Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Programa de Pós-Graduação em Matemática Curso de Mestrado em Matemática

Soluções de Sistemas de Equações Diferenciais Elípticas via Teoria de Ponto Fixo em Cones

por

Joselma Soares dos Santos

sob orientação do

Prof. Dr. Marco Aurélio Soares Souto

Dissertação apresentada ao Corpo Docente do Programa de Pós-Graduação em Matemática - CCT - UFCG, como requisito parcial para obtenção do título de Mestre em Matemática.

Campina Grande - PB Abril - 2007

Soluções de Sistemas de Equações Diferenciais Elípticas via Teoria do Ponto Fixo em Cones

por

Joselma Soares dos Santos

Dissertação apresentada ao Corpo Docente do Programa de Pós-Graduação em Matemática - CCT - UFCG, como requisito parcial para obtenção do título de Mestre em Matemática.

Área de Concentração: Análise

Aprovada por:

Prof. Dr. Osmundo Alves de Lima - UEPB

Prof. Dra. Bianca Morelli Calsavara Caretta - UFCG

Orientador
Universidade Federal de Campina Grande
Centro de Ciências e Tecnologia
Programa de Pós-Graduação em Matemática
Curso de Mestrado em Matemática

Prof. Dr. Marco Aurélio Soares Souto - UFCG

Campina Grande - PB Abril - 2007

Resumo

Neste trabalho usaremos a Teoria do Ponto fixo em Cones para provar a existência e multiplicidade de solução positiva radial para sistemas de equações diferenciais parciais elípticas de segunda ordem do tipo

$$\begin{cases}
-\Delta u = h(|x|, u, v), \text{ se } r_1 < |x| < r_2; \\
-\Delta v = k(|x|, u, v), \text{ se } r_1 < |x| < r_2; \\
u = v = 0, \text{ se } |x| = r_1, \\
u = a, v = b, \text{ se } |x| = r_2,
\end{cases}$$

onde $0 < r_1 < r_2$ e a,b são parâmetros não-negativos.

Abstract

In this work we will use the Theory of the Fixed Point in Cones to prove the existence and multiplicity of positive solutions for systems of second-ordem elliptic differential equations of the type

$$\begin{cases}
-\Delta u = h(|x|, u, v), & \text{se } r_1 < |x| < r_2; \\
-\Delta v = k(|x|, u, v), & \text{se } r_1 < |x| < r_2; \\
u = v = 0, & \text{se } |x| = r_1, \\
u = a, v = b, & \text{se } |x| = r_2,
\end{cases}$$

where $0 < r_1 < r_2$ and a, b are non-negative parameters.

Agradecimentos

A Deus, pela vida, saúde e coragem que me deu, para conclusão do curso;

Aos meus pais José e Marjese e aos meus irmãos Josélia e Jefferson, pelo incentivo, amor e apoio que me ofereceram durante todo o curso, como também durante toda a minha vida;

Ao meu noivo Cleidimilson, pela paciência, compreensão e amor, estando ao meu lado durante todos esses anos;

Ao professor Marco Aurélio, pela sua paciência, amizade e orientação, estando sempre presente, auxiliando-me na conclusão do Mestrado;

Aos professores José de Arimatéia, Claudianor e Jaime, pelos ensinamentos ministrados, como também aos demais professores, que estiveram sempre presentes;

Aos professores Osmundo Lima e Bianca Morelli, pela disponibilidade, aceitando participar desta banca;

Aos meus colegas de curso, com os quais convivi, e dividi momentos de alegria e de tristeza, até chegarmos ao final do curso;

A UFCG, e a todo corpo docente que a compõe, como também a todos os funcionários;

Aos meus professores da UEPB, onde conclui a minha graduação;

E, aos demais, que de alguma forma contribuíram para a conclusão do Mestrado, e elaboração desta dissertação.

Dedicatória

Aos meus pais José e Marjese, ao meu noivo Cleidimilson, e aos meus irmãos, pelo amor, paciência e incentivo para a conclusão do Mestrado. Aos meus colegas e professores, por esses dois anos que passamos juntos, enfim, à todos que me ajudaram a realizar mais um dos meus objetivos, concluir o Mestrado em Matemática.

Conteúdo

	Intr	odução	6	
1	ΟÍι	ndice de Ponto Fixo em Cone	11	
	1.1	Cones em Espaços de Banach	11	
	1.2	A definição do Índice do Ponto Fixo em Cone	15	
	1.3	Soluções em Cone	20	
2	Sist	emas de Equações Elípticas Superlineares envolvendo Parâmetros	28	
	2.1	Resultados Preliminares	28	
	2.2	Existência da primeira solução positiva	31	
	2.3	Não-existência de Solução	42	
	2.4	A segunda solução positiva	45	
3	Apl	icações	57	
A Problemas de Contorno para Equações Diferenciais Ordinárias de Se-				
	gun	da Ordem	70	
	A.1	Problema Linear	70	
	A.2	Problema Não Linear	77	
	A.3	Resultados utilizados	80	
		A.3.1 Resultados de Análise	80	
		A.3.2 O Grau Topológico de Leray-Schauder	83	
Bi	Bibliografia			

Introdução

A dissertação foi baseada no trabalho dos professores João Marcos do Ó, Sebastian Lorca e Pedro Ubilla (2005) [2], onde usando a teoria do ponto fixo em cones e métodos de sub e super soluções, estudaremos a existência, não-existência e multiplicidade de soluções para sistemas de equações diferenciais parciais elípticas de segunda ordem em domínios anulares, do tipo

$$(\mathbf{E_{(a,b)}}) \begin{cases} -\Delta u = h(|x|, u, v), \text{ se } r_1 < |x| < r_2; \\ -\Delta v = k(|x|, u, v), \text{ se } r_1 < |x| < r_2; \\ u = v = 0, \text{ se } |x| = r_1, \\ u = a, v = b, \text{ se } |x| = r_2, \end{cases}$$

onde $0 < r_1 < r_2$, a, b são parâmetros não-negativos e as não-linearidades h e k satisfazem as condições abaixo:

- $(\mathbf{A_0})$ As funções $h, k : [0, 1] \times [0, +\infty)^2 \longrightarrow [0, +\infty)$ são contínuas e não-decrescentes nas duas últimas variáveis.
- $(\mathbf{A_1})$ Existe um conjunto $[\theta_1, \eta_1] \subset (r_1, r_2)$, de medida de Lebesgue positiva tal que, h(r, u, v) > 0 ou k(r, u, v) > 0, para todo $r \in [\theta_1, \eta_1]$ e todo u, v > 0.
- $(\mathbf{A_2})$ Existem subconjuntos $[\theta_2,\eta_2],[\theta_3,\eta_3]\subset (r_1,r_2),$ de medida de Lebesgue positiva, tais que,

$$\lim_{|(u,v)|\to\infty}\frac{h(r,u,v)}{|(u,v)|}=+\infty, \text{ uniformemente para todo } r\in[\theta_2,\eta_2]$$

e

$$\lim_{|(u,v)|\to\infty}\frac{k(r,u,v)}{|(u,v)|}=+\infty, \text{ uniformemente para todo } r\in[\theta_3,\eta_3].$$

$$(\mathbf{A_3}) \lim_{|(u,v)| \to 0} \frac{h(r,u,v)}{|(u,v)|} = \lim_{|(u,v)| \to 0} \frac{k(r,u,v)}{|(u,v)|} = 0 \text{ uniformemente para todo } r \in (r_1,r_2).$$

Para isto, estudaremos a existência de solução para o sistema de equações ordinárias de segunda ordem do tipo $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$ dado abaixo, e mostraremos que a cada solução do sistema $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$, corresponde uma solução radialmente simétrica do sistema $(\mathbf{E}_{(\mathbf{a},\mathbf{b})})$.

$$(\mathbf{S_{(a,b)}}) \left\{ \begin{array}{ll} -u'' & = & f(t,u(t),v(t),a,b) \text{ em } (0,1), \\ -v'' & = & g(t,u(t),v(t),a,b) \text{ em } (0,1), \\ u(0) & = & u(1) = 0 \\ v(0) & = & v(1) = 0 \end{array} \right.$$

onde a e b são parâmetros não-negativos, e as não-linearidades f,g satisfazem as seguintes hipóteses:

- $(\mathbf{S_0})\ f,g:[0,1]\times[0,+\infty)^4\longrightarrow[0,+\infty)$ são funções contínuas e não-decrescentes nas quatro últimas variáveis;
 - $(\mathbf{S_1})$ Existem constantes $0<\delta_1<\varepsilon_1<1$ tais que para todo a,b>0 fixados,

$$\lim_{|(u,v)|\to 0} \frac{f(t,u,v,a,b)}{|(u,v)|} = +\infty \text{ ou } \lim_{|(u,v)|\to 0} \frac{g(t,u,v,a,b)}{|(u,v)|} = +\infty,$$

uniformemente em $t \in [\delta_1, \varepsilon_1]$, onde usaremos a notação $|(x_1, ..., x_m)| = |x_1| + ... + |x_m|$.

 $(\mathbf{S_2})$ Existem constantes $0 < \delta_2 < \varepsilon_2 < 1$ e $0 < \delta_3 < \varepsilon_3 < 1$ tais que ,

$$\lim_{|(u,v)|\to +\infty}\frac{f(t,u,v,0,0)}{|(u,v)|}=+\infty, \text{ uniformemente em } t\in [\delta_2,\varepsilon_2]$$

e

$$\lim_{|(u,v)|\to+\infty}\frac{g(t,u,v,0,0)}{|(u,v)|}=+\infty, \text{ uniformemente em } t\in[\delta_3,\varepsilon_3].$$

Além disso podemos observar que existe $\tau^*(f) = \tau^*(f, \xi, \eta, a, b)$ tal que

$$\int_0^1 \tau f(\tau, \xi, \eta, a, b) d\tau = \int_{\tau^*}^1 f(\tau, \xi, \eta, a, b) d\tau. \tag{1}$$

Analogamente, existe $\tau^*(g) = \tau^*(g, \xi, \eta, a, b)$ tal que

$$\int_0^1 \tau g(\tau, \xi, \eta, a, b) d\tau = \int_{\tau^*}^1 g(\tau, \xi, \eta, a, b) d\tau. \tag{2}$$

Nas próximas hipóteses iremos denotar os números $\tau^*(f)$ e $\tau^*(g)$, por τ^* .

(**S**₃) Existem $R_0, a_0, b_0, s_0 > 0$ tais que:

$$\int_0^{\tau^*} \tau f(\tau, R_0, R_0, a_0, b_0) d\tau \le s_0 R_0, \text{ para } \tau^* = \tau^*(f)$$

e

$$\int_0^{\tau^*} \tau g(\tau, R_0, R_0, a_0, b_0) d\tau \le (1 - s_0) R_0, \text{ para } \tau^* = \tau^*(g).$$

Também iremos assumir que existe um subconjunto $[\delta, \varepsilon] \subset (0, 1)$ tal que

$$f(t,0,0,a_0,b_0) > 0$$
 e $g(t,0,0,a_0,b_0) > 0$, para todo $t \in [\delta,\varepsilon]$.

Quando |(a,b)| é suficientemente grande, a próxima hipótese junto com $(\mathbf{S_2})$ garante o resultado de não-existência de solução para o sistema $(\mathbf{S_{(a,b)}})$.

 $(\mathbf{S_4})$ Existem constantes $0<\delta_4<\varepsilon_4<1$ tais que

$$\lim_{|(a,b)|\to +\infty} f(t,u,v,a,b) = +\infty \text{ ou } \lim_{|(a,b)|\to +\infty} g(t,u,v,a,b) = +\infty,$$

uniformemente em $t \in [\delta_4, \varepsilon_4]$.

Observação 0.1 Os conjuntos $[\delta_1, \varepsilon_1]$, $[\delta_2, \varepsilon_2]$, $[\delta_3, \varepsilon_3]$ e $[\delta_4, \varepsilon_4]$, podem, em geral, ser diferentes.

Observação 0.2 A hipótese (S₃) é satisfeita por exemplo, quando

$$\lim_{|\sqrt{u^2+v^2+a^2+b^2}|\to 0} \frac{f(t,u,v,a,b)}{|\sqrt{u^2+v^2+a^2+b^2}|} = \lim_{|\sqrt{u^2+v^2+a^2+b^2}|\to 0} \frac{g(t,u,v,a,b)}{|\sqrt{u^2+v^2+a^2+b^2}|} = 0, (3)$$

$$para \ todo \ t \in [0,1].$$

Desta forma podemos observar que para encontrar solução para o sistema $(\mathbf{E_{(a,b)}})$, basta associa-lo a um sistema do tipo $(\mathbf{S_{(a,b)}})$, pois a cada solução do sistema $(\mathbf{S_{(a,b)}})$ corresponde uma solução radialmente simétrica do sistema $(\mathbf{E_{(a,b)}})$.

No **Capítulo 1**, apresentaremos alguns resultados envolvendo o índice de ponto fixo em cone, afim de demostrarmos o seguinte teorema, o qual é conhecido como Teorema do Ponto Fixo em Cones de Krasnoselskii.

Teorema 0.1 Seja X um Espaço de Banach com a norma |.|, e seja $C \subset X$ um cone em X. Para r>0, defina $C_r = C \cap \overline{B(0,r)}$, onde $\overline{B(0,r)} = \{x \in X; ||x|| \leq r\}$ é uma bola fechada de raio r centrada na origem de X. Suponha que $F: C_r \longrightarrow C$ é uma função compacta tal que $f(x) \neq x$, $\forall x \in \partial C_r = \{x \in C; ||x|| = r\}$. Se

- (a) $||F(x)|| \le ||x||$, para todo ||x|| = R;
- (b) $||F(x)|| \ge ||x||$, para todo ||x|| = r.;

Então F possui um ponto fixo em $\{x \in K : r \le ||x|| \le R\}$.

No Capítulo 2 usando [2], e utilizando os resultados discutidos no capítulo 1 deste trabalho. Mostraremos que o sistema $(\mathbf{S_{(a,b)}})$ admite solução positiva, ou seja, mostraremos que existe uma curva decrescente Γ que divide o quadrante positivo do plano-(a,b) em dois conjuntos disjuntos \mathcal{S} e \mathcal{R} , tais que o sistema $(\mathbf{S_{(a,b)}})$ tem pelo menos duas soluções positivas em \mathcal{S} , pelo menos uma solução positiva na fronteira de \mathcal{S} e não tem solução em \mathcal{R} . Para isto, iremos demonstrar o seguinte teorema:

Teorema 0.2 Suponha que as funções f(t, u, v, a, b) e g(t, u, v, a, b) satisfazem as hipóteses (S_0) - (S_4) . Então, existe uma constante positiva \overline{a} e uma função contínua

$$\Gamma: [0, \overline{a}] \longrightarrow [0, +\infty)$$

tal que para todo $a \in [0, \overline{a}]$, o sistema $\mathbf{S}_{(\mathbf{a}, \mathbf{b})}$:

- (i) tem pelo menos uma solução positiva se $0 \le b \le \Gamma(a)$;
- (ii) não tem solução se $b \ge \Gamma(a)$;
- (iii) tem pelo menos duas soluções positivas se $0 < b < \Gamma(a)$.

No Capítulo 3, mais uma vez tomando como referência [1] e [2], e usando os resultados discutidos no capítulo 2 deste trabalho, traremos algumas aplicações do Teorema (0.2). Mostraremos um dos nossos principais objetivos, ou seja, que o sistema $(\mathbf{E}_{(\mathbf{a},\mathbf{b})})$ está ssociado a um sistema do tipo $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$, onde as funções não-lineares f e g são dadas por

$$\begin{cases} f(t, u(t), v(t), a, b) &= d(t)h\left(\left(\frac{A}{t - B}\right)^{\frac{1}{N - 2}}, u + ta, v + tb\right) \\ g(t, u(t), v(t), a, b) &= d(t)h\left(\left(\frac{A}{t - B}\right)^{\frac{1}{N - 2}}, u + ta, v + tb\right) \end{cases}$$

com,
$$f \in g$$
 satisfazendo (S₀) à (S₄), e $d(t) = \frac{1}{A^2(2-N)^2} \left(\frac{A}{t-B}\right)^{\frac{2(N-1)}{N-2}}, t \in [0,1].$

Além disso, mostraremos que como consequência direta do Teorema 0.2, temos:

Teorema 0.3 Suponha que h e k satisfazem (A_0) à (A_3) , então, existe uma função contínua $\Gamma: [0, \overline{a}] \longrightarrow [0, +\infty)$ tal que para todo $a \in [0, \overline{a}]$, temos:

(i) Se $0 \le b \le \Gamma(a)$, então o sistema $(\mathbf{E_{(a,b)}})$ tem pelo menos uma solução positiva radial.

- (ii) Se $b > \Gamma(a)$, então o sistema $(\mathbf{E_{(a,b)}})$ não admite solução positiva radial.
- (iii)Se $0 < b < \Gamma(a)$, então o sistema $(\mathbf{E_{(a,b)}})$ tem pelo menos duas soluções positivas radiais.

De onde concluimos que, a cada solução do sistema $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$, está associada uma solução radialmente simétrica do sistema $(\mathbf{E}_{(\mathbf{a},\mathbf{b})})$.

No **Apêndice A**, enunciaremos alguns dos principais resultados utilizados no decorrer deste trabalho, dentre eles o Príncipio do Máximo. Além disso, mostraremos a existência e unicidade de soluções para as equações diferenciais ordinárias lineares do tipo

$$\begin{cases}
-u''(t) = f(t) \text{ em } (0,1), \\
u(0) = u(1) = 0,
\end{cases}$$
(4)

com $f:[0,1] \longrightarrow \mathbb{R}$ contínua.

Também iremos definir sub e super soluções, e a partir daí, utilizando o Princípio do Máximo, apresentaremos um método de obtenção de soluções para as equações diferenciais ordinárias não-lineares do tipo

$$\begin{cases}
-u''(t) = g(t, u) \text{ em } (0, 1), \\
u(0) = u(1) = 0,
\end{cases}$$
(5)

com $g:[0,1]\times\mathbb{R}\longrightarrow\mathbb{R}$ contínua.

Capítulo 1

O Índice de Ponto Fixo em Cone

Neste Capítulo, iremos definir e apresentar alguns resultados, sobre o índice de ponto fixo em cones, que serão de grande utilidade no **Capítulos 2**. Para isto, iremos precisar de um breve conhecimento da definição e das propriedades do grau de Leray-Schauder. (Para uma referência veja Klaus Deimling [3]).

1.1 Cones em Espaços de Banach

Nesta seção, vamos definir o que é um cone, como também o que são retrações, definições necessárias para alcançarmos o nosso principal objetivo deste capítulo, que é definir o Indíce de Ponto Fixo em Cone, como também apresentar alguns lemas referentes ao mesmo.

Para isto, iremos considerar o espaço de Banach E munido da norma

$$||.||:E\longrightarrow \mathbb{R}_+.$$

Definição 1.1 Uma retração de E sobre um conjunto fechado $C \subseteq E$, não-vazio, é uma aplicação $R: E \longrightarrow E$ contínua tal que:

- R_1) R(E) = C;
- R_2) R(x) = x para todo $x \in C$.

Definição 1.2 Um cone em E é um conjunto não-vazio $C \subseteq E$ tal que:

- (i) Dados $x, y \in C$, então $x + y \in C$;
- (ii) Dados $\alpha > 0$ e $x \in C$, então $\alpha x \in C$;
- (iii) Se $x \in C \setminus \{0\}$, então $-x \notin C$.

Observação 1.1 As propriedades (i) e (ii) implicam que C é convexo.

De fato, sejam $x, y \in C$, então para todo $t \in [0, 1]$ temos, pelo item (ii) que $tx, (1-t)y \in C$. Então, segue de (i) que $tx + (1-t)y \in C$, para todo $t \in [0, 1]$. Portanto C é convexo.

Observação 1.2 Se $0 \in C$ a propriedade (iii) é escrita assim:

$$C \cap (-C) = \{0\}, onde - C = \{-x \in E; x \in C\}.$$

Observação 1.3 Se C é fechado, a propriedade (ii) implica que $0 \in C$.

De fato, pela definição de C, se $x\in C$ então, $\frac{1}{n}x\in C$, para todo $n\in\mathbb{N}$. Mas, $\lim_{n\to\infty}\frac{1}{n}x=0$, então, como C é fechado, temos que $0\in C$.

Observação 1.4 Um exemplo de cone é o conjunto de todas as funções reais concâvas do intervalo [a, b], tais que u(a) = u(b) = 0. Ou seja,

$$C = \{u : [a, b] \longrightarrow \mathbb{R}; \ u \ \'e \ c\^oncava \ e \ u(a) = u(b) = 0\}$$

é um cone.

Lembre-se que, uma função $u:[a,b]\longrightarrow \mathbb{R}$, é dita côncava quando para quaisquer $x,y\in [a,b]$ e $0\leq t\leq 1$, tem-se

$$u((1-t)x + ty) \ge (1-t)u(x) + tu(y).$$

Mostremos agora que C é um cone.

(i) Se $u,v\in C,$ temos que u,vsão côncavas, então, dados $x,y\in [a,b]$ e $0\leq t\leq 1,$ temos

$$(u+v)((1-t)x+ty) = u((1-t)x+ty) + v((1-t)x+ty),$$

de onde segue que,

$$(u+v)((1-t)x+ty) \ge (1-t)(u+v)(x) + t(u+v)(y),$$

logo, u + v é côncava, ou seja, $u + v \in C$.

(ii) Se $u \in C$ e $\alpha > 0$, temos,

$$(\alpha u)((1-t)x + ty) > \alpha((1-t)u(x) + tu(y)),$$

de onde segue que,

$$(\alpha u)((1-t)x + ty) \ge ((1-t)(\alpha u)(x) + t(\alpha u)(y)),$$

logo, αu é côncava, ou seja, $\alpha u \in C$.

(iii) Se $u\in C\backslash\{0\},$ pela Observação 1.2 mostremos que $C\cap\{-C\}=\{0\}.$ Seja $u\in C\cap\{-C\},$ temos que

$$u((1-t)x + ty) = (1-t)u(x) + tu(y).$$

Logo, u é uma função afim, isto é, $u(t)=ct+d,\ c,d\in\mathbb{R},$ de onde segue que $u\equiv 0,$ como queriamos mostrar.

Vamos agora, considerar retrações tais que ||Rx|| = ||x||, para todo $x \in E$. A existência de tais retrações pode ser verificada nos seguintes lemas.

Lema 1.1 Se existe uma retração de E sobre um cone C, então existe uma retração $R_0: E \longrightarrow E$ tal que:

- $(\mathbf{R_1}) \ R_0(E) = C;$
- $(\mathbf{R_2}) \ R_0(x) = x, \ para \ todo \ x \in C;$
- $(\mathbf{R_3}) \ R_0(x) \neq 0, \ para \ todo \ x \in E \setminus \{0\}.$

Demonstração:

Como por hipótese existe uma retração de E sobre C, ou seja, existe uma aplicação contínua $R: E \longrightarrow E$ que satisfaz $(\mathbf{R_1})$ e $(\mathbf{R_2})$, então, seja $R_0: E \longrightarrow E$ dada por

$$R_0(x) = R(x) + ||R(x) - x||e, \text{ com } e \in C \setminus \{0\}.$$

É claro que R_0 é contínua sobre E, pois R é contínua, e a combinação linear de funções contínuas ainda é contínua. E, mais, R_0 satisfaz:

 $(\mathbf{R_1})$ $R_0(E) = C$. De fato, seja $x \in R_0(E)$ então, existe $y \in E$ tal que $x = R_0(y)$.

Mas, $R_0(y)=R(y)+||R(y)-y||e\in C$, pois, como R é retração R(E)=C, e C é um cone, como $R(y)\in C$ e $||R(y)-y||e\in C$, temos:

$$R(y) + ||R(y) - y||e \in C,$$

o que implica que $R_0(y) \in C$, ou seja, $x \in K$. Então, $R_0(E) \subset C$.

Por outro lado, se $x \in C$, como R é retração, temos que R(x) = x, daí, $R_0(x) = R(x) + ||R(x) - x||e = x$, ou seja, $x = R_0(x) \in R_0(E)$. Então, $C \subset R_0(E)$.

Portanto, $R_0(E) = C$.

- $(\mathbf{R_2})$ É claro que, $R_0(x) = x$, para todo $x \in C$.
- $(\mathbf{R_3})$ Suponha que $R_0(x) = 0$ para algum $x \in E$, então:

$$R(x) + ||R(x) - x||e = 0,$$

isto é,

$$-R(x) = ||R(x) - x||e, \text{ para algum } x \in E.$$

$$(1.1)$$

Mas, como C é cone, e $e \in C$, temos que $||R(x) - x||e \in C$, de onde segue que $-R(x) \in C$, o que implica, $R(x) \in -C$, ou seja, $R(x) \in C \cap (-C)$.

Mas, pela definição de cone $C \cap (-C) = 0$, consequentemente, R(x) = 0. Então, voltando a igualdade (1.1) temos:

$$||x||e=0$$
, o que implica, $||x||=0$, pois, $e\neq 0$ implica que $x=0$.

De onde concluimos que, $R_0(x) = 0$ implica que x = 0. Portanto, $x \neq 0$, implica que $R_0(x) \neq 0$, que é uma contradição.

Lema 1.2 Se existe uma retração de E sobre um cone C, então existe uma retração $R_1: E \longrightarrow E$ tal que:

- $(R_1) R_1(E) = C;$
- (\mathbf{R}_2) $R_1(x) = x$, para todo $x \in C$;
- $(R_4) ||R_1(x)|| = ||x||, para todo x \in C.$

Demonstração:

Seja R_0 a retração dada no lema anterior. Defina, $R_1: E \longrightarrow E$, por

$$R_1(x) = \begin{cases} \frac{||x||}{||R_0(x)||} R_0(x), & \text{se } x \neq 0; \\ 0, & \text{se } x = 0. \end{cases}$$

É claro que R_1 é contínua em $E \setminus \{0\}$, pois, R_0 é contínua.

Mostremos primeiro que R_1 satisfaz ($\mathbf{R_4}$). De fato, lembre-se que por ($\mathbf{R_3}$), $R_0(x) \neq 0$, para todo $x \neq 0$. Daí,

$$||R_1(x)|| = \frac{||x||}{||R_0(x)||} ||R_0(x)|| = ||x||, \text{ para todo } x \neq 0$$

 \mathbf{e}

$$||R_1(0)|| = ||0||.$$

Logo, $||R_1(x)|| = ||x||$, para todo $x \in C$.

Então, de $(\mathbf{R_4})$ segue que R_1 também é contínua em 0.

Portanto, pela definição de R_1 , concluimos que $R_1: E \longrightarrow E$ é contínua em E. Então, falta mostrar apenas que R_1 também satisfaz ($\mathbf{R_1}$) e ($\mathbf{R_2}$). Vejamos:

$$(\mathbf{R_1}) \ R_1(E) = C.$$

De fato, seja $x \in R_1(E)$, então, existe $y \in E$ tal que $x = R_1(y)$, onde

$$R_1(y) = \frac{||x||}{||R_0(x)||} R_0(x) \in C,$$

pois, $R_0(y) \in C$. Assim, $x \in K$, logo, $R_1(E) \subset C$.

Por outro lado, se $x \in C$ temos $R_0(x) = x$. Assim,

$$R_1(x) = \frac{||x||}{||R_0(x)||} R_0(x) = x,$$

ou seja, $x = R_1(x) \in R_1(E)$, logo $C \subset R_1(E)$.

Portanto, $R_1(E) = C$.

 $(\mathbf{R_2})\ R_1(x)=x,\ \mathrm{para\ todo}\ x\in C.$ É claro que, se $x\in C$ então $R_1(x)=x,\ \mathrm{para}$ todo $x\in C.$

1.2 A definição do Índice do Ponto Fixo em Cone

Nesta seção, como estamos interessados em resolver equações da forma f(x) = x, num cone C, iremos definir o índice de Ponto Fixo em Cone.

Para isto, fixe $(f, \Omega) \in \mathcal{M}_c$ onde

 $\mathcal{M}_c = \{(f,\Omega) : \Omega \in f \text{ satisfazem as condições } (i) - (iii) \text{ dadas abaixo } \}$ (1.2)

- (i) Ω é aberto relativo em C, limitado ;
- (ii) $f: \overline{\Omega} \longrightarrow C$ é compacta;
- (iii) $f(x) \neq x$, para todo $x \in \partial \Omega$.

Lembre-se que $\Omega \subseteq C$ é aberto relativo em C, se existe $A \subseteq E$, aberto em E, tal que $\Omega = C \cap A$.

Suponha que existe uma retração $R: E \longrightarrow C$, tal que ||R(x)|| = ||x||, para todo $x \in E$. (Veja o Lema 1)

Observe que $R^{-1}(\Omega)$ é um aberto em E, pois é a imagem inversa de um aberto por uma função contínua. Além disso, $\Omega = C \cap R^{-1}(\Omega)$.

Observe também que a aplicação $I-f\circ R:\overline{R^{-1}(\Omega)}\longrightarrow E$ está bem definida além disso,

- (a) $f \circ R$ é uma aplicação compacta em $\overline{R^{-1}(\Omega)}$.
- **(b)** $R^{-1}(\Omega)$ é aberto limitado.

De fato, dado $x \in R^{-1}(\Omega)$, existe $y \in \Omega$ tal que y = R(x). Mas, usando ($\mathbf{R_4}$), temos:

$$||y|| = ||R(x)|| = ||x||, \text{ para todo } x \in E.$$
 (1.3)

Mas, por hipótese, Ω é limitado, logo, existe c > 0 tal que $||y|| \le c$, para todo $y \in \Omega$. Desta forma, pela igualdade (1.3), $||x|| \le c$, para todo $x \in R^{-1}(\Omega)$, e portanto, $R^{-1}(\Omega)$ é limitado.

(c) $f \circ R(x) \neq x$, para todo $x \in \partial(R^{-1}(\Omega))$.

De fato, suponha que $(I-f\circ R)(z)=0$ para algum $z\in\overline{R^{-1}(\Omega)}$, então,

$$f(R(z)) = z$$
, para algum $z \in \overline{R^{-1}(\Omega)}$.

Como $f: \overline{\Omega} \longrightarrow C$, temos que, $z \in C$, de onde segue que $R(z) = z \in \overline{\Omega}$. Logo, f(z) = z, para algum $z \in \overline{\Omega}$. Mas, como $(f, \Omega) \in \mathcal{M}_c$, devemos ter $z \notin \partial \Omega$, pois pelo item (iii), $f(z) \neq z$, para todo $z \in \partial \Omega$. Logo,

$$z \in \Omega \subset R^{-1}(\Omega)$$
o que implica que $z \notin \partial(R^{-1}(\Omega))$.

Portanto,

$$(f \circ R)(z) = z$$
 implica que $z \notin \partial(R^{-1}(\Omega)),$

como queríamos demonstrar.

Os itens (a), (b) e (c) mostram que:

$$(I - f \circ R, R^{-1}(\Omega), 0)$$

é um terno admissível para o grau de Leray-Schauder, isto é,

$$D(I-f\circ R,R^{-1}(\Omega),0)$$

está bem definido. Além disso, se R_0 é outra retração de E em C tal que $||R_0(x)|| = ||x||$, para todo $x \in E$, então

$$D(I - f \circ R, R^{-1}(\Omega), 0) = D(I - f \circ R_0, R_0^{-1}(\Omega), 0),$$

ou seja, o índice do ponto fixo independe da retração de E sobre C.

De fato, considere a homotopia

$$x - H(t, x) = x - f(tR(x) + (1 - t)R_0(x)), t \in [0, 1]$$

definida em $R^{-1}(\Omega) \cap R_0^{-1}(\Omega)$, que é admissível pois,

$$0 \notin (I - H(t, \cdot)) ([0, 1] \times \partial (R^{-1}(\Omega) \cap R_0^{-1}(\Omega)))$$
.

Note que,

$$I - H(0, \cdot) = I - f \circ R_0$$
, e $I - H(1, \cdot) = I - f \circ R$,

então, pela propriedade da Invariância por Homotopia, temos

$$D(I - f \circ R, R^{-1}(\Omega), 0) = D(I - f \circ R_0, R_0^{-1}(\Omega), 0),$$

como queriamos mostrar.

Nesse momento, iremos definir o Índice de Ponto Fixo em Cones da seguinte forma.

Definição 1.3 Seja C um cone, fechado em um Espaço de Banach E, e \mathcal{M}_c dado por (1.3). Existe um aplicação

$$i:\mathcal{M}_c\longrightarrow\mathbb{Z}$$

definida por

$$i(f,\Omega) = D(I - f \circ R, R^{-1}(\Omega), 0),$$

onde R é uma retração tal que ||R(x)|| = ||x||, para todo $x \in E$, esta aplicação é o que definimos como Índice de Ponto Fixo em Cones.

Desta forma, para cada $\rho > 0$, seja

$$C_{\rho} = C \cap B_{\rho}(0), \tag{1.4}$$

temos as seguintes propriedades de índice do ponto fixo:

$$(\mathbf{P}_1) \ i(0, C_{\rho}) = 1.$$

De fato, pelas propriedades do grau de Leray-Schauder

$$i(0, C_{\rho}) = D(I, R^{-1}(C_{\rho}), 0) = 1.$$

 (\mathbf{P}_2) Se $i(f,\Omega) \neq 0$, então existe $x \in \Omega$ tal que f(x) = x. De fato, se $i(f,\Omega) \neq 0$, então,

$$D(I - f \circ R, R^{-1}(\Omega), 0) \neq 0,$$

assim, existe $x \in R^{-1}(\Omega)$ tal que $(I - f \circ R)(x) = 0$, o que implica que,

$$f(R(x)) = x \in C.$$

Portanto, como $x \in C$, segue da definição de R que f(x) = x para algum $x \in \Omega$.

 (\mathbf{P}_3) (Excisão) Se $\Omega_1, \Omega_2 \subseteq \Omega$ são abertos relativos disjuntos em C e $x \neq f(x)$ para todo $x \in \overline{\Omega} \setminus (\Omega_1 \cup \Omega_2)$ então:

$$i(f,\Omega) = i(f,\Omega_1) + i(f,\Omega_2).$$

Para mostrarmos que a igualdade acima é verdadeira, devemos mostrar que:

$$D(I - f \circ R, R^{-1}(\Omega), 0) = D(I - f \circ R, R^{-1}(\Omega_1), 0) + D(I - f \circ R, R^{-1}(\Omega_2), 0).$$

Para isso, pelas propriedades do grau de Leray-Schauder, basta mostrar que:

- i) $R^{-1}(\Omega_1) \subset R^{-1}(\Omega) \ e \ R^{-1}(\Omega_2) \subset R^{-1}(\Omega);$
- $ii) R^{-1}(\Omega_1) \cap R^{-1}(\Omega_2) = \emptyset;$
- $iii)\ 0\not\in Im(I-f\circ R),\ {\rm para\ todo}\ x\in R^{-1}(\Omega)\backslash R^{-1}(\Omega_1)\cap R^{-1}(\Omega_2).$

Vejamos:

i) Se $x \in R^{-1}(\Omega_1)$, então, existe $y \in \Omega_1$ tal que $x = R^{-1}(y)$, de onde segue que $R(x) = y \in \Omega_1 \subset \Omega$, ou seja $x \in R^{-1}(\Omega)$. Logo, $R^{-1}(\Omega_1) \subset R^{-1}(\Omega)$. Analogamente,

mostra-se que $R^{-1}(\Omega_2) \subset R^{-1}(\Omega)$.

- ii) Suponha que $R^{-1}(\Omega_1) \cap R^{-1}(\Omega_2) \neq \emptyset$, então, existe $x \in \Omega$ tal que $x \in R^{-1}(\Omega_1) \cap R^{-1}(\Omega_2)$, de onde segue que existe $y \in \Omega_1 \cap \Omega_2$, tal que R(x) = y. Que é um absurdo, pois, $\Omega_1 \cap \Omega_2 = \emptyset$. Portanto, $R^{-1}(\Omega_1) \cap R^{-1}(\Omega_2) = \emptyset$.
- iii) Suponha que existe $x\in R^{-1}(\Omega)\backslash R^{-1}(\Omega_1)\cup R^{-1}(\Omega_2)$ tal que $(I-f\circ R)(x)=0$ então,

$$f(R(x)) = x \in C$$
, o que implica $x = R(x) \in \Omega$.

Logo,

$$f(x) = x$$
, de onde segue que, $x \in \Omega_1 \cup \Omega_2$.

Mas

$$\Omega_1 = C \cap R^{-1}(\Omega_1) \in \Omega_2 = C \cap R^{-1}(\Omega_2),$$

o que implica que, $x \in R^{-1}(\Omega_1) \cup R^{-1}(\Omega_2)$.

Portanto, de (i), (ii) e (iii) segue que

$$D(I - f \circ R, R^{-1}(\Omega), 0) = D(I - f \circ R, R^{-1}(\Omega_1), 0) + D(I - f \circ R, R^{-1}(\Omega_2), 0),$$

ou seja,

$$i(f,\Omega) = i(f,\Omega_1) + i(f,\Omega_2),$$

como queriamos mostrar.

 (\mathbf{P}_4) (Invariância por Homotopia) Se $H:[0,1]\times\overline{\Omega}\longrightarrow C$ é uma homotopia tal que: $H(t,\cdot)\in C(\overline{\Omega})$ e $x\neq H(t,x)$, para todo $x\in\partial\Omega$ e para todo $t\in[0,1]$, então,

$$i(H(t,\cdot),\Omega)$$
 é constante.

De fato, pela definição de índice, temos:

$$i(H(t,\cdot),\Omega) = D(I - H(t,\cdot) \circ R, R^{-1}(\Omega), 0),$$

então, para mostrar que $i(H(t,\cdot),\Omega)$ é constante, devemos mostrar que:

i)
$$H(t,\cdot) \circ R : \overline{R^{-1}(\Omega)} \longrightarrow E$$
 é compacta;

$$ii) \ 0 \not\in (I-H(t,\cdot)\circ R)([0,1]\times \partial(R^{-1}(\Omega))).$$
 Vejamos:

i) De fato, note primeiro que $\overline{R^{-1}(\Omega)} \subset R^{-1}(\overline{\Omega})$. Desta forma, seja (w_n) uma sequência limitada em $\overline{R^{-1}(\Omega)}$, então, $(w_n) \in R^{-1}(\overline{\Omega})$, isto é, existe $(z_n) \in \overline{\Omega}$ tal que $w_n = R^{-1}(z_n)$, o que implica que $R(w_n) = z_n$.

Daí, usando ($\mathbf{R_4}$), temos $||z_n|| = ||w_n||$, de onde segue que (z_n) é limitada. Então, como f é compacta, existe uma subsequência $z_{n_j} = R(w_{n_j})$ tal que $f(z_{n_j})$ é convergente. Portanto, $f \circ R$ é compacta em $\overline{R^{-1}(\Omega)}$.

ii) Suponha que

$$0 \in (I - H(t, \cdot) \circ R)([0, 1] \times \partial(R^{-1}(\Omega)))$$
, então, existe $x \in \partial(R^{-1}(\Omega))$ tal que:

$$(I - H(t, \cdot) \circ R)(x) = 0$$
, para todo $t \in [0, 1]$,

ou seja

$$H(t,\cdot)(R(x)) = x.$$

Como $H:[0,1]\times\overline{\Omega}\longrightarrow C$, temos que $x\in C$, logo x=R(x) de onde segue que H(t,x)=x, logo $x\not\in\partial\Omega$, e como $\Omega=C\cap R^{-1}(\Omega)$, temos que $x\not\in\partial(R^{-1}(\Omega))$.

1.3 Soluções em Cone

Nesta seção, iremos apresentar alguns lemas que indicam a existência ou não existência de soluções em cone. Para isto, iremos considerar o espaço de Banach E munido da norma $||\cdot||$. Além disso, também iremos considerar o cone fechado $C \subseteq E$, tal que existe uma retração de E sobre C. Dessa forma está bem definido o índice do ponto fixo de um cone C.

Definição 1.4 Seja $C \subset E$ um cone, definimos uma ordem parcial " \leq " com respeito a C, por:

$$\begin{cases} x \leq y, \ se \ y - x \in C \\ x \nleq y, \ se \ y - x \in C \setminus \{0\}. \end{cases}$$

Vamos indicar por $C_r = \{x \in K : ||x|| < r\}$. Veja que $C_r = C \cap B_r(0)$ é um aberto relativo em K.

Nos próximos dois lemas, indicaremos em que condições a aplicação ${\cal F}$ não admite ponto fixo.

Lema 1.3 Sejam $C \subset E$, um cone fechado no espaço de Banach E. Suponha que $F : \overline{C}_r \longrightarrow C$ é uma função compacta tal que:

- (a) $F(x) \neq \lambda x$, para todo $\lambda \leq 1$ e ||x|| = r;
- (b) Existe $\alpha > 0$, tal que $||F(x)|| \ge \alpha$, para todo ||x|| = r; Então, $i(F, C_r) = 0$.

Demonstração

Fixe $e \in C \setminus \{0\}$. Defina $F_1 : \overline{C}_r \longrightarrow C$ por:

$$F_1(x) = \begin{cases} F(2x) + |||x|| - r|e, \text{ para } ||x|| \le \frac{r}{2} \\ F\left(r\frac{x}{||x||}\right) + |||x|| - r|e, \text{ para } \frac{r}{2} < ||x|| \le r. \end{cases}$$

Observe que:

- (1) F_1 é contínua em \overline{C}_r , pois, F é contínua e as duas partes da definição de F_1 coincidem quando $||x||=\frac{r}{2}$.
 - (2) Mostremos que F_1 é compacta.

De fato, seja (x_n) uma sequência limitada em \overline{C}_r . E, seja (x_{n_j}) uma subsequência de (x_n) tal que

$$F\left(r\frac{x_{n_j}}{||x_{n_j}||}\right)$$
 converge para z_0 , se $||x_{n_j}|| > \frac{r}{2}$;

$$F(2x_{n_j})$$
 converge para z_1 , se $||x_{n_j}|| \le \frac{r}{2}$;

 $||x_{n_j}||$ converge para $\eta \geq 0$.

Facilmente mostra-se que $F_1(x_{n_j})$ converge para $z_0 + |\eta - r|e$ ou para $z_1 + |\eta - r|e$.

(3) Existe $\alpha_1 > 0$ tal que $||F_1(x)|| \ge \alpha_1$, para todo $||x|| \le r$.

Com efeito, do contrário, existiria uma sequência (y_n) limitada em \overline{C}_r tal que:

$$||F_1(y_n)|| < \frac{1}{n}$$
, para todo $n \in \mathbb{N}$

de onde segue que,

$$F_1(y_n) \to 0.$$

Sem perder a generalidade, passando para uma subsequência se necessário, temos que:

$$||y_n|| \to \eta \in 0 \le \eta \le r$$

Vamos estudar dois casos:

(3.1) Se $||y_n|| > \frac{r}{2}$, para todo $n \in \mathbb{N}$, como F é compacta, temos

$$F\left(r\frac{y_n}{||y_n||}\right) \to z_1 \in C,$$

agora, usando (**b**), existe $\alpha > 0$ tal que $\left| \left| F\left(r\frac{y_n}{||y_n||}\right) \right| \right| \ge \alpha$, para todo $n \in \mathbb{N}$. Consequentemente, $||z_1|| \ge \alpha > 0$.

Então, passando ao limite a expressão

$$F_1(y_n) = F\left(r\frac{y_n}{||y_n||}\right) + |||y_n|| - r|e|$$

temos

$$0 = z_1 + |\eta - r|e$$
, onde $\eta \le r$

o que implica,

$$-z_1 = (r - \eta)e \in C,$$

isto é, $z_1 \in (-C)$.

Logo $z_1 \in C \cap (-C) = \{0\}$, isto é, $z_1 = 0$ que é um absurdo, pois $||z_1|| \ge \alpha > 0$.

(3.2) Se $||y_n|| \leq \frac{r}{2}$, para todo $n \in \mathbb{N}$. Neste caso, escolha

$$F(2y_n) \to z_2 \in C$$
.

Veja que $\eta \leq \frac{r}{2}$, pois $||y_n|| \to \eta$ e $|y_n| \leq \frac{r}{2}$.

Passando ao limite a expressão

$$F_1(y_n) = F(2y_n) + ||y_n| - r|e$$

temos

$$0 = z_2 + |\eta - r|e, \tag{1.5}$$

o que implica,

$$-z_2 \in C$$
, isto é, $z_2 \in (-C)$,

de onde segue que $z_2 = 0$.

Voltando a igualdade (1.5) temos

$$|\eta - r|e = 0,$$

e como $e \neq 0$ temos que

$$|\eta - r| = 0$$
, isto é, $\eta = r$,

que é um absurdo, poi, $\eta \leq \frac{r}{2}$.

Portanto, existe $\alpha_1 > 0$ tal que $||F_1(x)|| \ge \alpha$, para todo $||x|| \le r$.

(4) Se
$$\lambda^{-1} > \frac{r}{\alpha_1}$$
, então, $i(\lambda^{-1}F_1, C_r) = 0$.

Para provarmos a afirmação acima, basta mostrar que $\lambda^{-1}F_1$ não possui ponto fixo em C_r . Com efeito, se existe $x \in C_r$ tal que $\lambda^{-1}F_1(x) = x$, então, usando (3), temos;

$$||\lambda^{-1}F_1(x)|| = \lambda^{-1}||F_1(x)|| \ge \lambda^{-1}\alpha_1$$

de onde segue que,

$$\lambda^{-1} \le \frac{r}{\alpha_1},$$

que é um absurdo.

Portanto, se $\lambda^{-1} > \frac{r}{\alpha_1}$, então, $i(\lambda^{-1}F_1, C_r) = 0$.

(5)
$$i(\lambda^{-1}F, C_r) = i(\lambda^{-1}F_1, C_r) = 0.$$

De fato, se ||x|| = r, então,

$$F_1(x) = F\left(r\frac{x}{||x||}\right) + |||x|| - r|e = F(x)$$

o que implica

$$\lambda^{-1}F_1(x) = \lambda^{-1}F(x).$$

(6) De (a), temos $\lambda^{-1}F(x) \neq x$, para todo $\lambda \leq 1$ e ||x|| = r, então pela propriedade da Invariância por Homotopia, temos $i(F, C_r) = 0$, como queriamos mostrar.

Os lemas seguintes, mostram em que condições a função F admite ponto fixo.

Lema 1.4 Sejam $C \subset E$ um cone fechado no espaço de Banach E e R > 0. Suponha que $F : \overline{K}_R \longrightarrow C$ é uma função compacta tal que,

$$F(x) \neq \lambda x$$
, para todo $\lambda \geq 1$ e $||x|| = R$.

 $Ent\~ao, i(F, C_R) = 1.$

Demonstração

Considere a homotopia H(t,x)=tF(x), definida em \overline{C}_R , para todo $t\in[0,1]$ que é admissível, pois como por hipótese $F(x)\neq \lambda x$, para todo $\lambda\geq 1$ e ||x||=R, temos que $tF(x)\neq x$, para todo $t=\frac{1}{\lambda}\in[0,1]$, isto é, $H(t,x)\neq x$, para todo $x\in\partial C_R$.

Então, como H é compacta e $H(t,x) \neq x$, para todo $x \in \partial C_R$, segue da propriedade da Invariância por Homotopia que

$$i(H(1,\cdot), C_R) = i(H(0,\cdot), C_R).$$

Mas, $H(1,\cdot) = F \in H(0,\cdot) = 0$, e portanto

$$i(F, C_R) = i(0, C_R) = 1.$$

Lema 1.5 Seja $C \subset E$, um cone fechado no espaço de Banach E. Suponha que F: $\overline{C}_r \longrightarrow C$ é uma função compacta tal que, existe $e \in C \setminus \{0\}$,

$$x - F(x) \neq \lambda e$$
, para todo $\lambda \geq 0$ $e ||x|| = r$.

 $Ent\tilde{a}o, i(F, C_r) = 0.$

Demonstração:

Seja $F_1: \overline{C}_r \longrightarrow C$ definida por

$$F_1(x) = F(x) + \lambda e$$
.

Como por hipótese $x - F(x) \neq \lambda e$ para todo ||x|| = r e para todo $\lambda \geq 0$, então, $F_1(x) \neq x$ para todo ||x|| = r e para todo $\lambda \geq 0$. Logo, F_1 não possui ponto fixo, ou seja,

$$i(F_1, K_r) = 0.$$

Agora, considere a homotopia

$$H(t,x) = F(x) + t\lambda e$$
,

que satisfaz $H(t, x) \neq x$, para todo ||x|| = r e $0 \le t \le 1$.

De fato, seja $t\lambda = \alpha > 0$, então:

$$F(x) + \alpha e \neq x$$
, para todo $||x|| = r$,

pois por hipótese $x - F(x) \neq \lambda e$, para todo $||x|| = r e \lambda \geq 0$.

Então, como $H(1,\cdot)=F+\lambda e=F_1$ e $H(0,\cdot)=F$, segue que,

$$i(F, C_r) = i(F_1, C_r) = 0,$$

ou seja,
$$i(F, C_r) = 0$$
.

Nos próximos teoremas, mostraremos o conjunto onde o operador ${\cal F}$ admite ponto fixo.

Teorema 1.5 Se $C \subset E$ é um conjunto fechado no espaço de Banach E e $F : \overline{C}_R \longrightarrow C$ é uma função compacta tal que:

- $(\mathbf{a})F(x) \neq \lambda x$, para todo $\lambda \geq 1$ e ||x|| = R.
- (b) Existe r < R, $e \in C \setminus \{0\}$ tal que $x \neq F(x) + \lambda e$, para todo ||x|| = r $e \lambda > 0$. Então, F possui um ponto fixo em $\{x \in C : r \leq ||x|| \leq R\}$.

Demonstração:

Suponha que F não tem ponto fixo em ∂C_r e ∂C_R , então:

$$i(f, C_R \setminus \overline{C}_r) = i(F, C_R) - i(F, C_r). \tag{1.6}$$

Então, segue de (a) e do Lema 1.4, que,

$$i(F, C_R) = 1. (1.7)$$

Também temos pelo item (b) e, pelo Lema 1.5, que,

$$i(F, C_r) = 0. (1.8)$$

Então, de (1.7), (1.8) e (1.6), obtemos:

$$i(F, C_R \setminus \overline{C}_r) = 1.$$

Portanto, F tem um ponto fixo $\{x \in C : r \leq ||x|| \leq R\}$, como queriamos mostrar.

Teorema 1.6 Se $K \subset E$ é um cone fechado no espaço de Banach E, 0 < r < R e $F : \overline{C}_R \longrightarrow C$ é uma função compacta tal que,

- (a) $F(x) \le x$, para todo ||x|| = R;
- **(b)** $F(x) \ge x$, para todo ||x|| = r;

Então, F possui um ponto fixo em $\{x \in K : r \le ||x|| \le R\}$.

Demonstração:

Suponha que F não tem ponto fixo em ∂C_r e ∂C_R , então,

$$i(F, C_R \setminus \overline{C}_r) = i(F, C_R) - i(F, C_r)$$
(1.9)

Da hipótese (a), segue que $x - F(x) \in C$, para todo ||x|| = R.

Considerando $\lambda > 1$, podemos observar que $x < \lambda x$, para todo $x \in K$, pois $\lambda x - x = (\lambda - 1)x \in C$.

Logo,

$$x - F(x) + \lambda x - x \in C \setminus \{0\},\$$

ou seja,

$$F(x) < \lambda x$$
, para todo $\lambda > 1$ e $||x|| = R$.

Então, usando o Lema 1.4, temos que

$$i(F, C_R) = 1.$$

Agora, fixando $e \in C \setminus \{0\}$, temos:

$$F(x) < F(x) + \lambda e$$
, para todo $\lambda > 1$ e $||x|| = r$.

Pela hipótese (b), temos

$$F(x) - x \in C$$
, para todo $||x|| = r$.

Então, como $F(x) + \lambda e > F(x) \ge x$, temos $F(x) + \lambda e > x$. ou seja,

$$F(x) + \lambda e \neq x$$
, para todo $\lambda > 0$, $||x|| = r$ e $e \in C \setminus \{0\}$.

Logo, pelo Lema 1.5, temos que

$$i(F, C_r) = 0.$$

Então, voltando a igualdade (1.9), obtemos

$$i(F, C_R \backslash \overline{C}_r) = 1.$$

Portanto, F tem um ponto fixo em $\{x \in C : r \le ||x|| \le R\}$.

Teorema 1.7 (Krasnoselskii) Se $C \subset X$ é um cone fechado, $F : \overline{C}_R \longrightarrow C$ é compacta e,

- (a) $||F(x)|| \le ||x||$, para todo ||x|| = R,
- (b) $||F(x)|| \ge ||x||$, para todo ||x|| = r.

Então, F possui um ponto fixo em $\{x \in C : r \le ||x|| \le R\}$.

Demonstração:

Suponha que F não tem ponto fixo em ∂C_R e ∂C_r , então:

$$i(F, C_R \setminus \overline{C}_r) = i(F, C_R) - i(F, C_r).$$

Seja $\lambda > 1$, de (a) segue que

$$||F(x)|| \le ||x|| < \lambda ||x||$$
, para todo $||x|| = R$,

o que implica

$$F(x) \neq \lambda x$$
, para todo $||x|| = R e \lambda > 1$.

Logo, pelo Lema 1.4, temos

$$i(F, C_R) = 1.$$

Por outro lado, se $0 < \lambda < 1$, segue de (b) que

$$||F(x)|| \ge ||x|| > \lambda ||x||$$
, para todo $||x|| = r$,

o que implica

$$F(x) \neq \lambda x$$
, para todo $||x|| = r e \lambda < 1$.

Além disso, se ||x|| = r, também temos

$$||F(x)|| \ge ||x|| = r$$
, isto é, $||F(x)|| \ge r$, para todo $||x|| = r$.

Então, segue do Lema 1.3 que

$$i(F, C_r) = 0.$$

Portanto,

$$i(F, C_R \backslash \overline{C}_r) = 1,$$

isto é, F tem um ponto fixo em $\{x \in C : r \le ||x|| \le R\}$.

Capítulo 2

Sistemas de Equações Elípticas Superlineares envolvendo Parâmetros

Neste capítulo, estudaremos a existência, não-existência e multiplicidade de soluções positivas para uma classe de sistemas de equações diferenciais ordinárias de segunda ordem. Aplicando resultados tais como: Teorema do Ponto Fixo em Cone, métodos de sub-super soluções e argumentos da Teoria do Grau, para estudar sistemas semilineares elípticos em um domínio limitado não-nulo, com condições de fronteira não-homogêneas. Para isto, durante todo este capítulo nossa preocupação é provar o Teorema 0.2. Assim, baseado no trabalho de João Marcos do Ó, Sebastião Lorca e Pedro Ubilla [2], estudaremos sistemas do tipo

$$(\mathbf{S_{(a,b)}}) \begin{cases} -u'' &= f(t, u(t), v(t), a, b) \text{ em } (0, 1), \\ -v'' &= g(t, u(t), v(t), a, b) \text{ em } (0, 1), \\ u(0) &= u(1) = 0, \\ v(0) &= v(1) = 0, \end{cases}$$

com f e g satisfazendo as hipóteses (S_0) à (S_4).

2.1 Resultados Preliminares

Nesta seção iremos apresentar alguns resultados que serão necessários para provar a existência de soluções para o sistema $(S_{(a,b)})$.

Note que se o par (u, v) é solução do sistema $(\mathbf{S}_{(\mathbf{a}, \mathbf{b})})$, usando o Teorema A.2 do **Apêndice A**, para todo $t \in [0, 1]$, temos:

$$\begin{cases} u(t) = \int_0^1 K(t,\tau) f(\tau, u(\tau), v(\tau), a, b) d\tau, \\ v(t) = \int_0^1 K(t,\tau) g(\tau, u(\tau), v(\tau), a, b) d\tau, \end{cases}$$

onde, $K(t,\tau)$ é a função de Green dada por

$$K(t,\tau) = \begin{cases} (1-t)\tau, \text{ se } \tau < t. \\ (1-\tau)t, \text{ se } \tau \ge t. \end{cases}$$
 (2.1)

Considere, o operador $F: C([0,1]) \times C([0,1]) \longrightarrow C([0,1]) \times C([0,1])$, dado por

$$F(u,v) := (A(u,v), B(u,v)),$$

com

$$A(u,v)(t) := \int_0^1 K(t,\tau) f(\tau, u(\tau), v(\tau), a, b) d\tau$$

$$B(u,v)(t) := \int_0^1 K(t,\tau) g(\tau, u(\tau), v(\tau), a, b) d\tau$$
(2.2)

Então, podemos observar que resolver o sistema $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$ é equivalente a encontrar ponto fixo de F, isto é, solução da equação

$$F(u,v) = (u,v),$$

no espaço de Banach,

$$X = C([0,1]; \mathbb{R}) \times C([0,1]; \mathbb{R}),$$

dotados da norma

$$||(u,v)|| := ||u||_{\infty} + ||v||_{\infty},$$

com $||w||_{\infty} := \sup_{t \in [0,1]} |w(t)|.$

Para provar a existência da primeira solução positiva do sistema ($\mathbf{S}_{(\mathbf{a},\mathbf{b})}$), utilizaremos o Teorema abaixo, o qual segue diretamente dos Lemas 1.3, 1.4 e 1.7 do **Capítulo** 1, onde necessitamos da definição e propriedades do índice do ponto fixo em cone.

Teorema 2.1 Seja X um Espaço de Banach com a norma |.|, e seja $C \subset X$ um cone em X. Para r>0, defina $C_r = C \cap \overline{B(0,r)}$, onde $\overline{B(0,r)} = \{x \in X; ||x|| \leq r\}$ é uma bola fechada de raio r centrada na origem de X. Suponha que $F: C_r \longrightarrow C$ é uma função compacta tal que $F(x) \neq x$, $\forall x \in \partial C_r = \{x \in C; ||x|| = r\}$. Então:

(i) Se
$$||x|| \le ||Fx||, \forall x \in \partial C_r$$
, então $i(F, C_r, 0) = 0$.

(ii) Se
$$||x|| \ge ||Fx||, \forall x \in \partial C_r$$
, então $i(F, C_r, 0) = 1$.

No que segue, iremos considerar o Cone $C \subset X$, dado por

$$C = \{(u, v) \in X : u(0) = v(0) = u(1) = v(1) = 0, \text{ e } u, v \text{ são funções côncavas}\},$$
 (2.3) e, a partir daí, temos o seguinte lema.

Lema 2.1 O operador $F: X \longrightarrow X$ é contínuo e compacto, e $F(C) \subset C$.

Demonstração:

Considere primeiro o operador $S_1: C^0([0,1]) \times C^0([0,1]) \longrightarrow C^0([0,1]) \times C^0([0,1]),$ dado por

$$S_1(u,v)(t) = (Su(t), Sv(t)),$$

onde S é o operador dado no Teorema A.2 do **Apêndice A**, então, podemos observar que o operador S_1 é linear, contínuo e compacto.

Considere agora o operador $G: C^0([0,1]) \times C^0([0,1]) \longrightarrow C^0([0,1]) \times C^0([0,1])$, dado por

$$G(u, v)(t) = (f(t, u(t), v(t), a, b), g(t, u(t), v(t), a, b)),$$

que não é linear, mas é contínuo e limitado.

Finalmente, considerando o operador $F = S_1 \circ G$, é fácil ver que F é um operador contínuo e compacto. Falta mostrar apenas que $F(C) \subset C$, para isto, sejam F_1, F_2 as coordenadas da função F(u, v), é fácil ver que F_1, F_2 são duas vezes diferenciáveis em (0,1), com $F_1'' \leq 0$ e $F_2'' \leq 0$, desta forma, segue do Teorema A.8 do **Apêndice A**, que F_1 e F_2 são funções côncavas.

Além disso,

$$F_1(u,v)(0) = F_1(u,v)(1) = 0$$
 e $F_2(u,v)(0) = F_2(u,v)(1) = 0$.

Portanto,
$$F(C) \subset C$$
.

2.2 Existência da primeira solução positiva

Nesta seção, usando o fato de que $f, g : [0,1] \times [0,+\infty) \times [0,+\infty) \times [0,+\infty) \times [0,+\infty) \times [0,+\infty) \times [0,+\infty) \longrightarrow [0,+\infty)$ são funções contínuas e não-decrescentes na segunda e terceira variáveis, e assumindo as hipóteses $(\mathbf{S_1})$ e $(\mathbf{S_3})$ aplicaremos o Lema 2.1 para provar a existência da primeira solução positiva para o sistema $(\mathbf{S_{(a_0,b_0)}})$, onde (a_0,b_0) é dado na hipótese $(\mathbf{S_3})$.

Portanto, os dois próximos lemas, junto com o Lema 2.1, nos garantem a existência de uma solução positiva para o sistema $(S_{(a,b)})$.

Lema 2.2 Seja $R_0 > 0$, se a hipótese ($\mathbf{S_3}$) é válida, então, para todo $(u, v) \in \partial C_{R_0}$, com C_{R_0} dado por (1.4), temos

$$||F(u,v)|| \le ||(u,v)||.$$

Demonstração:

Seja $(u,v) \in C_{R_0}$, onde C_{R_0} é dado pelo Lema 2.1, então

$$||(u,v)|| = ||u||_{\infty} + ||v||_{\infty} \le R_0,$$

o que implica,

$$||u||_{\infty} \le R_0 e ||v||_{\infty} \le R_0.$$

Como por hipótese f, g são não decrescentes na segunda e terceira variáveis temos:

$$f(\tau, u(\tau), v(\tau), a_0, b_0) \le f(\tau, R_0, R_0, a_0, b_0).$$

Desta forma, se $t \in [0, 1]$, segue da definição (2.2) e da igualdade (1) que

$$A(u,v)(t) = \int_{0}^{1} K(t,\tau)f(\tau,u(\tau),v(\tau),a_{0},b_{0})d\tau$$

$$\leq \int_{0}^{1} K(t,\tau)f(\tau,R_{0},R_{0},a_{0},b_{0})d\tau$$

$$\leq \int_{0}^{1} K(\tau^{*},\tau)f(\tau,R_{0},R_{0},a_{0},b_{0})d\tau$$

$$= \int_{0}^{\tau^{*}} K(\tau^{*},\tau)f(\tau,R_{0},R_{0},a_{0},b_{0})d\tau + \int_{\tau^{*}}^{1} K(\tau^{*},\tau)f(\tau,R_{0},R_{0},a_{0},b_{0})d\tau,$$

com

$$K(\tau^*, \tau) = \begin{cases} (1 - \tau)\tau^*, & \text{se } \tau^* \le \tau < 1, \\ \tau(1 - \tau^*), & \text{se } \tau^* > \tau > 0. \end{cases}$$

Daí, temos,

$$A(u,v)(t) \leq \int_0^{\tau^*} \tau f(\tau, R_0, R_0, a_0, b_0) d\tau.$$

Então, usando (S_3) , concluimos que

$$||A(u,v)||_{\infty} \le s_0 R_0.$$

Analogamente, usando novamente $(\mathbf{S_3})$, o operador definido em (2.2) e a igualdade (2) mostra-se que

$$||B(u,v)||_{\infty} \le (1-s_0)R_0.$$

Portanto, para todo $(u, v) \in C_{R_0}$, temos

$$||F(u,v)|| = ||A(u,v)||_{\infty} + ||B(u,v)||_{\infty} \le s_0 R_0 + (1-s_0)R_0 = R_0,$$

ou seja,

$$||F(u,v)|| \le ||(u,v)||$$
, para todo $(u,v) \in \partial C_{R_0}$,

como queriamos demonstrar.

Observação 2.1 Dados $0 < \delta < \varepsilon < 1$, existe $\eta > 0$ tal que

$$K(t,\tau) \ge \eta K\left(\frac{1}{2},\tau\right),$$

para todo $\delta \leq t, \tau \leq \varepsilon$, onde $K(t,\tau)$ é a função de Green dada por (2.1).

De fato, note que se $t \in (\delta, \tau)$, então $K(t, \tau) = (1 - \tau)t$. Daí, considere dois casos: Se $\tau \leq \frac{1}{2}$, temos $K(\frac{1}{2}, \tau) = \frac{1}{2}\tau$. Também temos que,

$$K(t,\tau) = (1-\tau)t = \frac{t\tau}{\tau} - t\tau = t\tau(\frac{1}{\tau} - \tau).$$

Mas, como $\tau \leq \frac{1}{2}$, temos $\frac{1}{\tau} \geq 2$, de onde segue que $\frac{1}{\tau} - 1 \geq 1$.

Logo, $K(t,\tau) \ge t\tau > \delta\tau$. Desta forma, considerando $\eta_1 = 2\delta > 0$, concluimos que

$$K(t,\tau) > \eta_1 K\left(\frac{1}{2},\tau\right)$$
, para todo $\delta < t < \tau \le \frac{1}{2}$.

Se
$$\tau>\frac{1}{2}$$
, temos $K(\frac{1}{2},\tau)=(1-\tau)\frac{1}{2}$. Daí,
$$K(t,\tau)=(1-\tau)t>(1-\tau)\delta.$$

Então, tomando $\eta_1 = 2\delta > 0$, temos

$$K(t,\tau) > \eta_1 K\left(\frac{1}{2}, \tau\right)$$
, para todo $\delta < t < \tau \le \frac{1}{2}$.

Por outro lado, se $t \in (\tau, \varepsilon)$, temos $K(t, \tau) = \tau(1-t)$. Além disso, também temos dois casos a considerar:

Se
$$\tau \leq \frac{1}{2}$$
, então $K\left(\frac{1}{2},\tau\right) = \frac{1}{2}\tau$. Mas, note que,
$$K(t,\tau) = (1-t)\tau > (1-\varepsilon)\tau.$$

Então, considerando $\eta_2 = 2(1 - \varepsilon)$, temos

$$K(t,\tau) > \eta_2 K\left(\frac{1}{2}, \tau\right)$$
, para todo $\tau < t < \varepsilon, \ \tau > \frac{1}{2}$.

Se
$$\tau > \frac{1}{2}$$
, então $K\left(\frac{1}{2}, \tau\right) = (1 - \tau)\frac{1}{2}$. Mas,

$$K(t,\tau) = (1-t)\tau > (1-t)\frac{1}{2} > (1-\varepsilon)\frac{1}{2}.$$

E, como $\tau > \frac{1}{2}$, temos $(1 - \tau) < \frac{1}{2}$. Logo,

$$K(t,\tau) > (1-\varepsilon)(1-\tau).$$

Então, se considerarmos $\eta_2 = 2(1 - \varepsilon)$, concluimos que

$$K(t,\tau) > \eta_2 K\left(\frac{1}{2},\tau\right)$$
, para todo $\tau < t < \varepsilon, \ \tau > \frac{1}{2}$.

Portanto, considerando $\eta = \min\{\eta_1, \eta_2\}$, concluimos que

$$K(t,\tau) \geq \eta K\left(\frac{1}{2},\tau\right), \text{ para todo } \delta \leq t,\tau \leq \varepsilon.$$

Agora, usando a Observação (2.1), iremos mostrar o seguinte lema.

Lema 2.3 Suponha que $(\mathbf{S_1})$ é válida. Então existe $R_1 \in (0, R_0)$ tal que, para todo $(u, v) \in C_{R_1}$,

$$||F(u,v)|| \ge ||(u,v)||.$$

Demonstração:

Usando os números $0 < \delta_1 < \varepsilon_1 < 1$, dados na hipótese ($\mathbf{S_1}$), existe $R_1 \in (0, R_0)$ tal que,

$$f(\tau, u, v, a_0, b_0) \ge M|(u, v)|,$$

para todos $(u, v) \in [0, R_1] \times [0, R_1]$ e $\delta_1 \leq \tau \leq \varepsilon_1$, onde M > 0 é um número fixado tal que

$$\eta \delta_1(1-\varepsilon_1)M \int_{\delta_1}^{\varepsilon_1} K\left(\frac{1}{2}, \tau\right) d\tau \ge 1.$$
 (2.4)

Portanto, para todo $(u, v) \in C_{R_1}$, temos

$$||A(u,v)||_{\infty} \geq \int_{0}^{1} K(t,\tau)f(\tau,u(\tau),v(\tau),a_{0},b_{0})d\tau$$

$$\geq \eta \int_{0}^{1} K\left(\frac{1}{2},\tau\right)f(\tau,u(\tau),v(\tau),a_{0},b_{0})d\tau$$

$$\geq \eta \int_{\delta_{1}}^{\varepsilon_{1}} K\left(\frac{1}{2},\tau\right)f(\tau,u(\tau),v(\tau),a_{0},b_{0})d\tau$$

$$\geq \eta M \int_{\delta_{1}}^{\varepsilon_{1}} K\left(\frac{1}{2},\tau\right)|(u(\tau),v(\tau))|d\tau. \tag{2.5}$$

Mas, $|(u(\tau), v(\tau))| = |u(\tau)| + |v(\tau)| = u(\tau) + v(\tau)$ e, como u, v são côncavas pelo Lema A.2 do **Apêndice A** temos

$$u(\tau) + v(\tau) \ge \delta_1(1 - \varepsilon_1)||(u, v)||$$
, para todo $\delta_1 \le \tau \le \varepsilon_1$.

Daí, voltando a (2.5)

$$|A(u,v)| \ge \eta \delta_1(1-\varepsilon_1)M||(u,v)||\int_{\delta_1}^{\varepsilon_1} K\left(\frac{1}{2},\tau\right)d\tau.$$

Então, usando a desigualdade (2.4), temos

$$||A(u,v)||_{\infty} \ge ||(u,v)||.$$

Analogamente, mostra-se que

$$||B(u,v)||_{\infty} \ge ||(u,v)||.$$

Portanto, como $||F(u,v)|| = ||A(u,v)||_{\infty} + ||B(u,v)||_{\infty}$, concluimos que

$$||F(u,v)|| \ge ||(u,v)||.$$

Portanto, considerando os Lemas 2.2 e 2.3, como consequência direta do Lema 2.1, nós temos a existência da primeira solução positiva (u, v) para o sistema $(\mathbf{S}_{(\mathbf{a_0}, \mathbf{b_0})})$, tal que $R_1 < ||(u, v)|| < R_0$.

Segue diretamente do Lema 2.1.

Além disso, como uma consequência da hipótese (S_2) temos a seguinte estimativa a priori para soluções positivas do sistema $(S_{(a,b)})$.

Lema 2.4 Existe $c_0 > 0$ independente de a e b tal que $||(u, v)|| \le c_0$, para toda solução positiva (u, v) do sistema $(\mathbf{S}_{(\mathbf{a}, \mathbf{b})})$.

Demonstração:

Suponha por contradição que existe uma sequência de soluções $(u_n, v_n) \in X$ do sistema $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$ tal que $||(u_n, v_n)|| \to +\infty$. Sem perder a generalidade, nós podemos supor que $||u_n||_{\infty} \to +\infty$.

Considerando os números $0 < \delta_2 < \varepsilon_2 < 1$ dados pela hipótese $(\mathbf{S_2})$, e sabendo que u_n é côncava, pelo Lema A.2, $u_n(\tau) \geq (1 - \varepsilon_2)\delta_2||u_n||_{\infty}$, para todo $\varepsilon_2 \leq \tau \leq \delta_2$. Daí, podemos construir uma sequência crescente de números reais tal que $\alpha_n \to +\infty$ e

$$\frac{f(\tau, u_n(\tau), v_n(\tau), a, b)}{u_n + v_n} \ge \alpha_n,$$

para todo a, b > 0 e $\tau \in [\delta_2, \varepsilon_2]$.

Daí, temos,

$$||u_n||_{\infty} \geq u_n(t) = \int_0^1 K(t,\tau) f(\tau, u_n(\tau), v_n(\tau), a, b) d\tau$$

$$\geq \int_{\delta_2}^{\varepsilon_2} K(t,\tau) \frac{f(\tau, u_n(\tau), v_n(\tau), a, b)}{u_n(\tau) + v_n(\tau)} u_n(\tau) d\tau$$

$$\geq \delta_2(1 - \varepsilon_2) ||u_n||_{\infty} \int_{\delta_2}^{\varepsilon_2} K(t,\tau) \frac{f(\tau, u_n(\tau), v_n(\tau), a, b)}{u_n(\tau) + v_n(\tau)} d\tau$$

$$\geq \delta_2(1 - \varepsilon_2) ||u_n||_{\infty} \alpha_n \int_{\delta_2}^{\varepsilon_2} K(t,\tau) d\tau$$

de onde segue que,

$$1 \ge \delta_2(1 - \varepsilon_2)\alpha_n \int_{\delta_2}^{\varepsilon_2} K(t, \tau) d\tau,$$

ou seja

$$\frac{1}{\alpha_n} \ge \delta_2(1 - \varepsilon_2) \int_{\delta_2}^{\varepsilon_2} K(t, \tau) d\tau,$$

que é uma contradição, pois supomos $\alpha_n \to +\infty$.

Agora, considerando o sistema

$$\begin{cases}
-u'' = f_0(t, u, v) \text{ em } (0, 1), \\
-v'' = g_0(t, u, v) \text{ em } (0, 1), \\
u(0) = u(1) = v(0) = v(1) = 0,
\end{cases}$$
(2.6)

com f_0 e g_0 funções contínuas não negativas que são não-decrescentes nas variáveis u e v. Utilizaremos sub e super soluções (veja **Apêndice A**), para provarmos o lema a seguir.

Lema 2.5 Sejam $(\underline{u},\underline{v})$ e $(\overline{u},\overline{v})$ sub e super soluções respectivamente do sistema (2.6) tal que

$$(0,0) \le (u,v) \le (\overline{u},\overline{v}).$$

 $Ent\~ao$ o sistema (2.6) tem uma soluç $\~ao$ n $\~ao$ -negativa (u,v) verificando

$$(\underline{u},\underline{v}) \le (u,v) \le (\overline{u},\overline{v}).$$

Demonstração:

Considere o operador $G: C([0,1]) \times C([0,1]) \longrightarrow C([0,1]) \times C([0,1])$, dado por

$$G(u,v) := (M(u,v), N(u,v))$$
.

com

$$M(u,v)(t) := \int_0^1 K(t,\tau) f_0(\tau, u(\tau), v(\tau)) d\tau$$

e

$$N(u,v)(t) := \int_0^1 K(t,\tau)g_0(\tau,u(\tau),v(\tau))d\tau$$

Note que, encontrar soluções para o sistema (2.6) é equivalente a encontrar ponto fixo de G, ou seja, solução da equação

$$G(u,v) = (u,v)$$

no espaço de Banach $X=C([0,1],\mathbb{R})\times C([0,1],\mathbb{R}),$ munido da norma

$$||(u,v)|| := ||u||_{\infty} + ||v||_{\infty}.$$

Agora, considerando o operador \widetilde{G} definido por

$$\widetilde{G}(u,v) := \left(\widetilde{M}(u,v), \widetilde{N}(u,v)\right),$$

com

$$\widetilde{M}(u,v) := \int_0^1 K(t,\tau) f_0(\tau,\varepsilon(\tau,u),\zeta(\tau,v)) d\tau$$

 \mathbf{e}

$$\widetilde{N}(u,v) := \int_0^1 K(t,\tau)g_0(\tau,\varepsilon(\tau,u),\zeta(\tau,v))d\tau,$$

onde

$$\varepsilon(t,u) := \max\{\underline{u}(t), \min\{u(t), \overline{u}(t)\}\} \in \zeta(t,u) := \max\{\underline{v}(t), \min\{v(t), \overline{v}(t)\}\}.$$

Mostremos que o operador \widetilde{G} tem as seguintes propriedades:

- (a) \widetilde{G} é um operador contínuo e compacto;
- (b) Se o par $(u,v) \in X$ é ponto fixo de \widetilde{G} , então (u,v) é ponto fixo de G com $(\underline{u},\underline{v}) \leq (u,v) \leq (\overline{u},\overline{v});$
- (c) Existe $C_3 > 0$, que não depende de $\lambda \in [0,1]$, tal que se $(u,v) = \lambda \widetilde{G}(u,v)$, então $||(u,v)|| \leq C_3$, $(u,v) \in X$.

Prova de (a) Mostremos que \widetilde{G} é contínuo e compacto.

Considere o operador linear $L:C^0([0,1])\times C^0([0,1])\longrightarrow C^0([0,1])\times C^0([0,1]),$ dado por

$$L(u,v)(t) := (w,\eta)(t),$$

onde por definição,

$$w(t) = \int_0^1 K(t,\tau)u(\tau)d\tau \in \eta(t) = \int_0^1 K(t,\tau)v(\tau)d\tau,$$

se, e somente se,

$$\begin{cases}
-w'' = u(\tau) \text{ em } (0,1), \\
-\eta'' = v(\tau) \text{ em } (0,1), \\
w(0) = w(1) = \eta(0) = \eta(1) = 0
\end{cases}$$

Afirmação 1: L é contínuo.

De fato, note que

$$|w(t)| \le \int_0^1 |K(t,\tau)| |u(\tau)| d\tau \le ||u||_{\infty},$$

е

$$|\eta(t)| \le \int_0^1 |K(t,\tau)| |v(\tau)| d\tau \le ||v||_{\infty},$$

de onde segue que, $w \in \eta$ são limitadas.

Então, w e η são limitadas, de onde segue que L é limitado, e como L é um operador linear, concluimos que L é contínuo.

Afirmação 2: L é compacto.

Sejam $w_n, \eta_n : [0, 1] \longrightarrow \mathbb{R}$, dados por

$$w_n(t) = \int_0^1 K(t,\tau) u_n(\tau) d\tau \in \eta_n(t) = \int_0^1 K(t,\tau) v_n(\tau) d\tau.$$

Pelo Lema 2.4, existe $c_0>0$ tal que $||(u_n,v_n)||\leq c_0$ para todo $n\in\mathbb{N},$ ou seja,

$$||u_n||_{\infty} \le c_0 e ||v_n||_{\infty} \le c_0.$$
 (2.7)

De onde segue que w_n e η_n são equilimitadas.

Então, como w_n é diferenciável em [0,1] e $w_n(0)=w_n(1)=0$, para cada $n\in\mathbb{N}$, existe $t_n\in(0,1)$ tal que $w_n'(t_n)=0$. Daí,

$$w'_n(t) = \int_{t_n}^t w''_n(s)ds \le \int_0^1 -u_n(s)ds,$$

então, usando (2.7) segue que $|w'_n(t)| \le c_0$. De maneira análoga, mostra-se que $|\eta'_n(t)| \le c_0$.

Daí, como

$$w_n(t) - w_n(t_1) = \int_{t_1}^t w'_n(s) ds,$$

temos

$$|w_n(t) - w_n(t_1)| \le c_0|t - t_1|$$
, para todo $n \in \mathbb{N}$

ou seja, w_n é uniformemente equicontínua. Analogamente, mostra-se que η_n é uniformemente equicontínua.

Portanto, como w_n, η_n são uniformemente equicontínuas e equilimitadas, segue do Teorema de Ascoli-Arzelá, que w_n, η_n são compactos, ou seja, L é compacto.

Considere agora o operador $T:C^1([0,1])\times C^1([0,1])\longrightarrow C^0([0,1])\times C^0([0,1]),$ dado por,

$$T(u,v)(t) = (f_0(\tau,\varepsilon(t,u),\zeta(t,v)), g_0(\tau,\varepsilon(t,u),\zeta(t,v))),$$

que não é linear, mas é contínuo e limitado.

E, finalmente considere o operador

$$\overline{T} = LoT : C^1([0,1]) \times C^1([0,1]) \longrightarrow C^1([0,1]) \times C^1([0,1]).$$

Então,

$$\overline{T}(u,v)(t) = L(T(u,v)(t)) = (w(t), \eta(t)),$$

com

$$w(t) = \int_0^1 K(t, \tau) f_0(\tau, \varepsilon(t, u), \zeta(t, v)) d\tau,$$

e,

$$\eta(t) = \int_0^1 K(t, \tau) g_0(\tau, \varepsilon(t, u), \zeta(t, v)) d\tau.$$

Ou, seja
$$\overline{T}(u,v)(t) = (\widetilde{M}(u,v)(t),\widetilde{N}(u,v)(t)) = \widetilde{G}(u,v)(t).$$

Portanto, como L é contínuo e compacto e T é contínuo e limitado, segue que \widetilde{G} é contínuo e compacto, como queríamos mostrar.

Prova de (b): Mostremos que se $(u, v) \in X$ é ponto fixo de \widetilde{G} , então (u, v) é ponto fixo de G com $(\underline{u}, \underline{v}) \leq (u, v) \leq (\overline{u}, \overline{v})$.

Por hipótese temos, $\widetilde{G}(u,v)(t)=(u,v)(t),$ isto é,

$$\begin{cases}
-u'' = f_0(t, \varepsilon(t, u), \zeta(t, v)) \text{ em } (0, 1), \\
-v'' = g_0(t, \varepsilon(t, u), \zeta(t, v)) \text{ em } (0, 1), \\
u(0) = u(1) = v(0) = v(1) = 0
\end{cases}$$
(2.8)

Mas, pelas definições de ε e ζ segue de (2.8) que:

$$\begin{cases}
-u'' \ge f_0(t, \underline{u}, \underline{v}) \text{ em } (0, 1), \\
-v'' \ge g_0(t, \underline{u}, \underline{v}) \text{ em } (0, 1), \\
u(0) = u(1) = v(0) = v(1) = 0.
\end{cases}$$
(2.9)

Como por hipótese $(\underline{u},\underline{v})$ é subsolução de (2.6), temos

$$\begin{cases}
-\underline{u}'' \leq f_0(t, \underline{u}, \underline{v}) \text{ em } (0, 1), \\
-\underline{v}'' \leq g_0(t, \underline{u}, \underline{v}) \text{ em } (0, 1), \\
\underline{u}(0) \leq 0, \ \underline{u}(1) \leq 0, \\
\underline{v}(0) \leq 0, \underline{v}(1) \leq 0.
\end{cases} (2.10)$$

Então, segue de (2.9) e (2.10) que,

$$\begin{cases} -(\underline{u} - u)'' \le 0 \text{ em } (0, 1), \\ -(\underline{v} - v)'' \le 0 \text{ em } (0, 1), \\ (\underline{u} - u)(0) \le 0, \ (\underline{u} - u)(1) \le 0, \\ (\underline{v} - v)(0) \le 0, \ (\underline{v} - v)(1) \le 0. \end{cases}$$

Logo, pelo Princípio do Máximo, temos

$$(\underline{u},\underline{v}) \le (u,v). \tag{2.11}$$

Também temos, novamente pelas definições de ε e ζ , e de (2.8) que

$$\begin{cases}
-u'' \le f_0(t, \overline{u}, \overline{v}) \text{ em } (0, 1), \\
-v'' \le g_0(t, \overline{u}, \overline{v}) \text{ em } (0, 1), \\
u(0) = u(1) = v(0) = v(1) = 0.
\end{cases}$$
(2.12)

Mas, como $(\overline{u}, \overline{v})$ é supersolução de (2.6)

$$\begin{cases}
-\overline{u}'' \ge f_0(t, \overline{u}, \overline{v}) \text{ em } (0, 1), \\
-\overline{v}'' \ge g_0(t, \overline{u}, \overline{v}) \text{ em } (0, 1), \\
\overline{u}(0) \ge 0, \overline{u}(1) \ge 0, \\
\overline{v}(0) \ge 0, \overline{v}(1) \ge 0.
\end{cases} (2.13)$$

Então, segue de (2.12) e (2.13) que

$$\begin{cases}
-(u - \overline{u})'' \le 0 \text{ em } (0, 1), \\
-(v - \overline{v})'' \le 0 \text{ em } (0, 1), \\
(u - \overline{u})(0), (u - \overline{u})(1) \le 0, \\
(v - \overline{v})(0), (v - \overline{v})(1) \le 0.
\end{cases}$$

Então, novamente pelo Príncípio do Máximo,

$$(u,v) \le (\overline{u},\overline{v}). \tag{2.14}$$

Logo, de (2.11) e (2.14), temos

$$(u,v) < (u,v) < (\overline{u},\overline{v}),$$

de onde segue que,

$$\varepsilon(t, u) = u \in \zeta(t, v) = v.$$

Portanto, voltando ao sistema (2.8),

$$\begin{cases}
-u'' = f_0(t, u, v) \text{ em } (0, 1), \\
-v'' = g_0(t, u, v)) \text{ em } (0, 1), \\
u(0) = u(1) = v(0) = v(1) = 0,
\end{cases}$$

ou seja (u, v) é solução de (2.6).

Prova de (c): Como por hipótese $(u, v) = \lambda \widetilde{G}(u, v)$, temos

$$u = \lambda \int_0^1 K(t, \tau) f_0(\tau, \varepsilon(t, u), \zeta(t, v)) d\tau$$

е

$$v = \lambda \int_0^1 K(t, \tau) g_0(\tau, \varepsilon(t, u), \zeta(t, v)) d\tau.$$

Mas, observe que f_0, g_0 são contínuas e limitadas em $[0, 1] \times [0, ||\overline{u}||_{\infty}] \times [0, ||\overline{v}||_{\infty}]$, isto é, existem $M_1, M_2 > 0$ tais que,

$$|f_0(\tau, u(\tau), v(\tau))| \le M_1 e |g_0(\tau, u(\tau), v(\tau))| \le M_2.$$

De onde segue que,

$$|u(t)| \le \lambda \int_0^1 K(t,\tau) |f_0(\tau,\varepsilon(t,u),\zeta(t,v))| d\tau \le M_1$$

e

$$|v(t)| \le \lambda \int_0^1 K(t,\tau) |g_0(\tau,\varepsilon(t,u),\zeta(t,v))| d\tau \le M_2.$$

Logo, $||(u,v)||_1 \leq C_3$, para todo $(u,v) \in X$ onde $C_3 := M_1 + M_2 > 0$ não depende de $\lambda \in [0,1]$.

Portanto, usando o grau topológico de Leray-Schauder, obtemos um ponto fixo do operador G, provando o Lema.

Mostraremos agora que se o sistema $(\mathbf{S}_{(\mathbf{a_0},\mathbf{b_0})})$ tem solução positiva, então, $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$ também admite uma solução positiva, para todo $(a,b) \leq (a_0,b_0)$.

Lema 2.6 Suponha que $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$ tem uma solução não-negativa e $(0,0) \leq (c,d) \leq (a,b)$, então $(\mathbf{S}_{(\mathbf{c},\mathbf{d})})$ tem uma solução não-negativa.

Demonstração:

Seja (u, v) uma solução positiva de $(\mathbf{S}_{(\mathbf{a}, \mathbf{b})})$ então

$$\begin{cases}
-u'' &= f(t, u(t), v(t), a, b), em (0, 1) \\
-v'' &= g(t, u(t), v(t), a, b), em (0, 1) \\
u(0) &= u(1) = v(0) = v(1)
\end{cases}$$

Como f, g são não-decrescentes nas duas últimas variáveis e $(c, d) \leq (a, b)$, então

$$f(t, u(t), v(t), a, b) \geq f(t, u(t), v(t), c, d)$$

$$g(t, u(t), v(t), a, b) \geq g(t, u(t), v(t), c, d)$$

ou seja,

$$\begin{cases}
-u'' & \ge f(t, u(t), v(t), c, d) \text{ em } (0, 1) \\
-v'' & \ge g(t, u(t), v(t), c, d) \text{ em } (0, 1) \\
u(0) & = u(1) = v(0) = v(1)
\end{cases}$$

Logo, (u, v) é uma super-solução para o sistema $(\mathbf{S}_{(\mathbf{c}, \mathbf{d})})$

Por outro lado, (0,0) é uma sub-solução para este sistema.

Então, como o sistema $(\mathbf{S}_{(\mathbf{c},\mathbf{d})})$ tem uma sub-solução (0,0) e uma super-solução (u,v), com $(0,0) \leq (u,v)$. Pelo teorema de sub e super soluções (veja Teorema A.5 do **Apêndice B**), o problema $(\mathbf{S}_{(\mathbf{c},\mathbf{d})})$ admite solução $(U,V) \in C([0,1]) \times C([0,1])$ tal que $(0,0) \leq (U,V) \leq (u,v)$, e portanto, $(\mathbf{S}_{(\mathbf{c},\mathbf{d})})$ tem uma solução não-negativa.

2.3 Não-existência de Solução

Nesta seção estabeleceremos um resultado de não-existência de solução para o sistema $(S_{(a,b)})$. Para isto, mostraremos no lema a seguir, em que condições ele não admite solução.

Lema 2.7 Suponha as hipóteses $(\mathbf{S_2})$ e $(\mathbf{S_4})$. Então existe um c>0 tal que, para todo (a,b) com |(a,b)|>c, o sistema $(\mathbf{S_{(a,b)}})$ não admite solução.

Demonstração:

Suponha por contradição que existe uma sequência (a_n, b_n) com $|(a_n, b_n)| \to +\infty$ tal que para cada $n \in \mathbb{N}$, o sistema $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$ possui uma solução positiva $(u_n, v_n) \in C$,

onde C é dado por (2.3). Considerando os números $0 < \delta_4 < \varepsilon_4 < 1$, dados pela hipótese ($\mathbf{S_4}$). Dado M > 0, existe c > 0 tal que para todo (a,b) com $|(a,b)| \ge c$, temos

$$f(t, u, v, a, b) \ge M$$
, para todos $\delta_4 \le t \le \varepsilon_4$ e $u, v \ge 0$. (2.15)

Como u_n é solução de $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$, para todo $t \in [0,1]$ temos

$$u_n(t) = \int_0^1 K(t,\tau) f(\tau, u_n(\tau), v_n(\tau), a_n, b_n) d\tau$$

$$\geq \int_{\delta_4}^{\varepsilon_4} K(t,\tau) f(\tau, u_n(\tau), v_n(\tau), a_n, b_n) d\tau. \tag{2.16}$$

Então, para n suficientemente grande, segue de (2.15) que

$$u_n(t) \ge M \int_{\delta_4}^{\varepsilon_4} K(t, \tau) d\tau.$$

Daí,

$$||u_n||_{\infty} \ge M \sup_{\delta_4 \le t \le varepsilon_4} \int_{\delta_4}^{\varepsilon_4} K(t,\tau) d\tau.$$

Portanto, desde que possamos escolher em (2.15) M arbitrário, concluimos que (u_n) é uma sequência não-limitada em X.

Por outro lado, usando os números $0<\delta_2<\varepsilon_2<1$, dados pela hipótese $({\bf S_2})$. Dado M>0 existe R>0 tal que

$$f(t, u, v, a, b) \ge Mu$$
, para todos $a, b \ge 0, \delta_2 \le t \le \varepsilon_2$ e $u \ge R$. (2.17)

Agora, como u é côncava, usando as desigualdades (2.16) e (2.15), para n suficientemente grande, obtemos

$$u_n(t) \ge \int_{\delta_2}^{\varepsilon_2} K(t,\tau) M u_n(\tau) d\tau \ge M(1-\varepsilon_2) \delta_2 ||u_n||_{\infty} \int_{\delta_2}^{\varepsilon_2} K(t,\tau) d\tau,$$

de onde segue que

$$1 \ge M(1 - \varepsilon_2)\delta_2 \sup_{\delta_2 \le t \le \varepsilon_2} \int_{\delta_2}^{\varepsilon_2} K(t, \tau) d\tau,$$

que contradiz o fato de podermos escolher M arbitrário. E a prova do Lema agora está completa.

Portanto, encontramos uma curva decrescente que divide o primeiro quadrante do plano-(a,b) em duas partes, a primeira na qual $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$ admite solução, e a outra

na qual ele não admite solução. Então, definindo

 $\overline{a}=\sup\{a>0:(S_{(a,b)})$ tem uma solução positiva para algum $b>0\}.$

Pelo Lema 2.7 segue imediatamente que $0 < \overline{a} < \infty$, pois, do contrário o sistema $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$ não tem solução.

Então, usando métodos de sub-super soluções, podemos observar que, para todo $a \in (0, \overline{a})$ existe b > 0 tal que o sistema $(\mathbf{S_{(a,b)}})$ tem uma solução positiva. Além disso, usando os Lemas 2.6 e 2.7, e o Teorema de Ascoli-Arzelá, podemos provar que existe $b \geq 0$ tal que $(\mathbf{S_{(\overline{a},b)}})$ tem uma solução positiva, como veremos a seguir.

De fato, seja $\overline{a} = \sup A$, com

$$A = \{a > 0 : (S_{(a,b)})$$
 tem uma solução positiva para algum $b > 0\},$

então temos:

Se $0 < a < \overline{a} = \sup A$, então pela definição de supremo, existe $c \in A$ tal que a < c. Além disso, como $c \in A$ temos que $(\mathbf{S_{(c,b)}})$ tem solução positiva, e como, (0,0) < (a,b) < (c,b) segue do Lema 2.6 que $(\mathbf{S_{(a,b)}})$ também tem uma solução positiva.

Agora, se $0 < a_n < \overline{a}$ é tal que $a_n \to \overline{a}$, então vimos que o sistema $(\mathbf{S}_{(\mathbf{a_n}, \mathbf{b})})$ tem uma solução positiva, que denotaremos por (u_n, v_n) , isto é,

$$\begin{cases} u_n(t) = \int_0^1 K(t,\tau) f(\tau, u_n(\tau), v_n(\tau), a_n, b) d\tau, \\ v_n(t) = \int_0^1 K(t,\tau) g(\tau, u_n(\tau), v_n(\tau), a_n, b) d\tau. \end{cases}$$
(2.18)

Como pelo Lema 2.4, existe $c_0 > 0$ independente de a_n e b, tal que $||(u_n, v_n)|| \le c_0$, temos que f e g são contínuas e limitadas em $[0, 1] \times [0, c_0] \times [0, c_0] \times [0, c_1] \times [0, c_1]$, isto é, existem $M_1, M_2 > 0$ tais que

$$|f(\tau, u_n(\tau), v_n(\tau), a_n, b)| \le M_1 e |f(\tau, u_n(\tau), v_n(\tau), a_n, b)| \le M_2.$$
 (2.19)

Desta forma, como já vimos que u_n, v_n são equilimitadas, mostremos que u_n, v_n são uniformemente equicontínuas. Como vimos que para cada $n \in \mathbb{N}$ existe $t_n \in (0, 1)$ tal que $u'_n(t_n) = 0$, novamente pelo Teorema Fundamental do Cálculo, temos:

$$u'_n(t) = \int_{t_n}^t u''_n(s)ds \le \int_0^1 -f(s, u_n(s), v_n(s), a_n, b)ds,$$

para todo $t \in (0,1)$, de onde segue pela desigualdade (2.19) que,

$$|u'_n(t)| < M_1$$
.

Daí, como

$$u_n(t) - u_n(t_1) = \int_{t_1}^t u'_n(s)ds,$$

temos,

$$|u_n(t) - u_n(t_1)| \le M_1|t - t_1|,$$

ou seja, u_n é uniformemente equicontínua.

De maneira análoga, mostra-se que v_n também é uniformemente equicontínua.

Portanto, segue do Teorema de Ascoli-Arzelá que u_n e v_n admitem subsequências convergentes, isto é, existem u_{n_j} , v_{n_j} , u e v, tais que $u_{n_j} \to u$ e $v_{n_j} \to v$.

Então, passando (2.18) ao limite, segue do Lema A.10 do **Apêndice A** que

$$\begin{cases} u(t) = \int_0^1 K(t,\tau) f(\tau, u(\tau), v(\tau), \overline{a}, b) d\tau, \\ v(t) = \int_0^1 K(t,\tau) g(\tau, u(\tau), v(\tau), \overline{a}, b) d\tau, \end{cases}$$

o que implica que (u, v) é solução de $(\mathbf{S}_{(\overline{\mathbf{a}}, \mathbf{b})})$, como queriamos mostrar.

O mesmo argumento mostra que $(\mathbf{S}_{(\mathbf{a},\Gamma(\mathbf{a}))})$ possui uma solução para $0 \le a \le \overline{a}$. Portanto, provamos os itens (i) e (ii) do Teorema 0.2 citado na Introdução.

2.4 A segunda solução positiva

Nesta seção usaremos a Teoria do Grau para provar a existência da segunda solução positiva para o sistema $(S_{(a,b)})$ na região do plano

$$S = \{(a, b) \in \mathbb{R}^2 : 0 < a < \overline{a} \ e \ 0 < b < \Gamma(a)\}.$$

Sejam $(a, b) \in \mathcal{S}$, $(u_1, v_1) \in X$ uma solução positiva do sistema $(\mathbf{S}_{(\mathbf{a}, \mathbf{b})})$ e $(\overline{u}, \overline{v}) \in X$ uma solução positiva do sistema $(\mathbf{S}_{(\mathbf{a}, \Gamma(\mathbf{a}))})$ tais que $(0, 0) < (u_1, v_1) < (\overline{u}, \overline{v})$.

Usando a hipótese de que f, g são monótonas crescentes nas variáveis u, v, a, b e usando argumentos do Princípio do Máximo, nós podemos supor:

$$\begin{cases} (0,0) & \leq (u_1(t), v_1(t)) \leq (\overline{u}(t), \overline{v}(t)) \\ (0,0) & < (u'_1(0), v'_1(0)) < (\overline{u}'(0), \overline{v}'(0)) \\ (0,0) & > (u'_1(1), v'_1(1)) > (\overline{u}'(1), \overline{v}'(1)) \end{cases}$$

De fato, como (u_1, v_1) é solução do sistema $(\mathbf{S}_{(\mathbf{a}, \mathbf{b})})$ e $(\overline{u}, \overline{v})$ é solução de $(\mathbf{S}_{(\mathbf{a}, \Gamma(\mathbf{a}))})$ temos:

$$\begin{cases}
-u_1'' &= f(t, u_1(t), v_1(t), a, b) \text{ em } (0, 1) \\
-v_1'' &= g(t, u_1(t), v_1(t), a, b) \text{ em } (0, 1) \\
u_1(0) &= u_1(1) = v_1(0) = v_1(1) = 0
\end{cases}$$

$$\begin{cases}
-\overline{u}'' &= f(t, \overline{u}(t), \overline{v}(t), a, \Gamma(a)) \text{ em } (0, 1) \\
-\overline{v}'' &= g(t, \overline{u}(t), \overline{v}(t), a, \Gamma(a)) \text{ em } (0, 1)
\end{cases}$$

$$\overline{u}(0) &= \overline{u}(1) = \overline{v}(0) = \overline{v}(1) = 0$$

$$(2.21)$$

$$\begin{cases}
-\overline{u}'' = f(t, \overline{u}(t), \overline{v}(t), a, \Gamma(a)) \text{ em } (0, 1) \\
-\overline{v}'' = g(t, \overline{u}(t), \overline{v}(t), a, \Gamma(a)) \text{ em } (0, 1) \\
\overline{u}(0) = \overline{u}(1) = \overline{v}(0) = \overline{v}(1) = 0
\end{cases}$$
(2.21)

Mas, como $(0,0) \le (u_1,v_1) \le (\overline{u},\overline{v})$ e f,g são monótonas crescentes na segunda e terceira variáveis, daí temos:

$$f(t, u_1(t), v_1(t), a, b) \le f(t, \overline{u}(t), \overline{v}(t), a, b),$$

e como $(a,b) \leq (a,\Gamma(a))$ segue que

$$f(t, \overline{u}(t), \overline{v}(t), a, b) \le f(t, \overline{u}(t), \overline{v}(t), a, \Gamma(a)),$$

ou seja,

$$f(t, u_1(t), v_1(t), a, b) \le f(t, \overline{u}(t), \overline{v}(t), a, \Gamma(a)). \tag{2.22}$$

Analogamente,

$$g(t, u_1(t), v_1(t), a, b) \le g(t, \overline{u}(t), \overline{v}(t), a, \Gamma(a)). \tag{2.23}$$

Então, segue de (2.20), (2.22) e (2.23) que,

$$\begin{cases}
-u_1'' & \leq f(t, \overline{u}(t), \overline{v}(t), a, \Gamma(a)) \text{ em } (0, 1) \\
-v_1'' & \leq g(t, \overline{u}(t), \overline{v}(t), a, \Gamma(a)) \text{ em } (0, 1) \\
u_1(0) & = u_1(1) = v_1(0) = v_1(1) = 0
\end{cases}$$
(2.24)

De (2.21) e (2.24), segue que,

$$\begin{cases}
-(u_1 - \overline{u})'' & \leq 0 \text{ em } (0, 1), \\
-(v_1 - \overline{v})'' & \leq 0 \text{ em } (0, 1), \\
(u_1 - \overline{u})(0) & = (u_1 - \overline{u})(1) = (v_1 - \overline{v})(0) = (v_1 - \overline{v})(1) = 0.
\end{cases}$$

Portanto, usando o Príncipio do Máximo, (veja Teorema A.1 do $\bf Apêndice~\bf A$), temos:

$$\begin{cases} u_1 - \overline{u} \le 0 \text{ em } (0, 1), \\ v_1 - \overline{v} \le 0 \text{ em } (0, 1), \\ (u_1 - \overline{u})'(0) < 0, \ (v_1 - \overline{v})'(0) < 0, \\ (u_1 - \overline{u})'(1) > 0, \ (v_1 - \overline{v})'(1) > 0. \end{cases}$$

De onde segue que

$$\begin{cases} (0,0) \le (u_1, v_1) \le (\overline{u}, \overline{v}) \text{ em } (0,1), \\ (u'_1(0), v'_1(0)) < (\overline{u}'(0), \overline{v}'(0)), \\ (u'_1(1), v'_1(1)) > (\overline{u}'(1), \overline{v}'(1)). \end{cases}$$

Falta mostrar apenas que

$$(u'_1(0), v'_1(0)) > (0,0)$$

 $(u'_1(1), v'_1(1)) < (0,0).$

 $Como(u_1, v_1)$ é solução de $(\mathbf{S}_{(\mathbf{a}, \mathbf{b})})$

$$u_1(t) = \int_0^1 K(t,\tau) f(\tau, u_1(\tau), v_1(\tau), a, b) d\tau$$

e

$$v_1(t) = \int_0^1 K(t,\tau)g(\tau, u_1(\tau), v_1(\tau), a, b)d\tau.$$

Pelo Teorema Fundamental do Cálculo,

$$u_1'(t) = -\int_0^1 \tau f(\tau, u_1(\tau), v_1(\tau), a, b) d\tau + \int_t^1 f(\tau, u_1(\tau), v_1(\tau), a, b) d\tau$$

e

$$v_1'(t) = -\int_0^1 \tau g(\tau, u_1(\tau), v_1(\tau), a, b) d\tau + \int_t^1 g(\tau, u_1(\tau), v_1(\tau), a, b) d\tau.$$

De onde segue que

$$u'_1(0), v'_1(0) > 0 \in u'_1(1), v'_1(1) > 0,$$

ou seja,

$$(u_1'(0), v_1'(0)) > (0, 0) e (u_1'(1), v_1'(1)) < (0, 0),$$

como queríamos mostrar.

No que segue, iremos considerar o espaço de Banach

$$X_2 = X_1 \times X_1$$

onde

$$X_1 = \{ u \in C^1([0,1], \mathbb{R}) : u(0) = u(1) = 0 \},\$$

dotado da norma,

$$||u||_1 := ||u||_{\infty} + ||u'||_{\infty}.$$

Ou seja,

$$X_2 = \{(u, v) \in C^1([0, 1], \mathbb{R}) \times C^1([0, 1], \mathbb{R}) : u(0) = u(1) = v(0) = v(1) = 0\},\$$

com

$$||(u,v)||_1 := ||u||_{\infty} + ||v||_{\infty} + ||u'||_{\infty} + ||v'||_{\infty}$$

Agora, seja $\rho_1 > 0$, tal que $||(u_1, v_1)||_1 < \rho_1$. Consideraremos o subconjunto aberto \mathcal{A} de X_2 contendo (u_1, v_1) , dado por

 $\mathcal{A} = \{(u, v) \in X_2 \text{ satisfazendo as condições (i)-(iv) abaixo } \}$

(i)
$$(0,0) < (u(t),v(t)) < (\overline{u}(t),\overline{v}(t))$$
 em $(0,1)$

(ii)
$$(0,0) < (u'(0), v'(0)) < (\overline{u}'(0), \overline{v}'(0))$$

(iii)
$$(0,0) > (u'(1), v'(1)) > (\overline{u}'(1), \overline{v}'(1))$$

(iv)
$$||(u,v)||_1 < \rho_1$$
.

Além disso, consider o operador $\mathcal{G}: X_2 \longrightarrow X_2$ tal que $\mathcal{G} = F|X_2$. Daí, a existência da nossa segunda solução positiva do sistema $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$, é consequência do seguinte resultado.

Lema 2.8 Seja $(a,b) \in \mathcal{S}$. Então, temos:

(i)
$$D(Id - \mathcal{G}_{(a,b)}, \mathcal{A}, 0) = 1$$

(ii) Existe
$$\rho_2 > \rho_1$$
 tal que $D(Id - \mathcal{G}_{(a,b)}, B(0,\rho_2), 0) = 0$

Demonstração:

Considere o operador auxiliar $\overline{\mathcal{G}}_{(a,b)}: X_2 \longrightarrow X_2$, dado por

$$\overline{\mathcal{G}}_{(a,b)}(u,v) := (\overline{A}(u,v), \overline{B}(u,v))$$

onde

$$\overline{A}(u,v)(t) := \int_0^1 K(t,\tau)\overline{f}(\tau,u(\tau),v(\tau),a,b)d\tau$$

$$\overline{B}(u,v)(t) := \int_0^1 K(t,\tau)\overline{g}(\tau,u(\tau),v(\tau),a,b)d\tau$$

e,

$$\overline{f}(\tau, u(\tau), v(\tau), a, b) = \begin{cases} f(\tau, \varepsilon_0(t, u), \zeta_0(t, u), a, b), & \text{se } 0 \le u \ e \ 0 \le v, \\ 0, & \text{se } u < 0 \ ou \ v < 0, \end{cases}$$

$$\overline{g}(\tau, u(\tau), v(\tau), a, b) = \begin{cases} g(\tau, \varepsilon_0(t, v), \zeta_0(t, v), a, b), & \text{se } 0 \le u \ e \ 0 \le v, \\ 0, & \text{se } u < 0 \ ou \ v < 0, \end{cases}$$

com

$$\varepsilon_0(t, u) := \min\{u(t), \overline{u}(t)\} \ e \ \zeta_0(t, v) := \min\{v(t), \overline{v}(t)\}.$$

Mostermos que o operador $\overline{\mathcal{G}}_{(a,b)}(u,v)$ satisfaz as seguintes propriedades:

- (a) $\overline{\mathcal{G}}_{(a,b)}$ é um operador contínuo e compacto;
- (b) Se o par $(u,v) \in X_2$ é um ponto fixo de $\overline{\mathcal{G}}_{(a,b)}$, então (u,v) é ponto fixo de $\mathcal{G}_{(a,b)}$ com $(0,0) \leq (u,v) \leq (\overline{u},\overline{v})$;
- (c) Existe $c_3 > 0$, independente de $\lambda \in [0,1]$, tal que, se $(u,v) = \lambda \overline{\mathcal{G}}_{(a,b)}(u,v)$ então $||(u,v)||_1 \le c_3$, $(u,v) \in X_2$.

Mostremos agora que $\overline{\mathcal{G}}$, satisfaz (a), (b), (c).

Prova de (a): Considere o operador linear,

$$L: C^0([0,1]) \times C^0([0,1]) \longrightarrow C^1([0,1]) \times C^1([0,1]),$$

dado por

$$(w, \eta)(t) = L(u, v)(t) = (A(u, v)(t), B(u, v)(t)),$$

se e somente se,

$$\begin{cases}
-w'' = u(\tau), \text{ em } (0,1) \\
-\eta'' = v(\tau), \text{ em } (0,1) \\
w(0) = w(1) = \eta(0) = \eta(1) = 0
\end{cases}$$

onde

$$w(t) = A(u, v)(t) = \int_0^1 K(t, \tau)u(\tau)d\tau$$
$$\eta(t) = B(u, v)(t) = \int_0^1 K(t, \tau)v(\tau)d\tau$$

Afirmação 1: L é contínuo.

De fato,

$$|w(t)| = \left| \int_0^1 K(t, \tau) u(\tau) d\tau \right| \le \int_0^1 ||u||_{\infty} d\tau,$$

de onde segue que,

$$|w(t)| \le ||u||_{\infty}.$$

Analogamente, mostra-se que

$$|\eta(t)| \le ||v||_{\infty}.$$

Portanto, w e η são limitadas, isto é, L é limitado, e como L é um operador linear, concluimos que L é contínuo.

Afirmação 2: L é compacto.

De fato, sejam $w_n, \eta_n : [0,1] \longrightarrow \mathbb{R}$, dados por

$$w_n(t) = \int_0^1 K(t, \tau) u_n(\tau) d\tau$$

$$\eta_n(t) = \int_0^1 K(t, \tau) v_n(\tau) d\tau,$$

com u_n, v_n limitadas em [0,1], isto é, existem $c_1, c_2 > 0$ tais que $|u_n(t)| \le c_1$ e $|v_n(t)| \le c_2$.

Como w_n é diferenciável em [0,1], e $w_n(0)=w_n(1)=0$, para cada $n\in\mathbb{N}$ existe $t_n\in(0,1)$ tal que $w_n'(t_n)=0$. Daí

$$w_n'(t) = \int_{t_n}^t w_n''(s)ds,$$

de onde segue que

$$|w'_n(t)| \le \int_0^1 |-u_n(s)| ds \le c_1.$$

Também temos,

$$w_n(t) - w_n(t_1) = \int_{t_1}^t w'_n(s) ds,$$

de onde segue que

$$|w_n(t) - w_n(t_1)| \le \int_{t_1}^t c_1 ds = c_1(t - t_1),$$

ou seja, w_n é uniformemente equicontínua.

Analogamente, mostra-se que η_n é uniformemente equicontínua.

Portanto, como w_n , η_n são uniformemente equicontínuas e pela Afirmação 1, também são equilimitadas, segue do Teorema de Ascoli-Arzelá que L é compacto.

Considere, agora o operador:

$$G: C^1([0,1]) \times C^1([0,1]) \longrightarrow C^0([0,1]) \times C^0([0,1])$$

dado por

$$G(u,v)(t) := (\overline{f}(t,u(t),v(t)),\overline{g}(t,u(t),v(t)),$$

que não é linear, mas é contínuo e limitado.

Portanto, seja

$$\overline{S} = LoG : C^1([0,1]) \times C^1([0,1]) \longrightarrow C^1([0,1]) \times C^1([0,1]),$$

um operador dado por

$$\overline{S}(u,v)(t) = (LoG)(u,v)(t) = L(G(u,v)(t)).$$

Então, podemos observar que

$$\overline{S}(u,v)(t) = (\overline{A}(u,v)(t), \overline{B}(u,v)(t)).$$

Portanto, como L é contínuo e compacto, e G é contínuo e limitado, temos que

$$\overline{\mathcal{G}}_{(a,b)} = \overline{S}(a,b) = LoG$$

é um operador contínuo e compacto.

Prova de (b): Mostremos que se $(u,v) \in X_2$ é ponto fixo de $\overline{\mathcal{G}}_{(a,b)}$ então, (u,v) é ponto fixo de $\mathcal{G}_{(a,b)}$, com $(0,0) \leq (u,v) \leq (\overline{u},\overline{v})$.

Por hipótese, temos:

$$\begin{cases}
-u'' &= \overline{f}(t, u, v, a, b), \text{ em } (0, 1), \\
-v'' &= \overline{g}(t, u, v, a, b), \text{ em } (0, 1), \\
u(0) &= u(1) = v(0) = v(1) = 0.
\end{cases}$$
(2.25)

Mas, como $\overline{f}(t, u, v, a, b) \leq f(t, \overline{u}, \overline{v}, a, b)$, temos:

$$\begin{cases}
-u'' \le f(t, \overline{u}, \overline{v}, a, b) \text{ em } (0, 1), \\
-v'' \le g(t, \overline{u}, \overline{v}, a, b) \text{ em } (0, 1), \\
u(0) = u(1) = v(0) = v(1) = 0.
\end{cases}$$
(2.26)

Seja $(\overline{u}, \overline{v})$ solução de $\mathcal{G}_{(a,b)}$, então temos

$$\begin{cases}
-\overline{u}'' = f(t, \overline{u}, \overline{v}, a, b), \\
-\overline{v}'' = g(t, \overline{u}, \overline{v}, a, b), \\
\overline{u}(0) = \overline{u}(1) = \overline{v}(0) = \overline{v}(1) = 0.
\end{cases} (2.27)$$

Então, segue de (2.26) e (2.27), que

$$\begin{cases}
-(u - \overline{u})'' & \leq 0 \text{ em } (0, 1), \\
-(v - \overline{v})'' & \leq 0 \text{ em } (0, 1), \\
(u - \overline{u})(0) & = (u - \overline{u})(1) = (v - \overline{v})(0) = (v - \overline{v})(1) = 0.
\end{cases}$$

Logo, pelo Príncipio do Máximo,

$$\begin{cases} -(u - \overline{u}) \leq 0 \text{ em } (0, 1), \\ -(v - \overline{v}) \leq 0 \text{ em } (0, 1), \end{cases}$$

de onde segue que,

$$(0,0) \le (u,v) \le (\overline{u},\overline{v}).$$

Daí,

$$\varepsilon_0(t,u) := \min\{u(t), \overline{u}(t)\} = u \in \zeta_0(t,v) := \min\{v(t), \overline{v}(t)\} = v,$$

o que implica,

$$\overline{f}(t, u, v, a, b) = f(t, u, v, a, b) \in \overline{q}(t, u, v, a, b) = q(t, u, v, a, b).$$

Portanto, voltando ao sistema (2.25),

$$\begin{cases}
-u'' &= f(t, u, v, a, b) \text{ em } (0, 1), \\
-v'' &= g(t, u, v, a, b) \text{ em } (0, 1), \\
u(0) &= u(1) = v(0) = v(1) = 0,
\end{cases}$$

o que implica, (u, v) é ponto fixo de $\mathcal{G}_{(a,b)}$, com $(0, 0) \leq (u, v) \leq (\overline{u}, \overline{v})$.

Prova de (c): Mostremos que existe $c_3 > 0$, independente de $\lambda \in [0, 1]$ tal que se $(u, v) = \lambda \overline{\mathcal{G}}_{(a,b)}(u, v)$, então, $||(u, v)||_1 \leq c_3$.

Como por hipótese $(u,v)=\lambda\overline{\mathcal{G}}_{(a,b)}(u,v)$, pela definição de $\overline{\mathcal{G}}$ temos

$$u(t) = \lambda \int_0^1 K(t, \tau) \overline{f}(\tau, u(\tau), v(\tau)) d\tau, \text{ em } [0, 1]$$
 (2.28)

е

$$v(t) = \lambda \int_0^1 K(t, \tau) \overline{g}(\tau, u(\tau), v(\tau)) d\tau, \text{ em } [0, 1].$$
 (2.29)

Mas, \overline{f} e \overline{g} , são contínuas e limitadas em $[0,1] \times [0,||\overline{u}||_{\infty}] \times [0,||\overline{v}||_{\infty}]$, ou seja, existem $M_1,M_2>0$ tais que

$$|\overline{f}(\tau, u(\tau), v(\tau), a, b)| \leq M_1 e |\overline{g}(\tau, u(\tau), v(\tau), a, b)| \leq M_2$$
, para todo $\tau \in [0, 1]$.

De onde segue de (2.28) e (2.29) que

$$|u(t)| < M_1 e |v(t)| < M_2$$

o que implica,

$$||u||_{\infty} \leq M_1 \text{ e } ||v||_{\infty} \leq M_2.$$

Como u é derivável em [0,1], com u(0)=u(1)=0, pelo Teorema de Rolle, existe $t_0 \in (0,1)$, tal que $u'(t_0)=0$. Então, pelo Teorema Fundamental de Cálculo,

$$u'(t) = \int_{t_0}^t u''(s)ds \le \int_0^1 u''(s)ds = \int_0^1 -\lambda \overline{f}(s, u(s), v(s))ds,$$

o que implica,

$$|u'(t)| \le M_1$$
, daí, $||u'||_{\infty} \le M_1$.

Analogamente, mostra-se que $||v'||_{\infty} \leq M_2$.

Portanto, $||(u,v)||_{\infty} \le 2(M_1+M_2)$. Portanto, fazendo $c_3:=M_1+M_2>0$, temos $||(u,v)||_{\infty} \le c_3$, para todo $(u,v) \in X_2$.

Prova de (i):

Usando a estimativa a priori, propriedade estabelecida na afirmação (c), existe $\rho_2 > \rho_1$ tal que

$$D(I - \overline{\mathcal{G}}_{(a,b)}, B((u_1, v_1), \rho_2), 0) = 1.$$
(2.30)

Segue do item (b) que o operador $\overline{\mathcal{G}}_{(a,b)}$ não tem ponto fixo em $\overline{B((u_1,v_1),\rho_2)}\backslash\mathcal{A}$. No entanto, se $\overline{\mathcal{G}}_{(a,b)}$ tem um ponto fixo em $\partial\mathcal{A}$, temos a segunda solução positiva do sistema ($\mathbf{S}_{(\mathbf{a},\mathbf{b})}$). Do contrário, o grau de Leray-Schauder está bem definido para a equação

$$(I - \overline{\mathcal{G}}_{(a,b)})(\mathcal{Z}) = 0, \ \mathcal{Z} \in \mathcal{A}.$$

Então, usando a igualdade (2.30) e a propriedade da excisão do grau de Leray-Schauder, temos:

$$D(I - \overline{\mathcal{G}}_{(a,b)}, \mathcal{A}, 0) = 1$$

De fato, como \mathcal{A} é um subconjunto aberto de $B((u_1, v_1), \rho_2)$ e $0 \notin (I - \overline{\mathcal{G}}_{(a,b)})(B((u_1, v_1), \rho_2) \setminus \mathcal{A})$, temos pela propriedade da excisão que

$$D(I - \overline{\mathcal{G}}_{(a,b)}, B((u_1, v_1), \rho_2), 0) = D(I - \overline{\mathcal{G}}_{(a,b)}, \mathcal{A}, 0),$$

e portanto,

$$D(I - \overline{\mathcal{G}}_{(a,b)}, \mathcal{A}, 0) = 1.$$

E, como $\mathcal{G}_{(a,b)}(u,v) = \overline{\mathcal{G}}_{(a,b)}(u,v)$, para todo $(u,v) \in \mathcal{A}$, temos

$$D(I - \overline{\mathcal{G}}_{(a,b)}, \mathcal{A}, 0) = 1,$$

e o item (i) está provado.

Prova de (ii):

Para provarmos o item (ii), mostraremos que existe $\rho_2 > \rho_1$, tal que as soluções da equação

$$(u,v) = \mathcal{G}_{(a,b)}(u,v), (u,v) \in X_2,$$

que devem satisfazer $||(u,v)|| < \rho_2$, ou seja, se $||(u,v)|| \ge \rho_2$, então $\mathcal{G}_{(a,b)}(u,v) \ne (u,v)$. De onde segue que existe $(\overline{a}, \overline{b})$ tal que,

$$D(I - \mathcal{G}(\overline{a}, \overline{b}), B(0, \rho_2), 0) = 0.$$

De fato, considerando os números $0 < \delta_2 < \varepsilon_2 < 1$, dados pela hipótese (\mathbf{S}_2) . Tome $M_0 > \frac{1}{(1-\delta_2)\varepsilon_2\beta} > 0$, onde $\beta = \inf_{0 \le t \le 1} \int_{\delta_2}^{\varepsilon_2} K(t,\tau) d\tau \ge 0$, então existe $\rho_1 > 0$ tal que

$$|f(t, u, v, a, b)| \ge M_0 |(u, v)| > M_0 |u|$$
, para todos $a, b > 0$, $|u| \ge \rho_1$, $\delta_2 \le t \le \varepsilon_2$.

(2.31)

Seja $\rho_2 = \frac{\rho_1}{(1 - \delta_2)\varepsilon_2} \ge \rho_1$. Suponha que $||(u, v)||_{\infty} \ge \rho_2$, sem perder a generalidade, suponha que $||u||_{\infty} \ge \rho_2$, então, o operador $\mathcal{G}_{(a,b)}$ não tem ponto fixo. Caso contrário,

$$u(t) = \int_0^1 K(t, \tau) f(\tau, u(\tau), v(\tau), a, b) d\tau,$$

o que implica,

$$||u||_{\infty} \ge \int_0^1 K(t,\tau) f(\tau,u(\tau),v(\tau),a,b) d\tau.$$

Mas, como u é côncava, pelo Lema A.2, temos

$$u(t) \ge (1 - \varepsilon_2)\delta_2||u||_{\infty}$$
, para todo $t \in [\delta_2, \varepsilon_2]$.

Daí,

$$||u||_{\infty} \geq \int_{\delta_{2}}^{\varepsilon_{2}} K(t,\tau) f(\tau, u(\tau), v(\tau), a, b) d\tau$$

$$\geq \int_{\delta_{2}}^{\varepsilon_{2}} K(t,\tau) M_{0} u(\tau) d\tau$$

$$\geq M_{0} (1 - \delta_{2}) \varepsilon_{2} ||u||_{\infty} \int_{\delta_{2}}^{\varepsilon_{2}} K(t,\tau) d\tau$$

$$\geq M_{0} (1 - \delta_{2}) \varepsilon_{2} ||u||_{\infty} \beta,$$

onde
$$\beta = \inf_{0 \le t \le 1} \int_{\delta_2}^{\varepsilon_2} K(t, \tau) d\tau \ge 0.$$

Logo,

$$1 \ge M_0(1 - \delta_2)\varepsilon_2\beta,$$

o que implica

$$M_0 \le \frac{1}{(1 - \delta_2)\varepsilon_2 \beta},$$

que é uma contradição.

Portanto, considerando
$$M_0 > \frac{1}{(1 - \delta_2)\varepsilon_2\beta}$$
,
se $||u||_{\infty} \ge \frac{\rho_1}{(1 - \delta_2)\varepsilon_2} = \rho_2$ temos $u \ne S_{(a,b)}u$,

isto é, existe $(\overline{a}, \overline{b})$ tal que $|(\overline{a}, \overline{b})|$ é suficientemente grande e tal que o sistema $(S(\overline{a}, \overline{b}))$ não tem solução positiva, isto é,

$$D(Id - \mathcal{G}_{(\overline{a},\overline{b})}, B(0,\rho_2), 0) = 0.$$

Portanto, pela propriedade da invariância por homotopia da função grau, temos:

$$D(Id - \mathcal{G}(a, b), B(0, \rho_2), 0) = 0.$$

De fato, considere a homotopia, $h:[0,1]\times\overline{B}(0,\rho_2)\times\overline{B}(0,\rho_2)\longrightarrow\mathbb{R}\times\mathbb{R}$ dada por

$$(u, v) - h(t, (u, v)) = (u, v) - \mathcal{G}(ta + (1 - t)\overline{a}, tb + (1 - t)\overline{b})$$

definida em $B(0, \rho_2)$, para todo $t \in [0, 1]$, que é admissível pois, $(0, 0) \notin (I - h(t, (\cdot, \cdot))([0, 1] \times \partial B(0, \rho_2) \times \partial B(0, \rho_2))$.

Então, como

$$I - h(1, \langle \cdot, \cdot \rangle) = I - \mathcal{G}(a, b) \in I - h(0, \langle \cdot, \cdot \rangle) = I - \mathcal{G}(\overline{a}, \overline{b})$$

segue da Propriedade da Invariância por Homotopia que

$$D(I - \mathcal{G}(a, b), B(0, \rho_2), 0) = D(I - \mathcal{G}(\overline{a}, \overline{b}), B(0, \rho_2), 0),$$

e, portanto,

$$D(I - \mathcal{G}(a, b), B(0, \rho_2), 0) = 0,$$

e o item (ii) está provado.

Finalmente, usando o Lema 2.8 e a propriedade da excisão do grau topológico, temos:

$$D(I - \mathcal{G}(a, b), B((u_1, v_1), \rho_2) \setminus \overline{\mathcal{A}}, 0) = -1,$$

portanto, nós temos a segunda solução do sistema $(S_{(a,b)})$ e a prova do Teorema (0.2) está completa.

Capítulo 3

Aplicações

Nesta seção iremos apresentar algumas aplicações do Teorema 0.2, em sistemas de equações diferenciais parciais elípticas de segunda ordem, em regiões anulares da forma

$$(\mathbf{E_{a,b}}) \begin{cases} -\Delta u = h(|x|, u, v), \text{ se } r_1 < |x| < r_2, \\ -\Delta v = k(|x|, u, v), \text{ se } r_1 < |x| < r_2, \\ u = v = 0, \text{ se } |x| = r_1, \\ u = a, v = b, \text{ se } |x| = r_2, \end{cases}$$

onde a, b são parâmetros não-negativos, $0 < r_1 < r_2$, onde usaremos a notação $A(r_1, r_2) = \{x \in \mathbb{R}^N : r_1 < |x| < r_2\}$ com $N \ge 3$. Além disso, as não-linearidades h e k satisfazem as hipóteses $(\mathbf{A_0})$ à $(\mathbf{A_3})$.

Fazendo uma mudança de variáveis linear, podemos observar que o sistema $(\mathbf{E_{a,b}})$ está associado a um sistema de equaçõe sdiferenciais ordinárias do tipo $(\mathbf{S_{(a,b)}})$, onde as funções não-lineares f e g são dadas por

$$f(t, u, v, a, b) = d(t)h\left(\left(\frac{A}{t - B}\right)^{\frac{1}{N - 2}}, u + ta, v + tb\right),\tag{3.1}$$

$$g(t, u, v, a, b) = d(t)k\left(\left(\frac{A}{t - B}\right)^{\frac{1}{N - 2}}, u + ta, v + tb\right),\tag{3.2}$$

 \mathbf{e}

$$d(t) = \frac{1}{A^2(2-N)^2} \left(\frac{A}{t-B}\right)^{\frac{2(N-1)}{N-2}}.$$
(3.3)

Mostrando que o **Teorema** 0.3 é consequência direta do **Teorema** 0.2, de onde podemos concluir que a cada solução do sistema $(\mathbf{S_{a,b}})$ corresponde uma solução radialmente simétrica do sistema $(\mathbf{E_{a,b}})$.

Mostremos agora que o sistema ($\mathbf{E}_{\mathbf{a},\mathbf{b}}$) está associado a um sistema do tipo ($\mathbf{S}_{\mathbf{a},\mathbf{b}}$), onde f e g são dadas por (3.1) e (3.2).

De fato, fazendo a mudança de variáveis $t=Ar^{2-N}+B,$ temos:

$$A = \frac{-r_1^{N-2}r_2^{N-2}}{r_2^{N-2} - r_1^{N-2}} < 0 \text{ e } B = \frac{r_2^{N-2}}{r_2^{N-2} - r_1^{N-2}} > 1 > 0.$$

Além disso, podemos observar que como $r_1 < r < r_2$, então 0 < t < 1.

Sejau(x)=u(|x|)=u(r)e v(x)=v(|x|)=v(r), se|x|=r,então:

$$\Delta u(x) = u''(r) + \left(\frac{N-1}{r}\right)u'(r)$$
$$\Delta v(x) = v''(r) + \left(\frac{N-1}{r}\right)v'(r)$$

Substituindo em $(\mathbf{E}_{(\mathbf{a},\mathbf{b})})$, temos:

$$-\left(u''(r) + \left(\frac{N-1}{r}\right)u'(r)\right) = h(r, u, v) \text{ em } A(r_1, r_2).$$
 (3.4)

Como $t = Ar^{2-N} + B$, temos

$$\frac{dr}{dt} = \frac{r^{N-1}}{A(2-N)} e r = \left(\frac{A}{t-B}\right)^{\frac{1}{N-2}}.$$

Fazendo $u(t) = w_1(r) - ta$, e $v(t) = w_2(r) - tb$, obtemos,

$$u''(t) = \frac{1}{A(2-N)} r^{N-1} \frac{dr}{dt} \left(w_1''(r) + \frac{(N-1)}{r} w_1'(r) \right)$$

Usando (2.11), temos:

$$-u''(t) = \frac{1}{A^2(2-N)^2} r^{2(N-1)} h(r, w_1(t), w_2(t))$$

Mas, como
$$r = \left(\frac{A}{t-B}\right)^{\frac{1}{N-2}}$$
, temos:

$$-u''(t) = \frac{1}{A^2(2-N)^2} \left(\frac{A}{t-B}\right)^{\frac{2(N-1)}{N-2}} h\left(\left(\frac{A}{t-B}\right)^{\frac{1}{N-2}}, u+ta, v+tb\right),$$
(3.5)

com u(0) = u(1) = 0.

Analogamente, mostra-se que

$$-v''(t) = \frac{1}{A^2(2-N)^2} \left(\frac{A}{t-B}\right)^{\frac{2(N-1)}{N-2}} k\left(\left(\frac{A}{t-B}\right)^{\frac{1}{N-2}}, u+ta, v+tb\right),$$
(3.6)

com v(0) = v(1) = 0.

Logo, de (3.5) e (3.6), concluimos que

$$\begin{cases}
-u'' = f(t, u(t), v(t), a, b) \text{ em } (0, 1), \\
-v'' = g(t, u(t), v(t), a, b) \text{ em } (0, 1), \\
u(0) = u(1) = v(0) = v(1) = 0,
\end{cases}$$

onde f e g são dadas por (3.1) e (3.2).

Portanto, o sistema $(\mathbf{E_{a,b}})$ está associado ao sistema $(\mathbf{S_{(a,b)}})$ com f e g dadas por (3.1) e (3.2) como queriamos mostrar.

Mostremos agora que f e g satisfazem as condições $(\mathbf{S_0})$ à $(\mathbf{S_4})$.

 $(\mathbf{S_0})$ Mostremos que f e g são funções contínuas e não-decrescentes nas duas últimas variáveis.

Como por hipótese h e k, são funções contínuas e não-decrescentes nas duas últimas variáveis, é claro que f e g são contínuas. Mostremos então que f, g são não-decrescentes nas quatro últimas variáveis, vejamos, se $(u_1, v_1, a_1, b_1) \leq (u_2, v_2, a_2, b_2)$, temos $(u_1 + ta_1, v_1 + tb_1) \leq (u_2 + ta_2, v_2 + tb_2)$, o que implica,

$$h\left(\left(\frac{A}{t-B}\right)^{\frac{1}{N-2}}, u_1 + ta_1, v_1 + tb_1\right) \le h\left(\left(\frac{A}{t-B}\right)^{\frac{1}{N-2}}, u_2 + ta_2, v_2 + tb_2\right).$$

Além disso, como d(t) > 0, temos:

$$f(t, u_1, v_1, a_1, b_1) \le f(t, u_2, v_2, a_2, b_2),$$

e, portanto, f é não-decrescente.

Analogamente, mostra-se que g também é não-decrescente.

 $(\mathbf{S_1})$ Mostremos agora que existe $[\delta_1, \varepsilon_1] \subset (0, 1)$, tal que, para todo a, b > 0 fixados,

$$\lim_{|(u,v)|\to 0} \frac{f(t,u,v,a,b)}{|(u,v)|} = +\infty, \text{ uniformemente, para todo } t \in [\delta_1, \varepsilon_1].$$

Sabemos pela hipótese (\mathbf{A}_1) que existe $[\theta_1, \eta_1] \subset [r_1, r_2]$ tal que h(r, u, v) > 0 para todo $r \in [\theta_1, \eta_1]$ e u, v > 0.

Usando a mudança de variáveis linear $t = J(r) = \frac{A}{r^{N-2}} + B$, temos que $J([\theta_1, \eta_1]) \subset (0, 1)$ desta forma seja $[\delta_1, \varepsilon_1] = J([\theta_1, \eta_1])$, temos que,

$$h(r, u, v) > 0$$
 para todo $r \in [\delta_1, \varepsilon_1]$ e $u, v > 0$,

isto é, existe $M_1 > 0$ tal que

$$h(r, u, v) \ge M_1$$
, para todo $r \in [\delta_1, \varepsilon_1]$ e $u, v > 0$.

Então, mostremos que dado M>0, existe $\delta>0$ tal que

$$|(u,v)| < \delta$$
 implica que $\left| \frac{f(t,u,v,a,b)}{|(u,v)|} \right| > M$, para todo $t \in (\delta_1, \varepsilon_1)$.

De fato,

$$\left| \frac{f(t, u, v, a, b)}{|(u, v)|} \right| = \left| d(t) \frac{h\left(\left(\frac{A}{t - B}\right)^{\frac{1}{N - 2}}, u + ta, v + tb\right)}{|(u, v)|} \right|,$$

e, como u+ta>u>0, v+tb>v>0 e $h\left(\left(\frac{A}{t-B}\right)^{\frac{1}{N-2}}, u+ta, v+tb\right)\geq M_1$ temos:

$$|(u,v)| < \delta$$
 implica que, $\left| \frac{f(t,u,v,a,b)|}{|(u,v)|} \right| \ge d(t) \frac{M_1}{\delta}.$

Mas, note que,

$$d(t) > 0 \text{ em } [\delta_1, \varepsilon_1] \subset (0, 1),$$

e como $[\delta_1,\varepsilon_1]$ é compacto, existe C>0tal que

$$d(t) \ge C$$
, para todo $t \in [\delta_1, \varepsilon_1] \subset (0, 1)$. (3.7)

Daí,

$$\left| \frac{f(t, u, v, a, b)}{|(u, v)|} \right| \ge \frac{CM_1}{\delta} > M$$
, para $\delta > 0$ suficientemente pequeno.

Analogamente mostra-se que

$$\lim_{|(u,v)|\to 0} \frac{g(t,u,v,a,b)}{|(u,v)|} = +\infty, \text{ uniformemente, para todo } t \in (\delta_1, \varepsilon_1).$$

 $(\mathbf{S_2})$ Como pela hipótese $(\mathbf{A_2})$ existe $[\theta_2,\eta_2]\subset (r_1,r_2)$ tais que, dado $M_1>0$, existe $\delta>0$ tal que

$$|(u,v)| > \delta$$
 implica que, $\frac{h(r,u,v)}{|(u,v)|} > M_1$ para todo $r \in [\theta_2,\eta_2]$,

então, fazendo novamente a mudança de variáveis linear $t=J(r)=\frac{A}{r^{N-2}}+B$, temos que existe $[\delta_2, \varepsilon_2]=J([\theta_2, \eta_2])\subset (0,1)$ tal que

$$\lim_{|(u,v)|\to\infty}\frac{f(t,u,v,0,0)}{|(u,v)|}=+\infty, \text{ uniformemente para todo } t\in[\delta_2,\varepsilon_2].$$

De fato, dado $0 < M < CM_1$, existe $\delta > 0$ tal que

se
$$|(u,v)| > \delta$$
 então, $\left| \frac{f(t,u,v,0,0)}{|(u,v)|} \right| > CK_1 = M$, para todo $t \in [\delta_2, \varepsilon_2]$.

Analogamente, mostra-se que existe um subconjunto $[\delta_3, \varepsilon_3] \subset (0, 1)$ tal que

$$\lim_{|(u,v)|\to\infty}\frac{g(t,u,v,0,0)}{|(u,v)|}=+\infty, \text{ uniformemente para todo }t\in[\delta_3,\varepsilon_3].$$

 (S_3) Pela hipótese (A_3) ,

$$\lim_{|(u,v)|\to 0} \frac{h(r,u,v)}{|(u,v)|} = 0, \text{ uniformemente para todo } r \in [r_1,r_2],$$

então, fazendo a mudança de variáveis linear $t = J(r) = \frac{A}{r^{N-2}} + B$, temos,

$$\lim_{|(u,v)|\to 0}\frac{h(r,u,v)}{|(u,v)|}=0, \text{ uniformemente para todo } r\in (0,1),$$

isto é, dado $\varepsilon_1 > 0$, existe $\delta_1 > 0$ tal que

$$|(u,v)| < \delta_1 \Longrightarrow \frac{h(r,u,v)}{|(u,v)|} < \varepsilon_1, \text{ para todo } r \in (0,1).$$
 (3.8)

Mostremos primeiro que

$$\lim_{|(u,v,a,b)|\to 0} \frac{f(t,u,v,a,b)}{|(u,v,a,b)|} = 0, \text{ uniformemente para todo } t \in [0,1],$$

isto é, dado $\varepsilon > M\varepsilon_1 > 0$, existe $\delta > 0$ tal que

$$|(u, v, a, b)| < \delta$$
 implica que, $\left| \frac{f(t, u, v, a, b)}{|(u, v, a, b)|} \right| < \varepsilon$.

De fato, como |(u, v, a, b)| = |u| + |v| + |a| + |b| > u + ta + v + tb = |(u + ta, v + tb)| para todo $t \in [0, 1]$, segue de (3.8) que,

$$\left| \frac{f(t, u, v, a, b)}{|(u, v, a, b)|} \right| \le d(t)\varepsilon_1,$$

e, como d(t) é limitada, existe $c_1 > 0$ tal que $d(t) \leq c_1$, e, portanto,

$$\left| \frac{f(t, u, v, a, b)}{|(u, v, a, b)|} \right| \le M \varepsilon_1 = \varepsilon.$$

Analogamente, mostra-se que

$$\lim_{|(u,v,a,b)|\to 0} \frac{g(t,u,v,a,b)}{|(u,v,a,b)|} = 0, \text{ uniformemente para todo } t \in [0,1].$$

 $(\mathbf{S_4})$ Mostremos que existe um subconjunto $[\delta_4, \varepsilon_4] \subset (0, 1)$, tal que

$$\lim_{|(a,b)|\to+\infty} f(t,u,v,a,b) = +\infty, \text{ uniformemente para todo } t \in [\delta_4,\varepsilon_4], \text{ e } u,v \geq 0,$$

isto é, dado $0 < M < CM_1$, existe $\delta > 0$ tal que

$$|(a,b)| > \delta \Longrightarrow |f(t,u,v,a,b)| > M$$
, para todo $t \in [\delta_4, \varepsilon_4]$.

Novamente pela hipótese $(\mathbf{A_1})$, existe $[\delta_4, \varepsilon_4] = [\delta_1, \varepsilon_1] \subset (0, 1)$ tal que

$$h(t, u, v) > 0$$
, para todo $t \in [\delta_4, \varepsilon_4]$ e $u, v > 0$. (3.9)

Então, usando (3.7), temos

$$|f(t, u, v, a, b)| \ge Ch\left(\left(\frac{A}{t - B}\right)^{\frac{1}{N - 2}}, u + ta, v + tb\right),$$

e, por (3.9) existe $M_1 > 0$ tal que

$$h(t,u,v)>M_1$$
, para todo $t\in[\delta_4,\varepsilon_4]$ e $u,v>0$,

desta forma,

$$|f(t,u,v,a,b)| \ge CM_1 > M$$
, para todo $t \in [\delta_4, \varepsilon_4]$ e $u+ta, v+tb > 0$.

Analogamente, temos

$$\lim_{|(a,b)|\to+\infty}g(t,u,v,a,b)=+\infty, \text{ uniformemente para todo }t\in[\delta_4,\varepsilon_4], \text{ e }u,v\geq0.$$

Então, f e g satisfazem as condições ($\mathbf{S_0}$) à ($\mathbf{S_4}$), e portanto, o Teorema 0.3 é consequência imediata do Teorema 0.2.

De fato, vimos que o sistema $(\mathbf{E}_{(\mathbf{a},\mathbf{b})})$ pode ser associado a um sistema do tipo $(\mathbf{S}_{(\mathbf{a},\mathbf{b})})$, onde as funções f e g são dadas por (3.1) e (3.2) satisfazem as condições $(\mathbf{S}_{\mathbf{0}})$

à $(\mathbf{S_4})$, então, pelo Teorema 0.2, segue que existe uma função decrescente $\Gamma:[0,\overline{a}] \longrightarrow [0,+\infty)$, tal que para todo $a \in [0,\overline{a}]$ o Sistema $(\mathbf{E_{(a,b)}})$ satisfaz as condições (\mathbf{i}) , (\mathbf{ii}) e (\mathbf{iii}) .

Os próximos exemplos são de não-linearidades que satisfazem as hipóteses do Teorema 0.3.

Exemplo 1 Sejam $h, k : [0, 1] \times [0, +\infty)^2 \longrightarrow [0, +\infty)$ não linearidades dadas por

$$h(r, u, v) = u^p + v^q e k(r, u, v) = d_1(r)(u^p + v^q) + d_2(r)u^p v^q,$$

onde p, q > 1 e $d_1, d_2 : [r_1, r_2] \longrightarrow \mathbb{R}$ são funções contínuas não-negativas, não triviais tais que $d_1(r) > 0$ e $d_2(r) = 0$ em algum sub-intervalo $[\theta, \eta]$ de $[r_1, r_2]$.

Mostremos agora que h e k satisfazem as condições $(\mathbf{A_0})$ à $(\mathbf{A_3})$. Vejamos:

 $(\mathbf{A_0})$ Segue, das definições de h e k que elas são contínuas. E, mais, h e k também são não-decrescentes nas duas últimas variáveis, pois,

Se $(u, v) \leq (u_1, v_1)$, como p, q > 1 temos:

$$u^p + v^q \le u_1^p + v_1^q,$$

de onde segue que,

$$h(r, u, v) < h(r, u_1, v_1).$$

Também temos, que $u^p v^q \le u_1^p v_1^q$ e $d_1(r), d_2(r) \le 0$, de onde segue que

$$k(r, u, v) < k(r, u_1, v_1).$$

 $(\mathbf{A_1})$ Como por hipótese d_1 e d_2 são funções não-negativas, tais que $d_1(r) > 0$ e $d_2(r) = 0$ em algum subintervalo $[\theta, \eta]$ de $[r_1, r_2]$, existe $[\theta_1, \eta_1] \subset (r_1, r_2)$ com $[\theta_1, \eta_1] \neq [\theta, \eta]$ tal que

$$d_1(r), d_2(r) > 0$$
, para todo $r \in [\theta_1, \eta_1],$

isto é, existem $M_1, M_2 > 0$ tais que

$$d_1(r) \ge M_1 \ e \ d_2(r) \ge M_2$$
, para todo $r \in [\theta_1, \eta_1]$. (3.10)

Assim, é fácil ver que h, k > 0, para todo $r \in [\theta_1, \eta_1]$.

 $(\mathbf{A_2})$ Mostremos que existe um subconjunto $[\theta_2,\eta_2]\subset (r_1,r_2)$ tal que

$$\lim_{|(u,v)|\to+\infty}\frac{h(r,u,v)}{|(u,v)|}=+\infty, \text{ uniformente para todo } r\in[\theta_2,\eta_2],$$

isto é, dado M>0, existe $\delta>0$ tal que

$$|(u,v)| > \delta$$
 implica que, $\left| \frac{h(r,u,v)}{|(u,v)|} \right| > M$.

De fato, como

$$\left| \frac{h(r, u, v)}{|(u, v)|} \right| = \left| \frac{u^p + v^q}{|(u, v)|} \right|,$$

então, temos dois casos a considerar:

Se |u| > |v|, temos:

$$|u| \le |(u, v)| \le |u| + |v| \le 2|u|,$$

de onde segue que,

$$\frac{|u|^p + |v|^q}{|(u,v)|} > \frac{|u|^p}{|(u,v)|} > \frac{|u|^p}{2|u|} = \frac{|u|^{p-1}}{2} \ge \frac{|(u,v)|^{p-1}}{2^{p-1} \cdot 2} = \frac{|(u,v)|^{p-1}}{2^p},$$

isto é,

$$\left|\frac{h(r,u,v)}{|(u,v)|}\right| > \frac{\delta^{p-1}}{2^p} > M, \text{ para } \delta \text{ suficientemente grande e, } p > 1.$$

Se |u| < |v|, temos:

$$|v|\leq |(u,v)|\leq |u|+|v|\leq 2|v|,$$

de onde segue que,

$$\left|\frac{h(r,u,v)}{|(u,v)|}\right| > \frac{\delta^{q-1}}{2^q} > M, \text{ para } \delta \text{ suficientemente grande } e,q > 1.$$

Mostremos agora que existe um subconjunto $[\theta_3,\eta_3]\subset (r_1,r_2)$ tal que

$$\lim_{|(u,v)|\to+\infty}\frac{k(r,u,v)}{|(u,v)|}=+\infty, \text{ uniformente para todo } r\in[\theta_2,\eta_2],$$

isto é, dado M>0, existe $\delta>0$ tal que

$$|(u,v)| > \delta$$
 implica que, $\left| \frac{k(r,u,v)}{|(u,v)|} \right| > M$.

de fato, usando (3.10) temos,

$$|k(r, u, v)|(u, v)|| \ge \frac{M_1 \delta^{p-1}}{2^p}$$
, se $|u| > |v|$, $p > 1$

e

$$|k(r, u, v)|(u, v)|| \ge \frac{M_1 \delta^{q-1}}{2^q}$$
, se $|u| < |v|, q > 1$

ou seja,

 $|k(r, u, v)|(u, v)|| \ge M_1$, para δ suficientemente grande.

 (A_3) Mostremos que

$$\lim_{|(u,v)|\to 0} \frac{h(r,u,v)}{|(u,v)|} = 0, \text{ uniformemente para todo } t \in (r_1,r_2),$$

isto é, dado $\varepsilon > 0$, existe $\delta > 0$ tal que

$$|(u,v)| < \delta$$
 implica que, $\left| \frac{h(r,u,v)}{|(u,v)|} \right| < \varepsilon$, para todo $r \in (r_1,r_2)$.

Note que,

$$\left| \frac{h(r, u, v)}{|(u, v)|} \right| = \left| \frac{u^p + v^q}{|(u, v)|} \right| \le \frac{|u|^p}{|(u, v)|} + \frac{|v|^q}{|(u, v)|},$$

onde

$$|(u,v)|^p \in |v|^q \le |(u,v)|^q$$
.

Então,

Se |u| < |v| temos

$$\left| \frac{h(r, u, v)}{|(u, v)|} \right| < 2|(u, v)|^{p-1} < 2\delta^{p-1}.$$

Se |u| > |v| temos:

$$\left| \frac{h(r, u, v)}{|(u, v)|} \right| < 2|(u, v)|^{q-1} < 2\delta^{q-1}.$$

De onde segue que,

$$\left|\frac{h(r,u,v)}{|(u,v)|}\right|<\varepsilon, \ \text{para}\ \delta\ \text{suficientemente pequeno}.$$

Mostremos agora que

$$\lim_{|(u,v)|\to 0} \frac{k(r,u,v)}{|(u,v)|} = 0, \text{ uniformemente para todo } t \in (r_1,r_2),$$

isto é, dado $\varepsilon_1>0$, existe $\delta_1>0$ tal que

$$|(u,v)| < \delta_1 \text{ implica que } \left| \frac{k(r,u,v)}{|(u,v)|} \right| < \varepsilon_1.$$

Temos que:

$$\left| \frac{k(r, u, v)}{|(u, v)|} \right| \le \frac{|d_1(r)||u|^p}{|(u, v)|} + \frac{|d_1(r)||v|^q}{|(u, v)|} + \frac{|d_2(r)||u|^p|v|^q}{|(u, v)|}.$$

Mas, por hipótese, d_1 e d_2 são funções contínuas em $[r_1, r_2]$, segue que d_1 e d_2 são limitadas em $[r_1, r_2]$, isto é, existem $c_1, c_2 > 0$, tais que

$$|d_1(t)| \le c_1 \ e \ |d_2(t)| \le c_2$$
, para todo $t \in [r_1, r_2]$.

E, como $|u| \le |(u, v)|$ e $|v| \le |(u, v)|$, temos:

$$\left| \frac{k(r, u, v)}{|(u, v)|} \right| \le c_1 |(u, v)|^{p-1} + c_1 |(u, v)|^{q-1} + c_2 |(u, v)|^{p+q-1} < c_1 \delta_1^{p-1} + c_1 \delta_1^{q} - 1 + c_2 \delta_1^{p+q-1},$$

de onde segue que,

$$\left| \frac{k(r, u, v)}{|(u, v)|} \right| < \varepsilon_1$$
, para δ_1 suficientemente pequeno.

Exemplo 2 Sejam $h, k : [r_1, r_2] \times [0, +\infty)$ não linearidades dadas por

$$h(r, u, v) = u^p + v^q e k(r, u, v) = (d_1(r)(u^p + v^q) + 1) \arctan(d_2(r)(u^p + v^q)),$$

onde p,q>1 e $d_1,d_2:[r_1,r_2]\longrightarrow \mathbb{R}$ são funções contínuas não-negativas, que são positivas em algum subintervalo $[\theta,\eta]$ de $[r_1,r_2]$.

Mostremos que h e k satisfazem $(\mathbf{A_0})$ à $(\mathbf{A_3})$. Vejamos:

 $(\mathbf{A_0})$ Como a função $f(x)=x^s$ com s>1, é contínua é claro que

$$h(r, u, v) = u^p + v^q, \text{ com } p, q > 1$$

também é contínua.

Além disso, como por hipótese que d_1 , $(u^p + v^q)$ e $\arctan(d_2(r)(u^p + v^q))$ são funções contínuas, temos que k também é contínua.

Mostremos agora que h e k são não-decrescentes nas duas últimas variáveis.

Se $(u,v) < (u_1,v_1)$, temos, $u^p + v^q < u_1^p + v_1^q$, de onde segue que $h(r,u,v) < h(r,u_1,v_1)$, e portanto h é não decrescente nas duas últimas variáveis.

Também temos por hipótese que $d_1(t) \geq 0$, para todo $t \in [r_1, r_2]$, daí,

$$(d_1(r)(u^p + v^q) + 1) < (d_1(r)(u_1^p + v_1^q) + 1). (3.11)$$

Também temos que a função arctan é uma função crescente, então, como $d_2(r)(u^p + v^q) < d_2(r)(u_1^p + v_1^q)$, temos

$$\arctan(d_1(r)(u^p + v^q)) < \arctan(d_2(r)(u_1^p + v_1^q)).$$
 (3.12)

Portanto de (3.11) e (3.12) segue que, k é não decrescente nas duas últimas variáveis.

 $(\mathbf{A_1})$ Como por hipótese d_1, d_2 são funções contínuas não-negativas, que são positivas em algum subintervalo $[\theta, eta]$ de $[r_1, r_2]$, existe $[\theta_1, \eta_1] \subseteq [\theta, eta] \subset (r_1, r_2)$ tal que $d_1(r), d_2(r) > 0$, para todo $r \in [\theta_1, \eta_1]$, isto é, existem $M_1, M_2 > 0$ tais que

$$d_1(r) \ge M_1 \ e \ d_2(r) \ge M_2$$
, para todo $r \in [\theta_1, \eta_1]$. (3.13)

Desta forma, é claro que h(r,u,v)>0, para todo $r\in [\theta_1,\eta_1]$ e u,v>0.

Mostremos agora que k(r,u,v)>0, para todo $r\in [\theta_1,\eta_1]$ e u,v>0. Vimos que

$$d_1(r)(u^p + v^q) + 1 > 0$$
, e $d_2(r)(u^p + v^q) > 0$, para todo $r \in [\theta_1, \eta_1]$,

o que implica,

$$\arctan\left(d_2(r)(u^p + v^q)\right) > 0,$$

então,

$$k(r, u, v) > 0$$
, para todo $r \in [\theta_1, \eta_1]$ e $u, v > 0$.

 $(\mathbf{A_2})$ Sejam $[\theta_2, \eta_2] = [\theta_3, \eta_3] = [\theta_1, \eta_1] \subset (r_1, r_2)$, mostremos primeiro que,

$$\lim_{|(u,v)|\to+\infty}\frac{h(r,u,v)}{|(u,v)|}=+\infty \text{ uniformemente para todo } r\in[\theta_2,\eta_2],$$

isto é, dado M>0, existe $\delta>0$ tal que

$$|(u,v)| > \delta$$
 implica que $\left| \frac{h(r,u,v)}{|(u,v)|} \right| > M$, para todo $r \in [\theta_2, \eta_2]$.

Note que,

Se |u| > |v|, temos

$$\left| \frac{h(r, u, v)}{|(u, v)|} \right| \ge \frac{|u|^p}{|(u, v)|} \ge \frac{|(u, v)|^{p-1}}{2^p} > \frac{\delta^{p-1}}{2^p}.$$

Se |u| < |v|, temos

$$\left|\frac{h(r,u,v)}{|(u,v)|}\right| \ge \frac{|v|^q}{|(u,v)|} \ge \frac{|(u,v)|^{q-1}}{2^q} > \frac{\delta^{q-1}}{2^q}.$$

De onde concluimos que

$$\left| \frac{h(r, u, v)}{|(u, v)|} \right| > M$$
, para δ suficient
emente grande.

Mostremos agora que,

$$\lim_{|(u,v)|\to+\infty}\frac{k(r,u,v)}{|(u,v)|}=+\infty \text{ uniformemente para todo } r\in[\theta_3,\eta_3],$$

isto é, dado $M_1 > 0$, existe $\delta_1 > 0$ tal que

$$|(u,v)| > \delta$$
 implie que, $\left| \frac{k(r,u,v)}{|(u,v)|} \right| > \varepsilon$, para todo $r \in [\theta_3, \eta_3]$.

De fato,

$$\left| \frac{k(r, u, v)}{|(u, v)|} \right| \ge |d_1(r)| \frac{|u^p + v^q| \arctan(d_2(r)(u^p + v^q))|}{|(u, v)|},$$

daí, usando (3.13) temos:

$$\left| \frac{k(r, u, v)}{|(u, v)|} \right| > M_1 \frac{|u^p + v^q|}{|(u, v)|} | \arctan (d_2(r)(u^p + v^q)) |.$$

Então,

$$\left| \frac{k(r, u, v)}{|(u, v)|} \right| > M_1 \frac{|u|^p}{2|u|} |\arctan\left(d_2(r)(u^p + v^q)\right)| = M_1 \frac{|u|^{p-1}}{2} |\arctan\left(d_2(r)(u^p + v^q)\right)|,$$

se |u| > |v|, isto é,

$$\left| \frac{k(r, u, v)}{|(u, v)|} \right| > M_1 \frac{\delta^{p-1}}{2^p} |\arctan(d_2(r)(u^p + v^q))|.$$

Mas,

$$d_2(r)(u^p + v^q) > M_1(u^p + v^q) > M_1(u + v = M_1|(u, v)| > M_1\delta$$

e, como a função arctan é crescente, temos

$$\arctan(d_2(r)(u^p + v^q)) > \arctan(M_1\delta).$$

E, portanto,

$$\left| \frac{k(r, u, v)}{|(u, v)|} \right| > M_1 \delta \arctan(M_1 \delta) > M,$$

para δ suficientemente grande.

Analogamente, mostra-se que o resultado é válido se |u| < |v|.

 (A_3) Mostremos primeiro que

$$\lim_{|(u,v)|\to 0} \frac{h(r,u,v)}{|(u,v)|} = 0, \text{ uniformemente para todo } r \in (r_1,r_2),$$

ou seja, dado $\varepsilon > 0$, existe $\delta > 0$ tal que

$$|(u,v)| < \delta \Longrightarrow \left| \frac{h(r,u,v)}{|(u,v)|} \right| < \varepsilon$$
, para todo $r \in (r_1, r_2)$.

De fato,

$$\left| \frac{h(r, u, v)}{|(u, v)|} \right| = \left| \frac{u^p + v^q}{|(u, v)|} \right| \le \frac{|u|^p}{|(u, v)|} + \frac{|v|^q}{|(u, v)|} \le |(u, v)|^{p-1} + |(u, v)|^{q-1},$$

isto é,

$$\left| \frac{h(r, u, v)}{|(u, v)|} \right| < \delta^{p-1} + \delta^{q-1} < \varepsilon,$$

para $\delta > 0$ suficientemente pequeno.

Mostremos agora que,

$$\lim_{|(u,v)|\to 0} \frac{k(r,u,v)}{|(u,v)|} = 0, \text{ uniformemente para todo } r \in (r_1,r_2).$$

Temos que,

$$\lim_{|(u,v)|\to 0}\frac{\arctan(d_2(r)(u^p+v^q))}{|(u,v)|}=0, \text{ uniformemente para todo } r\in (r_1,r_2).$$

Além disso, a função $(d_1(r)(u^p+v^q))$ é limitada. Então por propriedades de limite, concluimos que

$$\lim_{|(u,v)|\to 0}\frac{k(r,u,v)}{|(u,v)|}=0, \text{ uniformemente para todo } r\in (r_1,r_2).$$

Apêndice A

Problemas de Contorno para Equações Diferenciais Ordinárias de Segunda Ordem

Neste apêndice, estudaremos a existência e unicidade de soluções e o Princípio do Máximo para equações diferenciais ordinárias de segunda ordem lineares e não lineares. Além disso, traremos alguns resultados que foram de grande utilidade nos capítulos anteriores.

A.1 Problema Linear

Nesta seção, iremos estudar as equações diferenciais ordinárias lineares de segunda ordem, do tipo

$$\begin{cases}
-u'' = f(t) \text{ em } (0,1), \\
u(0) = u(1) = 0,
\end{cases}$$
(A.1)

onde $f \in C([0, 1])$.

Se

Para provarmos a unicidade da solução para o problema (A.1) utilizaremos o teorema abaixo, o qual é conhecido como Princípio do Máximo.

Teorema A.1 (Princípio do Máximo) Sejam k > 0 e $u : [0,1] \longrightarrow \mathbb{R}$ contínua.

$$\begin{cases} -u''(t) + ku \le 0 \ em \ (0,1), \\ u(0) \le 0, \ u(1) \le 0, \end{cases}$$

então, $u(t) \leq 0$, para todo $t \in [0, 1]$.

Se

$$\begin{cases} -u''(t) + ku \le 0 \ em \ (0,1), \\ u(0) = 0, \ u(1) = 0, \end{cases}$$

então,

$$u(t) \equiv 0 \text{ ou } \begin{cases} u \leq 0, \text{ para todo } t \in [0, 1], \text{ com } \\ u'(0) < 0 \text{ e } u'(1) > 0. \end{cases}$$

No teorema a seguir, mostraremos que o problema (A.1) admite uma única solução.

Teorema A.2 (Operador Solução) Para cada $f \in C^0([0,1])$, existe um único $u \in C^2([0,1])$ solução do problema (A.1).

Isto define um operador

$$S: C^0([0,1]) \longrightarrow C^0([0,1])$$

dada por u = S(f), se e somente se, u é solução de (A.1).

Mais ainda, o operador S é linear, contínuo, compacto e

$$u(t) = S(f)(t) = \int_0^1 K(t, \tau) f(\tau) d\tau,$$
 (A.2)

onde

 $K: [0,1] \times [0,1] \longrightarrow \mathbb{R}, \ \'e \ dada \ por:$

$$K(t,\tau) = \begin{cases} (1-t)\tau & \text{se } \tau < t, \\ (1-\tau)t & \text{se } \tau \ge t. \end{cases}$$
(A.3)

Demonstração:

Mostremos primeiro que (A.1) admite no máximo uma solução. Admita que u e v são soluções de (A.1), então,

$$\begin{cases}
-u''(t) = f(t) \text{ em } (0,1), \\
u(0) = u(1) = 0.
\end{cases}$$
(A.4)

$$\begin{cases}
-v''(t) = f(t) \text{ em } (0,1), \\
v(0) = v(1) = 0.
\end{cases}$$
(A.5)

Assim, de (A.4) e (A.5), segue que

$$\begin{cases} -(u-v)''(t) \le 0 \text{ em } (0,1), \\ (u-v)(0) = (u-v)(1) = 0. \end{cases}$$

Logo, pelo Princípio do Máximo, temos

$$u-v\equiv 0,$$
isto é, $u(t)=v(t),$ para todo $t\in [0,1],$

como queriamos mostrar.

Mostremos agora que u = S(f), se e somente se, u é solução de (A.1).

Iniciaremos mostrando que se u é solução de (A.1), então u=S(f). Como por hipótese $u''(\tau)=-f(\tau)$, para todo $\tau\in(0,1)$. Integrando em (0,x), obtemos:

$$\int_0^x u''(\tau)d\tau = -\int_0^x f(\tau)d\tau.$$

Pelo Teorema Fundamental do Cálculo,

$$u'(x) = u'(0) - \int_0^x f(\tau)d\tau,$$

ou seja,

$$u'(x) = u'(0) - \int_0^1 \mathcal{X}_{[0,x]}(\tau)f(\tau)d\tau, \tag{A.6}$$

e, $\mathcal{X}_{[0,x]}$ é a função característica de [0,x] que é dada por

$$\mathcal{X}_{[0,x]}(\tau) = \begin{cases} 1, & \tau \in [0,x], \\ 0, & \tau \notin [0,x]. \end{cases}$$

Usando (A.6) também temos,

$$u(t) - u(0) = \int_0^t u'(x)dx = \int_0^t \left(u'(0) - \int_0^1 \mathcal{X}_{[0,x]}(\tau)f(\tau)d\tau \right) dx,$$

o que implica

$$u(t) = u'(0).t - \int_0^t \left(\int_0^1 \mathcal{X}_{[0,x]}(\tau) f(\tau) d\tau \right) dx.$$
 (A.7)

Daí, fazendo t = 1 em (A.7)

$$u(1) = u'(0) - \int_0^1 \left(\int_0^1 \mathcal{X}_{[0,x]}(\tau) f(\tau) d\tau \right) dx,$$

ou seja,

$$u'(0) = \int_0^1 \left(\int_0^1 \mathcal{X}_{[0,x]}(\tau) f(\tau) d\tau \right) dx.$$
 (A.8)

Então, de (A.7) e (A.8) segue que,

$$u(t) = t \int_{0}^{1} \left(\int_{0}^{1} \mathcal{X}_{[0,x]}(\tau) f(\tau) d\tau \right) dx - \int_{0}^{t} \left(\int_{0}^{1} \mathcal{X}_{[0,x]}(\tau) f(\tau) d\tau \right) dx$$

$$= t \int_{0}^{1} \left(\int_{0}^{1} \mathcal{X}_{[0,x]}(\tau) f(\tau) d\tau \right) dx - \int_{0}^{1} \mathcal{X}_{[0,t]}(x) \left(\int_{0}^{1} \mathcal{X}_{[0,x]}(\tau) f(\tau) d\tau \right) dx$$

$$= \int_{0}^{1} \left(t - \mathcal{X}_{[0,t]}(x) \right) \left(\int_{0}^{1} \mathcal{X}_{[0,x]}(\tau) f(\tau) d\tau \right) dx$$

$$= \int_{0}^{1} \left[\int_{0}^{1} (t - \mathcal{X}_{[0,t]}(x) \mathcal{X}_{[0,x]}(\tau) f(\tau) d\tau \right] dx$$

$$= \int_{0}^{1} f(\tau) \left[\int_{0}^{1} \mathcal{X}_{[0,x]}(\tau) (t - \mathcal{X}_{[0,t]}(x)) dx \right] d\tau.$$

Desta forma, considerando

$$K(t,\tau) = \int_0^1 \mathcal{X}_{[0,x]}(\tau)(t - \mathcal{X}_{[0,t]}(x))dx,$$

como $\mathcal{X}_{[0,x]}(\tau) = \mathcal{X}_{[\tau,1]}(x)$, temos

$$K(t,\tau) = t(1-\tau) - \int_{\tau}^{1} \mathcal{X}_{[0,t]}(x) dx$$

onde:

$$\int_{\tau}^{1} \mathcal{X}_{[0,t]}(x) = \begin{cases} 0, \text{ se } t \leq \tau, \\ (t-\tau), \text{ se } t > \tau, \end{cases}$$

ou seja,

$$K(t,\tau) = \begin{cases} (1-\tau)t, & \text{se } \tau \ge t, \\ \tau(1-t), & \text{se } \tau < t. \end{cases}$$

Portanto,

$$u(t) = \int_0^1 K(t, \tau) f(\tau) d\tau,$$

como queriamos mostrar.

Por outro lado, suponha que u = S(f), isto é,

$$u(t) = \int_0^1 K(t, \tau) f(\tau) d\tau,$$

com $K(t, \tau)$ dada por (A.3).

Então,

$$u(t) = \int_0^t K(t,\tau)f(\tau)d\tau + \int_t^1 K(t,\tau)f(\tau)d\tau$$

$$= \int_0^t (1-t)\tau f(\tau)d\tau + \int_t^1 (1-\tau)t f(\tau)d\tau$$

$$= (1-t)\int_0^t \tau f(\tau)d\tau + t \int_t^1 (1-\tau)f(\tau)d\tau$$

$$= \int_0^t \tau f(\tau)d\tau - t \int_0^t \tau f(\tau)d\tau + t \int_t^1 f(\tau)d\tau - t \int_t^1 \tau f(\tau)d\tau,$$

isto é,

$$u(t) = \int_0^t \tau f(\tau) d\tau - t \int_0^1 \tau f(\tau) d\tau + t \int_t^1 f(\tau) d\tau.$$

Pelo Teorema Fundamental do Cálculo, segue que

$$u'(t) = tf(t) - \int_0^1 \tau f(\tau) d\tau - t \cdot 0 + \int_t^1 f(\tau) d\tau - t f(t)$$

o que implica,

$$u'(t) = -\int_0^1 \tau f(\tau)d\tau + \int_t^1 f(\tau)d\tau,$$

de onde concluimos que

$$u''(t) = -f(t).$$

Mas,

$$u(t) = \int_0^t (t-1)\tau f(\tau)d\tau + \int_0^1 (\tau - 1)t f(\tau)d\tau,$$

dessa forma, temos,

$$u(0) = u(1) = 0.$$

Portanto,

$$\begin{cases}
-u''(t) = f(t) \text{ em } (0,1), \\
u(0) = u(1) = 0.
\end{cases}$$

Para concuirmos a demonstração, vamos verificar que S é um operador linear, contínuo e compacto.

Facilmente verifica-se que S é linear. Mostremos que S é contínuo.

Seja $f \in C^0([0,1])$ e $\alpha \in \mathbb{R}$, temos por definição

$$S(f)(t) = \int_0^1 K(t, \tau) f(\tau) d\tau,$$

de onde segue que,

$$|S(f)| \le \int_0^1 |K(t,\tau)| |f(\tau)| d\tau.$$

Desta forma, como $|f(\tau)| \leq ||f||_{\infty}$, para todo $\tau \in [0, 1]$, temos

$$||S(f)||_{\infty} \le ||f||_{\infty}$$
, para toda $f \in C^0([0,1])$.

Portanto, S é contínuo.

Mostremos agora que S é compacto. Para isto, utilizaremos o teorema de Ascoli-Arzelá, enunciado no Teorema A.7.

Seja $w_n:[0,1] \longrightarrow \mathbb{R}$ dada por $w_n=S(f_n)$, onde f_n é uma sequência limitada em $C^0([0,1])$, isto é, existe c>0 tal que

$$|f_n(\tau)| \le c$$
, para todo $\tau \in [0, 1]$. (A.9)

Então, como

$$w_n(t) = \int_0^1 K(t, \tau) f_n(\tau) d\tau,$$

temos

$$|w_n(t)| \le \int_0^1 |K(t,\tau)| |f_n(\tau)| d\tau.$$

Assim, usando (A.9) obtemos.

$$|w_n(t)| \leq c$$
, para todo $t \in [0,1]$,

ou seja, w_n é uniformemente equilimitada.

Como já mostramos que S é contínuo em [0,1], e $w_n(0)=w_n(1)=0$, pelo Teorema de Rolle, para cada $n\in\mathbb{N}$, existe $t_n\in(0,1)$ tal que $u_n(t_n)=0$.

Assim, pelo Teorema Fundamental do Cálculo, temos

$$w'_n(t) = \int_{t_n}^t w''_n(s)ds$$

$$\leq \int_0^1 w''_n(s)ds$$

$$= \int_0^1 -f_n(s)ds,$$

daí, usando (A.9), temos

$$|w'_n(t)| \le c$$
, para todo $t \in [0, 1]$.

Então, como

$$w_n(t) - w_n(t_1) = \int_t^{t_1} w'_n(s) ds,$$

concluimos que

$$|w_n(t) - w_n(t_1)| \le c|t - t_1|,$$

ou seja, w_n é uniformemente equicontínua.

Portanto, como w_n é uniformemente equilimitada e equicontínua, segue do Teorema de Ascoli-Arzelá, que w_n é compacto, ou seja, S é um operador compacto.

Lema A.1 Para cada k > 0, existe um operador solução do problema

$$\begin{cases}
-u'' + ku = f(t) \ em \ (0,1), \\
u(0) = u(1) = 0,
\end{cases}$$
(A.10)

isto é, existe $L:C^0([0,1])\longrightarrow C^1([0,1])$, linear e compacto, tal que

 $u=L(f), \ se\ e\ somente\ se,\ u\in C^2([0,1])\ \'e\ a\ \'unica\ soluç\~ao\ de\ do\ problema\ (A.10).$

Demonstração:

Observe primeiro que $u \in C^2([0,1])$ é solução de (A.10) se, e somente se, u é ponto fixo do operador $\psi(u) := S(f) - kS(u)$ onde S é o operador definido no Teorema A.2. Como por hipótese u é solução de (A.10) temos,

$$S(f) - kS(u) = u. (A.11)$$

Mas, como S é linear,

$$S(f - ku) = u.$$

Então, usando o Teorema A.2, temos

$$\begin{cases}
-u''(t) = f(t) - ku(t) \text{ em } (0,1), \\
u(0) = u(1) = 0.
\end{cases}$$

Considerando, o operador T=I-(-kS), segue da igualdade (A.11) que T+S(f). Desta forma, como S é compacto, segue que -kS é compacto e pela Alternativa de Fredholm (para uma referência veja Klauss Deimling [3]) "I-(-kS)=T tem solução única se, e somente se, I-(-kS)=0 tem apenas a solução trivial."

Mostremos que I - (-kS) = 0 tem apenas a solução trivial. De fato, como

$$\begin{cases}
-u''(t) + ku(t) = 0 \text{ em } (0,1), \\
u(0) = u(1) = 0.
\end{cases}$$

Portanto, pelo Príncipio do Máximo, segue que u(t)=0 para todo $t\in[0,1]$, ou seja, I-(-kS)=0 tem apenas a solução trivial. Portanto, o operador S(f)=I-kS tem solução única, se e somente se, $u\in C^2([0,1])$ é a única solução de (A.10), como queriamos mostrar.

A.2 Problema Não Linear

Nesta seção, apresentaremos um método de obtenção de solução para equações diferenciais ordinárias não lineares do tipo

$$\begin{cases}
-u''(t) &= g(t, u) \text{ em } (0, 1), \\
u(0) &= u(1) = 0,
\end{cases}$$
(A.12)

onde $g:[0,1]\times\mathbb{R}\longrightarrow\mathbb{R}$ é uma função contínua.

Este método é conhecido como Sub e Super Soluções(para uma referência veja [10]).

Para isto, precisaremos de algumas definições que veremos a seguir.

Definição A.3 Dizemos que $v \in C^2([0,1])$ é uma sub-solução de (A.12), se

$$\begin{cases} -v''(t) & \leq g(t, v), \ em \ (0, 1), \\ v(0) & \leq 0, \ v(1) \leq 0. \end{cases}$$

Definição A.4 Dizemos que $w \in C^2([0,1])$ é uma super-solução de (A.12), se

$$\begin{cases} -w''(t) & \geq g(t, w) \ em \ (0, 1), \\ w(0) & \geq 0, \quad w(1) \leq 0. \end{cases}$$

Observação A.1 As definições acima são análogas para o sistema

$$\begin{cases}
-u''(t) &= f(t, u, v), \text{ para todo } t \in (0, 1), \\
-v''(t) &= g(t, u, v), \text{ para todo } t \in (0, 1), \\
u(0) &= u(1) = v(0) = v(1) = 0.
\end{cases}$$
(A.13)

A seguir, mostraremos que se o problema (A.12) admite sub e super-soluções $\underline{u}, \overline{u}$, respectivamente, tais que $\underline{u} \leq \overline{u}$, então, garantimos a existência de uma nova solução que satisfaz as condições do teorema abaixo.

Teorema A.5 Suponha que $g:[0,1] \times \mathbb{R} \longrightarrow \mathbb{R}$ é uma função localmente lipschtiziana, e que existem $\underline{u}, \overline{u}:[0,1] \longrightarrow \mathbb{R}$, sub-solução e super-solução, respectivamente, de (A.12) tais que: $\underline{u}(t) \leq \overline{u}(t)$, para todo $t \in [0,1]$. Então, existe uma solução, $U:[0,1] \longrightarrow \mathbb{R}$, tal que:

- (a) $u(t) < U(t) < \overline{u}(t)$, para todo $t \in [0, 1]$;
- (b) U é solução de (A.12).

Demonstração:

Como por hipótese $g:[0,1]\times\mathbb{R}\longrightarrow\mathbb{R}$ uma função localmente lipschtiziana, então, g é Lipschtiziana em $[0,1]\times[-||\underline{u}||-||\overline{u}||,||\underline{u}+\overline{u}||]$, isto é, existe k>0 tal que

$$|g(t,u) - g(t,v)| \le k|u-v|.$$
 (A.14)

Pelo Lema A.1, para cada $u \in C^2([0,1])$, existe um único $w \in C^2([0,1])$, tal que:

$$\begin{cases}
-w'' + kw = g(t, u) + ku, \text{ em } (0, 1) \\
w(0) = w(1) = 0
\end{cases}$$
(A.15)

Isto define um operador $T:C^2([0,1])\longrightarrow C^2([0,1])$ que é dado por Tu=S(g), isto é, Tu=w se, e somente se, w é solução do problema (A.15), o qual é monótono no seguinte sentido:

$$u_1 \le u_2$$
, implica que, $Tu_1 \le Tu_2$. (A.16)

Vejamos:

Fazendo $w = w_1$ e $u = u_1$ em (A.15), obtemos,

$$\begin{cases}
-w_1'' + kw_1 = g(t, u_1) + ku_1 \text{ em } (0, 1), \\
w_1(0) = w_1(1) = 0.
\end{cases}$$
(A.17)

Analogamente, fazendo $w = w_2$ e $u = u_2$ em (A.15), obtemos,

$$\begin{cases}
-w_2'' + kw_2 = g(t, u_2) + ku_2 \text{ em } (0, 1), \\
w_2(0) = w_2(1) = 0.
\end{cases}$$
(A.18)

De (A.17) e (A.18), segue que,

$$\begin{cases}
-(w_1 - w_2)'' + k(w_1 - w_2) = g(t, u_1) - g(t, u_2) + k(u_1 - u_2) \text{ em } (0, 1), \\
(w_1 - w_2)(0) = (w_1 - w_2)(1) = 0.
\end{cases}$$
(A.19)

Como $u_1 \leq u_2$, segue de (A.14) que

$$g(t, u_1) - g(t, u_2) \le k(u_2 - u_1).$$
 (A.20)

Então, de (A.19) e (A.20), segue que

$$\begin{cases}
-(w_1 - w_2)'' + k(w_1 - w_2) \le 0 \text{ em } (0, 1) \\
(w_1 - w_2)(0) = (w_1 - w_2)(1) = 0
\end{cases}$$

Então, pelo Príncipio do Máximo Forte $w_1-w_2\leq 0$, para todo $t\in [0,1]$, isto é, $u_1\leq u_2$ implica que $Tu_1\leq Tu_2$.

Agora, fazendo

 $u_n = Tu_{n-1}, \ u_0 = \underline{u}; \ \text{em } \Omega, \text{ obtemos:}$

$$\underline{u} = u_0 \le u_1 \le u_2 \le \dots \le \overline{u} \text{ em } \Omega.$$

Portanto, como $u \in C^2([0,1])$ e, $u_{n's}$ são limitadas num compacto, existe uma função U, tal que

$$u_n \to U$$
, pontualmente em $t \in [0, 1]$.

Mas, como $\underline{u} \leq u_n \leq \overline{u}$, passando ao limite, obtemos

$$\underline{u} \leq U \leq \overline{u}$$
. (demonstrando o item (a))

Então, como $u_n = Tu_{n-1}$, se e somente se u_n é solução de (A.15), temos

$$u_n(t) = \int_0^1 K(t,\tau) [g(\tau, u_{n-1}(\tau)) + k(u_{n-1}(\tau) - u_n(\tau))] d\tau,$$

de onde segue que,

$$|u_n(t)| \le \int_0^1 (|g(\tau, u_{n-1}(\tau))| + k|u_{n-1}(\tau) - u_n(\tau)|) d\tau.$$
(A.21)

Mas, como g é contínua e limitada em $[0,1] \times [-||\underline{u}||_{\infty}, ||\overline{u}||_{\infty}]$, existe M > 0 tal que $|g(\tau, u_{n-1}(\tau))| \leq M$. Alem disso,

$$||k(u_{n-1}-u_n)||_{\infty} \le k||u_{n-1}-u_n||_{\infty} \le 2k \max\{||\underline{u}||_{\infty}, ||\overline{u}||_{\infty}\} = M_1.$$

Então, voltando a desigualdade (A.21), temos

$$||u_n||_{\infty} < M + M_1 = M_2$$

isto é, u_n é limitada.

Portanto, como T é compacto e u_n é limitada, pelo Teorema de Ascoli, existe uma subsequência $(u_{n_j}) \subset (u_n)$ que converge uniformemente.

Então, como

$$\begin{cases} u_n & \leq u_{n+1}, \\ u_n & \to U, \text{ pontualmente,} \\ u_{n_j} & \to U, \text{ uniformemente} \end{cases}$$

segue do Teorema A.9, que $u_n \to U$, uniformemente em [0,1], e como

$$u_n(t) = \int_0^1 K(t,\tau) [g(\tau, u_{n-1}(\tau)) + k(u_{n-1}(\tau) - u_n(\tau))] d\tau,$$

segue do Teorema A.10

$$\lim_{n \to \infty} u_n(t) = \int_0^1 K(t, s) [g(s, U(s)) + k(U(s) - U(s))] ds$$
$$= \int_0^1 K(t, s) g(s, U(s)) ds.$$

Portanto,

$$U(t) = \int_0^1 K(t, s)g(s, U(s))ds,$$

ou seja U é solução de (A.12).

A.3 Resultados utilizados

Nesta seção, traremos alguns resultados de Análise e da Teoria do Grau que foram bastante utilizados durante todo o nosso trabalho.

A.3.1 Resultados de Análise

Teorema A.6 (Rolle) (Veja Elon Lages [7]) Seja $f : [a,b] \longrightarrow \mathbb{R}$ contínua, tal que f(a) = f(b). Se f é derivável em (a,b) então existe um ponto $c \in (a,b)$ onde f'(c) = 0.

Teorema A.7 (Ascoli-Arzelá) (Veja Elon Lages [7] e [9]) Seja $K \subseteq \mathbb{R}$ compacto. Toda sequência eqüicontínua e simplesmente limitada (eqüilimitada) de funções f_n : $K \longrightarrow \mathbb{R}$ possui uma subsequência uniformemente convergente.

Teorema A.8 Seja $f: I \longrightarrow \mathbb{R}$ duas vezes derivável no intervalo aberto I. Para que f seja concâva é necessário e suficiente que $f''(t) \leq 0$, para todo $t \in I$.

Teorema A.9 Seja (u_n) uma sequência de funções contínuas, $u_n : [0,1] \longrightarrow \mathbb{R}$, tais que:

- (i) $u_n(t) \le u_{n+1}(t)$, para todo $t \in [0, 1]$.
- (ii) $\lim_{n\to\infty} u_n(t) = u(t)$, pontualmente, para todo $t \in [0,1]$.
- (iii) Existe uma subsequência (u_{n_j}) de (u_n) que converge uniformemente em [0,1]. Então u é contínua e $u_n \to u$ uniformemente em [0,1].

Demonstração: Segue diretamente do item (iii) que u é uma função contínua. Portanto, usando os itens (i) e (ii), e o fato de u ser contínua, pelo Teorema de Dini, concluimos que $u_n \to u$ uniformemente em [0,1].

Teorema A.10 Sabendo que $w_n \to w$ uniformemente em [0,1] e $F:[0,1] \times \mathbb{R} \longrightarrow \mathbb{R}$ uma função contínua. Então,

$$\lim_{n\to\infty} \int_0^1 F(s, w_n(s)) ds = \int_0^1 F(s, w(s)) ds.$$

Demonstração: Temos que w_n é uniformemente limitada em [0,1], ou seja, existe c>0 tal que $|w_n(s)|\leq c$, para todo $s\in[0,1]$. Logo, F é uniformemente contínua em $[0,1]\times[-c,c]$. Ou seja, para todo $\varepsilon>0$ dado, existe $\delta>0$ tal que, se $|t-t_1|<\delta$, então $|F(s,t)-F(s,t_1)|<\varepsilon$, para todo $s\in[0,1]$ e $t,t_1\in[-c,c]$.

A partir de δ , obtemos $n_0 \in \mathbb{N}$ tal que $n \geq n_0$, implica que $|w_n(s) - w(s)| < \delta$, para todo $s \in [0, 1]$.

Então, se $n \geq n_0$, temos

$$|F(s, w_n(s)) - F(s, w(s))| < \varepsilon$$
, para todo $s \in [0, 1]$.

Daí,

$$\left| \int_0^1 F(s, w_n(s)) ds - \int_0^1 F(s, w(s)) ds \right| \le \int_0^1 |F(s, w_n(s)) - F(s, w(s))| ds,$$

e como $F(s, w_n(s)) \to F(s, w(s))$, para todo $s \in [0, 1]$, temos

$$\left| \int_0^1 F(s, w_n(s)) ds - \int_0^1 F(s, w(s)) ds \right| < \varepsilon.$$

De onde concluimos que

$$\lim_{n \to \infty} \int_0^1 F(s, w_n(s)) ds = \int_0^1 F(s, w(s)) ds.$$

Lema A.2 Seja u uma função côncava, então, para todo $\delta, \varepsilon > 0$, temos:

$$u(t) \ge (1 - \varepsilon)\delta||u||_{\infty},$$

para todo $t \in [\delta, \varepsilon]$.

Demonstração: Fixe $t_0 \in [0,1]$ tal que $u(t_0) = ||u||_{\infty}$.

Se $t_0 \leq \varepsilon < 1$, temos

$$\varepsilon = (1 - \alpha)t_0 + \alpha 1$$
, para todo $\alpha \in [0, 1)$.

Como u é côncava

$$u(\varepsilon) \ge (1 - \alpha)u(t_0) + \alpha u(1) = (1 - \alpha)||u||_{\infty} \ge (1 - \varepsilon)||u||_{\infty},$$

o que implica,

$$u(\varepsilon) > (1-\varepsilon)||u||_{\infty} \ge (1-\varepsilon)\delta||u||_{\infty}$$
, para todo $0 < \delta < 1$,

isto é,

$$u(\varepsilon) \geq (1-\varepsilon)\delta||u||_{\infty}$$
, para todo $\varepsilon \in [\delta, \varepsilon]$ e $\delta \in [0, 1]$.

Analogamente, para todo $\delta \in [0, 1]$, temos:

$$\delta = (1 - \alpha).0 + \alpha.t_0 < \alpha, \forall 0 < \varepsilon < 1,$$

de onde segue que

$$u(\delta) \geq (1-\varepsilon)\delta||u||_{\infty}$$
 para todo $\delta \in [\delta, \varepsilon]$ e $\varepsilon \in [0, 1]$.

Portanto,

$$u(t) \geq (1-\varepsilon)\delta||u||_{\infty}$$
, para todo $t \in [\delta, \varepsilon]$.

A.3.2 O Grau Topológico de Leray-Schauder

Seja E um espaço de Banach real e $\mathcal{N}(\overline{\Omega})$ o conjunto de todas as funções compactas de Ω em E. Considere o conjunto

 $M = \{(I - F, \Omega, y) : F, \Omega \in y \text{ satisfazem as condições } (i) - (iii) \text{ dadas abaixo}\},\$

- (i) $\Omega \subset E$ é um conjunto aberto limitado;
- (ii) $F \in \mathcal{N}(\overline{\Omega})$;
- (iii) $y \notin (I F)(\partial \Omega)$.

Então, existe exatamente uma função

$$D: M \longrightarrow \mathbb{Z},$$

que é conhecida como Grau de Leray-Schauder. Satisfazendo algumas propriedades, dentre elas:

$$(\mathbf{D_1})\ D(I,\Omega,y) = 1$$
, para todo $y \in \Omega$;

- $(\mathbf{D_2})\ D(I-F,\Omega,y) = D(I-F,\Omega_1,y) + D(I-F,\Omega_2,y)$, onde Ω_1 e Ω_2 são subconjuntos abertos disjuntos de Ω tais que $y \notin (I-F) \left(\overline{\Omega} \setminus (\Omega_1 \cup \Omega_2)\right)$;
- $(\mathbf{D_3})\ D(I-H(t,\cdot),\Omega,y(t))\ \text{n\~ao}\ \text{depende}\ \text{de}\ t\in[0,1]\ \text{quando}\ H:[0,1]\times\overline{\Omega}\longrightarrow E$ é compacta, $y:[0,1]\longrightarrow E$ é contínua e $y(t)\not\in(I-H(t,\cdot))(\partial\Omega)$ em [0,1].
- $(\mathbf{D_4})\ D(I-F,\Omega,y) = D(I-F,\Omega_1,y) \ \text{para todo subconjunto aberto}\ \Omega_1 \ \text{de}\ \Omega \ \text{tal}$ que $y \not\in (I-F)\left(\overline{\Omega}\backslash\Omega_1\right)$.

$$(\mathbf{D_5})\ D(I,\Omega,b) = \left\{ \begin{array}{l} 1, \ \mathrm{se}\ b \in \Omega \\ 0, \ \mathrm{se}\ b \not\in \Omega. \end{array} \right.$$

 $(\mathbf{D_6})$ Se $D(I-F,\Omega,b) \not\in \emptyset$, então existe $x_0 \in \Omega$ tal que $(I-F)(x_0) = b$.

Bibliografia

- [1] João Marcos Bezerra; UBILLA, Pedro; LORCA, Sebastian., Superlinear ordinary elliptic equations involving two parameters. (preprint)
- [2] João Marcos Bezerra; UBILLA, Pedro; LORCA, Sebastian., Local superlinearity for elliptic systems involving parameters, Journal OF Differential Equations, USA, v.211, n.1, p 1-19, 2005.
- [3] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
- [4] D. Gilbarg & D. Trudinger, Elliptic Differential Equations of Second Order, Springer-Verlag, New York, 1983.
- [5] Orlando Batista de Almeida, Teoria do Grau e aplicações, dissertação de mestrado, UFCG, 2006.
- [6] H. Brezis, Analyse Fonctionelle Théorie et Applications, Masson, Paris, 1996.
- [7] Lima, Elon L., *Curso de Análise vol.1*, Projeto Euclides, IMPA, Rio de Janeiro, 2006.
- [8] Lima, Elon L., *Análise Real vol.2*, Coleção Matemática Universitária, IMPA, Rio de Janeiro, 2004.
- [9] Lima, Elon L., Espaços Métricos, Projeto Euclides, IMPA, CNPQ, Rio de Janeiro, 2003.