nas diferentes temperaturas (90°C e 100°C) em função do tempo de secagem	126
Figura 4.30	Variação da temperatura superficial do cilindro vazado com barra transversal nas diferentes temperaturas (60°C e 70°C) em função do tempo de secarem	127
Figura 4.31	Variação da temperatura superficial do cilindro vazado com barra transversal nas diferentes temperaturas (80°C, 90°C e 100°C) em função do tempo de secarem	127
Figura 4.32	Variação do teor de umidade e do aquecimento em todas as temperaturas pesquisadas acoplados para o cilindro vazado com barra transversal	129
Figura 4.33	Variação do volume do cilindro vazado com barra transversal durante a secagem para diferentes temperaturas (60°C e 70°C) em função do tempo de secagem	129
Figura 4.34	Variação do volume do cilindro vazado com barra transversal durante a secagem para diferentes temperaturas (80°C, 90°C e 100°C) em função do tempo de secagem	130
Figura 4.35	Imagem do cilindro vazado com barra transversal no processo de secagem a 60° C	132
Figura 4.36	Imagem do cilindro vazado com barra transversal no processo de secagem a 70°C	132
Figura 4.37	Imagem do cilindro vazado com barra transversal no processo de secagem a 80°C	132
Figura 4.38	Imagem do cilindro vazado com barra transversal no processo de secagem a 90°C	133
Figura 4.39	Imagem do cilindro vazado com barra transversal no processo de secagem a 100°C	133
Figura 4.40	Comparação entre os teores de umidade médios numérico (Lima, 1999) e o analítico em função do tempo	135
Figure 4.41	função do tempo adimensional Influência do parâmetro Pier cobre o teor de umidade adimensional em	136
Figure 4.42	em função do tempo adimensional Influência do parâmetro O [*] sobra o teor do umidado adimensional	137
1 1gula 4.43	em função do tempo adimensional	138

Figura 4.44	Comportamento do teor de umidade e temperatura do material cerâmico am função do púmero do Equipirar ($\operatorname{Rim} - \operatorname{Ric} = 0.00$, $\operatorname{R}^* = 0.10$, $\operatorname{O}^* = 0$)	120
Figura 4.45	Comportamento do teor de umidade e temperatura do material cerâmico	130
	em função do número de Fourier (Bim = 0,05, Bic = 0,09, $P = 0,10$ e	100
F ! 4.4.6	Q = 0	139
Figura 4.46	Comportamento do teor de umidade e temperatura do material cerâmico	
	em função do número de Fourier (Bim = Bic = 0,09, P = 0,10 e $O^* = 0.01$)	120
Figure 4 47	Q = 0.01	139
Figura 4.47	e previsto para o experimento realizado com o cilindro vazado pas	
	temperaturas de 60°C e 70°C	140
Figura 4 48	Comparação entre os teores de umidade médios da amostra	140
I Iguiu 1.10	experimental e previsto para o experimento realizado com o cilindro	
	vazado nas temperaturas de 80°C. 90°C e 100°C	141
Figura 4.49	Comparação entre as temperaturas da amostra experimental e prevista	
8	para o experimento realizado com o cilindro vazado nas temperaturas de	
	60°C, 70°C e 80°C	142
Figura 4.50	Comparação entre as temperaturas da amostra experimental e prevista	
-	para o experimento realizado com o cilindro vazado nas temperaturas	
	de 90°C e 100°C	143
Figura 4.51	Comparação entre os teores de umidade médios da amostra experimental	
	e previsto para o experimento realizado com o cilindro vazado com sete	
	furos – tambor nas temperaturas de 60°C, 70°C e 80°C	144
Figura 4.52	Comparação entre os teores de umidade médios da amostra experimental	
	e previsto para o experimento realizado com o cilindro vazado com sete	
F : 4.50	furos – tambor nas temperaturas de 90°C e 100°C	145
Figura 4.53	Comparação entre as temperaturas da amostra experimental e prevista	
	para o experimento realizado com o cilindro vazado com sete furos –	116
Eigung 4 54	comparação entre os temperaturas de emostre experimental e previste	140
Figura 4.34	comparação entre as temperaturas da amostra experimentar e prevista	
	tambor has temperatures de 90° C e 100° C	1/6
Figura 4 55	Comparação entre os teores de umidade médios da amostra experimental	140
1 Iguia 4.55	e previsto para o experimento realizado com o cilindro vazado com barra	
	transversal nas temperaturas de 60° C 70°C e 80° C	148
Figura 4.56	Comparação entre os teores de unidade médios da amostra experimental	110
1.8010 100	e previsto para o experimento realizado com o cilindro vazado com barra	
	transversal nas temperaturas de 90°C e 100°C	148
Figura 4.57	Comparação entre as temperaturas da amostra experimental e prevista para o	
C	experimento realizado com o cilindro vazado com barra transversal nas	
	temperaturas de 60°C, 70°C e 80°C	149
Figura 4.58	Comparação entre as temperaturas da amostra experimental e prevista para o	
	experimento realizado com o cilindro vazado com barra transversal nas	
	temperaturas de 90°C e 100°C	150

LISTA DE TABELAS

Tabela 2.1	Alguns modelos empíricos e semiempíricos presentes na literatura	44
Tabela 2.2	Modelos paramétricos empíricos expressando o coeficiente de	
	difusão como função da temperatura e/ou do teor de umidade do	
	meio poroso	46
Tabela 2.3	Tipos e caracterização da cerâmica branca	52
Tabela 2.4	Tipos e caracterização da cerâmica vermelha	52
Tabela 2.5	Vantagens e desvantagens dos materiais cerâmicos	56
Tabela 2.6	Classificação das argilas segundo ABNT: índices de consistência	
	e indicações	58
Tabela 3.1	Especificações do termômetro infravermelho	85
Tabela 3.2	Parâmetros experimentais do ar e do cilindro vazado para cada	
	teste de secagem	94
Tabela 3.3	Parâmetros experimentais do ar e do cilindro vazado com sete furos	
	- tambor para cada teste de secagem	94
Tabela 3.4	Parâmetros experimentais do ar e do cilindro vazado com barra transversal	
	para cada teste de secagem	95
Tabela 3.5	Valores dos parâmetros geométricos do sólido de revolução	102
Tabela 3.6	Parâmetros dos materiais usados nas simulações	103
Tabela 4.1	Composição química da matéria prima utilizada na pesquisa	106
Tabela 4.2	Distribuição percentual de tamanho de partículas da matéria-prima	
	estudada	108
Tabela 4.3	Parâmetros experimentais do ar e do cilindro vazado antes da secagem	
	$\operatorname{em} t_0 = 0 \operatorname{s}$	115
Tabela 4.4	Parâmetros experimentais do ar e do cilindro vazado após a secagem	
	em t _f	115
Tabela 4.5	Parâmetros experimentais do ar e do cilindro vazado com sete furos	
	- tambor antes da secagem para $t_0 = 0$ s	123
Tabela 4.6	Parâmetros experimentais do ar e do cilindro vazado com sete furos	
	- tambor após a secagem para t _f	123
Tabela 4.7	Parâmetros experimentais do ar e do cilindro vazado com barra	
	transversal antes da secagem em $t_0 = 0$ s	131
Tabela 4.8	Parâmetros experimentais do ar e do cilindro vazado com barra	
	transversal após a secagem em t _f	131
Tabela 4.9	Parâmetros da Equação (3.46) obtidos após ajuste aos dados	

	experimentais do teor de umidade para o cilindro vazado	140
Tabela 4.10	Parâmetros da Equação (3.55) obtidos após ajuste aos dados	
	experimentais do teor de umidade para o cilindro vazado	141
Tabela 4.11	Parâmetros da Equação (3.46) obtidos após ajuste aos dados	
	experimentais do teor de umidade para o cilindro vazado com	
	sete furos - tambor	143
Tabela 4.12	Parâmetros da Equação (3.55) obtidos após ajuste aos dados	
	experimentais da temperatura para o cilindro vazado com sete	
	furos - tambor	145
Tabela 4.13	Parâmetros da Equação (3.46) obtidos após ajuste aos dados	
	experimentais do teor de umidade para o cilindro vazado com barra	
	transversal	147
Tabela 4.14	Parâmetros da Equação (3.55) obtidos após ajuste aos dados	
	experimentais da temperatura para o cilindro vazado com barra	
	transversal	149

NOMENCLATURA

Letras Latinas

Bi	número de Biot de transferência	[-]
Bi _c	número de Biot de transferência de calor	[-]
Bi _m	número de Biot de transferência de massa	[-]
c _p	calor específico do produto	[J / kg / K]
c _v	calor específico do vapor	[J / kg / K]
D	coeficiente de difusão	$[m^2 / s]$
D _{ext}	diâmetro externo da amostra	[mm]
D _{int}	diâmetro interno da amostra	[mm]
Dt _{int}	diâmetro interno total do traveco da amostra	[mm]
d _{int}	diâmetro interno da calota da amostra	[mm]
e	espessura da barra interna da amostra	[mm]
Fo	número de Fourier	[-]
Foc	número de Fourier de transferência de calor	[-]
Fom	número de Fourier de transferência de massa	[-]
h	altura da amostra	[mm]
hfg	calor latente de vaporização da água livre	[J / kg]
h _c	coeficiente de transferência de calor	$[W/m^2/K]$
h _m	coeficiente de transferência de massa	[m / s]
k	condutividade térmica	[W / m /.K]
1	comprimento da barra interna da amostra	[mm]
l´	derivada do comprimento l da amostra	[-]
L_1	comprimento característico da amostra	[m]
М	teor de umidade do produto	[kg / kg]
M_0	teor de umidade inicial do produto	[kg / kg]
M _e	teor de umidade de equilíbrio	[kg / kg]
M´´	fluxo de massa por unidade de área	$[kg / kg / s/m^2]$
Ń	geração de massa por unidade de volume	$[kg / kg / s/m^3]$
q´´	fluxo de calor por unidade de área	$[W/m^2]$
ģ	geração de calor por unidade de volume	$[W/m^3]$
R _{cond}	resistência à condução no interior do corpo	[-]
R _{conv}	resistência à convecção na superfície do corpo	[-]

S	área superficial do sólido homogêneo	[m²]
S _b	área de baixo da amostra	[mm ²]
S _{barra}	área da barra interna da amostra	[mm ²]
S _c	área de cima da amostra	[mm ²]
S _{calota}	área da calota interna da amostra	[mm ²]
S _{ext}	área externa da amostra	[mm ²]
S _{int}	área interna da amostra	[mm ²]
S _{lateral}	área lateral da barra interna da amostra	[mm ²]
S _{total}	área total da amostra	[mm ²]
V	volume do sólido homogêneo	[m ³]
V _{barra}	volume da barra interna da amostra	[mm ³]
V _{ext}	volume externo da amostra	[mm ³]
V _{int}	volume interno da amostra	[mm ³]
Vt _{int}	volume total interno da amostra	[mm ³]
V _{total}	volume total da amostra	[mm ³]
V _{tubo}	volume do tubo interno da amostra	[mm ³]
V _{traveco}	volume total da barra mais o tubo da amostra	[mm ³]
t	tempo	[8]
Т	temperatura	[°C]
T_{∞}	temperatura do meio externo	[°C]
UR	umidade relativa	[%]

Letras Gregas

Γ^{Φ}	propriedade do material	[-]
θ_{∞}	temperatura do meio externo	[K ou °C]
θο	temperatura inicial do sólido homogêneo	[K ou °C]
θ	temperatura do sólido homogêneo	[K ou °C]
ρ _p	densidade do sólido homogêneo	$[\text{kg}/\text{m}^3]$
ρ_s	massa específica do sólido seco	$[kg / m^3]$

Superescritos

*	adime	nsional

Subscritos

calor
vapor
produto
equilíbrio
massa
final
inicial

cond condução conv convecção

CAPÍTULO 1

INTRODUÇÃO

Desde o princípio dos tempos que o homem vive uma busca incessante por meios que facilite a sua vida cotidiana. O avanço da ciência e da tecnologia tem favorecido a procura por situações confortáveis que facilite a sua vida e amenize ou resolva alguns problemas existentes no seu dia a dia, o que torna o aperfeiçoamento ou desenvolvimento de novos produtos cada vez mais complexo devido a grande demanda.

Com o processo de secagem não poderia ser diferente. A secagem de sólidos é uma das mais antigas e usuais operações existentes, utilizadas pelo homem, aplicadas nos mais diversos processos usados nas indústrias agrícola, cerâmica, química, alimentícia, farmacêutica, de papel e celulose, mineral e de polímeros.

As razões para a realização do processo de secagem em materiais sólidos são tantas quantos são os materiais que podem ser secos. Por exemplo, na indústria alimentícia, o principal objetivo do processo de secagem é a remoção da água com o propósito de reduzir o seu nível de contaminação microbiológica, evitando assim a perda do produto e prolongando o seu tempo de vida útil.

Durante o processo de fabricação, os produtos cerâmicos, passam pelas etapas: conformação, secagem e queima. O processo de secagem torna-se fundamental, pois é nele que se tem a eliminação da maior quantidade de água e consequentemente uma maior retração das peças. Com o processo de secagem, a indústria cerâmica visa retirar a água do produto, preparando-o para a queima. No entanto, os procedimentos adotados durante o processo da retirada da água desse material influenciam na qualidade final do produto, evitando a sua perda e a sua inutilidade. Um outro fator a ser observado nessa etapa é a sua dependência de vários outros fatores que antecedem a secagem, tais como, propriedades químicas e mineralógicas do material, teor de umidade e granulometria (Almeida, 2009).

Tal processo pode ocorrer de forma natural, mista ou artificial. No entanto, a análise da secagem é muitas vezes baseada em condições externas, entre elas pode-se citar a temperatura, a umidade e a velocidade do ar, que estão diretamente relacionadas com a taxa de secagem exclusiva de cada tipo de sólido. De modo geral, durante a secagem podem ocorrer variações nas suas características físicas, químicas e biológicas. Devido a importância, a secagem tem sido estudada de forma experimental e teórica.

Para estudar teoricamente a secagem, numerosos modelos têm sido propostos para descrever a taxa de perda de umidade, podendo ser agrupados em três grandes grupos: modelos empíricos e semi empíricos; modelos difusivos e modelos baseados na termodinâmica dos processos irreversíveis (Silva, 2002).

Tais modelos têm favorecido e aperfeiçoado na elaboração de secadores específicos para diversos tipos de produtos.

No entanto, muitas pesquisas atuais ainda utilizam os modelos matemáticos que não se adéquam a realidade do produto, os modelos matemáticos existentes na literatura são complexos, incompletos, distante da realidade e aplicados a sólidos não vazados, isto é, não descrevem os fenômenos físicos que ocorrem durante a secagem nos produtos pesquisados. Por exemplo, os modelos empíricos e semi-empíricos se detêm a ajustes forçados da geometria do produto e determina os outros valores apresentados no modelo, deixando de lado vários parâmetros físicos essenciais e reais que ocorrem no produto durante o processo de secagem.

A motivação dessa pesquisa se dá em buscar meios de modelar matematicamente os fenômenos de transporte de calor e massa em sólidos durante a secagem. A ideia é desenvolver um modelo que vá além das formas geométricas ajustadas, que seja aplicado a materiais cerâmicos vazados visando reduzir vários problemas, dentre eles a perda de energia, problemas ambientais; que insira os fenômenos físicos existentes no processo, que se aproxime cada vez mais da realidade que ocorre durante o processo de secagem e que seja rápido no tempo de resposta. O modelo matemático deverá ser um modelo fenomenológico, que prioriza fatores e parâmetros físicos (dentre eles: a quantidade de energia fornecida ao produto por convecção, quantidade de energia necessária para a evaporação da água, quantidade de calor que aquece o valor de água que se encontra a uma temperatura mais baixa que a do ar e os fenômenos extras que ocorrem em função do tipo de produto na geração de calor por unidade de área) que outros modelos, já existentes na literatura, não contem, pode ser aplicado a vários tipos e formas de materiais e de simples resolução, o que confere a pesquisa um caráter inédito.

Diante do exposto, esta pesquisa tem como objetivo geral estudar as trocas de calor e massa durante o processo de secagem de sólidos úmidos com forma complexa, com particular referência a materiais cerâmicos argilosos, utilizando o método de capacitância global.

Como objetivos específicos pode-se citar:

- Realizar ensaios de caracterização química, mineralógica, granulométrica e termogravimétrica da argila.
- Realizar experimentos de secagem de materiais cerâmicos de geometria arbitrária em estufa em diferentes condições operacionais.
- Desenvolver modelos matemáticos para predizer as trocas de calor e massa durante a secagem de sólidos úmidos vazados com geometria arbitrária via análise concentrada.
- Simular as cinéticas de secagem e aquecimento de corpos sólidos com diferentes geometrias e condições operacionais.
- Avaliar os efeitos da forma do corpo, geração de massa e condições do ar na cinética de secagem.
- Avaliar os efeitos da forma do corpo, geração de energia e condições do ar na cinética de aquecimento do sólido.
- Aplicar os modelos desenvolvidos na secagem de sólidos cerâmicos argilosos com formas complexas.

• Estimar os coeficientes de transporte de calor e massa dos materiais cerâmicos submetidos a secagem.

Baseado na proposta, o trabalho se apresenta estruturado em cinco capítulos, a saber:

A introdução, Capítulo I, apresenta o problema da pesquisa, seus objetivos, a motivação e a estrutura do trabalho e tem por objetivo esclarecer, em linhas gerais, as bases em que ele é desenvolvido. Seu papel é apresentar todo trabalho numa visão geral.

No Capítulo II, é apresentado um breve estudo sobre a revisão de literatura mediante o tema proposto.

No Capítulo III, comenta-se sobre a metodologia experimental e numérica aplicada na pesquisa.

No capítulo IV, apresentam-se os resultados obtidos e as discussões, baseandose nos indicadores selecionados.

No capítulo V, apresentam-se as considerações finais e sugestões.

Por fim, apresentam-se os elementos pós-textuais: referências bibliográficas, apêndices.

CAPÍTULO 2

REVISÃO DA LITERATURA

2.1 A secagem

2.1.1 Fundamentos

O processo de desidratação ou secagem de produtos sólidos são etapas importantes para a indústria em geral, seja para processamento de alimentos, produtos químicos, cerâmicos, processamento ou armazenamento de grãos, entre outros. No entanto, a secagem diferencia-se de outras técnicas de separação tais como desidratação osmótica, decantação e evaporação pela maneira como a água é retirada do sólido. Na desidratação osmótica, a remoção parcial de água é provocada pela diferença de pressão ocasionada entre o produto e uma solução hipertônica de solutos, geralmente açúcar ou sal; na decantação o processo de separação de misturas heterogêneas, ocorre devido a uma diferença de densidade das substâncias envolvidas. Já na evaporação a retirada do líquido é feita de forma lenta e gradual em função do aumento natural ou artificial da temperatura. Na secagem, a retirada de moléculas se dá pela movimentação do líquido, graças a uma diferença de pressão parcial do vapor d'água entre a superfície do produto e o ar que o envolve (Silva, 2002).

Independente do produto escolhido, o objetivo básico da secagem é a remoção de água nele existente. Durante o processo de secagem podem ocorrer alterações nas propriedades químicas, físicas, biológicas e/ou em outras características do produto,

podendo afetar assim suas propriedades e o seu aspecto físico, tipo: cor, rigidez, dureza superficial geométrica, etc. Tais fatores podem causar a sua perda ou torná-lo inviável para o comércio (Silva, 2016).

Logo, pode-se definir o processo de secagem como sendo um processo que envolve complexos fenômenos de transferência de calor, massa, quantidade de movimentos e variações dimensionais, exigindo a necessidade de gerar modelos matemáticos que simule o processo com um grande realismo físico, cuja principal finalidade é a retirada de parte da água contida no produto, a nível adequado, cujo propósito, dentre eles, são: permitir longos períodos de armazenamento, reduzir o peso final mantendo a sua qualidade, (Silmal et al., 2006; Dadali et al., 2007a; Dadali et al., 2007b; Dadali et al., 2007c; Duggal 2008; Silva 2009; Doymaz et al., 2011; Martines-Lopez, 2013; Khalili et al., 2014a).

Segundo Fortes e Okos (1980), a análise da secagem é muitas vezes baseada em condições externas, como temperatura, umidade e velocidade do ar, correlacionadas com a taxa de secagem do sólido. A vantagem deste procedimento é a sua simplicidade, uma vez que os grupos adimensionais podem ser formados facilmente e o número de experiências minimizadas.

2.1.2 Classificação da secagem

De modo geral, classificando o processo de secagem quanto ao uso dos equipamentos, ela pode ocorrer de forma natural, artificial ou mista.

Tendo o sol como a principal fonte energética utilizada para o aquecimento do produto, a secagem de forma natural é um método muito demorado e consiste em expor o produto por longos períodos à radiação solar ou a sombra, mas em ambiente relativamente seco e sob condições climáticas consideradas ideais, ou seja, temperaturas relativamente altas, ventos com intensidade moderada e baixas umidades relativas, a fim, de que a água seja parcialmente removida do produto por evaporação. A secagem natural apresenta algumas desvantagens quando comparado à secagem artificial, dentre elas pode-se citar: é um método que requer muito tempo de processo para a retirada da água e por isso pode favorecer a ocorrência de perdas de produto devido às contaminações através de insetos e micro-organismos, principalmente em produtos com alto teor de umidade (Szulmayer, 1971; Basunia et al., 2001; Ertekin et al., 2004; Jain et al., 2007).

A secagem artificial é um processo de remoção de umidade, que implica no uso de equipamentos e condicionamento do ar de secagem com total controle da temperatura, umidade relativa e velocidade do ar de secagem. No caso de secagem convectiva, o ar quente transporta calor para o produto a ser desidratado, promove a evaporação da água nele contido que, em seguida, é liberada para o ambiente. A secagem artificial apresenta algumas vantagens, dentre elas, em alguns equipamentos, as condições do ar de secagem não dependem das condições climáticas (favorecendo a obtenção de um produto de qualidade superior e um menor tempo de processamento) e a alta velocidade na produção, por ser capaz de remover, rapidamente, grandes quantidades de água presente no produto, tornando-se o tipo de secagem mais frequente na utilização à nível industrial.

Os métodos artificiais de secagem podem ser classificados em contínuo, estacionário e intermitente. A secagem estacionária ou leito fixo consiste em forçar um fluxo de ar através da massa de sólido que se encontra em repouso. A secagem contínua implica manter o produto em constante movimento no interior do secador e a secagem intermitente é caracterizada, por exemplo, por um fluxo de calor que é fornecido intermitentemente, diferenciando da continuamente. No entanto, tem-se o sol, a lenha, o gás, o óleo, o vapor e a energia elétrica ou ainda a combinação dessas fontes como fontes energéticas utilizadas para o aquecimento do produto, (Joshi et al., 2005; Mujaffar et al., 2005; Kituu, et al., 2010).

A secagem mista consiste em utilizar dois ou mais métodos (natural e artificial ou artificial e artificial) de forma combinada durante o processo de secagem. A utilização de sistemas mistos de aquecimento com energia solar favorece a economia de energia, pois fornece algumas alternativas economicamente viáveis e podem ser adaptados à instalações de pequeno porte.

31

2.1.3 Teorias de secagem

Ao longo do tempo várias teorias de secagem foram propostas para descrever o transporte de massa e calor em meios capilares porosos, as quais são listadas a seguir:

- Teoria da difusão líquida;
- Teoria capilar;
- Teoria da vaporização condensação;
- Teoria de Luikov;
- Teoria de Philip e De Vrie e de Berger e Pei;
- Teoria de Fortes e Okos
- Teoria de Krischer

Uma discussão mais ampla e detalhada, sobre as teorias de secagem, pode ser encontrada em Fortes e Okos, (1980); Alvarenga et al., (1980); Fortes (1982); Parry, (1985); Dand, (1986); Mariz, (1986); Keey, (1992); Parti, (1993); Lima, (1995); citado por Ibrahim et al., (1997); Lima, (1999); Lima e Nebra, (2000); Oliveira, (2001); Silva, (2002); Oliveira, (2006); dentre outros.

Resumidamente, comenta-se um pouco dessas teorias.

• Teoria da difusão líquida

A teoria de difusão líquida estabelece que a difusão de umidade no interior do sólido é devido a um gradiente de concentração no sólido. Nesta teoria considera-se que a água migra apenas na fase líquida. Tal teoria é considerada por alguns pesquisadores como o principal mecanismo do fluxo de umidade no interior dos sólidos por apresentar bons resultados na secagem de grãos e cereais. Contudo, ela tem sido utilizada frequentemente para outros materiais, inclusive material cerâmico argiloso.

• Teoria capilar

A teoria capilar é baseada no conceito do potencial capilar, que pode ser definido como a diferença de pressão entre a água e o ar na interface água - ar presente em um capilar. Conforme Silva (2002), para processos de secagem de alimentos, principalmente em alta temperatura, a teoria capilar apresenta bons resultados.

• Teoria da evaporação-condensação

De acordo com a teoria de evaporação-condensação, a água, num meio poroso, migra inteiramente na fase gasosa. Nesse processo deve-se levar em consideração o balanço de massa e calor assim como o de energia.

Teoria de Luikov

Esta teoria baseia-se nos princípios da Termodinâmica irreversível de não equilíbrio levando em consideração os mecanismos de difusão, efusão e convecção de água no interior do meio poroso. Tal teoria é creditada aos pesquisadores russos e foi descoberta em 1934. O fenômeno que trata da difusão térmica com o gradiente de temperatura é um fator que causa a transferência de umidade em materiais (Fortes e Okos, 1980).

• Teorias de Philip e De Vries e de Berger e Pei

Tais teorias consideram que a água se move em meios porosos, basicamente por meio dos mecanismos de difusão de líquido e capilaridade.

Teoria de Fortes e Okos

Essa teoria tem como base os conceitos termodinâmicos dos processos irreversíveis e propõe que a força motriz para transferência isotérmica, tanto do líquido quanto do vapor, é um gradiente do teor de umidade de equilíbrio e não do teor de umidade, sendo isto, devido à hipótese de equilíbrio local. A força motriz para transferência de líquido e vapor é o gradiente do potencial químico, que por sua vez é

uma função da temperatura, da umidade relativa e do teor de umidade de equilíbrio. Para alguns autores (Fortes e Okos, (1980); Fortes (1982); Parry, (1985); Dand, (1986); Mariz, (1986); Keey, (1992); Parti, (1993); Lima, (1995); Silva, (2002); Oliveira, (2006), a água em meios capilares porosos pode até mover-se em sentido contrário ao gradiente do teor de umidade, mas sempre na direção do gradiente do teor de umidade de equilíbrio.

Teoria de Krischer

Em tal teoria assume-se que durante o processo de secagem, o fluxo de umidade pode se dar no estado líquido, por capilaridade, ou no estado de vapor, devido ao gradiente de concentração de vapor. Esta teoria leva em consideração a transferência de calor e massa simultânea e que pode ser aplicada em uma variedade de meios porosos.

As limitações existentes das várias teorias de secagem têm sido mostradas apenas esporadicamente e de forma incompleta na literatura. Sendo assim, percebe-se que, tais teorias de secagem, em sua maioria, são geralmente limitadas ao período da taxa de secagem decrescente do produto, uma vez que, num período de taxa constante torna-se passível de cálculos simples. A maioria destas teorias são aplicáveis apenas, com algum grau de precisão/limitação, ou seja, em faixas limitadas de umidade relativa e temperatura. Além disso, os erros experimentais representam um fator limitante na obtenção dos dados do teor de umidade de equilíbrio. Assim, a partir destes pontos, os modelos empíricos parecem fornecer os melhores meios atualmente disponíveis para a representação do teor de umidade de equilíbrio.

Segundo Silva (2002), o processo de migração de umidade no interior do produto biológico, ainda não é bem conhecido. Sendo assim, de acordo com as teorias listadas acima, os seguintes mecanismos de transporte de umidade em sólidos têm sido fornecidos pela literatura, (Fortes e Okos, 1980; Strumillo e Kudra, 1986; Brooker et al., 1992 e Lima, 1995):

Transporte por difusão líquida devido a gradientes de concentração de umidade;

- Transporte por difusão de vapor devido a gradientes de concentração de umidade e pressão parcial do vapor (consequência dos gradientes de temperatura);
- Transporte por efusão (escoamento Knudsen). Ocorre quando o caminho livre médio das moléculas de vapor for da mesma ordem de grandeza do diâmetro dos poros;
- Transporte de vapor por termodifusão devido aos gradientes de temperatura;
- Transporte de líquido por forças capilares;
- Transporte de líquido por pressão osmótica;
- Transporte de líquido devido à gravidade;
- Transporte de líquido e de vapor, devido à diferença de pressão total, causada por pressão externa, contração, alta temperatura e capilaridade;
- Transporte por difusão superficial, devido a migração da mistura líquido mais vapor pelos poros da superfície do produto.

Mesmo sem o não detalhamento de cada um dos mecanismos de transporte de umidade listados, informações adicionais podem ser encontradas nas referências citadas.

2.2 Modelagem do processo de secagem

O processo de secagem não consiste em simplesmente pegar o material, colocar no forno e no final sair um produto seco. Tecnologicamente, é preciso ter cuidado com a secagem, pois se o produto for seco de forma errada pode lhe acarretar sérios danos, tipo: a perda na qualidade final do produto, o desperdício de energia e mão de obra, entre outros. Os modelos matemáticos existem para descrever determinados fenômenos e buscam sanar algumas irregularidades que ocorrem durante esses processos.
Os modelos matemáticos de secagem podem ser usados para predizer o comportamento de secagem para um determinado tipo de produto em particular. Tais modelos podem ser usados para determinar o efeito da mudança de certos parâmetros na eficiência da secagem ou para minimizar os custos de operação do sistema.

Um modelo matemático bem definido dá a resposta adequada para os fenômenos físicos apresentados. Contudo, os modelos simples existentes na literatura, por exemplo o Modelo de Page, dá uma resposta, mas não a resposta desejada e satisfatória ao problema diante dos parâmetros e fenômenos físicos existentes no produto e durante o processo.

O desenvolvimento de modelos matemáticos para descrever o processo de secagem tem sido objeto de estudo de muitos pesquisadores por longos períodos. Nas últimas décadas muitos modelos de secagem sofisticados foram apresentados e constantemente, são avaliados e comparados, pois em sua maioria continuam limitados com relação aos parâmetros. Além disso, a maioria dos modelos consagrados existentes na literatura se ajusta à produtos com formas geométricas facilmente definidas. Então devido a diversidade de produtos e formas geométricas, a definição de um modelo matemático confiável é fundamental na predição correta da resposta do fenômeno.

Dependendo da espessura da camada do material estudado, os modelos matemáticos podem ser classificados em modelos de secagem em camada fina (modelos ao nível de partícula) e em camada espessa (modelos ao nível de secador) (Lima, 1999).

Numerosos modelos de camada fina tem sido propostos para descrever a taxa de perda de umidade durante a secagem de produtos agrícolas, podendo ser divididos em dois grandes grupos:

- Modelos de análise concentradas;
- Modelos de análise distribuídas.

Os modelos concentrados retratam as taxas de transferência de calor e massa para o produto inteiro, ignorando a resistência interna de transferência de calor e massa. Em contraste, os modelos distribuídos representam as taxas de transferência de calor e massa como função da posição dentro do produto e do tempo de secagem, considerando as resistências externa e interna. Muitas equações concentradas são derivadas das equações distribuídas sofrendo pequenas modificações.

De modo geral, todos os parâmetros utilizados nos modelos de simulação estão diretamente relacionados com as condições de secagem (Babilis et al., 2004; Mirzaee et al., 2015).

2.2.1 Modelos baseados no método de análise concentrada

2.2.1.1 Conceitos gerais

As equações que compõem os modelos de análise concentradas podem ser classificadas em empíricas, semi empíricas e teóricas. Estas equações omitem os efeitos de variação de temperatura e umidade no interior do material, durante o processo de secagem, assumindo que o produto alcança a temperatura média do ar imediatamente, no começo do processo. Esse método considera que a temperatura e umidade do sólido são espacialmente uniformes em qualquer instante durante a secagem. Essa consideração implica que os gradientes de temperatura e umidade no interior do produto sejam desprezíveis (Lima, 2014).

Para compreensão deste método, considere um sólido de forma arbitrária como ilustrado na Figura 2.1. O sólido pode receber (ou ceder) um fluxo de calor e/ou umidade por unidade de área em sua superfície e ter geração interna de massa e/ou energia por unidade de volume uniformemente distribuída, como por exemplo, durante a respiração e transpiração dos produtos biológicos (Lima, 1999).

Considerando $M > M_{\infty}$ e $\theta_{\infty} > \theta$, na Figura 2.1 tem-se:

- θ_{∞} (K ou °C) que representa a temperatura do material em equilíbrio térmico com o meio externo;
- h_c (W/m²K) é o coeficiente de transferência de calor convectivo;

- h_m (m/s) é o coeficiente de transferência de massa convectivo;
- D (m²/s) é o coeficiente de difusão de massa do material;

Figura 2.1 – Esquema representativo do processo de secagem de material baseado numa análise concentrada

- V (m³) é o volume do sólido homogêneo;
- S (m²) é a área superficial do material;
- c_p (J/kgK) é o calor específico do material;
- ρ (kg/m³) é a densidade do material;
- K (W/mk) é a condutividade térmica do material;
- M (kg/kg) é o teor de umidade do produto;
- M_0 (kg/kg) é o teor de umidade inicial do produto e,
- M_e (kg/kg) é o teor de umidade de equilíbrio.

Aplicando o método da análise concentrada o qual admite que a umidade e/ou temperatura do sólido (θ) seja espacialmente uniforme em qualquer instante durante o

processo transiente, isto é, que os gradientes de umidade e/ou temperatura no interior do sólido sejam desprezíveis, todo o fluxo de massa e/ou calor recebido e gerado, difundirá instantaneamente através do mesmo. Isto acontece quando Γ^{Φ} (uma propriedade qualquer de transporte, por exemplo, a condutividade térmica ou o coeficiente de difusão de massa) for suficientemente alta ($\Gamma^{\Phi} \rightarrow \infty$). Embora esta condição não seja fisicamente possível, ela será bem aproximada se a resistência aos fluxos de calor e/ou massa no interior do sólido for muito menor que a resistência à transferência de calor e/ou massa entre o sólido e a sua vizinhança (Almeida, 2009).

Para a aplicação deste método, assume-se que a temperatura ou o teor de umidade do sólido possa ser expressa, exclusivamente, em função do tempo, ou seja, $M = M(t) e \theta = \theta(t)$.

O balanço de Φ (Potencial de interesse) num elemento infinitesimal do sólido é obtido como segue:

• Massa ($\Phi = M$)

$$\frac{\partial \left(\frac{\rho \Phi}{\mathsf{J}}\right)}{\partial \mathsf{t}} = -\rho \Phi'' \mathsf{S} + \dot{\Phi} \frac{1}{\mathsf{J}} \rho \tag{2.1}$$

A Equação 2.1 é a equação que rege o processo de análise Concentrada.

• Energia ($\Phi = q$)

$$\frac{\partial}{\partial t} \left(\frac{\rho \Phi}{J} \right) = \frac{\Phi^{\prime \prime} dS}{c_{p}} + \frac{\Phi^{\prime \prime \prime}}{c_{p}} J$$
(2.2)

Como Φ não é função da posição no interior do sólido e aplicando um balanço de massa e energia na superfície do sólido apresentado na Figura 2.1, em qualquer sistema de coordenadas, assumindo propriedades termofísicas constantes e variações dimensionais desprezíveis, têm-se, após integração em todo o volume do sólido, as seguintes equações: • Massa ($\Phi = M$)

$$V\frac{d\Phi}{dt} = -\Phi^{\prime\prime}S + \Phi^{\prime\prime\prime}V$$
(2.3)

• Energia ($\Phi = q$)

$$V\frac{d\Phi}{dt} = -\Phi^{\prime\prime}S + \Phi^{\prime\prime\prime}V$$
(2.4)

onde:

- t é o tempo;
- Φ'' = M'' (kg/kg/s/m²) na equação (2.3) representando o fluxo de massa por unidade de área;
- Φ''' = M em (kg/kg/s) na equação (2.3) correspondendo ao termo proveniente da geração de massa por unidade de volume;
- Φ'' = q´´ (W/m²) na equação (2.4) e equivale ao fluxo de calor por unidade de área;
- Φ''' = q (W/m³) na equação (2.4) correspondendo a geração de calor por unidade de volume.

As quantidades $M^{\prime\prime}$, \dot{M} , $q^{\prime\prime}$ e \dot{q} podem ser positiva ou negativa, podendo também ser constante ou dependente do tempo. Particularmente, com respeito a energia a quantidade q'' pode ser convectiva, radiativa, evaporativa e/ou aquecimento de vapor.

A hipótese de ausência do gradiente de q ou M internamente ao sólido não é apenas uma simplificação matemática, mas também uma forma simplificada para o tratamento de problemas mais complexos (mais realistas fisicamente). A presente formulação pode ser aplicada em regiões de transferência de calor e massa simultânea. O caso particular ocorre quando os dois fenômenos são completamente independentes. Os dois fenômenos são acoplados quando adsorção (transporte de massa quando existe uma superfície de contato entre um sólido e um fluído – líquido ou gás - e a concentração é maior na superfície) ou dessorção na região são acompanhadas de efeitos térmicos (Almeida, 2009).

Avaliando tal aspecto, Almeida (2009) afirma que se a temperatura ou o teor de umidade na superfície de um sólido for alterado repentinamente, e se o valor de Γ^{ϕ} não for suficientemente alto, então o valor do teor de umidade e/ou temperatura no interior do sólido varia com o tempo. Passa-se algum tempo antes que seja atingida a distribuição de M ou θ estacionárias. Como ambos variam de acordo com o tempo e com a posição, torna-se difícil, determinar tal distribuição. Para determinar a dependência da distribuição no interior do corpo em relação ao tempo durante o processo usa-se a abordagem distribuída que geralmente se dá com o uso da equação da difusão e para condições em que os gradientes de M e θ no interior do sólido são pequenos, pode-se empregar o procedimento do método da análise concentrada.

2.2.1.2 Validade do método da análise concentrada

É importante determinar em quais condições o método da análise concentrada pode ser aplicado com precisão razoável. Sabendo que em muitas situações físicas e condições operacionais existe gradiente de umidade e temperatura dentro do sólido, sob que condições pode-se aplicar o método da análise concentrada? Para isto, utiliza-se um parâmetro adimensional denominado Número de Biot de Transferência, como segue:

$$Bi = \frac{R_{Cond}}{R_{Conv}} = \frac{\frac{L_1}{\Gamma \Phi S}}{\frac{1}{hS}} = \frac{hL_1}{\Gamma \Phi}$$
(2.5)

O significado físico do Número de Biot de Transferência é tido como a relação numérica entre a resistência à condução (calor e massa) no interior do corpo e uma resistência a convecção na superfície do mesmo. Na equação (2.5), Γ^{ϕ} pode ser K ou D, e L₁ é um comprimento característico de corpo, como por exemplo, a relação volume por área superficial do corpo, h pode ser o coeficiente de transferência de massa ou o de calor e S a área superficial do produto.

O número de Biot (Bi) é a razão entre as resistências interna e externa do produto. De acordo com a Figura 2.2, se:

- Bi<<1 é razoável assumir uma distribuição de temperatura uniforme no sólido em qualquer tempo durante o processo transiente;
- Aumentando o Bi, o gradiente de temperatura ou umidade dentro do sólido é significativo e tende a aumentar também;
- Bi>>1 o gradiente de temperatura ou umidade no sólido é muito maior que entre a superfície e o fluido.

Figura 2.2 - Efeito do número de Biot na distribuição de temperatura em regime permanente numa parede plana com convecção na superfície (Incropera e De Witt, 2002).

Sendo assim, o número de Biot tem um papel fundamental nos problemas de difusão que envolve efeitos convectivos nas fronteiras. Quando Bi << 1 assume-se que dentro do material não existe variação de temperatura nem de umidade, em qualquer instante t, do processo transiente, fazendo com que o produto seque por igual, o que torna o processo de secagem muito lento. Logo a resistência a condução no interior do sólido é muito menor do que a resistência convectiva através da camada limite no fluido, pois determina a medida do decréscimo da temperatura no sólido relativo à diferença de temperatura entre a superfície e o fluido (Lima, 1999; Almeida, 2009;

Lima, 2014; Silva et al., 2016). Assim sendo, a hipótese de que haja uma distribuição de temperatura ou umidade uniforme no interior do produto é razoável.

No entanto, para Bi >> 1, o processo de secagem acontece de forma muito rápida, gerando os gradientes de umidade e temperatura dentro do produto, ou seja, o produto seca e reaquece na superfície e dentro continua úmido e frio.

Logo, para a análise de um problema de difusão, deve-se calcular o número de Biot e, uma vez sendo este inferior a 0,1, o erro associado ao método de análise concentrada é muito pequeno, entretanto, este valor é dependente da forma com que este parâmetro é definido (Lima, 1999; Lima e Nebra, 2000).

No entanto, de acordo com a literatura, observou-se que o tempo de secagem utilizando o método da Análise Concentrada, torna-se muito longo. Esse método envolve um controle rigoroso no que diz respeito aos problemas relacionados com a secagem de materiais cerâmicos. É um método viável para produtos em que o fator tempo não influencia na produtividade. Essa limitação faz com que o método torne-se impróprio para alguns tipos de produtos tais como alimentícios (Augier, 2002; Vogel, 2005; Khalili, 2014b)

2.2.1.3 Modelos empíricos e semiempíricos

As equações que compõem os modelos empíricos usados na secagem, que são baseadas numa análise concentrada, apresentam uma relação direta entre o teor de umidade e o tempo de secagem, enquanto que as equações dos modelos semiempíricos são similares a lei de Newton do resfriamento, assumindo que a taxa de secagem é proporcional a diferença entre o teor de umidade do produto e seu respectivo teor de umidade de equilíbrio para as condições de secagem especificadas. As equações teóricas geralmente são obtidas a partir da equação de difusão de líquido e/ou vapor dentro do produto.

O uso de modelos matemáticos para secagem em camada fina é muito comum, sendo bastante utilizado por vários autores para o estudo de secagem de grãos e frutas.

No entanto, tais modelos tratam os produtos sem levar em consideração as formas geométricas dos mesmos.

Modelos	Equações
Modelo de Newton	$\overline{M}^* = \mathrm{Exp}(-K_1t)$
Modelo de Page	$\overline{\mathbf{M}}^* = \mathrm{Exp}(-\mathbf{K}_1 \mathbf{t}^{\mathbf{K}_2})$
Modelo de Page Modificado	$\overline{\mathbf{M}}^* = \mathrm{Exp}(-(\mathbf{K}_1 \mathbf{t})^{\mathbf{K}_2})$
Modelo de Henderson e Pabis	$\overline{\mathbf{M}}^* = \mathbf{B}_1 \mathbf{Exp}(-\mathbf{K}_1 \mathbf{t})$
Modelo de Thompson	$t = B_1 \ln(\overline{M}^*) + B_2 \ln(\overline{M}^*)^2$
Modelo Logarítmico	$\overline{\mathbf{M}}^* = \mathbf{B}_1 \mathbf{Exp}(-\mathbf{K}_1 \mathbf{t}) + \mathbf{B}_2$
Modelo de dois termos	$\overline{M}^* = B_1 Exp(-K_1 t) + B_2 Exp(-K_2 t)$
Modelo de dois termos exponenciais	$\overline{\mathbf{M}}^* = \mathbf{B}_1 \mathbf{Exp}(-\mathbf{K}_1 \mathbf{t}) + (1 - \mathbf{B}_2) \mathbf{Exp}(-\mathbf{K}_2 \mathbf{Bt})$
Modelo de Wang e Singh	$\overline{\mathbf{M}}^* = 1 + \overline{\mathbf{B}}_1 \mathbf{t} + \overline{\mathbf{B}}_2 \mathbf{t}^2$

 Tabela 2.1 - Alguns modelos empíricos e semiempíricos presentes na literatura.

Fonte: Almeida (2003) apud Almeida (2009).

Esses modelos são importantes não só para descrever a remoção da camada fina de água, mas também para descrever a penetração de calor durante a remoção do ar quente utilizado, Turhan et al., (2002); karim et al., (2005); Aregba et al., (2006); McMinn, (2006); Nguyen et al., (2007); Mariani et al., (2008); Kaleta et al., (2010); Diamante et al., (2010); Mundada et al., (2011);Dantas et al., (2011); Kardum et al., (2011); Silva et al., (2012a); Silva et al., (2012b); Darvishi et al., (2013); Silva et al., (2014); Sima et al., (2014); Alibas, (2014a); Alibas, (2014b). Muitos trabalhos reportados na literatura são baseados na equação de Page (1949), que é um tipo de equação empírica, dada por:

$$\overline{M}^* = \frac{\overline{M} - \overline{M}_e}{\overline{M}_0 - \overline{M}_e} = e^{(-k_1 t^{k_2})}$$
(2.6)

sendo k_1 e k_2 parâmetros da equação.

Outros modelos similares podem ser facilmente encontrados na literatura, e aplicados para uma gama de materiais. A Tabela 2.1 resume alguns deles.

2.2.2 Modelos baseados no método de análise distribuída

2.2.2.1 Modelos difusivos

Os modelos difusivos são modelos geralmente baseados na difusão de líquido e/ou vapor dentro do produto onde descrevem as taxas de transferência de calor e massa como função da posição dentro do sólido e do tempo de secagem, considerando as resistências aos fluxos de calor e massa externa e interna (Lima, 1999).

A difusão de líquido, considerado por alguns autores, como principal mecanismo de transporte de umidade em produtos biológicos, tem sido utilizada com maior frequência. Ganhou bastante ênfase na aplicação da secagem de grãos realizada por Becker e Sallans, Crank, Pabis e Henderson, Henderson e Pabis, Bakker-Arkema e Hall, Chittenden e Hustrulid, Hamdy e Johnson, Chu e Hustrulid, Hamdy e Barre, Young e Whitaker, Chen e Johnson, Rowe e Gunkel, Watson e Bargava, e Henderson segundo Fortes e Okos (1980).

A este caso, usa-se a segunda lei de Fick, uma vez que estabelece a difusão de umidade em termos do gradiente de concentração no sólido. A equação de Fick de difusão é dada como segue:

$$\frac{\partial M}{\partial T} = \nabla. (D\nabla M) \tag{2.7}$$

onde D é o coeficiente de difusão de massa, geralmente dependente da temperatura e do teor de umidade. A Tabela 2.2 resume alguns modelos que expressam $D = \int (M, T)$.

Essa teoria ganhou grande destaque junto aos pesquisadores de grãos (Fortes e Okos, 1980). O encolhimento de produtos agrícolas durante a secagem é um fenômeno físico observável que ocorre simultaneamente com a difusão de umidade. Este efeito pode produzir um efeito considerável no coeficiente de difusão de massa, e consequentemente na taxa de secagem (Silva, 2002). No entanto, a teoria da difusão líquida não leva em conta o encolhimento, endurecimento e/ou isotermas de sorção conforme Fortes e Okos (1980).

Número	Modelos Paramétricos	
1	$D(M,T) = A_0 \exp(A_1 M) \exp\left(-\frac{A_2}{T_{abs}}\right)$	
2	$D(M,T) = A_0 \exp\left(-\frac{A_1}{M}\right) \exp\left(-\frac{A_2}{T_{abs}}\right)$	
3	$D(M,T) = A_0 \exp\left(\sum_{i=1}^3 A_1 M^i\right) \exp\left(-\frac{A_2}{T_{abs}}\right)$	
4	$D(M,T) = A_0[1 - \exp(-A_1M)]\exp\left(-\frac{A_2}{T_{abs}}\right)$	
5	$D(M,T) = A_0 [1 + \exp(-A_1 M)]^{-1} \exp\left(-\frac{A_2}{T_{abs}}\right)$	
6	$D(M,T) = A_0 \exp(A_1 M) \exp\left(-\frac{A_2 M + A_3}{T_{abs}}\right)$	
7	$D(M,T) = A_0(M)exp\left(-\frac{A_1 exp(A_2M) + A_3}{T_{abs}}\right)$	
8	$D(M,T) = (A_0 + A_1M)$	
9	$D(M,T) = A_0 \exp \exp \left(-\frac{A_1}{R_0 T_{abs}}\right)$	

Tabela 2.2 - Modelos paramétricos empíricos expressando o coeficiente de difusãocomo função da temperatura e/ou do teor de umidade do meio poroso.

Fonte: Zogzas et al. (1996) apud Silva (2002).

O mecanismo da difusão líquida é muito complexo devido à diversidade da composição química e estrutura física dos produtos. Os dados disponíveis na literatura para o coeficiente de difusão apresentam elevada variação nos seus valores, não só devido à complexidade dos produtos, como também em função dos diferentes métodos de estimação, tipo de material, teor de água, processo de secagem e metodologia utilizada para sua obtenção (Almeida, 2009). Mesmo podendo ser aplicada a diversos tipos de produtos, (Hougen et al., 1940) apontou limitações na teoria da difusão líquida e alguns outros contestam a sua validade física. Além, dos questionamentos sobre os ajustes das equações da difusão nos valores físicos experimentais, quando aceitas, os questionamentos prevalecem quanto a validade física para alguns sólidos (Fortes e Okos, 1980).

2.2.3 Modelos baseados na Termodinâmica dos processos irreversíveis

Os modelos baseados na Termodinâmica dos processos irreversíveis assumem basicamente a validade das relações recíprocas de Onsager, o princípio de Curie e a existência de um equilíbrio termodinâmico local no interior do produto (Lima, 1999). Os principais exemplos de modelos baseados na Termodinâmica dos processos irreversíveis são os modelos de Luikov e Fortes e Okos. Tais modelos baseiam-se na Termodinâmica dos processos irreversíveis e propõe que a água move-se em meios capilares porosos, em condições isotérmicas, sob a ação de um gradiente de potencial de transferência de massa.

Conforme Silva (2002), Luikov (1966) apresentou um modelo matemático para descrever o processo de secagem de produtos capilares porosos baseados nos mecanismos de difusão, efusão, convecção de vapor e difusão e convecção de água no interior do meio poroso. O processo é descrito por um sistema de equações diferenciais parciais acopladas para a temperatura, umidade e em casos de intensa secagem também a pressão.

Neste modelo, é postulado que a água em meios capilares porosos, pode moverse no sentido contrário ao gradiente do teor de umidade, mas sempre na direção do gradiente do teor de umidade de equilíbrio. Assim, o teor de umidade de equilíbrio é apresentado como uma escolha mais natural para o potencial de transporte de massa que o conceito proposto por Luikov (Silva, 2002).

Conforme a literatura, este modelo descreve de maneira mais realista a física do processo de transferência de calor e massa que o modelo de difusão líquida, no entanto a sua aplicabilidade é limitada, em virtude das equações governantes do fenômeno incluírem muitos coeficientes que são difíceis para determiná-los experimentalmente. Tais limitações dependem do produto selecionado para o processo de secagem (Silva, 2002).

2.3 Material cerâmico

2.3.1 Histórico

No Brasil, a indústria de cerâmica tem um papel importante para a economia do país; a disponibilidade de matérias primas naturais, fontes alternativas de energia e tecnologias práticas embutidas no equipamento industrial tornam as indústrias brasileiras muito competitivas no mercado nacional (Silva et al., 2016).

Analisando mundialmente, percebe-se que existem indícios de atividade cerâmica em quase todos os povos da antiguidade. Os gregos, por muitos séculos, produziram as melhores peças de cerâmica do mundo Mediterrâneo. Na Grécia, em Roma e em outras regiões, a produção de cerâmica era vendida nas feiras e havia uma exportação contínua de ânforas fenícias (vasos de forma geralmente ovóide e com alças) para todo o Mediterrâneo, em virtude da sua forma artística e da sua utilidade para servir água, vinho e azeite (Bellingieri, 2003; Lima, 2014).

A fabricação da cerâmica como atividade industrial, ocorreu devido ao crescimento das grandes construções. Praticamente toda a Europa herdou as práticas trazidas pelos povos antigos, tais como romanos, bizantinos, árabes, entre outros, que influenciaram fortemente no estilo das construções nesses continentes. O surgimento das primeiras máquinas moldadoras para fabricação de material cerâmico, movimentados por força animal ocorreu por volta de 1850, sendo mais tarde substituídas por máquinas a vapor e possibilitando, assim, o aumento significativo da produção. Pode-se considerar esse fato como sendo o primeiro grande salto para a indústria da cerâmica vermelha, pois possibilitou a fabricação de peças especiais e dos tijolos ocos ou furados (Steil, 2000).

Até o século XIX, os sistemas de produção não se modificaram muito. A produção permaneceu manual, a secagem era realizada ao sol e a queima em fornos trapezoidais. Posteriormente, com o desenvolvimento das primeiras máquinas motrizes à vapor, foi possível mecanizar as operações de extração de matérias primas, preparação e conformação e, consequentemente, aumentar a capacidade de produção. O salto de qualidade e quantidade de produção de materiais cerâmicos, que não poderiam ter sido

sem as máquinas motrizes, foi ainda favorecido pela construção do primeiro forno de anel de Hoffman. Com o desenvolvimento tecnológico da indústria cerâmica passaram a ser construídos blocos vazados de grande resistência mecânica, mais leve inclusive que os antigos materiais cerâmicos maciços (Lucena, 2005).

Atualmente, a cerâmica de construção civil do Brasil ocupa um lugar de destaque na economia do país. Mesmo que por muitos anos não tenha ocorrido mudanças tecnológicas na produção de materiais cerâmicos, nas últimas décadas é que a tecnologia dos materiais cerâmicos de fabricação passou por um processo de desenvolvimento associado com a inovação. Mesmo assim, é natural que outros processos e inovações ainda ocorram. Além disso, considerando também as variáveis operacionais no processo, torna-se cada vez mais necessário considerar diferentes aspectos, tais como a produtividade de secagem, a qualidade e o conhecimento do processo e dos materiais por técnicos e engenheiros envolvidos no controle de processo (Lucena, 2005; Lima, 2014; Silva et al, 2016).

2.3.2 Conceito de material cerâmico

Conceitualmente, pode-se definir como material cerâmico qualquer material inorgânico e não metálico normalmente obtido após tratamento térmico à altas temperaturas. São várias as matérias primas das quais se podem produzir materiais cerâmicos. A principal delas é a argila, definida como um material natural, terroso e fino que, ao ser misturado com água, adquire plasticidade, tornando-se fácil de ser moldado (Dias, 2013). Além disso, tais materiais abrangem variedades como vidro, tijolo, pedras, concretos, abrasivos, vernizes e esmaltes para porcelana.

Compostos basicamente por argila, os materiais cerâmicos são amplamente utilizados na construção civil. São fabricados a partir de matérias primas classificadas em naturais e sintéticas. Por meio de um processamento adequado, as propriedades dessas matérias primas são alteradas em composição química e suas fases cristalinas.

O produto de cerâmica durante o seu processo de fabricação, passa por diferentes estágios de conformação, seguido por secagem e queima. A etapa de secagem tem uma importância relevante no processo de fabricação dos materiais cerâmicos, uma vez que a

taxa de secagem rápida provoca maiores variações no volume das peças fator que podem gerar rachaduras e fissuras no material (Lehmkuhl, 2004; Lucena, 2005; Almeida, 2009; Lima, 2014; Almeida, 2014; Silva et al., 2016).

2.3.3 Produção de materiais cerâmicos

A argila crua, quando misturada com água, adquire plasticidade e torna-se fácil de ser moldada em formas diferenciadas. Bastante diversificado, o setor industrial da cerâmica, encontra-se subdividido nos seguintes segmentos: cerâmica vermelha, louça sanitária, materiais de revestimentos, isoladores elétricos de porcelana, filtros cerâmicos de água para uso doméstico, louça de mesa, materiais refratários, cerâmica técnica, isolantes térmicos e cerâmica decorativa e utilitária (cerâmicas artísticas).

Os produtos fabricados pelas indústrias cerâmicas (blocos, tijolos, telhas, tubos cerâmicos, entre outros) são considerados de perfeita qualidade. Os melhores para comercializar são aqueles que oferecem melhor durabilidade, conforto térmico e acústico, baixo custo, entre todos os participantes da cadeia produtiva da construção civil.

No entanto, existe a necessidade de investimento na melhoria da qualidade e aumento da produtividade deste setor que se encontra em crescimento constante. Esta tendência vem sendo realizada ainda que de forma lenta através das novas técnicas de gestão e, principalmente, pela introdução de estruturas e equipamentos mais atualizadas e eficientes observadas em algumas fábricas de cerâmica estrutural de blocos e telhas.

2.3.4 Caracterização das matérias primas

Conforme Dias (2013), cerâmica é o nome genérico que se dá a materiais preparados, sob altas temperaturas, a partir de compostos inorgânicos como silicatos e óxidos metálicos. Nesse conceito, materiais como vidro e cimento podem ser incluídos, mas às vezes são considerados grupos à parte pela sua importância prática.

No entanto, de acordo com o material e técnicas utilizadas, as cerâmicas podem ser classificadas em relação aos materiais como:

- terracota (argila cozida no forno);
- cerâmica vidrada (azulejo);
- grés (cerâmica vidrada, feita de pasta de quartzo, feldspato, argila e areia);
- faiança (louça fina obtida de pasta porosa cozida a altas temperaturas, envernizada ou revestida de esmalte).

No entanto, conforme Almeida (2009), uma vez, feita à classificação da argila, é de conveniência, e quando materialmente for possível, fazer a análise mineralógica para se comparar com as argilas já referenciadas na literatura.

Os ensaios propostos compreendem a:

- Análise química, que possibilitam um estudo mais detalhado da matéria prima a ser usada na produção da massa cerâmica;
- Análise termogravimétrica (ATG) e termodiferencial (ATD), em que se monitora a perda de massa e diferença de temperatura de uma amostra de uma argila ao longo do processo, respectivamente;
- Análise granulométrica, que verifica a distribuição de partículas e os valores de tamanho médio das partículas;
- Análise mineralógica que, utilizando a difração de raio X, obtém-se as fases mineralógicas presentes na argila, e através da microscopia eletrônica de varredura ou transmissão, identificam-se os diferentes minerais presentes na argila.

2.3.5 Tipos de produtos cerâmicos para construção civil

Conforme a literatura, existe diversos produtos cerâmicos. A cerâmica pode ser considerada como um material muito versátil, em virtude de diferentes propriedades (cor, porosidade, resistência, etc), processos de produção, alternativas de matéria prima e formas de utilização. Sendo assim, a cerâmica branca e a vermelha ou estrutural pode ser agrupada conforme as Tabelas 2.3 e 2.4, respectivamente.

Material	Produto obtido	Absorção de água (AA)
Pó de pedra	Azulejos e peças sanitárias	10% - 20%
Grés cerâmicos	Peças sanitárias, pastilhas e ladrilhos	0,5% - 2%
Porcelana	Pastilhas, porcelana elétricas	Nula

Tabela 2.3 – Tipos e caracterização da cerâmica branca.

Fonte: Albuquerque (2000), Silva (2009).

Tipos	Caracterização	
	Tijolos maciços, tijolos maciços	
	prensados, tijolos laminados, tijolos	
Porosos	vazados, painéis pré-fabricados, telhas,	
	componentes para lajes, ladrilhos, lajotas,	
	condutores para cabos elétricos, diversos	
	(peitoris, plaquetas de revestimento, etc).	
	Ladrilhos	
	Vidrados esmaltados	
Vidrados	Tijolos laminados	
	Tubos	
	Vidrado internamente, vidrado interna e	
	externamente e não vidrados	
	Obtidos a partir de termo expansão de	
	alguns tipos de argilas (ilita). No processo	
Argila expandida	de produção adiciona-se óleo mineral à	
	massa cerâmica. São lançados em forno	
	rotativo inclinado, com maçarico na parte	
	inferior.	

Tabela 2.4 – Tipos e caracterização da cerâmica vermelha

Fonte: Neves (1999), Silva (2009).

Sendo assim, determinada a classificação da cerâmica quanto ao tipo e suas características, fica fácil definir o material, o produto obtido, a porcentagem da absorção de água e em quais tipos de materiais esse fenômeno ocorre.

2.4 Argila

2.4.1 Origem, transformação, propriedades e componentes

2.4.1.1 Origem e transformação

A argila se origina da desagregação de rochas que comumente contém feldspato, por ataque químico (por exemplo, pelo ácido carbônico) ou físico (erosão, vulcanismo), que produz a fragmentação em partículas muito pequenas (Silva, 2009).

Segundo Silva (2009), normalmente, as jazidas são formadas pelo processo de depósito aluvial, ou seja, as partículas menores (e, portanto mais leves) são levadas pela corrente de água e depositadas em lugares onde a força hidrodinâmica já não é suficiente para mantê-las em suspensão. Num processo inverso, de litificação, a argila pode se transformar em rocha sedimentar, se um depósito de argila for desidratado e submetido a compactação (normalmente pela pressão de camadas superiores), dando origem a rocha mais finas (lutitos ou pelitos) tais como os folhelhos, que se apresentam bem estratificados, e os argilitos, que possuem pouca ou nenhuma estratificação.

De acordo com Tomazetti (2003), os depósitos onde podem ser encontradas as argilas para produção de tijolos são:

Argila de várzea: encontrada as margens de rios ou banhados, apresenta textura terrosa, esfarelada em torrões, granulometria fina e quando úmida, elevada plasticidade, sendo empregada por isso como ligante de massa. Apresenta com maior frequência impurezas como quartzo, mica e matéria orgânica, sendo esta última, quando em teores elevados, uma das responsáveis pelas perdas e contração do produto durante à queima.

- Argila de morro: encontrada longe de banhados e rios, apresenta textura terrosa, granular ou em blocos, desagregando-se geralmente em pequenos fragmentos.
 Possui baixa plasticidade, coloração natural mais clara e cor variável entre vermelha e amarelada após a queima; contém quartzo e feldspato como impurezas, além de baixo teor de matéria orgânica. Nessas argilas é muito comum a presença de seixos e cascalho, e, eventualmente, de carbonatos.
- ✓ Argila tipo taguá: são encontradas em camadas bastante profundas sob rios ou encostas de morros. Caracteriza-se por camadas delgadas e muito duras de matérias argilosas de cores variadas, com predominância do vermelho e do cinza. Sua extração exige máquinas potentes e às vezes detonações por dinamites, devendo o material ser seco e moído antes de entrar na linha de processamento.

Para Dias (2013), o processamento cerâmico é uma sequência das operações que transformam as matérias primas por meio de um número de estágios intermediários até o aspecto final do produto.

Askeland (2008), afirma que os materiais cerâmicos passam por diferentes técnicas, tais como prensagem, colagem de filmes cerâmicos, extrusão e colagem de barbotina. Tais técnicas são então utilizadas para conformá-los em objetos com formato desejado (cerâmica verde), que é um tipo cerâmica que ainda não foi submetida ao processo de secagem.

Os processos de conformação do pó cerâmico, ou mistura de pós, na forma final da peça são conhecidos como processamento de pó. No processamento dos materiais cerâmicos tem-se as seguintes etapas (Dias, 2013):

- Preparação da matéria prima em pó;
- Mistura do pó com um líquido (geralmente água) para formar um material conformável, uma suspensão de alta fluidez ("barbotina") ou massa plástica;
- Conformação da mistura;

54

- Secagem das peças conformadas;
- Queima das peças após secagem;
- Acabamento final.

Dependendo do tipo de argila apresenta, a mesma apresenta algumas impurezas. Dentre elas pode-se citar:

- ✓ Óxido de alumínio (Al_2O_3);
- ✓ Óxido de ferro (Fe2O3);
- ✓ Feldspatos sódicos, potássicos ou cálcicos (fundentes).
- ✓ Sais solúveis (K₂SO₄ e Na₂SO₄, NaCl, Na₂CO₃);
- Compostos cálcicos: Carbonato de cálcio (calcita); Sulfato de cálcio (gesso ou selenita); Fosfato de cálcio; Feldspatos, silicatos e aluminos silicatos de cálcio.
- ✓ Sílica livre (SiO₂).

Com a capacidade de se fundir em altas temperaturas, os materiais cerâmicos tornam-se frágeis quando submetidos a esforços de tração. Em geral, os processos de conformação por fusão/solidificação seguidos de processamento termomecânico, muito empregado em metais e termoplásticos, não são adequados para as cerâmicas, em especial as policristalinas (Dias, 2013).

2.4.1.2 Propriedades

Para Dias (2013), as propriedades de um material cerâmico é um traço (característica) de um material em termos do tipo e magnitude de resposta, quando submetido a certo tipo de estímulo específico. Geralmente, as definições de propriedades são feitas independentemente da forma e tamanho do material (Callister Jr., 2000). Assim sendo, as propriedades mecânicas dos materiais dependem da composição química e da microestrutura do produto. A natureza das ligações, a estrutura cristalina e os defeitos (tais como discordâncias, tamanho dos grãos, etc) têm grande influência na resistência mecânica e na ductilidade dos materiais metálicos, assim como as baixas temperaturas (fragilizam vários metais e polímeros) afetam as suas propriedade mecânicas (Askeland et al., 2008).

Segundo Askeland (2008), pode-se examinar e descrever a estrutura dos materiais em cinco níveis diferentes: macroestrutura, microestrutura, nanoestrutura, arranjos atômicos de curto e longo alcance e estrutura atômica. Um ponto interessante que é preciso esclarecer reside no fato de que nem todas as propriedades dos materiais são sensíveis à microestrutura. O módulo de elasticidade é uma destas propriedades. No caso de duas amostras de alumínio com praticamente a mesma composição química, mas tamanhos de grãos diferentes, é razoável esperar que os módulos de elasticidade destas amostras sejam aproximadamente iguais (Askeland, 2008).

Vantagens	Desvantagens
Alta temperatura de fusão	Susceptível ao choque
Rigidez térmica elevada	Dificuldade de fabricação
Alta resistência à compressão	Baixa reprodutibilidade
Dureza elevada	Alto custo
Alta resistência à corrosão	Gap em entendimento
Baixa densidade	Reduzida confiabilidade
Isolante térmico e elétrico	
Boas propriedades dielétricas	
Propriedades semi condutoras estrutural	
Propriedades magnéticas	
Biocompatibilidade	
Matéria prima abundante na natureza	

 Tabela 2.5 - Vantagens e desvantagens dos materiais cerâmicos

Fonte: Dias (2013)

As propriedades importantes analisadas em um material cerâmico podem ser agrupadas em seis categorias diferentes. Sendo elas: mecânicas, elétricas, térmicas, magnéticas, óticas e deteriorativas. Tais propriedades influenciam na estrutura do material cerâmico, podendo melhorá-lo ou danificá-lo (Dias, 2013). De forma resumida a Tabela 2.5 apresenta algumas vantagens e desvantagens dos materiais cerâmicos.

Segundo Albuquerque (2000) e Silva (2009), as propriedades das argilas são:

a) Plasticidade

É a propriedade do corpo que, submetido a uma força determinada, deforma-se e conserva indefinidamente a deformação quando se anula a força. A argila seca (quando submetida a alta temperatura) tem plasticidade nula. Molhando-a, ela vai ganhando plasticidade até um limite máximo. Com mais água, as lâminas se separam e a argila se torna um líquido viscoso.

b) Limites de Atherberg

De acordo com a Mecânica dos Solos, a trabalhabilidade de uma argila é normalmente avaliada pelos limites de Atherberg (limite de plasticidade e limite de liquidez).

Definindo-se o limite de plasticidade por LP, o limite de liquidez por LL e M como teor de umidade da argila no estado em que se encontra na natureza, determina-se o índice de plasticidade por IP = LL - LP e o índice de consistência por IC = [LL - M] / IP = [LL + M] / (LL - LP).

Visando analisar o parâmetro definido como a relação entre a diferença do teor de umidade natural, o limite de plasticidade e o índice de plasticidade, recorre-se a ABNT – NRB 7181 (1984). De acordo com a ABNT as argilas são classificadas como mostrado na Tabela 2.6.

c) Resistência da argila seca

As características principais da argila são a plasticidade, quando úmida, e a resistência quando seca. A resistência da argila no estado seco está intimamente ligada à composição granulométrica da mesma.

Segundo Elias (1995), a resistência mecânica não depende exclusivamente do teor de colóides (sistemas nos quais um ou mais componentes apresentam pelo menos uma das suas dimensões dentro do intervalo de 1 nanômetro a 1 micrômetro), mas também de uma granulometria adequada, o que permite que as partículas coloidais exerçam eficiente papel de aglutinante já que as mesmas são extremamente pequenas, capaz de manter-se em suspensão na água e com poder de aglomerarem as partículas de argila de maior dimensão. A composição granulométrica mais adequada é aquela que tem substâncias argilosas em torno de 60%, estando o resto do material dividido igualmente entre silte, areia fina e areia média.

Tipos de argilas	Índices de consistência	Indicações
Muito mole	IC <0	Corre com facilidade entre
		os dedos, ao ser apertada
		na palma da mão.
Moles	$0 < IC \le 0,50$	Facilmente moldada nos
		dedos.
Médias	$0,50 < IC \le 0,75$	Requer esforço médio para
		ser moldada.
Rígida	$0,75 < IC \le 1,00$	Requer grande esforço para
		ser moldada.
Duras	IC > 1,00	Não pode ser moldada
		pelos dedos.

Tabela 2.6 – Classificação das argilas segundo ABNT: índices de consistência e indicacões

Fonte : ABNT – NBR 7181 (1984).

As argilas devem ser dosadas a fim de apresentarem plasticidade máxima, quando úmidas, máxima resistência quando secas ou quando queimadas, e mínimas retrações durante a secagem; nas indústrias de cerâmica vermelha, por esses motivos, é muito frequente à mistura de argilas duras (ilitas, etc.) com argilas plásticas (conhecidas como "argilas de várzea").

d) Perda de água sob ação da temperatura

Toda a matéria argilosa tem água de constituição ou reticular (água que faz parte da rede cristalina do mineral) e água de absorção ou plasticidade (aquela que está unida à superfície das partículas). A energia térmica elimina toda água, qualquer que seja sua forma; a água de absorção é facilmente eliminada, desde a temperatura ambiente até 110°C.

e) Retração por secagem

Num bloco de argila úmida, quando exposto à secagem, ocorre evaporação a partir da superfície do corpo e difusão de umidade no interior da massa, ou seja, migração no sentido do centro para a superfície do corpo que se encontra mais seca, com tendência de homogeneizar o conjunto.

No processo, o lugar antes ocupado pela água vai ficando vazio e, consequentemente, o corpo retrai-se; a retração é proporcional ao grau de umidade e de retirada de umidade, e varia também com a composição da argila: quanto maior o teor de grânulos finos, maior a retração.

f) Absorção e liberação de calor

Durante o aquecimento de uma argila ocorrem transformações ora exotérmicas (liberação de calor), ora endotérmicas (absorção de calor). Em alguns casos a amplitude dos picos de absorção ou liberação de calor, registrada durante uma análise térmica diferencial (ATD), bem como a determinação das temperaturas em que eles ocorrem, servem para perfeita identificação de uma argila.

59

g) Porosidade

É a relação entre o volume de poros e o volume total aparente do material (argila ou cerâmica), sendo função da natureza dos constituintes, forma, tamanho e posição relativa das partículas, e também dos processos de fabricação.

Há duas porosidades: a aparente e a real. A aparente considera apenas os poros abertos, que absorvem água; já a real leva em consideração todos os poros, abertos e fechados, sendo de difícil determinação, recorrendo-se a porosímetros de mercúrio.

O aumento da porosidade pode ser obtido de vários modos:

- ✓ pela adição de matérias que desaparecem na queima;
- ✓ pela adição de matérias porosas;
- ✓ pela criação de fase gasosa, que seja estável durante a secagem e queima.

Pode-se diminuir a porosidade dos seguintes modos:

- ✓ pela composição de argilas, de modo a obter-se uma granulométrica contínua;
- ✓ atingindo-se a vitrificação da massa de argila, pela adição de fundentes ou pela elevação da temperatura. Os fundentes são substâncias que na queima se combinam com os constituintes da argila, formando uma massa que preenche os poros;
- ✓ pela adição de eletrólitos à argila em estado seco, tais como álcalis, hidróxido de cálcio, certos ácidos etc;
- ✓ pela preparação da massa cerâmica, removendo-se as bolhas de ar (câmara de vácuo) e promovendo-se a máxima compactação da argila.

A porosidade influi nas propriedades da argila e da cerâmica da seguinte maneira:

- ✓ a absorção de água aumenta na razão direta da porosidade, favorece a corrosão e também a refratariedade;
- ✓ a condutibilidade térmica e a condutibilidade elétrica diminuem com o aumento da porosidade; o mesmo ocorre com a massa específica aparente do material;
- ✓ a resistência à esforços axiais e a resistência à abrasão também são diminuídas com o aumento da porosidade.

2.4.1.3 Componentes

Alguns componentes da argila, segundo Macedo (1997) e Almeida (2009), destacam-se conforme suas principais características e aplicações. São eles:

- a) argilas cauliníticas: Caulinita é um dos argilominerais mais comum na crosta terrestre. Quando puro a caulinita tem baixa plasticidade e baixa resistência a cru. Apresenta cor branca, tem início de sinterização ao redor de 1250°C e funde ao redor de 1700°C. Por outro lado, entre 550°C e 650°C, perde água de constituição, o que provoca a perda de massa e contração linear elevada.
- b) quartzo (SiO₂): É um dos minerais mais abundantes na crosta terrestre, sendo, portanto, normalmente encontrado em proporções variadas nas argilas. A distribuição granulométrica das partículas de quartzo tem influência decisiva sobre o desempenho dessas argilas, já que não sofre contração nem durante a secagem nem durante a queima. Apresenta as seguintes características: I) reduz a plasticidade e contração; II) reduz a resistência mecânica e III) produz uma textura mais aberta que permite a secagem correta e fácil liberação dos gases durante a queima.

O quartzo é uma das matérias-primas mais importante também para a indústria de cerâmica branca, tendo como principais usos: I) em materiais de revestimento; II) no ajuste da viscosidade da fase líquida durante a queima; III) na secagem e liberação dos gases durante a queima; IV) nas composições de vidros e vidrados.

c) feldspato: Feldspato é um nome genérico que designa um grupo de minerais semelhantes. São silicatos de alumínio combinados com sódio, potássio ou cálcio e mais raramente bário. Esse nome inclui várias espécies minerais das quais as normalmente utilizadas são os feldspatos alcalinos do tipo: Albita (NaAlSiO₃O₈), Ortoclásio (KAlSi₃O₈) e Anortita (CaAl₂Si₂O₈).

O feldspato tem como principal característica a diminuição do ponto de fusão. Além disso: aumenta o brilho, aumenta a resistência à abrasão, diminui a fluidez, diminui o coeficiente de dilatação, aumenta a resistência à solubilização e, altera a cor nos vidrados coloridos.

Como aplicações de produtos a base de feldspato, pode-se citar: produtos de cerâmica branca, porcelanas, e vidrados.

 d) filitos cerâmicos: trata-se de uma rocha metamórfica, composta de uma mistura de caulinita, mica moscovita finamente dividida ou sericita, e quartzo em proporções variadas. Como propriedades, pode-se citar: baixa plasticidade e baixa resistência à flexão a cru.

Como produtos a base de filitos cerâmicos, tem-se: grês sanitários – substituindo parte da fração de argilosa e do feldspato, ladrilhos de piso, azulejos, e alguns tipos de materiais refratários.

- e) talco: é um silicato hidratado de magnésio cuja fórmula é 3MgO₄SiO₂H₂O. Os produtos à base de talco podem ser usados:
- I. como constituinte principal (60% a 90%) em massa para fabricação de isoladores elétricos de alta frequência. Este tipo de corpo é conhecido como esteatita;
- II. na composição de massas cordieríticas, que tem como característica principal o baixo coeficiente de dilatação térmica;

- III. em quantidade de até 15% em massas de corpos porosos, para melhorar a resistência mecânica e reduzir as trincas, devido absorção de umidade;
- IV. como fundente, substituindo parcialmente o feldspato em massas para fabricação de corpos semivítreos e vítreos;
- V. na composição de vidrados.
- f) dolomita: é o carbonato duplo de cálcio e magnésio, correspondendo a um teor teórico de 56% de carbonato de cálcio e 44% de carbonato de magnésio. A dolomita, além de outras aplicações, é utilizada na fabricação de materiais refratários.
- g) calcita: aplica-se principalmente em massas calcárias com teores de umidade de até 30%. Apesar de proporcionar corpos de elevada porosidade e, portanto, baixa resistência mecânica, tem a vantagem de apresentar corpos de baixa contração linear com a queima, o que é conveniente para muitas aplicações na composição de vidrados e na fabricação de cimento aluminoso.

2.4.2 Tipos de argilas e aplicações

Conforme Silva (2009), as argilas possuem inúmeras aplicações. Por sua plasticidade enquanto úmida e extrema dureza depois de cozida a mais de 800°C. A argila é largamente empregada na cerâmica para produzir vários artefatos que vão desde os tijolos até semicondutores utilizados em computadores, dependendo do tipo de argila.

De acordo com Rossi (2004) e Silva (2009), os seguintes tipos de argilas são conhecidas:

- Argila natural: é uma argila que foi extraída e limpa, e que pode ser utilizada em seu estado natural, sem a necessidade de adicionar outras substâncias.
- Argila refratária: argila que adquire este nome em função de sua qualidade de resistência ao calor. Suas características físicas variam; umas são muito plásticas e finas, outras não. Apresentam geralmente alguma proporção de

ferro e se encontram associadas com os depósitos de carvão. São utilizadas nas massas cerâmicas dando maior plasticidade e resistência em altas temperaturas, sendo bastante utilizadas na produção de placas refratárias que atuam como isolantes e revestimentos para fornos.

- Caulim ou argila da China: argila primária, utilizada na fabricação de massas para porcelanas. É de coloração branca e funde à 1800°C; por ser pouco plástica, deve ser moldada em moldes ou formas, pois com a mão é praticamente impossível.
- Argilas de bola (Ball Clay): são argilas secundárias muito plásticas, de cor azulada ou negra, apresentando alto grau de contração tanto na secagem quanto na queima. Sua grande plasticidade impede que seja trabalhada sozinha, uma vez que fica pegajosa com a água. É adicionada em massas cerâmicas para proporcionar maior plasticidade e tenacidade à massa. Vitrifica à 1300°C.
- Argilas para grés: é uma argila de grão fino, plástica, sedimentária e refratária que suporta altas temperaturas. Vitrificam entre 1250 e 1300°C. Nelas o feldspato atua como material fundente. Após a queima sua coloração é variável, que vai do vermelho escuro ao rosado e até mesmo, acinzentado do claro ao escuro.
- Argilas vermelhas: são plásticas com alto teor de ferro e resistem a temperaturas de até 1100°C, porém fundem em uma temperatura maior. Podem ser utilizadas com vidrados para grés. Sua coloração é avermelhada escuro quando úmida chegando quase ao marrom; quando sinterizada, a coloração se intensifica para o escuro de acordo com seu limite de temperatura de queima.
- Bentonita: argila vulcânica muito plástica, que contém mais sílica do que alumínio; se origina das cinzas vulcânicas. Apresenta uma aparência e tato gorduroso, e pode aumentar entre 10 e 15 vezes seu volume ao entrar em contato com a água. É adicionada à argilas para aumentar sua plasticidade. Funde por volta de 1200°C.

Argilas expandidas: a argila expandida é produzida em grandes fornos rotativos, utilizando argilas especiais que se expandem à altas temperaturas (1100°C), transformando-as em um produto leve, de elevada resistência mecânica, ao fogo e aos principais ambientes ácidos e alcalinos, como os outros materiais cerâmicos. Suas principais características são: leveza, resistência, inércia química, estabilidade dimensional, incombustibilidade, além de excelentes propriedades de isolamento térmico e acústico.

2.4.3 Classificação das argilas

Pode-se classificar as argilas, segundo os critérios de Gonçalves (2003) e Silva (2009), como se segue:

 \checkmark De acordo com a geologia:

- a) Argilas residuais: são assim denominadas porque são formadas no mesmo local da rocha que lhe deu origem. O principal agente formador destas argilas é a água subterrânea que provoca reações químicas que vão desgastando a rocha. A pureza da argila residual depende da natureza da rocha que lhe deu origem, da quantidade de impurezas removidas, etc.
- b) Argilas sedimentares: estas argilas são provenientes de materiais transportados por ações naturais tais como, vento, chuvas, ações glaciais, etc.
 - \checkmark De acordo com sua estrutura:

Podem ser:

- a) Laminares ou foliáceas;
- b) Caulinitas: mais puras, usadas na indústria de refratários, porcelana e louça sanitária;
- c) Montmorilonitas: pouco usadas, são muito absorventes e possuem alto grau de inchamento; são misturadas as caulinitas para corrigir a plasticidade;

- d) Micáceas: são mais abundantes e empregadas na fabricação de tijolos;
- e) Fibrosas: não usadas na fabricação de produtos cerâmicos.
- ✓ De acordo com sua plasticidade:
- a) Gordas: ricas em material argilosos e pobres em desengordurante; são plásticas e apresentam alta deformação quando cozidas;
- b) Magras: muito silicosas; geram produtos porosos e frágeis.
- ✓ De acordo com o ponto de fusão ou uso:
- a) Infusíveis: são constituídas essencialmente por caulim puro; após a queima tem as cores brancas translúcida. Infusíveis à temperaturas elevadas são utilizadas para fabricação de porcelana;
- b) Fusíveis: deformam-se e vitrificam à temperaturas inferiores à 1200°C. Tem cor cinza azulado ou amarela avermelhada, sendo ótimas para tijolos e telhas.
- c) Refratárias: são muito puras, não se deformam em temperatura inferiores à 1500°C, tem baixo coeficiente de condutividade térmica, e são usadas para revestimentos de fornos (tijolos refratários). As argilas de maior refratariedade ou cone pirométrico são submetidas a temperatura equivalente à 1450°C e geralmente apresentam-se em várias cores. As argilas de menor refratariedade ou menor cone pirométrico, às vezes chamadas "semi refratárias", apresentam cores bem escuras, marrom ou pretas, sem indício de fusão nas arestas, quando submetidas a temperaturas bem inferiores à 1450°C.

2.4.4 Argila para produção de cerâmica vermelha

Para a produção de cerâmica vermelha, a principal matéria prima é a argila e a diversidade de suas origens pode causar variações no produto final. A principal característica da argila é sua plasticidade, o que permite a elaboração de variados formatos de peças com equipamentos relativamente simples (Sanchez-Muñhoz et al., 2002; Silva, 2009).

Segundo Wittwer e Faria (1997), os produtos de cerâmica vermelha são classificados em função do processo de fabricação utilizado, podendo ser prensados ou extrusados.

As argilas utilizadas na produção de tijolos e telhas são geralmente argilas quaternárias e, as vezes terciárias, das margens de rios, lagos ou várzeas, ricas em ferro e álcalis, de granulometria fina e contendo teor considerável de matéria orgânica, fatores responsáveis pela plasticidade elevada. As argilas para fabricação de tijolos devem ser moldadas facilmente e ter o valor médio ou elevado para tensão ou módulo de ruptura à flexão, antes e após a queima (Silva, 2009).

Costumam apresentar cor vermelha após a queima em baixas temperaturas, com um mínimo de trincas e empenamentos. Elevados teores de ferro bivalente e elementos alcalinos podem reduzir a faixa de vitrificarão e causar colorações indesejáveis (Tomazetti, 2003).

2.5 Processo de fabricação de produtos cerâmicos

A fabricação das peças cerâmicas compreende diversas fases: exploração das jazidas, o tratamento prévio das matérias primas, a homogeneização, a secagem e a queima (Bauer, 1994; Guilherme, 1998). Na homogeneização, a água é adicionada à argila para dar características de plasticidade e facilitar a moldagem das peças. A secagem é o processo responsável pela retirada dessa água durante a fabricação de produtos cerâmicos.

Visando evitar que a peça exploda dentro do forno, antes da queima, torna-se necessário que seja feita a secagem da peça cerâmica para que a água acumulada nos poros seja retirada. Durante o processo de secagem convectiva (com ar quente) de um material cerâmico, a água contida no mesmo migra para a camada superficial, enquanto que o calor, proveniente do ar de secagem, penetra da superfície para o interior do material, onde a temperatura é menor. Como a camada exterior do material cerâmico seca mais rápido do que o seu interior (uma vez que está em contato direto como o ar de secagem), essa camada contrai-se primeiro.

Observa-se experimentalmente que quanto maior a umidade contida na peça, maior será a sua retração na secagem. Diante disto, é importante que a umidade saia homogeneamente de toda a peça, pois se a secagem for feita de modo desigual, ela diminuirá de tamanho desigualmente, causando tensões que poderão se transformar em trincas. Peças com variação de espessura devem secar de forma prudente. As partes mais finas secarão mais rapidamente, diminuindo de tamanho e perdendo a plasticidade. Quando mais rápido a parte grossa secar e diminuir de tamanho, aparecerão trincas. Isso acontece em peças torneadas de fundo grosso, em esculturas, em placas ocas e em todas as peças que tenham espessuras variáveis.

2.5.1 Secagem de produtos cerâmicos

A secagem é a fase do processo que antecede a queima e precisa de uma quantidade apreciável de energia térmica para evaporar a água que foi adicionada ao produto durante no processo de moldagem. O objetivo desta etapa é reduzir lentamente e de maneira uniforme, o teor de umidade dos produtos a partir de 20 a 25%, após a extrusão ou prensagem e para 3 a 10%, no final de secagem. A secagem provoca o encolhimento do produto o qual pode, em geral, variar de 4 a 10% seu volume. No caso dos produtos de cerâmica, em que a argila vermelha é usada, a fase de secagem torna-se muito importante. Nesta etapa, a maior parte da água contida no produto é eliminada. Consequentemente, quando essa etapa sofre variações, causa defeitos ao produto final. Nesse caso, o produto, muitas vezes é rejeitado, causando perda de matéria prima, mão de obra, consumo de energia, entre outros prejuízos.

A duração da secagem depende da temperatura do ar, da geometria, da velocidade do ar e da umidade relativa do ar, onde, em alguns procedimentos (secagem natural) necessita-se de um período de até seis semanas. No entanto, para reduzir o tempo de secagem, a secagem artificial é realizada em câmaras de secagem ou de fornos, utilizando, como uma regra, o calor residual dos fornos, enquanto estas estão a ser arrefecidos. Os tipos mais comuns de secadores artificiais são:

 Estático – tendo como exemplo clássico a caieira, a secagem ocorre de forma artificial, utilizando como combustível o cavaco de madeira, é fixo onde o produto é inserido e embalados com barro, sendo removidos apenas ao termino do processo (Celestino, 2010). Contínuo ou semicontínuo – podem ser dos tipos Anular (Hoffmann) e Túnel. Nestes fornos o processo de queima se faz de forma continua, sem interrupção para o carregamento ou descarregamento das peças, ou seja, enquanto um lote de peças está chegando ao final da queima, outra quantidade igual ou semelhante de peças está sendo iniciada seu processo de queima, sem descontinuidade do processo (Almeida, 2009).

O período de secagem artificial depende das características da matéria prima, da forma das peças a serem secas e do tipo de secador, e demora em geral, de 12 a 40 h. A secagem artificial é realizada a uma temperatura entre 80 e 110°C, e as informações sobre a umidade relativa são praticamente inexistentes, porém pode-se dizer que esta é muito alta (Silmal et al., 2006; Dadali et al., 2007a; Dadali et al., 2007b; Dadali et al., 2007c; Duggal, 2008; Silva 2009; Doymaz et al., 2011; Martines-Lopez, 2013, Khalili et al., 2014).

2.5.2 Principais defeitos ocorridos durante a secagem de produtos cerâmicos

Vários fatores influenciam a qualidade do produto pós-secagem tais como: elevados gradientes de umidade e temperatura no interior do sólido, que geram tensões termo-hidro-mecânicas no interior do mesmo. Caso esses dois fatores não sejam controlados durante a secagem, eles podem causar defeitos irreversíveis no mesmo, tais como: trincas, fraturas e deformações que podem levar à perda da qualidade do produto final (Lima, 2014).

Para os casos em que a secagem ocorre de forma mais rápida, uma série de problemas inerentes ao processo podem ocorrer, como:

• Fissuras

Estado em que um determinado objeto ou parte dele apresenta aberturas finas e alongadas na sua superfície. Exemplo: a aplicação de uma argamassa rica em cimento apresentou, após a cura, muitas fissuras em direções aleatórias. As fissuras são, geralmente, superficiais e não implicam, necessariamente, em diminuição da segurança de componentes estruturais (Lima, 2014).

Figura 2.3 – Foto de produto com fissura.

Fonte: Google Imagens.

• Trincas

Figura 2.4 – Foto de produto com trinca.

Fonte: Google Imagens.

As trincas de secagem são pequenas fissuras causadas por secagem rápida. Geralmente inicia-se nas bordas e propagam-se até o centro da peça, sendo mais aberta na borda. A trinca pode ser definida como um estado em que um determinado objeto ou parte dele se apresenta partido, separado em partes. Exemplo: a parede está trincada, isto é, está separada em duas partes. Em muitas situações, a trinca é tão fina que é necessário o emprego de aparelho ou instrumento para visualizá-la. As trincas, por representar a ruptura dos elementos, podem diminuir a segurança de componentes estruturais de um edifício, de modo que mesmo que seja muito pequena e quase imperceptível deve ter a causa ou as causas minuciosamente pesquisadas (Lima, 2014).

Vale a pena fazer uma referência ao problema da readsorção de umidade. Dependendo do tipo de argila, se o tempo transcorrido desde que a argila deixa o secador até quando ela é introduzida no forno, é grande, e a umidade ambiente é muito alta, inicia-se um processo de re - hidratação (readsorção) que pode provocar rupturas e/ou explosões, quando o material entra no forno (Elias, 1995).

• Coração negro

São manchas negras e cinzas que permanecem (pode-se ver ao longo da secção transversal das peças no interior dos produtos) após processo de queima. A presença de coração negro em peças cerâmicas é relativamente comum. Consiste em uma região escura (geralmente cinza) que se estende, paralelamente à face e próxima a meia altura da espessura, ao longo da peça. A sua presença causa danos do tipo: inchamento das peças, deformação piropláticas (região em que o volume da fase líquida é maior e sua viscosidade é menor do que no restante da peça, formando, assim, o coração negro), deterioração das características técnicas e deterioração das características estéticas (Damiani et al., 2001).

Figura 2.5 – Foto de produto com coração negro.

Fonte: Google Imagens.

• Empenamentos

Definindo, trata-se do ato ou efeito de empenar, ou seja, a capacidade que o material tem de torcer-se, curvar-se, arquear-se, desviar da linha de prumo, entortar (Ferreira, 2000).
Principais causas que provocam esse problema:

- ✓ Secagem diferencial: se uma face da peça seca mais rapidamente que a outra formam-se gradientes de tensões residuais de contração, que podem deformar o produto.
- Mau posicionamento no suporte de secagem: a colocação de peças verdes sobre suportes planos, para secagem, pode provocar empenamentos no material.
- ✓ Boquilhas de fieira: este tipo de empenamentos já se nota após a secagem.

Figura 2.6 – Foto de produtos empenados. Fonte: Google Imagens.

• Eflorescência

A eflorescência é a formação de depósitos salinos na superfície do concreto ou argamassas, etc., como resultado da sua exposição à água de infiltrações ou intempéries. É considerado um dano, por alterar a aparência do elemento onde se deposita. Há casos em que seus sais constituintes podem ser agressivos e causar degradação profunda. A modificação no aspecto visual é intensa onde há um contraste de cor entre os sais e o substrato sobre as quais se deposita. Como exemplo, a formação branca de carbonato de cálcio sobre o concreto cinza (Lima, 2014).

Quimicamente a eflorescência é constituída principalmente de sais de metais alcalinos (sódio e potássio) e alcalino-ferrosos (cálcio e magnésio, solúveis ou parcialmente solúveis em água). Pela ação da água, estes sais são dissolvidos e migram para a superfície e a evaporação da água resulta na formação de depósitos salinos (Lima, 2014).

Diversos fatores contribuem para a formação de eflorescências. Alguns deles estão citados a seguir. Eles devem agir em conjunto. São eles:

- teor de sais solúveis;
- pressão hidrostática para proporcionar a migração para a superfície;
- presença de água (Storte, 2016).

A eflorescência causada pelo depósito de sais na superfície externa do material provoca alterações de cores e manchas indesejáveis. O produto queimado absorve umidade da água da chuva, da atmosfera e do terreno. A umidade absorvida pelo produto dissolve os sais, mas, se o ambiente externo se torna mais seco, ocorre o caminho inverso, evapora-se a água da superfície dando lugar a cristalização dos sais (Silva, 2009).

Figura 2.7 – Foto de produtos com eflorescência. Fonte: Google Imagens.

CAPÍTULO 3

METODOLOGIA

3.1 Metodologia experimental

3.1.1 A matéria prima

Para fabricação e análise do produto, a matéria (argila) Figura 3.1 utilizada na fabricação dos corpos de prova foi fornecida "in natura" pela Indústria de Cerâmica Cincera localizada na cidade de Santa Rita, região metropolitana de João Pessoa – PB.

A Figura 3.1 ilustra a argila "in natura" fornecida pela Indústria Cerâmica Cincera para a realização dos experimentos.

Figura 3.1 – Argila "in natura".

3.1.2 Procedimentos experimentais

Os procedimentos adotados para obtenção das amostras para caracterização e moldagem foram: secagem da argila em estufa a 100°C durante 24 horas, moagem em moinho de martelo (Figura 3.2), peneiramento num peneirador de malha nº 200 (0,074 mm) para obtenção das amostras para caracterização (Figura 3.4) e num peneirador de malha nº 80 para moldagem (Figura 3.3).

As amostras de argilas "in natura" foram acondicionadas em sacos plásticos e colocadas em recipientes plásticos fechados para evitar umidificação. Após essas etapas, a argila foi caracterizada, em termos de análise química, mineralógica, granulométrica e térmica/gravimétrica, que consistem em: apresentar a composição química e o percentual dos componentes presentes na argila em estudo; apresentar os constituintes mineralógicos da argila e suas funções; apresentar a distribuição de tamanho das partículas, e a distribuição de temperatura e a perda de umidade em função da temperatura, respectivamente. Os ensaios/análises foram realizados no Laboratório de Tecnologias de Materiais e no Laboratório de Caracterização de Materiais da Unidade Acadêmica de Engenharia de Materiais, do Centro de Ciências e Tecnologia da Universidade Federal de Campina Grande. Sendo assim, após os procedimentos básicos adotados, a argila foi separada em pequenas quantidades e levadas as salas responsáveis por cada caracterização.

A parte dispensada para moldagem foi conduzida ao LABCEM (Laboratório de Membranas Cerâmicas) da Unidade Acadêmica de Engenharia Química, do Centro de Ciências e Tecnologia da Universidade Federal de Campina Grande. Separada em duas porções a argila foi colocada num misturador (Figura 3.5), acrescentou-se 22,5% de água a cada 1000 ml de massa até obter a plasticidade adequada para o processo de moldagem. Em seguida, a mistura foi extrudada (Figura 3.6), ganhado a forma e dimensões desejadas.

Só após moldada, as amostras foram acomodadas em sacos de vedação herméticos, individualmente, para evitar a perda de umidade e logo após alocados em recipientes plásticos com tampas e revestidos de esponjas umedecidas de água, visando assegurar a umidade inicial por um período mais prolongado. Só então as amostras foram secas na estufa do Laboratório Experimental de Térmica e Fluido, da Unidade Acadêmica de Engenharia Mecânica, da Universidade Federal de Campina Grande, nas temperaturas e condições desejadas de forma pré-estabelecidas.

Figura 3.2 – Moinho de martelo.

Figura 3.3 –Peneirador de malha nº 80.

Figura 3.4 –Peneirador de malha nº 200.

Figura 3.5 – Misturador.

Figura 3.6 – Extrusora.

3.1.3 Análises química, mineralógica, granulométrica e térmica/gravimétrica

Para realização da caracterização da argila, os seguintes procedimentos específicos foram adotados:

Análise química – consiste em determinar a composição química de uma matéria-prima, fornecendo os percentuais de óxidos presentes e também os valores de perda ao fogo. Pode ser realizada através de métodos químicos ou físicos. Os métodos químicos geralmente são através de reações de precipitação seletiva e reações de formação de complexos corantes. Os métodos físicos podem ser através de espectrofotometria ou ainda por fluorescência de raios X. Atualmente a fluorescência de raios X é frequentemente utilizada para determinar a composição química em materiais cerâmicos por ser um método rápido, preciso e não destrutivo.

Nesta pesquisa, a amostra da argila foi passada em peneira ABNT n° 200 (0,074mm) e submetida à análise química por fluorescência de raios X. O espectrômetro (Figura 3.7) de fluorescência de raios X determina semi quantitativamente os elementos presentes em uma determinada amostra, mediante a aplicação de raio X na superfície da amostra e a posterior análise dos raio X fluorescentes emitidos em equipamento EDX 720 da Shimadzu (Figura 3.7). A geração de raios X é feita por meio de um tubo com alvo de Rh.

Figura 3.7 – Espectrômetro de fluorescência de raios x.

Análise mineralógica (por difração de raio X) – Corresponde a uma das principais técnicas de caracterização, pois além de ser possível determinar os parâmetros da célula unitária e pontos de simetria. Possibilita a identificação dos minerais presentes, e também permite estudar as características cristalográficas destes minerais. O equipamento de difração de raios X (Figura 3.8) é basicamente um tubo emissor de raios X, uma câmara circular onde se situa a amostra (goniômetro) e um detector que recebe os raios difratados. A técnica de ensaio consiste em incidir um feixe de raios X (de comprimento de onda conhecido), sobre uma camada fina de pó, que gira no centro do goniômetro. Como consequência o feixe se difrata e reflete com ângulos que são característicos do retículo cristalino, obtendo-se o correspondente difratograma.

Ao se caracterizar argilominerais, a utilização da técnica de difração de raios X torna-se ainda mais indicada, pois uma análise química reportaria os elementos químicos presentes no material, mas não a forma como eles estão ligados. Uma vantagem é que o difratograma apresenta um número grande de picos, o que facilita a identificação, principalmente no caso de misturas, onde pode haver superposição de alguns picos.

Com a caracterização da argila e a determinação das suas propriedades fica fácil estudar os beneficiamentos que devem ser feitos para alterar uma ou várias propriedades do corpo cerâmico, o que causa melhoramento nas propriedades do produto final.

A análise por difração de raios X da amostra, na forma seca, foi realizada em equipamento XRD 6000 da Shimadzu. A radiação utilizada foi K α do Cu (cobre), tensão de 40kV, corrente de 30 mA, a velocidade do goniômetro foi de 2°/min e passo de 0,02°.

Figura 3.8 – Difratometro de raios x.

• Análise granulométrica – está técnica de caracterização é muito utilizada em diversos ramos industriais devido a sua facilidade de operação, rapidez e amplitude de leitura. Para realização desta caracterização a argila foi submetida a um ensaio por difração a laser de acordo com as instruções operacionais do granulômetro CILAS 1064 LD (2007) (Figura 3.9). A amostra foi passada no peneirador de malha nº 200 e dispersa em 150 ml de água destilada como o desflocante hexametafosfato de sódio na proporção indicada pela norma da ABNT. A preparação da dispersão foi realizada em agitador Hamilton Beach N5000 à velocidade de rotação de 17.000 rpm durante 20 minutos, seguida por um repouso durante 24 h. Após este período, a dispersão foi novamente agitada durante 5 minutos e colocada no equipamento CILAS modelo 1064, em modo úmido, até atingir a concentração ideal que é de 150 unidades de difração/área de incidência.

A análise granulométrica por difração de laser utiliza o método de dispersão de partículas em fase liquida associado com um processo de medida óptica através de difração de laser. Neste método, é combinada a relação proporcional entre a difração do laser e a concentração e tamanho de partículas.

Figura 3.9 – Granolômetro a laser (CILAS 1064).

 Análises térmica diferencial (ATD) e termogravimétrica (ATG) – Engloba uma série de técnicas nas quais as propriedades físicas de uma substância e/ou seus produtos de reação são medidas de forma contínua em função da temperatura em um ciclo térmico controlado.

O método de análise térmica diferencial (ATD) é de uso mais frequente no Brasil no estudo de argilas, visando principalmente à identificação dos argilominerais presentes.

Esta técnica permite observar as transformações que geram trocas energéticas, devido a fenômenos físicos ou químicos. Estas trocas energéticas podem ser endotérmicas (onde ocorre absorção de calor) ou exotérmicas (onde ocorre liberação de calor). Para cada troca energética, aparece um pico no gráfico, e de acordo com a temperatura desses picos e sua direção, pode-se identificar o mineral, ou a transformação ocorrida com a amostra. Assim, identifica-se existência de minerais essenciais às argilas e que influenciam as propriedades finais da peça.

Outra técnica bastante utilizada é a análise termogravimétrica (ATG) que determina a perda ou ganho de massa que uma amostra sofre em função da temperatura e /ou tempo. A amostra é aquecida de maneira controlada, até uma temperatura pré determinada, com velocidade constante. Este método de análise complementa a análise térmica diferencial por fazer distinção entre as reações onde ocorre perda de massa e as reações onde não ocorre.

As análises térmicas diferenciais (ATD) e as termogravimétricas (ATG) das amostras foram realizadas em equipamento BP Engenharia Modelo RB 3000 (Figura 3.10), operando a $12,5^{\circ}$ C/min. A temperatura foi de 1000° C e o padrão utilizada nos ensaios de ATD foi o óxido de alumínio (Al₂O₃) calcinado.

Figura 3.10 – Equipamento utilizado para análise térmica - BP Engenharia Modelo RB 3000.

3.1.4 Secagem em estufa

3.1.4.1 Materiais e equipamentos usados na secagem

As amostras utilizadas para secagem em estufa foram materiais cerâmicos vazados, com forma arbitrária, conforme Figuras 3.11 a 3.13. Estes tipos de geometrias são matrizes utilizadas na confecção de membranas cerâmicas vítreas para o tratamento e purificação de água, pelo Laboratório de Dessalinização (LabDes) / UAEQ / UFCG. A escolha dessa geometria se deu pela sua forma arbitraria, pois até o momento não possuem fins comercias.

a) Vista frontal b) Vista superior Figura 3.11 – Amostra 1: Cilindro vazado

a) Vista frontal b) Vista superior Figura 3.12 – Amostra 2: Cilindro vazado com sete furos(tambor)

a) Vista frontal b) Vista superior **Figura 3.13** – Amostra 3: Cilindro vazado com barra transversal

Para determinar os parâmetros geométricos das amostras e do ar de secagem, os seguintes equipamentos foram utilizados:

 a) Paquímetro digital da marca Messen com precisão de 0,01mm: usado para medição das dimensões das amostras, antes, durante e após a secagem (Figura 3.14).

Figura 3.14 – Paquímetro digital.

 b) Balança digital com divisão de 1 miligrama: usada para medição da massa da amostra, antes, durante e após a secagem, (Figura 3.15)

Figura 3.15 – Balança digital.

c) Termômetro de infravermelho com escala de -50 à 1000°C TI 890: usado para medir a temperatura da amostra, antes, durante e após a secagem (Figura 3.16).

Figura 3.16 – Termômetro de infravermelho.

A Tabela 3.1 resume as características do termômetro referenciado.

Tabela 3.1 – Especificações do termômetro de infravermelho.

Escala (automática)	Precisão
- 50 ~ - 20°C	± 5°C
- 20 ~ 200°C	\pm 1,5% da leitura \pm 2°C
201 ~ 538°C	\pm 2% da leitura \pm 2°C
539 ~ 750°C	\pm 3% da leitura \pm 5°C

Fonte: Almeida (2009).

 d) Termohigrômetro digital de fabricação da ICEL, mod. HT 208: usado para medição da temperatura e umidade relativa do ar ambiente fora da estufa, antes, durante e após a secagem (Figura 3.17).

Figura 3.17 – Termohigrômetro digital

 e) Estufa com circulação mecânica de fabricação da FANEM mod. 320E com controlador digital de temperatura: usada para realização da secagem e aquecimento das amostras (Figura 3.18).

Figura 3.18 – Estufa com circulação de ar forçada

 f) Bandeja de arame galvanizado: usada para acomodar as amostras visando facilitar a circulação do ar sobre as mesmas dentro da estufa (Figura 3.19).

Figura 3.19 – Bandeja de arame galvanizado.

3.1.4.2 Procedimentos experimentais

De acordo com os objetivos preestabelecidos, os seguintes procedimentos experimentais foram adotados:

Primeiro experimento:

- i. Obtenção das medidas de dimensões, massa e temperatura da amostra úmida e temperatura e umidade relativa do ar ambiente fora da estufa, antes do início da secagem (t = 0 s).
- Ajustamento e fixação da temperatura da estufa para a temperatura do ar de secagem desejada (60°C, 70°C, 80°C, 90°C e 100 °C) através do controlador de temperatura.
- iii. Inserção da amostra no interior da estufa.
- iv. Em intervalos pré-estabelecidos, ocorreram a retirada da amostra da estufa para medições da massa, temperatura e suas dimensões. A medição da temperatura foi feita num ponto fixo da amostra, escolhido de forma aleatória, para minimizar as variações, assim como a determinação das suas dimensões (Figura 3.20). Os tempos utilizados para as medições foram em escala de 6 sequências a saber: 5 em 5 min, 10 em 10 min, 30 em 30 min, e por fim 60 em 60 min, até o produto atingir a condição de equilíbrio higroscópico.
- v. Com a estabilização da umidade da amostra, a massa permaneceu na estufa por mais 24 h para obtenção da massa de equilíbrio, na mesma temperatura de secagem.
- vi. Após esse período e realizada uma nova medição, a temperatura da estufa foi elevada para 105°C e a amostra ficou nessa temperatura por mais 24 h, para obtenção da massa seca.

Figura 3.20 – Cilindro vazado com pontos fixos demarcando suas dimensões.

- vii. Tais procedimentos foram realizados de forma individualizada em cada amostra.
- viii. Durante o processo de secagem, em alguns tempos prefixados, as amostras foram fotografadas.

3.1.4.3 Alguns cálculos essenciais

Logo após a secagem das amostras, a partir dos dados obtidos com as dimensões e massa das amostras, foram feitos alguns cálculos auxiliares para determinação de novos parâmetros, que são necessários para o cálculo geral e para obtenção dos resultados e discussão da pesquisa.

• Massa de água

O cálculo da quantidade de água de cada amostra (m_a) e em cada tempo de medição, foi feito com base no valor da massa da amostra (m) e na massa da amostra seca (m_s) , da seguinte forma:

$$m_a = m - m_s \tag{3.1}$$

• Teor de umidade em base seca

O cálculo do teor de umidade (M) de cada amostra, em base seca, em cada tempo de medição, foi feito com base no valor da massa de água da amostra (m_a) e na massa da amostra seca (m_s) , da seguinte forma:

$$M = m_a / m_s \tag{3.2}$$

• Teor de umidade adimensional

O cálculo do teor de umidade adimensional de cada amostra (M^*) e em cada tempo de medição foi feito com base no valor do teor de umidade (M), do teor de umidade inicial (M_o) e do teor de umidade de equilíbrio (M_e) , da seguinte forma:

$$M^{*} = (M - M_{e}) / (M_{o} - M_{e})$$
(3.3)

• Temperatura adimensional

O cálculo temperatura adimensional de cada amostra (θ^*) em cada tempo de medição, foi feito com base na temperatura no vértice da amostra (θ), da temperatura inicial (θ_0) e da temperatura de equilíbrio (θ_e), da seguinte forma:

$$\theta^* = (\theta - \theta_e) / (\theta_o - \theta_e)$$
(3.4)

• Umidade relativa

O cálculo da umidade relativa (UR) de cada amostra nas diferentes temperaturas foi feito com base na média da temperatura e da umidade externa utilizando o programa computacional CATT®.

• Área superficial das amostras

Considerando as Figuras 3.21 a 3.22, elaborou-se esquematicamente as figuras representativas contendo parâmetros geométricos que permitiram determinar a área da superfície e volume de cada amostra com as medidas, experimentalmente, prédeterminadas.

Amostra 1 – Cilindro vazado

Figura 3.21 – Figura representativa do cilindro vazado

 $S_{int} = \pi D_{int} h \tag{3.5}$

 $S_{ext} = \pi D_{ext} h \tag{3.6}$

$$S_c = S_b = \frac{\pi \text{ Dext}^2}{4} - \frac{\pi \text{ Dint}^2}{4}$$
 (3.7)

$$\mathbf{S}_{\text{total}} = \mathbf{S}_{\text{int}} + \mathbf{S}_{\text{ext}} + \mathbf{S}_{\text{c}} + \mathbf{S}_{\text{b}} \tag{3.8}$$

➤ Amostra 2 – Cilindro vazado com sete furos – tambor

Figura 3.22 – Figura representativa do cilindro vazado com sete furos - tambor

$S_{int} = \pi D_{int}h$	(3.9)

$$St_{int} = 7S_{int}$$
(3.10)

$$S_{ext} = \pi D_{ext} h \tag{3.11}$$

$$S_{c} = S_{b} = \frac{\pi \operatorname{Dext}^{2}}{4} - \frac{7 \pi \operatorname{Dint}^{2}}{4}$$
(3.12)

$$\mathbf{S}_{\text{total}} = \mathbf{S}_{\text{int}} + \mathbf{S}_{\text{ext}} + \mathbf{S}_{\text{c}} + \mathbf{S}_{\text{b}} \tag{3.13}$$

Amostra 3 – Cilindro vazado com barra transversal

$$S_{ext} = \pi D_{ext} h \tag{3.14}$$

$$\mathbf{S}_{\text{int}} = \pi \mathbf{D}_{\text{int}} \mathbf{h} \tag{3.15}$$

Figura 3.23 – Figura representativa do cilindro vazado com barra transversal

 $S_{lateral} = 2eh$ (3.17)

$$\operatorname{Sen}\theta = \frac{\frac{e}{2}}{r} = \frac{e}{2r} = \frac{e}{d_{\operatorname{int}}}$$
(3.18)

$$l' = r\beta(rad) \tag{3.19}$$

$$S_{calota} = 2l'h \tag{3.20}$$

 $S_{\text{total}} = S_{\text{ext}} + S_{\text{int}} + S_{\text{barra}} + S_{\text{calota}} - S_{\text{lateral}}$ (3.21)

• Volume das amostras

Baseando-se nas Figuras 3.21 a 3.23, as seguintes equações para o volume de cada amostra foram obtidas.

Amostra 1 – Cilindro vazado

$$V_{int} = \frac{\pi \operatorname{Dint}^2}{4} h \tag{3.22}$$

$$V_{ext} = \frac{\pi \text{ Dext}^2}{4} h \tag{3.23}$$

$$V_{\text{total}} = V_{\text{ext}} - Vt_{\text{int}}$$
(3.24)

➢ Amostra 2 − Cilindro vazado de sete furos − tambor

$$V_{\rm int} = \frac{\pi \, {\rm Dint}^{\,2}}{4} {\rm h} \tag{3.25}$$

$$Vt_{int} = 7V_{int}$$
(3.26)

$$V_{ext} = \frac{\pi \operatorname{Dext}^2}{4} h \tag{3.27}$$

$$\mathbf{V}_{\text{total}} = \mathbf{V}_{\text{ext}} - \mathbf{V}_{\text{int}} \tag{3.28}$$

Amostra 3 – Cilindro vazado com barra transversal

$$V_{\rm int} = \frac{\pi . \rm{Dint}^2}{4} h \tag{3.29}$$

$$V_{ext} = \frac{\pi \operatorname{Dext}^2}{4} h \tag{3.30}$$

$$V_{traveco} = 2V_{barra} + V_{tubo}$$
(3.31)

$$V_{\text{total}} = V_{\text{ex}}t - V_{\text{int}} + V_{\text{traveco}}$$
(3.32)

$$Dt_{int} = 2l + d_{int}$$
(3.33)

$$l = \frac{\mathrm{Dt}_{\mathrm{int}} - \mathrm{d}_{\mathrm{int}}}{2} \tag{3.34}$$

$$\mathbf{V}_{\mathrm{barra}} = l \ e \mathbf{h} \tag{3.35}$$

$$V_{\text{tubo}} = \frac{\pi d_{\text{int}}}{4} h \tag{3.36}$$

As Tabelas 3.2, 3.3 e 3.4 ilustram os parâmetros experimentais adotados do ar de secagem e as informações sobre as amostras estudadas para cada teste de secagem.

	Ar		as amostras	nostras		
Т	UR	Mo	M _e	θ_{o} (°C)	$\theta_{f}(^{\circ}C)$	(min)
(°C)	(%)	(b. s)	(b. s)			
60	11,58	0,219199	0,005043	30,6	56,3	270
70	6,94	0,145547	0,012719	27,2	62,8	240
80	4,24	0,204283	0,008573	27,1	75,8	270
90	2,38	0,184355	0,006581	28,1	84	210
100	1,86	0,227252	0,002661	25,8	93,9	240

 Tabela 3.2- Parâmetros experimentais do ar e do cilindro vazado para cada teste de secagem

Tabela 3.3 – Parâmetros experimentais do ar e do cilindro vazado com sete furos - tambor para cada teste de secagem

	Ar	`	Parâmetros da	as amostras	amostras		
Т	UR	Mo	$\mathbf{M}_{\mathbf{e}}$	$\theta_{o}(^{\circ}C)$	$\theta_{f}(^{\circ}C)$	(min)	
(°C)	(%)	(b. s)	(b. s)				
60	12,22	0,228455	0,014035	25,7	54,3	390	
70	7,15	0,163005	0,006439	27	65,9	270	
80	3,92	0,224438	0,008852	27,5	72,8	270	
90	2,95	0,197280	0,006885	26	84,8	210	
100	2,185	0,232780	0,001659	25,6	89,94	330	

As Tabelas 3.2, 3.3 e 3.4 ilustram a relação entre a temperatura e a umidade relativa dentro da estufa. Espera-se que à medida que a temperatura aumente a umidade relativa diminui. Outro fator que pode ser observado é a relação entre a temperatura e o tempo de secagem.

	Ar		Parâmetros da	s amostras		t
Т	UR	Mo	Me	$\theta_{o}(^{\circ}C)$	$\theta_{f}(^{\circ}C)$	(min)
(°C)	(%)	(b. s)	(b. s)			
60	9,967	0,192830	0,013792	25,7	55,6	180
70	6,99	0,109763	0,015048	27,3	61,4	90
80	4,152	0,170522	0,003412	28,4	71,7	150
90	3,02	0,126369	0,01994	26,7	81,2	80
100	2,266	0,221096	0,018195	27,6	91,11	120

Tabela 3.4 – Parâmetros experimentais do ar e do cilindro vazado com barra transversal para cada teste de secagem

3.2 Metodologia teórica

3.2.1 Análise concentrada para transferência de massa

No caso de processos transientes envolvidos transporte de massa, Φ'' pode ser dada nas formas de condição convectiva, e/ou reação heterogênea (resultante do contato entre os reagentes e uma superfície), enquanto que para Φ''' pode ser dada por difusão com reações químicas homogêneas, por exemplo: as reações homogêneas envolvem a geração de espécies químicas no interior do sólido.

Assumindo condição convectiva para Φ'' , isto é, $\Phi'' = h_m(M - M_e)$, e admitindo $\Phi''' = \dot{M}$ constante, trocando Φ por M, na equação 2.3, tem-se o seguinte balanço de massa:

$$V\frac{dM}{dt} = -h_m S(M - M_e) + V\dot{M}$$
(3.37)

com as seguintes condições de contorno: $M = M_0$ em t = 0

Então separando as variáveis e reorganizando os termos, obtém-se:

$$\frac{\mathrm{dM}}{\left[-(\mathrm{M}-\mathrm{M}_{\mathrm{e}})+\frac{\mathrm{V}\dot{\mathrm{M}}}{\mathrm{h}_{\mathrm{m}}\mathrm{S}}\right]} = \frac{\mathrm{h}_{\mathrm{m}}\mathrm{S}}{\mathrm{V}}\mathrm{dt}$$
(3.38)

Se $M^{**} = M - M_e$, tem-se que $dM^{**} = dM$, então pode-se escrever:

$$\frac{\mathrm{d}M^{**}}{\left(-M^{**} + \frac{V\dot{M}}{h_{\mathrm{m}}S}\right)} = \left(\frac{h_{\mathrm{m}}S}{V}\right)\mathrm{dt}$$
(3.39)

Integrando-se desde a condição inicial, tem-se:

$$-\int_{M_0-M_e}^{M-M_e} \frac{dM^{**}}{\left(M^{**}-\frac{V\dot{M}}{h_m s}\right)} = \int_0^t \left(\frac{h_m s}{V}\right) dt$$
(3.40)

Desde que:

$$\int \frac{\mathrm{dx}}{\mathrm{a+bx}} = \frac{1}{\mathrm{b}} \ln(\mathrm{a+bx}) \tag{3.41}$$

então a integração da equação (3.40), dá como resultado:

$$\ln\left[M^{**} - \frac{V\dot{M}}{h_{\rm m}S}\right]\Big|_{M_0 - M_{\rm e}}^{M - M_{\rm e}} = -\frac{h_{\rm m}S}{V}t$$
(3.42)

que, após substituição dos limites de integração, assume a forma:

$$\ln\left[\frac{(M-M_e)-\frac{V\dot{M}}{h_m S}}{(M_0-M_e)-\frac{V\dot{M}}{h_m S}}\right] = -\frac{h_m S}{V}t$$
(3.43)

Aplicando a operação inversa na equação (3.43), obtém-se:

$$\frac{(M-M_e) - \frac{V\dot{M}}{h_m S}}{(M_0 - M_e) - \frac{V\dot{M}}{h_m S}} = Exp\left(-\frac{h_m S}{V}t\right)$$
(3.44)

que pode ser reescrita como segue:

$$\frac{\binom{M-M_{e}}{M_{0}-M_{e}} - \frac{V\dot{M}}{(M_{0}-M_{e})h_{m}S}}{\binom{M_{0}-M_{e}}{M_{0}-M_{e}} - \frac{\dot{V}\dot{M}}{(M_{0}-M_{e})h_{m}S}} = \exp\left(-\frac{h_{m}S}{V}t\right)$$
(3.45)

Definindo os seguintes parâmetros adimensionais:

$$S^* = \frac{SL_1}{V}$$
; $P^* = \frac{\dot{M}V}{h_m S(M_0 - M_e)}$; $Fom = t_m^* = \frac{Dt}{(L_1)^2}$; $Bim = \frac{h_m L_1}{D}$;
 $M^* = \frac{M - M_e}{M_0 - M_e}$

e substituindo na equação (3.45), obtêm-se:

$$\frac{M^* - P^*}{1 - P^*} = e^{-S^* \cdot \text{Bim .Fom}}$$
(3.46)

ou seja, a equação encontrada que define a transferência de massa, ou ainda:

$$M^{*} = P^{*} + (1 - P^{*}) Exp\left(-\frac{h_{m}S}{v}t\right)$$
(3.47)

3.2.2 Análise concentrada para transferência de calor e massa acoplada

Assumindo condição convectiva, evaporativa e aquecimento do vapor para Φ'' e considerando $\Phi'' = \dot{q}$ constante, tem-se o seguinte balanço de energia:

$$V\rho \frac{d\theta}{dt} = \frac{\left[h_{c}(\theta_{\infty} - \theta) + \frac{\rho_{s}V}{S}\frac{d\overline{M}}{dt}(h_{fg} + c_{v}(\theta_{\infty} - \theta))\right]S}{c_{p}} + \frac{\dot{q}V}{c_{p}}$$
(3.48)

com a seguinte condição inicial: $\theta = \theta_0 \text{ em } t = 0.$

O termo $\rho_s V \frac{dM}{dt}$ representa a quantidade de água evaporada por unidade de tempo.

Então, separando as variáveis, tem-se:

$$\frac{\rho V c_p d\theta}{h_c S(\theta_{\infty} - \theta) + \rho_s V \frac{d\overline{M}}{dt} (h_{fg} + c_v(\theta_{\infty} - \theta)) + \dot{q}V} = dt$$
(3.49)

ou ainda:

$$\frac{d\theta}{(\theta_{\infty} - \theta) + \frac{\rho_{s}V\frac{d\overline{M}}{dt}h_{fg}}{h_{c}S + \rho V\frac{d\overline{M}}{dt}c_{v}} + \frac{\dot{q}V}{h_{c}S + \rho_{s}V\frac{d\overline{M}}{dt}c_{v}}} = \left(\frac{h_{c}S + \rho_{s}V\frac{d\overline{M}}{dt}c_{v}}{\rho Vc_{p}}\right)dt \qquad (3.50)$$

Definindo: $T^{**}=\theta_{\infty}-\theta \quad ; \quad dT^{**}=-d\theta$

$$\frac{dT^{**}}{T^{**} + \frac{\rho_{s} v \frac{d\overline{M}}{dt} h_{fg}}{h_{c} S + \rho_{s} v \frac{d\overline{M}}{dt} c_{v}} + \frac{\dot{q} v}{h_{c} S + \rho_{s} v \frac{d\overline{M}}{dt} c_{v}}} = -\left(\frac{h_{c}S}{\rho^{V}c_{p}} + \frac{\rho_{s}}{\rho} \frac{d\overline{M}}{dt} \frac{c_{v}}{c_{p}}\right) dt$$
(3.51)

Integrando desde a condição inicial, tem-se como resultado:

$$\ln\left[T^{**} + \frac{\rho_{s}V\frac{d\overline{M}}{dt}h_{fg}}{\left(h_{c}S + \rho_{s}V\frac{d\overline{M}}{dt}c_{v}\right)} + \frac{\dot{q}V}{\left(h_{c}S + \rho_{s}V\frac{d\overline{M}}{dt}c_{v}\right)}\right]\right|_{T_{\infty}-T_{0}}^{T_{\infty}-T} = -\left(\frac{h_{c}S}{\rho Vc_{p}} + \frac{\rho_{s}}{\rho}\frac{d\overline{M}}{dt}\frac{c_{v}}{c_{p}}\right)t$$
(3.52)

dando como resultado, após substituição dos limites de integração,

$$\frac{(\theta_{\infty}-\theta)+\frac{\rho_{s}V_{dt}^{d\bar{M}}h_{fg}}{(h_{c}S+\rho_{s}V_{dt}^{d\bar{M}}c_{v})}+\frac{\dot{q}V}{(h_{c}S+\rho_{s}V_{dt}^{d\bar{M}}c_{v})}}{(\theta_{\infty}-\theta_{0})+\frac{\rho_{s}V_{dt}^{d\bar{M}}h_{fg}}{(h_{c}S+\rho_{s}V_{dt}^{d\bar{M}}c_{v})}+\frac{\dot{q}V}{(h_{c}S+\rho_{s}V_{dt}^{d\bar{M}}c_{v})}} = Exp^{-\left[\left(\frac{h_{c}S}{\rho_{Vcp}}+\frac{\rho_{s}d\bar{M}c_{v}}{\rho_{dt}c_{p}}\right)t\right]}$$
(3.53)

Dividindo toda a equação por $\theta_{\infty} - \theta_0$, obtém-se:

$$\frac{\frac{\theta_{\infty} - \theta}{\theta_{\infty} - \theta_{0}} + \frac{\rho_{s}V\frac{d\overline{M}}{dt}h_{fg}}{(\theta_{\infty} - \theta_{0})\left(h_{c}S + \rho_{s}V\frac{d\overline{M}}{dt}c_{v}\right)} + \frac{\dot{q}V}{(\theta_{\infty} - \theta_{0})\left(h_{c}S + \rho_{s}V\frac{d\overline{M}}{dt}c_{v}\right)} = \exp^{-\left[\left(\frac{h_{c}S}{\rho Vc_{p}} + \frac{\rho_{s}d\overline{M}c_{v}}{\rho dt c_{p}}\right)t\right]} (3.54)$$

$$1 + \frac{\rho_{s}V\frac{d\overline{M}}{dt}h_{fg}}{(\theta_{\infty} - \theta_{0})\left(h_{c}S + \rho_{s}V\frac{d\overline{M}}{dt}c_{v}\right)} + \frac{\dot{q}V}{(\theta_{\infty} - \theta_{0})\left(h_{c}S + \rho_{s}V\frac{d\overline{M}}{dt}c_{v}\right)}$$

Definindo os seguintes parâmetros adimensionais:

$$Fo_{c} = t_{c}^{*} = \frac{\alpha t}{L_{1}^{2}}; \quad \alpha = \frac{K}{\rho c_{p}}; \quad B_{i_{c}} = \frac{h_{c}L_{1}}{K}; \quad T^{*} = \frac{\theta_{\infty} - \theta}{\theta_{\infty} - \theta_{0}}; \quad P^{**} = \frac{\frac{q}{\rho_{s}}}{c_{p}(\theta_{\infty} - \theta_{0})\left(\frac{h_{c}s}{\rho_{s}Vc_{p}} + \frac{d\overline{M}c_{v}}{dt c_{p}}\right)};$$
$$Q^{**} = \frac{\frac{d\overline{M}}{dt}h_{fg}}{c_{p}(\theta_{\infty} - \theta_{0})\left(\frac{h_{c}s}{\rho_{s}Vc_{p}} + \frac{d\overline{M}c_{v}}{dt c_{p}}\right)}$$

e substituindo na equação (3.54), obtém-se a equação que define a transferência de calor e massa acoplada:

$$T^{*} = -(P^{**} + Q^{**}) + (1 + P^{**} + Q^{**})Exp^{-\left(S^{*} \cdot B_{i_{c}} \cdot Fo_{c} + \frac{d\bar{M}}{dt}\frac{\rho_{s}}{\rho}\frac{c_{v}}{c_{p}}t\right)}$$
(3.55)

observe que, se $\frac{dM}{dt} = 0$, (Q^{**} = 0), os fenômenos de transferência de calor e massa ocorrem de forma independente (desacoplada). Assim, a equação (3.55) assume a forma:

$$T^* = -P^{**} + (1 + P^{**}) Exp^{-(S^* \cdot B_{i_c} \cdot Fo_c)}$$
(3.56)

que é similar a equação (3.47) para transferência de massa.

Gerada pela rotação da porção do gráfico das funções f(y) e g(y) continuas e não negativas entre as retas $y = y_1 e y = y_2$ em torno do eixo y (Figura 3.24) (Munem e Foulis, 1978).

3.2.3 Equações auxiliares aplicadas a corpos vazados

Nesta pesquisa considerou-se um sólido de revolução

Figura 3.24 – a) Região Plana, b) Revolução da região plana e c) Sólido de revolução

3.2.3.1 Volume do sólido de revolução

Para encontrar o volume dos corpos cerâmicos estudados nessa pesquisa utilizouse o método dos anéis circulares em sólidos de revolução (Munem e Foulis, 1978). Este método consiste em supor que f e g são funções continuas não negativas no intervalo $[y_1, y_2]$ tais que f(y) \ge g(y) para todos os valores de y em $[y_1, y_2]$, e seja R a região planar limitada pelos gráficos de f e g entre y = y₁ e y = y₂ (Figura 3.24a). Seja S o sólido gerado pela revolução de R em torno do eixo x (Figuras 3.24b e 3.24c)

Desta forma, considere uma porção infinitesimal dV do volume V de área rachurada constituída de um anel circular de espessura infinitesimal dy (Figura 3.24c), perpendicular ao eixo de revolução e centrado no ponto de coordenada y. A base desse anel circular é a região entre os dois círculos concêntricos de raio f(y) e g(y), logo a área desta base é π f (y)² – π g (y)² unidades quadrada. De modo que:

$$V = \int_{y1}^{y2} \pi [f(y)^2 - g(y)^2] dy$$
(3.57)

Nesta pesquisa adotou-se:

$$f(y) = \left\{ a^{m} \left[1 - \left(\frac{y}{b}\right)^{2} \right] \right\}^{\frac{1}{m}}$$
(3.58)

$$g(y) = x_1 = a' = \text{constante}$$
(3.59)

onde $x_1 = a'$, $x_2 = a$, $y_1 = 0$, $y_2 = b'$, $y_3 = b e m$ são constantes que definem a forma do corpo.

3.2.3.2 Área superficial do sólido de revolução

A área superficial do sólido ilustrado na Figura 3.24 pode ser determinada por:

$$S = \int_{y_1}^{y_2} 2\pi f(y) \sqrt{1 + [f(y)']^2} \, dy + \int_{y_1}^{y_2} 2\pi g(y) \sqrt{1 + [g(y)']^2} \, dy + \pi \{ [[a^m(1 - \frac{b'}{b})^2]^{1/m}]^2 - (a')^2 \} + \pi [a^2 - (a')^2]$$
(3.60)

3.2.4 Procedimento computacional

Para realização da pesquisa foi desenvolvido um código no programa computacional Mathematica® para a realização dos cálculos e utilizou-se o programa Computacional Grapher® para obterem-se os gráficos e demonstrar o comportamento apresentado pelas amostras em cada condição submetida.

3.2.5 Casos simulados

3.2.5.1 Aplicação a sólidos com forma arbitrária

Para validação da solução analítica do modelo proposto, comparou-se os resultados do teor de umidade obtidos para um esferoide prolato com dimensões b = 2 cm e a = 1 cm, sujeito a secagem com os seguintes parâmetros: $D = 1,22 \times 10^{-9} \text{m}^2/\text{s}$ e hm = 3,521836 x 10^{-9} m/s , que comparando a um Bim = 0,05, com valores

reportados na literatura (Lima, 1999). A escolha do esferoide se deu pela disponibilidade na literatura e apresentar um número de Biot baixo e compatível com o pesquisado.

Figura 3.25 – Ilustração de um corte transversal num esferoide prolato.

A metodologia empregada para geração dos resultados foi a da variação dos parâmetros P^* (parâmetro adimensional que relaciona vários fenômenos e parâmetros do produto; dentre eles: a geração de calor por unidade de área, a área, o volume, o calor específico), Bi_m (é uma relação entre o coeficiente de transferência de massa na superfície do material, o comprimento característico e o coeficiente de difusão de massa no interior do material) e Q^* (parâmetro adimensional que relaciona alguns fenômenos e parâmetros do produto, dentre eles: o calor latente de vaporização, a área, o volume), um a um, mantendo-se constantes os demais parâmetros. A Tabela 3.5 contém os parâmetros dos casos estudados nesta pesquisa, enquanto que a Tabela 3.6 ilustra as propriedades do material cerâmico argiloso e do ar de secagem.

_	Labela 5.5 - Valores dos parametros geometricos do sondo de revolução						
	a (m)	b (m)	m	b'(m)	a'(m)	S (área) m ²	V (volume) m ³
	0,05	0,2	0,5	0,100	0,005	0,0405890	0,000567978

 Tabela 3.5 - Valores dos parâmetros geométricos do sólido de revolução

Fonte: Lima (2014).

Parâmetros	Material		
	Sólido	Ar	
Densidade (kg/m ³)	640 (úmido)	-	
Densidade (kg/m ³)	550 (seco)	-	
Calor específico (J/kgK)	1600 (úmido)	-	
Calor latente de vaporização da água no	2333x10 ³	-	
solido (J/kgK)			
Temperatura final (°C)	70	70	
Temperatura inicial (°C)	25	70	
Teor de umidade inicial (kg _{agua} /kg _{produto seco})	0,2	-	
Teor de umidade final (kg _{agua} /kg _{produto seco})	0,01	-	
Coeficiente de transferência de massa	1,8	x10 ⁻⁹	
convectivo (m/s)			
Coeficiente de transferência de calor		1,5	
convectivo (W/m ² K)			
Calor específico do vapor (J/kgK)	1	970	

Tabela 3.6 - Parâmetros dos materiais usados nas simulações

Fonte: Lima (2014).

3.3 Estimativa dos coeficientes de transporte

Para verificar a aplicação do modelo matemático a materiais cerâmicos utilizouse os dados obtidos do teor de umidade ao longo do processo de secagem, visando verificar as taxas de perda de umidade. Sob o aspecto físico, esta metodologia é extremamente satisfatória, em virtude de possibilitar a descrição do fenômeno com grande precisão. É estatisticamente mais adequado realizar o ajuste de parâmetros a partir de uma distribuição uniforme de pontos ao longo do processo. Desta forma, propõe-se um ajuste destes dados experimentais a Equação (3.46) e a Equação (3.55).

A estimativa do parâmetro da Equação foi realizada utilizando o método numérico de Hooke Jeeves e quasi-Newton empregando o Software Statistica®, com critério de convergência de 0,001.

A equação utilizada no programa computacional, para ajustar os coeficientes de transferência de massa e calor da argila, além dos desvios entre os valores experimentais e calculados e a variância.

CAPÍTULO 4

RESULTADOS E DISCUSSÕES

4.1 Resultados experimentais

4.1.1 Caracterização da matéria prima

A seguir apresentar-se-á os resultados obtidos e as discussões dos ensaios de caracterização química, mineralógica, granulométrica e térmica/gravimétrica da massa cerâmica utilizada nesta pesquisa.

4.1.1.1 Análise química

De acordo com a Tabela 4.1 fica evidente a composição química da massa cerâmica utilizada na confecção das amostras estudadas oriundas da indústria Cerâmica Cincera.

Observando os resultados, verifica-se que a argila analisada apresenta alto teor de sílica (SiO₂) e de alumina (Al₂O₃) equivalente à 57,533% e 23,426%, respectivamente. Tais percentuais são típicos de argila caulinítica influencia no grau de impureza da argila. Devido a essa grande quantidade de sílica presente na argila, pode-se afirmar que a matéria-prima tem grande quantidade de material não plástico, elevando a sua porosidade, fatores que influencia diretamente na diminuição do tempo

de secagem e na retração volumétrica da amostra. A sílica livre numa argila causa redução, não somente da plasticidade, como também leva a uma baixa retração linear.

Substância	Percentagem
SiO ₂	57,533%
Al ₂ O ₃	23,426%
Fe ₂ O ₃	8,887%
K ₂ O	3,211%
MgO	2,653%
CaO	2,327%
TiO ₂	1,126%
BaO	0,338%
SO ₃	0,222%
MnO	0,136%
P ₂ O ₅	0,70%
SrO	0,40%
Rb ₂ O	0,16%
ZnO	0,014%
С	0,000%

Tabela 4.1 – Composição química da matéria prima utilizada na pesquisa

Quanto a refratariedade, o efeito da sílica livre é variável. Como a argilas contêm alta porcentagem dos agentes fundentes (Fe₂O₃, CaO, MgO e K₂O) e também de sílica livre, têm seu ponto de fusão mais alto em comparação às argilas de mesma composição química, porém tendo sílica combinada (Souza Santos, 1992).

No entanto, uma outra característica que pode ser observada é o alto teor de ferro (Fe₂O₃), superior a 8% caracterizando um fator típico de cerâmica vermelha. A presença da hematita, magnetita, limonita, lepidocrocita, geotita e pirita são os minerais de ferro mais frequentemente encontrados nas argilas e seus efeitos provocam alteração da cor da argila queimada e na redução da refratariedade (Souza Santos, 1992).

Os óxidos de cálcio e de magnésio ou óxidos alcalinos terrosos (MgO e CaO) podem atuar como fundentes durante a etapa de queima e tende a baixar a refratariedade

das argilas. São geralmente provenientes de calcita, dolomita, gipsita e são raramente encontrados nas argilas cauliníticas do tipo refratário. Esses óxidos reagem com fases amorfas e formam fases cristalinas que são mais estáveis frente à ação de umidade (Souza Santos, 1992, Gomes, 1986; Silva, 2009; Almeida, 2009).

4.1.1.2 Análise mineralógica

O difratograma de raios X (Figura 4.1), indica que a argila é constituída das seguintes fases mineralógica: caulinita (C), quartzo (Q) e feldspato (F). Além dos argilominerais, uma argila geralmente pode conter como impurezas: quartzo, feldspato, micas, óxidos e hidróxidos de ferro e de alumínio, matéria orgânica e compostos químicos não cristalinos ou amorfos, sendo de grande importância conhecer as porcentagens respectivas. Para argilas de composição muito complexa, os métodos químicos de análise racional não oferecem resultados satisfatórios.

Figura 4.1 – Difratograma de raios X da amostra de argila usada nos experimentos.

Porém, se a argila contiver essencialmente caulinita (geralmente chamada substância argilosa), quartzo e feldpato, então a análise racional poderá ser aplicada com resultados razoáveis. O processamento da análise racional consiste em tratar a argila com ácidos e hidróxidos alcalinos para separar a "substância argilosa" do quartzo e feldspato e, em seguida, dosando o teor de alumínio, calcular o teor de feldspato (Souza Santos, 1992). Quando misturada a água, a caulinita é responsável pelo desenvolvimento da plasticidade; o quartzo é o responsável pelo aumento de
porosidade, diminuição da retração volumétrica, teor de umidade e plasticidade; e o feldspato é responsável pela diminuição do ponto de fusão (Almeida, 2009).

4.1.1.3 Análise granulométrica

Na Tabela 4.2 encontram-se os valores da distribuição de tamanho de partículas da massa cerâmica estudada.

Amostra	Fração Argila	Silte	Areia	Diâmetro
	(< 2 µm)	$(2 \le X \le 50 \ \mu m)$	$(50 \le X \le 100 \ \mu m)$	médio (µm)
Argila	18,4 %	80,09 %	1,51 %	13,36

Tabela 4.2 – Distribuição percentual de tamanho de partículas da matéria-prima estudada

Analisando esses valores, verifica-se que a massa cerâmica estudada apresenta em sua composição, elevado teor de silte e areia (aproximadamente 82 %), e fração de argila de 18,4% e diâmetro médio das partículas de 13,36 µm.

Figura 4.2 – Curva de distribuição de tamanho da partícula da argila

A Figura 4.2 apresenta a curva de distribuição de tamanho da partícula da argila. Observa-se, através da distribuição granulométrica, uma grande concentração de partículas em torno dos $2 - 100 \mu m$. O gráfico apresenta um tamanho médio de 13,36 μ m e D10, D50 e D90 de 1,06, 9,20 e 33,60 μ m, respectivamente, representando os diâmetros das partículas com os devidos percentuais.

4.1.1.4 Análises térmica/gravimétrica

A Figura 4.3 apresenta as curvas termodiferencial e gravimétrica, ou seja, a distribuição de temperatura e a perda de umidade da argila pesquisada. Analisando a curva da análise térmica diferencial (ATD), verifica-se um pico endotérmico à 120 °C, caracterizando a perda de água livre; uma banda exotérmica entre 200 e 500 °C, caracterizando a perda de matéria orgânica; um pico endotérmico à 547 °C caracterizando a presença de hidroxila e um pequeno pico entre 900°C e 1000°C devido a nucleação da mulita.

Em relação à curva térmica gravimétrica (ATG), verifica-se uma perda de massa em torno de 2%, correspondente a água livre, à uma temperatura entre 0 e 170°C; cerca de 4% de matéria orgânica, à uma temperatura entre 170 e 510°C, perda de 2% de hidroxila, aproximadamente, à uma temperatura acima de 510°C.

Figura 4.3 - Curva termogravimétrica (ATG) e termodiferencial (ADT) da massa cerâmica

4.1.2 Secagem das amostras em estufa

4.1.2.1 Cilindro vazado

Para analisar os efeitos da cinética de secagem foram feitos experimentos com diferentes temperaturas do ar de secagem, observando a perda do teor de umidade e aquecimento das amostras em função do tempo de secagem e volume. As Figuras 4.4 a 4.8 ilustram o comportamento do teor de umidade e temperatura, sendo apenas o teor de umidade apresentado na forma adimensional ao longo do processo de secagem.

 \succ Teor de umidade

Figura 4.4 – Variação do teor de umidade do cilindro vazado nas diferentes temperaturas (60°C, 70°C e 80°)em função do tempo de secagem.

Figura 4.5 – Variação do teor de umidade do cilindro vazado nas diferentes temperaturas (90°C e 100°C) em função do tempo de secagem.

Analisando os resultados, verifica-se que a perda de umidade ocorre de forma mais lenta comparada ao seu aquecimento. Diretamente influenciada pela temperatura, a taxa de variação de umidade mantem uma relação quase que diretamente proporcional com a variação de temperatura e inversamente proporcional com o tempo, ou seja, quanto maior for a temperatura maior será a perda de umidade e menor será o tempo total da secagem até as amostras atingirem a condição de umidade de equilíbrio.

A forma geométrica da amostra também influencia na cinética de secagem. Sendo ela vazada, o ar de secagem pode ter uma melhor circulação em seu interior e a migração de água do interior para a superfície será mais rápida.

Analisando os resultados, pode-se ver que a temperatura do ar de secagem tem uma forte influência na taxa de variação de umidade. No entanto, as temperaturas muito elevadas podem ter efeitos negativos na secagem. Como a temperatura na parede da amostra é maior do que a temperatura no interior deste pode-se gerar elevadas tensões no interior da amostra, dando espaço a aparição de trincas, rachaduras e deformações. Esses defeitos, gerados pelos gradientes de umidade e temperatura provocam tensões trativas e compressivas, não aceitáveis, que reduzem drasticamente a qualidade do produto no final do processo, se a secagem não for uniforme.

➢ Temperatura

Figura 4.6 – Variação da temperatura superficial do cilindro vazado nas diferentes temperaturas (60°C, 70°C e 80°C) em função do tempo de secagem.

Figura 4.7 – Variação da temperatura superficial do cilindro vazado nas diferentes temperaturas (90°C e 100°C) em função do tempo de secagem.

Figura 4.8 – Variação do teor de umidade e do aquecimento em todas as temperaturas pesquisadas acoplados para o cilindro vazado.

As Figuras 4.9 e 4.10 ilustram a retração volumétrica sofrida pelas amostras em relação ao seu volume inicial, por conta da perda de umidade e o aquecimento no processo de secagem. Pode-se observar a não uniformidade na retração volumétrica, por conta do processo de dilatação e contração nas peças.

Variação volumétrica

Figura 4.9 – Variação do volume do cilindro vazado durante a secagem para diferentes temperaturas (60°C, 70° e 80°C) em função do tempo de secagem.

As Tabelas 4.3 e 4.4 apresentam as dimensões dos parâmetros das amostras antes da secagem para $t_0 = 0$ s e após a secagem em t_f .

	Ar	Parâmetros									
Т	UR	D _{int.}	D _{ext.}	h	V	S	M ₀				
(°C)	(%)	(mm)	(mm)	(mm)	(mm ³)	(mm ²)	(kg/kg, b.s.)				
60	11,58	44,36	57,24	50,33	51701,86	830832,25	0,219199				
70	6,94	42,83	56,51	47,57	50747,31	753133,42	0,145547				
80	4,24	43,84	57,86	49,13	54990,21	815189,58	0,204283				
90	2,38	44,08	57,28	50,59	53134,29	831953,68	0,184355				
100	1,86	43,73	57,13	51,08	54193,14	832330,77	0,227253				

Tabela 4.3– Parâmetros experimentais do ar e do cilindro vazado antes da secagem em $t_0 = 0$ s.

Tabela 4.4 – Parâmetros experimentais do ar e do cilindro vazado após a secagem em t_f.

1	Ar		Parâmetros					
Т	UR	D _{int.}	D _{ext} .	h	V	S	M _e	(min)
(°C)	(%)	(mm)	(mm)	(mm)	(mm ³)	(mm ²)	(kg/kg, b.s.)	
60	11,58	43,9	55,65	47,9	43982,94	757496,1	0,005043	270
70	6,94	42,25	55,26	46,47	46277,38	708038,88	0,012719	240
80	4,24	42	56,06	49,09	53130,01	758499,73	0,008573	270
90	2,38	42,51	55,23	47,35	46211,39	724153,16	0,006581	210
100	1,86	44,03	54,29	48,78	35991,06	749975,4	0,002662	240

Nas Tabelas A1–A2, do Apêndice, encontram-se todos os dados obtidos experimentalmente. A diferença entre a temperatura ajustada na estufa e a temperatura final das amostras é devido a sua posição dentro da estufa.

As Figuras 4.11 a 4.15 apresentam algumas imagens das amostras durante o processo de secagem. A imagem (a) apresenta o produto no inicio do processo de secagem, ou seja, em t = 0 s; a imagem (b) apresenta uma etapa intermediária do processo de secagem do produto próxima à fase final; e a imagem (c) apresenta o final do processo de secagem em t_f.

(a). t_0 (b).t = 30min (c). t_f Figura 4.11 – Imagem do cilindro vazado no processo de secagem a 60°C.

(a). t_0 (b).t = 30min (c). t_f Figura 4.12 – Imagem do cilindro vazado no processo de secagem a 70°C.

(a).t₀ (b).t = 30min (c).t_f **Figura 4.13** – Imagem do cilindro vazado no processo de secagem a 80°C.

(a). t_0 (b).t = 30min (c). t_f Figura 4.14 – Imagem do cilindro vazado no processo de secagem a 90°C.

(a). t_0 (b).t = 30min (c). t_f Figura 4.15 – Imagem do cilindro vazado no processo de secagem a 100°C.

Analisando e comparando as Figuras 4.11 a 4.15, percebe-se que quando a secagem é feita de forma muito rápida a retirada de água do produto fica sem controle o que pode causar danos estruturais como trincas, deformações, empenamentos e consequentemente uma grande perda do produto. As Figuras 4.15b(30min) e $4.15(t_f)$ exemplifica um caso de secagem mais rápida e apresenta trincas (pequenas fissuras causadas por secagem rápida que geralmente, inicia-se nas bordas e propagam-se até o centro da peça, sendo mais aberta na borda).

4.1.2.2 Cilindro vazado com sete furos - tambor

Visando analisar os efeitos da cinética de secagem foram feitos experimentos com diferentes temperaturas do ar de secagem, observando a perda do teor de umidade e aquecimento das amostras em função do tempo de secagem, onde as Figuras 4.16 a 4.20 ilustram o comportamento do teor de umidade e da temperatura, sendo o teor de umidade apresentado na forma adimensional ao longo do processo de secagem.

Verificando os resultados, percebe-se que a perda de umidade ocorre de forma mais lenta quando comparada ao seu aquecimento. Mantendo uma relação quase que diretamente proporcional com a taxa de variação de umidade e inversamente proporcional com o tempo, a temperatura influencia diretamente a taxa de variação de umidade, ou seja, quanto maior for a temperatura maior será a perda de umidade e menor será o tempo total da secagem até as amostras atingirem a condição de umidade de equilíbrio.

➢ Teor de umidade

Figura 4.16 – Variação do teor de umidade do cilindro vazado com sete furos (tambor) nas diferentes temperaturas (60°C, 70°C e 80°C) em função do tempo de secagem.

Figura 4.17 – Variação do teor de umidade do cilindro vazado com sete furos (tambor) nas diferentes temperaturas (90°C e 100°C) em função do tempo de secagem.

Figura 4.18 – Variação da temperatura superficial do cilindro vazado com sete furos (tambor) nas diferentes temperaturas (60°C e 70°C) em função do tempo de secagem.

Figura 4.19 – Variação da temperatura superficial do cilindro vazado com sete furos (tambor) nas diferentes temperaturas (80°C, 90°C e 100°C) em função do tempo de secagem.

Observando os resultados, percebe-se que a forma das amostras também influencia na cinética de secagem. Sendo elas vazadas, facilita a circulação do ar de secagem em seu interior e a migração de água do interior para a superfície será mais rápida. No entanto, o tempo de secagem foi mais extenso quando comparado aos cilindros vazados, pois este tipo de amostra apresenta um maior numero de massa presente na composição da amostra. Porém, as temperaturas muito elevadas apresentam efeitos negativos na secagem.

Figura 4.20 – Variação do teor de umidade e do aquecimento em todas as temperaturas pesquisadas acoplados para o cilindro vazado com sete furos (tambor).

As Figuras 4.21 e 4.22 ilustram a retração volumétrica sofrida pelas amostras em relação ao seu volume inicial, por conta da perda de umidade e o aquecimento no processo de secagem. Pode-se observar a não uniformidade na retração volumétrica, por conta do processo de dilatação e contração nas peças.

Variação volumétrica

Figura 4.21 – Variação do volume do cilindro vazado com sete furos (tambor) durante a secagem para diferentes temperaturas (60°C e 70°C) em função do tempo de secagem.

As Tabelas 4.5 e 4.6 apresentam as dimensões dos parâmetros das amostras antes da secagem para $t_0 = 0$ s e após a secagem em t_f .

Figura 4.22 – Variação do volume do cilindro vazado com sete furos (tambor) durante a secagem para diferentes temperaturas (80°C, 90°C e 100°C) em função do tempo de secagem.

Nas Tabelas B1, B2 e B3, do Apêndice, encontram-se todos os dados obtidos experimentalmente. A diferença entre a temperatura ajustada na estufa e a temperatura final das amostras é devido a sua posição dentro da estufa.

1	Ar	Parâmetros						
Т	UR	D _{int.}	D _{ext.}	h	V	S	M ₀	
(°C)	(%)	(mm)	(mm)	(mm)	(mm ³)	(mm ²)	(kg/kg, b.s.)	
60	12,22	15,03	57,29	47,58	63526,81	26948,01	0,228455	
70	7,15	15,46	57,43	47,79	60966,76	750797,11	0,163005	
80	3,92	15,47	57,36	49,05	62181,41	28048,35	0,224438	
90	2,95	14,73	57,83	46,48	66606,60	714668,55	0,197280	
100	2,18	13,58	57,93	46,73	75749,41	25690,56	0,23278	

Tabela 4.5 – Parâmetros experimentais do ar e do cilindro vazado com sete furos - tambor antes da secagem para $t_0 = 0$ s.

Tabela 4.6 – Parâmetros experimentais do ar e do cilindro vazado com sete furos -
tambor após a secagem para t_f .

	Ar	Parâmetros						t
Т	UR	D _{int.}	D _{ext} .	h	V	S	M _e	(min)
(°C)	(%)	(mm)	(mm)	(mm)	(mm ³)	(mm ²)	(kg/kg, b.s.)	
60	12,22	14,93	54,03	45,88	48942,11	24973,26	0,014035	390
70	7,15	14,65	55,67	44,86	56231,17	652698,74	0,006439	270
80	3,92	14,87	54,46	46,94	52253,02	25595,31	0,008852	270
90	2,95	13,88	55,69	44,21	60830,49	622307,04	0,006885	210
100	2,18	13,00	55,84	44,11	67005,64	23376,25	0,001659	330

Observando e comparando as Figuras 4.23 a 4.27, percebe-se como a temperatura do ar de secagem influencia diretamente a variação de umidade. Quando a secagem é feita de forma muito rápida a retirada de água do produto fica sem controle, o que pode causar danos estruturais como trincas, deformações, empenamentos e consequentemente uma perda do produto como observados nas Figura 4.26 (t = 30min e t_f) e 4.27 (t_f).

 $(a).t_0 (b).t = 30min (c).t_f$ Figura 4.23 – Imagem do cilindro vazado com sete furos (tambor) no processo de secagem a 60°C.

(a). t_0 (b).t = 30min (c). t_f **Figura 4.24** – Imagem do cilindro vazado com sete furos (tambor) no processo de secagem a 70°C.

(a). t_0 (b).t = 30min(c). t_f Figura 4.25 – Imagem do cilindro vazado com sete furos (tambor) no processo de
secagem a 80° C.

 $\label{eq:constraint} \begin{array}{ll} (a).t_0 & (b).t = 30min & (c).t_f \\ \mbox{Figura 4.26}-\mbox{Imagem do cilindro vazado com sete furos (tambor) no processo de secagem a 90°C.} \end{array}$

 $(a).t_0 (b).t = 30min (c).t_f$ Figura 4.27 – Imagem do cilindro vazado com sete furos (tambor) no processo de secagem a 100°C

4.1.2.3 Cilindro vazado com barra transversal

A fim de observar a perda do teor de umidade e aquecimento das amostras em função do tempo de secagem e analisar os efeitos da cinética de secagem foram feitos experimentos com diferentes temperaturas do ar de secagem. Os resultados são apresentados nas Figuras 4.28 a 4.32 que ilustram o comportamento da temperatura e do teor de umidade, com o teor de umidade sendo apresentado na forma adimensional ao longo do processo de secagem.

➢ Teor de umidade

Figura 4.29 – Variação do teor de umidade do cilindro vazado com barra transversal nas diferentes temperaturas (90°C e 100°C) em função do tempo de secagem.

Analisando os resultados, percebe-se que a influencia da temperatura sobre a taxa de variação de umidade mantem uma relação diretamente proporcional, ou seja, a variação de umidade é diretamente proporcional com a variação de temperatura e inversamente proporcional com o tempo até as amostras atingirem a condição de umidade de equilíbrio durante o processo de secagem.

> Temperatura

Figura 4.30 – Variação da temperatura superficial do cilindro vazado com barra transversal nas diferentes temperaturas (60°C e 70°C) em função do tempo de secagem.

Figura 4.31 – Variação da temperatura superficial do cilindro vazado com barra transversal nas diferentes temperaturas (80°C, 90°C e 100°C) em função do tempo de secagem.

Analisando os resultados, pode-se ver que a temperatura do ar de secagem tem uma forte influência na taxa de variação de umidade. No entanto, por apresentar uma menor relação área/volume a perda de umidade ocorreu num menor intervalo de tempo e as temperaturas elevadas não apresentaram tantos efeitos negativos na secagem e não causou tensões no interior da amostra, dando espaço a aparição de trincas, rachaduras e deformações, ou seja, a forma da amostra influenciou na cinética de secagem e favoreceu a migração de água do interior para a superfície de maneira mais rápida.

Figura 4.32 – Variação do teor de umidade e do aquecimento em todas as temperaturas pesquisadas acoplados para o cilindro vazado com barra transversal.

As Figura 4.33 e 4.34 ilustram a retração volumétrica sofrida pelas amostras em relação ao seu volume inicial, por conta da perda de umidade e o aquecimento no processo de secagem. Pode-se observar uma maior uniformidade na retração volumétrica, por conta do processo de dilatação e contração nas peças. Por desconsiderar as modificações apresentadas na barra transversal por ser muito frágil observa-se uma maior quantidade de picos nos gráficos.

Variação volumétrica

Figura 4.33 – Variação do volume do cilindro vazado com barra transversal durante a secagem para diferentes temperaturas (60°C e 70°C) em função do tempo de secagem.

Figura 4.34 – Variação do volume do cilindro vazado com barra transversal durante a secagem para diferentes temperaturas (80°C, 90°C e 100°C) em função do tempo de secagem.

As Tabelas 4.7 e 4.8 apresentam as dimensões dos parâmetros das amostras antes da secagem para $t_0 = 0$ s e após a secagem em t_f .

Nas Tabelas C1, C2 e C3, do Apêndice, encontram-se todos os dados obtidos experimentalmente. A diferença entre a temperatura ajustada na estufa e a temperatura final das amostras é devido a sua posição dentro da estufa.

1	Ar		Parâmetros							
Т	UR	D _{int.}	D _{ext} .	h	V	S	M ₀			
(°C)	(%)	(mm)	(mm)	(mm)	(mm ³)	(mm ²)	(kg/kg, b.s.)			
60	9,96	22,75	29,19	48,98	16097,63	37390,92	0,19283			
70	6,99	23,14	27,26	46,64	10749,93	35415,43	0,109763			
80	4,15	21,74	28,46	49,3	16133,85	37266,26	0,170522			
90	3,02	23,59	27,17	47	9952,46	35784,22	0,126369			
100	2,26	22,75	28,43	49,25	14493,34	37479,51	0,221096			

Tabela 4.7 – Parâmetros experimentais do ar e do cilindro vazado com barra transversal
antes da secagem em $t_0 = 0$ s.

Tabela 4.8 – Parâmetros experimentais do ar e do cilindro vazado com barra transversal
após a secagem em t_f .

A	\r	Parâmetros						
Т	UR	D _{int.}	D _{ext} .	h	V	S	M _e	(min)
(°C)	(%)	(mm)	(mm)	(mm)	(mm ³)	(mm ²)	(kg/kg, b.s.)	
60	9,96	22,98	27,34	47,7	11406,64	36193,08	0,013792	180
70	6,99	22,93	26,87	45,99	10152,48	34815,90	0,015048	90
80	4,15	20,71	27,24	46,59	14188,04	34792,62	0,003412	150
90	3,02	23,26	26,76	46,18	9482,86	35022,12	0,012994	80
100	2,26	23,24	27,52	46,51	11087,39	35378,59	0,018195	120

Analisando e comparando as Figuras 4.35 e 4.39, percebe-se que por apresentar uma menor relação área/volume os cilindros vazados com barra transversal apresentaram um menor índice de danos estruturais (trincas, deformações e empenamentos) mesmo quando a secagem foi feita de forma muito rápida com altas temperaturas. Situação vista na Figura 4.39 (t = 30 min e t_f).

(a). t_0 (b).t = 30min (c). t_f **Figura 4.35** – Imagem do cilindro vazado com barra transversal no processo de secagem a 60°C.

(a). t_0 (b).t = 30min (c). t_f **Figura 4.36** – Imagem do cilindro vazado com barra transversal no processo de secagem a 70°C.

 $\label{eq:constraint} \begin{array}{ll} (a).t_0 & (b).t = 30 min & (c).t_f \\ \mbox{Figura 4.37}-\mbox{Imagem do cilindro vazado com barra transversal no processo de secagem a $80°C.} \end{array}$

 $(a).t_0 (b).t = 30min (c).t_f$ Figura 4.38 – Imagem do cilindro vazado com barra transversal no processo de secagem a 90°C.

Figura 4.39 – Imagem do cilindro vazado com barra transversal no processo de secagem a 100°C.

De modo geral, nas Figuras 4.35 e 4.39 – observa-se os valores da temperatura superficial das amostras em função do tempo de secagem. Verificando os valores do tempo e temperatura de secagem, percebe-se que as temperaturas das amostras são influenciadas pela temperatura do ar dentro da estufa, principalmente nos instantes iniciais do processo de secagem. Tal fenômeno juntamente, com uma umidade relativa baixa faz com que a temperatura do produto aumente de forma significativa no início do processo, atingindo, de forma rápida, uma temperatura de equilíbrio próxima a de bulbo seco do ar de secagem, estabilizando-se em seguida. No entanto, percebe-se que a temperatura sofre um decréscimo nas fases finais do processo de secagem, chegando a oscilar bastante, enquanto a umidade se estabiliza.

Analisando as amostras, durante o processo, percebe-se que o produto que apresenta menor teor de umidade inicial, e maiores relações área/volume, tem uma secagem mais rápida. O aumento da temperatura e a diminuição da umidade relativa do

ar de secagem aumenta a taxa de secagem e a amostra alcança mais depressa a temperatura e sua umidade de equilíbrio. Tal situação pode causar danos ao produto final, interferindo na sua qualidade comercial. A elevação dos gradientes térmicos ao longo do produto pode causar uma secagem não uniforme, grandes tensões térmica, hídrica e mecânica, em alguns casos ocasionando rachaduras, fissuras, deformação no sólido, comprometendo sua qualidade no fim do processo de secagem. Uma secagem prévia, controlada, é de grande importância. Se a secagem não for uniforme, aparecerão distorções nas peças, mas, se for muito lenta, a produção tornar-se-á inviável economicamente.

Durante a secagem geram-se, tensões de sentido contrário entre a camada externa e a interna do sólido, e quanto maior a perda de água, maior também será a tensão resultante, fazendo o material deformar-se e inclusive com possibilidade de trincar. Alguns parâmetros têm uma importância significativa no fenômeno de tração e retração volumétrica como a composição estrutural da argila, a porosidade, a densidade, entre outros (Silva, 2009).

De modo geral, pode-se analisar a relação entre a temperatura e a umidade relativa dentro da estufa, pois a medida que a temperatura aumenta, a umidade relativa diminui. Outra relação observada é a relação entre a temperatura e o tempo de secagem, conforme alguns exemplos de secagem encontrados na literatura, à medida que a temperatura aumenta o tempo de secagem diminui, no entanto esse fato é relativo, pois depende da umidade inicial presente no produto. Razão essa que justifica a oscilação entre a temperatura e o tempo de secagem nas tabelas apresentadas.

Outro aspecto que pode ser observado foi a presença das umidades relativas equivalentes para as mesmas temperaturas pesquisadas em todas as amostras, porém, o tempo de secagem apresentou uma grande variação devido a relação área/volume apresentadas pelas amostras. Observou-se ainda que a alta temperatura com a baixa umidade relativa permitiu um aquecimento mais imediato nas amostras pesquisadas.

Sendo assim, para se ter uma secagem uniforme (gradientes de temperatura e umidade minimizados) é importante moderar adequadamente a intensidade da secagem, pelo controle da velocidade, umidade relativa e temperatura do ar de secagem, forma do corpo, particularmente a relação área/volume e a porosidade do material. Isto conduz a um produto industrial de qualidade aceitável comercialmente.

4.2 Resultados simulados

4.2.1 Aplicação a material arbitrário

Na validação da solução analítica do modelo proposto, comparou-se os resultados do teor de umidade obtidos para um esferoide prolato com valores reportados na literatura (Lima, 1999), cujas dimensões foram b = 2cm e a = 1 cm, submetido a secagem sobre as seguintes condições: $D = 1,22x10^{-9}m^2/s$ e hm = 3,521836x10⁻⁹m/s e um Bim = 0,05. A resposta foi satisfatória, ou seja, o modelo se adequou aos dados fornecidos pela literatura para corpos arbitrários. A Figura 4.40 ilustra esta comparação.

Figura 4.40 – Comparação entre os teores de umidade médios numéricos (Lima, 1999) e o analítico em função do tempo.

Nas Figuras 4.41 a 4.46 têm-se, respectivamente, os valores do teor de umidade adimensional (M^{*}) em função do tempo adimensional (Fom), variando o parâmetro de geração de massa P^{*}, o número de Biot para transferência de massa (Bim) e o termo de geração de calor Q^{*} conforme o caso apresentado. Percebe-se nos casos analisados que a

curva de secagem sofre uma variação no comportamento, diante da variação dos valores do parâmetro pesquisado.

Figura 4.41 – Influência do parâmetro P^{*} sobre o teor de umidade adimensional em função do tempo adimensional.

Conforme a Figura 4.41, o parâmetro P^* influencia fortemente o processo de secagem. Uma vez que, tal parâmetro está relacionado ao volume do produto, aos fenômenos internos que ocorrem dentro do material durante o processo, o coeficiente que representa a velocidade com que o fluido está passando sobre o produto, a área superficial e a diferença entre o teor de umidade inicial e o de equilíbrio do produto durante o processo, percebe-se que, para as condições apresentadas quanto menor o valor desse parâmetro mais rápido o produto ficará seco. No entanto, para o valor máximo pesquisado ($P^* = 1,00$), o produto não ficará seco ao longo do tempo, permanecendo úmido durante todo o processo. Isto é, o produto já está na sua condição de equilíbrio higroscópico.

Figura 4.42 – Influência do parâmetro Bim sobre o teor de umidade adimensional em função do tempo adimensional.

Fixando um valor para o P^* e variando o número de Biot de massa (Bim), a curva de secagem apresenta um comportamento interessante (Figura 4.42). Utilizando o método da análise concentrada, em que o Bim tem que ser inferior a 1, quanto maior Bi_m mais rápido é a secagem e o produto atinge sua condição de equilíbrio mais rapidamente. Em todos os casos, os gradientes de temperatura e umidade são desprezíveis durante o processo, fato que favorece a uma secagem por igual, uniforme e responsável por reduzir os defeitos no produto que ocorrem durante a secagem. Porém, percebe-se que se esse número for muito baixo, atende as condições do método da análise concentrada, mas torna inviável o processo, pois aumentará demasiadamente o tempo de secagem e reduzirá drasticamente a produtividade.

A Figura 4.43 ilustra o comportamento do teor de umidade adimensional em função do tempo adimensional para diferentes valores do termo de geração de calor Q^* . Analisando, a Figura 4.43 verifica-se que, independente do valor determinado para o parâmetro Q^* , todas as curvas se sobrepõe, pois mediante o processo da análise concentrada (Equação 2.3), o fenômeno de geração de calor não influencia o processo de transferência de massa, pois só faz parte do fenômeno de transferência de calor.

Figura 4.43 – Influência do parâmetro Q^{*} sobre o teor de umidade adimensional em função do tempo adimensional.

As Figuras 4.44 a 4.46 ilustram o comportamento de teor de umidade e temperatura (adimensional) em função do tempo adimensional, (numero de Fourier de transferência). Para a cinética de secagem, Fo = Fom e para a cinética de aquecimento, Fo = Foc.

Figura 4.44 – Comportamento do teor de umidade e temperatura do material cerâmico em função do número de Fourier (Bim = Bic = 0,09, $P^* = 0,10 e Q^* = 0$).

Analisando as Figuras 4.44, 4.45 e 4.46, observa-se que o comportamento do teor de umidade com a temperatura do produto durante o processo de secagem em função do número de Fourier apresenta-se aproximadamente simétrico. Contudo, em situações reais o produto se aquece mais rápido que a perda de umidade. No entanto, quando se coloca o resultado na sua forma adimensional tem-se todos os parâmetros

envolvidos nos processos agrupados, o que generaliza fortemente os resultados. Verifica-se que, independente do parâmetro pesquisado percebe-se que o produto aquece até o seu limite máximo, porém a perda de umidade ocorre apenas até atingir o seu equilíbrio dada por P^{*}.

Figura 4.45 – Comportamento do teor de umidade e temperatura do material cerâmico em função do número de Fourier (Bim = 0,05, Bic = 0,09, $P^* = 0,10 e Q^* = 0$).

Figura 4.46 – Comportamento do teor de umidade e temperatura do material cerâmico em função do número de Fourier (Bim = Bic = 0,09, $P^* = 0,10 e Q^* = 0,01$).

4.2.2 Aplicação a material cerâmico

A Tabela 4.9 apresenta os parâmetros obtidos após ajuste aos dados experimentais do teor de umidade para o cilindro vazado. Percebe-se que a medida que

aumenta a temperatura o coeficiente de transferência de massa também aumenta, no entanto, a variação desse parâmetro depende da umidade inicial no produto.

Т	UR	R	Proporção de	Função da	hm
(°C)	(%)		variância	perda	(m/s)
60	11,58	0,998	0,997	0,007	1,28*10 ⁻⁶
70	6,94	0,998	0,997	0,005	1,29*10 ⁻⁶
80	4,24	0,996	0,993	0,016	1,25*10 ⁻⁶
90	2,38	0,998	0,997	0,006	1,49*10 ⁻⁶
100	1,86	0,995	0,991	0,019	1,59*10 ⁻⁶

Tabela 4.9 – Parâmetros da Equação (3.46) obtidos após ajuste aos dados experimentais do teor de umidade para o cilindro vazado.

As Figuras 4.47 e 4.50 ilustram a comparação entre os teores de umidade médios da amostra experimental e o previsto para o experimento realizado. Os gráficos apresentam a concordância entre os valores previstos e experimentais para o Modelo: $M^* = Exp \left(-\frac{hmS}{V} * t\right)$, caracterizados por coeficientes de correlação próximos de 1,0.

Figura 4.47 – Comparação entre os teores de umidade médios da amostra experimental e previsto para o experimento realizado com o cilindro vazado nas temperaturas de 60°C e 70°C.

Percebe-se que para as amostras de cilindro vazado que apresentaram menor teor de umidade inicial a curva de ajuste apresentou uma resposta mais satisfatória, a medida que o teor de umidade inicial aumentava a curva de ajuste apresentou uma diferença para o modelo proposto.

Figura 4.48 – Comparação entre os teores de umidade médios da amostra experimental e previsto para o experimento realizado com o cilindro vazado nas temperaturas de 80°C, 90°C e 100°C.

A Tabela 4.10 apresenta os parâmetros obtidos após ajuste aos dados experimentais da temperatura para o cilindro vazado.

Т	UR	R	Proporção	Função da	hc
(°C)	(%)		de variância	perda	(W/m ²⁰ C)
60	11,58	0,954	0,911	0,122	1,69
70	6,94	0,977	0,954	0,064	1,04
80	4,24	0,980	0,960	0,080	1,03
90	2,38	0,980	0,961	0,059	1,24
100	1,86	0,989	0,979	0,033	1,41

Tabela 4.10 – Parâmetros da Equação (3.55) obtidos após ajuste aos dados experimentais da temperatura para o cilindro vazado.

As Figuras 4.49 e 4.50 ilustram a comparação entre as temperaturas médias da amostra experimental e o prevista para o experimento realizado. Os gráficos apresentam a concordância entre os valores previstos e experimentais para o Modelo: $\theta^* = \exp\left[\left(-\frac{hcS}{\rho V c_p} + \frac{\rho_s dM c_v}{\rho dt c_p}\right)t\right]$, para o cilindro vazado, caracterizados por coeficientes de correlação próximos de 1,0.

Figura 4.49 – Comparação entre as temperaturas da amostra experimental e prevista para o experimento realizado com o cilindro vazado nas temperaturas de 60°C, 70°C e 80°C.

Percebe-se que para as maiores temperaturas a resposta da curva do ajuste foi mais satisfatória devido à relação área/volume e aquecimento do cilindro.

Figura 4.50 – Comparação entre as temperaturas da amostra experimental e prevista para o experimento realizado com o cilindro vazado nas temperaturas de 90°C e 100°C.

A Tabela 4.11 apresenta os parâmetros obtidos após ajuste aos dados experimentais do teor de umidade para o cilindro vazado com sete furos - tambor. Espera-se que à medida que aumenta a temperatura, o coeficiente de transferência de massa também aumente, no entanto, a variação desse parâmetro depende da umidade inicial do produto e da relação área/volume.

Т	UR	R	Proporção de	Função da	hm
(°C)	(%)		variância	perda	(m /s)
60	12,22	0,995	0,991	0,020	2,05*10 ⁻⁵
70	7,15	0,998	0,996	0,007	1,63*10 ⁻⁵
80	3,92	0,996	0,992	0,016	$2,17*10^{-5}$
90	2,95	0,996	0,992	0,013	2,17*10 ⁻⁵
100	2,18	0,997	0,994	0,012	$2,48*10^{-5}$

Tabela 4.11 – Parâmetros da Equação (3.46) obtidos após ajuste aos dados experimentais do teor de umidade para o cilindro vazado com sete furos - tambor.

As Figuras 4.51 e 4.52 ilustram a comparação entre os teores de umidade médios da amostra experimental e o previsto para o experimento realizado. Os gráficos apresentam a concordância entre os valores previstos e experimentais para o Modelo: $M^* = Exp \left(-\frac{hmS}{V} * t\right)$, caracterizados por coeficientes de correlação próximos de 1,0.

Figura 4.51 – Comparação entre os teores de umidade médios da amostra experimental e previsto para o experimento realizado com o cilindro vazado com sete furos – tambor nas temperaturas de 60°C, 70°C e 80°C.

Assim como para o cilindro vazado, as amostras do cilindro vazado com sete furos – tambor demonstraram uma resposta mais satisfatória na curva de ajuste para as que apresentaram um menor teor de umidade inicial.

A Tabela 4.12 apresenta os parâmetros obtidos após ajuste aos dados experimentais da temperatura para o cilindro vazado com sete furos - tambor. Apresentando resultados dentro da média estimada pela literatura.

Figura 4.52 – Comparação entre os teores de umidade médios da amostra experimental e previsto para o experimento realizado com o cilindro vazado com sete furos – tambor nas temperaturas de 90°C e 100°C.

Т	UR	R	Proporção	Função da	hc
(°C)	(%)		de variância	perda	(W/m ²⁰ C)
60	12,22	0,967	0,935	0,103	6,26
70	7,15	0,987	0,975	0,046	1,62
80	3,92	0,987	0,975	0,041	6,43
90	2,95	0,989	0,979	0,031	2,31
100	2,18	0,929	0,864	0,174	3,51

Tabela 4.12 – Parâmetros da Equação (3.55) obtidos após ajuste aos dados experimentais da temperatura para o cilindro vazado com sete furos - tambor.

As Figuras 4.53 e 4.54 ilustram a comparação entre as temperaturas médias da amostra experimental e o prevista para o experimento realizado. Os gráficos apresentam a concordância entre os valores previstos e experimentais para o Modelo: $\theta^* = \exp\left[\left(-\frac{hcS}{\rho V c_p} + \frac{\rho_s d\overline{M} c_v}{\rho dt c_p}\right)t\right]$, para o cilindro vazado com sete furos – tambor, caracterizados por coeficientes de correlação próximos de 1,0.

Figura 4.53 – Comparação entre as temperaturas da amostra experimental e prevista para o experimento realizado com o cilindro vazado com sete furos – tambor nas temperaturas de 60°C, 70°C e 80°C.

Figura 4.54 – Comparação entre as temperaturas da amostra experimental e prevista para o experimento realizado com o cilindro vazado com sete furos – tambor nas temperaturas de 90°C e 100°C.

Percebe-se que para as temperaturas de 70°C e 90°C a resposta da curva do ajuste foi mais satisfatória devido à relação área/volume, fator que influencia no aquecimento do cilindro vazado com sete furos - tambor.

A Tabela 4.13 apresenta os parâmetros obtidos após ajuste aos dados experimentais do teor de umidade para o cilindro vazado com barra transversal. Percebe-se que a medida que aumenta a temperatura o coeficiente de transferência de massa também aumenta, apresentando oscilações em função da umidade inicial no produto e da relação área/volume.

Т	UR	R	Proporção de	Função da	hm
(°C)	(%)		variância	perda	(m /s)
60	9,96	0,999	0,999	0,0007	1,79*10 ⁻⁵
70	6,99	0,998	0,997	0,0033	1,69*10 ⁻⁵
80	4,15	0,998	0,997	0,0032	$2,52*10^{-5}$
90	3,02	0,999	0,999	0,0002	1,89*10 ⁻⁵
100	2,26	0,998	0,996	0,0038	$2,43*10^{-5}$

Tabela 4.13 – Parâmetros da Equação (3.46) obtidos após ajuste aos dados experimentais do teor de umidade para o cilindro vazado com barra transversal

As Figuras 4.55 e 4.56 ilustram a comparação entre os teores de umidade médios da amostra experimental e o previsto para o experimento realizado. Os gráficos apresentam a concordância entre os valores previstos e experimentais para o Modelo: $M^* = Exp \left(-\frac{hmS}{V} * t\right)$, para o cilindro vazado com barra transversal, caracterizados por coeficientes de correlação próximos de 1,0.

Percebe-se que entre todos os casos pesquisados, o que apresentou melhor curva de ajuste para o teor de umidade, em todas as temperaturas, devido a relação área/volume apresentada pelo cilindro vazado com barra transversal.

Figura 4.55 – Comparação entre os teores de umidade médios da amostra experimental e previsto para o experimento realizado com o cilindro vazado com barra transversal nas temperaturas de 60°C, 70°C e 80°C.

Figura 4.56 – Comparação entre os teores de umidade médios da amostra experimental e previsto para o experimento realizado com o cilindro vazado com barra transversal nas temperaturas de 90°C e 100°C.

A Tabela 4.14 apresenta os parâmetros obtidos após ajuste aos dados experimentais da temperatura para o cilindro vazado com barra transversal.

Т	UR	R	Proporção	Função da	hc
(°C)	(%)		de variância	perda	(W/m ²⁰ C)
60	9,96	0,950	0,903	0,101	6,33
70	6,99	0,955	0,913	0,065	2,59
80	4,15	0,916	0,839	0,138	4,89
90	3,02	0,963	0,929	0,049	3,97
100	2,26	0,969	0,939	0,057	5,12

Tabela 4.14 – Parâmetros da Equação (3.55) obtidos após ajuste aos dados experimentais da temperatura para o cilindro vazado com barra transversal.

As Figuras 4.57 a 4.58 ilustram a comparação entre as temperaturas médias da amostra experimental e o prevista para o experimento realizado. Os gráficos apresentam a concordância entre os valores previstos e experimentais para o Modelo: $\theta^* = \exp\left[\left(-\frac{hcS}{\rho Vc_p} + \frac{\rho_s dMc_v}{\rho dtc_p}\right)t\right]$, para o cilindro vazado com barra transversal, caracterizados por coeficientes de correlação próximos de 1,0.

Figura 4.57 – Comparação entre as temperaturas da amostra experimental e prevista para o experimento realizado com o cilindro vazado com barra transversal nas temperaturas de 60°C e 70°C.

Figura 4.58 – Comparação entre as temperaturas da amostra experimental e prevista para o experimento realizado com o cilindro vazado com barra transversal nas temperaturas de 80°C, 90°C e 100°C.

No entanto, percebe-se que para a temperatura a curva de ajuste apresentou uma resposta satisfatória para as maiores temperaturas devido à relação área/volume que favoreceu o aquecimento da amostra.

Logo, para a aplicação do modelo matemático a materiais cerâmicos utilizaramse os dados obtidos do teor de umidade ao longo do processo da secagem experimental, onde foi possível verificar as taxas de perda de umidade e o ajuste ocorreu de maneira mais satisfatória para o teor de umidade que para a temperatura; que vários fatores, tais como: área, volume e a umidade inicial presente na amostra influenciam nessa resposta. No entanto, sob o aspecto físico, esta metodologia apresentou-se satisfatória, pois permitiu visualizar descrição do fenômeno com grande precisão.

CAPÍTULO 5

CONCLUSÕES E SUGESTÕES

5.1 Conclusões

Baseado no resultado experimentais pode-se concluir que:

- A argila estudada é constituída basicamente das seguintes fases mineralógica: caulinita, quartzo e feldspato;
- Apresenta um alto teor de silte (80,09%), um percentual de (1,51%) de areia e uma fração de areia equivalente a (18,4%).
- Conforme a análise química, verifica-se que a argila apresenta característica de argila vermelha, prevalecendo a sílica (57,533%), alumina (23,426%) e o feldspato (8,887%);
- Variáveis do ar de secagem como temperatura e umidade relativa afetam diretamente as cinéticas de secagem e aquecimento do sólido úmido;
- Para altas temperaturas e baixas umidades relativas tem-se um menor tempo de secagem. Isso pode levar a aparição de defeitos como fissuras, trincas ou rachaduras. No entanto, esse fator depende da geometria do produto, da relação área/volume e do teor de umidade inicial;

- Secagem em altas temperaturas geram grandes taxas de retração volumétrica, o que geralmente pode provocar a propagação de trincas, fissuras ou rachaduras, e compromete a qualidade e a capacidade do produto suportar tensões de compressão;
- A geometria e as dimensões do produto favoreceram na redução do tempo de secagem;
- O produto apresentou um encolhimento praticamente linear nos primeiros 40 minutos de secagem, ocorrendo oscilações logo em seguida devido ao aquecimento e resfriamento do sólido.

Sobre o modelo matemático pode-se concluir que:

- Trata-se de um modelo fenomenológico;
- É de simples resolução;
- Adequa-se a diversos produtos.
- Um modelo mais complexo, que contempla situações realistas, incorporando diferentes fenômenos físicos, tais como: volume, área, geração de massa no produto, geração de calor por unidade de área no produto, evaporação e aquecimento do vapor.

Sobre o método pode-se concluir que:

 O método é eficaz para o processo de secagem de produto cerâmico, pois apresenta um excelente ajuste, no entanto, é viável para produtos em que o fator tempo não for uma variável importante para a produtividade.

Baseado nos resultados simulados pode-se concluir que:

- É vantajoso tratar o problema proposto de transferência de calor e massa na forma adimensional. A solução independe das propriedades termofísicas, dimensões e das condições iniciais e finais do material;
- Fixando o Bi_m, o decréscimo do parâmetro P^{*}, aumenta a velocidade de secagem do produto;
- A variação do Bi_m influência diretamente na produtividade do produto, pois se o Bim for muito baixo, aumentará o tempo de secagem;
- O parâmetro Q^{*} não influência no processo de transferência de massa; o fenômeno de geração de calor só afeta o aquecimento do material;
- A simultaneidade dos fenômenos de transferência de calor e massa durante o
 processo de secagem mostra que a transferência de calor ocorre de maneira mais
 rápida em relação a transferência de massa, de tal forma que contribui para que o
 mesmo consiga atingir a temperatura de equilíbrio em um menor tempo.

Baseado na aplicação do modelo a secagem pode-se concluir que:

- Os resultados numéricos apresentaram uma excelente concordância com os dados experimentais do teor de umidade das amostras submetidas à secagem, mostrando assim que a metodologia usada para estimar os coeficientes de transporte é satisfatória.
- O coeficiente de transferência de calor mostrou-se dependente da temperatura do ar de secagem, aumentando com o aumento deste parâmetro.

5.2 Sugestões para trabalhos futuros

Como sugestões para trabalhos futuros pode-se citar:

- Analisar o efeito da variação da umidade relativa dentro da estufa durante o processo de secagem de materiais cerâmicos;
- Aplicar o modelo para secagem de produtos com diferentes composições química e relação área/volume;
- Aplicar os modelos desenvolvidos na secagem de sólidos cerâmicos com dimensões industriais.

REFERÊNCIAS BIBLIOGRÁFICAS

ABNT – NBR 7181. Disponível em: https://engenhariacivilfsp.files.wordpress.com/2015/03/nbr-7181.pdf. Acesso em: 11/12/2015.

ALBURQUERQUE, P. J. R. Materiais cerâmicos. Dissertação de mestrado - FACENS - 2000.

ALIBAS, I. Mathematical modeling of microwave dried celery leaves and determination of the effective moisture diffusivities and activation energy. Food Science and Technology, 2014a.

ALIBAS, I. Microwave, Air and Combined Microwave-Air Drying of Grape Leaves (Vitis vinifera L.) and the Determination of Some Quality Parameters. International Journal of Food Engineering, v. 10, n. 1, pp. 69-88, 2014b.

ALMEIDA, G. S. Simulação e Experimentação da Secagem de Cerâmica Vermelha em Sistemas Térmicos Industriais. Tese (Doutorado em Engenharia de Processos). Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, Campina Grande, Brasil, 2009, 211 p.

ALMEIDA, G. S. Transferência de calor e massa em sólidos heterogêneos com geometria arbitrária: uma análise concentrada. Dissertação (Mestrado em Engenharia Mecânica). Departamento de Engenharia Mecânica, Centro de Ciências e Tecnologia, Universidade Federal da Paraíba, Campina grande, 2003. 52 p.

ALMEIDA, G. S.; FERNANDES, M. A. F. B.; FERNANDES, J. N. F.; NEVES, G. A.; DE LIMA, W. M. B; DE LIMA, A. G. B. Drying of Industrial Ceramic Bricks: An Experimental Investigation in Oven. Defect and Diffusion Forum, v. 353, pp. 116-120, 2014.

ALMEIDA, G. S.; SILVA, J. B.; JOAQUINA E SILVA, C; SWARNAKAR, R.; NEVES, G. A.; LIMA, A. G. B. Heat and Mass Transport in an Industrial Tunnel Dryer: Modeling and Simulation Applied to Hollow Bricks, Applied Thermal Engineering, v. 55, pp. 78-86, 2013.

ALVARENGA, L. C.; FORTES, M.; PINHEIRO FILHO, J. B.; HARA, T. Transporte de umidade no interior de grãos de feijão preto sob condições de secagem. Revista Brasileira de Armazenamento. v. 5, n. 1, p. 5 – 18, junho 1980.

AREGBA, A. W.; SEBASTIAN, P.; NADEAU, J. P. Stationary deep-bed drying: a comparative study between a logarithmic model and a non-equilibrium model. Journal of Food Engineering v. 77, n. 1, pp. 27-40, 2006.

ASKELAND, D. R; PHULÉ, P. P. Ciência e Engenharia dos Materiais. São Paulo: Cengage Learning, 2008. 594 p.

AUGIER, F.; COUMANS, W. J.; A. HUGGET, A.; KAASSCHIETER, E. F. On the risk of cracking in clay drying. Chemical Engineering Journal v. 86, pp. 133-138, 2002.

BABALIS, S. J.; PAPANICOLAOU, E.; KYRLAKIS, N.; BELESSIOTIS, V. G. Evaluation of thinlayer drying models for describing drying kinetics of figs (Ficus carica). Journal of Food. Engineering v. 75, pp. 205-214, 2005.

BASUNIA, M. A.; ABE, T. Thin-layer solar drying characteristics of rough rice under natural convection. Journal of Food Engineering, v. 47, pp. 295-301, 2001.

BAUER, L. A. F. Materiais de Construção. 2ª ed. Rio de Janeiro, Editora LTC, Brasil, 1994, 935p.

BELLINGIERI, J. C. A indústria cerâmica em São Paulo e a "invenção" do filtro de água: um estudo sobre a cerâmica Lamparelli. Jaboticabal (1920-1947) UNESP, Araraquara / SP. Disponível em: www.abphe.org.br/congresso2003/docs/Programa.doc.

BROOKER, D. B.; BAKKER-ARKEMA, F.W.; HALL, C.W. Drying and storage of grains and oilseeds. New York: AVI Book, 1992, 450 p.

CALLISTER J.R, W. D. Ciência e engenharia dos materiais – uma introdução. Rio de Janeiro: John Wiley & Sons. Inc., LTC – Livros técnicos e científicos. Editora S.A., 2000.

CELESTINO, S. M. C. Princípios de secagem de alimentos. Planaltina: Embrapa Cerrados, 2010, 49p.

DADALI, G.; DEMIRHAN, E.; OZBEK, B. Microwave heat treatment of spinach: drying kinetics and Effective Moisture Diffusivity. Drying Technology, v. 25, n. 10, pp. 1703-1712, 2007a.

DADALI, G.; APAR, D. K.; OZBEK, B. Microwave drying kinetics of okra. Drying Technology, v. 25, n. 5, pp. 917-924, 2007b.

DADALI, G.; DEMIRHAN, E.; ÖZBEK, B. Effect of drying conditions on rehydration kinetics of microwave dried spinach. Food and Bioproducts Processing, v. 86, pp. 235-241, 2007c.

DAMIANI, J. C.; PEREZ, F.; MELCHIADES, F. G.; BOSCHI, A. O. Coração negro em revestimentos cerâmicos: principais causas e soluções (2001). Disponível em: http://pt.slideshare.net/PetianoCamiloBin/art-corao-negro-em-revestimentos-cermicosprincipais-causas-e-possveis-solues. Acesso em: 25/10/2016.

DANTAS, L. A.; MATA, M. E. R. M. C.; DUARTE, M. E. M. Dynamic software for simulation drying of seeds and grains corn (in Portuguese). Revista Brasileira de Produtos Agroindustriais v. 13, n. 3, pp. 309-318, 2011.

DARVISHI, H.; AZADBAKHT, M.; REZAEIASL, A.; FARHANG, A. Drying characteristics of sardine fish dried with microwave heating. Journal of the Saudi Society of Agricultural Sciences v. 12, n. 2, pp. 121-127, 2013.

DIAMANTE, L. M.; IHNS, R.; SAVAGE, G. P.; VANHANEN, L. A new mathematical model for thin layer drying of fruits. International Journal of Food Science and Technology v. 45, n. 9, pp. 1956-1962, 2010.

DIAS, L. G. Estudo do Processo de Secagem em Estufa e por Micro-Ondas de Compósitos de Argila e Resíduos de Estatito. Dissertação (Mestrado em Engenharia Mecânica). Universidade Federal de São João Del Rei, Centro Federal de Educação Tecnológica, São João Del Rei – MG, Brasil, 2013, 111 p.

DISCALA, K.; MESCHINO, G.; VEGA-GALVEZ, A.; LEMUS-MONDACA, R.; ROURA, S.; MASCHERONI, R. An artificial neural network model for prediction of quality characteristics of apples during convective dehydration. Food Science and Technology, v. 33, n. 3, pp. 411-416, 2013.

DOYMAZ, I. drying of thyme (thymus vulgaris l.) and selection of a suitable thin-layer drying model. Journal of Food Processing and Preservation ISSN 1745-4549. DOI:10.1111/J.1745-4549.2010.00488. Istanbul, Turkey, 2010.

DOYMAZ, Í.; KOCAYIGIT, F. Drying and Rehydration Behaviors of ConvectionDryingofGreenPeas.DryingTechnology,http://dx.doi.org/10.1080/07373937.2011.591713, 2011, 1273- 1282 p.

DUGGAL, S. K, Building materials 2008, third revised edition, New Age International Publishers, 2008.

ELIAS, X. A fabricação de materiais cerâmicos. Barcelona-Espanha, 1995, 205 p.

ERTEKIN, C.; YALDIZ, O. drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering. Antalya, Turkey. 2004, 349–359 p.

FERREIRA, A. B. H. Mini Aurélio – o mini dicionário da língua portuguesa. 4ª ed. rev. ampliada. Rio de Janeiro: Nova Fronteira, 2000.

FORTES, M.; OKOS, M. R. Advances in drying. Hemisphere Publishing Corporation, 1980, Washington, U.S.A. v.1, pp. 119-154, 1980.

FORTES, M. Um estudo fundamental das equações de transporte de massa e energia em meios capilares porosos. Tese (Livre Docência). Departamento de Engenharia Térmica, Universidade Federal de Minas Gerais, Belo Horizonte. p. 100, 1982.

GOMES, C. F. Argilas: O que são e para que servem. Fundação Calousre Gulbekian, Lisboa, 1986.

GONÇALVES, J. A. S. Materiais de construção para seu projeto. Coleção Aprendendo a Construir, 2003.

GUILHERME, A. Fabricação em cerâmica vermelha. Mineropar - minerais do Paraná/SERT, 1998.

HOUGEN, O. A. et al. Limitations of Diffusion equations in drying, Trans, AIChE, vol. 36, n° 2, pp. 183 – 206, 1940.

IBRAHIM, M. H.; DAUD, W. R. W.; TALIB, M. Z. M. Drying characteristics of oil palm kernels. Drying Technology, v. 15, n. 3-4, pp. 1103-1117, 1997.

INCROPERA, F. P.; DE WITT, D. P. Fundamentals of heat and mass transfer. New York: J. Wiley & Sons, 2002.

JAIN, D. et al. Study the drying kinetics of open sun drying of fish. Journal of Food Engineering. Science Direct, pp. 1315 – 1319, 2007.

JOSHI, C. B.; GEWALI, M. B.; BHANDARI, R. C. Performance of solar drying systems: a case of Nepal. IE(I) Journal-ID 85, 2005.

KALETA, A.; GO 'RNICKI, K. Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. International Journal of Food Science and Technology, v. 45, n. 5, pp. 891–898 , 2010.

KARDUM, J. P.; SANDER, A.; SKANSI, D. Comparison of convective, vacuum, and microwave drying chlorpropamide. Drying Technology, v. 19, n. 1, pp. 167-183, 2011.

KARIM, M.A.; HAWLADER, M.N.A. Drying characteristics of banana: theoretical modelling and experimental validation. Journal of Food Engineering v. 70, n. 1, pp. 35-45, 2005.

KEEY, R. B. Drying of loose and particulate materials. New York: Hemisphere Publishing Corporation. p. 502, 1992.

KHALILI, K. et al. Drying clay bricks with variable young's modulus. The 7th International Conference Interdisciplinarity in Engineering (INTER-ENG 2013). Procedia Technology. Science Direct, 2014a, 382 – 387 p.

KHALILI, K. et al. Numerical simulation of drying ceramic using finite element and machine vision. The 7th International Conference Interdisciplinarity in Engineering (INTER-ENG 2013). Procedia Technology. Science Direct, 2014b, 388 – 393 p.

KITUU, G. M.; SHITANDA, D.; KANALI. C. L.; MAILUTHA, J. T.; NJOROGE, C. K.; WAINAINA, J. K.; SILAYO, V. K. Thin layer drying model for simulating the drying of Tilapia fish (Oreochromis niloticus) in a solar tunnel dryer. Journal of Food Engineering. 2010, 325–331 p.

LEHMKUHL, W. A. Análise Numérica e Experimental de um Secador Contínuo Utilizado na Indústria de Cerâmica Vermelha. Dissertação (Mestrado em Engenharia Mecânica). Universidade Federal de Santa Catarina, Santa Catarina, Brasil, 2004, 129 p.

LIMA, A .G. B. Estudo da secagem e dimensionamento de secador de casulos do bichoda-seda, Dissertação de Mestrado, Universidade Federal da Paraíba, Campina Grande, PB, Brasil, 1995, 190 p. LIMA, A. G. B. Fenômeno de difusão em sólidos esferoidais prolatos. Estudo de caso: secagem de bananas. Tese (Doutorado em Engenharia Mecânica), UNICAMP, São Paulo, 1999. 256 p.

LIMA, W. M. P. B. Transferência de Calor e Massa em Materiais Cerâmicos com Forma Complexa Via Método da Capacitância Global, Trabalho de Conclusão de Curso (TCC), Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia Campina Grande - PB, Brasil, 2014, 23 p.

LIMA; A. G. B. SILVA; J. B. ALMEIDA; G. S. NASCIMENTO; J. J. S. TAVARES; F. V. S. SILVA. V. S. Clay Products Convective Drying: Foundations, Modeling and Applications. In: J. M. P. Q. Delgado; A. G. Barbosa de Lima. (Org.). Drying and Energy Technologies, Series: Advanced Structured Materials, 63 ed. Heidelberg (Germany), Springer-Verlag, v. 63, pp. 43-70, 2015.

LIMA, A. G. B.; NEBRA. S. A., Modelos concentrados de transferência de calor e massa aplicados a corpos com forma arbitrária. In: Congresso Nacional de Engenharia Mecânica (CONEM) 2000, Natal-RN, Anais..., Natal, 2000, CD-ROM.

LUCENA, C. G. Transporte de massa durante a secagem de tijolos cerâmicos vazados via volumes finitos. Trabalho de Conclusão de Curso (TCC). Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia Campina Grande - PB, Brasil. 2005, 69 p.

LUIKOV, A. V. Heat and mass transfer in capillary porous bodies. New York: Pergamon Press, 1966, 523 p.

MACEDO, R. S. Estudo das matérias-primas e tijolos furados produzidos no Estado da Paraíba. Dissertação de Mestrado em Engenharia Química, CCT/UFCG – Campina Grande – PB, 1997.

MARIANI, V. C.; LIMA, A. G. B.; COELHO, L. S. Apparent thermal diffusivity estimation of the banana during drying using inverse method. Journal of Food Engineering v. 85, n. 4, pp. 569-579, 2008.

MARIZ, T. F. Secagem da casca de caroço de algodão em leito fixo. 1986. 139p. Dissertação (Mestrado). Departamento de Engenharia Química, Centro de Ciências e Tecnologia, Universidade Federal da Paraíba, Campina Grande.

MARTINES-LOPEZ, E. Moisture transfer analysis during drying of brick by temperature and relative humidity profiles. European Scientific Journal, edition v. 9, N. 33, 2013.

MCMINN, W. A. M. Thin-layer modelling of the convective, microwave, microwaveconvective and microwave-vacuum drying of lactose powder. Journal of Food Engineering. 2006, 113-123 p.

MIRZAEE, E.; RAFIEE, S.; KEYHANI, A. Evaluation and Selection of Thin-layer Models for Drying Kinetics of Apricot (cv.NASIRY) Agricultural Machinery Engineering Dept., Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran. Disponível em: http://www.cigrjournal.org/index.php/Ejounral/article/viewFile/1361/1330. Acesso em: 27/10/2015.

MUJAFFAR, S.; SANKAT, C. K. The air drying behaviour of shark fillets. Canadian Biosystems Engineering (47), 2005, 311–321 p.

MUNDADA, M.; HATHAN, B. S.; MASKE, S. Mass transfer kinetics during osmotic dehydration of pomegranate arils. Journal of Food Science v. 76, n. 1, pp. 31-39, 2011.

MUNEM, M. A.; FOULIS, D. J. Cálculo. Rio de Janeiro, Guanabara dois, 1978.

NEVES, G. A. Processamento de Materiais Cerâmicos – Curso de Treinamento de Grês Sanitário – Celite – Recife – PE, 1999. 1999.

NGUYEN, M. H.; PRICE, W. E. Air-drying of banana: influence of experimental parameters, slab thickness, banana maturity and harvesting season. Journal of Food Engineering v. 79, n. 1, pp. 200-207, 2007.

OLIVEIRA, V. A. B. Difusão em sólidos esferoidais prolatos: uma solução analítica. Dissertação (Mestrado em Engenharia Mecânica). Departamento de Engenharia Mecânica, Centro de Ciências e Tecnologia, Universidade Federal da Paraíba, Campina Grande. p. 87, 2001.

OLIVEIRA, V. A. B. Transferência de calor e massa no interior de sólidos com forma esferoidal prolata via termodinâmica dos processos irreversíveis. Tese (Doutorado em Engenharia de Processos) - Departamento de Engenharia de Processos, Centro de Ciências e Tecnologia, Universidade Federal da Paraíba, Campina Grande. p. 150, 2006.

PAGE, C. Factors influencing the maximum rate of dring shelled corn in layers. West Lafayette, 1949. MSc Thesis, Purdue University.

PARRY, J. L. Mathematical modeling and computer simulation of heat and mass transfer in agricultural grain drying. A review. Journal of Agricultural Engineering Research, v.32, p.1-29, 1985.

PARTI, M. Selection of mathematical models for drying grain in thin-layers. Journal of Agricultural Engineering Research, v.54, p.339-352, 1993.

ROSSI, M. A. P. As argilas (2004). Disponível em <www.portorossi.art.br/> Acesso em 07/08/2009.

SANCHEZ-MUÑHOZ, L.; CAVA, S. S.; PASKOCIMAS, C. A.; CERISUELO, E.; LONGO, E.; CARDA, J. B. Influência da composição das matérias-primas no processo

de gresificação de revestimentos cerâmicos, Cerâmica Industrial. v. 48, n. 307, pp. 137-145, 2002.

SILVA, A. A; NASCIMENTO, J. J. S.; LIMA, A. G. B. Estudo analítico de secagem de placas cerâmicas usando o método integral baseado em Galerkin e condição de contorno de Dirichlet. Revista Eletrônica de Materiais e Processos, v.4.2, 2009, p. 48-55.

SILVA ALMEIDA, G; BARBOSA DA SILVA, J; JOAQUINA E SILVA, C; SWARNAKAR, RAMDAYAL; DE ARAÚJO NEVES, G; BARBOSA DE LIMA, A. G. Heat and Mass Transport in an Industrial Tunnel Dryer: Modeling and Simulation Applied to Hollow Bricks. Applied Thermal Engineering, v. 55, pp. 78-86, 2013.

SILVA, J. B. Secagem de sólidos em camada fina via análise concentrada: modelagem e simulação. Dissertação (Mestrado em Engenharia Mecânica). Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, Campina Grande - PB, Brasil. 2002, 64 p.

SILVA, J. B. Simulação e experimentação da secagem de tijolos cerâmicos vazados.Tese (Doutorado em Engenharia de Processos). Universidade Federal de CampinaGrande, Centro de Ciências e Tecnologia, Campina Grande - PB, Brasil. 2009, 199 p.

SILVA, J. B., ALMEIDA, G. S., NEVES, G. A., LIMA, W. C. P. B., FARIAS NETO, S. R., LIMA, A. G. B. Heat and Mass Transfer and Volume Variations during Drying of Industrial Ceramic Bricks: An Experimental Investigation. Defect and Diffusion Forum, v. 326-328, pp. 267-272, 2012.

SILVA, J. B.; ALMEIDA, G. S., LIMA, W. C. P. B., NEVES, G. A., LIMA, A. G. B., Heat and Mass Diffusion Including Shrinkage and Hygrothermal Stress during Drying of Holed Ceramics Bricks. Defect and Diffusion Forum, v. 312-315, pp. 971-976, 2011.

SILVA, V. S.; DELGADO, I. M. P. O.; LIMA, W. M. P. B.; LIMA, A. G. B. Heat and Mass Transfer in Holed Ceramic Material Using Lumped Model, Diffusion Foundations, 2016. (Aceito para publicação). SILVA, W. P.; SILVA, C. D. P. S.; GAMA. F. J. A.; GOMES, J. P. Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. Journal of the Saudi Society of Agricultural Sciences v. 13, pp. 67-74, 2014.

SILVA, W. P.; SILVA, C. M. D. P. S.; GAMA, F. J. A.; GOMES, J. P. An empiric equation for the latent heat of vaporization of moisture in bananas during its isothermal drying. Agricultural Sciences v. 3, n. 2, pp. 214-220, 2012a.

SILVA, W. P.; SILVA, C. M. D. P. S.; SOUSA, J. A. R.; FARIAS, V. S. O. Empirical and diffusion models to describe water transport into chickpea (Cicer arietinum L.). International Journal of Food Science and Technology. 2012b.

SIMA, J.; JIANG. M.; ZHOU. C. Numerical simulation of desiccation cracking in a thin clay layer using 3D discrete element modeling. Computers and Geotechnics v. 56, pp. 168–180, 2014.

SIMAL, S.; GARAU, M. C.; FEMENIA, A.; ROSSELLÓ, C. 2006. A diffusional model with a moisture-dependent diffusion coefficient. Dry Technol. v. 24, pp. 1365–1372, 2006.

SOUZA SANTOS, P. Ciência e Tecnologia de Argilas. São Paulo: Edgard Blucher, 1992, 234p.

STEIL, O. S. Energia do gás natural em fornos de cerâmica estrutural. Florianópolis: SCGÁS, jul. 2000. (Projeto).

STORTE, M. Manifestações patológicas na impermeabilização de estruturas de concreto em saneamento. Disponível em: http://www.forumdaconstrucao.com.br/conteudo.php?a=20&Cod=703. Acesso em: 25/10/2016.

STRUMILLO, C.; KUDRA, T. Drying: principles, science and design. New York: Gordon and Breach Science Publishers, 1986, 448 p.

SZULMAYER, W. From sun drying to solar dehydration I. Methods and equipments. Food Technology in Australia, v. 23, pp. 440–443, 1971.

TOMAZETTI, R. R. Analise da produção de cerâmica vermelha da região central do estado do rio grande do sul. UFSM, 2003.

TURHAN, M.; SAYAR, S.; GUNASEKARAN, S. Application of Peleg model to study water absorption in chickpea during soaking. Journal of Food Engineering v. 53, n. 2, pp. 153–159, 2002.

VOGEL, H. J.; HOFFMAN, H.; ROTH, K. Study of crack dynamics in clay soil. Geodema, v. 125, pp. 203 – 211, 2005.

WITTWER, H.; FARIA, R. W. Projeto de conservação de energia nas pequenas e médias indústrias do Estado do Rio de Janeiro: setor de cerâmica vermelha. Relatório Final. Rio de Janeiro: 1997.

APÊNDICES

t	m (g)	m final	m (g)	M	M*	Т	Dint.	Dext.	h	Sint.	Sext.	Scm=Sbx	Stotal
(min)	band	(g)	agua			(°C)	(mm)	(mm)	(mm)	(mm²)	(mm²)	(mm²)	(mm²)
	+amostra	amostra											
0	135,474	102,025	18,343	0,219199	1	30,6	44,36	57,24	50,33	310985,2	517792,6	1027,257	830832,3
5	133,881	100,432	16,75	0,200163	0,912419	38,3	44,55	56,82	50,42	314215,7	511134,2	976,3908	827302,7
10	132,395	98,946	15,264	0,182405	0,830722	40,2	44,6	56,33	49,8	311048,9	496179,1	929,3685	809086,8
15	131,168	97,719	14,037	0,167742	0,763263	41	44,54	55,85	49,64	309215,9	486192	891,2976	797190,5
20	129,889	96,44	12,758	0,152458	0,692946	41,3	44,5	55,84	49,46	307541,5	484255,5	893,2166	793583,5
25	128,683	95,234	11,552	0,138046	0,626642	42,2	44,54	55,74	48,9	304606,3	477059,4	881,6618	783429
30	127,533	94,084	10,402	0,124304	0,563417	43,8	44,52	55	49,19	306137,7	467231,2	818,7311	775006,4
40	125,39	91,941	8,259	0,098695	0,445599	46,1	44,52	55,22	48,26	300349,8	462072,1	837,7661	764097,4
50	123,558	90,109	6,427	0,076803	0,344879	49,4	44,5	55,33	47,79	297157,5	459396,9	848,7097	758251,8
60	122,111	88,662	4,98	0,059511	0,265325	53,9	44,48	55,03	47,41	294529,7	450815,3	824,1169	746993,3
70	121,052	87,603	3,921	0,046856	0,207103	54	44,4	55,23	47,98	296999,6	459557,6	847,0094	758251,2
80	120,216	86,767	3,085	0,036866	0,161141	55,8	44,35	55,34	48,39	298863,3	465332,7	860,0406	765916
90	119,688	86,239	2,557	0,030556	0,132113	55,5	44,27	55,03	47,95	295078,3	455950,1	838,7474	752705,9
120	118,637	85,188	1,506	0,017997	0,074331	56,5	44,14	55,3	47,83	292613,7	459282,9	871,1541	753638,9
150	118,143	84,694	1,012	0,012093	0,047171	56,6	44,03	55,14	47,69	290304,9	455292,5	864,8963	747327,2
180	117,882	84,433	0,751	0,008974	0,032822	56,55	43,93	55,12	47,87	290078,5	456679,5	870,0701	748498,1
210	117,726	84,277	0,595	0,00711	0,024245	56,1	43,94	55,17	47,95	290695,5	458273	873,7092	750715,9
240	117,619	84,17	0,488	0,005832	0,018363	56,1	43,9	55,33	47,9	289863,9	460454,3	890,3461	752098,9
270	117,553	84,104	0,422	0,005043	0,014734	56,3	43,9	55,65	47,9	289863,9	465795,7	918,2243	757496,1
1710	117,285	83,836	0,154	0,00184	0	56,5	43,9	55,13	47,56	287806,5	453886,7	873,0039	743439,2
3150	117,131	83,682	0	0	0	94,7	43,87	55,16	47,36	286204,6	452470,1	877,6682	740430

A1 - Cilindro vazado - Temperatura de $60^{\rm o}{\rm C}$

Vint.	Vext.	Vtotal	V/V0	S/V
(mm ³)	(mm ³)	(mm³)	(mm³)	
77746,29	129448,1	51701,86	1	16,069679
78553,93	127783,6	49229,62	0,952183	16,804978
77762,23	124044,8	46282,55	0,895182	17,481465
77303,98	121548	44244,01	0,855753	18,018043
76885,38	121063,9	44178,5	0,854486	17,963115
76151,58	119264,8	43113,26	0,833882	18,171416
76534,42	116807,8	40273,38	0,778954	19,243639
75087,44	115518	40430,59	0,781995	18,898992
74289,38	114849,2	40559,84	0,784495	18,694644
73632,44	112703,8	39071,38	0,755706	19,118682
74249,89	114889,4	40639,51	0,786036	18,657980
74715,81	116333,2	41617,36	0,804949	18,403762
73769,58	113987,5	40217,94	0,777882	18,715675
73153,43	114820,7	41667,3	0,805915	18,087058
72576,22	113823,1	41246,9	0,797784	18,118384
72519,62	114169,9	41650,25	0,805585	17,971034
72673,88	114568,2	41894,35	0,810307	17,919263
72465,99	115113,6	42647,58	0,824875	17,635206
72465,99	116448,9	43982,94	0,850703	17,222498
71951,61	113471,7	41520,07	0,803067	17,905538
71551,15	113117,5	41566,37	0,803963	17,813198

Continuaçãoda temperatura de 60°C

t	m (g)	m final	m (g)	М	M*	Т	Dint.	Dext.	h	Sint.	Sext.	Scm=Sbx	Stotal
(min)	band+amostr	(g)	agua			(°C)	(mm)	(mm)	(mm)	(mm²)	(mm²)	(mm²)	(mm²)
	а	amostra	-										
0	130,526	97,084	11,762	0,137854	1	27,2	42,83	56,51	47,57	274005,3	476994,5	1066,792	753133,4
5	129,661	96,219	10,897	0,127716	0,923159	33,8	42,53	56,29	47,28	268533,1	470402,5	1067,414	741070,5
10	128,787	95,345	10,023	0,117473	0,845519	36,8	42,24	55,92	47,04	263538,9	461882,3	1054,121	727529,4
15	127,662	94,22	8,898	0,104287	0,745581	36,2	42,16	55,51	46,84	261425,4	453199	1023,557	716671,5
20	127,208	93,766	8,444	0,098966	0,70525	35,7	42,18	55,45	46,89	261952,8	452702,6	1017,007	716689,4
25	126,476	93,034	7,712	0,090387	0,640224	37,4	42,12	55,51	46,56	259369,8	450489,9	1026,204	711912,1
30	125,788	92,346	7,024	0,082323	0,579106	37,3	42,21	55,44	46,56	260479,4	449354,5	1014,149	711862,1
40	124,469	91,027	5,705	0,066864	0,461935	44,6	42,13	55,46	46,36	258378,3	447747,1	1021,187	708167,8
50	123,519	90,077	4,755	0,05573	0,377543	45,1	41,98	55,36	46,44	256984,4	446903,8	1022,391	705932,9
60	122,712	89,27	3,948	0,046272	0,305854	49,3	42,06	55,45	46,55	258575,8	449420	1024,942	710045,7
70	122,083	88,641	3,319	0,0389	0,249978	56,1	42,03	55,41	46,39	257319,6	447229,4	1023,442	706595,8
80	121,569	88,127	2,805	0,032875	0,204317	55,9	42,03	55,39	46,71	259094,6	449989,4	1021,702	711127,3
90	121,193	87,751	2,429	0,028469	0,170916	58,2	42,08	55,3	46,61	259155,4	447568	1010,58	708744,5
120	120,323	86,881	1,559	0,018272	0,09363	60,8	42,44	55,38	46,49	262929,9	447708,2	993,6458	712625,4
150	119,853	86,411	1,089	0,012763	0,051879	61,2	42,18	55,04	46,51	259829,9	442418,1	981,4456	704210,8
180	119,555	86,113	0,791	0,009271	0,025406	64,1	41,97	55,44	46,43	256806,7	448099,8	1030,008	706966,5
210	119,394	85,922	0,6	0,007032	0,008439	64,6	42,04	55,42	46,29	256887,1	446426,4	1023,652	705360,8
240	119,269	85,827	0,505	0,005919	-3,4E-07	62,8	42,25	55,26	46,47	260468,8	445578,4	995,855	708038,9
1680	118,871	85,429	0,107	0,001254	-0,03536	62,1	41,93	55,06	46,38	256041,4	441502,1	999,6808	699542,9
3120	118,191	85,322	0	0	-0,04486	95,6	42,83	55,25	46,52	267957,2	445896,4	956,2506	715766,1

A2 - Cilindro vazado - Temperatura de 70°C

Vint.	Vext.	Vtotal	V/V0	S/V
(mm³)	(mm³)	(mm³)		
68501,32	119248,6	50747,31	1	14,840853
67133,28	117600,6	50467,34	0,994483	14,684160
65884,73	115470,6	49585,83	0,977112	14,672123
65356,34	113299,8	47943,42	0,944748	14,948276
65488,2	113175,6	47687,45	0,939704	15,028889
64842,44	112622,5	47780,04	0,941528	14,899780
65119,84	112338,6	47218,78	0,930468	15,075825
64594,57	111936,8	47342,21	0,932901	14,958486
64246,1	111725,9	47479,85	0,935613	14,868052
64643,95	112355	47711,06	0,940169	14,882203
64329,89	111807,3	47477,45	0,935566	14,882766
64773,64	112497,3	47723,7	0,940418	14,900925
64788,84	111892	47103,15	0,92819	15,046647
65732,47	111927,1	46194,59	0,910286	15,426598
64957,48	110604,5	45647,04	0,899497	15,427304
64201,66	112025	47823,29	0,942381	14,782891
64221,77	111606,6	47384,83	0,933741	14,885793
65117,21	111394,6	46277,38	0,911918	15,299891
64010,34	110375,5	46365,19	0,913648	15,087674
66989,31	111474,1	44484,78	0,876594	16,090134

Continuação da temperatura de 70°C

t	m (g)	m final	m (g)	Μ	M*	Т	Dint.	Dext.	h	Sint. (mm ²)	Sext.	Scm=Sbx	Stotal
(min)	band+	(g)	agua			(°C)	(mm)	(mm)	(mm)		(mm²)	(mm²)	(mm²)
	amostra	amostra											
0	138,668	105,217	17,848	0,204283	0,978876	27,1	43,84	57,86	49,13	296495,1	516455,9	1119,28	815189,6
5	137,718	104,267	16,898	0,19341	0,924491	33,6	44,06	57,4	49,6	302343,3	513139,1	1062,479	817607,3
10	136,496	103,045	15,676	0,179423	0,854534	35	43,77	57,39	49,52	297895,1	512133	1081,572	812191,2
15	135,339	101,888	14,519	0,16618	0,788299	35	42,62	56	50,11	285812,3	493435,2	1035,835	781319,2
20	134,35	100,899	13,53	0,15486	0,731681	37,1	42,05	55,59	50,73	281660,9	492252,4	1037,806	775988,9
25	133,35	99,899	12,53	0,143415	0,674433	35,1	43,05	56,86	50,7	295042,1	514696,6	1083,109	811904,9
30	132,335	98,884	11,515	0,131797	0,616327	36,1	43,06	56,83	50,04	291336,6	507460,5	1079,756	800956,6
40	130,3	96,849	9,48	0,108505	0,499828	37,5	43,36	56,38	49,36	291395,8	492668,7	1019,413	786103,3
50	128,445	94,994	7,625	0,087274	0,393634	48,5	42,83	55,77	48,62	280053,3	474838,5	1001,569	756894,9
60	126,915	93,464	6,095	0,069762	0,306046	51	43,03	56,55	49,5	287791,2	497050	1056,862	786954,9
70	125,769	92,318	4,949	0,056645	0,24044	59	42,62	56,07	49,3	281192,3	486673,5	1041,994	769949,8
80	124,885	91,434	4,065	0,046527	0,189833	61,3	42,62	56,45	49,59	282846,4	496194,2	1075,558	781191,7
90	124,25	90,799	3,43	0,039259	0,153481	63	42,44	55,79	49,27	278652,5	481531,8	1029,426	762243,1
120	122,944	89,493	2,124	0,024311	0,078716	71	42,43	55,66	48,96	276768,8	476274,6	1018,719	755080,9
150	122,318	88,867	1,498	0,017146	0,042879	73,2	42,33	56,36	49,16	276591	490324,4	1086,927	769089,2
180	121,893	88,442	1,073	0,012281	0,018548	74,8	42,7	56,51	49,05	280817,7	491834,8	1075,521	774803,5
210	121,772	88,321	0,952	0,010896	0,011621	75,5	42,29	56,26	49,26	276630,1	489579,8	1080,744	768371,4
240	121,657	88,206	0,837	0,00958	0,005038	74,8	41,95	56,04	49,18	271757,9	484969,5	1083,833	758895
270	121,569	88,118	0,749	0,008573	1,74E-07	75,8	42	56,06	49,09	271907,5	484427,6	1082,298	758499,7
1710	121,2	87,749	0,38	0,004349	-0,02112	75,6	42,55	56,11	48,76	277199,5	482029,8	1050,196	761329,7
3150	120,82	87,369	0	0	-0,04288	100,7	42,86	56,32	49,39	284887,2	491919,4	1047,946	778902,6

A3 - Cilindro vazado - Temperatura de 80°C

Vint	Vext.	Vtotal	V/V0	S/V
(mm ³)	(mm³)	(mm³)		
74123,77	129114	54990,21	1	14,824267
75585,82	128284,8	52698,96	0,958333	15,514676
74473,78	128033,2	53559,46	0,973982	15,164290
71453,08	123358,8	51905,71	0,943908	15,052663
70415,22	123063,1	52647,89	0,957405	14,739221
73760,51	128674,2	54913,64	0,998608	14,785122
72834,14	126865,1	54030,99	0,982556	14,824022
72848,96	123167,2	50318,21	0,915039	15,622640
70013,33	118709,6	48696,28	0,885545	15,543177
71947,8	124262,5	52314,69	0,951346	15,042713
70298,08	121668,4	51370,29	0,934172	14,988231
70711,6	124048,5	53336,94	0,969935	14,646353
69663,13	120382,9	50719,81	0,922343	15,028508
69192,2	119068,7	49876,46	0,907006	15,139023
69147,75	122581,1	53433,34	0,971688	14,393433
70204,41	122958,7	52754,29	0,95934	14,687023
69157,52	122395	53237,43	0,968126	14,432916
67939,46	121242,4	53302,91	0,969316	14,237402
67976,89	121106,9	53130,01	0,966172	14,276295
69299,88	120507,4	51207,57	0,931212	14,867522
71221,81	122979,9	51758,04	0,941223	15,048919

Continuação da temperatura de 80°C

t	m (g)	m final	m (g)	М	M*	Т	Dint.	Dext.	h	Sint.	Sext.	Scm=Sb	Stotal
(min)	band +	(g)	agua			(°C)	(mm)	(mm)	(mm)	(mm²)	(mm²)	Х	(mm²)
	amostra	amostra	_									(mm²)	
0	130,626	97,174	15,126	0,184355	1	28,1	44,08	57,28	50,59	308658	521195,1	1050,292	831953,7
5	129	95,548	13,5	0,164538	0,888523	40,7	43,05	56,47	50,5	293878,2	505657,7	1048,413	801632,7
10	127,79	94,338	12,29	0,14979	0,805567	41,5	43,04	56,3	49,5	287925	492664,9	1034,04	782658
15	126,602	93,15	11,102	0,135311	0,724119	39,1	43,04	55,99	48,28	280828,7	475245,3	1006,714	758087,4
20	125,53	92,078	10,03	0,122246	0,650624	40,2	42,86	55,68	48,62	280445,8	473307,1	991,677	755736,3
25	124,576	91,124	9,076	0,110618	0,585219	40,8	42,44	55,62	47,97	271300,2	465973,6	1014,558	739302,9
30	123,548	90,096	8,048	0,098089	0,51474	46,5	42,38	55,52	47,43	267488,2	459072,9	1009,829	728580,8
40	121,855	88,403	6,355	0,077455	0,39867	51,5	42,67	55,72	47,38	270875,7	461898,9	1007,932	734790,4
50	120,36	86,903	4,855	0,059173	0,295832	61,8	42,44	55,34	47,45	268359,3	456293,4	990,1692	726633
60	119,323	85,871	3,823	0,046595	0,225079	65,8	42,61	55,27	47,94	273307	459839,9	972,7412	735092,3
70	118,602	85,15	3,102	0,037807	0,175648	70,5	42,48	55,55	47,38	268468,7	459084,7	1005,783	729565
80	118,045	84,593	2,545	0,031018	0,137461	74,6	42,33	55,19	47,21	265619,6	451527,7	984,4742	719116,3
90	117,61	84,158	2,11	0,025717	0,107638	76,1	42,4	55,22	47,76	269603,6	457284,8	982,4184	728853,2
120	116,76	83,308	1,26	0,015357	0,049362	80,7	42,77	55,27	47,37	272089,3	454372,4	962,0175	728385,8
150	116,284	82,832	0,784	0,009555	0,016728	82,6	42,5	55,12	47,16	267473,8	449906,1	967,0921	719314,1
180	116,161	82,709	0,661	0,008056	0,008296	83,3	42,5	55,18	47,29	268211,1	452129	972,2872	722284,7
210	116,04	82,588	0,54	0,006582	7,46E-08	84	42,51	55,23	47,35	268677,8	453523,4	975,9534	724153,2
1650	115,72	82,268	0,22	0,002681	-0,02194	85,3	42,52	55,04	47,53	269826,1	452120,6	958,8392	723864,4
3090	115,5	82,048	0	0	-0,03702	100,5	42,07	55,07	47,13	261922,1	448804,5	991,3137	712709,2

A4 - Cilindro vazado - Temperatura de 90°C

Vint.	Vext.	Vtotal	V/V0	S/V
(mm ³)	(mm³)	(mm³)		
77164,49	130298,8	53134,29	1	15,657566
73469,54	126414,4	52944,87	0,996435	15,140894
71981,25	123166,2	51184,98	0,963314	15,290774
70207,17	118811,3	48604,16	0,914742	15,597171
70111,45	118326,8	48215,34	0,907424	15,674187
67825,05	116493,4	48668,36	0,91595	15,190626
66872,06	114768,2	47896,18	0,901417	15,211668
67718,92	115474,7	47755,81	0,898776	15,386408
67089,82	114073,3	46983,53	0,884241	15,465696
68326,75	114960	46633,21	0,877648	15,763279
67117,18	114771,2	47653,99	0,89686	15,309630
66404,91	112881,9	46477,02	0,874709	15,472513
67400,9	114321,2	46920,3	0,883051	15,533856
68022,34	113593,1	45570,77	0,857653	15,983618
66868,46	112476,5	45608,06	0,858355	15,771644
67052,79	113032,2	45979,46	0,865344	15,708855
67169,46	113380,9	46211,4	0,86971	15,670444
67456,53	113030,2	45573,63	0,857707	15,883404
65480,52	112201,1	46720,61	0,879293	15,254706

Continuação da temperatura de 90°C

t	m (g)	m final	m (g)	M	M*	T(°C)	Dint.	Dext.	h	Sint.	Sext.	Scm=Sbx	Stotal
(min)	band	(g)	agua				(mm)	(mm)	(mm)	(mm²)	(mm²)	(mm²)	(mm²)
	+amostra	amostra	-										
0	135,842	102,818	19,039	0,227253	0,999793	25,8	43,73	57,13	51,08	306718,2	523490,7	1060,946	832330,8
5	134,87	101,846	18,067	0,215651	0,948688	39,5	45,1	57,07	52,07	332560,2	532516,4	960,0353	866996,7
10	132,319	99,295	15,516	0,185202	0,814566	40	45	55,96	50,66	322121,6	498138,7	868,6195	821997,5
15	130,64	97,616	13,837	0,165161	0,72629	41,3	44,94	55,8	49,95	316760,7	488352,6	858,8186	806831
20	129,496	96,472	12,693	0,151506	0,666143	45,3	44,9	55	49,53	313538,3	470460,7	792,0572	785583,2
25	127,978	94,954	11,175	0,133387	0,586332	45,7	44,75	54,93	49,14	308994,6	465568,9	796,5728	776156,7
30	126,535	93,511	9,732	0,116163	0,510464	51,7	44,7	54,59	49,24	308931,9	460759,1	770,8528	771232,7
40	123,866	90,842	7,063	0,084305	0,370138	58,5	44,7	54,76	48,89	306736	460337,7	785,4456	768644,6
50	121,853	88,829	5,05	0,060278	0,264302	66,6	44,68	55,15	48,62	304769,1	464339,5	820,4978	770749,6
60	120,423	87,399	3,62	0,043209	0,189117	71,2	44,6	55,37	48,25	301367,7	464489,6	845,1914	767547,7
70	119,422	86,398	2,619	0,031261	0,136488	77,8	44,44	53,74	48,58	301255,7	440537,1	716,7631	743226,3
80	118,727	85,703	1,924	0,022965	0,099948	78,7	44,44	54,38	48,56	301131,7	450906,7	771,0826	753580,6
90	118,216	85,192	1,413	0,016866	0,073081	85,5	44,35	53,65	48,55	299851,4	438791,6	715,449	740074
120	117,522	84,498	0,719	0,008582	0,036593	88,5	44,31	54,36	48,3	297769,5	448162,7	778,4323	747489,1
150	117,269	84,245	0,466	0,005562	0,023291	89,3	44,29	53,6	48,27	297316	435448,2	715,4144	734195,1
180	117,135	84,111	0,332	0,003963	0,016246	92,5	44,17	54,41	48,52	297238,6	451032,6	792,4255	749856
210	117,07	84,046	0,267	0,003187	0,012829	93	44,18	54,37	48,4	296637,8	449255,8	788,3162	747470,2
240	117,026	84,002	0,223	0,002662	0,010515	93,9	44,03	54,29	48,78	296940,1	451451,5	791,8791	749975,4
1680	116,826	83,802	0,023	0,000275	1,4E-07	93	44,1	53,78	48,39	295503,4	439467,6	743,7705	736458,5
3120	116,803	83,779	0	0	0	93,2	44	52,92	47,9	291186	421216	678,6532	713759,3

A5 - Cilindro vazado - Temperatura de 100°C

Vint.	Vext.	Vtotal	V/V0	S/V
(mm ³)	(mm ³)	(mm ³)	(mm ³)	
76679,54	130872,7	54193,14	1	15,358600
83140,06	133129,1	49989,04	0,922424	17,343735
80530,4	124534,7	44004,26	0,81199	18,679952
79190,17	122088,2	42897,99	0,791576	18,808130
78384,59	117615,2	39230,59	0,723903	20,024761
77248,65	116392,2	39143,59	0,722298	19,828449
77232,97	115189,8	37956,79	0,700398	20,318701
76684	115084,4	38400,43	0,708585	20,016562
76192,27	116084,9	39892,6	0,736119	19,320615
75341,92	116122,4	40780,48	0,752503	18,821448
75313,92	110134,3	34820,35	0,642523	21,344595
75282,92	112726,7	37443,77	0,690932	20,125660
74962,86	109697,9	34735,05	0,640949	21,306259
74442,39	112040,7	37598,28	0,693783	19,880938
74329	108862,1	34533,05	0,637222	21,260650
74309,66	112758,1	38448,48	0,709471	19,502877
74159,44	112313,9	38154,51	0,704047	19,590611
74235,02	112862,9	38627,86	0,712781	19,415401
73875,84	109866,9	35991,06	0,664126	20,462262
72796,5	105304	32507,49	0,599845	21,956764

Continuação da temperatura de 100°C

t	m (g)	m final	m (g)	M	M*	T(°C)	Dint.	Dext.	h	Sint.	Sext.	Scm=Sbx	Stotal
(min)	band	(g)	agua				(mm)	(mm)	(mm)	(mm²)	(mm²)	(mm²)	(mm²)
	+amostra	amostra											
0	156,334	122,886	22,853	0,228455	1	25,7	15,03	57,29	47,58	15718,5	8559,195	1335,158	26948,01
5	155,216	121,768	21,735	0,217278	0,948973	32,2	15,09	56,49	47,51	15758,03	8427,257	1253,773	26692,84
10	154,091	120,643	20,61	0,206032	0,897627	32,7	15,06	56,18	47,16	15610,85	8319,269	1231,325	26392,77
15	153,123	119,675	19,642	0,196355	0,853446	32,8	15,06	55,69	47,01	15561,19	8220,479	1188,294	26158,26
20	151,844	118,396	18,363	0,183569	0,795071	34,2	15,03	55,31	46,76	15447,61	8120,968	1160,143	25888,86
25	151,283	117,835	17,802	0,177961	0,769466	34,2	15,02	54,9	46,49	15348,19	8014,225	1126,324	25615,06
30	150,565	117,117	17,084	0,170784	0,736696	34,8	15,01	54,86	46,21	15245,59	7960,153	1124,527	25454,8
40	148,514	115,066	15,033	0,15028	0,643085	34,7	15,01	54,69	46,19	15239	7932,052	1109,908	25390,86
50	146,583	113,135	13,102	0,130977	0,554952	38,9	15,01	54,34	45,7	15077,33	7797,681	1079,952	25034,92
60	144,734	111,286	11,253	0,112493	0,470561	40	15	54,23	45,28	14928,82	7710,378	1072,226	24783,65
70	143,055	109,607	9,574	0,095708	0,39393	44	15	53,85	45,18	14895,85	7639,441	1039,986	24615,26
80	141,759	108,311	8,278	0,082753	0,334779	44,3	14,99	53,99	45,15	14876,03	7654,216	1053,485	24637,22
90	140,435	106,987	6,954	0,069517	0,27435	45,1	14,98	54,39	45,26	14902,33	7729,711	1089,163	24810,36
120	137,635	104,187	4,154	0,041526	0,146554	51	14,98	54,21	44,84	14764,04	7632,638	1073,818	24544,31
150	136,567	103,119	3,086	0,03085	0,097809	52,3	14,97	53,87	45,16	14859,47	7638,895	1046,617	24591,6
180	135,909	102,461	2,428	0,024272	0,067777	54,2	14,99	54,45	45,04	14839,79	7700,624	1092,643	24725,7
210	135,53	102,082	2,049	0,020483	0,050479	54,8	14,96	54,11	45,26	14882,43	7689,918	1068,606	24709,56
240	135,28	101,832	1,799	0,017984	0,039069	54,2	14,95	54,01	45,1	14819,91	7648,572	1061,762	24592
270	135,131	101,683	1,65	0,016495	0,032268	54,4	14,97	53,96	45,09	14836,44	7639,797	1054,236	24584,71
330	134,953	101,505	1,472	0,014715	0,024144	54,2	14,95	53,96	45,8	15049,93	7760,096	1057,524	24925,07
390	134,885	101,437	1,404	0,014035	0,021041	54,3	14,93	54,03	45,88	15056,05	7783,735	1066,742	24973,26
1830	134,424	100,976	0,943	0,009427	0	56,5	14,94	54,13	45,11	14813,28	7667,266	1073,591	24627,72
3270	133,481	100,033	0	0	0	90,2	14,91	53,96	45	14747,48	7624,548	1064,087	24500,2

B1- Cilindro vazado de sete furos - Temperatura de 60°C

Vint.	Vext.	Vtotal	V/V0	S/V
(mm ³)	(mm³)	(mm³)	(mm³)	
59062,26	122589,1	63526,8	1	0,424199
59447,17	119013,9	59566,77	0,937664	0,448116
58774,84	116844,1	58069,3	0,914091	0,454504
58587,89	114449,6	55861,72	0,879341	0,468268
58044,38	112292,7	54248,31	0,853944	0,477228
57632,45	109995,2	52362,79	0,824263	0,489184
57209,09	109173,5	51964,41	0,817992	0,489850
57184,33	108451	51266,65	0,807008	0,495270
56577,7	105931,5	49353,8	0,776897	0,507254
55983,06	104533,4	48550,39	0,76425	0,510472
55859,42	102846	46986,55	0,739634	0,523878
55747,93	103312,8	47564,86	0,748737	0,517971
55809,21	105104,7	49295,54	0,77598	0,503298
55291,32	103441,3	48150,01	0,757948	0,509746
55611,58	102876,8	47265,24	0,74402	0,520289
55612,11	104824,7	49212,64	0,774675	0,502425
55660,29	104025,4	48365,09	0,761334	0,510896
55389,4	103274,8	47885,45	0,753783	0,513558
55525,38	103060,9	47535,48	0,748274	0,517186
56249,1	104683,7	48434,59	0,762428	0,514613
56196,69	105138,8	48942,11	0,770417	0,510261
55327,59	103757,3	48429,68	0,76235	0,508525
54971,24	102855,2	47883,92	0,753759	0,511658

Continuação da temperatura de 60°C
t	m (g)	m final	m (g)	Μ	M*	Т	Dint.	Dext.	h	Sint.	Sext.	Scm=Sbx	Stotal
(min	band +	(g)	agua			(°C)	(mm)	(mm)	(mm)	(mm²)	(mm²)	(mm²)	(mm²)
)	amostra	amostra											
0	158,607	125,165	17,543	0,163006	1	27	15,46	57,43	47,79	251063,6	494930,6	2401,467	750797,1
5	157,182	123,74	16,118	0,149765	0,91543	33,5	15,4	56,37	46,3	241351,6	461962,5	2308,227	707930,5
10	156,004	122,562	14,94	0,138819	0,845519	34,1	15,38	55,77	45,92	238749,4	448469,4	2255,893	691730,6
15	154,774	121,332	13,71	0,12739	0,772522	35,5	14,75	55,88	45,59	218012,5	447004,6	2280,434	669578
20	153,609	120,167	12,545	0,116565	0,703383	37,9	14,72	55,91	45,39	216174	445521,7	2283,761	666263,2
25	152,455	119,013	11,391	0,105843	0,634896	37,3	14,52	56,02	45,24	209644,5	445798,3	2298,017	660038,9
30	151,404	117,962	10,34	0,096077	0,572522	40,6	14,52	56	45,1	208995,8	444101,5	2296,258	657689,8
40	149,389	115,947	8,325	0,077354	0,452938	47,2	14,39	55,73	44,98	204724	438659,1	2275,527	647934,2
50	147,718	114,276	6,654	0,061828	0,353769	51,1	14,34	55,7	44,96	203213,4	437992,2	2274,031	645753,6
60	146,413	112,971	5,349	0,049702	0,276321	55,5	14,53	55,69	44,83	208030,8	436568,9	2268,85	649137,4
70	145,425	111,983	4,361	0,040521	0,217685	58,7	14,54	55,67	44,86	208456,7	436547,4	2266,874	649537,8
80	144,688	111,246	3,624	0,033673	0,173947	60,8	14,49	55,59	45,76	211178,9	444026,6	2261,026	659727,6
90	144,12	110,678	3,056	0,028396	0,140237	62	14,52	55,65	44,82	207698,2	435844,8	2265,582	648074,2
120	143,045	109,603	1,981	0,018407	0,076439	64	14,58	55,58	44,91	209838,8	435622	2258,1	649977
150	142,488	109,046	1,424	0,013231	0,043383	65,5	14,72	55,66	44,87	213697,5	436487,8	2261,865	654709
180	142,16	108,718	1,096	0,010184	0,023917	66,8	14,53	55,52	44,86	208170	434198	2254,009	646876,1
210	141,965	108,523	0,901	0,008372	0,012344	65,8	14,62	55,69	44,8	210475	436276,8	2266,791	651285,3
240	141,844	108,402	0,78	0,007248	0,005163	66,3	14,66	55,53	44,75	211392,1	433289,4	2251,902	649185,2
270	141,757	108,315	0,693	0,006439	2,48E-08	65,9	14,65	55,67	44,86	211622,7	436547,4	2264,353	652698,7
1710	141,383	107,941	0,319	0,002964	-0,0222	66,5	14,52	55,74	44,79	207559,2	436963	2273,452	649069,1
3150	141,064	107,622	0	0	-0,04113	93,5	14,32	55,69	44,55	200798,9	433842,2	2273,606	639188,4

B2 - Cilindro vazado de sete furos - Temperatura de $70^{\rm o}{\rm C}$

Vint.	Vext.	Vtotal	V/V0	S/V
(mm ³)	(mm ³)	(mm ³)		
62765,89	123732,7	60966,76	1	12,314859
60337,89	115490,6	55152,73	0,904636	12,835819
59687,34	112117,4	52430,01	0,859977	13,193409
54503,12	111751,2	57248,05	0,939004	11,696083
54043,5	111380,4	57336,91	0,940462	11,620144
52411,13	111449,6	59038,46	0,968371	11,179812
52248,94	111025,4	58776,44	0,964074	11,189684
51181	109664,8	58483,79	0,959273	11,078868
50803,34	109498	58694,7	0,962733	11,001906
52007,7	109142,2	57134,53	0,937142	11,361560
52114,16	109136,8	57022,67	0,935308	11,390869
52794,72	111006,7	58211,94	0,954814	11,333200
51924,55	108961,2	57036,64	0,935537	11,362418
52459,7	108905,5	56445,8	0,925845	11,515064
53424,37	109122	55697,59	0,913573	11,754709
52042,51	108549,5	56507	0,926849	11,447716
52618,74	109069,2	56450,45	0,925922	11,537291
52848,01	108322,3	55474,33	0,909911	11,702443
52905,67	109136,8	56231,17	0,922325	11,607418
51889,8	109240,7	57350,94	0,940692	11,317497
50199,74	108460,5	58260,81	0,955616	10,971155

Continuação da temperatura de 70°C

t	m (g)	m final	m (g)	Μ	M*	$T(^{\circ}C)$	Dint.	Dext.	h	Sint.	Sext.	Scm=Sbx	Stotal
(min)	band	(g)	agua				(mm)	(mm)	(mm)	(mm²)	(mm²)	(mm²)	(mm²)
	+amostra	amostra											
0	157,667	124,218	22,769	0,224438	1,000004	27,5	15,47	57,36	49,05	16678,5	8834,415	1267,715	28048,35
5	155,763	122,314	20,865	0,20567	0,914242	33,7	15,8	56,36	49,23	17096,79	8712,253	1121,741	28052,53
10	154,391	120,942	19,493	0,192146	0,852443	34,8	15,76	55,63	48,79	16901,09	8522,549	1064,502	27552,64
15	152,971	119,522	18,073	0,178149	0,788481	35,3	15,73	55,29	48,84	16886,21	8479,142	1040,089	27445,52
20	151,559	118,11	16,661	0,16423	0,72488	36,7	15,7	54,94	48,2	16633,15	8315,059	1014,984	26978,17
25	150,47	117,021	15,572	0,153496	0,675828	37	15,7	54,73	48,09	16595,19	8264,372	996,9052	26853,37
30	149,248	115,799	14,35	0,14145	0,620785	37,9	15,75	54,9	47,99	16613,42	8272,804	1002,894	26892,01
40	146,518	113,069	11,62	0,11454	0,497817	43	15,38	54,63	47,4	16023,68	8130,911	1042,971	26240,54
50	144,111	110,662	9,213	0,090814	0,389398	47,1	15,6	54,28	47,19	16180,88	8043,026	975,5967	26175,1
60	142,083	108,634	7,185	0,070824	0,298051	51,5	15,57	54,72	46,98	16077,9	8072,141	1018,384	26186,81
70	140,558	107,109	5,66	0,055792	0,22936	57,6	15,51	54,6	47,3	16125,03	8109,301	1018,333	26271
80	139,423	105,974	4,525	0,044604	0,178236	60,1	15,51	54,33	47,09	16053,44	8033,375	995,2451	26077,31
90	138,585	105,136	3,687	0,036343	0,14049	60,9	15,4	54,68	46,58	15766,96	7997,562	1043,879	25852,28
120	137,035	103,586	2,137	0,021065	0,070673	69,1	15,28	54,55	46,92	15758,29	8036,786	1052,963	25901
150	136,383	102,934	1,485	0,014638	0,041304	70,8	15,2	54,69	46,95	15685,81	8062,564	1078,367	25905,11
180	136,078	102,629	1,18	0,011631	0,027566	72,3	15,13	54,37	46,79	15560,36	7988,073	1062,638	25673,71
210	135,906	102,457	1,008	0,009936	0,019819	72,4	15,05	54,22	47,57	15736,11	8098,831	1063,118	25961,18
240	135,822	102,373	0,924	0,009108	0,016035	72,5	14,96	54,46	47,11	15490,75	8056,017	1098,435	25743,64
270	135,796	102,347	0,898	0,008852	0,014864	72,8	14,87	54,46	46,94	15341,99	8026,947	1113,188	25595,31
1710	135,466	102,017	0,568	0,005599	-1,3E-07	72,7	14,88	54,46	46,87	15329,41	8014,976	1111,553	25567,5
3150	134,898	101,449	0	0	-0,02558	97	14,85	54,78	46,9	15308,3	8067,231	1143,895	25663,32

B3 - Cilindro vazado de sete furos - Temperatura de $80^{\rm o}{\rm C}$

Vint.	Vext.	Vtotal	V/V0	S/V
(mm ³)	(mm ³)	(mm ³)	(mm ³)	
64504,1	126685,5	62181,41	1	0,451072
67532,33	122755,6	55223,32	0,8881	0,507983
66590,3	118527,4	51937,06	0,835251	0,530500
66405	117202,9	50797,93	0,816931	0,540288
65285,09	114207,3	48922,24	0,786766	0,551450
65136,1	113077,3	47941,17	0,770989	0,560131
65415,33	113544,2	48128,9	0,774008	0,558749
61611,06	111047,9	49436,85	0,795042	0,530789
63105,45	109143,9	46038,41	0,740389	0,568549
62583,22	110426,9	47843,67	0,769421	0,547341
62524,82	110692	48167,14	0,774623	0,545413
62247,22	109113,3	46866,09	0,753699	0,556421
60702,79	109326,7	48623,89	0,781968	0,531678
60196,66	109601,7	49405,01	0,79453	0,524258
59606,07	110235,4	50629,34	0,81422	0,511662
58857,06	108577,9	49720,82	0,799609	0,516357
59207,11	109779,6	50572,54	0,813306	0,513345
57935,4	109682,7	51747,28	0,832199	0,497487
57033,85	109286,9	52253,02	0,840332	0,489834
57025,42	109123,9	52098,48	0,837847	0,490753
56832,07	110480,7	53648,67	0,862777	0,478358

Continuação da temperatura de 80°C

t	m (g)	m final	m (g)	Μ	M*	Т	Dint.	Dext.	h	Sint.	Sext.	Scm=Sbx	Stotal
(min	band +	(g)	agua			(°C)	(mm)	(mm)	(mm)	(mm²)	(mm²)	(mm²)	(mm²)
)	amostra	amostra											
0	163,16	129,711	21,373	0,197281	1	26	14,73	57,83	46,48	221666,1	488092,5	2454,959	714668,5
5	161,23	127,781	19,443	0,179466	0,906433	38,6	14,7	57,3	47,39	225086,3	488568,7	2407,752	718470,5
10	159,5	126,051	17,713	0,163498	0,822563	41,6	14,46	56,45	47,14	216647,6	471679,6	2337,346	693001,9
15	157,98	124,531	16,193	0,149467	0,748873	41,5	14,8	55,18	46,18	222333,6	441516,5	2218,247	668286,6
20	156,412	122,963	14,625	0,134994	0,672856	45,7	14,31	55,82	46,38	208755,4	453774,5	2285,211	667100,3
25	154,736	121,287	12,949	0,119524	0,591603	48,4	14,6	54,91	46,23	216599,4	437679,7	2199,529	658678,2
30	153,52	120,071	11,733	0,1083	0,532651	50	14,29	54,73	45,29	203279,9	425973,8	2191,068	633635,8
40	150,744	117,295	8,957	0,082676	0,39807	60,9	14,39	55,75	45,67	207864,5	445708	2277,277	658127
50	148,522	115,073	6,735	0,062167	0,290347	66,5	14,06	54,88	44,86	194920,5	424245,4	2209,093	623584,1
60	146,954	113,505	5,167	0,047693	0,214331	71,2	14,04	55,56	45,39	196662,7	439961,1	2268,487	641160,8
70	145,821	112,372	4,034	0,037235	0,159403	76	13,77	55,59	45,6	190046,7	442474,1	2276,999	637074,8
80	145,005	111,556	3,218	0,029703	0,119843	78,6	13,75	55,83	44,38	184425,3	434362,4	2298,422	623384,5
90	144,431	110,982	2,644	0,024405	0,092015	79,4	13,76	55,66	44,18	183861,3	429775,6	2283,328	618203,5
120	143,225	109,776	1,438	0,013273	0,033548	84,4	13,79	55,55	44,78	187171,8	433892,2	2273,076	625610,1
150	142,815	109,366	1,028	0,009489	0,013671	85	14,05	55,59	44,43	192777,6	431121,1	2270,884	628440,5
180	142,606	109,157	0,819	0,00756	0,003539	85,1	13,77	55,67	44,19	184170,3	430027,4	2283,986	618765,6
210	142,533	109,084	0,746	0,006886	-2,2E-07	84,8	13,88	55,69	44,21	187209,2	430531,2	2283,347	622307
1650	142,07	108,621	0,283	0,002612	-0,02245	85,7	13,86	55,5	44,59	188274,6	431273,8	2267,198	624082,8
3090	141,787	108,338	0	0	-0,03617	102,7	13,65	55,56	44,24	181179,1	428814,3	2276,964	614547,3

B4 - Cilindro vazado de sete furos - Temperatura de $90^{\rm o}{\rm C}$

Vint		Vext.	Vtotal	V/V0	S/V
(mm	3)	(mm ³)	(mm³)		
55416	,53	122023,1	66606,6	1	10,729694
56271	,58	122142,2	65870,59	0,98895	10,907303
5416	1,9	117919,9	63758,01	0,957233	10,869252
55583	,39	110379,1	54795,74	0,822677	12,195959
52188	,85	113443,6	61254,77	0,91965	10,890585
54149	,86	109419,9	55270,08	0,829799	11,917446
50819	,98	106493,4	55673,47	0,835855	11,381288
51966	,12	111427	59460,87	0,892717	11,068236
48730	,13	106061,3	57331,21	0,860744	10,876869
49165	,69	109990,3	60824,6	0,913192	10,541142
47511	,68	110618,5	63106,84	0,947456	10,095178
46106	,31	108590,6	62484,28	0,938109	9,9766613
45965	,32	107443,9	61478,58	0,92301	10,055591
46792	,94	108473,1	61680,12	0,926036	10,142815
48194	,41	107780,3	59585,87	0,894594	10,546804
46042	,57	107506,8	61464,27	0,922795	10,067077
46802	,29	107632,8	60830,5	0,91328	10,230180
47068	,64	107818,5	60749,81	0,912069	10,273000
45294	,78	107203,6	61908,79	0,929469	9,9266566

Continuação da temperatura de 90°C

t	m (g) band	m final	m (g)	M	M*	T(°C)	Dint.	Dext.	h	Sint.	Sext.	Scm=Sbx	Stotal
(min)	+amostra	(g)	agua				(mm)	(mm)	(mm)	(mm²)	(mm²)	(mm²)	(mm²)
		amostra											
0	154,582	121,096	22,866	0,23278	1	25,6	13,58	57,93	46,73	13948,36	8500,196	1621,002	25690,56
5	152,004	118,518	20,288	0,206536	0,886447	42	13,89	56,57	46,7	14257,61	8295,312	1451,968	25456,86
10	149,814	116,328	18,098	0,184241	0,789984	46,9	13,8	56,1	45,66	13849,77	8043,192	1424,092	24741,15
15	147,6	114,114	15,884	0,161702	0,692464	52,3	13,81	55,8	45,36	13768,75	7947,616	1396,222	24508,81
20	145,688	112,202	13,972	0,142238	0,608246	54,8	13,8	56,02	44,28	13431,19	7788,976	1417,051	24054,26
25	143,769	110,283	12,053	0,122702	0,523719	59,7	13,76	55,36	44,93	13588,84	7810,2	1365,403	24129,85
30	140,927	107,441	9,211	0,09377	0,398538	63,3	13,67	55,2	44,7	13430,86	7747,762	1365,082	23908,78
40	138,94	105,454	7,224	0,073542	0,311016	68,4	13,68	55,59	44	13230,2	7680,314	1397,497	23705,51
50	136,642	103,156	4,926	0,050148	0,209796	78,2	13,65	55,41	43,69	13108,18	7601,51	1386,318	23482,33
60	135,138	101,652	3,422	0,034837	0,143549	82,2	13,48	55,89	43,96	13024,93	7714,743	1453,6	23646,87
70	134,147	100,661	2,431	0,024748	0,099899	84,8	13,26	55,02	44,21	12885,22	7637,843	1410,18	23343,42
80	133,487	100,001	1,771	0,018029	0,070828	85,5	13,09	55,3	43,48	12509,99	7549,954	1459,043	22978,03
90	133,129	99,643	1,413	0,014385	0,055059	86,5	13,29	55,02	43,5	12706,97	7515,182	1405,803	23033,76
120	132,416	98,93	0,7	0,007126	0,023653	87,1	13,13	55,91	44,32	12790,64	7780,704	1506,533	23584,41
150	132,156	98,67	0,44	0,004479	0,012201	87,5	13,03	55,6	43,61	12489,88	7613,608	1493,772	23091,03
180	132,035	98,549	0,319	0,003247	0,006871	86,9	13,09	55,84	43,37	12478,34	7604,392	1506,155	23095,04
210	131,987	98,501	0,271	0,002759	0,004757	87,5	13,04	55,87	43,23	12390,55	7583,917	1515,965	23006,39
240	131,926	98,44	0,21	0,002138	0,00207	86,8	13,04	55,54	44,12	12645,64	7694,334	1487,104	23314,18
270	131,91	98,424	0,194	0,001975	0,001365	90,9	12,99	55,78	43,42	12397,29	7604,978	1515,229	23032,72
330	131,879	98,393	0,163	0,001659	0	89,94	13	55,84	44,11	12603,99	7734,142	1519,058	23376,25
1770	131,695	98,209	0	0	0	90,2	12,98	55,89	43,69	12464,77	7667,359	1526,299	23184,73
3210	131,716	98,23	0	0	0	90,2	12,93	55,84	43,26	12294,55	7585,105	1529,032	22937,72

B5 - Cilindro vazado de sete furos - Temperatura de $100^{\rm o}{\rm C}$

Vint.	Vext.	Vtotal	V/V0	S/V
(mm³)	(mm³)	(mm³)	(mm³)	
47354,69	123104,1	75749,4	1	0,339151
49509,56	117316,4	67806,88	0,895147	0,375431
47781,72	112805,8	65024,04	0,85841	0,380492
47536,6	110869,2	63332,65	0,836081	0,386985
46337,59	109084,6	62747,01	0,82835	0,383353
46745,63	108093,2	61347,54	0,809875	0,393330
45899,95	106919,1	61019,16	0,80554	0,391824
45247,29	106737,2	61489,88	0,811754	0,385518
44731,66	105299,9	60568,25	0,799587	0,387700
43894	107794,2	63900,24	0,843574	0,370059
42714,49	105058,5	62344,04	0,82303	0,374429
40938,93	104378,1	63439,18	0,837488	0,362205
42218,9	103371,3	61152,43	0,807299	0,376661
41985,27	108754,8	66769,52	0,881453	0,353221
40685,78	105829,2	65143,38	0,859985	0,354464
40835,36	106157,3	65321,95	0,862343	0,353557
40393,19	105928,4	65535,17	0,865158	0,351054
41224,78	106835,8	65611,04	0,866159	0,355339
40260,19	106051,4	65791,23	0,868538	0,350087
40962,97	107968,6	67005,64	0,88457	0,348869
40448,19	107132,2	66683,98	0,880324	0,347680
39742,14	105888,1	66145,92	0,87322	0,346774

Continuação da temperatura de 100°C

t (min)	m (g) band	m final	m (g)	Μ	M*	T(°C)	Dint.	Dext.	h	Vint.	Vext.	Vbarra
	+amostra	(g)	agua				(mm)	(mm)	(mm)	(mm ³)	(mm ³)	(mm ³)
		amostra										
0	56,139	22,659	3,663	0,19283	1	25,7	22,75	29,19	48,98	19899,92	32760,96	1510,249
5	55,501	22,021	3,025	0,159244	0,81345	35,9	23,93	28,13	47,5	21352,5	29505,48	1565,505
10	54,962	21,482	2,486	0,13087	0,655848	38,1	23,9	28	47,28	21200,34	29098	1555,701
15	54,559	21,079	2,083	0,109655	0,538012	41,9	23,87	27,77	47,92	21433,41	29009,37	1574,172
20	54,235	20,755	1,759	0,092598	0,443275	46,3	23,8	28,73	47,69	21205,62	30900,69	1560,608
25	53,923	20,443	1,447	0,076174	0,352047	48	23,79	27,41	46,12	20490,28	27200,51	1508,401
30	53,729	20,249	1,253	0,065961	0,295321	49,3	23,71	27,97	47,18	20820,48	28974,27	1536,275
40	53,372	19,892	0,896	0,047168	0,190935	53,6	23,5	27,49	45,68	19803,02	27098,5	1470,165
50	53,098	19,618	0,622	0,032744	0,110819	55,7	23,53	27,34	45,89	19944,89	26926,8	1479,402
60	52,946	19,466	0,47	0,024742	0,066374	55	23,33	27,28	45,92	19620,09	26826,27	1463,838
70	52,871	19,391	0,395	0,020794	0,044444	55,3	23,21	27,47	45,85	19389,17	27159,78	1451,703
80	52,829	19,349	0,353	0,018583	0,032164	55,2	23,5	27,33	46,07	19972,09	27012,65	1482,717
90	52,796	19,316	0,32	0,016846	0,022514	55	23,23	27,25	45,8	19401,42	26697,35	1451,768
120	52,755	19,275	0,279	0,014687	0,010526	55,3	23,18	27,13	45,97	19389,7	26560,96	1453,02
150	52,741	19,261	0,265	0,01395	0,006433	55,4	23,04	27,4	46,15	19231,2	27198,35	1447,079
180	52,738	19,258	0,262	0,013792	0,005555	55,6	22,98	27,34	47,7	19773,71	27988,85	1490,53
1620	52,719	19,239	0,243	0,012792	0	55,6	22,9	27,36	45,8	18854,11	26913,32	1424,563
3060	52,476	18,996	0	0	0	92,9	22,9	27,27	45,83	18866,46	26754,07	1425,496

C1 - Cilindro vazado com barra transversal - Temperatura de $60^{\rm o}{\rm C}$

Vtubo	Vtraveco	Vtotal	V/V0	Sext.	Sint.	Sbarra	Slateral	Scalota	Stotal	S/V
(mm ³)	(mm ³)	(mm ³)	(mm ³)	(mm²)	(mm²)	(mm²)	(mm²)	(mm²)	(mm²)	
216,0851	3236,584	16097,63	1	4489,34	3498,886	1678,055	352,656	28077,3	37390,92	2,322759
209,5558	3340,566	11493,55	0,71399	4195,59	3569,16	1739,45	342	27228,9	36391,1	3,166219
208,5852	3319,987	11217,65	0,696851	4156,858	3548,175	1728,557	340,416	27102,79	36195,96	3,226697
211,4087	3359,753	10935,71	0,679336	4178,519	3591,69	1749,08	345,024	27469,66	36643,93	3,350850
210,394	3331,609	13026,69	0,80923	4302,22	3563,969	1734,008	343,368	27337,82	36594,64	2,809204
203,4676	3220,269	9930,5	0,616892	3969,428	3445,192	1676,001	332,064	26437,83	35196,39	3,544271
208,144	3280,694	11434,49	0,710321	4143,621	3512,523	1706,972	339,696	27045,46	36068,88	3,154393
201,5265	3141,857	10437,33	0,648377	3943,034	3370,727	1633,517	328,896	26185,6	34803,98	3,334567
202,4529	3161,257	10143,17	0,630103	3939,546	3390,546	1643,78	330,408	26305,98	34949,45	3,445614
202,5853	3130,261	10336,44	0,642109	3933,47	3363,925	1626,486	330,624	26323,18	34916,44	3,377994
202,2764	3105,682	10876,29	0,675646	3954,828	3341,52	1613,003	330,12	26283,05	34862,29	3,205347
203,247	3168,681	10209,23	0,634207	3953,552	3399,505	1647,463	331,704	26409,17	35077,98	3,435908
202,0559	3105,593	10401,52	0,646152	3918,877	3340,753	1613,076	329,76	26254,39	34797,34	3,345409
202,8058	3108,845	10280,11	0,63861	3916,102	3345,936	1614,466	330,984	26351,84	34897,36	3,394648
203,6	3097,759	11064,91	0,687363	3970,561	3338,749	1607,866	332,28	26455,03	35039,92	3,166760
210,4381	3191,497	11406,64	0,708591	4094,931	3441,898	1656,144	343,44	27343,55	36193,08	3,172983
202,0559	3051,182	11110,39	0,690188	3934,696	3293,295	1582,848	329,76	26254,39	34735,47	3,126395
202,1882	3053,181	10940,78	0,679652	3924,322	3295,452	1583,885	329,976	26271,59	34745,27	3,175758

Continuação da temperatura de 60°C

t	m (g)	m final	m (g)	М	M*	Т	Dint.	Dext.	h	Vint.	Vext.	Vbarra	Vtubo
(min)	band +	(g)	agua			(°C)	(mm)	(mm)	(mm)	(mm ³)	(mm ³)	(mm³)	(mm ³)
	amostra	amostra											
0	54,751	21,313	2,108	0,109763	1	27,3	23,14	27,26	46,64	19604,46	27206,95	1470,839	205,7617
5	54,229	20,791	1,586	0,082583	0,713029	37,4	23,08	27,07	46,5	19444,39	26748,48	1461,402	205,1441
10	53,94	20,502	1,297	0,067534	0,55415	40,3	23,07	27,12	46,3	19343,98	26731,91	1454,283	204,2617
15	53,719	20,281	1,076	0,056027	0,432655	42,8	23,06	27,03	46,34	19343,91	26577,72	1454,705	204,4382
20	53,531	20,093	0,888	0,046238	0,329302	49	23,05	26,98	46,15	19247,89	26370,92	1447,91	203,6
25	53,408	19,97	0,765	0,039833	0,261682	47,7	23,05	26,87	46,19	19264,58	26178,99	1449,165	203,7764
30	53,325	19,887	0,682	0,035512	0,216052	51,3	23,04	26,95	46,12	19218,7	26295,2	1446,139	203,4676
40	53,141	19,703	0,498	0,025931	0,114898	56,8	23,03	26,89	46,06	19177,04	26144,19	1443,428	203,2029
50	53,05	19,612	0,407	0,021192	0,06487	60,2	23,02	26,88	46,08	19168,7	26136,09	1443,226	203,2911
60	52,995	19,557	0,352	0,018329	0,034634	58	23	26,98	46,08	19135,41	26330,92	1441,567	203,2911
70	52,965	19,527	0,322	0,016766	0,018141	59,6	22,98	26,93	46,07	19098	26227,72	1439,595	203,247
80	52,942	19,504	0,299	0,015569	0,005497	60,9	22,99	26,84	46,12	19135,37	26080,98	1441,988	203,4676
90	52,932	19,494	0,289	0,015048	-3,7E-07	61,4	22,93	26,87	45,99	18981,97	26065,64	1432,956	202,8941
1530	52,86	19,422	0,217	0,011299	-0,03958	63,5	22,9	26,85	45,9	18895,28	25975,92	1427,674	202,497
2970	52,643	19,205	0	0	-0,15888	96,5	22,88	26,84	45,79	18817,08	25894,37	1422,604	202,0117

C2 - Cilindro vazado com barra transversal - Temperatura de 70°C

Vtraveco	Vtotal	V/V0	Sext.	Sint.	Sbarra	Slateral	Scalota	Stotal	S/V
(mm ³)	(mm³)		(mm²)	(mm²)	(mm²)	(mm²)	(mm²)	(mm²)	
3147,44	10749,93	1	3992,216	3388,844	1634,266	335,808	26735,91	35415,43	3,294480
3127,948	10432,04	0,970429	3952,491	3369,911	1623,78	334,8	26655,66	35267,04	3,380646
3112,828	10500,76	0,976821	3942,76	3353,963	1615,87	333,36	26541,01	35120,24	3,344542
3113,849	10347,66	0,962579	3933,07	3355,405	1616,339	333,648	26563,94	35135,11	3,395464
3099,42	10222,44	0,950931	3909,699	3340,199	1608,789	332,28	26455,03	34981,43	3,422023
3102,107	10016,52	0,931776	3897,133	3343,094	1610,183	332,568	26477,96	34995,8	3,493808
3095,745	10172,25	0,946262	3902,813	3336,579	1606,821	332,064	26437,83	34951,98	3,436012
3090,059	10057,21	0,935561	3889,058	3330,792	1603,809	331,632	26403,43	34895,46	3,469695
3089,742	10057,13	0,935553	3889,299	3330,791	1603,584	331,776	26414,9	34906,8	3,470851
3086,425	10281,93	0,956465	3903,769	3327,898	1601,741	331,776	26414,9	34916,53	3,395912
3082,438	10212,16	0,949974	3895,688	3324,282	1599,55	331,704	26409,17	34896,98	3,417198
3087,443	10033,06	0,933314	3886,883	3329,338	1602,209	332,064	26437,83	34924,19	3,480911
3068,807	10152,48	0,944423	3880,259	3311,289	1592,174	331,128	26363,31	34815,9	3,429300
3057,844	10138,48	0,943121	3869,783	3300,485	1586,304	330,48	26311,72	34737,81	3,426333
3047,219	10124,5	0,94182	3859,071	3289,7	1580,671	329,688	26248,66	34648,41	3,422234

Continuação da temperatura de 70°C

t	m (g)	m final	m (g)	Μ	M*	T(°C)	Dint.	Dext.	h (mm)	Vint.	Vext.	Vbarra	Vtubo
(min)	band	(g)	agua				(mm)	(mm)		(mm³)	(mm³)	(mm³)	(mm³)
	+amostra	amostra											
0	56,768	23,325	3,398	0,170522	1	28,4	21,74	28,46	49,3	18290,92	31346,31	1430,489	217,4968
5	55,794	22,351	2,424	0,121644	0,709687	39,5	20,92	27,8	49,58	17033,33	30079,16	1365,433	218,7321
10	55,274	21,831	1,904	0,095549	0,554694	45,1	20,85	27,53	48,75	16636,29	29003,92	1336,433	215,0704
15	54,837	21,394	1,467	0,073619	0,424441	53,1	20,46	27,37	48,45	15921,16	28491,35	1294,196	213,7469
20	54,466	21,023	1,096	0,055001	0,31386	54	21,66	27,26	48,53	17872,98	28309,46	1401,158	214,0998
25	54,211	20,768	0,841	0,042204	0,237854	54,7	20,36	27,3	48,2	15684,56	28199,54	1278,842	212,6439
30	54,002	20,559	0,632	0,031716	0,175559	62,7	20,78	27,41	46,46	15748,53	27401,03	1267,8	204,9676
40	53,721	20,278	0,351	0,017614	0,091803	62,3	21,07	27,44	46,68	16267,83	27591,08	1298,171	205,9382
50	53,594	20,151	0,224	0,011241	0,053949	62,3	20,52	27,85	46,4	15337,07	28251,27	1244,448	204,7029
60	53,634	20,191	0,264	0,013248	0,065872	62,7	21,3	27,36	46,64	16610,68	27406,93	1316,367	205,7617
70	53,498	20,055	0,128	0,006423	0,025335	66,5	21,43	27,3	47,57	17149,33	27830,95	1353,747	209,8646
80	53,478	20,035	0,108	0,00542	0,019374	71,2	20,12	27,3	46,66	14827,58	27298,56	1217,826	205,8499
90	53,471	20,028	0,101	0,005069	0,017287	71,3	20,98	27,31	47,48	16405,57	27798,65	1312,727	209,4675
120	53,438	19,995	0,068	0,003412	0,007451	71,4	21,08	27,25	48,23	16823,96	28113,82	1342,144	212,7763
150	53,438	19,995	0,068	0,003412	0,007451	71,7	20,71	27,24	46,59	15686,37	27137,92	1265,478	205,5411
1590	53,413	19,97	0,043	0,002158	0	70,5	20,51	27,24	46,37	15312,22	27009,77	1242,809	204,5705
3030	53,37	19,927	0	0	0	93,6	20,58	27,24	46,51	15463,46	27091,32	1252,421	205,1882

C3 - Cilindro vazado com barra transversal - Temperatura de 80°C

Vtraveco	Vtotal	V/V0	Sext.	Sint.	Sbarra	Slateral	Scalota	Stotal	S/V
(mm ³)	(mm ³)	(mm ³)	(mm²)	(mm²)	(mm²)	(mm²)	(mm²)	(mm²)	
3078,474	16133,86	1	4405,665	3365,395	1589,432	354,96	28260,73	37266,26	2,309816
2949,598	15995,43	0,99142	4327,937	3256,851	1517,148	356,976	28421,24	37166,2	2,323551
2887,935	15255,57	0,945562	4214,155	3191,614	1484,925	351	27945,45	36485,14	2,391594
2802,14	15372,33	0,9528	4163,88	3112,641	1437,996	348,84	27773,48	36139,16	2,350922
3016,416	13452,91	0,833831	4153,993	3300,642	1556,842	349,416	27819,34	36481,4	2,711785
2770,329	15285,31	0,947406	4131,8	3081,445	1420,936	347,04	27630,17	35917,31	2,349792
2740,569	14393,07	0,892104	3998,691	3031,478	1408,667	334,512	26632,73	34737,05	2,413456
2802,28	14125,53	0,875521	4022,023	3088,339	1442,412	336,096	26758,84	34975,52	2,476050
2693,599	15607,8	0,967395	4057,634	2989,682	1382,72	334,08	26598,34	34694,29	2,222881
2838,496	13634,75	0,845102	4006,861	3119,376	1462,63	335,808	26735,91	34988,97	2,566161
2917,359	13598,98	0,842885	4077,796	3200,995	1504,163	342,504	27269,03	35709,48	2,625894
2641,502	15112,48	0,936693	3999,789	2947,829	1353,14	335,952	26747,38	34712,18	2,296921
2834,922	14228,01	0,881873	4071,571	3127,849	1458,586	341,856	27217,44	35533,59	2,497439
2897,065	14186,93	0,879327	4126,8	3192,402	1491,272	347,256	27647,37	36110,58	2,545341
2736,496	14188,04	0,879396	3985,01	3029,72	1406,086	335,448	26707,25	34792,62	2,452249
2690,188	14387,75	0,891774	3966,193	2986,293	1380,899	333,864	26581,14	34580,66	2,403479
2710,031	14337,89	0,888683	3978,168	3005,532	1391,579	334,872	26661,39	34701,8	2,420286

Continuação da temperatura de 80°C

t	m (g)	m final	m (g)	М	M*	T (°C)	Dint.	Dext.	h (mm)	Vint.	Vext.	Vbarra	Vtubo
(min)	band +	(g)	agua				(mm)	(mm)		(mm ³)	(mm ³)	(mm ³)	(mm ³)
	amostra	amostra											
0	55,552	22,105	2,48	0,126369	1	26,7	23,59	27,17	47	20531,63	27236,22	1520,262	207,3499
5	54,906	21,459	1,834	0,093452	0,709663	40,4	23,5	27,06	46,8	20288,56	26901,17	1506,211	206,4676
10	54,457	21,01	1,385	0,070573	0,507865	45,7	23,49	26,9	46,53	20154,35	26430,62	1496,684	205,2764
15	54,128	20,681	1,056	0,053809	0,36	48,8	23,48	26,88	46,23	20007,36	26221,17	1486,202	203,9529
20	53,887	20,44	0,815	0,041529	0,251686	56	23,47	26,87	46,22	19986	26196	1485,049	203,9088
25	53,73	20,283	0,658	0,033529	0,181124	57,06	23,46	26,8	46,22	19968,97	26059,69	1484,217	203,9088
30	53,64	20,193	0,568	0,028943	0,140674	57,02	23,38	26,79	46,2	19824,43	26028,97	1476,922	203,8205
40	53,472	20,025	0,4	0,020382	0,065169	62,8	23,25	26,78	46,2	19604,58	26009,55	1466,111	203,8205
50	53,393	19,946	0,321	0,016357	0,029663	67	23,14	26,79	46,19	19415,31	26023,34	1456,648	203,7764
60	53,354	19,907	0,282	0,014369	0,012135	69	23,1	26,77	46,18	19344,06	25978,87	1453,008	203,7323
70	53,332	19,885	0,26	0,013248	0,002247	75,3	23,04	26,76	46,2	19252,03	25970,71	1448,647	203,8205
80	53,327	19,88	0,255	0,012994	2,7E-07	81,2	23,26	26,76	46,18	19612,95	25959,47	1466,307	203,7323
1520	53,288	19,841	0,216	0,011006	-0,01753	85,7	22,97	26,77	46,16	19118,66	25967,62	1441,577	203,6441
2960	53,072	19,625	0	0	-0,11461	98,9	23,1	26,76	46,16	19335,68	25948,23	1452,378	203,6441

C4 - Cilindro vazado com barra transversal - Temperatura de 90°C

Vtraveco	Vtotal	V/V0	Sext.	Sint.	Sbarra	Slateral	Scalota	Stotal	S/V
(mm³)	(mm³)		(mm²)	(mm²)	(mm²)	(mm²)	(mm²)	(mm²)	
3247,874	9952,463	1	4009,749	3481,412	1689,18	338,4	26942,28	35784,22	3,595513
3218,89	9831,495	0,987845	3976,521	3453,372	1673,568	336,96	26827,63	35594,13	3,620418
3198,644	9474,912	0,952017	3930,203	3431,988	1662,982	335,016	26672,86	35363,01	3,732278
3176,357	9390,17	0,943502	3901,96	3408,408	1651,336	332,856	26500,89	35129,73	3,741117
3174,006	9384,008	0,942883	3899,665	3406,22	1650,054	332,784	26495,15	35118,31	3,742357
3172,342	9263,061	0,930731	3889,505	3404,769	1649,13	332,784	26495,15	35105,77	3,789867
3157,664	9362,211	0,940693	3886,372	3391,69	1641,024	332,64	26483,69	35070,13	3,745923
3136,042	9541,008	0,958658	3884,921	3372,831	1629,012	332,64	26483,69	35037,81	3,672338
3117,072	9725,103	0,977155	3885,531	3356,147	1618,498	332,568	26477,96	35005,56	3,599505
3109,747	9744,565	0,979111	3881,789	3349,62	1614,453	332,496	26472,22	34985,59	3,590266
3101,115	9819,794	0,98667	3882,02	3342,367	1609,608	332,64	26483,69	34985,04	3,562706
3136,347	9482,862	0,952816	3880,339	3372,821	1629,23	332,496	26472,22	35022,12	3,693201
3086,798	9935,761	0,998322	3880,108	3329,327	1601,752	332,352	26460,76	34939,59	3,516548
3108,401	9720,948	0,976738	3878,659	3348,169	1613,754	332,352	26460,76	34968,99	3,597281

Continuação da temperatura de 90°C

t	m (g)	m final	m (g)	М	M*	T(°C)	Dint.	Dint.	h (mm)	Vint.	Vext.	Vbarra	Vtubo
(min)	band	(g)	agua				(mm)	(mm).		(mm ³)	(mm³)	(mm³)	(mm³)
	+amostra	amostra											
0	56,496	23,489	4,253	0,221096	1	27,6	22,75	28,43	49,25	20009,61	31248,53	1518,575	217,2762
5	55,296	22,289	3,053	0,158713	0,692544	45,2	23,87	27,77	48,29	21598,9	29233,35	1586,327	213,041
10	54,59	21,583	2,347	0,122011	0,511658	54,9	23,83	27,62	47,61	21223,45	28511,18	1560,561	210,041
15	54,144	21,137	1,901	0,098825	0,397387	60,65	23,8	27,64	48,22	21441,28	28918,31	1577,951	212,7322
20	53,722	20,715	1,479	0,076887	0,289265	69,4	23,77	27,66	47,15	20912,68	28317,55	1540,391	208,0117
25	53,407	20,4	1,164	0,060512	0,208558	75,7	23,77	27,66	47,52	21076,79	28539,77	1552,478	209,644
30	53,192	20,185	0,949	0,049335	0,153472	75,9	23,62	27,74	47,26	20697,75	28548,04	1531,224	208,4969
40	53,077	20,07	0,834	0,043356	0,124007	79,8	23,59	27,74	47,15	20597,15	28481,59	1525,114	208,0117
50	52,759	19,752	0,516	0,026825	0,042531	84,5	23,51	27,54	47,4	20566,16	28221,23	1526,375	209,1146
60	52,666	19,659	0,423	0,02199	0,018704	86,7	23,46	27,64	47,41	20483,1	28432,54	1522,43	209,1587
70	52,639	19,632	0,396	0,020586	0,011786	90	23,3	27,58	47,68	20319,72	28470,46	1517,368	210,3499
80	52,621	19,614	0,378	0,019651	0,007174	91,3	23,29	27,63	47,27	20127,7	28328,07	1503,47	208,5411
90	52,603	19,596	0,36	0,018715	0,002562	91,1	23,28	27,61	47,89	20374,19	28658,09	1522,327	211,2763
120	52,593	19,586	0,35	0,018195	0	91,11	23,24	27,52	46,51	19719,15	27651,13	1475,111	205,1882
1560	52,311	19,304	0,068	0,003535	0	91,1	23,2	27,33	46,42	19613,3	27217,87	1468,914	204,7911
3000	52,243	19,236	0	0	0	96,9	23,23	27,27	45,51	19278,57	26567,26	1442,576	200,7765

C5 - Cilindro vazado com barra transversal - Temperatura de 100°C

Vtraveco	Vtotal	V/V0	Sext.	Sint.	Sbarra	Slateral	Scalota	Stotal	S/V
(mm ³)	(mm ³)	(mm ³)	(mm²)	(mm²)	(mm²)	(mm²)	(mm²)	(mm²)	
3254,425	14493,34	1	4396,557	3518,174	1687,305	354,6	28232,07	37479,51	2,585981
3385,694	11020,14	0,760359	4210,782	3619,422	1762,585	347,688	27681,76	36926,86	3,350852
3331,162	10618,89	0,732674	4129,063	3562,475	1733,956	342,792	27291,96	36374,66	3,425467
3368,635	10845,66	0,74832	4184,995	3603,577	1753,279	347,184	27641,63	36836,3	3,396409
3288,793	10693,66	0,737833	4095,091	3519,172	1711,545	339,48	27028,27	36014,59	3,367845
3314,601	10777,58	0,743623	4127,226	3546,788	1724,976	342,144	27240,36	36297,21	3,367844
3270,945	11121,23	0,767334	4116,516	3505,123	1701,36	340,272	27091,32	36074,05	3,243710
3258,239	11142,68	0,768813	4106,935	3492,523	1694,571	339,48	27028,27	35982,81	3,229277
3261,864	10916,93	0,753237	4098,943	3499,134	1695,972	341,28	27171,58	36124,35	3,309020
3254,019	11203,46	0,773008	4114,695	3492,429	1691,589	341,352	27177,31	36134,67	3,225313
3245,086	11395,82	0,78628	4129,145	3488,364	1685,965	343,296	27332,08	36292,26	3,184699
3215,48	11415,85	0,787662	4101,06	3456,883	1670,522	340,344	27097,05	35985,18	3,152212
3255,931	11539,83	0,796216	4151,843	3500,721	1691,475	344,808	27452,46	36451,69	3,158771
3155,41	11087,39	0,764999	4019,059	3394,002	1639,012	334,872	26661,39	35378,59	3,190885
3142,62	10747,18	0,741525	3983,588	3381,604	1632,127	334,224	26609,8	35272,9	3,282060
3085,928	10374,61	0,715819	3896,921	3319,6	1602,862	327,672	26088,15	34579,86	3,333123

Continuação da temperatura de 100°C