
Felipe Souza Lima

Metacontrol : a Python based software for
self-optimizing control structure selection using

metamodels

Campina Grande, Paraíba, Brasil

Abril, 2020





Felipe Souza Lima

Metacontrol : a Python based software for self-optimizing
control structure selection using metamodels

Dissertation submitted to the Graduate Pro-
gram in Chemical Engineering of the Federal
University of Campina Grande in fulfillment
for the degree Master of Chemical Engineer-
ing. Area: Chemical Engineering.

Universidade Federal de Campina Grande

Unidade Acadêmica de Engenharia Química

Programa de Pós-Graduação em Engenharia Química

Supervisor: Dr. Antônio Carlos Brandão de Araújo

Campina Grande, Paraíba, Brasil
Abril, 2020



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L732m 

 

Lima, Felipe Souza. 

       Metacontrol: a Python based software for self-optimizing control 

strucutre selection using metamodels / Felipe Souza Lima. – Campina 

Grande, 2020. 

      111 f. : il. color.  

   
        Dissertação (Mestrado em Engenharia Química) – Universidade 

Federal de Campina Grande, Centro de Ciências e Tecnologia, 2020.  

       "Orientação: Prof. Dr. Antônio Carlos Brandão Araújo”. 

   Referências. 

   

      1. Engenharia Química. 2. Modelagem e Simulação. 3. Python.           

4. Self-Optimizing Control. 5. Kriging. 6. Software. 7. Plantwide.           

I. Araújo, Antônio Carlos Brandão. II. Título. 

                                                                                       

 

                                                                                    CDU 66.01(043) 
                                     FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA SEVERINA SUELI DA SILVA OLIVEIRA CRB-15/225 
 
    

 



Felipe Souza Lima

Metacontrol : a Python based software for self-optimizing
control structure selection using metamodels

Dissertation submitted to the Graduate Pro-
gram in Chemical Engineering of the Federal
University of Campina Grande in fulfillment
for the degree Master of Chemical Engineer-
ing. Area: Chemical Engineering.

Trabalho aprovado. Campina Grande, Paraíba, Brasil, 27 de Abril de 2020:

Orientador
Dr. Antônio Carlos Brandão de Araújo

Professor
Dr. Heleno Bispo da Silva Júnior

Professor
Dr. Sidinei Kleber Silva

Professor
Dr. Fernando Vines de Lima

Campina Grande, Paraíba, Brasil
Abril, 2020





For those who doubt themselves. Face and embrace it. It is part of what defines you. Use
the doubt as a weapon and you will be surprised of how far you can go.
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Resumo
Neste trabalho é apresentado uma ferramenta computacional baseada em Python que
permite uma rápida implementação da metodologia de Controle Auto-Otimizante (do
inglês Self-Optimizing Control) com o auxílio de modelos surrogados. A dissertação
mostra as possibilidades e o potêncial do software Metacontrol através de estudos de
caso de processos já estabelecidos na indústria. Como resultado, obteve-se uma análise
profunda destes processos por uma perspectiva de controle em escala de planta (do inglês
plantwide), e também são discutidas recomendações de uso da ferramenta. Além disso,
os dados, exemplos e o código fonte do software Metacontrol estão disponíveis no link
https://github.com/feslima/metacontrol.

Palavras-chave: Python, Self-Optimizing Control, Kriging, Software, Plantwide.

https://github.com/feslima/metacontrol




Abstract
In this work, it is presented a Python based software tool that enables fast implementa-
tion of a Self-Optimizing Control methodology with the help of surrogate models. The
dissertation outlines the potential uses of the Metacontrol software through cases studies
of well established industrial processes. As a result, an in-depth analysis from a plantwide
perspective of these processes is discussed, along with recommendations of use. Further-
more, the data, examples and the Metacontrol source code shown here are available to
download at https://github.com/feslima/metacontrol.

Keywords: Python, Self-Optimizing Control, Kriging, Software, Plantwide.

https://github.com/feslima/metacontrol
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1 Introduction

This dissertation is about an assembly of several methodologies into a software tool,
called Metacontrol, which enables a fast implementation of the Self-Optimizing Control
(SOC) technique. This assembly consist of three major methodologies: Kriging metamodels,
optimization through infill criteria and SOC. The dissertation is organized as follows:

Chapter 2 gives a brief summary of the key concepts involving SOC methodology
and the main reason why this research and software tool development was needed.

Chapter 3 presents a discussion of Kriging metamodels and its reasoning.

Chapter 4 introduces the process of constrained nonlinear optimization using
Kriging metamodels. This process is also known as infill criteria.

Chapter 5 demonstrates how the assembly of the methodologies shown in chapters
2, 3 and 4 are combined to form the core concept behind Metacontrol.

Chapter 6 is dedicated to case-studies using Metacontrol. In addition, there is a
brief discussion on good practices involving the use of the software tool.

The Metacontrol software is publicly available at https://github.com/feslima/
metacontrol. There, the reader can find instructions on how to install the open-source
tool. Also, for each technique discussed in chapters 2, 3 and 4, there is an open-source
Python package as result. Their links are found in their respective chapters.

1.1 Publications
As result of this research the following paper was submitted:

Lima, F. S., Alves, V. M. C., Araujo, A. C. B.: Metacontrol: a Python based
software for self-optimizing control structure selection using metamodels. Submitted for
publication to Computers & Chemical Engineering.

https://github.com/feslima/metacontrol
https://github.com/feslima/metacontrol
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2 The Self-Optimizing Control overview

Every industrial process is under limitations ranging from design/safety (e.g.
temperature or pressure which an equipment can operate, etc.), environmental (e.g.
pollutant emissions), to quality specifications (e.g. product purity), and economic viability.
More often than not, these constraints are applied all at once and can be conflicting.
Therefore, it is mandatory to operate such processes optimally (or, at least, close to its
optimal point) in order to attain maximum profits or keep expenses at minimum while
still obeying these specifications.

One way to achieve this is through the application of plantwide control method-
ologies. In particular, Self-Optimizing Control (MORARI; STEPHANOPOULOS, 1980;
SKOGESTAD, 2000; ALSTAD; SKOGESTAD; HORI, 2009) is a practical way to design a
control structure of a process following a criterion (for instance: economic, environmental,
performance) considering a constant set-point policy (ALVES et al., 2018). The SOC
methodology is advantageous in this scenario because there is no need to reoptimize the
process every time that a disturbance occurs.

However, the review presented here contains merely the paramount elements needed
to understand the main concepts and expressions that translate the ideas behind the
method. The author recommends them if the reader needs a more detailed explanation
(SKOGESTAD, 2000; HALVORSEN et al., 2003; HORI; SKOGESTAD; ALSTAD, 2005;
HORI, Eduardo S.; SKOGESTAD, 2007; ALSTAD; SKOGESTAD; HORI, 2009; ALVES
et al., 2018; KARIWALA; CAO; JANARDHANAN, 2008; KARIWALA; CAO, 2009;
UMAR et al., 2012).

The main concept of Self-optimizing control consists in the pursue of a control
structure that is based on a constant setpoint policy, leading to near-optimal operation.
From Skogestad (2004):

“Self-optimizing control is when one can achieve an acceptable loss with
constant setpoint values for the controlled variables without the need to
reoptimize when disturbances occur.”

It is assumed the process objective function, assumed scalar, is influenced by its
steady-state operation. Therefore, the optimization problem described in Equation 2.1 is
formed, with u0 being the degrees of freedom available, x and d representing the states
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and the disturbances of the system, respectively.

minimize
u0

J0 (x, u0, d)

subject to g1 (x, u0, d) = 0
g2 (x, u0, d) ≤ 0

(2.1)

Regarding the disturbances, these can be: change in feed conditions, prices of the
products and raw materials, specifications (constraints) and/or changes in the model.
Using NLP solvers, the objective function can be optimized considering the expected
disturbances and implementation errors.

Since the whole technology considers near-optimal operation, as a result of keeping
constant setpoints (differently from RTO, for instance), there will always exist a (positive)
loss, given by Equation 2.2

L = J0(d, n)− Jopt(d) (2.2)

Metacontrol focus on the first four steps of the Self-Optimizing Control technology,
named by Skogestad (2000) as “top-down” analysis. In these steps, the variable selection
seeking the usage of the steady-state degrees of freedom is the main problem to be addressed
with the systematic procedure proposed. It is possible to search for a Self-Optimizing
Control structure basically using two methods:

1. Manually testing each CV candidate, reoptimizing the process for different distur-
bances’ scenarios, and choosing the structure that yields the lowest (worst-case or
average-case) loss;

2. Using local methods based on second-order Taylor series expansion of the objective
function, that are capable of easily and quickly “pre-screening” the most promising
CV candidates.

The manual nature of method 1 and the possibility of creating an automated
framework using method 2 motivated the creation of Metacontrol itself. Applying, com-
prehensively, the second method in a software was also a key motivation for this work.
Therefore, it is logical that the usage of the linear methods will be discussed in this section,
since they are the ones implemented within Metacontrol.
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A linear model with respect to the plant measurements can be represented as
Equation 2.3

∆y = Gy∆u+Gy
d∆d (2.3)

With

∆y = y − y∗

∆u = u− u∗

∆d = d− d∗
(2.4)

Gy and Gy
d are the gain matrices with respect to the measurements and disturbances,

respectively. Regarding the CVs, linearization will give Equation 2.5

∆c = H∆y = G∆u+Gd∆d (2.5)

With
G = HGy

Gd = HGy
d

(2.6)

Linearizing the loss function results in Equation 2.7:

L = J(u, d)− Jopt(d) = 1
2‖z‖

2
2

z =J
1
2
uu (u− uopt) = J

1
2
uuG−1 (c− copt)

(2.7)

Later, Halvorsen et al. (2003) developing the exact local method, showed that the
loss function can be rewritten as in Equation 2.8

z = J
1
2
uu

[(
J−1
uu Jud −G−1Gd

)
∆d+G−1n

]
(2.8)

With Jud and Juu corresponding to the hessian with respect to the disturbances
and manipulated variables

(
∂2J
∂u∂d

)
and with respect to the manipulated variables

(
∂2J
∂2u

)
,

respectively. If one assumes that Wd is a (diagonal) magnitude matrix that considers the
disturbances and W y

n the magnitude matrix that takes into account the measurement
error, and considering that both are 2-norm-bounded (Halvorsen et al. (2003) and Alstad,
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Skogestad, and Hori (2009) contains a discussion and justification for using 2-norm),
Equations 2.9 to 2.11 can be defined to scale the system:

d− d∗ = Wdd
′ (2.9)

n = HW y
nn

y′ = Wnn
y′ (2.10)

∥∥∥∥∥∥
 d′

ny
′

∥∥∥∥∥∥
2

≤ 1 (2.11)

The loss function from Equation 2.7 can be also written in a more appropriate way
considering the definition of (ALSTAD; SKOGESTAD; HORI, 2009) of the uncertainty
variables regarding the contribution of the disturbances and measurement error on the
incurred loss, Equation 2.12 and considering the scaled system from Equations 2.9 to 2.11

M , [Md My
n ] (2.12)

where

Md = −J1/2
uu (HGy)−1 HFWd

Mny = −J1/2
uu (HGy)−1 HWnv

(2.13)

with F corresponding to the optimal measurement sensitivity matrix with respect
to the disturbances.

Finally, if one uses all the definitions described so far, the worst-case loss for the
effect of the disturbances and measurement error is given by Equation 2.14

Lworst−case = max∥∥∥∥∥∥
 d′

ny
′

∥∥∥∥∥∥
2

≤1

= σ̄(M)2

2 (2.14)

Equation 2.14 shows that in order to minimize the worst-case loss, it is necessary
to minimize σ̄(M), Equation 2.15:

H = arg min
H

σ̄(M) (2.15)
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This optimization problem was initially solved using a numerical search, as proposed
by Halvorsen et al. (2003). Fortunately, Alstad, Skogestad, and Hori (2009) derived an
explicit solution that gives the optimal linear combination of measurements coefficient
matrix (H) that minimize the worst-case loss that exists due to the effect of the disturbances
and measurement errors, in Equation 2.16

HT =
(
F̃ F̃ T

)−1
Gy

(
GyT

(
F̃ F̃ T

)−1
Gy
)−1

J1/2
uu (2.16)

where

F̃ = [FWdW
y
n ] (2.17)

Assuming that F̃ F̃ T is full rank.

Equation 2.16 has three interesting properties proved by Alstad, Skogestad, and
Hori (2009):

1. It applies to any number of measurements (ny).

2. The solution for H was proved to minimize not only the worst-case, but also the
average-case loss. Therefore, if one uses Equation 2.16 seeking the determination
of a control structure that minimizes the loss at the worst-case scenario, he is
also minimizing the loss for the average-case scenario. This was called as a “super-
optimality” by Alstad, Skogestad, and Hori (2009).

3. The solution proposed minimizes the combined effect of the disturbances and the
measurement errors, simultaneously.

Therefore, the usage of the explicit solution will give both the minimized worst and
average case losses using a single evaluation, and will also consider the combined effect of
the disturbances and measurement errors of the problem. Therefore, this solution it is the
default one used in Metacontrol.

Another way of solving the optimization problem from Equation 2.15 is to use the
Extended nullspace method (ALSTAD; SKOGESTAD; HORI, 2009). Differently from
Equation 2.16, this solution does not consider the combined effect of the disturbances and
measurement errors simultaneously. Instead, the problem is solved in two steps. The first
regards “disturbance rejection”: The loss is minimized with respect to disturbances. If
there are remaining degrees of freedom, then the effect of the measurement errors can be
minimized. The extended nullspace, differently from the exact local method, is not an
optimal solution, instead being considered sub-optimal. (ALSTAD; SKOGESTAD, 2007;
ALSTAD; SKOGESTAD; HORI, 2009). However, the authors of Alves et al. (2018) also
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translated the mathematical formulations of the extended nullspace method into Python,
and it is intended to be implemented within Metacontrol GUI in future releases merely as
a secondary feature, giving its sub-optimality. The solution using the extended nullspace
method is depicted in Equation 2.18:

H = M−1
n J̃

(
W−1
ny G̃y

)†
W−1
ny (2.18)

Since Equation 2.16 also minimizes the worst-case loss, its evaluation was also
considered inside Metacontrol: the user can inspect the expected average-case loss for
each control structure that can exist in the combinatorial problem. The expression for the
average-case loss is a result of the work of Kariwala, Cao, and Janardhanan (2008) and is
described in Equation 2.19:

Laverage = 1
6 (ny + nd)

∥∥∥∥J 1
2
uu (HGy)−1 HF̃

∥∥∥∥2

F
(2.19)

Lastly, it was necessary to implement within Metacontrol a branch-and-bound
algorithm capable of quickly searching the best control structures for each possible subset
of a given process, using the incurred loss as metric. This was considered by the authors of
Alves et al. (2018) as an obligatory feature, since when Metacontrol is being used, it was
understood that the main idea was to, in a comprehensive software, the user operating
it should be capable of inspecting the most promising control structures, and discarding
the unnecessary evaluation of the unpromising structures (i.e.: With a high incurred loss -
both average of worst-case scenario) to save time and effort. It is important to remember
that there is an evident combinatorial problem that grows in an explosive fashion, as
the number of the unconstrained degrees of freedom of the reduced space problem and
the number of available measurements both increases. Without a search method that is
capable of quickly discarding undesired solutions, the usability of Metacontrol would be
seriously compromised. Luckily, there are several implementations of branch-and-bound
algorithms tailored for Self-Optimizing Control studies purposes, such as in Cao and Saha
(2005), Cao and Kariwala (2008) and Kariwala and Cao (2009).

From the aforementioned works, Kariwala and Cao (2009) it is of particular interest:
the monotonic criterion implemented consists of the exact local method from Halvorsen
et al. (2003) and derived explicitly by Alstad, Skogestad, and Hori (2009), which is used as
the default methodology to pre-screen the most promising self-optimizing CV candidates
in Metacontrol. Therefore, the usage of the proposed branch-and-bound algorithm by
Kariwala and Cao (2009) it is not only convenient, making the software more effective, but
also keeps the “calculation engine” from Metacontrol using the same criterion. It would
not make any sense, for instance, using a branch-and-bound algorithm that outputs the
index of the most promising CVs using the maximum singular value rule from Skogestad
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and Postlethwaite (2007) and use the CV index sequence from this algorithm to evaluate
the worst-case loss. Fundamentally speaking, the orders of “best” control structures would
not be the same, simply because the search method would be using an different criterion
from the linear method implemented to evaluate the H matrix.

The Branch-and-Bound algorithm developed by Kariwala and Cao (2009) that
was originally implemented in MATLAB® by them was translated to Python by the
main author of Alves et al. (2018). The same is true for equations of Exact Local and
Extended Nullspace methods described by Alstad, Skogestad, and Hori (2009). Those
Python routines were packaged under the name of pySOC (Python-based Self-Optimizing
Control), and can be found in https://github.com/feslima/pySOC, with the code being
freely available for inspection, revision and suggestions.

https://github.com/feslima/pySOC
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3 Kriging reasoning

Metamodels are a way to represent the world in simpler terms. Think of them as a
photograph, they do not capture the moment as whole but can represent it good enough.
In this analogy, the moment is a complex process that it is too cumbersome to explain
it completely in mathematical terms, and metamodels, as photographs, may serve the
purpose of capturing the core trends of this process without being too unwieldy and not
losing too much information.

There is a family of metamodeling methodologies, ranging from a simple linear
regression to complex neural networks. However, this chapter will be dedicated to discuss
Kriging surrogates.

The simplest form to represent a real world process (y) through a metamodel (ŷ)
and its error (ε) is done through Equation 3.1.

y(x) = ŷ(x) + ε (3.1)

The error ε is associated with the unmodeled effects of the inputs x and random
noise (i.e. it cannot be explained in detail but cannot be ignored as well.). When using the
Kriging methodology as metamodel, this error is assumed to be a probabilistic function of
x, or in other words, this error is assumed to be not independent and identically distributed.
The specific probabilistic function is represented by a Gaussian distribution with mean
zero and variance σ2.

ε = ε(x) ∼ N (0, σ2) (3.2)

As from Søren Nymand Lophaven, Hans Bruun Nielsen, and Jacob Søndergaard
(2002), a Kriging metamodel is comprised of two parts: a polynomial regression F and
departure function z of stochastic nature, as can be seen in Equation 3.3.

ŷl(x) = F (β:,l, x) + zl(x), l = 1, . . . , q (3.3)

The regression model, considered as a linear combination of t functions (fj : Rn →
R), as defined in Equation 3.4.

F (β:,l, x) ≡ f(x)Tβ:,l (3.4)
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The most common choices for f(x) are polynomials with orders ranging from zero
(constant) to two (quadratic). It is assumed that z has mean zero, and the covariance
between to given points, arbitrarily named w and x for instance, is defined by Equation 3.5:

Cov [zl(w), zl(x)] = σ2
lR (θl, w, x) , l = 1, . . . , q (3.5)

With σ2
l being the process variance for the lth response component, and R(θ, w, x)

defined as the correlation model. In Metacontrol, the correlation model used is described
in Equation 3.6.

R (θl, w, x) = exp
(
−

m∑
i=1

θl (w − xi)p
)
, (θl ≥ 0, pl ∈ [0, 2]) (3.6)

Two important concepts must be addressed at this point: The first regards the
meaning of the hyperparameter θ, being interpreted as the “activity” of variable x, meaning
that, a low value of θ indicates that the points are highly correlated (ALVES et al., 2018).
In addition, the value of θ also indicates how fast the correlation goes to zero as the process
moves in the lth direction, as discussed by Caballero and Grossmann (2008). The second
concept regards the parameter p in Equation 3.6, that represents the “smoothness” of the
correlation. As its value reduces, the rate of the initial correlation drops as the distance
between w and xi increases. When p ≈ 0, there is a discontinuity between Y (w) and
Y (xi) (FORRESTER; SOBESTER; KEANE, 2008) and there is no immediate correlation
between the given points.

The hyperparameters θ are degrees of freedom available for optimization purposes,
seeking the improvement of the metamodel fitness. In Søren Nymand Lophaven, Hans Bruun
Nielsen, and Jacob Søndergaard (2002), the optimal set of hyperparameters θ∗ corresponds
to the maximum likelihood estimation. Assuming a Gaussian process (LOPHAVEN, S.;
NIELSEN, H.; SØNDERGAARD, Jacob, 2002), the optimal values of the hyperparameters
solves Equation 3.9:

min
θ

{
ψ(θ) ≡ |R| 1

mσ2
}

(3.7)

Where |R| is the determinant of the correlation matrix. The internal optimizer
used in DACE corresponds to a modified version of the Hooke & Jeeves method, as showed
by S. N. Lophaven, H. B. Nielsen, and J. Søndergaard (2002).

As stated before, high-order data obtainment it is an obligatory step in the proposed
methodology implemented in Metacontrol. Fortunately, Søren Nymand Lophaven, Hans
Bruun Nielsen, and Jacob Søndergaard (2002) also derived expressions for Jacobian
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evaluation of a Kriging prediction (for full demonstration, consult Søren Nymand Lophaven,
Hans Bruun Nielsen, and Jacob Søndergaard (2002)), given in Equation 3.8:

ŷ′(x) = Jf (x)Tβ∗ + Jr(x)Tγ∗ (3.8)

The expression for Hessian evaluation was derived by Alves et al. (2018) (full
demonstration in appendix A of their work), and it is depicted in Equation 3.9:

ŷ′′(x) = Hf (x)β∗ +Hr(x)γ∗ (3.9)

Equations 3.8 and 3.9, differently from numeric/automatic differentiation, are
not approximations and, instead, are analytical expressions derived by Søren Nymand
Lophaven, Hans Bruun Nielsen, and Jacob Søndergaard (2002) and Alves et al. (2018).
Therefore, it is expected a reduced error when one is using these expressions, if compared
to techniques based in numerical approximation, considering that the Kriging metamodel
used is precise enough.

For the design of experiments part, it was decided to implement the Latin Hypercube
Sampling (LHS) because it allows to better sample the optimization domain without
introducing ill-conditioning in the spatial correlation matrix calculated by the Kriging
builder.

Lastly, both the LHS function and Kriging model builder/predictor were imple-
mented as a separated package in Python under the name of pydace (from Python toolbox
for Design and Analysis of Experiments). This package is a partial code translation from
the MATLAB® toolbox implemented by Søren Nymand Lophaven, Hans Bruun Nielsen,
and Jacob Søndergaard (2002) named DACE to the Python programming language. The
link to the open-source code is https://github.com/feslima/pydace. There the reader
can find a brief documentation on how to install and example of usage.

https://github.com/feslima/pydace
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4 Non linear optimization and infill criteria

When dealing with a non linear problem, such as in Equation 2.1, typically it is
resorted to classical solvers (e.g. SQP, trust-region-dogleg, genetic algorithms, simulated
annealing, etc.) to obtain its solution, depending on the nature of the NLP (e.g. presence
of discontinuities, whether or not the function is differentiable, etc.).

There is a entire field of study dedicated to find these NLP solutions with Kriging
surrogates. In the works of Jones (2001), Sasena (2002), Forrester, Sobester, and Keane
(2008) and Alexandrov et al. (2000), there are entire discussions and frameworks on how to
solve non linear problems and comparisons of several metrics involved in the optimization
process with metamodels.

The premise of performing a optimization using surrogates is that the model to be
optimized is too time consuming or computationally expensive to be solved with classical
solvers. To circumvent this, the following steps are proposed:

1. Build an approximation model with Kriging surrogates using a limited number of
initial samples. This approximation is a “generalistic” enough representation of the
real model;

2. Perform an optimization of the approximation model using classical NLP solvers
and an infill criteria. The surrogate model reduces the “search area” needed by the
solver;

3. Compare the surrogate optimum found in step 2 with the result from original model.
In other words: feed the results from the Kriging metamodel optimum into the
original model and see if they are close enough;

4. If the optimum from the metamodel is close enough (based on a chosen metric)
to the original model, then this may be the true optimum. Otherwise, update the
Kriging model by introducing the value found and return to step 2;

This process is basically “filling holes” (hence the name infill) in our Kriging
metamodel until original model optimum is found. To illustrate this in the simplest way,
suppose a complex process that we need to optimize that is represented by the following
function:

f(x) = − cos(x)− e x
20 + 5
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Assuming that we only have three initial points sampled from this model function,
we build our Kriging model. As can be seen in Figure 1.

Figure 1 – Initial plot of our complex model. The solid blue line represents the function
behavior. The dashed line is the Kriging metamodel of the three sampled points
(red circles) available.

Source: Author.

When applying an optimization solver on the Kriging model, we get a new optimal
value for x near 7.8 (3.47 for f(x) when we consult the original model). Now, we include
these values of (x, f(x)) in the sample and rebuild the Kriging metamodel. The result is
shown Figure 2. We keep repeating this procedure until we get the result in Figure 3.

This example is a trivial one because the problem involves a single input variable
and infill criteria is the own Kriging prediction of the model. As discussed in Jones (2001),
this criteria has its pitfalls if used without other precautions.

Caballero and Grossmann (2008) presented an algorithm, based on the “method
2” in the work of Jones (2001), referred as a gradient matching technique where the
gradient of the surrogate is forced to match with the true function gradient, this is done
through trust-region approach to ensure local convergence which was proven in the work
of Alexandrov et al. (2000). The basic idea of this approach is: minimize the NLP problem
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Figure 2 – The Kriging model after one update.

Source: Author.

metamodel, consult the original function at the minimum found in the metamodel, update
the sample matrix used to build the surrogate. Repeat this until a convergence criteria
is met. The flowchart depicting the whole procedure is defined in Figure 4. For detailed
explanation of each step of the proposed algorithm, one must refer to Caballero and
Grossmann (2008) and Alves et al. (2018).

This approach was implemented as a procedure of the Python package surropt (from
Surrogate Optimization). It uses as internal NLP solver a Python wrapper authored by Kum-
merer and Moore (2019) of the well-established IpOpt package (WÄCHTER; BIEGLER,
2006). The surropt package is found on https://github.com/feslima/surropt.

https://github.com/feslima/surropt
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Figure 3 – The Kriging model after four updates. Notice how the Kriging model adjusts
to the true function.

Source: Author.
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Figure 4 – Flowchart of Caballero and Grossmann (2008) algorithm, translated to Python
by the author of this work and implemented within Metacontrol.
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5 The Metacontrol framework

To apply the “top-down” part (SKOGESTAD, 2000) of the SOC methodology the
conventional way (ALVES et al., 2018; ALSTAD; SKOGESTAD; HORI, 2009; SKOGES-
TAD, 2000), the following steps are typically involved:

1. Identify the relevant process variables: manipulated variables, disturbances and
potential CV candidates (process measurements) in order to perform a Degree of
Freedom (DOF) analysis (taking into account both steady and dynamic state of the
process);

2. Define optimal operation: Define the objective function to be used in order to seek
an optimal operating point;

3. Modeling of the industrial process (using a process simulator or or any numerical
environment, for instance) as close as possible to the reality;

4. Optimize the process model;

5. Implement the control loops of active constraints found in the previous step - “active
constraint control” (SKOGESTAD, 2000);

6. Evaluate the loss (result of a constant setpoint policy as showed by Skogestad (2000)
and Halvorsen et al. (2003)) for each possible control structures for the remaining
(unconstrained) degrees of freedom available: This can be done manually, evaluating
each possible control structures one at a time (“brute-force” approach (UMAR et al.,
2012)), which is, very often, an impracticable approach due to combinatorial explosion
(ARAÚJO; GOVATSMARK; SKOGESTAD, 2007). Therefore, it is more efficient to
“pre-screen” the most promising CV candidates using local (linear) methods that
have been developed and applied by several authors such as Halvorsen et al. (2003),
Hori, Skogestad, and Alstad (2005), Eduardo Shigueo Hori and Skogestad (2008)
and Alstad, Skogestad, and Hori (2009). For the latter approach, it is necessary to
obtain the reduced-space problem (unconstrained) differential information (gradient
with respect to CV candidates and disturbances, and also the objective function
Hessian) evaluated at the optimal point found in step 4;

a) When using the local methods, it is necessary to define disturbances magnitudes
and the measurement errors of the candidates of step 1;

b) To evaluate the loss using local methods, one have to apply the mathematical
formulations involved in these methods to obtain the candidates variables
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combinations and their respective losses. The mathematical formulations that
can be used are mainly: The maximum gain rule authored by Skogestad and
Postlethwaite (2007), the exact local method derived by Halvorsen et al. (2003)
and analytically solved by Alstad, Skogestad, and Hori (2009) or the nullspace
method derived by Alstad and Skogestad (2007);

7. Perform a controllability analysis based on the results from step 6 in order to
determine the most efficient MV-CV pairings.

Even though it is possible to describe the methodology in steps, its application
is not so simple. That is, many of those steps take place in different environments. For
instance:

• In steps 1 and 2, it is the closest as engineers, have to a brainstorming session, where
it is considered the variables that best describe the process, which of these will yield
better convergence in the process simulator; which of them will be realistic enough
when designing a control system, etc. Then perform a degree of freedom analysis
for both steady state and dynamic state (i.e. the DOF analysis of one seldom is the
same as the other). In addition, there is the performance criteria decision in the
objective function it is going to be optimized.

• In step 3, it is necessary to simulate with a software package, the process to a
minimum satisfaction standard. Or in other words, is this simulation a realistic
enough representation of the process?

• Sometimes, the process simulator (e.g. Aspen Plus, Aspen HYSYS, Unisim, etc.)
optimization routines are not capable of solving the nonlinear problem that has
been defined. So, in step 4, it may be needed to resort an external optimization
package (e.g. IpOpt, GAMS, MATLAB® optimization toolbox, etc). This is another
environment to work with. In other words, an additional “layer” of complexity.

• If it is necessary the usage of an external NLP solver, then one have to go back to
the process simulator and implement the active constraints, as required by the SOC
methodology.

• In step 6, to obtain the differential information required, there are different approaches
in order to do so:

1. Extracting manually from the simulator (i.e. performing a first and second order
numerical differentiation by applying the differentiation steps and collecting
the output from the simulator);
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2. Using another external package to extract the gradient and hessian (i.e. Auto-
matic differentiation packages);

3. Using a surrogate approximation of the process simulation in the optimum
region, and extracting the differential information from this metamodel;

Option 3 was proposed as solution in the work of Alves et al. (2018), and is im-
plemented in Metacontrol. Options 1 and 2 are not implemented due to difficult
nature inherent to them. For example, option 1 is a tedious task, even impossible
depending on the number of variables to apply the differentiation steps required, and
human-error prone since each step applied is done manually. In both options, another
limitation that one faces regards the physical meaning of the variables involved in the
numeric differentiation process. Strictly speaking: the simulation package does not
accept negative values for variables such as flowrates. Compositions are limited to
values between 0 and 1. Temperatures may or not accept negative values depending
on their units (from 0 to infinity for Kelvin, or -273 to infinity in degree Celsius), etc.
Thus, if the numeric differentiation package try to step into outside of these valid
value ranges, the simulation software will simply not converge.

• In Step 6 and 7, one have to use another numeric environment to implement
algorithms and equations from Kariwala and Cao (2009), Alstad, Skogestad, and Hori
(2009) and Alves et al. (2018) in order to perform the calculations necessary to obtain
the controlled variables candidates combinations and analyze the controllability of
the process studied, respectively.

As can be seen, this is a methodology implementation that goes back-and-forth
between several numeric computation (e.g. MATLAB®, Octave, Microsoft Excel, etc.)
and simulation (e.g. Aspen Plus, Aspen HYSYS, Unisim, etc.) environments. Therefore,
Metacontrol was created as a software package that allows all of these steps to be done in
a single environment (or at least, keep the necessity of transition to a minimum) for the
sake of convenience to apply the SOC methodology.

5.1 Metacontrol workflow
The tool has two modes of operation:

1. The user wishes to apply the methodology proposed by Alves et al. (2018) completely,
as seen in Figure 5 represented by the blue dashed arrow and rectangle. That is,
he needs to create and define variables and expressions (1), perform a Design
of Experiments (DOE) of the industrial process (2), build its NLP constraints
and objective function metamodels (3), optimize this NLP metamodel (4). If the
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optimization process is successful, implement its active constraints and obtain the
reduced space model (5), build another metamodel of the objective function and
controlled candidates variables in reduced space, then extract the gradient and
Hessian (6). Finally, apply the SOC methodology described by Alstad, Skogestad,
and Hori (2009) (7-8).

2. The user already knows the process steady-state optimum, and wishes to apply the
methodology partially, see the red dashed arrow in Figure 5. He needs to create the
variables/expressions (1), then he implements the active constraints and generate
the reduced space metamodels (5). Extract the gradients and hessian needed (6),
define the rest of inputs needed to perform the SOC analysis (7) and analyze its
results (8).

The only difference between modes 1 and 2, is that the user, when opting for mode
2, skips steps (2) to (4) in mode 1. Everything else is the same.
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Figure 5 – Flowchart describing how Metacontrol works.
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6 Case studies applied in Metacontrol

In this chapter will be presented three case studies of Self-Optimizing Control that
are applied in the Metacontrol software. Each one of them use different objective function
criteria with varying complexity. They are:

1. A CO2 compression purification unit (CPU). The optimization criteria here is
the performance enhancement of the process through the reduction in the energy
consumption;

2. A hydrocarbon distillation column. The optimization criteria is the minimization of
nominal setpoint deviation;

3. An isomerization process that seeks to convert n-butane into isobutane. The objective
is maximization of profits;

6.1 The CO2 Compression and Purification Unit (CPU)

The first case-study to be used as a test-bed in Metacontrol consists in a CO2

compression and purification unit that uses phase separation method to obtain purified
CO2 from oxy-fuel combustion. This process is one of the several that exist in the industry
that are capable of reducing the greenhouse effect on climate change (JIN; ZHAO; ZHENG,
2015). The process and its simulation are based on the work of Liu et al. (2019). In addition,
their unit is based on the prototype proposed by the International Agency Greenhouse
Gas (IEAGHG) R&D program study (DILLON et al., 2005).

The process is depicted in Figure 6. Flue gas is compressed by a three-stage
after-cooled compressor before being sent to the cold box, where two multi-stream heat
exchangers (E1 and E2) and two separators (F1 and F2) take place. In the base case from
Liu et al. (2019), the flue gas is first cooled to −24.51◦C and sent to to F1, with its bottom
stream being the first product of the process. Afterwards, The top stream from F1 is sent
to the second multi-stream heat-exchanger (E2) being cooled to −54.69◦C before going to
separator F2. The bottom stream from this separator consists in the second product of
the process, and the top stream from F2 is discarded as vent. Both CO2 product streams
and the vent gas are reheated on both multi-stream heat exchangers. The CO2 product
streams are mixed and become ready for storage. The reader can consult Jin, Zhao, and
Zheng (2015) and Liu et al. (2019) for more information about the simulation (i.e.: Raw
flue gas conditions, detailed stream and equipment conditions, etc).
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Figure 6 – CPU process flowsheet
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From Liu et al. (2019), the author of this work have selected the objective function
described in Equation 6.1, that consists in the specific energy consumption, defined as the
ratio of energy used in both compressors (MCC and C) to total CO2 flow rate produced.
Therefore:

J = WMCC +WC

FCO2

(6.1)

The units of specific energy consumption of the objective function are kWh/tCO2.

Regarding the CPU process constraints, from Jin, Zhao, and Zheng (2015), Liu
et al. (2019) and Dillon et al. (2005), the following apply:

• C-1: CO2 recovery rate ≥ 90%

• C-2: CO2 purity on product stream ≥ 96%

• C-3: Temperature of F2 bottom stream > −56.6◦C

C-1 aims to meet the environmental requirements (LIU et al., 2019) and reduce
CO2 atmospheric emissions (TOFTEGAARD et al., 2010; BUHRE et al., 2005). C-2 is a
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result of the demand of CO2 storage and transportation (LIU et al., 2019). In addition,
according to Posch and Haider (2012), the purity addressed in this constraint would
realize acceptable energy consumption. Lastly, C-3 exists to avoid CO2 solidification in
the pipeline, since the value of C-3 corresponds to the CO2 three-phase freezing point
(POSCH; HAIDER, 2012; KOOHESTANIAN et al., 2017).

As stated by Liu et al. (2019), the main disturbances in the CPU process are:

• D-1: Flue gas flow rate

• D-2: CO2 concentration in the flue gas

D-1 and D-2 are a result of the oxy-fuel combustion boiler island (LIU et al., 2019),
given the variation of the boiler operation. Load changes in the boiler island and variations
of the combustion conditions can generate D-1 and D-2, as also stated by Liu et al. (2019).
It is considered a ±5% disturbance amplitude for CO2 feed composition and flue gas flow
rate of the base-case, similarly as Jin, Zhao, and Zheng (2015) and Liu et al. (2019).

The number of degrees of freedom for the CPU process is 4 (JIN; ZHAO; ZHENG,
2015; LIU et al., 2019) for Mode I (Given feed). For the sake of simplicity and without
loss of generality, the same DOFs from Jin, Zhao, and Zheng (2015) were used here:

1. MCC outlet pressure (bar)

2. MCC outlet temperature (◦C)

3. F1 temperature (◦C)

4. F2 temperature (◦C)

Using this information and based on the review of control configurations for CO2

CPU process (LIU et al., 2019), the CV candidates in Table 1 that were considered in this
case study are listed.

Table 1 – CV Candidates for CO2 CPU process.

Variable (alias used in Metacontrol) Description
mccp/mccpout Compressor outlet pressure (bar)
mcct/mcctout Compressor outlet temperature (◦C)
f1t/f1tout F1 temperature (◦C)
f2t/f2tout F2 temperature (◦C)
s8t S8 stream temperature (◦C)
fco2out CO2 product flowrate (t/h)
xco2out CO2 product molar fraction
co2rr CO2 recovery rate
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With 4 degrees of freedom and 8 CV candidates, there are (Equation 6.2)

(
8!
4!

)
= 8!

4!× (8− 4)! = 70 (6.2)

possible control structures for a single measurement policy (excluding the possible
ways of controlling the regulatory layer and the possibility of using linear combinations
of measurements). Therefore, the manual evaluation of all possibilites is impracticable
and also would need the usage of different software environments. This tedious evaluation,
however, can be mitigated by Metacontrol.

With the problem defined and the possible CV candidates being listed, it is possible
to start to use the capabilities of Metacontrol in order to aid the search for a Self-Optimizing
Control structure for this case-study. Initially, it is necessary to seek for the variables of
the process simulator (Aspen Plus) using the COM interface between the Metacontrol
software and the process simulator.

Figures 7 and 8 illustrate the process of selecting a *.bkp file, selecting the relevant
variables, and adding alias to them.

From Figure 7 the user can see that Metacontrol shows on its main screen some
relevant information: Block names, flowsheet operations (i.e.: Optimizations, sensitivities,
calculators), the components selected in the process simulated and the thermodynamic
package used. These are enumerated on “Simulation Info” panel and the name of each
object is present on “Simulation Description” panel.

After selecting the relevant variables (Decision variables and process measurements)
the user can go back to the main screen, where expressions can be created. This functionality
aims to give freedom for the user to build expressions based on variables from the process
simulator, such as: Objective functions, CV candidates or constraints. Figure 9 shows the
specific power consumption, the CO2 recovery rate expressions being built, based on the
auxiliary variables selected on Figure 8.

With the procedure aforementioned being completed, the user can generate the
design of experiments (DOE) in order to build Kriging responses of the objective function,
CV candidates and process constraints. The ranges for each decision variable are taken
from Jin, Zhao, and Zheng (2015) (Table 3 from their paper), and this step is illustrated
in Figures 10 to 12.

Figure 13 shows the sampling process running. After running all cases, the user
can inspect the results of the design of experiments, as can be seen in Figure 14.

With the results of the sampling procedure, the user can go to the “Metamodel”
Panel, and select which variables will have Kriging responses built, the bounds for the
Kriging hyperparameters optimization, and the regression and correlation models to be
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Figure 7 – Metacontrol main screen with CPU process simulation file loaded.

Source: Author.

used. This procedure can be depicted in Figure 15.

The user can also choose which type of validation is going to be performed: Hold-out
or K-fold validation. It is important to point out that this first metamodel generation is
performed only to give a quick view of the initial sampling. In other words, to check if
the initial sampling is acceptable to be refined by the implementation of the algorithm
proposed by Caballero and Grossmann (2008) that is bundled in Metacontrol. In addition,
if the user chooses Hold-out validation, it is possible to view the graphical results (fitness
of training set to the metamodel) of each Kriging interpolator generated, as can be seen
in Figure 16.

In Figure 15, the reader can also inspect under the panel “Validation metrics”,
several metrics are used to evaluate reduced models performance, such as: Mean squared
error (MSE), Root mean squared error (RMSE), Mean absolute error (MAE), R2 linear
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Figure 8 – Loading variables for the CPU from Aspen Plus simulation and adding alias
to them. At the top right corner of this screen, the user is able to select
the option to reveal the GUI from Aspen Plus. This features allows the user
to inspect inside the process simulator interface to remember any stream or
block names. This can be helpful when one is selecting the variables using the
COM technology and there are several unit operations blocks and streams, for
instance. Another feature that was implemented in order to ease the search of
the variables, regards the description of each variable: Hovering the mouse over
a COM variable will show its description, extracted directly from the process
simulator.

Source: Author.

coefficient, Explained variance (EV), the Sample mean and also its standard deviation.

In order to try to improve the initial sampling for optimization purposes, we go
to the “Optimization” tab where the refinement algorithm proposed by Caballero and
Grossmann (2008) is implemented. Figure 17 shows the parameters that can be tuned
in order to attempt to improve the Kriging interpolator using the automated refinement
procedure, with further discussion and details regarding each parameter can be found on
caballero2008 and in the previous work from the author of this dissertation (ALVES
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Figure 9 – Creating expressions for specific power consumption (objective function), CO2
recovery rate and S8 Temperature (constraint functions/CV candidates).

et al., 2018). In addition, NLP solvers parameters can also be changed in this screen.

In Figure 17, the user can see the final result of the refinement algorithm: on the
“Results” panel, the final results for the decision variables, constraints expressions defined
previously and the objective function. In addition, a control panel showing the operations
of contraction and movement of the hyperspace performed by the algorithm (and how
many iterations on each operation) can be inspected. Figure 18 shows the control panel
details of the procedure.

Inspecting Figures 17 and 18, it is clear that the optimal operating point found is

• MCC outlet pressure (bar) = 30.1849

• MCC outlet temperature = 25 ◦C

• F1 temperature = -30 ◦C

• F2 temperature = -55◦C

That indicates three active constraints that have to be controlled. Regarding stream
S8 temperature, CO2 product purity and recovery rate, these were inactive constraints.
Therefore, the reduced space problem has one degree of freedom left for Self-Optimizing
Control.

In order to prove the effectiveness of the proposed software and the procedures
and algorithms used, an optimization using the process simulator (Aspen Plus) SQP
implementation (an optimization block) was performed, and the results can be found
in Tables 2 and 3, compared with the results found by Metacontrol. They identical,
quantitatively and qualitatively (the active constraints found in both approaches). The
constraints in Metacontrol are written internally in the form g(x)≤ 0, and showed in the
GUI in the same way, due to NLP solvers and refinement algorithm syntaxes.

After determining the nominal optimal operating point, the active constraints must
be implemented in the simulation file externally using the process simulator (Using design
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Figure 10 – Metacontrol “Sampling panel”. The user can perform the sampling using the
process simulator or import a .CSV file.

Table 2 – Optimization runs: Aspen Plus vs Metacontrol - Decision variables and objective
function - CPU Process

Objective function J (kWh/tCO2) MCC Pressure (bar) MCC outlet temperature (◦C) F1 temperature (◦C) F2 temperature (◦C)
Aspen Plus 112.3690 30.0316 25 -30 -55
Metacontrol 112.3691 30.1849 25 -30 -55

specifications for instance) and go back to Metacontrol, in order to generate the reduced
space Kriging metamodel, seeking the obtainment of differential data (e.g.: the gradients
Gy,Gd

y, and the hessians Juu and Jud). The reduced space problem can be sampled using
the process simulator linked with Metacontrol directly, or importing a *.csv file. Both
options mentioned are similar to the initial sampling procedure.

Over the tab “Differential data”, the user is capable of checking which variables are
active constraints (either decision variables or nonlinear constraints), inserting the values
for the optimal operating point found on the previous step (refined surrogate optimization),
and the value for the nominal disturbances. If the user sample the reduced space problem
using the *.bkp, he must also input the range for the remaining decision variables to be
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Figure 11 – Metacontrol Sampling assistant. The limits for the decision variables used in
the CPU process are the same from Jin, Zhao, and Zheng (2015) and Liu et al.
(2019)

Table 3 – Optimization runs: Aspen Plus vs Metacontrol - Process constraints - CPU
Process

Stream S8 temperature ◦C CO2 molar fraction CO2 recovery rate
Aspen Plus -55.8201 0.9674 0.9658
Metacontrol -55.4859 0.9666 0.9671

sampled and for the disturbances. The range for the remaining degrees of freedom and for
the disturbances are suggested to be a small percentage of the nominal values (±0.5%,
for instance) in order to train a surrogate model accurate enough at the optimal region,
guaranteeing robust high-order data (gradients and hessians) obtainment, as suggested
previously in Alves et al. (2018).

In the CPU process, the MCC operating pressure, MCC temperature, F1 tempera-
ture and F1 temperature are active constraints as mentioned previously. Therefore, they
should be marked as “active” under the “Variable activity” panel, as shown in Figure 19.

Since in the initial sampling the process simulator was directly linked with Metacon-
trol, in Figure 19 under the “Data source” panel a .*csv file was imported, originated from
a sensitivity analysis run done in a *.bkp file of the reduced space problem for the CPU
process, in order to show this supplementary feature of Metacontrol. This is illustrated in
Figures 20 and 21.
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Figure 12 – Metacontrol Latin Hypercube Sampling settings. 80 samples were generated
and 5 iterations were performed in order to try to maximize the minimum
distance between the points (maxmin criterion). The user can also add the
vertices of the design of experiments.

After importing the design of experiments from the external source (*.csv) and
associating each variable created in Metacontrol with the data (as shown in Figure 21), the
user can go to “Differential data” tab, in order to generate the reduced space metamodel.
Under the panel “Reduced space metamodel training” the button “Open training dialog”
allows the modification of the Kriging parameters, similarly as done previously in the step
of generating the first metamodel to inspect the initial sampling.

The method of high-order data obtainment currently implemented in Metacontrol
is based on the analytical expressions for the gradients and Hessian derived by Søren
Nymand Lophaven, Hans Bruun Nielsen, and Jacob Søndergaard (2002) and Alves et al.
(2018), respectively. In future releases of Metacontrol there will be two more methods of
differentiation as secondary features. These will be based on numeric and automatic differ-
entiation (numdifftools and autograd Python toolboxes, respectively), using the surrogate
model as source of high-order data obtainment. However, it is strongly recommended the
usage of the Kriging predictor analytical expressions to ensure results robustness, as stated
before in Alves et al. (2018), and also stressed previously on this work.

After opening the training dialog (Figure 23) and configuring the reduced metamodel
settings, the user can generate the metamodel, click on “ok”, go back to the main screen
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Figure 13 – Metacontrol Sampling for the CPU process.

and generate the estimation of the gradients and hessians necessary to carry on the
Self-Optimizing Control study. These results are displayed on Figure 24.

In order to prove the effectiveness of the analytical expressions derived by Søren
Nymand Lophaven, Hans Bruun Nielsen, and Jacob Søndergaard (2002) and already used
in Alves et al. (2018), the gradients obtained using surrogate models in Metacontrol were
compared against the ones generated in Aspen Plus (Equation-Oriented sensitivity mode).
The process simulator does not provide the hessian of any function natively, and therefore
Juu and Jud could not be compared. However, the excellent agreement between the values
between the gradients found in both procedures can be considered as a sufficiently robust
result.

Through inspection of Table 4, the reader can see how robust the results of the
gradients obtained by the methodology proposed in the previous work from Alves et al.
(2018) and now are automated in Metacontrol. The matrix mean-squared error in Table 5
also corroborates this affirmation.

After inspecting the gradients and hessians generated, the user can go to the “Self-
Optimizing Control” tab, where the disturbances and measurement error magnitudes will
be inserted. As stated previously in this case study, was considered a magnitude of ±5%
for the disturbances. For the CO2 inlet composition, it was considered the absolute value,
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Figure 14 – Sampling results, where the user can inspect convergence status and the values
of the selected variables for each case.

and for the flue gas flow rate, ±5% of the nominal flow rate. Therefore, in Equation 6.3 :

Wd = diag(0.05, 35.8595) (6.3)

In addition, for the measurement errors, it was considered ±0.5◦C for temperature
measurements, 0.01 for pressure and flow measurements and 0.001 for ratios (CO2 recovery
rate and product purity). These assumptions generated by Equation 6.4:

W y
n = diag(0.001, 0.01, 0.01, 0.5, 0.001) (6.4)

The order for Equations 6.3 and 6.4 it is the same from the column order from
Figure 24. Figure 25 shows the magnitude matrix data being inserted in Metacontrol.

Under the “Subsets sizing options” panel, by default the best control structure for
each subset size is evaluated by Metacontrol, but the user can change how many subsets



6.1. The CO2 Compression and Purification Unit (CPU) 65

Figure 15 – Kriging configuration and validation metrics results.

he wants to evaluate, until the maximum number for each subset size.

After providing all the necessary inputs (magnitude matrices and number of best
sets to be evaluated for each subset size), clicking in “Generate results” will show the
nth best Self-Optimizing Control structures for each subset size, as can be seen for
demonstration purposes in Figures 26 and 27, the results for a single measurement policy,
and for linear combinations using 2 measurements at a time. The user can also inspect
the H matrix (that will be of ones and zeros for single measurements and a full matrix for
linear combinations) and the optimal sensitivity matrix for each subset evaluated.

For instance, considering a single measurement policy for the unconstrained degrees
of freedom, Table 6 depicts the best CV candidates in worst-case loss ascending order. The
best Self-Optimizing Control variable for the considered case consists in the multi-stage
compressor (MCC) outlet pressure. This result can be related to the previous finding Liu
et al. (2019).
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Figure 16 – Fitness for each metamodel.

Table 4 – High-order data obtainment: Aspen Plus vs Metacontrol

Gy Gy
d

Metacontrol


0.0036
2.2406
1.0000
2.7354
−0.0017




−3.0148× 10−10 0.0799

0.8378 146.6549
5.2806× 10−9 2.5904× 10−5

−3.4160× 10−5 0.0244
−1.5455× 10−9 0.0040



Aspen Plus


0.0036
2.2403

1
2.7330
−0.0017




1.3472× 10−7 0.0798

0.8378 146.6124
0 0

3.3797× 10−15 0.0250
1.6912× 10−16 0.0040



Table 5 – Mean-squared error of high-order data obtaiment: Aspen Plus vs Metacontrol -
CPU Process

Gy Gy
d

Mean-squared error 1.1659× 10−6 1.8088× 10−4
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Figure 17 – Refinement algorithm configuration and results screen.

Figure 18 – Refinement algorithm control panel output.
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Figure 19 – “Variable activity” panel, where the user is capable of highlighting which
variables are active constraints and inputting values for them. If an active
constraint is a nonlinear constraint, the user must pair this variable with a
decision variable (MV) to consume a degree of freedom.

Figure 20 – Loading a *.csv file in containing design of experiments data in Metacontrol:
if the user chooses this option, he must provide a file containing all variables
selected from the first step (“Load variables” under “Load simulation” tab).
the convergence flag is used as a header to map the *.csv, and the software
asks the user to select it.
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Figure 21 – Associating each alias created in Metacontrol to each column of the *.csv data.

Figure 22 – “Differential data” input screen: Reduced space model training, Differentiation
method, and gradient/hessian evaluation.

Table 6 – Best Self-Optimizing Control variables found by Metacontrol for a single mea-
surement policy.

CV Candidate Worst-Case Average-Case
alias Loss (kWh/tCO2) Loss (kWh/tCO2)

mccpout 0.0097 0.0011
s8t 0.0125 0.0014

xco2out 0.0458 0.0051
co2rrcv 0.0549 0.0061
fco2out 15.5916 1.7324

Note: Description for the variables aliases present in Table 1.
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Figure 23 – Generating reduced space metamodel for CPU process: to avoid redundancy,
the variables “f1tout”, “f2tout”, and “mcctout” were not chosen in the reduced
space problem since they correspond to the decision variables that were found
as active constraints. In general, if the user decides to remove any variable
previously set in the problem, he must uncheck the undesired variable.
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Figure 24 – Differential data estimated in Metacontrol
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Figure 25 – Input screen in Metacontrol "Self-Optimizing Control " tab - CPU Process
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Figure 26 – Best control structure in worst-case loss ascending order, for subsets of size 1
(single measurement policy)
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Figure 27 – Best control structure in worst-case loss ascending order, for subsets of size 2
(linear combinations of measurements)
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6.2 Indirect composition control of a C3 Splitter column

The second example to be tested in Metacontrol consists is a particular case of
Self-Optimizing Control structure selection: Indirect control. As stated before (HORI;
SKOGESTAD; ALSTAD, 2005), indirect control consists when, for some reason, one
is unable to control directly one or more variables (denominated by Hori, Skogestad,
and Alstad (2005) as “primary” variables), and consequently tries to control a set of
“secondary” variables, that will (hopefully) maintain the “primary” ones at their desired
setpoints. As demonstrated in the past (HORI; SKOGESTAD; ALSTAD, 2005; ALSTAD;
SKOGESTAD; HORI, 2009), the selection of a control structure for indirect control is a
special case of the exact local method derived by Halvorsen et al. (2003) and that had an
explicit solution derived by Alstad, Skogestad, and Hori (2009).

In order to use the exact local method for the special case of indirect control, the
control strucutre designer must only impose a objective function that will minimize the
error between the “primary” variables and their desired setpoints. In fact, this approach
has been successfully done previously (HORI, Eduardo Shigueo; SKOGESTAD, 2008). As
mentioned before, Metacontrol uses the exact local method with explicit solution from
Alstad, Skogestad, and Hori (2009) to report to the user the best sets of controlled variables
with Self-Optimizing Control properties.

A didactic case of indirect control that happens on the industry consists in com-
position control of distillation columns. Due to unreliability and slow dynamics of online
analyzers, the direct control of compositions becomes infeasible, or at least, very difficult
to be done. On the other hand, the market demand and/or environmental legislation will,
very often, impose purity levels to key components at the distillation columns. Therefore,
there is a conflict between process instrumentation and market/environmental restrictions.

The case used as the second test-bed in Metacontrol derives directly from a previous
work of the author (ALVES et al., 2018), which is a propylene-propane splitter, being
depicted in Figure 28. The previous publication from Alves et al. (2018) showed that,
from an economic plantwide control perspective, the best set of controlled variables to be
chosen would be the composition of propene at the top stream and the composition of
propene lost at the bottoms stream, as can be seen in Equation 6.5.

c =
 xpropenetop

xpropenebottom

 (6.5)

Given the fact that the cited control structure uses two compositions measurements
that are difficult to be directly controlled, Metacontrol will be used to find a Self-Optimizing
Control structure for this problem. The objective function in question will be the relative
steady-state deviation (HORI, Eduardo Shigueo; SKOGESTAD, 2008) from the nominal
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Figure 28 – C3 Splitter Column Process flowsheet
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optimal setpoint found by Alves et al. (2018), depicted in Equation 6.6.

∆x2 =
(
xpropene

top − xpropene
setpoint

xpropene
setpoint

)2

+
(
xpropene

bottom − x
propene
setpoint

xpropene
setpoint

)2

(6.6)

The economically optimal values for the setpoints at the top and bottom streams
of the C3 splitter are 0.995 (active constraint for economic plantwide control problem) and
0.05, respectively. For the latter, the setpoint was rounded to 0.05. The constraint that
exists in this problem regards the reboiler duty, unable to surpass the limit of 80 GJ/h.
The economically optimal values for the compositions and the reboiler duty constraint are
taken from Alves et al. (2018).

• C-1: Reboiler duty ≤ 80GJ/h

The main process disturbances considered are the same from Alves et al. (2018):

• D-1: Propylene flow rate

• D-2: Propane flow rate

• D-3: Feed vapor fraction φ

The number of degrees of freedom for this process is two (ALVES et al., 2018;
SKOGESTAD, 2000) and without loss of generality, they are the same from Alves et al.
(2018):
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1. Reflux ratio

2. Distillate to feed ratio

The distillation column studied has 146 stages. As Alves et al. (2018) did, to test
the Self-Optimizing Control theory, some temperature measurements will be selected by
the slope criterion (LUYBEN, 2006) as promising CV candidates and will also choose
(based on the same criterion) poor candidates. To illustrate, the temperature profile for the
C3 splitter is shown in Figure 29. In addition, several flows and flow ratios were considered
as CV candidates to be tested.

Figure 29 – C3 Splitter Column - Temperature profile.
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There are 20 CV candidates and 2 degrees of freedom for this case study. For a single
measurement policy, for illustration purposes, there are 190 possible control structures
(Equation 6.7), being clear the impracticability of evaluating all of these control structures
manually. As stated before in the previous example, the problem becomes even larger if
one begins to consider linear combinations as CV candidates.

(
20!
2!

)
= 20!

2!× (20− 2)! = 190 (6.7)

With all preliminary information emphasized so far, it is possible to use the first tab
of Metacontrol. Similarly as the first case study, the objective function, process constraints
and CV candidates can be created at the “Function definitions” panel, as can be seen in
Figure 30. Figure 31 shows the variables being added to the *.mtc file, in order to be used
for the study.
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Table 7 – CV Candidates for C3 Splitter composition indirect control.

Variable (alias used in Metacontrol) Description
bf Bottoms to feed ratio
vf Boilup to feed ratio
lf Reflux to feed ratio

rrcv Reflux ratio
dfcv Distillate to feed ratio
l Reflux rate (kmol/h)
v Boilup rate (kmol/h)
t8 Stage 8 temperature (◦C)
t9 Stage 9 temperature (◦C)
t10 Stage 10 temperature (◦C)
t11 Stage 11 temperature (◦C)
t12 Stage 12 temperature (◦C)
t129 Stage 129 temperature (◦C)
t130 Stage 130 temperature (◦C)
t131 Stage 131 temperature (◦C)
t132 Stage 132 temperature (◦C)
t133 Stage 133 temperature (◦C)
t134 Stage 134 temperature (◦C)
t135 Stage 135 temperature (◦C)
t136 Stage 136 temperature (◦C)

For this case study, only 60 initial points were sampled. These points were refined
by the algorithm from Caballero and Grossmann (2008) implemented in Metacontrol in
order to find the optimal nominal operating point. Using a K-fold validation metric, one
of the features that are implemented in Metacontrol, it was found that using the quadratic
regression polynomial yielded the most desirable metrics, as can be seen in Figures 32
and 34. This is a valuable feature: it systematically informs, for the problem being studied,
which regression model will yield the most accurate results.

The optimization results found are described in Figure 35. There are no active
constraints for this problem, and therefore there are 2 unconstrained degrees of freedom
left for self-optimizing control purposes. The values for the decision variables are virtually
the same ones found by Alves et al. (2018). This was expected since the direct control
strucutre proposed came from an economic plantwide structure proposal (controlling
propene distillate and bottoms compositions). The difference between the optimal decision
variables values found previously by Alves et al. (2018) and now, can be associated to the
rounded setpoint of the composition of propene at the bottom stream.

An optimization was performed using the process simulator internal optimizer, to
make the reader able to compare with the optimization using the surrogate model with
the refinement algorithm from Caballero and Grossmann (2008). As in the first case study,
the results are nearly identical (Table 8).
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Figure 30 – C3 Splitter Column Process - loading simulation. Process constraint “c2” is
multiplied by 4.184 to convert simulation reboiler duty from GCal/h to GJ/h.

Table 8 – Optimization runs: Aspen Plus vs Metacontrol - Decision variables and objective
function - C3 Splitter Indirect control

Objective function “indirect” Reflux Ratio Distillate to feed ratio
Aspen Plus 7.47× 10−15 13.5246 0.6349
Metacontrol 5.92× 10−10 13.5159 0.6349

As stated before, 20 CV candidates were chosen to be tested by Metacontrol.
Differently from the first case study, where it was used the *.csv import feature (merely to
show the capability of the software), on this example the reduced space problem sampling
was done internally in Metacontrol. Since there are no active constraints, the same *.bkp
file can be used (i.e. It is not necessary to implement any design specifications to consume
the degrees of freedom for active constraints).

Figure 36 shows the interface built to select the reduced space problem simulation
file, where the user can simply point to the *.bkp file using the GUI and the sampling
assistant will use the limits that were imposed under the “Range of disturbances” panel in
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Figure 31 – C3 Splitter Column Process - loading variables from Aspen Plus.

order to generate the data for the reduced space problem. The latter can be inspected in
Figure 38.

Using the sampled data from the simulation file, the user can go to “Differential
Data” tab and generate the gradients and the hessians, exactly as done at the first case
study. Figure 39 shows the gradients Gy, Gy

d and the hessians Juu, Jud calculated using
Metacontrol.

Similarly to the first case study, the gradients obtained by Metacontrol were
compared against the ones generated by the process simulator. Not surprisingly, they
were virtually identical, which is an evidence of the robustness of the previously proposed
methodology Alves et al. (2018) that is embedded in the Metacontrol software.
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Figure 32 – K-fold validation metric for constant (poly0) regression model.
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Figure 33 – K-fold validation metric for linear (poly1) regression model.



6.2. Indirect composition control of a C3 Splitter column 83

Figure 34 – K-fold validation metric for quadratic (poly2) regression model.
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Figure 35 – Indirect control index objective function being minimized using surrogate
metamodel.
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Figure 36 – Reduced space problem - sampling using a .*bkp file.
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Figure 37 – Reduced space problem - pointing the .*bkp file location.
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Figure 38 – Reduced space problem - Sampling assistant: Identical to the Sampling As-
sistant that exists under the “Sampling” tab, in order to keep consistency
of interface across Metacontrol. Number 1 indicates the button to open the
Assistant, 2 consists in the main screen, 3 is the button that opens the settings
of the sampling technique that will generate the input data; 4 generates the
data. In addition, number 5 depicts the control of the sampling procedure:
Sample data, cancel, close screen (“Done” button). Lastly, the user can abort
the sampling at any time using the “Abort” button (number 6) or export the
design of experiments as a *.csv (number 7).
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Figure 39 – “Differential Data” tab - C3 Splitter indirect control.
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Table 9 – High-order data obtainment: Aspen Plus vs Meta-
control - C3 Splitter column case study.

Gy Gy
d

M
et
ac
on

tr
ol



1.0000 −1.6084× 10−6

1.5380× 10−10 1.0000
266.6720 5676.6833
270.4588 6086.9436
−0.0177 0.2700
−0.0189 0.2894
−0.0201 0.3094
−0.0213 0.3299
−0.0226 0.3511
0.0527 74.2428
0.0613 76.6816
0.0691 78.3864
0.0759 79.2567
0.0813 79.2233
0.0853 78.2564
0.0877 76.3710
0.0891 73.6324

−1.5380× 10−10 −1.0000
0.6349 13.5159
0.6439 14.4928





−3.2986× 10−9 1.2500× 10−9 −9.5679× 10−8

−6.1220× 10−11 4.5431× 10−12 9.7279× 10−10

8.5817 8.5817 −2.6062× 10−5

9.1536 9.3702 −406.2089
0.0007 −0.0004 0.0038
0.0007 −0.0004 0.0041
0.0008 −0.0004 0.0044
0.0008 −0.0004 0.0047
0.0009 −0.0005 0.0050
0.1257 −0.0678 0.0586
0.1291 −0.0697 0.0507
0.1314 −0.0709 0.0429
0.1323 −0.0713 0.0351
0.1317 −0.0710 0.0276
0.1297 −0.0699 0.0205
0.1261 −0.0680 0.0139
0.1214 −0.0654 0.0104

6.1220× 10−11 −4.5431× 10−12 −9.7279× 10−10

−5.0048× 10−10 −1.1641× 10−9 −7.1020× 10−8

−0.0003 0.0002 −0.9672
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Table 9 – (continued)

Gy Gy
d

A
sp
en

Pl
us



1 0
8.2510× 10−19 1

266.6720 5676.6840
270.4590 6086.9530
−0.0177 0.2689
−0.0188 0.2882
−0.0200 0.3081
−0.0213 0.3286
−0.0225 0.3497
0.0561 74.1792
0.0644 76.6318
0.0718 78.3508
0.0781 79.2344
0.0831 79.2129
0.0867 78.2563
0.0887 76.3785
0.0891 73.6377

−4.7860× 10−17 −1
0.6349 13.5159
0.6439 14.4927





0 0 0
1.5116× 10−7 1.5116× 10−7 0

8.5817 8.5817 0
9.1536 9.3701 −406.2095
0.0007 −0.0004 0.0038
0.0007 −0.0004 0.0041
0.0008 −0.0004 0.0044
0.0008 −0.0004 0.0047
0.0009 −0.0005 0.0050
0.1261 −0.0679 0.0650
0.1295 −0.0697 0.0567
0.1318 −0.0709 0.0483
0.1326 −0.0714 0.0398
0.1320 −0.0711 0.0316
0.1299 −0.0700 0.0238
0.1264 −0.0680 0.0166
0.1214 −0.0654 0.0100

8.6912× 10−8 8.6912× 10−8 −4.3560× 10−17

2.0431× 10−6 2.0431× 10−6 0
−0.0003 0.0002 −0.9672



Table 10 – Mean-squared error of high-order data obtainment: Aspen Plus vs Metacontrol
- C3 Splitter column

Gy Gy
d

Mean-squared error 1.6738× 10−5 3.1706× 10−8

From Table 9 it is shown that the gradients generated using the metamodels built by
Metacontrol are extremely close to the evaluation of the gradients directly using the nonlinear
model from the process simulator.

Since all required high-order data it is available, the user can go to the last step of
the top-down procedure, which consists in the loss evaluation for the control structures with
Self-Optimizing Control properties. The last required information consists of the disturbances
and measurement error matrices. Similarly as Alves et al. (2018), 10% of the nominal feed
component flow rates were considered as the expect magnitudes, and for the feed vapor fraction
it was also considered a 10% disturbance magnitude (Equation 6.8). Regarding the measurement
errors, for flows and flow ratios, it was considered a 0.001 magnitude representing the accuracy
of flow meters. For temperature measurements, 0.5◦C, a value that can realistically represent
thermocouples and RTD sensors accuracies (both are typically used in the industry, specially
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distillation), was used. The order of Equations 6.8 and 6.9 are the same from the Metacontrol
user interface: An alphabetical order of the aliases given at the first tab. The insertion of all
information regarding the magnitude matrices can be seen in Figure 40.

Wd = diag(14.7, 27.3, 0.1) (6.8)

W y
n = diag(0.001, 0.001, 0.001, 0.001, 0.001, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.001, 0.001)
(6.9)

Figure 40 – Input screen in Metacontrol “Self-Optimizing Control” tab - C3 Splitter
column: Here, all 190 possible control structures for a single measurement
policy were considered to be evaluated by Metacontrol. For linear combinations
of measurements as CV candidates, the 50 best ones of each possible subset size
were evaluated, when possible. For subset sizes of 19 and 20, all combinations
were considered (20 and 1, respectively).

Clicking on “Generate results” button, the user can inspect the number of best control
structures that he entered in the previous screen. Analyzing Figure 41, one can easily see that
controlling sensitive temperatures associated together with flows and flow ratios generates a
control strucutre capable of indirect controlling both distillate and bottom streams compositions
with a small incurred loss. On the other hand, stages with small temperatures deviation between
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them gave unacceptable losses, similarly as found by different authors Alves et al. (2018) and
Eduardo S. Hori and Skogestad (2007), for instance. The latter result can be found in Figure 42.
More generally, this result is also a confirmation that the slope criterion from Luyben (2006) it is
a good starting assumption when one it is deciding which variable should be controlled. The main
difference when one is using Self-Optimizing Control is that the mathematical formulation derived
by the author of the technology already translated desired robust control and near-optimal
operation from a heuristic and qualitative perspective to a mathematical one, making the whole
procedure systematic.

Figure 41 – Best control structures for single measurement policy: Stages with significant
temperature deviation between them associated with flow and flow ratios -
namely boilup, reflux, boilup to feed ratio and reflux to feed ratio.

Figure 42 – Worst control structures for single measurement policy using exclusively
temperature measurements: Stages with small temperature deviation between
them. One can easily note that the inspection of the best and worst control
structures is simple in Metacontrol: The user is capable of sorting, using the
graphical user interface built, the control structures in ascending or descending
order of worst-case loss, average-case loss and conditional number.

The analysis of the incurred loss when one is using linear combinations of measurements
as CV candidates can be inspected in Figures 43 and 45, and the usage of all measurements is
depicted in Figure 46. As stated by Kariwala, Cao, and Janardhanan (2008), the usage of all
available measurements it is often not necessary. Actually, a good tradeoff between the number
of measurements used and the value of the loss generally exists in most cases. For instance,
the worst-case loss when one uses all 20 measurements is approximately 0.0126 (Figure 46),
while using a simpler combination of 9 measurements gives a worst-case loss of 0.0141, only
approximately 11.9% higher, but with less measurements forming the linear combination.
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Figure 43 – Best control structures using linear combinations of measurements as CV
candidates - Subset of size 3.

Figure 44 – Best control structures using linear combinations of measurements as CV
candidates - Subset of size 6.

Figure 45 – Best control structures using linear combinations of measurements as CV
candidates - Subset of size 9.

Figure 46 – Best control structures using linear combinations of measurements as CV
candidates - All available measurements.
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6.3 The C4 Isomerization Process

The last case-study presented consists in a C4 isomerization process, that aims
to convert n-butane(n − C4) into isobutane (i − C4). The latter can be used as an
octane-enhancing gasoline blending agent, and also it is an precursor for isobutyl alcohol
production Jagtap and Kaistha (2012). The process described in this case-study it is
based on the work of (JAGTAP; KAISTHA, 2012): Base operating conditions and optimal
operating ones. The idea of this case study is to depict to reader the second mode of
operation that can be used in Metacontrol, described in Section 5.1 when the optimal
operating point it is known. This was implemented within Metacontrol because there is a
plethora of papers and discussions over the several years that addresses the optimization
of several processes ((JAGTAP; KAISTHA, 2012; JAGTAP; PATHAK; KAISTHA, 2013;
ARAÚJO; GOVATSMARK; SKOGESTAD, 2007; ARAÚJO; SKOGESTAD, 2008; GERA
et al., 2013; LIU et al., 2019; SKOGESTAD, 2004), just to name a few), and when one is
dealing with economic plantwide control specially, there are several results that can be
anticipated regarding active constraints. For a deeper understanding, the reader should
refer to Chapter 7, Section 7.2.

Thus, it is understood that there is a relevant number of experienced researchers
that have interest in using the the local methods derived by Halvorsen et al. (2003) and
Alstad, Skogestad, and Hori (2009) in order to find self-optimizing variables (or linear
combinations of measurements), but already know constraints that must be controlled
on their particular applications, specially when this task can be done in a comprehensive
software environment, which is the case for Metacontrol. In such cases, there is no need
to used mode 1 from Metacontrol, and the user can simply build a metamodel of the
reduced-space problem, merely providing the simulation file of the process with the active
constraints already implemented, and sample the process using the unconstrained degrees
of freedom, in order to generate the necessary high-order data, to finally obtain the most
promising CV candidates.

The process flowsheet can be found on figure 47. The process was already optimized
by Jagtap and Kaistha (2012) as stated before. Therefore, it was used the previously found
optimal point from the aforementioned work, and it is described in Table 11. For this
process, Jagtap and Kaistha (2012) kept the composition of n-butane on the bottoms of
the purge column constant, and the other variables that are fixed were active constraints
of the optimization problem: Either anticipated or calculated, except regarding the cooler
temperature, that was alleged to have little impact on the objective function, and it was
kept constant. Therefore, the aforementioned fixed composition will be considered as an
unconstrained degree of freedom, differently from Jagtap and Kaistha (2012), and the
reason is to evaluate if there is another variable that is easier to control than a composition
that can be used in the control structure.
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Figure 47 – C4 Isomerization process flowsheet.
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In Figure 48, it can be seen that the only expression built for this problem was the
economic objective function, due to the fact that the problem is already unconstrained
(the active constraints are already known). Similarly to the first and second case studies,
the user must identify the process disturbances, CV candidates and degrees of freedom
(Figure 49).

For the expected disturbances, the values come from Jagtap and Kaistha (2012),
and disturbances for the amounts of isobutane and n-butane in the feed were considered,
with a range of 10% of the nominal values. However, instead of considering the compositions,
the values of the individual component flow rates were used in the design of experiments.
Regarding CV candidates, sensitive temperatures at the optimal operating point were
inspected for both columns, and the most sensitive ones were considered as CV candidates.
The full list of CV candidates can be seen in Table 12.

50 points were sampled with an amplitude of ±0.5% around the optimal point
(Figure 50), and the gradients and hessians could be extracted (Figure 51). Lastly, Similarly
as the previous cases, the implementation error for temperatures was considered as 0.5◦C,
10−3 for flow rates and 10−6 for compositions. All the aforementioned data was inserted
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Table 11 – C4 Isomerization process optimization summary.

Objective Function: Profit [$/h]
J = −9.83×Qfurnace − 4.83× (Qreboiler

DIB−C +Qreboiler
PURGE−C)

−0.16× (Qcondenser
DIB−C +Qcondenser

PURGE−C)
−32.5× FC4 + 42× Fi−C4 + 22× Fi−C5

Process constraints
Treactor = 200◦C (active) 0 ≤ Qfurnace ≤ 1.3 (base-case)
0 ≤ V1 ≤ 1.3 (base-case) Preactor = 45 bar (active)
0 ≤ V2 ≤ 1.5 (base-case)
Tcooler = 53◦C (fixed)
Unconstrained degrees of freedom
xB1
i−C4 = 0.0565 xD2

i−C5 = 0.02
xB2
n−C4 = 0.01

Figure 48 – C4 Isomerization process - loading simulation. The cooling water price is
positive due to signal convention inside the process simulator - heat removed
from the system has a negative sign.

inside Metacontrol, as can be seen in Figure 52.

For the sake of brevity only the single measurement policy was considered in this
analysis. Figure 53 shows that, not surprisingly, the control of sensitive temperatures and
the composition of the pollutant (in this case, i− C5), yielded the lowest losses. However,
keeping temperatures and flow rates with constant setpoints instead of using compositions
are also promising control structures, as can be seen in Figure 54
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Figure 49 – C4 Isomerization process - loading variables.

Table 12 – CV Candidates for C4 Isomerization process.

Variable (alias used in Metacontrol) Description
c1_t“x’ 1st column stage X temperature (stages 21-33) (◦C)
c2_t“x’ 2nd column stage X temperature (stages 14-20) (◦C)
x_ic4_b1 1st column i− C4 bottoms composition
x_ic5_d2 2nd column i− C5 distillate composition
x_nc4_b2 2nd column n− C4 bottoms composition
c1_v 1st column boilup rate (kmol/h)
c2_v 2st column boilup rate (kmol/h)
c1_l 1st column reflux rate (kmol/h)
c1_l 2nd column reflux rate (kmol/h)
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Figure 50 – C4 Isomerization process - loading variables.

Figure 51 – C4 Isomerization process - High-order data obtainment.
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Figure 52 – C4 Isomerization process - Self-Optimizing Control input.

Figure 53 – C4 Isomerization process - Single measurements policy: Best CV candidates.

Figure 54 – C4 Isomerization process - Single measurements policy: Best CV candidates
not using compositions.
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7 Metacontrol practice and recommenda-
tions

In this chapter will be done a thorough discussion of usage aspects of Metacontrol,
recommendations and good-practices when using the proposed software. The main idea is
to pass to the reader a concise set of recommendations and the justification for these. The
covered aspects will be mainly:

1. The process simulator sampling general good practice: Towards maximizing cases
convergence while keeping precision;

2. The initial sample: Dimensionality and the choice of the degrees of freedom towards
the optimization feasible region;

3. The adaptive sampling optimization algorithm parameters;

4. The reduced-space problem sample: Dimensionality and the effect of the Søren
Nymand Lophaven, Hans Bruun Nielsen, and Jacob Søndergaard (2002) hyperpa-
rameters objective function in gradient/hessian evaluation.

7.1 The process simulator sampling general good practice: Towards
maximizing cases’ convergence while keeping precision
When one is using a modular flowsheet process simulator, such as Aspen Plus,

problems will eventually arise based on model complexity and the necessity of realistically
representing a process becomes of utmost importance. Unit operations such as distillation
and chemical reactors are sources of numerical noise, result of termination criteria in the
algorithms that solve these unit operations blocks, or even rounding numbers, as discussed
by Caballero and Grossmann (2008). With this problem, some workarounds are suggested
in order to try to reduce the number of unconverged cases and to enhance precision. The
problem gets even more complicated when recycle streams are present in the process,
acting as noise-amplifiers (QUIRANTE; CABALLERO, 2016). With the aforementioned
problems being stated, some recommendations that worked well based on the study of
previous publications are:

1. Tighten as much as possible the following convergences’ tolerances: tear stream-
related, Inside/Out algorithm for distillation blocks-related, and chemical reactors’
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convergence related. Mixers, pumps and heat-exchangers were previously shown to
not introduce - or introduce irrelevant - noise (QUIRANTE; CABALLERO, 2016).

2. AspenTech (2017) recommends that when a tear streams/recycle streams are present
in the flowsheet interacting with distillation column blocks, the convergence tolerance
of the former should be at least a order of magnitude lower (tighter) than the latter.
This will avoid the numerical noise from the distillation block to impede convergence.

3. Reconcile the tear streams. When these streams are reconciled, there are input
specifications inside those that will aid the convergence. In fact, the number of cases
converged increased when the author of this work reconciled the flowsheet with a
feasible operating point. The procedure to reconcile the tear streams can be found
in AspenTech (2017).

7.2 The initial sample: Dimensionality and the choice of the de-
grees of freedom towards the optimization feasible region
In order to successfully obtain a nominally optimal operating point, one must ensure

that the initial sample provided to the algorithm proposed by Caballero and Grossmann
(2008) it is capable of representing the basic trends of the objective function and the
nonlinear constraints created by the user. However, the so called “curse of Dimensionality”
Forrester, Sobester, and Keane (2008) still looms over big-data and machine-learning fields
of study. The dimensionality can be reduced using engineering common sense, as different
authors did in the past for instance (ARAÚJO; GOVATSMARK; SKOGESTAD, 2007;
ARAÚJO; SKOGESTAD, 2008; GERA et al., 2013).

The idea is to keep constant the degrees of freedom that have little or no effect on
the objective function, and, instead, use only the degrees of freedom that are “dominant”
in the process. Another way of reducing the number of degrees of freedom is to anticipate
results that are expected to be active constraints, specially when one is dealing with
economic Self-Optimizing Control. Strictly speaking: one can expect active constraints
in liquid-phase reactor’s maximum holdups and temperatures, when the kinetics are
simple; maximum operating pressure for gas-phase reactors, minimum acceptable purity
for valuable products (avoiding product “giveaway” (JACOBSEN; SKOGESTAD, 2011))
and maximum impurity levels in contaminants restrictions all expected to occur, for
instance. These results were repeatedly found over several years of Self-Optimizing Control
studies, and were synthesized in the work of Minasidis, Skogestad, and Kaistha (2015).

Regarding the number of points in the initial sample, this problem it is a heuristic
one. If the number of points is too low, the prediction capability of the metamodel decreases,
and the optimal solution found before the contraction steps could be far from the actual
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solution, and several movement steps would be necessary, consuming time (CABALLERO;
GROSSMANN, 2008). In addition, the number of points as discussed by Caballero and
Grossmann (2008) is case-dependent: For instance, given a function with a sharp peak, it
will require a large number of points around it. However, using an excessively amount of
points can be time consuming (if each model evaluation takes considerable time and due
to matrix inversion operations performed by the pydace toolbox) or even worse, starting
ill-conditioning the correlation matrix R, if the large amount of points are not separated
enough (new points introduced can be clustered and making R ill-conditioned). This
can also jeopardize the Kriging metamodel construction and consequently, its prediction
capability.

In order to balance accuracy and number of points, the author of this work use
as a starting point the heuristic proposed by (CABALLERO; GROSSMANN, 2008):
around 30-50 points for two or three variables, around 70-80 for four/five variables, and
increasing by 10 points for each additional independent variable. The work of Caballero
and Grossmann (2008) uses the maximum practical limit of 100 points. However, some
cases might need more points than this limit, and the reader should not feel inhibited of
trespassing this limit. Nevertheless, he must be careful with the excess of points, due to
the reasons aforementioned.

Lastly, regarding the degrees of freedom chosen to perform the design of experiments,
it has been shown by previous authors Hori, Skogestad, and Alstad (2005) and Kariwala,
Cao, and Janardhanan (2008) that any variable can be chosen as a degree of freedom,
since the problem is evaluated in steady-state, there is no loss of generality. Therefore,
one can try to convert the nonlinear constraints, for instance, to decision variables (box
constraints). This will enforce that all the sampled (and converged) cases, to be inside the
feasible region of the optimization problem. To use design specifications/constraints as
decision variables is not a new approach and it has been done in the past Gera et al. (2013)
and Jagtap, Pathak, and Kaistha (2013) when the cited authors were using a NLP solver
coupled with the process simulator, trying to ensure robust convergence of the optimization
problem. As an example, if one chooses to sample the purity of a valuable product from a
distillation column instead of a reflux rate, he not only knows automatically the bounds of
that variable xmin ≤ x ≤ 1, but all of the sampled cases would be within the optimization
problem feasible region.

7.3 The adaptive sampling optimization algorithm parameters

The contraction factors (namely first and second), refinement, termination and
maximum contraction tolerances can be tuned in order to achieve a quicker optimization
convergence. As discussed by Caballero and Grossmann (2008), using a large value for the
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first contraction factor might result in a increased amount of hypercube movements, even
though the final result will be the same. As a general setup, the parameters values are 0.6
and 0.4 for first and second factors, respectively.

The termination parameter value, as a rule of thumb, is set to be at least a order
of magnitude higher than the tightest convergence parameter set in the process simulator,
so that the optimization procedure does not adjust the numerical noise introduced by
the simulation software. Then the refinement parameter is set to be at least one order of
magnitude higher than the termination value.

However, care must be taken when specifying the maximum contraction factor,
since this parameter tells the algorithm the minimum hypercube size to contract. This a
safeguard parameter to prevent the introduction of ill-conditioning in the Kriging input
matrix. Consequently, this parameter cannot be higher than the refinement value.

7.4 The reduced-space problem sample: Dimensionality and the ef-
fect of the Kriging hyperparameters objective function in gra-
dient/hessian evaluation.
When one is obtaining high-order data using kriging metamodels, he must be aware

of the value of the ψ objective function that is minimized using the hyperparameters
as degrees of freedom (Equation 3.9). It has been found that convergence values that
are acceptable for general prediction purposes (i.e.: 10−3 to 10−4) are not suitable to
predict the gradients and hessians necessary to the SOC study. Regarding the hessians
(
(
∂2J
∂u∂d

)
,
(
∂2J
∂u∂u

)
), they are even more sensitive to the hyperparameters estimation (an

expected result, due to the fact that they are second derivatives). It was found that a
good value for the ψ function that was capable of generating metamodels that are capable
of predicting the gradients and hessians with precision, would be around 10−5 (at least).
This variable can be inspected within Metacontrol, under the panel “Validation metrics”,
for the reduced-space metamodel, as can be seen in Figure 55. Its value can be used as
a metric of how precise the gradient and hessian evaluation will be. As showed in the
previous examples when for illustration purposes the original gradient was evaluated, the
agreement between the metamodel-based gradient and the original one is excellent.

Figure 55 – ψ function value - named “perf” within Metacontrol.
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8 Conclusion

The software developed(Metacontrol) aims to become a tool that enables an easy
deployment of the methodology for Self-Optimizing Control structure selection through the
use of surrogate models. The dissertation explains the complete workflow of the technology
implemented in the software. Also, the functionalities and capability of Metacontrol were
demonstrated through 3 case studies, showing how the tool can be used for performance
enhancement in the first case (reduction in the energy consumption in a CO2 compression
process), indirect control in the second case (minimization of nominal setpoint deviation
of a hydrocarbon separation process) and economic plantwide control in the third case.

In addition, a discussion was done of good practices on how to set the simulations,
how to specify parameters in a surrogate optimization and what to expect of metrics used
to estimate gradients and Hessian.

All the data, example files and the Metacontrol source code presented in this work
can be found at https://github.com/feslima/metacontrol. The tool acts a resource
to the scientific community to implement, analyse or improve current control strategies of
industrial processes.

Therefore, the author invite the readers to test and give feedback on the tool and
methodology.

https://github.com/feslima/metacontrol
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