Please use this identifier to cite or link to this item: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20221
Full metadata record
DC FieldValueLanguage
dc.creator.IDPONTES, R. G.pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9198462377899767pt_BR
dc.contributor.advisor1GOMES, Herman Martins.
dc.contributor.advisor1IDGOMES, H. M.pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4223020694433271pt_BR
dc.contributor.referee1PIRES , Carlos Eduardo Santos.
dc.contributor.referee2MASSONI , Tiago Lima.
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCentro de Engenharia Elétrica e Informática - CEEIpt_BR
dc.publisher.initialsUFCGpt_BR
dc.subject.cnpqCiência da Computaçãopt_BR
dc.titleEvolucionary procedural content generation for a endless platform game.pt_BR
dc.date.issued2020
dc.description.abstractMaking innovative, cohesive and appealing games has become inherently more difficult given the ever increasing competition in the digital games’ market. Manually creating game content is expensive and time-consuming. Therefore, al ternative approaches for game content creation are relevant for increasing the efficiency of the game development process. This is where procedural techniques step in. Even though they have been used by commercial games since the 1980s, it was only in recent years that this kind of approach has been given the righteous attention in the academic context. In this work, we propose a procedural content generation approach for creating infinite environments for a 2D platform runner game. The approach consists of a Genetic Algorithm that innovatively takes into account environment aesthetics as well as game’s physics and rules in its fitness function. Therefore, the created environments should be pleasant and possible to be overcome by the player. An instantiation of the approach was developed using the Godot Game Engine. Time viability for in-game real-time generation and convergence to high/stable fitness values were experimentally evaluated. Our tests indicated parameter ranges that performed best in terms of environment quality and processing time were mutation rates between 0.5% and 1% aligned with a population ranging from 50 to 100 individuals. This approach is expandable to other games that have a tilemap-based environments.pt_BR
dc.identifier.urihttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20221
dc.date.accessioned2021-07-23T13:47:32Z
dc.date.available2021-07-23
dc.date.available2021-07-23T13:47:32Z
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.subjectDigital gamespt_BR
dc.subjectJuegos digitalespt_BR
dc.subjectJogos digitaispt_BR
dc.subjectJeux numériquespt_BR
dc.subjectGame developmentpt_BR
dc.subjectDéveloppement de jeuxpt_BR
dc.subjectDesarrollo de juegospt_BR
dc.subjectDesenvolvimento de jogospt_BR
dc.subjectArtificial intelligencept_BR
dc.subjectArtificial inteligênciapt_BR
dc.subjectArtificiel intelligencept_BR
dc.subjectInteligência artificialpt_BR
dc.subjectGenetic algorithmpt_BR
dc.subjectAlgoritmo genéticopt_BR
dc.subjectAlgorithme génétiquept_BR
dc.subjectProcedural genetic generationpt_BR
dc.subjectGenética processual geraçãopt_BR
dc.subjectGénétique procédurale générationpt_BR
dc.subjectGenética procedimental generaciónpt_BR
dc.subjectAutomação em coleta de dadospt_BR
dc.subjectAutomatización en la recopilación de datospt_BR
dc.subjectAutomatisation de la collecte de donnéespt_BR
dc.subjectAutomation in data collectionpt_BR
dc.rightsAcesso Abertopt_BR
dc.creatorPONTES, Rafael Guerra de.
dc.publisherUniversidade Federal de Campina Grandept_BR
dc.languageengpt_BR
dc.title.alternativeEvolucionary procedural content generation for a endless platform game.pt_BR
dc.identifier.citationPONTES, R. G. de. Evolucionary procedural content generation for a endless platform game. 13 f. Trabalho de Conclusão de Curso - Artigo (Curso de Bacharelado em Ciência da Computação) Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Paraíba - Brasil, 2020. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20221pt_BR
Appears in Collections:Trabalho de Conclusão de Curso - Artigo - Ciência da Computação

Files in This Item:
File Description SizeFormat 
RAFAEL GUERRA DE PONTES - TCC CIÊNCIA DA COMPUTAÇÃO 2020.pdf1.31 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.