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Resumo
A tecnologia de controle auto-otimizante (Self-optimizing control) é um campo de estudo
bem-conhecido da grande área de seleção de estruturas de controle, tendo uma robusta
fundamentação matemática. Com o auxílio de simuladores de processo comerciais e pacotes
numéricos, a modelagem de processos tornou-se uma tarefa mais fácil. Entretanto, abordar
sistemas complexos ainda é uma tarefa tediosa, ou até mesmo impraticável, mesmo
com as ferramentas inovadoras supracitadas. Modelos substitutos, também chamados
metamodelos, podem ser usados para substituir parcial ou totalmente os modelos originais,
para fins de predição e otimização, reduzindo a complexidade da avaliação de processos
de larga escala e altamente não-lineares. Este trabalho tem como objetivo a aplicação
de técnicas recentes de control auto-otimzante à superficies de resposta (metamodelos)
utilizando o kriging como técnica de contrução dos metamodelos. Um procedimento para
aplicação de controle auto-otimizante à modelos substituos é descrito em detalhes, junto
com como a otimização pode ser efetuada. Estudos de caso conhecidos da literatura tiveram
metamodelos construídos e estes foram analisados para gerar, utilizando as técnicas citadas,
estruturas de controle ótimas que minimizam a pior-perda, e os mesmos resultados foram
encontrados se comparados com a implementação utilizando os modelos originais de autores
anteriores. Os resultados indicam a eficácia dos modelos substitutos quando aplicados ao
design de estruturas de controle auto-otimizantes, simplificando toda a metodologia.

Palavras-chave: Controle auto-otimizante. Kriging. Modelos substitutos. Método exato
local. Método do espaço nulo.





Abstract
Self-optimizing control technologies are a well-known study field of control structure
design, having a robust mathematical background. With the aid of commercial process
simulators and numerical packages, process modelling became an easier task. However,
dealing with extremely large and complex systems still is a tedious task, and sometimes not
feasible, even with these innovative tools. Surrogate models, also called metamodels, can
be used to substitute partially or totally the original mathematical models for prediction
and optimization purposes, reducing the complexity of evaluating large-scale and highly
non-linear processes. This work aims at applying recent self-optimizing control techniques
to surface responses of processes using kriging method as reduced model builder. A
procedure to apply Self-Optimizing control to surrogate responses was described in detail,
together with how the optimization can be done. Well-known case studies had their surface
responses successfully built and analyzed to generate using the techniques cited, the
optimal selection of controlled variables that minimizes the worst-case loss, and the same
results were found when compared with the implementation in the original models from
previous authors. The results indicate the effectiveness of the reduced models when applied
to design self-optimizing control structures, simplifying the task.

Keywords: Self-optimizing control. Kriging. Surrogate modelling. Exact local method.
Null space method.
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1 Introduction

One of most challenging activities for process engineers in an industrial environment
is to operate processes optimally (or as near as possible to optimality) from an economical
point of view, ensuring compliance with safety and environmental regulations. As a matter
of fact, many methods in process control area claim to ensure optimal operation, such as
Real Time Optimization (RTO) based-methods for instance. However, these methods fail
in having a practical implementation, by becoming too complex to be applied in real-life
systems. Differently from RTO-based approaches, Self-Optimizing control considers a
constant setpoint policy. As result of this, there is an intrinsic (positive) loss that must be
acceptable to the designer of the control structure and plant operators. Thus, a trade-off
relationship between the loss and simpler implementation can be found. The advantage of
using Self-Optimizing control relies on the lack of necessity in reoptimizing the process
every time that there is a disturbance in the system and the technology guarantees that
the best set of controlled variables is chosen among all possible, minimizing the loss in
all disturbance region. However, the loss is not an exclusive result of the disturbances,
but also due to implementation errors in the control structure and measurements errors.
Therefore, the best candidates set should also be chosen considering these.

Several contributions over the years were made to the technology, and the very
first ideas regarding Self-Optimizing control must be credited to Morari, Arkun, and
Stephanopoulos (1980), who wrote:

“in attempting to synthesize a feedback optimizing control structure, our main
objective is to translate the economic objectives into process control objectives. In other
words, we want to find a function c of the process variables which when held
constant, leads automatically to the optimal adjustments of the manipulated
variables, and with it, the optimal operating conditions. [. . .]”

From this idea, Skogestad (2000) developed a systematical procedure to find the
best controlled variables for Self-Optimizing control, evaluating the loss directly from the
model of the process, denominated by Umar et al. (2012) as a “brute-force” approach.
From this work to the late 00’s there was a significant amount of contributions. Halvorsen
et al. (2003) made their contribution based on local methods, linearizing the objective
function around the nominal optimal point, allowing to evaluate the worst-case loss using
the minimum singular value rule and the exact local method as criterions to choose the
best subsets of controlled variables. Later, Hori, Skogestad, and Alstad (2005) based on
the same assumptions, derived an expression for the case of “perfect indirect control”,
in attempt to find the best set of measurements to be used as controlled variables to
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indirectly control primary variables. Alstad and Skogestad (2007) introduced the null
space method to the case where the objective is to select the optimal measurement
matrix H prioritizing the disturbance rejection and not considering the loss due to the
implementation errors, for a system with the number of measurements being equal to the
number of degrees of freedom and disturbances summed, on the reduced-space problem.
Alstad, Skogestad, and Hori (2009) extended the null space method for the case when there
are extra measurements and not enough measurements available and derived an explicit
expression for the exact local method, guaranteeing the evaluation of the optimal matrix H
that is a linear combination of the available measurements, that minimizes the worst-case
loss generated by the disturbances and the implementation errors simultaneously. More
recently, Jacobsen and Skogestad (2011) explored methods to determine regions where
active constraints become inactive and Jäschke and Skogestad (2012) derived a method to
find optimal controlled variables that are polynomial combinations of measurements. The
last two contributions were not considered in this work, and only optimal selection using
linear combinations of measurements using surrogate responses from the original model
were considered.

The contributions to the Self-Optimizing Control technology cited above, that
indeed are efficient, were exhaustively tested and proven to work. (ARAUJO; SHANG, 2009;
ARAÚJO; SKOGESTAD, 2008; JENSEN; SKOGESTAD, 2007; HORI, E.; SKOGESTAD,
S., 2007b,a; LERSBAMRUNGSUK et al., 2008; JAGTAP; KAISTHA; SKOGESTAD, 2011;
PANAHI; SKOGESTAD, 2012; GERA; KAISTHA, et al., 2011; JÄSCHKE; SKOGESTAD,
2014; KHANAM; SHAMSUZZOHA; SKOGESTAD, 2014). However, at complex systems,
the implementation of the methods derived can become a challenging task and even not
feasible in some cases. For instance, in a large simulation of a chemical process in a process
simulator, evaluation of Hessians and gradients can become inaccurate, jeopardizing the
optimal selection of linear combination of measurements and even giving the wrong order of
candidates, generating an erroneous analysis. For this reason, the use of surrogate models to
simplify the evaluation of such variables can become a powerful tool to find the best subset
of controlled variables when designing a control structure. Another advantage of using
surrogate models (also called metamodels) in Self-Optimizing control is the evaluation
time that may be drastically reduced.

Seeing that we are dealing with a technology that relies heavily on gradients and
hessians, it is important that the calculation of these to be precise, or at least satisfactory
enough. However, when dealing with “black-box”1 models such as process simulators, this
task of estimation is seldom simple or without hassle (e.g. how small a perturbation step

1 We follow the definition of a “black-box” model as the same of Caballero and Grossmann (2008),
Forrester, Sobester, and Keane (2008) and Quirante, Javaloyes, and Caballero (2015) where it is a
model which a user has limited access of its “innards”. In this case, the model may be a commercial
process modeler such as Aspen Plus, HYSYS, PROII, etc.
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should be in order to get reliable results for a hessian or gradient?), particularly when
dealing with separation process such as distillation columns. Therefore, it might be possible
to circumvent such challenges using surrogate models to get estimates of hessians/gradients.
In addition, the optimization of these “black-box” models can be exploited with the use of
metamodels when dealing with complex cases where the original model can’t be optimized
directly, albeit used as source of design experiments. With the data obtained from these
experiments, we can build a simpler model (surrogate) and perform the optimization on it.
(JONES; SCHONLAU; WELCH, 1998; KUSHNER, 1964; SACKS et al., 1989; JONES,
2001)

This work seeks to link the well-known and developed theory of Self-Optimizing
Control to the engineering design using surrogate models, specially using kriging inter-
polators, as a way of simplifying the determination of the optimal linear combination of
measurements, in order to generate a control structure that minimizes the loss resulted
from disturbances and implementation errors.

1.1 Publications
The proposed methodology of this dissertation and two of the case studies described

in this work generated the following paper:

ALVES, Victor M. C. et al. Metamodel-Based Numerical Techniques for Self-
Optimizing Control. Industrial & Engineering Chemistry Research, v. 57, n. 49,
p. 16817–16840, 2018. DOI: 10.1021/acs.iecr.8b04337. eprint: https://doi.org/
10.1021/acs.iecr.8b04337. Available from: <https://doi.org/10.1021/acs.iecr.
8b04337>

https://doi.org/10.1021/acs.iecr.8b04337
https://doi.org/10.1021/acs.iecr.8b04337
https://doi.org/10.1021/acs.iecr.8b04337
https://doi.org/10.1021/acs.iecr.8b04337
https://doi.org/10.1021/acs.iecr.8b04337
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2 Methodology

2.1 Self-Optimizing Control Technology: State-of-the-art
A brief analysis of the self-optimizing control technology will be done in this work

in order to keep the reader up to date. For an extensive and exhaustive review of the
subject, refer mainly to Skogestad (2000, 2004) and Umar et al. (2012).

Self-optimizing control consists in achieving a control structure based on a constant
set point policy that leads to near-optimal operation. From Skogestad (2004):

“Self-optimizing control is when one can achieve an acceptable loss
with constant set point values for the controlled variables without the need
to re-optimize when disturbances occur.”

The process economics are assumed to be only influenced by its steady-state
operation. Ergo, a steady-state model of the process studied is used to evaluate the
selection of the self optimizing control structures (when it is possible to use a steady-state
model, e.g., continuous process).

The optimal operation it is assumed to be quantified using a scalar cost function
that needs to be minimized with respect to the degrees of freedom available, u0:

min
u0

J0 (x, u0, d) (2.1)

subject to the (often highly nonlinear) constraints:

g1 (x, u0, d) = 0 (2.2)

g2 (x, u0, d) ≤ 0 (2.3)

where x and d represent the states and the disturbances of the system, respectively.
The latter can have an exogenous nature (e.g., change in feed conditions), changes in
specifications (constraints), parameters of the cost function (prices), and changes in the
model (typically changes in g1). Using numerical optimization, the cost function can be
evaluated directly with the model, for the expected disturbances and implementation
errors. According to Skogestad (2000) the main steps are:

1. Definition of the number of degrees of freedom.
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2. Definition of optimal operation (Cost function and constraints).

3. Identification of important disturbances.

4. Numerical optimization of the problem.

5. Identification of variables candidates to be controlled.

6. Evaluation of loss for alternative combinations of controlled variables (loss imposed
by keeping constant setpoints when there are disturbances or implementation errors),
including feasibility investigation.

7. Final evaluation and selection (controllability analysis).

The loss, intrinsic to the technology, the result of a constant set point-based policy,
is given as

L = J0(d, n)− Jopt(d) (2.4)

2.1.1 Degrees of Freedom Analysis

To determine the degrees of freedom in self-optimizing control technology, it is the
first, and mandatory, step to ensure the success of its implementation and analysis. In
fact, several methodologies and approaches to sum up these degrees were developed during
the years (DIXON, 1972; PHAM, 1994; PONTON, 1994; LUYBEN, 1996; SKOGESTAD,
2002; STEPHANOPOULOS, 2003; KONDA; RANGAIAH; KRISHNASWAMY, 2006;
AL., 2016) and the reader should refer to those for a deep understating on the subject.
Considering individual units, Table 1 yields, from Skogestad (2002)

Table 1 – Steady-State Degrees of Freedom for Main Process Units.
Process Unit DOF
Each external feed stream 1 (feedrate)
Splitter n - 1 split fractions (n=number of exit streams)
Mixer 0
Compressor, turbine, and pump 1 (work)
Adiabatic flash tank 0a

Liquid phase reactor 1 (holdup)
Gas phase reactor 0a

Heat exchanger 1 (duty or net area)
Columns (e.g., distillation) excluding heat exchang-
ers

0a + number of side streams

a = Add 1 degree of freedom for each extra pressure
that is set.
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2.1.2 Selection of Controlled Variables: Main Methods

Among the methods used in self-optimizing control technology, the most used ones
that can be cited are the “brute-force” approach and the local methods, with the latter
having different approaches, such as the minimum singular value rule, the exact local
method, and the null-space and extended nullspace methods. The “brute-force” approach is
the earliest method to evaluate CVs with the self-optimizing control technology, described
mainly by Skogestad (2000). The loss is evaluated by using the process model directly,
becoming in complex cases a tedious and even infeasible task because the optimization
problem described in Equation 2.1-Equation 2.3 can be a large nonconvex problem, as
stated by Umar et al. (2012).

To overcome the intrinsic complexity of evaluating the loss directly on the process
model, local methods were developed based on the quadratic approximation of the loss
function (UMAR et al., 2012). Because of the simplicity, these methods are an excellent
way to prescreen the best sets of CVs or its linear combinations. One drawback of this
methodology is the assumption that the set of active constraints does not change with
respect to the disturbance allowable region. The model can be linearized with respect to
the measurements as follows:

∆y = Gy∆u+Gy
d∆d (2.5)

with

∆y = y − y∗ (2.6)

∆u = u− u∗ (2.7)

∆d = d− d∗ (2.8)

and Gy, Gy
d being the gain matrices with respect to the measurements and distur-

bances. For the CVs, linearization yields

∆c = H∆y = G∆u+Gd∆d (2.9)

with

G = HGy (2.10)
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Gd = HGy
d (2.11)

Linearization of the loss function yields

L = J(u, d)− Jopt(d) = 1
2‖z‖

2
2 (2.12)

z = J1/2
uu (u− uopt) = J1/2

uu G
−1 (c− copt) (2.13)

From Equation 2.11, the importance of the evaluation of H can be elucidated. This
matrix can be simply a selection index (consisting of elements being exclusively 1 and
0) or a linear combination of measurements. If the first case is considered, individual
measurements will be selected to form the control structure, and in the latter, the elements
inside H are arbitrary, generating CVs as linear combinations of available measurements.

One local method, developed initially by Skogestad and Postlethwaite (1996) and
later formally discussed and derived by Halvorsen et al. (2003) namely the minimum
singular value (MSV) rule, considered the maximization of the minimum singular values
of the system scaled gain matrix as a metric of selecting subsets that have good self-
optimizing control properties. Later, to overcome limitations involving the MSV rule
regarding the assumption of independency in set points shown in some examples (HORI;
SKOGESTAD; ALSTAD, 2005; HORI, E. S.; SKOGESTAD, Sigurd, 2008) the exact local
method developed by Halvorsen et al. (2003) was proposed. Around the optimal operating
point, it was shown that the loss is given as

z = J1/2
uu

[(
J−1

uu Jud −G−1Gd

)
∆d+G−1n

]
(2.14)

With Juu and Jud being the hessians with respect to the manipulated variables and
both manipulated variables and disturbances, respectively. Asumming that Wd represents
the diagonal matrix of the disturbances, W y

n the magnitude of the implementation error,
and the combined disturbances and implementation errors being 2-norm-bounded (with a
discussion and justification for the latter at Halvorsen et al. (2003)):

d− d∗ = Wdd
′ (2.15)

n = HW y
nn

y′ = Wnn
y (2.16)

∥∥∥∥∥∥
 d′

ny′

∥∥∥∥∥∥ ≤ 1 (2.17)
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Considering these, the worst-case loss is given by Equation 2.17

Thus, to minimize the worst-case loss with respect to the combined effect of the
disturbances and implementation errors is equivalent to maximize the singular values of
M (σ(M)).

max∥∥∥∥∥∥
 d′

n′

∥∥∥∥∥∥
2

≤1

Lworst = σ̄(M)2

2 (2.18)

The average-case loss was derived by Kariwala, Cao, and Janardhanan (2008) with
the justification of being more realistic to analyze if compared to the worst-case one, which
is clearly a conservative approach, Equation 2.19

Laverage = 1
6 (ny + nd)

∥∥∥J1/2
uu (HGy)−1HF̃

∥∥∥2

F
(2.19)

The definitions of Equation 2.20-Equation 2.22 are introduced, and their derivation
are discussed in Halvorsen et al. (2003) and Alstad, Skogestad, and Hori (2009): They
correspond to a more appropriate way to represent the uncertainty variables regarding the
contribution of the disturbances and measurement errors on the incurred loss:

M = [MdM
y
n ] (2.20)

Md = −J1/2
uu (HGy)−1HFWd (2.21)

Mny = −J1/2
uu (HGy)−1HWny (2.22)

F̃ = [FWdW
y
n ] ; F = Gy

d −GyJ−1
uu Jud (2.23)

depends on the evaluation of the optimal measurement matrix (H). Therefore,
the evaluation of this matrix is mandatory to the sucess of the implementation of the
mathematical formulations described so far.

2.1.2.1 Null Space, Extended Null-Space, and Exact Local Method with Explicit Solution
Methods.

Alstad and Skogestad (2007) derived the null space method, and Alstad, Skogestad,
and Hori (2009) presented the extended null-space method. Both methods have the
approach of minimizing the loss prioritizing the effect of disturbances first, and if there
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are any degrees of freedom left, to minimize the loss with respect to the measurement
errors. Considering the definition of F as being the optimal sensitivity matrix, the optimal
matrix H that minimizes the loss (neglecting the effect of the implementation errors and
considering only the disturbances effect) and generates a set of linear combinations of y is
given through the selection of H at the left null space of F. Mathematically:

H ∈ N
(
F T

)
(2.24)

HF = 0 (2.25)

However, evaluating H using the original null space method forces the designer
of the control structure to have a number of measurements that is at least equal to the
number of disturbances and degrees of freedom (one limitation imposed by Alstad and
Skogestad (2007) to make them able to derive Equation 2.25). If this number is greater,
which criteria should be used to select the best set to square the system? If it is lower, which
expression may be used to evaluate H? To answer the first question, efficient algorithms
called “Branch-and-Bound” were developed and will be discussed later in this work. For
the second, Alstad, Skogestad, and Hori (2009) improved the evaluation of H by extending
the null space method, deriving an explicit expression to evaluate H at any dimension
with respect to the number of measurements, disturbances, and degrees of freedom of the
unconstrained problem. Another useful contribution was to derive an explicit expression
for H for the exact local method, which minimizes the loss with respect to disturbances
and implementation errors simultaneously. For the extended null space and exact local
method, H evaluations are given as, respectively:

H = M−1
n J̃

(
W y−1

n G̃y
)†
W y−1

n (2.26)

H =
(
F̃ F̃ T

)−1
Gy

(
GT

y

(
F̃ F̃ T

)−1
Gy
)−1

J1/2
uu (2.27)

Equation 2.26 is enough to deal with any dimension of the problem purposed for
the extended null space method, and Equation 2.27 to the exact local method. However,
Alstad, Skogestad, and Hori (2009) made an extensive analysis to cases where the number
of measurements available is greater than the sum of the number of disturbances and
degrees of freedom and vice versa. For the first case, Equation 2.26 can be simplified to

H = M−1
n J

(
G̃y
)−1

(2.28)

where G̃y =
[
Gy Gy

d

]
corresponds to the augmented plant and J̃ =

[
J1/2

uu J
1/2
uu J

−1
uu Jud

]
by definition (see Alstad, Skogestad, and Hori (2009) for further details). For the case
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when there are “too few” measurements (ny < nu + nd) the following expression for H is
derived from Equation 2.26:

H = M−1
n J̃

(
G̃y
)†

(2.29)

2.1.3 Branch-and-Bound Methods for Subset Selection

It is common that in large processes, the number of measurements available is
greater than the number of unconstrained degrees of freedom. As stated before, to select
the best subset with a criterion was an unsolved problem, at least in a practical way.
Considering for example, a modest process plant with 10 unconstrained degrees of freedom
and 50 measurements available, there are

 50
10

 = 50!
10!40! = 1.027× 1010 (2.30)

possible control structures. Therefore, an analysis of all of them to select the best
(and with which criteria?) would be impractical. Luckily, methods of variable selection have
been developed and are quite successful in overcoming this problem. Branchand- Bound
algorithms are one of those and were used in this work. The very first ideas regarding this
category of methods, are present in the work of Lawler and Wood (1966), being improved
later by Narendra and Fukunaga (1977). Saha and Cao (2003), Cao and Saha (2005), Cao
and Kariwala (2008) and Kariwala and Cao (2009) enhanced the method, guarateeing
faster runtime and fewer iterations. To understand how the algorithm works, suppose that
Xs = x1, x2, ..., xs is a set of S elements and a subset Xn with n elements are selected from
Xs(Xn ⊂ XS). Therefore, there are

S!
n!(S − n)! (2.31)

ways of selecting Xn subsets from Xs. Considering Γ as the criterion function used
during the selection procedure, there is a subset with n elements (X∗n) that satisfies the
equality:

Γ (X∗n) = max
Xn⊂Xs

Γ (Xn) (2.32)

which is a mathematical way of saying that X∗n is the best subset that attends the
criterion Γ among all possible Xn subsets. It is also clear that the criterion must attend a
monotonic property, given by

Γ (Xn) ≤ Γ (XS) , if Xn ⊆ XS (2.33)
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With this property, any subset of a given dimension cannot be better than any
larger set containing the first one, as observed by Saha and Cao (2003).

Ordinary branch-and-bound algorithms are unidirectional, with the subsets being
sliced one by one until reaching the target size or being appended until reaching the desired
size. Considering a descending branch-and-bound algorithm, supposing m > n and Γn(Xm)
as an upper limit on Γ descending on all subsets of m elements, Xm:

Γn (Xm) ≥ max
Xn⊆Xm

Γ (Xn) (2.34)

and defining B as the lower limit of Γ(X∗n)

B ≤ Γ (X∗n) (2.35)

the following is true:

if Γ̄n (Xm) < B,Γ (Xn) < Γ (X∗n)∀Xn ⊆ Xm (2.36)

which implies that no subset from Xm can be optimal, allowing the exclusion of
them immediately, this exclusion is referred as “pruning”. In the reverse order (upward
search), an analogous analysis can be done, as shown by Cao and Kariwala (2008) Assuming
B as the lower limit of Γ(X∗n) exactly as before, but considering Γ̄n (with m < n) as an
upper limit upward, the following is also true:

Γn (Xm) ≥ max
Xn≥Xm

Γ (Xn) (2.37)

therefore,

if Γ̄n (Xm) < B,Γ (Xn) < Γ (X∗n)∀Xn ⊇ Xm (2.38)

Guaranteeing that no sets upward of Xm are globally optimal. As a result, all
subsets on this direction including Xm can be “pruned” immediately. In this work, similarly
as in Silva et al. (2017) was used the bidirectional branch-and-bound proposed by Cao
and Kariwala (2008) The search for the best sets of controlled variables is carried out
in both directions, which generates a higher efficiency if compared with unidirectional
branch-and-bound algorithms. The criterion function for the branch-and-bound used was
the minimum singular value, which fortunately has a monotonic property. For a detailed
proof of it, refer to Silva et al. (2017) and Cao, Rossiter, and Owens (1998).
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2.2 Response Surface Methodology

2.2.1 Aspects of Kriging

The brief surface response methodology (RSM) description given here can be seen in
depth from the famous article published by Sacks et al. (1989) and from the widely known
DACE toolbox developed by Lophaven, Nielsen, and Søndergaard (2002) However, for a
more straightforward and intuitive explanation of the RSM, specially using the Kriging
as a spatial correlation function (SCF), the reader is referred to the works of Forrester,
Sobester, and Keane (2008) and Jones, Schonlau, and Welch (1998) For historical purposes,
the reader can refer to the work of Krige (1951) the original author of the Kriging method
(which was named after him). The reason we chose to present the RSM in the formalism
of Sacks et al. (1989) and Lophaven, Nielsen, and Søndergaard (2002) is because it allows
us to easily develop relations for the gradient and Hessian of the kriging predictor.

Given a set of m experiments S = [s1 . . . sm]T with si ∈ Rn and responses Y =
[y1 . . . ym]T with yi ∈ Rq. A model ŷ(x) that expresses the response of a deterministic
function yx ∈ Rq for a n dimensional input x ∈ D ⊆ Rn, as a realization of a regression
model F and a random function (stochastic process) z is given by Equation 2.39

ŷl(x) = F (β:,l, x) + zl(x), l = 1, . . . , q (2.39)

A regression model which is a linear combination of t chosen functions fj : Rn → R
is used:

F (β;l, x) ≡ f(x)Tβ;l (2.40)

Typically, f(x) is chosen as a polynomial of order ranging from zero to two
(h ∈ [0, 2]). βk,l are regression parameters and z is assumed to have mean zero and
covariance between two points w and x:

Cov [zl(w), zl(x)] = σ2
lR (θl, w, x) , l = 1, . . . , q (2.41)

where σ2
l is the process variance for the lth component of the response andR(θ, w, x)

is the correlation model. In the case of Kriging as a correlation function, the value of the
hyperparameter θ can be interpreted as measuring the importance or “activity” of the
variable x (i.e., a low value of θ means that all points have a high correlation) or how fast
the correlation goes to zero as we move in the lth coordinate direction (CABALLERO;
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GROSSMANN, 2008) In this work, we use the correlation model in the form of:

R (θl, w, x) = exp
(
−

m∑
i=1

θl (w − xi)p

)
,

(θl ≥ 0, pl ∈ [0, 2])
(2.42)

The hyperparameter p represents the “smoothness” of the correlation. In other
words, by reducing its value, the rate at which the correlation initially drops as the
distance between w and xi increases. With a p ≈ 0, it is tantamount to say that there is
no immediate correlation between these points and there is a near discontinuity between
Y (w) and Y (xi) (FORRESTER; SOBESTER; KEANE, 2008).

For gradient and Hessian evaluation, being derived by Lophaven, Nielsen, and
Søndergaard (2002) and by the authors on this study, respectively, the following equations
yields

ŷ′(x) = Jf (x)Tβ∗ + Jr(x)Tγ∗ (2.43)

ŷ′′(x) = Hf (x)β∗ +Hr(x)γ∗ (2.44)

Detailed information and proofs regarding the Kriging predictor, the gradient, and
the Hessian approximations are given in Appendix A.

2.2.2 The Optimization Algorithm

Jones (2001) made a review of several methods of global and local optimization
using response surfaces, in which with a limited number of starting samples, the surface
model is adjusted based on a “infill sampling criteria” (i.e., minimizing the surface directly,
maximizing expected improvement or probability of improvement, lower bound of functions,
etc.). Precisely, the “Method 2” presented by Jones (2001) is the one used in this work.
It consists on minimizing the response surface, sampling at that point, and updating
the surface model in each iteration. Once there is no improvement in two successive
iterations, an optimality test is done. In addition, Jones (2001) refers to a “gradient
matching” technique, where the gradient of the response surface is forced to agree with the
gradient of the true function, combined with a trust region approach in order to ensure
local convergence.

Alexandrov et al. (2000) developed such an algorithm to force gradient matching
that uses a correction factor. To get the next iteration, the surface is optimized within a
trust region around the incumbent solution. The optimum is then sampled, if the true
function value at that location fails to decrease, the trust region is contracted, and a new
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iteration is done. In their work, this approach is proved to converge to a critical point of
the function.

Although Alexandrov’s approach of contracting the feasible region is quite robust,
it was preferred to use the methodology of Caballero and Grossmann (2008) to ensure local
convergence, where successive contractions and movements of the search region are done.
There were four main reasons for this choice: (1) Caballero and Grossmann’s algorithm is
easier to implement because there is no need to build a surrogate of Lagrangian functions
like is proposed by Alexandrov et al. (2000)(2) no need of perturbations in the black box
functions to obtain numerical differential data, and (3) fewer restrictions regarding the
dimension of the model. Alexandrov et al. (2000) algorithm is appropriated for problems
where the dimensionality (i.e., number of independent variables) is no greater than four.
However, as defined by Forrester, Sobester, and Keane (2008) the “curse of dimensionality”
still looms over us: the higher the dimensionality, the higher the number of sampling
points required to achieve reasonably accurate predictions. (4) Lower chance of premature
convergence in Caballero and Grossmann’s algorithm when dealing with highly constrained
problems. The optimization algorithm is summarized in Figure 1. Its description is as
follows:

Figure 1 – Flowchart for the algorithm developed.

Start
 Select the number of sampling points (N), and apply a
sampling plan (stratification, space filling LHS, etc.) for

the optimization domain.

Specify refinement (tol1) and termination (tol2) 
tolerances. The latter must be at least one order

 of magnitude larger than the estimated noise of function

Start the iterations count (k = 1 and funEvals = 1)

Sample the function based on the sampling plan
defined earlier, and build the surrogate model. If k>1,

(x*)k-1 must be included in the sampled points

j = 1
Minimize the response surface model RSM(x) subject to the
constraints G(x). These can be metamodels on their own,

based on their evaluation difficulty.
The optimal solution is (xj)k.

Optional step (if k = 1 and j = 1)
If there are feasible points in the sampled points,
use the best feasible point as initial estimate of

the minimization problem to help convergence. If
there aren't feasible points, try a new initial

sample.

Sample the point (xj)k to get
g((xj)k) and y((xj)k).

funEvals = funEvals + 1

Update the surrogate model. In
case of kriging, do not optimize the

hyperparemeters.

Starting from
(xj)k minimize the

RSM(x) to get (xj+1)k

|(xj)k - (xj+1)k| <= tol1?

No Yes

j = j + 1
(xj)k = (xj+1)k

Start refinement

(x*)k = (xj)k

|(x*)k - (x*)k-1| <= tol2?

k > 1?

YesNo

funEvals >= MaxFunEvals

YesNo

Yes

No

END

Is (x*)k inside or at the limit of the
sampling hypercube? Inside

At Limit

Contract sampling
hypercube and center

it in (x*)k

Move sampling
hypercube and center

it in (x*)k
k = k + 1

If k = 1 and j = 1, validate the model through cross-validation to
make sure it is accurate enough.

1. Define the bounds of independent variables and the number of points to be sampled.
The amount of points to be sampled is a rather heuristic choice. In addition, a prime
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(or at least odd) number of points is preferred to avoid symmetrical distributions of
sampling points (CABALLERO; GROSSMANN, 2008). The type of sampling plan
technique is quite important. Space filling methods such as Latin hypercube sampling
(LHS) are favored to guarantee that the entire domain space is covered (uniformity
of distribution is more important than its randomness), and the numerical noise
introduced by black-box models does not significantly affect the surrogate (because
it is a variance reduction technique through the maximin criterion which selects
the best sampling plan that maximizes the minimum distance between the points
(FORRESTER; SOBESTER; KEANE, 2008)). This numerical noise (which we will
just call for the sake of brevity as noise) is defined as the uncertainty introduced
by the black-box model due to its internal stopping criteria (e.g., the tolerance of
the solver used to solve MESH equations in a distillation column.), truncation, or
rounding of values, in this case, by the process simulator. We also include 2n points
that correspond to the bounds of the independent variables; this is done to ensure
the Kriging does not perform “extrapolations” near the corners of the optimization
space, and the remaining m− 2n points are distributed by the sampling plan chosen
(QUIRANTE; JAVALOYES; CABALLERO, 2015). However, this procedure of
inserting the hypercube vertices is limited for cases where the number of input
variables is low (e.g., les than 6) due to the amount of samples required (i.e., in
the case of 8 input variables, we would need to sample 256 points excluding the
ones from the LHS) and the “extrapolation” inconvenience is present and needs
to be fixed so that meaningful results can be obtained. Still regarding the bounds,
the better performance of the optimization algorithm (i.e., a lesser number of true
function samplings) is attained, the narrower they are

2. Estimate the noise so that refinement and termination tolerances can be set. One way
to do it: simulate the flowsheet process for a fixed set of independent variables starting
from different initial points (CABALLERO; GROSSMANN, 2008). Moreover, it is
recommended to tighten the model convergence criteria (e.g., for distillation columns,
set the equation solver convergence as low as possible) in order to get consistent
results with reduced noise variance. Then the termination criteria should be at least
1 order of magnitude greater than the noise.

3. Build the surrogate model using the sampled data from the black box model. In
the Kriging case, it is important that the surrogate models be univariate because
Kriging does not incorporate cross-correlation between different simulation outputs
(QUIRANTE; JAVALOYES; CABALLERO, 2015; KLEIJNEN, 2009).

4. Check if the surrogate is accurate enough. This step is executed only once, before the
optimization step 5 begins. Here, this is done by using cross-validation and plotting
the “standardized cross-validated residuals” (JONES; SCHONLAU; WELCH, 1998)
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or the relative error between the prediction and actual values. If the number of
sampled points is low, say m < 100, use the “leave-one-out” (subset size q = 1) type
of cross-validation. The model is considered valid if the number of standard errors
that the actual value is above or below the predicted value lies in the interval [−3,+3]
(i.e., 99.73% of confidence) or there are not too many outliers. For larger number of
sampled points, use subsets size q = 5 or 10 and check if the cross-validation error is
low enough (FORRESTER; SOBESTER; KEANE, 2008) to be considered a valid
model. The reason for larger subsets q is because the computation time becomes
prohibitive in the case where q = 1 and m > 100 because m surrogate models are
built, although this can be mitigated using parallel processing capabilities when
available.

5. Perform the optimization of the black-box metamodel:

min
x
ŷ(x)

subject to:
ĝ(x) ≤ 0

(2.45)

Remark: An optional step is proposed to facilitate convergence. Only before in
the first optimization, a screening of the initial sampling data is done for the
best feasible point found. If such a point exists, use it as the initial estimative
of a standard constrained nonlinear programming (NLP) solver. In this work, the
MATLAB fmincon routine was used coupled with gradient information on objective
and constraint metamodels functions from Equation 2.43 as a solver of the NLP
problem Equation 2.45, simply to aid the convergence performance.

6. Sample the optimum point obtained from Equation 2.45, add it to the set of sampled
points, and update the Kriging model without reoptimizing its hyperparameters.
Because Kriging is an interpolating procedure, all new points introduced are exact
(zero error) (CABALLERO; GROSSMANN, 2008). However, a reoptimization of
the hyperparameters might be done if the user needs to be sure that the surrogate
model is adequate.

7. If the optimum found in two consecutive iterations does not change based on the
refinement tolerance (tol1), start the refinement procedure (proceed to step 8). Even
using the simplest “infill criteria” (i.e., minimizing the surface response, sampling the
optimum, and updating the Kriging until there is no significant change between the
points sampled) does not guarantee a local optimum as aforementioned. To address
this issue, it is necessary to use the gradient matching combined with a trust-region
approach (JONES; SCHONLAU; WELCH, 1998; CABALLERO; GROSSMANN,
2008; QUIRANTE; JAVALOYES; CABALLERO, 2015; ALEXANDROV et al.,
2000).
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8. The refinement procedure is done as follows:

• If the optimal solution obtained in step 7 is an internal point of the original
hypercube, select a contraction factor and reduce the hypercube limits. This
reduced hypercube must be centered at the last optimal solution obtained. The
contraction factor is a tunable parameter. We use the same default values as
Caballero and Grossmann’s implementation: 40% for the first contraction and
20% for the subsequent ones.

• If the optimal solution is at the limit of the hypercube, then do not contract it,
simply move the hypercube and center it at the optimal solution.

• The limits of the hypercube can go further than the bound of the variables,
although the sampling is always performed inside those bounds. The reader is re-
ferred to the work of Caballero and Grossmann (2008) for a better understanding
of the actions taken in the refinement procedure.

9. Go back to step 3 and repeat until the termination criteria or maximum number
of samplings is met. If the maximum number of sampling is achieved, probably it
is because the domain bounds are too wide or the Kriging model is not accurate
enough; to remedy this, one could simply narrow the bounds or try to increase the
number of points in the initial sampling plan.

After the algorithm successfully converges, we proceed to the next phase, which
is the active constraint checking and obtainment of the gradient and Hessian through
Equations 2.43-2.44.

2.2.3 Usage of Jacobian and Hessians evaluated by Kriging equations

One could ask oneself the reason why Kriging was chosen as the surrogate-builder
method, among a wide variety of reduced models available (i.e., polynomials, neural
networks, etc.). As could be seen at the discussion so far, Kriging interpolators have
an analytic expression for both gradient and Hessian evaluation. The absence of using
numerical perturbations to generate the high-order data (gradient/Hessian) removes a
source of uncertainty derived from heuristics. For instance, Araújo, Govatsmark, and
Skogestad (2007) used the first-order forward difference approximation to evaluate each
element of the gradients, which can be quite sensitive to noise:

∂ci(i)
∂uj

= lim
h→0

c (u+ ejh)− c(u)
hj

(2.46)

For hessian approximation:

∂J(u)
∂ui∂uj

= lim
h→0

J (u+ Eiih+ Ejjh)− J (u+ Eiih)− J (u+ Ejjh) + J(u)
[hhT ]ij

(2.47)
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Silva et al. (2017) in order to avoid the problem stated before, used the Akima
cubic spline and the bicubic spline to evaluate the gradients and Hessians, respectively.
However, as stated in their work, one disadvantage of using cubic splines is when there is
an outlier in the region studied, jeopardizing the evaluation in some cases. Therefore, it
can be seen that the approaches from past contributors could fail in evaluating gradients
and Hessians.

We argue that, along with the fact where the expressions derived for gradient and
Hessian approximations using Kriging interpolators are explicit and analytical, the nature
of Kriging itself, being the best linear unbiased predictor (BLUP) , as can be seen in the
work of Sacks et al. (1989) are essential characteristics for a reduced model when high-order
data approximation are paramount to any methodology, as it is in self-optimizing control.





Part III

Case studies
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3 Introduction

At this section, a systematic approach of the proposed methodology will be done.
Three case studies with increasing complexity will be discussed in detail. The main idea of
this section consists in:

1. Display the methodology through the case studies.

2. Compare the results obtained using surrogates with the traditional approach (i.e.:
Optimization with the original nonlinear model - when possible - and comparing the
high-order data obtained from the original models, also when available)

3. Propose metamodel-based control structures (Single measurement policy or linear
combinations) and compare them with the ones found in the literature using nonlinear
models

The three case studies are:

• Economic Self-Optimizing Control of a Depropanizer column.

• Economic Self-Optimizing Control of a Evaporation process.

• Economic Self-Optimizing Control of Cumene Process production.
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4 Case studies

4.1 Case I - Economic Self-Optimizing Control of a Depropanizer
column

4.1.1 Problem description

The first problem to be studied is a depropanizer column (described in Figure 2), sim-
ilar to the one considered in Skogestad (2000). The feed is composed by a propene/propane
mixture with the mole fraction of the light component nominally at 65 mol %. The column
has 146 stages, a feed composed of saturated liquid at 12 atm and a molar flow rate of 420
kmol/h. Nominally, the tower is operated at a molar reflux ratio and a distillate to feed
ratio of 11 and 0.75, respectively. The feed enters at stage 108 (with the top stage being
numbered as the first one), and the tower has a pressure drop of 1 atm across itself, and a
top stage of 9.7 atm. The overhead product must be at least 99.5% pure in molar units
(XD ≥ 0.995). The only physical limitation imposed to the system, besides non-negativity
of flow rates and concentrations, is regarding the reboiler, unable of adding more duty
than 80GJ/h to the process. The process has five degrees of freedom in a control point
of view, but two of these are used to stabilize the holdups, and another one is used in
a “floating pressure” control approach using the maximum cooling capacity available, as
suggested by Shinskey (1984) improving the relative volatility. Therefore, two degrees of
freedom are available for optimization.

The degrees of freedom chosen (arbitrarily) were

u =
 L/D

D/F

 (4.1)

The objective function is given as the profit of the unit ($/h):

J = 20D + (10− 20xB)B − 70QR (4.2)

which accounts for the production of propene, the cost of the steam used at the
reboiler, the propene lost at the bottoms stream, and the production of propane.
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Figure 2 – Depropanizer column.
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Therefore, the optimization problem becomes

max
u

J = 20D + (10− 20xB)B − 70QR

s.t

xD ≥ 99.5%
QR ≤ 80GJ/h

(4.3)

In addition, the degrees of freedom available (manipulated variables) are bounded
due to physical/operational limitations:

L/D ≤ 50
D/F ≤ 0.9

(4.4)

The disturbances considered in this case were the flow rate for each component at
the feed and the feed vapor fraction, varying up to ±10% of their nominal values.

Initially, The candidates as controlled variables considered were the same as
Skogestad (2000) (xD, xB, D/F , L/F , V/F , and L/D), among others possible.

4.1.2 Surrogate Model Generation

Specially in this case study for illustration purposes, the infill criteria was manually
performed in order to show to the user the adjustment of the objective function and
the nonlinear constraints, a phenomena described in detail by Forrester, Sobester, and
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Keane (2008). However, it is clear that the methodology proposed uses the algorithm from
Caballero and Grossmann (2008), due to the fact that there is no user intervention on the
latter.

4.1.2.1 Initial Sample

Using the bounds for the manipulated variables and disturbances, 999 cases were
generated randomly using the Latin hypercube sampling method (this is achieved by
scaling the results from the MATLAB’s lhsdesign routine with a maximin criterion to
the input limits given because the routine results are scaled between 0 and 1), and a
sensitivity analysis was performed at the simulator (Aspen Plus) to obtain the outputs
for each measurement (CV candidates), the cost function, and the nonlinear constraints
(Reboiler duty and Propene tops composition). With the input/output data, a Kriging
response was generated using DACE toolbox, from Lophaven, Nielsen, and Søndergaard
(2002) using the Gaussian correlation and linear regression models. There were 100
cases left out of the construction of the surrogate response for validation purposes, as
suggested by different authors (FORRESTER; SOBESTER; KEANE, 2008; QUIRANTE;
JAVALOYES; CABALLERO, 2015). Figure 3 shows the validation between those cases
from the surrogate response and the original ones evaluated at the process simulator,
corroborating the effectiveness of the reduced model generated. Another sample of merely
33 points was used as the initial sample to be provided to the algorithm of Caballero and
Grossmann (2008). This was done to investigate if the algorithm is capable of finding an
optimal operating point with a drastically reduced initial sample through its operations of
movement and contraction of the hyperspace.

4.1.3 Optimization of the Surrogate Response

The optimization performed was done with genetic algorithms available in MATLAB
and Microsoft Excel. The objective function of the problem and its nonlinear constraints
were the Kriging responses generated earlier. Both infill criteria methods described here
before, brute-force and the automated algorithm from Caballero and Grossmann (2008)
gave similar results for the optimal decision variables. The brute-force infill was performed
12 times, until the stopping criteria was achieved, in this case this criteria was the variation
between the infills on decision variables and objective function values became irrelevant
(cents magnitude in cost function). Therefore, the final first kriging response was composed
of 1014 for the brute-force method: 999 points, followed by the edges of the hypercube,
and the 12 infills cited above. Table 2 shows the importance of the infill criteria, adjusting
the shape of the kriging prediction closer to the real function, especially for the response
of the propene composition at the top stream of the tower, which tend to have a noisy
response (QUIRANTE; JAVALOYES; CABALLERO, 2015).
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Figure 3 – Kriging hold-out validation for the depropanizer case study.

Table 2 – Brute-force infill criteria - Depropanizer case study.

Case L/D D/F L/F V/F XD XB P [$/h] QR

[GJ/h]
1 12.5002 0.6388 7.9846 8.6918 0.991818 0.045590 3045.450 52.843
2 13.5982 0.6399 8.7015 9.4197 0.994949 0.037024 2766.524 57.272
3 13.6265 0.6405 8.7276 9.4467 0.994976 0.035416 2762.509 57.437
4 13.6194 0.6398 8.7139 9.4323 0.994998 0.037159 2760.410 57.348
5 13.6212 0.6399 8.7157 9.4341 0.994999 0.037029 2760.226 57.360
6 13.6204 0.6398 8.7147 9.4330 0.995000 0.037139 2760.180 57.353
7 13.6155 0.6396 8.7087 9.4269 0.995000 0.037675 2760.294 57.315
8 13.5773 0.6378 8.6602 9.3762 0.995001 0.042359 2759.732 57.005
9 13.5675 0.6375 8.6486 9.3642 0.994999 0.043403 2759.934 56.931
10 13.5686 0.6375 8.6499 9.3655 0.995000 0.043295 2759.886 56.939
11 13.5601 0.6371 8.6388 9.3540 0.994999 0.044386 2759.597 56.869
12 13.5641 0.6373 8.6438 9.3591 0.995000 0.043916 2759.633 56.900

The results for both optimization techniques with infill criteria, compared to the
optimization computed on the original rigorous model in Aspen Plus, are described in
Table 3:

Table 3 – Optimization Results of Surrogates and Original Model.
Profit [$/h] D/F L/D XD QR[GJ/h]

Aspen Plus ® 2759.608 0.6372 13.5629 0.9950 56.8907
Brute-force infill 2759.699 0.6372 13.5623 0.9950 56.8875
Caballero’s algorithm 2760.600 0.6389 13.5982 0.9950 57.1829
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4.1.4 Reduced Space Surrogate Model.

The composition of propene at the top stream is active for all the range of the
manipulated variables and disturbances, as can be seen on the previous subsection. Thus,
the control of this variable is mandatory Skogestad (2000) consuming one degree of freedom.
The active-constraint control is implemented at the process simulator, and a second design
of experiments is carried out (with only 50 points) with the the amplitude of ±0.1% of
the nominal values of the remaining degree of freedom and of the disturbances, to ensure
that the gradients and the Hessian with respect to the remaining degree of freedom and
disturbances are following the assumption of linearization of the cost function around
the nominal optimal point, necessary to evaluate the wort-case loss using the exact local
method and the extended nullspace method by Alstad, Skogestad, and Hori (2009) and to
evaluate the average-case loss developed by Kariwala, Cao, and Janardhanan (2008).

The reduced space problem remains with one degree of freedom left. Without loss
of generality, D/F was chosen to close the loop with the composition of propene at top
stream. Because the model and its surrogate are in steady-state, the choice of using either
of the DOFs available does not influence the methodology. Consequently, the measurements
left as candidates for self-optimizing control are

y = [xB, L/F, V/F,D/F, L/D] (4.5)

4.1.5 High-Order Data Obtainment

The DACE toolbox from Lophaven, Nielsen, and Søndergaard (2002) evaluates
the gradient of the surrogate response natively. For the Hessian, the expression developed
in this study was capable of evaluating the second-order derivatives. The gradients and
Hessians with respect to the remaining degree of freedom and disturbances are

Gy =



1.3560
1.4169
−0.1389
0.0523

1


Gd

y =



0.0170 −0.0316 0.1511
0.0184 −0.0342 −1.1291
−0.00099 0.0018 0.0290

0.0013 −0.0023 −0.0111
0 0 0


(4.6)

Jud = [15.1472− 28.0727− 485.7841]
Juu = 1921.6795

(4.7)
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4.1.6 Expected Disturbances and Implementation Errors

The weighting matrix for the disturbances Wd is up to ±10% of its nominal values,
the allowable magnitude for them in the process is therefore

Wd = diag(27.3, 14.7, 0.1) (4.8)

For the weighting matrix of implementation errors, a magnitude of 0.1% over the
optimal nominal values for flow ratios and composition was considered. Then W y

n becomes

W y
n = diag

(
0.0086427, 0.009358, 4.4020× 10−5, 6.372× 10−5, 0.0135632

)
(4.9)

4.1.7 Loss Evaluation

Evaluating the worst-case loss and average-case loss for single measurements as
candidates, the best candidate is the composition of propene at bottoms. Therefore, the
set of CVs becomes

c1 =
 xD

xB

 (4.10)

As found previously by Skogestad (2000) This set, however, needs some engineering
insight because dual composition control is a well-known problem for distillation columns,
given the unreliability and expensiveness of online analyzers and due to strong interactions
between the components of this control structure (SHINSKEY, 1984; SKOGESTAD;
MORARI, 1987). Therefore, alternatives with other single measurements and combinations
will be discussed.

Table 4 shows the worst-case and average-case losses for single measurements policy:

Table 4 – Single-measurement policy: Results for worst and average-case losses for de-
propanizer case study.

Measurement Worst-case loss [$/h] Average-case loss [$/h]
XB 0.8244 0.0687
L/F 31.4245 2.6187
V/F 40.4240 3.3687
L/D 89.5913 7.4659
D/F 356.9744 29.7479

From Table 4, it is possible to conclude that controlling the composition of bottom
stream indeed yield the lowest loss in both worst and average cases, followed by L/F and
V/F . Open loop policies, as expected (D/F , L/D) yield unacceptable losses. This result
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can be related to the similar example developed by Skogestad (2000) showing the capability
of the surrogate model generated of being used for self-optimizing control purposes. A
good trade-off between complexity of implementation the control structure and operating
it can be achieved by using L/F as the last CV to square the problem, due to the fact
that is easier to keep a liquid flow constant rather than a vapor one (SKOGESTAD, 2000).
Given this fact, another possible set of single measurements could be

c2 =
 xD

L/F

 (4.11)

Considering all measurements available as linear combinations, using Equation 2.27
(with explicit solution from Alstad, Skogestad, and Hori (2009)), the worst-case and
average losses decrease drastically to 0.000486 $/h and 0.000020 $/h, respectively. Using
the extended null space method, these losses are 1.6384 $/h and 0.0683 $/h. These results
were expected due to the fact that the increasing number of measurements available reduces
significantly the loss as seen in previous works (ALSTAD; SKOGESTAD; HORI, 2009;
KARIWALA; CAO; JANARDHANAN, 2008). However, implementing such structure can
be a challenging task.

Other possible subsets of measurements combinations were also evaluated and are
available in Table 5. As also noted by Kariwala, Cao, and Janardhanan (2008) there is a
clear trade-off between complexity and the incurred loss.

Table 5 – Loss evaluation: linear combination of measurements of different subsets’ sizes
for depropanizer case study.

ny Measurements Worst-case loss [$/h] Average-case loss [$/h]
2 xB , L/D 0.0070 0.0005

xB , V/F 0.0095 0.0006
xB , D/F 0.0192 0.0013
xB , L/F 0.0328 0.0022
L/F, D/F 0.4240 0.0283
V/F, L/D 0.5398 0.0360
V/F, D/F 6.5368 0.4358
L/F, V/F 30.5602 2.0373

3 xB , D/F, V/F 0.0005046 0.0000280
xB , L/F, V/F 0.0005935 0.0000330
xB , L/D, V/F 0.0009989 0.0000555
V/F, D/F, L/D 0.0601630 0.0033424
L/F, V/F, D/F 0.0813750 0.0045208
L/F, D/F, L/D 0.3605520 0.0200306

4 xB , D/F, V/F, L/D 0.0004890 0.0000230
xB , L/F, V/F, D/F 0.0004990 0.0000240
xB , L/F, V/F, L/D 0.0006000 0.0000263
xB , D/F, L/D, L/F 0.0040000 0.0002000
L/F, V/F, D/F, L/D 0.0309000 0.0015000

Another possibility of implementation is to consider a “just enough” subset of
measurements for the null space method (prioritizing the reduction of disturbances effects
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on the loss) when the number of these are equal to the sum of the number of disturbances
and degrees of freedom (ny ≥ nu +nd). Then, using Equation 2.26 to evaluate H, the losses
can be calculated and some of the possible subsets are present in Table 6. However, as
observed by Alstad, Skogestad, and Hori (2009) this requires the evaluation of all possible
subsets of measurements, which in larger problems may be impractical. To overcome
this, a suboptimal selection can be done, maximizing σ

(
G̃Y

)
using the branch-and-bound

algorithm proposed by Cao and Kariwala (2008). Because the column has a small number
of combinations for this subset size, given as

 5
4

 = 5!
4!(5− 4)! = 5 (4.12)

Both methodologies were computed to show the difference between the optimal
and suboptimal solutions. From Table 6, it can be clearly shown that for this example,
prioritizing the reduction of loss generated by disturbances and neglecting the implemen-
tation errors to deal with then later (if there are remaining degrees of freedom left), as
suggested by Alstad, Skogestad, and Hori (2009) may not be a good choice.

Table 6 – Loss evaluation: sub-optimal solution with extended null space method for
depropanizer case study.

ny Measurements Worst-case loss [$/h]
xB̄, L/F, V/F, L/D 1.8349
xB, D/F, V/F, L/D 3.2075
xB, L/F, V/F,D/F 4.4891
L/F, V/F,D/F, L/D 1.1925× 106

xB, D/F, L/F, L/D 1.7051× 106

Using the suboptimal rule of maximizing σ
(
G̃Y

)
, the subset found by the branch

and bound method was y = [L/F, V/F, xB, L/D] which yields worst-cases losses using
the exact local method and the extended null space method of 0.0006 $/h and 1.8349
$/h, evidencing the sensitivity to implementation errors in some cases. The sub-optimality
of this approach is also evidenced because for a subset of four measurements, as can be
seen in Table 5, using the exact local method the subset y = [xB, D/F, V/F, L/D] yielded
worst-case and average-case losses of 0.000489 $/h and 0.000023$/h, respectively, differently
from the result cited before. In fact, the subset found by the suboptimal approach is
the third that yielded the lowest loss through the exact local method, as can be seen in
Table 5.

Control structures considering tray temperatures as controlled variables in distilla-
tion processes is a common industrial practice, and self-optimizing control can be used to
evaluate the loss of implying a structure that uses these variables, with a first-principles
model or a surrogate-based one (actually, if the surrogate is accurate enough, any variable
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that can be measured can be considered to be tested as a CV candidate, which is the main
point of this work). To illustrate that, the example was extended to the case where some
stage temperatures are available measurements.

It can be seen in Figure 4 that the region between stages 120-140 has a steeper
“slope” (which actually is the change in temperature from tray to tray) if compared with
the rest of the stages along the column. In fact, this is one of the “classical” available
criteria to prescreen optimal stage temperatures to be used as controlled variables, as
reported by Luyben (2006, 2013). Therefore, it was considered as available measurements
for some promising candidates (and some that with the criteria shown above, will be
poor candidates, namely stages 10, 11 and 12) to check if the self-optimizing control
methodology will corroborate the proposed methodology by Luyben (2006, 2013):

y = [T10, T11, T12, T120, T125, T130, T133, T134, T135, T136] (4.13)

Figure 4 – Temperature profile for depropanizer column.
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The expected disturbances were considered as the same as the first part of this
case study, up to ±10% of nominal conditions:

Wd = diag(27.3, 14.7, 0.1) (4.14)
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and the implementation error for the temperatures was considered as ±1C:

W y
n = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (4.15)

Considering the exact local method with explicit solution Alstad, Skogestad, and
Hori (2009) using single temperature measurements, the following losses were obtained
(Table 7):

Table 7 – Temperatures Single measurements as CV candidates: Worst and average-case
losses for depropanizer case study.

Measurement Worst-case loss [$/h] Average-case loss [$/h]
T133 43.5694 3.6308
T130 44.7776 3.7315
T134 45.2288 3.7691
T135 48.1316 4.0110
T136 52.4720 4.3727
T125 69.9778 5.8315
T120 156.7512 1.0626
T11 1.4810× 109 1.2342× 108

T11 2.3186× 109 1.9322× 108

T10 3.8192× 109 3.1827× 108

It can be clearly seen from Table 7 that, in fact, one of the temperatures that
is in the region with steepest slopes between stages, which is stage 133, have the best
self-optimizing control properties, generating the lowest worst and average-case losses
among the all stages considered (45.2288 $/h and 3.6308 $/h, respectively), followed also
by temperatures that are in the same region. However, stages 10, 11, and 12, which are in
a region with “flatter” slopes (checking the column temperature profile, from Figure 4),
generated the worst possible losses for this case study. Both results were expected because
considerable changes in temperature between trays indicate a region where compositions
of the components are changing more abruptly, and therefore, keeping a constant tray
temperature in this region should hold the composition profile (LUYBEN, 2006, 2013), if
compared with a column region that has irrelevant temperature change between stages
(such as the region where stages 10,11 and 12 are located).

Considering linear combinations of the stage temperatures available as CVs candi-
dates, different subsets were generated and the best and worst of them (to display all of
them is impracticable due to combinatorial explosion) are available in loss ascending order
(Table 8).

From Table 8 it can be shown that the linear combinations that uses temperatures
from the column bottom region generates the subsets that yields the lowest losses. On
the other hand, subsets generated with temperatures of stages 10, 11, and 12 produce
unacceptable losses.
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Table 8 – Linear Combinations of Stage Temperatures - Depropanizer case study.
Measurements Worst-case loss [$/h] Average-case loss [$/h]

2 T133, T134 23.0352 1.5357
T130, T133 23.0895 1.5393
T130, T134 23.4697 1.5646
T133, T135 23.6773 1.5785
T11, T12 8.9655× 108 5.9770× 107

T10, T12 1.0562× 109 7.0415× 107

T10, T11 1.4280× 109 9.5199× 107

3 T130, T133, T134 16.0981 0.8943
T133, T134, T135 16.2733 0.9041
T130, T133, T135 16.3679 0.9093
T10, T11, T12 7.2400× 108 4.0222× 107

4 T130, T133, T134, T135 12.6869 0.6041
T130, T133, T134, T136 12.8910 0.6139
T133, T134, T135, T136 12.9549 0.6169
T110, T111, T112, T125 69.9623 3.3315
T110, T111, T112, T120 156.8485 7.4690

4.1.8 Dynamic Simulations

Dynamic performance of two control structures were considered: controlling L/F
with the unconstrained degree of freedom along with the active constraint found (distillate
propene molar fraction), and controlling a linear combination of two temperatures (T133,
T134) to show the robustness of the subsets found using “surrogate modelling-aided”
self-optimizing control.

The regulatory layer was implemented with a classical L-V structure, using the
distillate flow rate to control the reflux drum level and using the bottom flow rate to
keep the sump level at its set point, with proportional-only controllers, tuned with the
Ziegler-Nichols method. Regarding the first control structure, on the supervisory layer
(also tuned with Ziegler- Nichols method), an RGA analysis suggests the pairing of the
active constraint (propene top stream molar fraction) with the boilup flow rate and to
keep the L/F ratio manipulating the reflux flow rate (L)

c2 =
 xD

L/F

 (4.16)

The first and second lines of the following matrix correspond to propene composition
at the top stream and L/F , respectively. The first and second columns corresponds to the
reflux flow rate and boil up flow rate:

Λstruturel =
 −0.052 1.052

1.052 −0.052

 (4.17)

Disturbances on feed flow rate, composition, and vapor fraction were considered to
evaluate the performance of the control structure.
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Figure 5 – Valve opening and closing (5% amplitude) - Depropanizer case study, control
structure 1.

 

 

Figure 6 – 2.5% increase in vapor fraction - Depropanizer case study, control structure 1.

 

 

As can be seen in Figures 5-7, the control structure is robust and capable to
deal with the expected disturbances of the process. As stated before, another control
structure, considering a linear combination of two temperatures (T133, T134) was also
implemented because its worst-case loss is promising (23.0532 $/h). Coefficients for the
linear combinations are from the H matrix obtained by Equation 2.27, and the control
structure becomes

c3 =
 0.71343T133 + 0.70070T134

xD

 (4.18)

A second RGA analysis was performed, and it suggested the parings xD − V and
T133 + T134 − L. Similarly, as before, the first and second lines of the following matrix
correspond to propene composition at the top stream and the combination of temperatures,
respectively. The first and second columns correspond to the reflux flow rate and boilup
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Figure 7 – ±5% disturbance of propene feed molar fraction. - Depropanizer case study,
control structure 1.

 

 

 

flow rate:

Λstructure 2 =
 −0.0328 1.0328

1.0328 −0.0328

 (4.19)

Similarly, as in the first proposed control structure, disturbances in feed flow rate,
composition and vapor fraction were performed:

Figure 8 – Valve opening and closing (5% amplitude) - Depropanizer case study, control
structure 2.

 

 

 

It can be seen in Figures 8-10 that the second control structure also has a robust
performance, being able to deal with the disturbances expected, while the worst-case
loss (23.0352 $/h) is smaller if compared with the first control structure (31.4245 $/h).
Therefore, we recommend the use of the second one.
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Figure 9 – 2.5% increase in vapor fraction - Depropanizer case study, control structure 2.
 

 

Figure 10 – ±5% disturbance of propene feed molar fraction. - Depropanizer case study,
control structure 2.
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4.2 Case II - Economic Self-Optimizing Control of a Evaporation
process

4.2.1 Problem Description

This case consists in an evaporation process slightly modified Kariwala, Cao,
and Janardhanan (2008) from the work of Newell and Lee (1989) a “forced circulation”
evaporator designed to increase the concentration of dilute liquor by evaporating solvent
from the feed using a vertical heat exchanger. This process was also studied by Govatsmark
and Skogestad (2001) The system can be seen in Figure 11.

Figure 11 – Evaporation system flowsheet.
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The objective function (of economic nature) is the same as the one depicted in the
work of Kariwala, Cao, and Janardhanan (2008)

J = 600F100 + 0.6F200 + 1.009 (F2 + F3) + 0.2F1 − 4800F2 (4.20)

The first three terms correspond to operational costs of steam, water and pumping,
respectively, and the fourth is the value of product generated. The process has limitations
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related to design, product specification and safety:

X2 ≥ 35.5%
40kPa ≤ P2 ≤ 80kPa

0kg/min ≤ F200 ≤ 400kg/min
8.5kg/min ≤ F1 ≤ 20kg/min
0kg/min ≤ F3 ≤ 100kg/min

(4.21)

The lower bound of F1 was modified from 0 to 8.5kg/min following Govatsmark
and Skogestad (2001) suggestion, to avoid operational instability. There is a backoff of
0.5% in X2 in order to ensure feasibility for all disturbances.

The process has five control degrees of freedom (F1, F2, P100, F3, F200), and three
disturbances (X1, T1, T200). From the five available degrees of freedom, one is consumed to
stabilize the separator level. Nominally, the evaporator works with X1 = 5%, T1 = 40◦C
and T200 = 25◦C. The disturbances allowable range are the same as Kariwala, Cao, and
Janardhanan (2008).

4.2.2 Surrogate model generation and optimization

To test the effectiveness of Caballero and Grossmann (2008) algorithm when
dealing with complex problems, an initial Latin hypercube sampling of only 53 points was
performed and the algorithm could reach the values from the original non-linear model
with robust precision as can be seen in Table 9, after adding 27 best points from 148
evaluated. The brute-force infill technique, however, was not able to reach the desired
precision. This phenomenon was well-investigated in the past by Forrester, Sobester, and
Keane (2008). Table 10 compares the values found for all variables between the kriging
prediction and the original model.

Table 9 – Optimization Results of Surrogate responses and using the Original nonlinear
Model (Implemented in MATLAB) for Comparison Purposes - Evaporation
system case study.

F1[kg/min] F3[kg/min] P100[kPa] F200[kg/min] X2[%] J [$/h]
Rigorous model 9.469 24.721 400.000 217.738 35.5 -582.233
Kriging 9.469 24.722 400.000 217.785 35.5 -582.233

4.2.3 Reduced Space surrogate model

Exactly as the original model, there were two active constraints for the whole
disturbance region: X2 = 35.5% and P100 = 400kPa. From the five degrees of freedom
available, the separator level and the active constraints consume three of them, and as
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Table 10 – Decision/State Variables and its optimal values: Original implementation and
kriging response - Evaporation system case study.

Variable Description Units MATLAB model Kriging
F 1 feed flow rate kg/min 9.46900 9.46940
F 2 product flow rate kg/min 1.33400 1.33370
F 3 circulating flow rate kg/min 24.7210 24.7225
F4 vapor flow rate kg/min 8.13500 8.13570
F 5 condensate flow rate kg/min 8.13500 8.13570
X1 feed composition % 5.00000 5.00000
X2 product composition % 35.5000 35.5000
T 1 feed temperature °C 40.0000 40.0000
T 2 product temperature °C 88.4000 88.4006
T3 vapor temperature °C 81.06600 81.0662
P2 operating pressure kPa 51.41200 51.4126
F100 steam flow rate kg/min 9.43400 9.43460
T100 steam temperature °C 151.5200 151.5200
P100 steam pressure kPa 400.0000 400.0000
Q100 heat duty kW 345.2920 345.3079
F200 cooling water flow rate kg/min 217.73800 217.78500
T200 inlet temperature of cooling water °C 25.00000 25.00000
T 201 outlet temperature of cooling water °C 45.55000 45.54610
Q200 condenser duty kW 313.21000 313.22500

in the original model, in reduced space there are two remaining degrees of freedom. The
active constraints were implemented in the model, and the reduced surrogate response
was built with only a hundred cases. These remaining degrees of freedom can be chosen
freely, but to compare the results with the ones from Kariwala, Cao, and Janardhanan
(2008) the following were selected:

u = [F200F1]T (4.22)

y = [P2T2T3F2F100T201F3F5F200F1]T (4.23)

4.2.4 High-order Data Obtainment

Similar to case 1, the gradients and hessians with respect to remaining degrees of
freedom and disturbances were found using the DACE toolbox and the expression for the
hessian developed in this study:

Juu =
 0.0052 −0.1201
−0.1201 15.0545

 Jud =
 0.0185 3× 10−6 −6.8× 10−6

−157.6693 −1.1483 1.2717

 (4.24)
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Gy =



−0.0932 11.6796
−0.0523 6.5592
−0.0472 5.9215

0 0, 1408
−0.0009 1.1152
−0.0945 2.1713
−0.0318 6.5993

0 0, 8592
1 0
0 1



Gd
y =



−3.6269 0 1.9724
−2.0369 0 1.1077
−1.8388 0 1
0.2668 0 0
−0.3175 −0.0181 0
−0.3175 0 1
−2.2556 −0.0657 0.6733
−0.2668 0 0

0 0 0
0 0 0



(4.25)

Comparing with the gradients and hessians obtained by Kariwala, Cao, and Ja-
nardhanan (2008) from the original non-linear model:

Juu =
 0.006 −0.133
−0.133 16.737

 Jud =
 0.023 0 −0.001
−158.373 −1.161 1.484

 (4.26)

Gy =



−0.093 11.678
−0.052 6.559
−0.047 5.921

0 0.141
−0.001 1.115
−0.094 2.170
−0.031 6.594

0 0.859
1 0
0 1



Gd
y =



−3.626 0 1.972
−2.036 0 1.108
−1.838 0 1
0.267 0 0
−0.317 −0.018 0.0201
−0.317 0 1
−2.253 −0.066 0.673
−0.267 0 0

0 0 0
0 0 0



(4.27)

It can be clearly seen that the approximation for the matrices is precise, as shown
in Table 11:

Table 11 – Matrix Mean-Squared error between gradients and hesssians obtained by Kari-
wala, Cao, and Janardhanan (2008) and this work - Evaporation system case
study.

Matrices: Kariwala, Cao, and Janardhanan (2008) and this work Matrix Mean-Squared Error (MSE)
Gy 1.6585× 10−6

Gy
d 3.3047× 10−7

Juu 0.7060
Jud 0.0861
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4.2.5 Expected Disturbances and Implementation Errors

The weighting matrices for allowable disturbance set and implementation errors
were the same as Kariwala, Cao, and Janardhanan (2008):

Wd = diag(0.25, 8, 5)
W y

n = diag(1.285, 1, 1, 0.027, 0.189, 1, 0.494, 0.163, 4.355, 0.189)
(4.28)

4.2.6 Loss evaluation

Using the surrogate response generated and the matrices obtained through DACE
and hessian approximation, the best individual measurements (yielding the lowest worst-
case and average-case losses) for the two remaining degrees of freedom were:

c = [F3F200]T (4.29)

With a worst-case and average-case losses of 62.3165 $/h and 4.1819 $/h respectively.
Using all 10 measurements available, the losses for worst and average cases using the exact
local method decrease drastically to 8.3591 $/h and 0.2160 $/h, and using the extended
null space method of 9.7102 $/h and 0.2508 $/h. Table 12 shows some possible subsets
of different sizes using the exact local method approach to minimize the worst-case loss
and can be compared to the findings of Kariwala, Cao, and Janardhanan (2008) It is
important to emphasize that despite the fact that the values found for the losses in each
case are slightly numerically higher from the ones evaluated through the rigorous model
(as a result of gradient and hessian approximations), the quality of the analysis was not
compromised in any way, since the exact same sequence of subsets possible (from lowest
to highest losses order) that were found in the work of Kariwala, Cao, and Janardhanan
(2008) were also on this study, as can be checked in Table 12.

Considering a “just-enough” measurement subset, using the sub-optimal rule from
Alstad, Skogestad, and Hori (2009) finding the subset with size equal to ny = nu +nd using
the branch and bound method with the criterion of maximizing the minimum singular
value of G̃Y , the sub-optimal set found was

y = [P2, F2, T201, F3, F200] (4.30)

With a worst-case loss of 12.603 $/h, which can be an option considering the
reduced complexity if compared to the approach of using all 10 measurements.



72 Chapter 4. Case studies

Table 12 – Linear combinations of measurements as CV candidates for Self-Optimizing
control and its losses - Order sequence comparison: Kariwala, Cao, and Janard-
hanan (2008) vs. this study - Evaporation system case study.

Worst-Case Loss Average-case loss
Measurements Original Model Kriging Original Model Kriging

2 F3, F200 56.713 62.316 3.808 4.182
T201, F3 57.140 62.616 4.330 4.677
P2, T201 57.862 63.447 4.388 4.737
F100, F 200 58.370 63.550 3.900 4.744
P2, F200 58.386 63.598 3.964 4.747

3 F2, F 100, F 200 11.636 12.700 1.238 0.711
F 2, F 100, T 201 13.327 13.895 1.124 1.161
F2, T201, F3 16.619 18.421 1.143 1.214
F2, F 100, T 201, F 3 17.797 18.868 1.565 1.052

4 F2, T 201, F 3, F 200 9.195 10.359 0.793 0.635
F2, F 100, F 5, F 200 9.427 10.501 0.701 0.504
F2, F 100, F 5, F 200 9.879 10.734 0.845 0.515
F2, F 100, F 3, F 200 10.547 11.833 0.799 0.568

4.2.7 Dynamic simulations

In addition, the best individual measurements policy control structure c = [F3 F200]T

was implemented in the process and its dynamic performance was evaluated for the ex-
pected disturbances: Feed composition (X1), Feed temperature (T1) and steam temperature
(T2). The regulatory layer (separator level) and the active constraint X2 had their control
loops tuned using the built-in MATLAB/Simulink PID Tune tool. The MV-CV pairing for
the regulatory layer and for X2 follows from the work of Govatsmark and Skogestad (2001)
The remaining active constraint (P100) and both self-optimizing control variables (F3, F200)
correspond to manipulated variables and, therefore, were just kept at their nominally
optimal values. Important process variables (T2, X2, P2) associated with the product were
observed:

Figure 12 – ±5% disturbance in feed molar fraction (5.25% and 4.75%, respectively) -
Evaporation system case study.
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Figure 13 – ±20% disturbance in feed temperature. (48°C and 32°C, respectively) - Evap-
oration system case study.

 

 

 

Figure 14 – ±20% disturbance in steam temperature (26.25°C and 23.75°C, respectively).
- Evaporation system case study.

 

 

 

From figures 12-14, it can be seen that the proposed metamodel and SOC-based
control structure is capable of keeping the process operating robustly with (near) optimal
operation.

4.3 Case III - Economic Self-Optimizing Control of Cumene Pro-
cess production

4.3.1 Problem Description

The last problem to be addressed with the proposed methodology of this study
consists in the cumene process production, a large-scale case study. The process has been
studied in the past by Luyben (2010) and Gera, Panahi, et al. (2013). Fresh/recycled
benzene and propylene are mixed and vaporized and sent to a feed effluent heat exchanger.
Afterwards, the vapor stream is heated in a furnace to the reaction temperature, and sent
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to a PBR reactor. In this reactor, propylene reacts with benzene in vapor phase to produce
cumene (C9). However, there is a sequential reaction, producing undesirable di-isopropyl
benzene (DIPB/C12) . The reactor effluent is cooled down in the FEHE and partially
condensed in a aftercooler. This stream is then sent to three distillation columns: The
purge column separates propane (inert) and unreacted propylene at the top stream, being
used as fuel gas. The bottoms is sent to the 2nd column (recycle column): The unreacted
benzene from the distillate is recycled and the bottoms of this column is sent to the last
(product) column where cumene and DIPB are distilled. The discharge of C12 is also used
as fuel. The process flowsheet is available in Figure 15. All simulation conditions were
based on the work of Gera, Panahi, et al. (2013). The main process disturbances are the
propylene feed and amount of impurity (inert propane) on the propylene feed.

Figure 15 – Cumene process production flowsheet.
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The reactions that occur in the PBR reactor (main and side ones) are the following:

C6H6 + C3H6 → C9H12 (4.31)

C9H12 + C3H6 → C12H18 (4.32)

For this process there are 11 DOFs. However, some simplifications can be made
in order to avoid a problem with poor convergence, as did before by different authors
(JAGTAP; KAISTHA, 2012; ARAÚJO; SKOGESTAD, 2008; GERA; PANAHI, et al.,
2013). Here we followed the same simplifications from Gera, Panahi, et al. (2013): The
reactor effluent aftercooler is maintained at this nominal setpoint (100◦C), since it has
almost no impact in the objective function and will guarantee that the reactor products
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will be condensed. The vent stream of the purge column and the compositions of propane
at the bottoms of the first column and the composition of cumene leaking at the distillate
of the recycle column were also kept fixed by the same reason. Therefore, the problem
is reduced to the most impactful variables, remaining with 7 DOFs. They were chosen,
without loss of generality, to maximize the number of cases converged at the process
simulator, and are described in Table 13.

The objective function for this case study consists in the profit of the unit. All of
the information regarding the optimization problem is present Table 13, also based in the
work of Gera, Panahi, et al. (2013). There was a slight modification regarding the lower
bound for the furnace temperature setpoint: In order to avoid its shutdown, a lower limit
of 350◦C was imposed.

Table 13 – Cumene process production optimization problem summary.
Objective Function: Profit [$/h]
J = 150× FC9 − 34.3× FC3 − 68.5× FC6

−9.83× (Qreboiler
column1 + Qreboiler

column2 + Qreboiler
column3 + QV aporizer)− 16.8×Qfurnace

−0.16× (Qcondenser
column1 + Qcondenser

column2 + Qcondenser
column3 + Qaftercooler)

+36.14× FDIP B + 11.1874× FV ent + 6.67×Qreactor

Process constraints
0 ≤ Material (liquid) flows ≤ 2 (base case)
0 ≤ V1, V2, V3 ≤ 1.5 (base case)
Vent temperature = 32◦C
0 ≤ energy flows ≤ 1.7 (base case)
5.5 bar ≤ PRxr ≤ 25 bar
Cumene product purity ≥ 0.999 molar fraction
Degrees of freedom
200 ≤ Benzene total mole flow ≤ 300 (kmol/h)
350 ≤ Furnace Temperature ≤ 400 ◦C
350 ≤ Reactor coolant temperature ≤ ◦C
5.5 ≤ Reactor pressure ≤ 25 (bar)
1.5× 10−4 ≤Recycle columnC6Bottoms composition ≤ 15× 10−4

0.5 ≤ Product column bottoms flowrate ≤ 4 (kmol/h)
80 ≤ Product column boilup rate (V3) ≤ 160 (kmol/h)

4.3.2 Surrogate model generation and optimization

Considering the process constraints imposed regarding the liquid flows, the boilup
limitation on the first two columns (the product column constraint was incorporated as a
decision variable) , the energy flow constraints and the product specification, there are 19
nonlinear constraints that must have kriging responses built, and the objective function.
This totalized 20 surrogate responses that had an initial sample of 200 points generated
and provided to the infill algorithm from Caballero and Grossmann (2008).

The nominally optimal operating point was calculated and its results were compared
with an optimization performed within the process simulator (Aspen Plus) in Equation-
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Oriented Mode. One can see that the results are extremely close in a qualitative (active
constraints found) and quantitative point of views.

The cumene product specification and the reactor pressure were found as active
constraints, a result that actually could be anticipated due to the economic nature of
the objective function, as well discussed in the past by Skogestad (2000) and Minasidis,
Skogestad, and Kaistha (2015). However, we chose to keep them as decision variables to
observe how the proposed methodology of this work would perform in a case that has a
high dimensionality and it is extremely nonlinear/large-scale. Another active constraint
was found was the boilup of the recycle column (V2): A result that has been found
in the past by Gera, Panahi, et al. (2013), and that will maximize the production of
the valuable product. The last active constraint found (Furnace Temperature) aims to
energy consumption reduction, and could also be expected to happen. A summary of the
optimization results and the comparison with an optimization run performed using the
process simulator directly is found in Table 14.

Table 14 – Optimization Results of Surrogates and Original Model - Cumene process
production case study.

Variable Aspen Plus ® Kriging
Profit [$/h] 3991.1 3997.4
Benzene total mole flow (kmol/h) 292.5200 288.2961
Furnace Temperature ◦C (active constraint) 350 350
Reactor coolant temperature ◦C 360.364 356.6269
Reactor pressure (bar) (active constraint) 25 25
Recycle column C6Bottoms composition 6× 10−4 5× 10−4

Product column bottoms flowrate (kmol/h) 0.88051 0.83620
Product column boilup rate (V3) (kmol/h) 95.5514 93.2532
Recycle column boilup rate (V2) (kmol/h) (active constraint) 211.38 211.38
Product column cumene purity (active constraint) 0.999 0.999

4.3.3 Reduced Space Surrogate Model

For this case study, the reduced-space problem boils down to 3 unconstrained
degrees of freedom. The active constraints were implemented in the process simulator
and another design of experiments was performed, now including the disturbances as
independent variables of the kriging responses. 200 cases with an amplitude of ±0.5%
were sampled. The unconstrained degrees of freedom chosen were the remaining from the
original decision variables from the optimization problem: Total benzene molar flowrate,
Reactor coolant temperature and product column boilup flowrate.

The measurements considered as CV candidates are avaiable in Table 15. They
were chosen based on the work of Gera, Panahi, et al. (2013) and considering variables
that are typically available in industrial processes.
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Table 15 – Cumene process production CV Candidates.
Variable Description
Y1 Benzene Total Flowrate (kmol/h)
Y2 Reactor Coolant Temperature ◦C
Y3 Product Column Benzene Distillate molar fraction
Y4 Product Column DIPB Distillate molar fraction
Y5 Product Column Stage 16 Temperature ◦C
Y6 Product Column Stage 17 Temperature ◦C
Y7 Product Column Boilup flowarte ◦C
Y8 Product Column Reflux Ratio
Y9 Reactor Benzene to Propylene ratio
Y10 Product Column Reflux flowrate (kmol/h)
Y11 Product Column Reflux to feed ratio
Y12 Product Column Boilup to feed ratio
Y13 Product Column Cumene Distillate molar fraction
Y14 Furnace Temperature ◦C
Y15 Recycle Column Boilup flowrate (kmol/h)
Y16 Reactor pressure (bar)
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4.3.4 High-order data obtainment

The gradients and hessians with respect to the degrees of freedom of the uncon-
strained problem and expected disturbances were extracted. Using the process simulator
in Equation-Oriented mode, it was possible to evaluate the gradients with respect to the
unconstrained degrees of freedom and disturbances, for comparison purposes with the
high-order data obtained using the metamodel built, as can be seen on tables 16-17. Once
again, there is an excellent agreement between the gradients evaluated using the process
simulator and using metamodels.

Table 16 – High-order data obtainment: Aspen Plus vs Kriging - Cumene Pro-
cess case study.

Gy Gy
d

Kriging



78.2356 0.0726 9.7728× 10−5

4.7267× 10−10 1.0000 −4.8129× 10−10

2.0092× 10−5 −3.8512× 10−7 −1.2307× 10−8

−2.0092× 10−5 3.8512× 10−7 1.2307× 10−8

−1.9317 −0.9156 7.0635
−1.5111 −0.7203 5.5333

5.9048× 10−9 −9.9608× 10−10 1.0000
0.0014 0.0006 0.0064
0.0103 8.7878× 10−5 −2.0154× 10−8

0.1304 0.0563 0.6114
0.0014 0.0005 0.0064

−3.0034× 10−5 −0.0002 0.0104





−0.1570 0.0678
1.4908× 10−9 −1.7712× 10−8

−1.5660× 10−6 −6.2690× 10−7

1.5660× 10−6 6.2690× 10−7

−7.4864 0.4184
−5.8679 0.3126

−1.6463× 10−9 9.7379× 10−8

−0.0054 −0.0002
−0.0306 7.4593× 10−5

−0.2116 −0.0197
−0.0054 −0.0002
−0.0099 0.0001



Aspen Plus



78.2337 0.0856 0
0 1 0

2.0136× 10−5 −4.2035× 10−7 −1.3748× 10−8

−2.0136× 10−5 4.2035× 10−7 1.3748× 10−8

−1.9338 −0.9706 7.0767
−1.4933 −0.7533 5.4699

0 0 1
0.0013 0.0005 0.0065
0.0103 0.0001 0
0.1282 0.0535 0.6208
0.0013 0.0005 0.0065

−2.2983× 10−5 −0.0003 0.0105





−0.1575 0.0869
0 0

−1.5721× 10−6 −6.8428× 10−7

1.5721× 10−6 6.8428× 10−7

−7.4895 0.4390
−5.7926 0.3402

0 0
−0.0055 −0.0002
−0.0306 0.0001
−0.2222 −0.0195
−0.0055 −0.0001
−0.0099 0.0002



Table 17 – Matrix Mean-Squared error between gradients and hesssians obtained using the
process simulator and metamodels - Cumene process production case study.
Matrices: Aspen Plus and metamodels Matrix Mean-Squared Error (MSE)

Gy 2.4736× 10−4

Gy
d 3.0605× 10−4

4.3.5 Expected Disturbances and Implementation Errors

For temperature measurments, it was considered a 0.5◦C error, associated with
typical process instrumentation. For flows and ratios, a value of 1× 10−3 to represent



4.3. Case III - Economic Self-Optimizing Control of Cumene Process production 79

the error of flow sensors was used. For composition measurments, a value of 1× 10−6

(1ppm) was considered. For the expected disturbances, up to 5% of the nominal individual
flowrates of propylene and propane at the fresh propylene feed were considered. Therefore,
the weightning matrices are

Wd = diag(4.8417, 0.2548) (4.33)

W y
n = diag(0.0010, 0.5000, 1× 10−6, 1× 10−3, 0.5000,

0.5000, 1× 10−3, 1× 10−3, 1× 10−3,

1× 10−3, 1× 10−3, 1× 10−3)

(4.34)

4.3.6 Loss Evaluation

The loss evaluation for this case study was performed for linear combinations using
3 and 4 measurements, and the five best strucutres for each subset size can be inspected
in Table 18:

Table 18 – Worst and Average-case losses evaluation - Cumene Process Production Case
Study.

Measurements Worst-case loss [$/h] Average-case loss [$/h]
3 Y2, Y3, Y6 0.7604 0.0521

Y2, Y3, Y5 0.7607 0.0521
Y1, Y2, Y6 0.8490 0.0580
Y1, Y2, Y5 0.8494 0.0580
Y2, Y3, Y12 0.8807 0.0602

4 Y1, Y7, Y9, Y10 0.0040 0.0002
Y3, Y7, Y9, Y10 0.0043 0.0003
Y1, Y5, Y7, Y10 0.0072 0.0004
Y3, Y5, Y7, Y10 0.0087 0.0005
Y1, Y6, Y7, Y10 0.0117 0.0007

As can be seen in Table 18, Control strucutres that use sensitive tray temperatures
associated with compositions, such as the best control structure for the subset of size 3,
are promising self-optimizing control strucutres. It was expected that control strucutres
with compositions measurments would be among the best structures due to the economic
impact of directly maintaining such variables at optimal setpoints. However, there are
interesting control structures that could be applied in a descentralized fashion, such as the
third or fourth best ones

Ya = (Y1, Y2, Y6) (4.35)

Yb = (Y1, Y2, Y5) (4.36)
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That keeps constant the total amount of benzene recycled back to the reaction
section, the reactor coolant temperature and a sensitive temperature from the product
column, and both have a small incurred loss.



Part IV

Conclusions
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5 Conclusions

This study aimed at developing a systematical procedure to the selection of control
structures (SOC-Based) of chemical processes using surrogate responses of them. The
final objective is that the procedure described is capable of simplifying and reducing the
complexity of evaluating control structures in these processes. The use of the surrogate
responses, as can be seen in the three case studies, guaranteed the reduction of the
complexity while the precision was not heavily compromised. This can be a powerful tool
unlocking the SOC technology for processes that were not feasible to be analyzed in the
past, when the evaluation of hessians and gradients, mandatory to implement the exact
local method (From Halvorsen et al. (2003)) and the extended null space method (From
Alstad, Skogestad, and Hori (2009)), are cumbersome and/or even infeasible using the
original (also called rigorous) models.

In chapter 2 the main aspects of the self-optimizing control technology were
presented, and the problem of evaluating high-order data in order to use the local methods
presented was raised to the reader. In addition, the main aspects of the response surface
methodology (the usage of kriging interpolators and the infill criteria to optimize surrogate
responses) were formally discussed and derived as a proposition to solve the aforementioned
problem.

In chapters 3-4, three case-studies that were studied before by several authors were
tested using the proposed methodology. For the first case study, a depropanizer column
proposed by Skogestad (2000), it was shown that the same order of best control structures
was found using the surrogate responses to optimize the process and to extract the high-
order data. The infill criteria was executed both manually (“brute-force” approach) and
using the algorithm proposed by Caballero and Grossmann (2008), and a important result
could be found: That an large number of points will not be always necessary to find the
optimal operating point with precision. This result it is of great importance due to the
fact that there are processes that have large dimensionality and are extremely non-linear
(case study 3 it is a good example, for instance), and they can be time consuming at
the sampling step. Therefore, there is a good approach of providing an initial sample not
extremely large and let the algorithm of Caballero and Grossmann (2008) interactively add
more sampled points based on the optimization of the response surface of the objective
function.

The second case study of an evaporation process it is of particular interest because
it was built by Kariwala, Cao, and Janardhanan (2008) using the symbolic math toolbox
from MATALB, and they could extract the high-order data (Gradients and Hessians)
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directly from it. Therefore, it is a great case study to directly compare if the high-order
data generated by the analytical expressions for the first and second derivatives of the
kriging predictor are precise. It was shown that they were not only extremely close, but
also as a result of that, the exact same order of control structures for single measurement
policy and linear combinations of measurements were found, compared with the original
study from Kariwala, Cao, and Janardhanan (2008). This result also corroborates the
promising results of the proposed methodology.

The last case study, a large-scale cumene process production, was built to show
how the proposed methodology was going to perform in a large scale example, and the
results were satisfactory. The variables that were expected to be active constraints were
found (due to the economic nature of the objective function), and the best CV candidates
found were in compliance with results found previously in the literature. In addition, we
used the process simulator to compare the gradients obtained by the kriging interpolator,
with the results generated by the former, and once again the results were extremely close:
An additional result in favor of the proposed methodology.
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APPENDIX A – Kriging Proofs: Predictor,
Gradient, and Hessian

To present the Kriging predictor, we assume that q = 1 (single response), thus the
linear predictor takes form of:

ŷ(x) = cTY (A.1)

where c = c(x) ∈ Rm. We treat Equation A.1 as random and compute the mean
squared error (MSE) of this predictor averaged over the random process. Therefore, the
best unbiased linear predictor is obtained by choosing c in order to minimize:

ϕ(x) = MSE(ŷ(x)) = E
[
(ŷ(x)− y(x))2

]
(A.2)

The E[]̇ is the expectation operator. The prediction error is defined by

ŷ(x)− y(x) = cTY − y(x)
= cT (Fβ + Z)−

(
f(x)Tβ + z

)
= cTZ − z +

(
F T c− (x)

)T
β

(A.3)

where F is the expanded design matrix:

Fij = fj (si) , i = 1, . . .m and j = 1, . . . , h (A.4)

with f(x) defined in Equation 2.40, and Z = [z1, . . . zm]T being the error at the
design sites.

Equation Equation A.3 is restricted to the unbiasedness constraint:

F T c− f(x) = 0 (A.5)

Consequently, combining Eqs. A.1-A.5:

ϕ(x) = E
[(
cTZ − z

)2
]

= E
[
z2 + cTZZT c− 2cTZz

]
= σ2

(
1 + cTRc− 2cT r

) (A.6)
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where σ2 is the process variance, and R and r are defined as

Rij = R (θl, si, sj) , i, j = 1, . . .m
r = r(x) = [R (θl, s1, x) . . .R (θl, sm, x)]T

(A.7)

To minimize Equation A.6 with respect to c, we make use of the Lagrangian
multipliers in the objective function:

L(c, λ) = σ2
(
1 + cTRc− 2cT r

)
− λT

(
F T c− f(x)

)
(A.8)

The gradient of this function is

∇cL(c, λ) = σ2(Rc− 2r)− Fλ (A.9)

and the optimality conditions for Equation A.8 are that at the solution (c∗, λ∗)(NOCEDAL;
WRIGHT, 2006):

∇cL (c∗, λ∗) = 0
λ∗
(
F T c∗ − f(x)

)
= 0

(A.10)

From Equation A.9, the following set of equations is obtained:

 R F

F T 0

  c

λ̃

 =
 r

f(x)


λ̃ = − λ

2σ2

(A.11)

As a solution to Equation A.11 by calculating its partitioned inverse:

c = R−1(r − Fλ̃)

λ̃ =
(
F TR−1F

)−1 (
F TR−1r − f(x)

) (A.12)

By applying Equation A.12 to Equation A.1, the best unbiased linear predictor
becomes

ŷ(x) = rTR−1Y −
(
F TR−1r − f(x)

)T (
F TR−1F

)−1
F TR−1Y (A.13)

The usual generalized least-squares estimate of β is

β∗ =
(
F TR−1F

)−1
F TR−1Y (A.14)
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Thus, the predictor is defined by

ŷ(x) = rTR−1Y −
(
F TR−1r − f(x)

)T
β∗

= f(x)Tβ∗ + rTR−1 (Y − Fβ∗)
= f(x)Tβ∗ + rTγ∗

(A.15)

and the MSE, by applying Equation A.12 in Equation A.6:

ϕ(x) =σ2
[
1 + (Fλ̃− r)TR−1(Fλ̃+ r)

]
=σ2

[
1 +

(
F TR−1r − f

)T (
F TR−1F

)−1 (
F TR−1r − f

)
−rTR−1r

] (A.16)

The gradient and Hessian of the predictor are defined as

ŷ′(x) = Jf (x)Tβ∗ + Jr(x)Tγ∗

ŷ′′(x) = Hf (x)β∗ +Hr(x)γ∗
(A.17)

where

(Jf (x))ij = ∂fi(x)
∂xj

, (Jr(x))ij = ∂R (θ, sj, x)
∂xj

(A.18)

(Hf (x))ij = ∂2fi(x)
∂xj∂xj

, (Hr(x))ij = ∂2R (θ, sj, x)
∂xj∂xj

(A.19)

R (θ, xi, xj) = exp
(
−θdp

ij

)
, di,j = xi − xj, p ∈ [0, 2] (A.20)

∂R (θ, xi, xj)
∂xi

= −θpdp−1
i,j R (θ, xi, xj) (A.21)

∂R (θl, xi, xj)
∂xj

= −∂R (θ, xi, xj)
∂xi

(A.22)

∂2R (θ, xi, xj)
∂xi∂xj

= θpdp−2
i,j R (θ, xi, xj)

(
p− 1 + θpd

p
i,j

)
(A.23)

Finally, there is the hyperparameters (θ) estimation. This is done by assuming a
Gaussian process and maximizing the likelihood L of Y :

L(x, θ, µ) = 1
(2πσ2) |R|1/2 exp

(
−(Y − Fβ)TR−1(Y − Fβ)

2σ2

)
(A.24)
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where the estimator of θ, θ∗ is

θ∗ = (Y − Fβ∗)T R−1 (Y − Fβ∗)
m

(A.25)
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