

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA COORDENAÇÃO DO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PROCESSOS

RAMON VIANA DE SOUSA

SECAGEM EM CAMADA FINA E ESPESSA DE GRÃOS DE ARROZ VERMELHO EM CASCA: AVALIAÇÃO EXPERIMENTAL, MODELAGEM E SIMULAÇÃO.

Campina Grande, Paraíba

Agosto/2017.

RAMON VIANA DE SOUSA

SECAGEM EM CAMADA FINA E ESPESSA DE GRÃOS DE ARROZ VERMELHO EM CASCA: AVALIAÇÃO EXPERIMENTAL, MODELAGEM E SIMULAÇÃO.

Tese apresentada ao curso de Pós-Graduação em Engenharia de Processos da Universidade Federal de Campina Grande, em cumprimento às exigências para a obtenção do título de Doutor em Engenharia de Processos.

Área de Concentração: Desenvolvimento de processos

ORIENTADORES:

Prof. Dr. Mario Eduardo Rangel Moreira Cavalcanti Mata

Prof^a. Dra. Maria Elita Martins Duarte

Campina Grande, Paraíba

Agosto/2017

MEMBROS DA BANCA EXAMINADORA DA TESE DE DOUTORADO DE **RAMON VIANA DE SOUSA** APRESENTADA AO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PROCESSOS DO CENTRO DE CIÊNCIAS E TECNOLOGIA DA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE.

Tese de Doutorado apresentada em 30 de Agosto de 2017.

Prof. Dr. Mário Eduardo R. M. Cavalcanti Mata UFCG/CTRN/UAEA – ORIENTADOR

Prof.^a Dr.^a Maria Elita Martins Duarte UFCG/CTRN/UAEA – ORIENTADORA

Prof.^a Dr.^a Severina de Sousa UFCG/CTRN/UAEA – EXAMINADORA EXTERNA

Dr. Renato Fonseca Aragão UFCG/CTRN/UAEA – EXAMINADOR EXTERNO

Prof. Dr. Marcos José de Almeida Gama UFCG/CTRN/UAF – EXAMINADOR EXTERNO

Dr. Luís Antônio Dantas UFCG/CTRN/UAEA – EXAMINADOR EXTERNO

Campina Grande, Paraíba Agosto/2017

AGRADECIMENTOS

Agradeço a todos que de alguma forma colaboraram para realização deste trabalho, em especial:

- ✓ A Deus por ter me iluminado e transmitido força para realizar com êxito este trabalho.
- ✓ Aos verdadeiros mestres de minha vida, meus pais Argemiro e Teresinha, que me deram a vida e ensinaram a vivê-la com dignidade. A você mãe, que ilumina minha vida com amor e dedicação e a você pai, meu exemplo de ser humano, de caráter e honestidade que me ensina a enfrentar sem medo todos os obstáculos da minha vida.
- ✓ A minha esposa Rossana e meus filhos Rafaela e Rafael pelo apoio, companheirismo, paciência, incentivo, uma verdadeira fonte de inspiração para não fraquejar durante todo o curso de doutorado.
- ✓ Ao meu irmão Robério e minha irmã Bianca, por todo apoio e incentivo.
- Ao Prof. Dr. Mario Eduardo Rangel Moreira Cavalcanti Mata e a Prof^a. Dra. Maria Elita Martins Duarte, primeiramente por ter sugerido o tema da pesquisa abordada, e depois, pela eficiente orientação e incentivo no desenvolvimento de todas as etapas do trabalho.
- ✓ A Dra. Renata Duarte Almeida, agradeço pelo seu modo prestativo e eficiente com que sempre atendeu as minhas necessidades nos laboratórios. Minha admiração pela sua postura, simplicidade e conhecimento.
- ✓ Agradeço a minha instituição, o Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte – Campus Currais Novos, sobretudo pela liberação integral para realização do curso de doutorado.
- ✓ A todos os meus professores em dividir seus conhecimentos durante os cursos ministrados.
- Meus respeitosos agradecimentos pelas contribuições da banca do exame do Seminário I, Qualificação, Seminário II e Defesa Final.

- ✓ Ao Dr. Luís Antônio Dantas pelas contribuições no processo de simulação computacional realizada neste trabalho de pesquisa.
- ✓ À coordenação do Programa de Pós-Graduação em Engenharia de Processos da Universidade Federal de Campina Grande (UFCG), na pessoa do Prof. Dr. Antônio Gilson Barbosa de Lima.
- ✓ A todo povo brasileiro que financia nossos estudos através do pagamento de tributos.

"Jamais considere seus estudos como uma obrigação, mas como uma oportunidade invejável para aprender a conhecer a influência libertadora da beleza do reino do espírito, para seu próprio prazer pessoal e para proveito da comunidade à qual seu futuro trabalho pertencer."

Albert Einstein

SUMÁRIO

LISTA DE FIGURAS LISTA DE TABELAS NOMENCLATURA RESUMO

ABSTRACT

1. INTRODUÇÃO	25
1.1-Objetivo geral	27
1.2- Objetivos específicos	27
2. REVISÃO BIBLIOGRÁFICA	29
2.1- O arroz vermelho	29
2.2- Propriedades Físicas dos Grãos	30
2.2.1- Teor de água	30
2.2.1.1 - Cálculo do teor de água	31
2.2.2- Massa específica aparente	32
2.2.3 - Porosidade intergranular	33
2.2.4- Calor específico	35
2.3- Processo de Secagem	36
2.3.1- Período com taxa de secagem constante	37
2.3.2- Período com taxa de secagem decrescente	38
2.4- Equilíbrio higroscópico	39
2.4.1- Modelos de equilíbrio higroscópico	42
2.4.1.1 - Modelo de Kelvin	42
2.4.1.2 - Modelo de Langmuir	42
2.4.1.3 - Modelo de BET	43
2.4.1.4 - Modelo de GAB	44
2.4.1.5 - Modelo de Henderson	44
2.4.1.6 - Modelo de Henderson-Thompson	45
2.4.1.7 - Modelo de Chung e Pfost	45

2.4.1.8 - Modelo de Cavalcanti Mata	45
2.4.1.9 - Henderson modificada por Cavalcanti Mata	46
2.4.1.10 - Modelo Halsey modificada	46
2.4.1.10 - Modelo Sabbah	46
2.5- Calor latente de vaporização da água do grão	47
2.6 - Entalpia, entropia e energia livre de Gibbs	49
2.7- Curvas da cinética de secagem de grãos	49
2.7.1 - Modelos matemáticos de secagem em camada fina	50
2.8 - Simulação de secagem em camada espessa	55
2.8.1 - Modelo Hukill	55
2.8.2 - Modelo Thompson	57
2.8.3 - Modelo de Morey	62
2.8.4 - Modelo de Michigan	64
3. MATERIAL E MÉTODOS	67
3.1- Matéria prima	67
3.2-Teor de água	68
3.3- Massa específica e porosidade	68
3.3.1 Massa específica aparente	68
3.3.2 – Massa específica real	68
3.3.3 – Porosidade	69
3.4 - Isotermas de equilíbrio higroscópico	69
3.5 - Calor latente de vaporização da água dos grãos	71
3.6 – Entalpia, entropia e energia livre de Gibbs	73
3.7- Calor específico	73
3.8- Curvas da cinética de secagem de grãos	75
3.9- Secagem em camada espessa	79
3.10 – Simulação de Secagem de grãos	81
4. RESULTADOS E DISCUSSÕES	90
4.1 – Massa específica e porosidade	90
4.1.1 - Massa específica aparente e Real	90
4.1.2 – Porosidade	92

4.2 - Isotermas de dessorção	94
4.3 - Determinação do calor latente de vaporização	100
4.4 - Entalpia, entropia e energia livre de Gibbs	106
4.5 - Calor específico	108
4.6 - Curvas da cinética de secagem em camada fina	110
4.6.1 - Curvas da cinética de secagem do arroz vermelho em casca para	
diversas condições de temperatura e teor de água inicial	119
4.6.2 - Análise do comportamento da difusividade efetiva para	
diferentes modelos matemáticos	127
4.6.3 - Influência do teor de água inicial no processo de secagem do	134
arroz vermelho em casca	154
4.7 – Resultados experimentais e simulações em camada espessa	138
5. CONCLUSÕES	158
6. REFERÊNCIAS BIBLIOGRÁFICAS	160
7. APÊNDICES	169

LISTA DE FIGURAS

Figura 2.1	Imagem do plantio de arroz vermelho na fazenda Tamanduá,	
	município de Aparecida, sertão paraibano	30
Figura 2.2	Picnômetro de comparação de ar desenvolvido pelo Núcleo de	
	Tecnologia em Armazenamento da Universidade Federal de	
	Campina Grande	34
Figura 2.3	Valores observados e estimados pelo modelo de Henderson	
	modificada por Thompson, teores de água de equilíbrio	
	higroscópico do arroz vermelho em casca, obtidos por dessorção,	
	para diferentes condições de temperatura e umidade relativa do	
	ar	40
Figura 2.4	Isotermas de adsorção e dessorção, representação do fenômeno	
	de histerese	41
Figura 2.5	Desenho esquemático do grão de arroz vermelho em casca com	
	suas dimensões característica	53
Figura 2.6	Diagrama que mostra o processo de secagem em camada fina	
	durante um intervalo de tempo Δt	58
Figura 2.7	Volume elementar de uma camada de grãos	64
Figura 3.1	Amostra dos grãos de arroz vermelho em casca colhido no sítio	
	Pau D'arco, município de Itaporanga – PB	67
Figura 3.2	Frasco hermético utilizado no experimento para determinação do	
	teor de água pelo método estático	70
Figura 3.3	Desenho esquemático do calorímetro utilizado para a medição do	
	calor específico dos grãos	74
Figura 3.4	Secador de leito fixo utilizado nos experimentos da secagem dos	
	grãos de arroz vermelho em casca	77
Figura 3.5	Recipiente hermético utilizado para umedecimento artificial dos	
	grãos de arroz vermelho em casca	78
Figura 3.6	Secador em escala laboratorial utilizado para o processo de	
	secagem em camada espessa	80
Figura 3.7	Tela inicial de abertura do aplicativo	82
Figura 3.8	Tela operacional do aplicativo	83

Figura 3.9	Tela operacional de seleção da eq. de umidade de equilíbrio utilizada	84
Figura 3.10	Tela operacional com seleção da eq. de camada fina em destaque.	85
Figura 3.11	Tela operacional de apresentação dos resultados da simulação:	
	tempo de secagem, teor de água do produto, temperatura e média	
	do teor de água (resultados da simulação) e as respectivas	
	cinéticas de secagem	86
Figura 3.12	Representação dos dados simulados, no formato texto para	
	transferência à outros meios e/ou softwares	87
Figura 3.13	Tela operacional de apresentação dos créditos do O SASS _{Arroz}	
	Vermelho	88
Figura 4.1	Valores experimentais e preditos da massa específica aparente	
	(ρ_{ap}) e massa específica real (ρ) do arroz vermelho em casca em	
	função do teor de água	92
Figura 4.2	Valores experimentais e preditos da porosidade interanular (ε) do	
	arroz vermelho em casca em função do teor de água	93
Figura 4.3	Superfície de resposta das isotermas de dessorção dos grãos de	
	arroz vermelho em casca, estimada pelo modelo de Henderson	
	modificada por Cavalcanti Mata, para diferentes condições de	
	temperatura e umidade relativa do ar	97
Figura 4.4	Superfície de resposta das isotermas de dessorção dos grãos de	
	arroz vermelho em casca, estimada pelo modelo de Henderson	
	modificada por Thompson, para diferentes condições de	
	temperatura e umidade relativa do ar	97
Figura 4.5	Superfície de resposta das isotermas de dessorção dos grãos de	
	arroz vermelho em casca, estimada pelo modelo de Chung-Pfost,	
	para diferentes condições de temperatura e umidade relativa do	
	ar	98
Figura 4.6	Superfície de resposta das isotermas de dessorção dos grãos de	
	arroz vermelho em casca, estimada pelo modelo de Cavalcanti	
	Mata, para diferentes condições de temperatura e umidade	
	relativa do ar	98

Figura 4.7	Superfície de resposta das isotermas de dessorção dos grãos de	
	arroz vermelho em casca, estimada pelo modelo de Sabbah, para	
	diferentes condições de temperatura e umidade relativa do	
	ar	99
Figura 4.8	Superfície de resposta das isotermas de dessorção dos grãos de	
	arroz vermelho em casca, estimada pelo modelo de Halsey	
	modificada, para diferentes condições de temperatura e umidade	
	relativa do ar	99
Figura 4.9	Superfície de resposta das isotermas de dessorção dos grãos de	
	arroz vermelho em casca, estimada pelo modelo de Henderson,	
	para diferentes condições de temperatura e umidade relativa do	
	ar	100
Figura 4.10	Retas de "Othmer" para determinação do calor latente de	
	vaporização do arroz vermelho em casca com teor médio de água	
	de equilíbrio variando de 5 a 35%, base	104
Figura 4.11	Superfície de resposta do calor latente de vaporização dos grãos	
	de arroz vermelho em casca em função da temperatura e teor de	
	água de equilíbrio	106
Figura 4.12	Valores observados e estimados do calor específico dos grãos de	
	arroz vermelho em casca, em função do teor de água	109
Figura 4.13	Superfície de resposta do parâmetro "k" da equação de Page em	
	função do teor de água inicial e da temperatura do ar de secagem,	
	obtidos por regressão não linear	111
Figura 4.14	Superfície de resposta do coeficiente da difusividade efetiva do	
	modelo de Fick em função do teor de água inicial e da	
	temperatura de secagem, obtidos por regressão não	
	linear	112
Figura 4.15	Curvas da cinética de secagem em camada fina do arroz	
	vermelho em casca com teor médio de água inicial de 20%, base	
	úmida, obtidos por regressão não linear para diferentes condições	
	de temperatura	120

vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 30%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura	120 121 121
 úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 30%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições 	120 121 121
de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 30%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura	120 121 121
Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 30%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura	121 121
vermelho em casca com teor médio de água inicial de 30%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições	121 121
 úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições 	121 121
de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições	121
Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições	121
vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições	121
úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições	121
de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições	121
Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições	
vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições	
úmida, obtidos por regressão não linear para diferentes condições	
de temperatura	122
Curvas da cinética de secagem em camada fina do arroz	122
vermelho em casca com teor médio de água inicial de 30%, base	
úmida, obtidos por regressão não linear para diferentes condições	
de temperatura	122
Curvas da cinética de secagem em camada fina do arroz	
vermelho em casca com teor médio de água inicial de 20%, base	
úmida, obtidos por regressão não linear para diferentes condições	
de temperatura	123
Curvas da cinética de secagem em camada fina do arroz	
vermelho em casca com teor médio de água inicial de 25%, base	
úmida, obtidos por regressão não linear para diferentes condições	
de temperatura.	123
Curvas da cinética de secagem em camada fina do arroz	
vermelho em casca com teor médio de água inicial de 30%, base	
úmida, obtidos por regressão não linear para diferentes condições	
de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 30%, base úmida, obtidos por regressão não linear para diferentes condições	123
	vermelho em casca com teor médio de água inicial de 30%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 30%, base úmida, obtidos por regressão não linear para diferentes condições

Figura 4.24	Curvas da cinética de secagem em camada fina do arroz	
	vermelho em casca com teor médio de água inicial de 20%, base	
	úmida, obtidos por regressão não linear para diferentes condições	
	de temperatura	124
Figura 4.25	Curvas da cinética de secagem em camada fina do arroz	
	vermelho em casca com teor médio de água inicial de 25%, base	
	úmida, obtidos por regressão não linear para diferentes condições	
	de temperatura	125
Figura 4.26	Curvas da cinética de secagem em camada fina do arroz	
	vermelho em casca com teor médio de água inicial de 30%, base	
	úmida, obtidos por regressão não linear para diferentes condições	
	de temperatura	125
Figura 4.27	Curvas da cinética de secagem em camada fina do arroz	
	vermelho em casca com teor médio de água inicial de 20%, base	
	úmida, obtidos por regressão não linear para diferentes condições	
	de temperatura	126
Figura 4.28	Curvas da cinética de secagem em camada fina do arroz	
	vermelho em casca com teor médio de água inicial de 25%, base	
	úmida, obtidos por regressão não linear para diferentes condições	
	de temperatura	126
Figura 4.29	Curvas da cinética de secagem em camada fina do arroz	
	vermelho em casca com teor médio de água inicial de 30%, base	
	úmida, obtidos por regressão não linear para diferentes condições	
	de temperatura	127
Figura 4.30	Superfícies de respostas do coeficiente de difusividade efetiva do	
	arroz vermelho em casca, estimada pelos modelos de Fick, Page	
	e Cavalcanti Mata, para diferentes condições de temperatura e	
	teor de água inicial	132
Figura 4.31	Representação de Arrhenius para a difusividade efetiva em	
	função da temperatura do ar de secagem e teor de água inicial	
	estimada pelos modelos de Fick, Page e Cavalcanti Mata	133
Figura 4.32	Influência do teor de água inicial na secagem dos grãos de arroz	
	vermelho para temperatura de 40 °C	136

Figura 4.33	Influência do teor de água inicial na secagem dos grãos de arroz	
	vermelho para temperatura de 50 °C	130
Figura 4.34	Influência do teor de água inicial na secagem dos grãos de arroz	
	vermelho para temperatura de 60 °C	137
Figura 4.35	Influência do teor de água inicial na secagem dos grãos de arroz	
	vermelho para temperatura de 70 °C	137
Figura 4.36	Influência do teor de água inicial na secagem dos grãos de arroz	
	vermelho para temperatura de 80 °C	138
Figura 4.37	Dados experimentais e simulados da secagem em camada	
	espessa do arroz vermelho em casca com teor de água médio	
	inicial de 20% base úmida e temperatura de 40 °C	139
Figura 4.38	Valores do teor de água médio dos dados experimentais e	
	simulados da secagem em camada espessa do arroz vermelho em	
	casca	139
Figura 4.39	Dados experimentais e simulados da secagem em camada	
	espessa do arroz vermelho em casca com teor de água médio	
	inicial de 20% base úmida e temperatura de 50 °C	14(
Figura 4.40	Valores do teor de água médio dos dados experimentais e	
	simulados da secagem em camada espessa do arroz vermelho em	
	casca	141
Figura 4.41	Dados experimentais e simulados da secagem em camada	
	espessa do arroz vermelho em casca com teor de água médio	
	inicial de 20% base úmida e temperatura de 60 °C	142
Figura 4.42	Valores do teor de água médio dos dados experimentais e	
	simulados da secagem em camada espessa do arroz vermelho em	
	casca	142
Figura 4.43	Dados experimentais e simulados da secagem em camada	
	espessa do arroz vermelho em casca com teor de água médio	
	inicial de 20% base úmida e temperatura de 70 °C	143
Figura 4.44	Valores do teor de água médio dos dados experimentais e	
	simulados da secagem em camada espessa do arroz vermelho em	
	casca	144

Figura 4.45	Dados experimentais e simulados da secagem em camada	
	espessa do arroz vermelho em casca com teor de água médio	
	inicial de 25% base úmida e temperatura de 40 °C	145
Figura 4.46	Valores do teor de água médio dos dados experimentais e	
	simulados da secagem em camada espessa do arroz vermelho em	
	casca	145
Figura 4.47	Dados experimentais e simulados da secagem em camada	
	espessa do arroz vermelho em casca com teor de água médio	
	inicial de 25% base úmida e temperatura de 50 °C	146
Figura 4.48	Valores do teor de água médio dos dados experimentais e	
	simulados da secagem em camada espessa do arroz vermelho em	
	casca	147
Figura 4.49	Dados experimentais e simulados da secagem em camada	
	espessa do arroz vermelho em casca com teor de água médio	
	inicial de 25% base úmida e temperatura de 60 °C	148
Figura 4.50	Valores do teor de água médio dos dados experimentais e	
	simulados da secagem em camada espessa do arroz vermelho em	
	casca	148
Figura 4.51	Dados experimentais e simulados da secagem em camada	
	espessa do arroz vermelho em casca com teor de água médio	
	inicial de 25% base úmida e temperatura de 70 °C	149
Figura 4.52	Valores do teor de água médio dos dados experimentais e	
	simulados da secagem em camada espessa do arroz vermelho em	
	casca	150
Figura 4.53	Dados experimentais e simulados da secagem em camada	
	espessa do arroz vermelho em casca com teor de água médio	
	inicial de 30% base úmida e temperatura de 40 °C	151
Figura 4.54	Valores do teor de água médio dos dados experimentais e	
	simulados da secagem em camada espessa do arroz vermelho em	
	casca	151
Figura 4.55	Dados experimentais e simulados da secagem em camada	
	espessa do arroz vermelho em casca com teor de água médio	
	inicial de 30% base úmida e temperatura de 50 °C	152

Figura 4.56	Valores do teor de água médio dos dados experimentais e	
	simulados da secagem em camada espessa do arroz vermelho em	
	casca	153
Figura 4.57	Dados experimentais e simulados da secagem em camada	
	espessa do arroz vermelho em casca com teor de água médio	
	inicial de 30% base úmida e temperatura de 60 °C	154
Figura 4.58	Valores do teor de água médio dos dados experimentais e	
	simulados da secagem em camada espessa do arroz vermelho em	
	casca	154
Figura 4.59	Dados experimentais e simulados da secagem em camada	
	espessa do arroz vermelho em casca com teor de água médio	
	inicial de 30% base úmida e temperatura de 70 °C	155
Figura 4.60	Valores do teor de água médio dos dados experimentais e	
	simulados da secagem em camada espessa do arroz vermelho em	
	casca	156

Sumário

LISTA DE TABELAS

Tabela 2.1	Primeiras seis raízes da função de Bessel de primeiro tipo e de	
	ordem zero	
Tabela 3.1	Preparo de soluções saturadas de Sais (SPIESS & WOLF,	
	1987)	
Tabela 4.1	Valores médios da massa específica aparente (ρ_{ap}), massa	
	específica real (p) e porosidade intergranular (ϵ) do arroz	
	vermelho em casca em função do teor de água	
Tabela 4.2	Valores médios do teor de água de equilíbrio (% base seca) dos	
	grãos de arroz vermelho em casca, para diferentes condições de	
	temperatura (°C) e da umidade relativa do ar (decimal)	
Tabela 4.3	Coeficientes dos modelos ajustados aos teores de água de	
	equilíbrio higroscópico para os grãos de arroz vermelho em casca	
	com seus respectivos coeficientes de determinação (R ²), erro	
	médio relativo (P) e desvio quadrático médio (DQM)	
Tabela 4.4	Dados da umidade relativa obtidos pela equação de Henderson	
	modificada por Cavalcanti Mata para o arroz vermelho em casca,	
	em função do teor de água de equilíbrio e temperatura	
Tabela 4.5	Dados da pressão do vapor de água do arroz vermelho em casca,	
	em função do teor de água de equilíbrio e temperatura	
Tabela 4.6	Dados do logaritmo neperiano da pressão do vapor de água do	
	arroz vermelho em casca, em função do teor de água de	
	equilíbrio e temperatura	
Tabela 4.7	Dados dos coeficientes das retas de "Othmer" para determinação	
	do calor latente de vaporização do arroz vermelho em casca	
Tabela 4.8	Calor latente de vaporização dos grãos de arroz vermelho em	
	casca em função da temperatura e teor de água de equilíbrio	
Tabela 4.9	Valores da entalpia (Δ H), entropia (Δ S) e energia livre de Gibbs	
	(ΔG) para diferentes condições de temperatura e teor de água	
	inicial	
Tabela 4.10	Valores do calor específico do arroz vermelho em casca em	
	função do teor de água	

Tabela 4.11	Parâmetros estimados do modelo proposto por Fick obtida por	
	meio de regressão não linear para diferentes condições de	
	temperatura e teor de água médio inicial	114
Tabela 4.12	Parâmetros estimados do modelo proposto por Henderson e	
	Pabis obtida por meio de regressão não linear para diferentes	
	condições de temperatura e teor de água médio inicial	115
Tabela 4.13	Parâmetros estimados do modelo proposto por Page obtida por	
	meio de regressão não linear para diferentes condições de	
	temperatura e teor de água inicial, com os respectivos	
	coeficientes de determinação	116
Tabela 4.14	Parâmetros estimados do modelo proposto por Cavalcanti Mata	
	obtida por meio de regressão não linear para diferentes condições	
	de temperatura e teor de água inicial, com os respectivos	
	coeficientes de determinação	117
Tabela 4.15	Parâmetros estimados do modelo proposto por Thompson obtida	
	por meio de regressão não linear para diferentes condições de	
	temperatura e teor de água inicial, com os respectivos	
	coeficientes de determinação	118
Tabela 4.16	Parâmetros do modelo proposto por Page, com seu respectivo	
	coeficiente de determinação (R^2) para diferentes condições de	
	temperatura e teor de água inicial	128
Tabela 4.17	Parâmetros do modelo proposto por Cavalcanti Mata, com seu	
	respectivo coeficiente de determinação (R^2) para diferentes	
	condições de temperatura e teor de água inicial	129
Tabela 4.18	Parâmetros do modelo proposto por Fick, com seu respectivo	
	coeficiente de determinação (R^2) para diferentes condições de	
	temperatura e teor de água inicial	130
Tabela 4.19	Valores médios da energia de ativação em função do teor de água	
	para diferentes modelos matemáticos nas temperaturas de 40, 50,	
	60, 70 e 80 °C	134

NOMENCLATURA

h	altura do cilindro	m
Α	área da superfície da semente	m^2
a_w	atividade de água	
С	calor específico	$J kg^{-1} C^{-1}$
Ca	calor específico da água	$J kg^{-1} C^{-1}$
C _{ar}	calor específico do ar	$J kg^{-1} C^{-1}$
c_g	calor específico do grão	$J kg^{-1} C^{-1}$
h_{fg}	calor latente de vaporização da água	$J kg^{-1}$
h'_{fg}	calor latente de vaporização da água da semente	$J kg^{-1}$
С	capacidade calorífica	J °C ^{−1}
C_{cal}	capacidade calorífica do calorímetro	$J \circ C^{-1}$
D_{ef}	coeficiente de difusividade efetiva de massa	$m s^{-1}$
$D_{ heta}$	coeficiente de difusividade efetiva de massa	$m s^{-1}$
h_c	coeficiente de transferência de calor	$W m^2 K^{-1}$
h_m	coeficiente de transferência de massa convectiva	mms^{-1}
K	condutividade térmica	$W m^{-1} {}^{\circ}\mathrm{C}^{-1}$
k	constante da energia de interação entre camadas	
C_{BET}	constante de BET	
G	constante de Guggenhein	
C_L	constante de Langmuir	
R_{v}	constantes dos gases de vapor d'água	$J kg^{-1} K^{-1}$
DQM	desvio quadrático médio	
α	difusividade térmica	$m^2 s^{-1}$
Р	erro médio relativo	%
G_m	fluxo de massa de ar	$kg \ h^{-1}$
M_{MS}	massa da matéria seca da semente	g
m	massa das sementes	kg
m_3	massa de água $(m_1 + m_2)$	kg
m_1	massa de água à temperatura ambiente	kg

M_{H_2O}	massa de água da semente	g
m_2	massa de água refrigerada	kg
$ ho_{ap}$	massa específica aparente	$kg m^{-3}$
ρ	massa específica real	$kg m^{-3}$
M_T	massa total da semente	g
n	número de dados observados	
а	Parâmetro das equações	
	16, 17, 18, 19, 20, 21, 22, 27, 40, 41 e 42	
h	Parâmetro das equações	
b	16, 17, 18, 19, 20, 21, 22, 27, 40, 41 e 42	
C	Parâmetro das equações	
L	16, 17, 18, 19, 20, 21, 22, 27, 40, 41 e 42	
P_f	peso final da amostra	g
P_i	peso inicial da amostra	g
ε	porosidade	%
Р	pressão	$N m^{-2}$
P_{v}	pressão de vapor do ar	Ра
$P_{\nu s}$	pressão de vapor saturado	Ра
Q	quantidade de calor	J
r	raio do capilar cilíndrico	m
R _e	raio equivalente	m
λ_n	raízes da equação de Bessel	
W	razão de mistura de ar	$kg \; kg^{-1}$
RX	razão de teor de água	
RX_{exp}	razão de teor de água experimental	
RX_{pred}	razão de teor de água predito	
dx/dt	taxa de secagem	$kg \ h^{-1}$
Т	temperatura	°C
T_{abs}	temperatura absoluta	K
T_1	temperatura da água em condições ambientais	°C
T_2	temperatura da água fria	°C
T_{bs}	temperatura de bulbo seco	°C

T_{bu}	temperatura de bulbo úmido	°C
T_{eq}	temperatura de equilíbrio	°C
T_5	temperatura de equilíbrio térmico	°C
T_3	temperatura de equilíbrio térmico da mistura	°C
T_4	temperatura dos grãos	°C
Н	tempo de meia resposta	h
σ	tensão superficial da água	Ра
X	teor de água	%
X_{bs}	teor de água base seca	%
X_{bu}	teor de água base úmida	%
X _e	teor de água de equilíbrio	%
X_f	teor de água final	%
X _i	teor de água inicial	%
X_m	teor de água na monocamada	%
UR	umidade relativa do ar	
Ŷ	valor calculado modelo	
Y	valor observado experimentalmente	
ΔT	variação de temperatura	°C
V	volume da massa das sementes	m^3
v	volume de umidade	m^3

RESUMO

O presente trabalho de pesquisa teve como objetivos estudar o comportamento das massas específicas aparente e real; porosidade intergranular pelo método do deslocamento de líquidos e o calor específico determinado pelo método das misturas para teores de água variando de 11,6 a 30,06%, base úmida; determinar as isotermas de dessorção de equilíbrio higroscópico pelo método estático com uso de solução saturadas de sais, utilizando-se quatros níveis de temperatura 10, 20, 30 e 40 °C e cinco níveis de umidade relativa do ar variando entre 11,15 a 84,32%; para análise dos dados experimentais foram utilizados sete modelos matemáticos: Henderson modificada por Cavalcanti Mata, Henderson modificada por Thompson, Chung-Pfost, Halsey modificada, Cavalcanti Mata e Henderson; determinar, experimentalmente, o calor latente de vaporização da água do arroz vermelho em função do teor de água e temperatura, utilizando o método Othmer; analisar a cinética de secagem em camada fina utilizando um secador de leito fixo com ventilação forçada em cinco temperaturas: 40, 50, 60, 70 e 80 °C para teores de água inicial de 20, 25 e 30% aplicando-se aos dados experimentais cinco modelos matemáticos: Henderson modificada por Cavalcanti Mata, Henderson modificada por Thompson, Henderson, Fick, Page e Thompson; realizar a secagem e simulação matemática em camada espessa para temperaturas de 40, 50, 60 e 70 °C e teores de água estabelecidos na camada fina . Os resultados obtidos permitiram concluir que as massas específicas aparente e real, a porosidade intergranular e calor específico aumentaram com a elevação do teor de água e que o comportamento das propriedades físicas do arroz vermelho podem ser representadas em função do teor de água pelo modelo linear simples. Observou-se que o teor de água de equilíbrio higroscópico, para uma mesma umidade relativa, diminuiu com a elevação de temperatura, assim como, para uma mesma temperatura, o teor de água de equilíbrio higroscópico aumenta com o aumento da umidade relativa do ar, seguindo a mesma tendência da maioria dos produtos agrícolas. Baseando-se em parâmetros estatísticos, os modelos de Henderson modificada por Cavalcanti Mata e Henderson modificada por Thompson foram os que melhor representaram a higroscopicidade dos grãos de arroz vermelho em casca. A difusividade efetiva dos grãos de arroz vermelho, estimada pelo modelo Fick, aumentou com a elevação da temperatura do ar de secagem. Verificou-se também, que para cada temperatura analisada a difusividade efetiva aumenta com o aumento do teor de água inicial. Através das curvas de cinética de secagem, constatou-se que quando se aumenta a temperatura ocorre uma diminuição do tempo de secagem, enquanto para o teor de água inicial, quanto maior seu valor maior será a taxa de secagem no início do processo. Dentre os modelos analisados na cinética de secagem, o de Cavalcanti Mata foi o que melhor ajustou-se aos dados experimentais em todas as temperaturas e teores de água iniciais estudados. A simulação da secagem em camada espessa utilizou o modelo de Thompson, no qual apresentou uma concordância entre os dados experimentais e simulados para os valores médios das camadas, tendo o menor desvio médio final com temperatura de 60 °C e teor de água inicial equivalente a 20% b.u.

Palavras-chaves: arroz vermelho, secagem, modelagem matemática, equilíbrio higroscópico.

ABSTRACT

The present research work had as objectives to study the behavior of the apparent and real specific masses; intergranular porosity by liquid displacement method and the specific heat determined by the method of mixtures for water contents ranging from 11.6 to 30.06%, wet basis; determining the equilibrium desorption isotherms hygroscopic by the static method with use of saturated salt solution, using four temperature levels 10, 20, 30 and 40 ° C and five levels of relative humidity of the air ranging from 11.15 to 84,32%; for the analysis of experimental data seven mathematical models were used: Henderson modified by Cavalcanti Mata, Henderson modified by Thompson, Chung-Pfost, modified Halsey, Cavalcanti Mata and Henderson; determining, experimentally, the latent heat of vaporization of water from red rice as a function of water content and temperature, using the method Othmer; analyzing the drying kinetics of a thin layer using a fixed bed drier with forced ventilation in five temperatures: 40, 50, 60, 70 and 80 $^{\circ}$ C for initial water contents of 20, 25 and 30% by applying to the experimental data five mathematical models: Henderson modified by Cavalcanti Mata, Henderson modified by Thompson, Henderson, Fick, Page and Thompson; to perform drying and mathematical simulation in a thick layer at temperatures of 40, 50, 60 and 70 ° C and water levels established in the thin layer. The results showed that the apparent and real specific masses, the intergranular porosity and specific heat increased with increasing water content and that the behavior physical properties of red rice can be represented depending on the water content of the simple linear model. It was observed that the equilibrium water content, to the same hygroscopic relative humidity, decreased with temperature elevation, as to the same temperature, the hygroscopic equilibrium water content increases with increasing relative humidity, following the same trend of most agricultural products. Based on statistical parameters, models Henderson modified by Cavalcanti Mata and Henderson modified by Thompson were the best represented the hygroscopicity of red grains of rice in husk. The effective diffusivity of red rice grains, estimated by Fick model, increased with increasing drying air temperature. It was also found that for each temperature examined the effective diffusivity increases with increasing initial water content. Through the drying kinetics curves, it was found that increasing temperature is a decrease in drying time, while for the initial water content, the greater will be its highest drying rate early in the process. Among the models analyzed in the drying kinetics, the Cavalcanti Mata was the best set to the experimental data at all temperatures and initial water contents studied. The simulation of the thick layer drying used the Thompson model, in which it showed a concordance between the experimental and simulated datas for the average values of the layers, having the lowest average final deviation with temperature of 60 ° C and initial water content equivalent to 20% b.u.

Keywords: red rice, drying, mathematical modeling, hygroscopic equilibrium.

Introdução

1. INTRODUÇÃO

O arroz é um dos cereais mais consumidos na dieta básica da população mundial, dessa forma, é uma semente de extrema importância para garantir o suprimento alimentar. Em função disso, aspectos relacionados à conservação do produto pós-colheita devem ser continuamente analisados e estudados, a fim de evitar a deterioração e garantir a qualidade do produto final.

Das aproximadamente vinte espécies de *Oryza*, o gênero do arroz, apenas duas são cultivadas. A espécie asiática, *Oryza sativa*, considerada mais importante e a espécie africana *Oryza glaberrima* que vem sendo substituída pela *Oryza sativa*. O arroz vermelho é classificado como pertencente à mesma espécie do arroz cultivado, *Oryza sativa L.*, no qual apresenta a coloração do pericarpo do grão avermelhada, devido ao acúmulo de tanino ou de antocianina (MOREIRA et al., 2011).

De acordo com Pereira et al. (2009), o arroz vermelho apresenta algumas características que podem diferenciá-lo do arroz branco como, sabor, textura e maior valor nutricional. O arroz vermelho da espécie *Oryza sativa* L. é cultivado em pelo menos quatro continentes: América (Argentina, Brasil, Nicarágua e Venezuela), Europa (França e Rússia), África (Madagascar e Moçambique) e Ásia (Butão, China, Coréia do Sul, Filipinas, Índia, Indonésia, Japão, Malásia, Nepal, Sri Lanka e Tailândia).

No Brasil, o arroz vermelho foi trazido pelos portugueses, no século XVI, e cultivado pela primeira vez no estado da Bahia, conhecido na época como capitania de Ilhéus. Atualmente, seu maior cultivo ocorre na região semiárida do Nordeste, principalmente nos estados da Paraíba, Rio Grande do Norte, Pernambuco e Ceará.

O estado da Paraíba é o maior produtor de arroz vermelho do Brasil, conhecido também como "arroz da terra", um produto completamente diferenciado em relação ao chamado padrão nacional e que até o momento não apresenta uma classificação oficial. A maior produção está concentrada na região do vale do Piancó, uma bacia hidrográfica de solos naturalmente férteis cujo isolamento geográfico e a completa inexistência de tecnologia para esse cereal, sendo considerado, na atualidade, como o refugio para o arroz vermelho cultivado no Brasil (PEREIRA, 2004).

Apesar do arroz vermelho ser um produto altamente nutritivo, benéfico a saúde e fazer parte da culinária regional do Nordeste Brasileiro, tem-se informações limitadas na literatura sobre este tipo de arroz.

As sementes do arroz vermelho são substâncias higroscópicas. A higroscopia pode ser entendida como a capacidade que a semente possui de ceder ou absorver a umidade do ar ambiente e representa um parâmetro físico dos grãos no processo de secagem.

A secagem, por sua vez, é o processo utilizado para reduzir o teor de água dos produtos biológicos, envolvendo de forma contínua e simultânea os fenômenos de transferência de calor e massa entre o produto e o ar de secagem, desta forma, assegurando a qualidade e estabilidade dos grãos.

Para o processo de secagem, o teor de água apresenta-se como um fator na prevenção da deterioração do produto biológico. Se o teor de água e a respiração do produto forem mantidos em baixo nível o desenvolvimento de microrganismos serão minimizados.

A secagem do arroz vermelho é realizada de forma natural sobre terreiros, em lajedos e ambientes similares. Este tipo de secagem ocorre através da ação dos ventos e a energia utilizada neste processo emana da incidência direta ou indireta da energia solar. Borges et al. (2012) relatam que a temperatura e o teor de água dos grãos são controladas de forma empírica, onde os agricultores se baseiam no conhecimento adquirido de cada produtor ao longo do tempo dedicado a atividade. Desta forma, a etapa de secagem que compõe a pós-colheita do arroz vermelho é mal conduzida, de maneira que acontecem perdas elevadas de grãos, tanto quantitativas quanto qualitativas.

Em função da importância social, produtiva e econômica para a região nordeste, assim como interesse tecnológico no processamento e armazenamento dos grãos de arroz vermelho e a escassez de informações na literatura, estabeleceu-se como objetivo para este trabalho de pesquisa estudar a secagem do arroz vermelho em casca.

26

Introdução

1.1 - Objetivo geral

O presente trabalho tem por objetivo determinar as curvas da cinética de secagem do arroz vermelho em camada fina e espessa, para diferentes condições de temperatura e teor de água; utilizar modelos matemáticos que mais se ajustem aos dados experimentais obtidos e realizar a simulação computacional do processo de secagem.

1.2 - Objetivos específicos

- ✓ Analisar o efeito da variação do teor de água na porosidade e nas massas específicas aparente e real dos grãos do arroz vermelho em casca.
- ✓ Determinar as curvas de teor de água de equilíbrio higroscópico para as temperaturas de 10, 20, 30 e 40 °C e umidade relativa do ar variando entre 11,15 e 84,32% e verificar o modelo matemático que melhor se ajusta aos dados experimentais.
- Determinar e avaliar o calor específico dos grãos do arroz vermelho em função do teor de água.
- ✓ Determinar e analisar o comportamento do calor latente de vaporização da água do arroz vermelho para diferentes condições de temperatura e umidade relativa do ar.
- Determinar e avaliar as propriedades termodinâmicas, entalpia, entropia e a energia livre de Gibbs.
- ✓ Determinar as curvas de cinética de secagem dos grãos de arroz vermelho em casca em camada fina para as temperaturas de 40, 50, 60, 70 e 80 °C com teores de água inicial de 20, 25 e 30% base úmida e verificar, entre os modelos matemáticos de Fick, Henderson e Pabis, Page, Cavalcanti Mata e Thompson, o qual apresenta um melhor ajuste aos dados experimentais de secagem.

- ✓ Realizar a secagem dos grãos de arroz vermelho em camada espessa nas temperaturas de 40, 50, 60 e 70 °C para teores de água inicial de 20, 25 e 30% base úmida.
- Simular a secagem em camada espessa dos grãos de arroz vermelho e correlacionar os dados obtidos experimentalmente com os dados obtidos por simulação matemática.

2. REVISÃO BIBLIOGRÁFICA

A revisão bibliográfica aborda os temas mais relevantes ao processo de secagem desenvolvido neste trabalho de pesquisa. Desta forma, contempla-se um breve comentário do cultivo do arroz vermelho, o estudo das propriedades físicas e termodinâmicas dos grãos necessárias à secagem, a definição de secagem, as curvas de cinética de secagem e isotermas de dessorção, bem como os modelos matemáticos utilizados para representar os fenômenos.

2.1 – O Arroz vermelho

O arroz vermelho é praticamente desconhecido para a maioria da população brasileira, portanto, pouco cultivado. O cultivo ocorre, predominantemente, por pequenos agricultores, como lavoura de subsistência, com baixo uso de tecnologia.

A região do vale do Piancó no alto sertão da Paraíba é considerada a maior produtora de arroz vermelho do país. De acordo com a Emater (Empresa de Assistência Técnica e Extensão Rural), a região reuni 21 cidades e cerca de 2 mil produtores que sobrevivem do plantio do arroz vermelho, que se caracteriza em ser uma produção de pequena escala, que abrange uma área de cinco mil hectares com uma produção de aproximadamente 2.500 kg/ hectare.

O cultivo do arroz branco é realizado em 150 dias, enquanto o arroz vermelho, que é plantado em janeiro, leva 115 dias para ser colhido. Ademais, economicamente falando ele é mais valorizado. Esse arroz possui uma maior durabilidade e não tem problema com o armazenamento, pois quanto mais tempo estocado melhor é o produto. Diante do exposto, pode-se concluir que o arroz vermelho é um produto de mais rápida produção e que gera mais lucros para os agricultores da região.

O cultivo do arroz vermelho ocorre para autoconsumo, com práticas rudimentares, onde o nível tecnológico adotado por quase todos os produtores é artesanal, sendo considerado como um dos fatores para a baixa produtividade dos grãos (BORGES et al. 2012).

Adeptos da alimentação natural também têm usado cultivares de arroz vermelho na composição do arroz integral. Essas cultivares locais de arroz vermelho caracterizam-se por apresentar viabilidade, potencial útil aos programas de melhoramento genético, no entanto, esse arroz se encontra em processo de extinção, em razão da concorrência da indústria do arroz branco e do despovoamento do meio rural (MOREIRA et al., 2011).

A Figura 2.1 ilustra o plantio do arroz vermelho irrigado nas terras da fazenda Tamanduá, município de Aparecida, sertão da Paraíba.

Figura 2.1 - Imagem do plantio de arroz vermelho na fazenda Tamanduá, município de Aparecida, sertão paraibano

2.2 - Propriedades Físicas dos Grãos

2.2.1 - Teor de água

O grão de arroz vermelho analisado é composto de matéria seca e água. O teor de água de um produto consiste na quantidade de água contida no grão em relação a sua matéria seca, sendo esta função das condições de temperatura e umidade relativa do ar. Durante o armazenamento é importante que a quantidade de água presente no interior do grão seja mínima, seja apenas a quantidade suficiente para a continuidade dos processos biológicos de interesse do armazenamento (por exemplo, a manutenção do poder germinativo, no caso das sementes, ou mesmo a manutenção da resistência mecânica, que é importante, tanto para os grãos, como para as sementes). O teor de água é considerado um dos fatores mais importantes para a conservação e armazenamento dos produtos biológicos. Quanto maior o teor de água do produto, maior será sua perecibilidade e menor o tempo de armazenamento. O processo de conservação consiste em reduzir a água das sementes e/ou grãos, produtos com teor de água elevado favorece os processos microbiológicos, como o desenvolvimento de fungos, bactérias, e também para o desenvolvimento de insetos. A redução do teor de água deve apresentar um nível que fique em equilíbrio com o ar do ambiente onde serão armazenados, a fim de manter a qualidade fisiológica da semente ou a aparência e qualidade nutritiva para a alimentação humana e/ou animal dos grãos.

De acordo com Duarte et al. (2006), existem duas formas de água contidas nas sementes, a água livre e água combinada: a água livre denominada atividade de água (a_w) que funciona como solvente, disponível para o crescimento de microorganismos e reações de deterioração; a água combinada é aquela que apresenta uma alta energia de ligação, não disponível como solvente, reduzida mobilidade molecular, propriedades dielétricas diferentes da água livre e tem por principal propriedade não ser congelável.

Na comercialização do produto se faz necessário o conhecimento do teor de água, pois caso esteja acima do teor ideal acarretará um prejuízo para o comprador, uma vez que ele estará pagando pelo excesso de água, além de provocar infestações por microorganismos e a ocorrência de reações enzimáticas preservando-lhes a qualidade, o valor nutritivo e ainda assegurando o poder germinativo.

2.2.1.1 - Cálculo do teor de água

O teor de água (ou quantidade de água) do grão pode ser expresso em base úmida ou em base seca. O teor de água em base úmida é determinado por:

$$\% X_{bu} = \frac{M_{H2O}}{M_T} \ 100 = \frac{M_{H2O}}{M_{H2O} + M_{MS}} \ 100 \tag{01}$$

em que,

 $X_{bu} \rightarrow$ teor de água em base úmida, % $M_T \rightarrow$ massa total da semente, g $M_{H20} \rightarrow$ massa de água da semente, g $M_{MS} \rightarrow$ massa da matéria seca da semente, g

O teor de água em base seca é expresso por:

$$\% X_{bs} = \frac{M_{H2O}}{M_{MS}} \ 100 \tag{02}$$

sendo,

 $%X_{bs} \rightarrow$ teor de água em base seca.

O teor de água em base úmida é utilizado na comercialização do produto e na indústria. Enquanto, em trabalhos de pesquisa e equações relacionadas ao estudo da secagem utiliza-se o teor de água expresso em base seca.

As relações de conversão entre o teor de água em base seca e o teor de água em base úmida podem ser expressas pelas seguintes equações:

$$X_{bu} = \frac{X_{bs}}{100 + X_{bs}} \ 100 \tag{03}$$

$$X_{bs} = \frac{X_{bu}}{100 - X_{bu}} \ 100 \tag{04}$$

2.2.2 - Massa específica aparente

A massa específica é a relação entre determinada massa das sementes e o seu correspondente volume, definido como:

$$\rho = \frac{m}{V} \tag{05}$$

em que,

 $\rho \rightarrow$ massa específica, kgm^{-3} $m \rightarrow$ massa das sementes, kg $V \rightarrow$ volume da massa das sementes, m^3 .

Quando os espaços vazios existente na massa das sementes forem considerados, denomina-se de massa específica aparente, caso não sejam levados em consideração, denomina-se de massa específica real. No processo de secagem de sementes, geralmente, a massa específica analisada é a aparente.

Vários trabalhos relatam a relação da massa específica aparente com o teor de água dos produtos biológicos. Andrade et al. (2004) realizaram trabalho de pesquisa com grãos de milho; Ribeiro et al. (2005) realizaram trabalho de pesquisa com grãos de soja; Ribeiro et al. (2007) realizaram trabalho de pesquisa com grãos de trigo; Resende et al. (2008), realizaram trabalho de pesquisa com grãos de feijão da cultivar Vermelho Coimbra. Estes pesquisadores observaram que a massa específica aparente aumenta à medida que o teor de água é reduzido, o que pode ser explicado pela maior contração do volume da amostra de grãos, em relação à redução de massa, durante a secagem do produto.

2.2.3 - Porosidade intergranular

A porosidade, expressa em porcentagem, é definida como a relação entre os espaços vazios existentes dentro de uma massa de sementes. A porosidade influi diretamente na resistência ao fluxo de ar que atravessa a massa de um produto durante o processo de secagem. Cavalcanti Mata e Duarte (2002), concluíram que a porosidade intergranular é a principal característica física que define a resistência à passagem do ar no processo de secagem e aeração de produtos agrícolas.

Park et al. (2007), afirmam que a porosidade em grãos maiores é menor, porém dimensões dos poros são maiores, o que facilita o escoamento do ar que atravessa a massa do produto.

A fração de espaços vazios de uma massa de sementes, ou porosidade, pode ser determinada pelo conhecimento da massa específica real e a aparente, utilizando-se a equação:

$$\varepsilon = \left[1 - \left(\frac{\rho_{ap}}{\rho}\right)\right] 100 \tag{06}$$

em que:

 $\varepsilon \rightarrow$ Porosidade, % $\rho \rightarrow$ massa especifica real, $kg \ m^{-3}$ $\rho_{ap} \rightarrow$ massa especifica aparente, $kg \ m^{-3}$.

A porosidade também pode ser determinada pelo uso de um picnômetro de comparação a ar (Figura 2.2). Neste caso, a porosidade é calculada a partir da equação:

$$\varepsilon = \frac{(P_1 - P_2)}{P_1} 100 \tag{07}$$

Onde P_1 e P_2 são as pressões nos cilindros 1 e 2, respectivamente.

Figura 2.2 - Picnômetro de comparação de ar desenvolvido pelo Núcleo de Tecnologia em Armazenamento da Universidade Federal de Campina Grande

2.2.4 - Calor específico

Quando é fornecida ou retirada energia térmica a uma massa de sementes ocorrerá variação em sua temperatura, devido ao aumento ou redução do nível da agitação das partículas que constituem as sementes.

Calor é a energia térmica em trânsito, devido à diferença de temperatura entre os sistemas envolvidos. O calor flui de forma espontânea do corpo de maior temperatura para o corpo de menor temperatura.

O calor específico da semente é uma propriedade física que pode ser definida como a quantidade de calor (Q) que é fornecido ou retirado de uma massa de sementes para variar de 1 °C sua temperatura por unidade de massa, ou seja:

$$c = \frac{Q}{m\,\Delta T}\tag{08}$$

em que,

 $c \rightarrow$ calor específico das sementes, $J kg^{-1} \circ C^{-1}$ $Q \rightarrow$ quantidade de calor, J $m \rightarrow$ massa das sementes, kg

 $T \rightarrow$ temperatura, °C.

O produto de uma massa de sementes pelo seu calor específico nos fornece a capacidade calorífica deste produto. A capacidade calorífica também pode ser entendida como a capacidade que um produto apresenta em armazenar energia.

$$C = \frac{Q}{\Delta T} \tag{09}$$

em que,

 $C \rightarrow$ capacidade calorífica, $J \circ C^{-1}$.

Os principais métodos utilizados para determinação do calor específico são:

- 1. A relação entre a condutividade térmica, a massa específica e a difusividade térmica.
- 2. O processo das misturas.
- 3. Calorímetro de varredura diferencial.
- 4. Calorímetro do gelo
- 5. Bomba calorimétrica

O primeiro método consiste na determinação inicial da condutividade térmica, da massa específica e da difusividade térmica da amostra e calcular o calor específico pela relação:

$$c = \frac{K}{\rho \alpha} \tag{10}$$

Onde:

- $c \rightarrow \text{calor específico}, J kg^{-1} \circ C^{-1}$
- $K \rightarrow$ condutividade térmica, $W m^{-1} \circ C^{-1}$
- $\rho \rightarrow$ massa específica, $kg m^{-3}$ e
- $\alpha \rightarrow$ difusividade térmica, $m^2 s^{-1}$.

Os quatro últimos métodos são baseados no equilíbrio térmico entre um corpo de calor específico desconhecido e um outro corpo de calor específico já determinado.

2.3 - Processo de secagem

A secagem é uma das etapas mais importantes da etapa pós-colheita, tendo por finalidade reduzir o teor de água da semente, permitindo, desta forma, um maior período de armazenamento sem que haja a deterioração do produto. O processo de secagem envolve a redução do teor de água da semente até atingir um nível seguro que garanta a preservação da qualidade fisiológica do produto a ser armazenado durante um longo período de tempo.
De acordo com Cavalcanti Mata et al. (2006), a retirada parcial de água da semente ocorre através da transferência contínua e simultânea de calor e massa entre o produto e o ar de secagem, podendo ocorrer por convecção ou por condução. A transferência de calor ocorre devido à diferença de temperatura entre o ar de secagem e o produto, enquanto a transferência de massa, em forma de vapor de água, surge devido à diferença de pressão parcial de vapor de água entre o ar e a superfície do produto a ser secado.

A secagem que ocorre no interior dos produtos biológicos pode ser dividida em dois períodos distintos, um denominado período com taxa de secagem constante e outro período de taxa de secagem decrescente, o qual, por sua vez, pode ser caracterizado por um ou mais períodos, como apresentado a seguir:

2.3.1 - Período com taxa de secagem constante

Durante este período, os produtos biológicos apresentam teor de água inicialmente elevados, a superfície do sólido apresenta-se com uma fina camada de água que evapora do produto. Neste processo, a pressão de vapor d'água na superfície é igual à pressão de vapor de água livre à mesma temperatura de bulbo úmido no ar. Segundo Cavalcante Mata et al. (2006), este período pode ser observado nos produtos para os quais a resistência interna ao transporte de água é muito menor que a resistência externa de remoção do vapor de água na superfície do produto.

O valor do teor de água que marca o final do período de taxa de secagem constante é denominado por teor de água crítica. A partir desse valor, há um aumento na resistência interna e o movimento de líquido do interior para a superfície do sólido é insuficiente para compensar o líquido que está sendo evaporado iniciando o primeiro período de taxa de secagem decrescente.

Para obter a taxa de secagem constante de produtos biológicos como sementes, utiliza-se a seguinte equação:

$$\frac{dX}{dt} = \frac{h_m A}{R_v T_{abs}} (P_{vs} - P_v) = \frac{h_c A}{h_{fg}} (T_{bs} - T_{bu})$$
(11)

em que,

 $\frac{dX}{dt} \rightarrow$ taxa de secagem, kg/h

 $h_m \rightarrow$ coeficiente de transferência de massa convectiva, $m \, m \, s^{-1}$

 $A \rightarrow$ área da superfície da semente, m^2

 $R_v \rightarrow$ constante dos gases de vapor d'água, $J kg^{-1} K^{-1}$

 $T_{abs} \rightarrow$ temperatura absoluta, *K*

 $P_{vs} \rightarrow$ pressão de vapor saturado, Pa

 $P_{v} \rightarrow$ pressão de vapor do ar, *Pa*

 $h_c \rightarrow$ coeficiente de transferência de calor, $W m^2 K^{-1}$

 $h_{fg} \rightarrow$ calor latente de vaporização da água, $J kg^{-1}$

 $T_{bs} \rightarrow$ temperatura de bulbo seco, °C

 $T_{bu} \rightarrow$ temperatura de bulbo úmido, °C.

Os coeficientes da equação (11) são função da espessura do filme de ar que envolve o produto durante o processo de secagem, podendo ser afetados tanto pela velocidade do ar de secagem como pelo seu ângulo de incidência sobre a superfície seca (PRADO, 1998). Brooker et al. (1992) afirmaram que a dificuldade em obter valores exatos para os coeficientes da equação descrita ocorre em virtude dos produtos biológicos apresentarem formas irregulares.

O período de secagem constante dificilmente é observado na secagem de materiais biológicos, e pode ser detectado apenas sob condições especiais de processo como: produto colhido em estágio muito imaturo ou que tenha havido condensação de umidade ou chovido sobre eles.

2.3.2 - Período com taxa de secagem decrescente

O primeiro período de taxa de secagem decrescente começa no instante em que o produto atinge o teor de água crítica, neste instante o movimento da água do interior do produto para a superfície é insuficiente para manter a fina camada de água sobre a superfície do sólido, onde a transferência de calor não é mais compensada pela transferência de massa e a temperatura do produto aumenta, chegando muito próximo à temperatura do bulbo seco o ar de secagem. Desta forma, a superfície do produto torna-se cada vez mais seca, e este período se prolonga até que não existir mais nenhuma região coberta pela fina camada de água na superfície, quando então começa o segundo período

de taxa de secagem decrescente até atingir o teor de água de equilíbrio. A partir desse ponto, o produto não seca mais, pois o equilíbrio foi atingido.

Cavalcanti Mata et al. (2006) dizem que este período é mais complexo do que o período de taxa de secagem constante, pois não considera-se apenas os mecanismos de transferências externas (transferência de calor e massa por convecção), mais também o mecanismo de transferência no interior do produto (difusão de calor e massa).

2.4 - Equilíbrio Higroscópico

O conhecimento das relações existentes entre a temperatura, a umidade relativa do ar e o teor de água dos produtos biológicos é essencial para a correta realização do processo de secagem, armazenamento e conservação do produto.

O teor de água de equilíbrio, também denominado de equilíbrio higroscópico, é o teor de água limite que um produto atinge quando exposto a um ambiente controlado (condição de temperatura e umidade relativa do ar) durante um período de tempo suficientemente longo. Nesta condição, as pressões de vapor da água entre o produto e o ambiente se equilibram (PARRY, 1985).

Cavalcante Mata et al. (2006), esclarecem que o conceito de equilíbrio não significa igualdade no teor de água no produto e no ar, pois as sementes possuem, aproximadamente, dez mil vezes mais água do que o ar quando estão em equilíbrio. O equilíbrio refere-se ao fato de que o produto troca água com o ar que o envolve em igual proporção.

A representação gráfica do teor de água de equilíbrio em função da umidade relativa de equilíbrio ou atividade de água para uma dada temperatura é denominada de curva de isoterma de equilíbrio higroscópico ou apenas de curva isoterma de sorção. A Figura 2.3 contém as curvas isotermas de equilíbrio higroscópico para o arroz vermelho, mostrando os valores experimentais do teor de água de equilíbrio, obtidos por dessorção, bem como suas isotermas calculadas pelo modelo de Henderson modificada por Thompson.

39

Figura 2.3 - Valores observados e estimados pelo modelo de Henderson modificada por Thompson, teores de água de equilíbrio higroscópico do arroz vermelho em casca, obtidos por dessorção, para diferentes condições de temperatura e umidade relativa do ar

A construção das curvas de isotermas de equilíbrio higroscópico de uma semente pode ser realizada de duas maneiras: através do umedecimento (adsorção), quando o teor de água inicial da semente é muito baixo, registrando-se o aumento de peso do produto devido ao ganho de água ou pelo processo de secagem (dessorção), retirando água do produto que apresenta inicialmente um teor de água elevado e ao mesmo tempo submetendo-o as mesmas condições atmosféricas criadas para a adsorção, registrando-se uma redução no peso da semente. As isotermas de adsorção e dessorção de equilíbrio higroscópico podem ser descrita nas formas sigmoidais, conforme apresentada na Figura 2.4.

Figura 2.4 - Isotermas de adsorção e dessorção, representação do fenômeno de histerese Fonte: DUARTE, 2006.

A histerese mostrada na Figura 2.4 é um fenômeno que ocorre devido à diferença entre as curvas de adsorção e dessorção para um mesmo produto e sendo submetido às mesmas condições de temperatura e umidade relativa. O referido fenômeno pode ajudar a prever a possibilidade de deterioração por reações químicas e microorganismos, bem como na determinação da proteção necessária contra o ganho de água.

Segundo Fioreze (2004), a histerese ocorre devido ao rearranjo das moléculas do produto biológico durante e após a secagem, reduzindo pontos de cargas elétricas moleculares na matéria seca, que poderiam reter moléculas de água entre polos de cargas elétricas opostas.

Entre os trabalhos publicados sobre o estudo da histerese das isotermas de equilíbrio higroscópico em produtos biológicos, encontram-se: Cavalcanti Mata et al. (1985) estudaram sementes de feijão mulatinho (*Phaseolus vulgaris* L.) variedade paulista; Paglarini et al. (2013) estudaram a polpa de manga (*Mangifera indica* L.) variedade manteiga. Estes pesquisadores observaram que a histerese para um determinado produto diminui de acordo com o aumento de temperatura.

41

2.4.1 - Modelos de equilíbrio higroscópico

Na simulação do processo de secagem, existe a necessidade da utilização de equações matemáticas para determinar o teor de água de equilíbrio de um produto. As equações para calcular o teor de água podem ser divididas em três formas: teóricas, semiteóricas e empíricas.

Os modelos teóricos não conseguem determinar com precisão o teor de água de equilíbrio de um produto agrícola para intervalo amplo de temperatura e umidade relativa do ar utilizado na secagem. Os modelos empíricos e semiteóricos surgiram na tentativa de aumentar a precisão na estimativa desta variável.

2.4.1.1 - Modelo de Kelvin

A equação de Kelvin surgiu como modelo para a adsorção de teor de água no sólido a partir da condensação capilar no interior dos poros, expressa por:

$$ln\left(\frac{P_{v}}{P_{vs}}\right) = -\frac{2\sigma v \cos \alpha}{r R_{v} T_{abs}}$$
(12)

em que,

- $P_v \rightarrow$ pressão de vapor de água do produto, P_a
- $P_{vs} \rightarrow$ pressão de vapor a temperatura de saturação, P_a
- $\sigma \rightarrow$ tensão superficial da água, P_a
- $v \rightarrow$ volume de umidade, m^3
- $r \rightarrow$ raio do capilar cilíndrico, m
- $R_v \rightarrow$ constante universal dos gases, $J kg^{-1} K^{-1}$
- $T_{abs} \rightarrow$ temperatura absoluta, K.

2.4.1.2 - Modelo de Langmuir

O modelo de Langmuir leva em consideração que na condição de equilíbrio a taxa com que as moléculas se condensam na superfície é idêntica a taxa com que elas evaporam da superfície. Além disso, o modelo considera que a probabilidade de evaporação das moléculas é a mesma se as posições vizinhas na superfície estivessem ocupadas ou não, e que todas as moléculas provenientes da fase gasosa colidem com a molécula já adsorvida na superfície e é elasticamente refletida. O modelo de Langmuir é expresso pela seguinte equação:

$$\frac{X_e}{X_m} = \frac{C_L a_w}{1 + C_L a_w} \tag{13}$$

em que,

- $X_e \rightarrow$ teor de água de equilíbrio do produto, decimal base seca
- $X_m \rightarrow$ teor de água na monocamada, % base seca
- $C_L \rightarrow \text{constante de Langmuir,}$
- $a_w \rightarrow$ atividade de água, adimensional.

2.4.1.3 - Modelo de BET

Os pesquisadores Brunauer, Emmett e Teller baseados na adsorção de umidade em multicamadas moleculares, considerando que a taxa de condensação é igual à taxa de evaporação em cada camada, propuseram a seguinte equação (equação de BET):

$$\frac{a_w}{(1-a_w)X} = \frac{1}{X_m C_{BET}} + \frac{a_w (C_{BET} - 1)}{X_m C_{BET}}$$
(14)

em que,

 $C_{BET} \rightarrow \text{constante de BET}$

O modelo de BET possui dois parâmetros de ajuste, $C_{BET} e X_m$, que são calculados plotando-se $\{a_w/[(1-a_w)X]\}$ em função a_w .

2.4.1.4 - Modelo de GAB

A equação de GAB (desenvolvida por Guggenheim, Anderson e de Bôer), possui três parâmetros que relacionam as energias de interação entre a água e o produto e entre as monocamadas de água. A equação de GAB é definida como:

$$X_e = \frac{G \, k \, X_m \, a_w}{(1 - k \, a_w)(1 - k \, a_w + G \, k \, a_w)} \tag{15}$$

em que,

 $G \rightarrow$ constante de Guggenhein, relacionada à energia de interação entre a água a o produto; $k \rightarrow$ constante relacionada à energia de interação entre as múltiplas camadas de água; $X_m \rightarrow$ quantidade de água na monocamada.

2.4.1.5 - Modelo de Henderson

Modelo semi-empírico proposto por Henderson, utiliza uma das equações de equilíbrio Higroscópico mais conhecida e foi baseada na equação termodinâmica de Gibbs para adsorção, é expressa como:

$$1 - UR = exp[-a T_{abs} X_e^c] \tag{16}$$

em que,

 $a \ e \ c \rightarrow$ parâmetros que dependem do produto,

 $UR \rightarrow$ umidade relativa do ar, decimal

 $T_{abs} \rightarrow$ temperatura absoluta, K

 $X_e \rightarrow$ teor de água de equilíbrio do produto, % base seca.

2.4.1.6 - Modelo de Henderson-Thompson

Pesquisadores afirmaram que a equação (16) mostrou-se inadequada para sementes. Uma equação mais precisa foi, posteriormente, modificada por Thompson e passou a ser denominada por equação de Henderson-Thompson, definida como:

$$1 - UR = exp[-a(T+b) X_e^c]$$
⁽¹⁷⁾

em que,

 $b \rightarrow$ parâmetro que depende do produto.

2.4.1.7 - Modelo de Chung e Pfost

O modelo empírico desenvolvido por Chung e Pfost (1967), é descrita pela seguinte equação:

$$X_e = a - b \ln[-(T + c) \ln(UR)]$$
(18)

em que,

a, *b* $e c \rightarrow s$ ão constantes que dependem do produto.

2.4.1.8 - Modelo de Cavalcanti Mata

Cavalcanti Mata et. al. (1985) propuseram a seguinte equação par predizer o teor de água de equilíbrio do feijão "mulatinho" (*Phaseolus vulgaris L*.):

$$X_e = \frac{\ln(1 - UR) - c}{a T^b} \tag{19}$$

2.4.1.9 - Henderson modificada por Cavalcanti Mata

Em 1997, Cavalcanti Mata propôs uma modificação na equação de Henderson-Thompson, na qual a correção na temperatura seria na ordem potencial e não de ordem linear, logo a equação foi reescrita da seguinte forma:

$$1 - UR = exp[-a(Tb) X_e^c]$$
⁽²⁰⁾

2.4.1.10 - Modelo de Halsey-modificado

O modelo é proveniente de modificações empíricas da equação de Halsey, que é baseado no modelo teórico de BET e na hipótese de interação das moléculas adsorvidas nas multicamadas (BARROZO, 1995).

$$X_e = [exp(a - bT) / -ln(a_w)]^{1/c}$$
(21)

2.4.1.11 - Modelo Sabbah

O modelo empírico desenvolvido por Sabbah (1968) é expresso pela seguinte equação:

$$X_e = a \frac{a_w^b}{T^c} \tag{22}$$

em que,

a, *b* $e c \rightarrow s$ ão constantes que dependem do produto.

Existem diversas equações semi-empíricas e empíricas que descreve o equilíbrio higroscópico de produtos agrícolas, no entanto, foram apresentados alguns modelos utilizados neste trabalho de pesquisa.

2.5 - Calor latente de vaporização do produto

O calor latente de vaporização é definido como a quantidade de energia necessária para evaporar a água do produto para um determinado teor de água e temperatura. Este é um bom parâmetro a ser obtido porque, por meio dele, é possível se ter uma ideia sobre a capacidade do produto em perder umidade durante o processo de secagem.

O calor latente de vaporização pode ser obtido através do teor de água de equilíbrio da semente. Othmer (1940), utilizou a equação de Clausius e Clapeyron abaixo para cálculos de pressões de vapor da água contida em sistemas porosos como sementes em equilíbrio com o ar e consequentemente para a determinação do calor latente de vaporização da água do produto.

$$\frac{dP_v}{dT} = \frac{h_{fg} P_v}{R_v T^2} \tag{23}$$

em que,

 $P_{v} \rightarrow$ pressão de vapor para uma dada temperatura absoluta (*T*) e para uma dada condição de teor de água de equilíbrio (*X_e*), *P_a* $h_{fg} \rightarrow$ calor latente molar de vaporização da água, *J kg*⁻¹ $R_{v} \rightarrow$ constante universal dos gases, *J mol*⁻¹ *K*⁻¹.

Considerando-se (h_{fg}) constante dentro de certo intervalo de temperatura e integrando a equação (23), obteve-se:

$$lnP_{\nu} = -\frac{h_{fg}}{R_{\nu}} \frac{1}{T_{abs}} + C \tag{24}$$

Onde C é a constante resultante de integração. Traçando-se um gráfico de (lnP_v) em função de (1/T), obtemos uma reta com coeficiente angular $(-h_{fg}/R)$ e os valores podem ser obtidos para determinado produto e seu respectivo teor de água em equilíbrio. Os valores da pressão de vapor, (P_v) , para cada tipo de grão são determinados a partir das curvas de equilíbrio higroscópicos, onde para dado teor de água de equilíbrio a determinada temperatura é encontrado o valor da umidade relativa do ar (UR). Como $UR = P_v/P_{vs}$, logo:

$$P_{v} = UR P_{vs} \tag{25}$$

Utilizando-se a equação (23), desenvolvida por Clausius e Clapeyron, para a água livre, a pressão de vapor (P_v) passa a ser considerada como pressão de saturação (P_{vs}) , relacionando as duas equações e integrando, obtém-se:

$$lnP_{v} = \frac{h_{fg}}{h'_{fg}} lnP_{vs} + C \tag{26}$$

em que,

 $h_{fg} \rightarrow$ calor latente de vaporização da água a determinada temperatura, $J kg^{-1}$ $h'_{fg} \rightarrow$ calor latente de vaporização da água da semente, $J kg^{-1}$ $P_{vs} \rightarrow$ pressão de vapor de saturação, P_a .

Neste caso, traçando-se um gráfico de (lnP_v) em função de (lnP_{vs}) , obtemos uma reta com coeficiente angular (h'_{fg}/h_{fg}) . A partir do coeficiente angular e o calor latente de vaporização da água para cada temperatura, encontra-se o valor do calor latente de vaporização da água do produto.

O calor latente de vaporização de um produto biológico como as sementes, pode ser determinado pelo seguinte modelo:

$$h'_{fg} = h_{fg} [1 + a \exp(b X_e)]$$
(27)

em que,

 $h_{fg} = 606 - 0,57 T$ $T \rightarrow \text{é a temperatura.}$

2.6 - Entalpia, entropia e energia livre de Gibbs

Outras formas de energia como entalpia, entropia e energia livre de Gibbs podem ser usadas para compreender a energia associada com a transferência de calor e massa em um processo de secagem de produtos biológicos. A entalpia consiste no calor liberado ou absorvido pelo alimento à pressão constante. Mudanças na entalpia fornecem uma medida da variação de energia quando ocorre uma interação entre as moléculas de água com os constituintes do grão durante o processo de sorção (RODOVALHO et al., 2015).

A entropia é uma função de estado, associada ao grau de ordem ou desordem das moléculas de água do sistema (água-grão). Para um sistema de baixa densidade, como é o caso dos produtos desidratados, quanto maior a desordem maior a entropia associada a este sistema (BENEDETTI, 2010).

A energia livre de Gibbs, no entanto, pode indicar o quanto à água está ligada ao produto, fornecendo um critério de avaliação da dessorção da água. As mudanças nos valores de energia livre de Gibbs, durante o processo de secagem, é definida como a energia necessária para transferir moléculas de água, na forma de vapor, para uma superfície sólida ou vice e versa. A referida pode ser considerada como uma medida do trabalho feito para realizar o processo de dessorção ou de adsorção Para o processo de secagem, a espontaneidade do sistema está relacionada com os valores da energia livre de Gibbs, quando os valores forem negativos o processo é considerado espontâneo, caso os valores forem positivos o processo é caracterizado como não espontâneo (TELIS et al., 2000).

2.7 - Curvas da cinética de secagem de grãos

A secagem é o processo que consiste em remover a água dos produtos por evaporação até um nível que preserve, durante o armazenamento, a qualidade fisiológica da semente ou a aparência e qualidade nutritiva para alimentação humana e/ou animal dos grãos. A cinética de secagem consiste na rapidez com que o produto biológico perde água durante o processo de secagem.

2.7.1 - Modelos matemáticos de secagem em camada fina

Os modelos matemáticos para camada fina podem ser classificados em três grupos: teóricos, semiteóricos e empíricos. Os modelos teóricos consideram o mecanismo de transporte de massa e calor no interior do grão e consistem sistemas de equações diferenciais que relacionam o teor de água e temperatura do grão. Os modelos empíricos são resultados de ajustes de curvas de dados obtidos experimentalmente.

Para descrever o processo de secagem de produtos, os modelos mais completos consideram um sistema de equações de transporte de calor e massa. Este sistema, na forma mais generalizada, foi apresentado por Luikov e Mikhailov em 1965. Para produtos capilares porosos como as sementes, considerando que não há encolhimento do produto e que o fluxo de líquido ocorre devido à diferença de pressão total, o sistema foi apresentado por Luikov, 1966, na forma de equações diferenciais parciais:

$$\frac{\partial X}{\partial t} = \nabla^2(K_{11} X) + \nabla^2(K_{12} \theta) + \nabla^2(K_{13} P)$$
(28)

$$\frac{\partial\theta}{\partial t} = \nabla^2(K_{21}X) + \nabla^2(K_{22}\theta) + \nabla^2(K_{23}P)$$
(29)

$$\frac{\partial P}{\partial t} = \nabla^2 (K_{31} X) + \nabla^2 (K_{32} \theta) + \nabla^2 (K_{33} P)$$
(30)

Onde o potencial X representa o teor de água, θ é o potencial de transferência de calor (temperatura) e P é o potencial de filtração (pressão). K_{ij} , para i = j, representam os coeficientes fenomenológicos e K_{ij} para i \neq j representam os coeficientes de combinação. Porém, na análise prática de secagem de sementes, são desconsiderados o efeito dos gradientes de pressão total e os gradientes de temperaturas, tendo em vista serem poucos significativos. Logo, o modelo de Luikov aplicado à secagem de grãos se reduz a um sistema de duas equações diferenciais parciais.

$$\frac{\partial X}{\partial t} = \nabla^2 D_{ef} X$$
$$\frac{\partial \theta}{\partial t} = \nabla^2 D_{\theta} \theta$$
(32)

Onde X é o teor de água, θ a temperatura do grão e D_{ef} e D_{θ} os coeficientes de difusividade efetiva de massa e calor, respectivamente.

A influência da temperatura no coeficiente de difusividade efetiva pode ser avaliada utilizando a equação de Arrehenius, descrita na equação (33).

$$D_{ef} = D_0 exp\left(-\frac{E}{RT}\right) \tag{33}$$

em que,

- $D_0 \rightarrow$ coeficiente de difusão limite, m² s⁻¹; $E \rightarrow$ energia de ativação, J kg⁻¹;
- $R \rightarrow \text{constante do vapor d'água, J kg}^{-1} \text{K}^{-1};$
- $T \rightarrow$ temperatura absoluta, K.

Os coeficientes da expressão de Arrhenius podem ser obtidos linearizando a equação (33) com a aplicação do logaritmo neperiano da seguinte forma:

$$lnD_{ef} = lnD_o - \frac{E}{R} \cdot \frac{1}{T}$$
(34)

Para a difusividade efetiva da massa constante no interior do grão, a primeira equação do sistema de Luikov será escrita como equação linear na forma:

$$\frac{\partial X}{\partial t} = D_{ef} \left(\frac{\partial^2 X}{\partial r^2} + \frac{c}{r} \frac{\partial X}{\partial r} \right)$$
(35)

Onde c é igual a 0, para corpos planos, 1 para corpos cilíndricos, 2 para corpos esféricos e r distância radial ou espessura, m.

Para um produto com forma aproximada a um cilindro de raio R_e , considerando a distribuição de água inicialmente uniforme e ausência de resistência térmica, a solução analítica da equação (35) é expressa por:

$$RX = \sum_{n=1}^{\infty} \frac{4}{\lambda_n^2} exp\left(-\frac{\lambda_n^2}{R_e^2} D_{ef} t\right)$$
(36)

em que,

 $RX \rightarrow$ razão de teor de água, adimensional,

 $n \rightarrow$ número de termos,

 $R_e \rightarrow$ Raio equivalente,

 $\lambda_n \rightarrow$ raízes da equação de Bessel de primeiro tipo e com ordem 0, algumas destas raízes são apresentadas na Tabela 2.1.

Tabela 2.1 – Primeiras seis raízes da função de Bessel de primeiro tipo e de ordem zero

n	λ_n	
1	2,4048	
2	5,5201	
3	8,6537	
4	11,7915	
5	14,9309	
6	18,0711	

 $RX(t) \rightarrow \text{Razão de teor de água, adimensional.}$

$$RX(t) = \frac{X - X_e}{X_i - X_e} \tag{37}$$

O raio equivalente (R_e) é determinado pela equação (39) do volume do cilindro circular reto e representado na Figura 2.5:

Figura 2.5 - Desenho esquemático do grão de arroz vermelho em casca com suas dimensões característica

$$V = \frac{4}{3}\pi r_1 r_2 L \tag{39}$$

em que: r_1 e r_2 são os raios referentes aos eixos ortogonais e L é o comprimento do grão.

As constantes de secagem para os modelos semiteóricos que serão analisadas adiante se obtêm a partir do desenvolvimento da equação analítica da Lei de Fick.

$$k = \frac{\lambda^2 D_{ef}}{R_e^2} \tag{40}$$

Os modelos semiteóricos são os que se baseiam na Lei de resfriamento de Newton, aplicada para transferência de massa e secagem isotérmica.

Lewis, citado por Brooker et al. (1992), sugeriu que durante o processo de secagem de materiais higroscópicos porosos no período de taxa constante decrescente, a perda de água seja proporcional à diferença entre o teor de água do material e o seu teor de água de equilíbrio, ou seja:

$$\frac{\partial X}{\partial t} = -k \left(X - X_e \right) \tag{41}$$

Considerando k a constante de secagem e integrando a equação (41) para intervalo de tempo 0 a t, e para teores de água decrescente (X), a partir do teor de água inicial (X_i), obterem

$$\frac{X - X_e}{X_i - X_e} = exp(-k t) \tag{42}$$

Os pesquisadores preferiram adotar os métodos empíricos em virtude da complexidade matemática e da falta de dados confiáveis sobre condutividade térmica e a difusividade de massa. Os modelos empíricos negligenciam os fundamentos termodinâmicos dos processos de secagem, o que permite considerar o teor de água e a temperatura constante para todo o grão. Procuram relacionar o teor de água e o tempo de secagem com os dados obtidos experimentalmente.

Page (1949) com base na equação (42) propôs um modelo empírico para descrever a secagem dos grãos, introduziu um termo potencial (n) de correção do tempo, na seguinte forma:

$$RX = exp(-k t^n) \tag{43}$$

Thompson et al. (1968) desenvolvendo um modelo de simulação para a secagem de milho em camada estacionária, propuseram uma equação totalmente empírica para descrever o processo:

$$t = Aln(RX) + B[ln(RX)]^2$$
(44)

Onde os parâmetros A e B estão em função da temperatura e umidade relativa do ar de secagem.

De acordo com Cavalcanti Mata et al. (2006) este modelo considera a camada espessa como sendo construída de várias camadas finas sobrepostas uma sobre as outras.

Henderson e Pabis (1961) propuseram a seguinte equação para secagem de milho:

$$RX = a \exp(-k_1 t) + b \exp(-k_2 t)$$
(45)

Cavalcanti Mata (2005 e 2006) baseado na equação de Page propôs duas equações para descrever o processo de secagem, o pesquisador relata, de maneira geral, que as curvas de secagem em camada fina não apresentam uma só curvatura. As equações (46) e (47) permitem um melhor ajuste da curva de secagem aos dados obtidos experimentalmente.

$$RX = a \exp(-k_1 t^{n_1}) + b \exp(-k_1 t^{n_2}) + c$$
(46)

$$RX = a \exp(-k_1 t^{n_1}) + b \exp(-k_2 t^{n_2}) + c$$
(47)

2.8 - Simulação de secagem em camada espessa

Os modelos matemáticos da secagem em camada fina não são capazes de predizer de forma adequada o desempenho da secagem em camada espessa, uma vez que durante a secagem as camadas do ar e do produto estão continuamente mudando. Para resolver este problema foi dividida a camada espessa em várias camadas finas, equacioná-las, assim como as condições do ar e resolver por um processo iterativo, onde as condições do ar de saída de uma camada do produto a ser seco são as condições do ar de entrada da camada deste produto na parte superior, e assim sucessivamente.

Devido a falta de conhecimento dos mecanismos de transferência de calor e massa no interior do produto, assim como, ausência de dados experimentais confiáveis, torna-se difícil o processo de simulação de secagem de grãos. Os programas computacional para simulação de secagem de grãos visam economizar tempo e dinheiro de modo a predizer a realidade, sendo necessário para seu desenvolvimento e sua implementação o conhecimento do processo físico e o modelo matemático que o representa (DANTAS et al., 2011).

Conforme Fioreze (2004), conhecendo-se as condições do ar de secagem na entrada do secador, as condições iniciais de temperatura e teor de água do produto e, as propriedades físicas e higroscópicas do produto e do ar, como função das condições de operação, pode-se prever matematicamente as condições do produto e do ar numa posição qualquer da camada espessa, após um determinado tempo de secagem.

Diversos modelos matemáticos de simulação de secagem são encontrados na literatura, dentre estes se destacam: o modelo de Hukill (1974), Modelo de Thompson et al. (1968), Modelo de Morey et al. (1976) e o modelo da Universidade de Michigan (1974).

2.8.1 - Modelo Hukill

Hukill partiu do princípio que a taxa de secagem é proporcional à taxa de variação da temperatura em relação a profundidade da camada x, considerando-se desprezível o aquecimento dos grãos e que a perda de energia térmica pelo ar é causada somente pelo calor latente de vaporização. O modelo de Hukill é descrito pela equação:

$$\frac{\partial X}{\partial t} = \left(\frac{G_m \ c_g}{\rho \ h_{fg}}\right) \frac{\partial T}{\partial x} \tag{48}$$

em que,

 $\frac{\partial x}{\partial t} \rightarrow$ taxa de secagem do produto, % base seca/hora, $G_m \rightarrow$ fluxo de massa de ar, kg de matéria seca . h⁻¹, $c_g \rightarrow$ calor específico dos grãos, kcal kg K⁻¹, $\rho \rightarrow$ massa específica do grão, kg de matéria seca . m⁻³, $h_{fg} \rightarrow$ calor latente de vaporização da água do grão, J kg⁻¹, $\partial T \rightarrow$ variação da temperatura do ar, °C, $\partial x \rightarrow$ variação da espessura da camada, m.

com as condições iniciais e de contorno:

$$X(x,0) = X_i, \quad \frac{T_x - T_g}{T_0 - T_g} = exp(-Rx) \quad para \ t = 0 \quad e$$

 $T_x(0,t) = T_0, \quad e \quad RX = exp(-k \ t) \quad para \ x = 0.$

em que,

 $T_x \rightarrow$ temperatura do ar a uma distância (x) da entrada do ar, °C

 $T_g \rightarrow$ temperatura do grão, °C

 $T_0 \rightarrow$ temperatura do ar de secagem na entrada do secador, °C

 $R \ e \ k \rightarrow$ constantes que dependem do produto,

 $x \rightarrow$ distância a partir da entrada do ar na massa dos grãos, m.

Através da resolução da equação de Hukill, para as referidas condições, encontra-

$$RX = \frac{2^{D}}{(2^{D} + 2^{y} - 1)}$$
(49)

O fator de profundidade (D) é expresso pela equação:

$$D = \frac{x \rho h_{fg}(X_i - X_e)}{G_m c_g H(T_0 - T_e)}$$
(50)

em que,

se:

$$y = \frac{t}{H} \tag{51}$$

O tempo de meia resposta (H) é definido como o período de tempo necessário para que a razão de umidade seja reduzido de 1 para 0,5, sob determinadas condições do ar de secagem.

2.8.2 - Modelo Thompson

O modelo de Thompson et al. (1968) simula o processo de secagem por meio de equações baseadas nas leis de transferência de energia e massa, e faz uso de uma equação empírica para secagem em camada fina.

Este modelo considera que a camada espessa é formada por várias camadas finas, colocadas umas sobre as outras. Em determinado intervalo de tempo, o ar de secagem ao passar pela camada do produto se modifica, onde sua temperatura diminui ao ceder calor sensível para o produto, enquanto seu teor de água aumenta ao receber a água evaporada do produto, ou seja, ocorrerão as trocas de energia e umidade que incidem sobre o ar de secagem e a massa dos grãos, conforme ilustra a Figura 2.6.

Figura 2.6 – Diagrama que mostra o processo de secagem em camada fina durante um intervalo de tempo Δt Fonte: CAVALCANTI MATA, 2006.

Para o desenvolvimento do modelo são realizadas as seguintes considerações:

a) A secagem em camada fina pode ser representada pela seguinte equação empírica:

$$t = Aln(RX) + B[ln(RX)]^2$$
(52)

em que:

 $t \rightarrow$ tempo de secagem, em hora

 $RX \rightarrow Razão$ de teor de água, adimensional

$$A=a_1+a_2 T,$$

 $B = b_1 + exp(b_2 T).$

onde, a_1 , a_2 , b_1 e b_2 são constantes que dependem do produto, A e B constantes que dependem da temperatura do produto.

b) A temperatura do grão é igual à temperatura do ar que o envolve:

$$T_g = T_{ar}$$

em que,

 $T_g \rightarrow$ temperatura do grão, °C

 $T_{ar} \rightarrow$ temperatura do ar, °C.

c) O teor de água de equilíbrio do produto depende das condições do ar de secagem, temperatura e umidade relativa, expresso por:

$$X_{eq} = \left[\frac{-ln(1-UR)}{K(T_{eq}+C)}\right]^{1/N}$$
(53)

em que:

 $UR \rightarrow$ Umidade Relativa do ar de secagem, decimal

K, *C* $e N \rightarrow$ constantes de dependem do produto.

d) O calor latente de vaporização da água do produto que depende da temperatura e teor de água deste produto é obtido pela seguinte equação:

$$h_{fg} = (2502, 2 - 2, 39 T) (1 + Eexp(F X))$$
(54)

em que,

 $E \ e \ F \rightarrow$ constantes de dependem do produto,

 $X \rightarrow$ teor de água do produto, base seca decimal,

 $T \rightarrow$ temperatura, °C.

e) O calor específico do produto que depende do teor de água deste produto é expresso por meio da equação:

$$c_p = (c_1 + c_2 X) R_c \tag{55}$$

em que,

 $c_1 \ e \ c_2 \rightarrow$ constantes que dependem do produto,

 $R_c \rightarrow$ razão de conversão de unidades, kg de produto/kg de ar seco.

$$R_c = \rho_p \frac{L}{n} \frac{\nu}{\phi_{ar} \,\Delta t \,60} \tag{56}$$

em que,

 $\rho_p \rightarrow$ massa específica do produto, kg m⁻³

 $L \rightarrow$ altura total da camada de grãos, m

 $n \rightarrow$ número de camadas em que o secador está sendo dividido

 $v \rightarrow$ volume específico do ar, m³ kg⁻¹ ar seco

 $Ø_{ar} \rightarrow$ fluxo de ar secagem, m³ min⁻¹ m⁻²

 $\Delta t \rightarrow$ intervalo de tempo, h.

f) O modelo de simulação de secagem apresentado por Thompson et al. (1968) determina a temperatura de equilíbrio entre o ar de secagem e o produto através da equação de balanço de calor.

$$T_{eq} = \frac{(0,24+0,45W)T_o + c_p \theta_o}{(0,24+0,45W + c_p)}$$
(57)

em que,

 $W \rightarrow$ razão de teor de água do ar antes da secagem, kg de água/kg de ar seco

 $T_o \rightarrow$ temperatura do ar antes da secagem, °C

 $\theta_o \rightarrow$ temperatura do produto antes da secagem, °C

 $T_{eq} \rightarrow$ temperatura de equilíbrio entre o ar de secagem e o produto, °C.

g) O tempo equivalente (t_{eq}) consiste no tempo em que o produto deve ficar sobre condições do ar de secagem para que o teor de água inicial reduza até o teor de água de equilíbrio, este tempo é calculado pela seguinte equação empírica em camada fina:

$$t_{eq} = Aln(RX) + Bln(RX)^2$$
(58)

Para obter-se o teor de água final, durante um intervalo de tempo Δt , utiliza-se a equação empírica de secagem em camada fina:

$$X_f = exp\left(\frac{-A - \sqrt{A^2 + 4B(t_{eq} + \Delta t)}}{2B}\right) (X_i - X_{eq}) + X_{eq}$$
(59)

As condições finais do ar, após o intervalo de tempo Δt , é calculada pela equação:

$$\Delta W = \frac{\left(X_i - X_f\right) R_e}{100} \tag{60}$$

$$W_f = W_o - \Delta W \tag{61}$$

Sendo, W_f a razão de umidade final do ar, depois de ter passado por uma camada de secagem, e ΔW é a variação entre a razão de umidade inicial e final, em kg de água/kg de ar seco.

 h) A temperatura do ar e do produto, considerando o calor latente de vaporização da água do grão, pode ser determinado por:

$$T_f = \frac{(0,24+0,45W_o)T_{eq} - \Delta W (587,9+\Delta h_{fg} - c_w \theta) + c_p \theta}{(0,24+0,45W_f + c_p)}$$
(62)

em que,

 $\theta \rightarrow T_{eq},$

 $\Delta h_{fg} \rightarrow$ variação do calor latente de vaporização da água do produto, kcal/kg

 $c_w \rightarrow$ calor específico da água, kcal/kg °C.

j) Ponto de estado consistente do ar de secagem

Depois de efetuados cada balanço de calor, é necessário verificar se os resultados obtidos são consistentes, isto é, pode-se obter resultados em que a umidade relativa do ar, determinado matematicamente, é superior a 100%. Se isto ocorrer, é necessário efetuar outro balanço de calor, simulando a condensação de água do produto. Assim sendo, um balanço de calor entre as condições iniciais e finais, para o incremento de tempo, Δt , é expresso da seguinte forma:

$$\begin{bmatrix} 0,24T_0 + W_0(1060,8 + 0,45T_0) + c_p \ \theta_0 + (W_f - W_0)(C_w \ \theta_0) \end{bmatrix} = \begin{bmatrix} 0,24T_f + W_f(1060,8 + 0,45T_f) + c_p \ T_f \end{bmatrix}$$
(63)

Neste balanço, há duas variáveis: t_f , a temperatura final e W_f , a umidade do ar de exaustão. Outra condição empregada para possibilitar esta determinação é que a umidade relativa determinada matematicamente seja igual a 100%. A água que é removida do ar é condensada no produto e o teor de água final (X_f) é determinado por:

$$X_f = X_i - \left[\frac{100\left(W_f - W_0\right)}{R}\right] \tag{64}$$

2.8.3 - Modelo de Morey

O modelo Morey é um aperfeiçoamento do modelo de Thompson para o processo de secagem em baixa temperatura e baixo fluxo de ar. Os autores trabalhando com a secagem de milho comprovaram que o modelo de Morey apresentava uma pequena diferença entre os dados experimentais e da simulação. Conforme Morey et al. (1976) verificaram experimentalmente que o modelo de Thompson (1968) para a secagem em camada fina não representava tão bem os resultados experimentais, tendo em vista que o produto não entrava em equilíbrio com o ar de secagem tão rapidamente como se previa. Logo, Morey et al. (1976) acrescentaram ao modelo uma equação empírica de camada fina, proposta por Sabbah, para temperatura entre 0 e 27 °C, expressa da seguinte forma:

$$RX = exp[-K(t^{0,664})]$$
(65)

em que,

$$K = exp(-x t^{y}) \tag{66}$$

$$x = [6,0142 + 1,453x10^{-4}(UR)^2]^{0,5} - (1,8T_0 + 32)[3,353x10^{-4} + 3x10^{-8}(UR)^2]^{0,5}$$
(67)

$$y = 0,12264 - 1,461x10^{-3}UR + 4,14x10^{-5}UR T_0 - 1,044x10^{-4}T_0$$
(68)

onde,

 $UR \rightarrow$ umidade relativa do ar, %

 $T_0 \rightarrow$ temperatura do milho, °C

 $t \rightarrow \text{tempo, h.}$

Em virtude do modelo prevê o reumedecimento do produto que se encontra nas camadas superiores do secador de leito fixo, devido ao ar de secagem chegar temporariamente saturado, Morey et al. (1976) verificaram que o efeito da histerese entre as isotermas de adsorção e dessorção deveria ser considerado, tendo em vista que os valores de teor de água no reumedecimento são sempre inferiores aos previstos pelo modelo de Thompson (1968), para as mesmas condições de temperatura e umidade relativa no processo de secagem.

Desta forma, os autores inseriram a seguinte equação de adsorção de água para milho:

$$URE_u = 100\{1 - exp[-0.518(\theta + 45.6)U^{1.72}]\}$$
(69)

em que,

 $URE_u \rightarrow$ umidade relativa de equilíbrio para o produto no reumedecimento, %

O modelo de Morey et al. (1976) é considerado um dos melhores para a secagem a baixa temperatura, onde os estudos mostraram uma pequena diferença entre os dados experimentais e simulados.

2.8.4 - Modelo de Michigan

O modelo da Michigan State University (M.S.U.) é estabelecido através do balanço de energia e massa em um volume de controle diferencial Ady, em uma posição arbitrária da camada de grãos, conforme mostra a Figura 2.7.

Figura 2.7 – Volume elementar de uma camada de grãos

Para o desenvolvimento do modelo foram feitas as seguintes considerações:

a) o gradiente de temperatura dentro dos grãos, individualmente, é desprezível;

b) a transferência de calor por condução entre os grãos é desprezível;

c) o escoamento é em bloco (tipo "plug-flow");

d) as paredes do silo são adiabáticas, com capacidades caloríficas desprezíveis;

e) as capacidades caloríficas do ar e do grão são constantes em um pequeno intervalo de tempo;

f) uma equação fidedigna de secagem em camada fina e de teor de água de equilíbrio é conhecida;

g) a contração volumétrica dos grãos é desprezível;

 h) as varações de temperatura do ar com o tempo e a razão de mistura do ar com o tempo são desprezíveis quando comparada com a variação da temperatura e da razão de mistura com respeito a posição.

Balanço de energia para o ar

A energia transferida por convecção é igual à diferença entre as entalpias transferidas pelo o ar para dentro e para fora do volume Sdy, mais a variação na entalpia do ar, em relação ao tempo, nos espaços intergranulares. Portanto, a equação do balanço de energia pode ser escrita da seguinte forma:

$$\frac{\partial T}{\partial t} = -\frac{h a (T - \theta)}{\varepsilon \rho_a (c_{ar} + c_v W)} - \frac{V_a}{\varepsilon} \frac{\partial T}{\partial Y}$$
(70)

em que,

- $h \rightarrow$ coeficiente de transferência de calor por convecção, W m⁻² K⁻¹
- $a \rightarrow \text{área específica, m}^2 \text{ m}^{-3}$
- $T \rightarrow$ temperatura do ar, K
- $\theta \rightarrow$ temperatura dos grãos, K
- $\varepsilon \rightarrow$ porosidade da massa dos grãos, decimal
- $\rho \rightarrow$ massa específica, kg m⁻³
- $c \rightarrow$ calor específico, J kg⁻¹ K⁻¹
- $W \rightarrow$ razão de mistura do ar, kg de água/kg de ar seco
- $V \rightarrow$ fluxo de ar, m³ s⁻¹ m⁻²
- $Y \rightarrow$ profundidade da camada do produto, m
- $t \rightarrow \text{tempo, s.}$

Os índices a e v indicam que as propriedades que contém estes índices se referem ao ar e vapor, respectivamente.

Balanço de energia do produto

A energia transferida por convecção, do ar para o produto, é igual à energia utilizada para aquecer o produto, mais a energia utilizada para evaporar a água do produto, mais a energia utilizada para aquecer o vapor d'água evaporado do produto. Logo, o balanço de energia para o grão é expresso por:

$$\frac{\partial\theta}{\partial t} = \frac{h a(T-\theta)}{\rho_p (c_p + c_a X)} - \frac{h_{fg} + c_v (T-\theta)}{\rho_p (c_p + c_a X)} Q_a \frac{\partial W}{\partial Y}$$
(71)

em que,

 $c_a \rightarrow$ calor específico da água no estado líquido, J kg⁻¹ K⁻¹ X \rightarrow teor de água do produto, decimal, b.s $Q_a \rightarrow$ fluxo de massa, kg s⁻¹ m⁻² $h_{fg} \rightarrow$ calor latente de vaporização da água do produto, J kg⁻¹.

Balanço de massa para o ar

A variação da quantidade de vapor de água no ar com relação à posição Y é igual a variação da quantidade de vapor de água no ar dentro do volume de controle (Ady), no tempo dt, mais a variação da água dos grãos do produto no volume (Ady), no tempo t. Assim sendo, a equação reestruturada do balanço de massa para o ar passa a ser escrita da seguinte forma:

$$\frac{\partial W}{\partial t} = -\frac{1}{\varepsilon \rho_a} \left(Q_a \frac{\partial W}{\partial Y} + \rho_p \frac{\partial X}{\partial t} \right)$$
(72)

Balanço de massa para o produto

O teor de água do produto pode ser expresso por uma equação de secagem em camada fina capaz de estimar o fluxo de água no interior do produto, com precisão satisfatória.

$$\frac{\partial X}{\partial t} \rightarrow \text{equação de secagem em camada fina apropriada}$$
(73)

Portanto, as equações (70), (71), (72) e (73), respectivamente, constituem o sistema de equações diferenciais parciais deste modelo.

3. MATERIAL E MÉTODOS

Descreve-se nesta etapa da pesquisa os materiais, equipamentos e as metodologias utilizadas para obtenção dos dados experimentais referentes à determinação das propriedades físicas do produto (porosidade, equilíbrio higroscópico, calor latente de vaporização e calor específico), cinética de secagem em camada fina e espessa e a simulação da secagem em camada espessa através de programa computacional (SASS_{Arroz} Vermelho), Software Aplicado à Simulação de Secagem – Arroz Vermelho

Este projeto de pesquisa foi desenvolvido no Laboratório de Engenharia de Alimentos (LEA) da Unidade Acadêmica de Engenharia de Alimentos do Centro de Tecnologia e Recursos Naturais (CTRN), Universidade Federal de Campina Grande - PB.

3.1 - Matéria prima

Utilizou-se neste trabalho grãos do arroz vermelho em casca, mostrado na Figura 3.1, procedentes do sítio Pau D'arco situado no município de Itaporanga – PB e da fazenda Tamanduá situado no município de Aparecida – PB. A limpeza para remoção do excesso de impureza e materiais estranhos foi realizado manualmente. Em seguida, os grãos foram embalados em saco plástico e armazenados à temperatura de 6 °C (\pm 1 °C) até o momento da secagem.

Figura 3.1- Amostra dos grãos de arroz vermelho em casca colhido no sítio Pau D'arco, município de Itaporanga – PB

3.2 - Teor de água

Para determinação do teor de água dos grãos, foi utilizado o método padrão da estufa a 105 °C (±1 °C) que consiste em determinar o teor de água através da perda de massa sofrida pelo produto quando aquecido em condições nas quais a água é removida durante sua permanência por 24 horas na estufa. A massa das amostras em triplicata foram medidas numa balança analítica com precisão de 0,001g.

3.3 - Massa específica e porosidade

3.3.1 Massa específica aparente

Para obter a massa específica aparente, os grãos foram colocados em um recipiente de formato cilíndrico de dimensões conhecidas, medindo 0,098m de altura e 0,053m de diâmetro, numa quantidade suficiente para preencher todo seu volume. Em seguida, foi feita a medição da massa dos grãos com uma balança analítica com precisão de 0,01g e calculado o volume ocupado pelo produto através da equação (74). Para verificar o comportamento da massa específica aparente em função do teor de água do produto, esse procedimento foi feito com três repetições para cada um dos seis níveis de teor de água analisados.

$$Volume = (\pi r^2 h) \tag{74}$$

em que,

 $r \rightarrow$ raio do cilindro, m

 $h \rightarrow$ altura do cilindro, m.

A massa específica aparente foi determinada por meio da relação entre a massa dos grãos de arroz vermelho e volume ocupado pelos grãos (equação 05). Nesse caso, a porosidade também compõe o volume da amostra.

3.3.2 – Massa específica real

A massa específica real dos grãos foi determinada pelo método do deslocamento de líquidos e calculada pela seguinte equação:

$$\rho = \frac{m}{V_r} \tag{75}$$

em que,

 $\rho \rightarrow$ massa específica real, kg m⁻³

 $m \rightarrow$ massa dos grãos, kg

 $V_r \rightarrow$ Volume real, sem considerar a porosidade intergranular, m⁻³.

A obtenção do volume real dos grãos foi realizada através da equação (76), utilizando-se o método do deslocamento de massa, tendo a água como fluido na análise experimental.

$$V_r = \frac{massa \ de \ fluido \ deslocado \ (kg)}{massa \ específica \ do \ fluido \ (kg \ m^{-3})}$$
(76)

Os grãos foram submetidos a um tratamento de impermeabilização com óleo de soja em sua superfície, formando uma finíssima película, de forma a não influenciar na medida do volume da massa do produto. Esse procedimento tem por objetivo evitar a penetração da água nos grãos, evitando um erro considerável nas medidas.

3.3.3 – Porosidade

A porosidade intergranular do arroz vermelho em casca foi obtida em função da massa específica aparente e real, de acordo com a equação (06), descrita por Mohsenin (1986).

3.4 - Isotermas de equilíbrio higroscópico

Para determinação das isotermas de dessorção de equilíbrio higroscópico do arroz vermelho em casca, foram utilizados quatros níveis de temperatura 10, 20, 30 e 40 °C e cinco níveis de umidade relativa do ar variando entre 11,15 a 84,32%.

As isotermas de dessorção foram obtidas pelo método estático, que consiste em determinar o teor de água de equilíbrio entre o produto e a atmosfera circundante, sem movimentação do ar e do produto.

A umidade relativa do ar (atividade de água) foi controlada com a utilização de soluções aquosas saturadas de diferentes sais, consideradas como as mais adequadas, porque podem liberar ou adsorver água sem sofrer alteração da sua umidade relativa de equilíbrio. Na Tabela 3.1 estão as quantidades de sais e água destilada utilizada para o preparo das soluções, juntamente com os valores das umidades relativas.

Sais	Umidade Relativa – (%)	Quantidades	
		Massa de sal (g)	Vol. água destilada (mL)
LiCl	11,15	150	85
MgCl ₂	32,73	200	65
$Mg(NO_3)_2$	52,86	200	30
NaCl	75,32	200	60
KCl	84,32	200	80

Tabela 3.1 - Preparo de soluções saturadas de Sais (SPIESS & WOLF, 1987)

As soluções foram depositadas em recipientes de vidro herméticos com volume de 2000 ml, contendo em seu interior amostras do produto em peneiras de arame, acima da superfície da solução. O recipiente hermético utilizado no experimento encontra-se representado na Figura 3.2.

Figura 3.2- Recipiente hermético utilizado para determinação do teor de água pelo método estático

Os recipientes contendo as amostras com aproximadamente 8g de grãos, em triplicada, foram colocados em estufa com circulação de ar forçado para diferentes condições de temperatura. O produto foi pesado em balança analítica com intervalos de tempo predeterminados até atingir uma variação considerada desprezível com três pesagens consecutivas, considerando-se, desta forma, que o equilíbrio higroscópico havia sido alcançado, no qual a pressão parcial de vapor de água do produto é igual à pressão parcial de vapor de ar do ambiente em que as amostras estão acondicionadas.

O ajuste dos modelos matemáticos aos dados obtidos experimentalmente foram realizado pelo programa STATISTICA, versão 7. Os modelos foram selecionados considerando a magnitude do coeficiente de determinação (R²), do erro médio relativo (P) (Equação 77) e do desvio quadrático médio (DQM) (Equação 78).

$$P = \frac{100}{n} \sum_{i=1}^{n} \left(\frac{|Y - \hat{Y}|}{Y} \right)$$
(77)

$$DQM = \sqrt{\sum \frac{\left(RX_{exp} - RX_{pred}\right)^2}{n}}$$
(78)

em que,

 $P \rightarrow$ Erro médio relativo, %

 $n \rightarrow$ Número de dados observados,

 $Y \rightarrow$ Valor observado experimentalmente,

 $\hat{Y} \rightarrow$ Valor calculado modelo,

 $DQM \rightarrow$ Desvio quadrático médio,

 $RX_{exp} \rightarrow \text{Razão de teor de água experimental},$

 $RX_{pred} \rightarrow Razão$ de teor de água predito pelo modelo.

3.5 - Calor latente de vaporização da água dos grãos

Para determinação do calor latente de vaporização, utilizou-se o método de OTHMER, que consiste em obter os dados das isotermas de dessorção do arroz vermelho e os parâmetros da equação que melhor se ajuste aos dados experimentais. Neste trabalho de

pesquisa foi o modelo de Henderson modificado por Cavalcanti Mata que melhor se ajustou aos dados experimentais. Com isto, foram determinados os valores de umidade relativa (UR) para os teores de água de equilíbrio de 5, 10, 15, 20, 25, 30 e 35%, base seca, e temperaturas de 10, 20, 30 e 40 °C.

Com os valores das umidades relativas foram determinados os valores das pressões de vapor de equilíbrio P_v , utilizando a equação (25), onde a pressão do vapor de saturação P_{vs} foi encontrada pela seguinte relação:

$$P_{vs} = exp\left[\left(\frac{A + B T + C T^2 + D T^3 + E T^4}{F T - G T^2}\right)\right] R$$
(79)

em que:

A, B, C, D, E, F e G \rightarrow Coeficientes de ajuste do modelo, que assumem os seguintes valores:

R = 22105649,25 A = -27405,53 B = 97,54 C = -0,15 $D = 1,26x10^{-4}$ $E = -4,86x10^{-8}$ F = 4,35 $G = 3,94x10^{-3}$

Com os valores de $ln(P_v)$ e $ln(P_{vs})$ obteve-se a relação entre h'_{fg}/h_{fg} que corresponde aos coeficientes angulares das retas plotadas com os valores de $ln(P_v)$ em função de $ln(P_{vs})$. Sendo $h'_{fg} = h_{fg}$. (coeficiente angular), determina-se o calor latente de vaporização do produto.

De posse dos valores h'_{fg} , estabeleceu-se uma relação com as temperaturas e teores de água de equilíbrio, por meio de regressão não lineares usando o programa STATISTICA, versão 7, tendo o ajuste pela equação (27).
3.6 – Entalpia, entropia e energia livre de Gibbs

Com a determinação da energia de ativação foi possível realizar os cálculos das diferentes propriedades termodinâmicas, tais como: entalpia, entropia e energia livre de Gibbs, utilizando-se o método descrito por Jideani e Mpotokwana (2009), de acordo com as seguintes equações:

$$\Delta H = E - R T \tag{80}$$

$$\Delta S = R \left[ln D_o - ln \left(\frac{k_b}{k_p} \right) - ln T \right]$$
(81)

$$\Delta G = \Delta H - T \Delta S \tag{82}$$

em que:

 $\Delta H \rightarrow \text{entalpia, J mol}^{-1};$ $\Delta S \rightarrow \text{entropia, J mol}^{-1} \text{K}^{-1};$ $\Delta G \rightarrow \text{energia livre Gibbs, J mol}^{-1};$ $k_b \rightarrow \text{constante de Boltzmann, 1,38 x 10}^{-23} \text{ J K}^{-1};$ $h_p \rightarrow \text{constante de Planck, 6,626 x 10}^{-34} \text{ J s}^{-1}.$

3.7 - Calor específico

O calor específico dos grãos de arroz vermelho foi determinado pelo método das misturas para teores de água variando de 11,6 a 30,06%, base úmida. Este método consiste em utilizar um recipiente isolado (calorímetro) de capacidade calorífica conhecida, com um líquido inerte.

O calorímetro utilizado mostrado na Figura 3.3, é constituído por uma garrafa térmica de volume equivalente a 1000 ml, isolada com uma camada de fibra de vidro e instalada dentro de um tubo de PVC de 150 mm de diâmetro e vedada com rolha de borracha. Neste trabalho de pesquisa, foi utilizada a água destilada como o líquido inerte.

Figura 3.3- Desenho esquemático do calorímetro utilizado para a medição do calor específico dos grãos

O cálculo do calor específico foi realizado através de um balanço global de massa e energia em um sistema de isolamento térmico, expresso por:

Calor perdido pela amostra = Calor ganho pela água + Calor ganho pelo calorímetro

Para obter o calor específico dos grãos foi necessário inicialmente determinar a capacidade calorífica do calorímetro. Para isso, colocou-se 100g de água destilada no interior do calorímetro, à temperatura ambiente. Em seguida, o recipiente foi fechado com uma rolha de borracha acoplada a um termômetro digital onde se determinou a temperatura T_1 . Depois de atingir o equilíbrio térmico, adicionou-se no interior do recipiente mais 100g de água destilada a uma temperatura em torno de 5 °C, correspondendo à temperatura T_2 . O recipiente foi fechado, novamente, e o líquido foi agitado para se obter a temperatura de equilíbrio da mistura T_3 .

Com os dados experimentais, a capacidade calorífica foi determinada através da equação 83 que representa o balanço de calor do sistema.

$$C_{cal} = \frac{c_a \, m_2 (T_3 - T_2) - c_a \, m_1 (T_1 - T_3)}{(T_1 - T_3)} \tag{83}$$

em que,

- $C_{cal} \rightarrow$ capacidade calorífica do calorímetro, $J \circ C^{-1}$
- $c_a \rightarrow$ calor específico da água, $J kg^{-1} \circ C^{-1}$
- $m_1 \rightarrow$ massa de água à temperatura ambiente, kg
- $m_2 \rightarrow$ massa de água refrigerada, kg
- $T_1 \rightarrow$ temperatura da água em condições ambientais, °C
- $T_2 \rightarrow$ temperatura da água fria, °C
- $T_3 \rightarrow$ temperatura de equilíbrio térmico da mistura, °C.

Após obter a capacidade calorífica do calorímetro, foi colocada uma amostra de 100g dos grãos do arroz vermelho em casca com temperatura T_4 dentro da mistura de água contida no interior do calorímetro. Em seguida, agitou-se o calorímetro e aguardou–se, aproximadamente, quinze minutos até atingir um novo equilíbrio térmico T_5 . O novo balanço de calor foi realizado a partir da seguinte expressão:

$$c_g = \frac{c_a \, m_3 (T_5 - T_3) + C_{cal} (T_5 - T_3)}{m_g (T_4 - T_5)} \tag{84}$$

em que,

- $c_g \rightarrow$ calor específico dos grãos, $kcal \ kg^{-1} \ ^{\circ}C^{-1}$
- $m_g \rightarrow$ massa dos grãos, kg
- $m_3 \rightarrow$ massa de água $(m_1 + m_2), kg$
- $T_4 \rightarrow$ temperatura dos grãos, °C
- $T_5 \rightarrow$ temperatura de equilíbrio térmico entre a massa de água e os grãos, °C.

3.8 - Curvas da cinética de secagem de grãos

Para determinação das curvas de secagem, os grãos de arroz vermelho em casca com teores de água inicialmente de 20, 25 e 30% foram submetidos à secagem em estufa com ventilação forçada em cinco temperaturas: 40, 50, 60, 70 e 80 °C. A secagem prosseguiu até os grãos atingirem o teor de água de equilíbrio, ou seja, a secagem encerrou

quando não houve mais variação considerável no peso das amostras. Para a obtenção do referido teor de água dos grãos de arroz vermelho em cada temperatura, foram utilizados três amostras contendo cada uma ± 40 g do produto e pesadas em tempos regulares de 5, 10, 20, 30 e 60 min.

A redução do teor de água foi acompanhada pelo método gravimétrico (perda de água), conhecendo-se o teor de água inicial do produto até atingir o teor de água desejado, como mencionado anteriormente. Depois da secagem o produto foi colocado em uma estufa à temperatura de 105 °C (±1 °C), por um período de 24h, com a finalidade de determinar o teor de água do produto ao final de cada prática experimental. O acompanhamento da redução da massa durante a secagem foi realizada com auxilio de uma balança analítica com precisão de 0,01g.

A Figura 3.4 ilustra o secador de leito fixo utilizado nos experimentos da cinética de secagem em camada fina para os grãos de arroz vermelho em casca. O equipamento consiste em um ventilador para insuflação de ar acoplado a um variador de frequência que controla a rotação e a velocidade de ar de saída, um sistema de aquecimento para o ar de secagem formado por um conjunto de resistências elétricas de simples operação com controle de temperatura por diversas lógicas de controle eletrônico e uma chapa perfurada na saída do leito de secagem que permite a passagem do ar aquecido para as amostras do produto estudado.

Para realizar a secagem dos grãos com vários teores de água inicial foi necessário realizar o umedecimento artificial do produto, tendo em vista que o arroz vermelho adquirido não possuía os teores de água inicial desejado.

No processo de umedecimento artificial, os grãos foram submetidos ao método da atmosfera úmida, que consiste em colocar as amostras do produto em cestas de arame, suspensas em anéis de PVC, no interior de recipientes plástico hermeticamente fechado contendo água destilada, como ilustrado na Figura 3.5.

Figura 3.5. Recipiente hermético utilizado para umedecimento artificial dos grãos de arroz vermelho em casca

Em seguida, os recipientes foram levados à uma câmara B.O.D. regulada com temperatura a 6 °C \pm 1 °C, e periodicamente a massa das amostras foram monitoradas mediante pesagem em balança analítica, com precisão de 0,01g. A massa a ser atingida pelas amostras para elevar o teor de água aos níveis desejados (20, 25 e 30% base úmida) foi calculada considerando a massa e o teor de água inicial e final dos grãos, conforme equação (85).

$$P_f = P_i \left(\frac{100 - X_i}{100 - X_f} \right)$$
(85)

em que:

- $P_f \rightarrow$ peso final da amostra, g
- $P_i \rightarrow$ peso inicial da amostra, g
- $X_i \rightarrow$ teor de água inicial dos grãos, % b.u.
- $X_f \rightarrow$ teor de água desejado dos grão para secagem, % b.u.

Após a realização do umedecimento dos grãos até teor de água desejado para o experimento, estes foram embalados em saco plástico fechado para armazenamento em uma câmara B.O.D. modelo RDE 35 com temperatura controlada, com a finalidade de conservar o teor de água.

Para análise dos ajustes dos modelos matemáticos aos dados experimentais da secagem em camada fina foi utilizado o programa STATISTICA, versão 7. Os modelos foram selecionados tomando-se como parâmetro a magnitude do coeficiente de determinação (\mathbb{R}^2), do erro médio relativo (\mathbb{P}) e do desvio quadrático médio ($\mathbb{D}QM$), conforme descrito nas equações (77) e (78).

3.9 - Secagem em camada espessa

Para o desenvolvimento do estudo do processo de secagem em camada espessa do arroz vermelho em casca foi utilizado um secador em escala laboratorial com capacidade para secar oito quilos de grãos em camada espessa, projetado e construído por Oliveira (2006). Os principais componentes deste secador são:

a) Sistema de ventilação é feito por um turbo compressor com capacidade de 724
W, modelo trifásico, 3400 rotações por minuto. O controle de fluxo é feito por meio de dois registros de gaveta, sendo um destinado para o secador de camada fina e o outro para o secador de camada espessa;

 b) Sistema de aquecimento composto de três resistências elétricas de 2000 W, todas blindadas e acondicionadas em um tubo galvanizado de 110 mm de diâmetro por 700 mm de comprimento, isoladas termicamente com manta de amianto, e comandadas por um termorregulador de temperatura;

c) Quadro elétrico de distribuição e comandos com chave de proteção para todo o sistema;

d) Secador construído de madeira e medindo 95 cm de comprimento e 35 cm de altura, projetado para funcionar na posição horizontal, com isolamento térmico feito com manta de amianto, internamente, e dividido em quatro compartimentos independentes, doravante denominados de câmara de secagem. Cada câmara de secagem possui duas entradas para colocação de sensores para medição de temperatura e umidade relativa do ar, e o fluxo de ar atravessa as câmaras de secagem no sentido longitudinal.

e) Quatro caixas feitas de madeira e tela de arame (malha 6), cada uma medindo 25 cm de altura e 15 cm de largura, com capacidade para armazenar dois quilogramas de grãos. Essas caixas são abastecidas individualmente e colocadas no interior da câmara de secagem.

f) Conjunto de quatro balanças digitais, cada uma com capacidade para 10 kg e precisão de duas casas decimais, uma para cada câmara de secagem, que permite o

acompanhamento do peso da amostra sem precisar retirá-la do secador. As balanças possuem saída serial que permitem a aquisição automatizada dos dados.

A Figura 3.6 ilustra o secador em escala laboratorial utilizado para secagem em camada espessa dos grãos de arroz vermelho.

Figura 3.6- Secador em escala laboratorial utilizado para o processo de secagem em camada espessa

Fonte: Laboratório de Engenharia de Alimentos.

As partes numeradas no secador da Figura 3.6 são:

- 1- Câmara de Secagem;
- 2- Recipiente para secagem em camada fina;
- 3- Duto de ferro galvanizado contendo resistências para aquecimento do ar;
- 4- Turbo compressor;
- 5- Quadro elétrico de distribuição e comandos;
- 6- Balança;
- 7- Saída de ar;

- 8- Entrada para sensores de temperatura e umidade;
- 9- Entrada de ar secagem;
- 10-Registros para controle do fluxo de ar.

Para realização experimental da secagem em camada espessa dos grãos de arroz vermelho, utilizou-se as temperaturas de 40, 50, 60 e 70 °C para teores de água inicial de 20, 25 e 30%.

Inicialmente o produto foi colocado no interior das câmaras de secagem com temperatura e fluxo de ar do secador previamente ajustados. No processo de secagem foi monitorada a umidade relativa do ar, a temperatura ambiente e a velocidade do ar na entrada e na saída da câmara de secagem. A espessura da camada terá 60 cm, compreendendo quatro camadas de 15 cm, uma em cada câmara de secagem. Durante a secagem dos grãos foram coletados, periodicamente, os dados de temperatura na entrada e saída de cada câmara de secagem, temperatura e peso das amostras do produto até atingir o teor de água desejado. Ao final do processo de secagem foi retirado quatro amostras do produto, uma em cada camada e colocado na estufa para verificar o teor de água dos grãos.

3.10 – Simulação de Secagem de grãos

O SASS_{Arroz Vermelho}, Software Aplicado à Simulação de Secagem – Arroz Vermelho, é um programa computacional cuja definição e objetivo encerram-se em sua nominação, implementado a partir do modelo de Thompson et al., 1968, e tendo como base as temperaturas de bulbo seco e bulbo úmido, e da pressão atmosférica. É apresentado a partir de uma janela inicial ou de apresentação, conforme a Figura 3.7.

Figura 3.7 – Tela inicial de abertura do aplicativo

Seguindo o padrão Windows, interface gráfica, interação intuitiva, logo abaixo da linha de identificação do aplicativo, Linha de Título, está à barra de opções. Neste caso, têm-se apenas duas opções: <u>A</u>rquivo e <u>S</u>obre. A primeira encerra toda a funcionalidade do aplicativo; a segunda apresenta os créditos. A seguir, serão apresentadas as opções e funcionalidades disponíveis no Software.

3.10.1 A opção <u>A</u>rquivo

A opção <u>A</u>rquivo disponibiliza a tela de operação do aplicativo Figura 3.8.

Figura 3.8 – Tela operacional do aplicativo

Esta tela está dividida em quatro áreas específicas. 1ª e 2ª áreas, estão dispostas no plano em relevo, identificado como de Equações utilizadas na Simulação, e; 2ª, área destinada a captação, entrada, das condições de secagem que será simulada. Logo abaixo, encontra-se um quadro que servirá à apresentação dos dados obtidos com a simulação. À direita encontra-se a área onde será mostrado o gráfico correspondente às cinéticas de secagem. Logo abaixo se encontra a opção que permite a exportação dos dados para dispositivos computacionais.

A Figura 3.9 apresenta as equações de umidade de equilíbrio disponíveis, cujos coeficientes já foram previamente definidos.

Figura 3.9 - Tela operacional de seleção da equação de umidade de equilíbrio utilizada

A Figura 3.10 apresenta as equações de camada fina disponíveis, cujos coeficientes já foram previamente definidos, conforme Tabela 4.15.

Figura 3.10 - Tela operacional com seleção da eq. de camada fina em destaque

Como pode ser observado, há a possibilidade de se combinar 5 equações de Equilíbrio Higroscópico, previamente parametrizadas, com 2 equações de camada fina, também previamente parametrizadas. Tais opções de combinações permite um maior escopo de simulações.

Após selecionar as equações de equilíbrio higroscópico e de camada fina, passa-se à inclusão das condições de secagem, conforme exposto nas figuras anteriores, começando-se pelo número de camadas. Em seguida informam-se os valores referentes às temperaturas de bulbo seco, bulbo úmido, da pressão atmosférica, temperatura de secagem, teor de água inicial do produto, fluxo de ar de secagem, teor de água final que se pretende alcançar, a altura da camada e o intervalo de tempo que será utilizado na medição.

Após a entrada dos dados referentes às condições de secagem, executa-se a simulação. Para tanto, tecla-se o botão <u>C</u>alcular posicionado à direita, identificado pela figura de uma calculadora. Após pressionar este botão, <u>C</u>alcular, os dados obtidos serão apresentados na tabela posicionada logo abaixo, identificada com as colunas, Hora, Xe 1^a, Xe 2^a, Xe 3^a, Xe 4^a, Méd, que receberão respectivamente, o tempo, e os teores de água correspondentes às camadas previamente selecionadas. Estes resultados são acompanhados das cinéticas de secagem, como ilustrado na Figura 3.11, abaixo.

Figura 3.11 – Tela operacional de apresentação dos resultados da simulação: tempo de secagem, teor de água do produto, temperatura e média do teor de água (resultados da simulação) e as respectivas cinéticas de secagem

O resultado da simulação: Tempo de Secagem, Teor de Água e Teor de Água Médio em cada intervalo de tempo de medição, pode ser visualizado de três formas diferentes: uma para consulta imediata, como mostrado no quadro, tabela, acima; na forma de gráfico, como mostrado em destaque na Figura 3.12, apresentando individualmente a curva de Teor de Água Médio, as curvas de Temperatura, as curvas do Teor de Água, disponibilizando ainda a visualização individualizada da variação do Teor de Água, camada a camada. Com vistas a maior portabilidade, disponibiliza-se a opção de transferir os dados obtidos no formato texto, com meio de utilização por outros softwares básicos, como por exemplo, MS Office, como ilustrado na Figura 3.12.

SASS_	Arroz_Ve	rmelho - Bl	oco de not	as			
Arquivo	Editar Form	atar Exibir	Ajuda				
UFCG - SASS_Ar Condiçó Número Tempera Pressão Tempera Teor da Fluxo o Teor da Altura Increma [Xe]	CTRN - 1 roz Verr bes de se de Camae atura de atura de tura do atura	JAEAg melho - S ecagem das: 4 Bulbo ún érica Ar de Se vICIAL Secagem INAL a Camada tempo]	simulação 200 : 4 11do : 2 20agem: 4 20agem: 4 20 20 20 20 20 20 20 20 20 20 20 20 20	0 de Seca 20.2 (°C) 760.0 (mr 40.0 (°C) 20.0 (%) 0.7 (m^3. 13.00 (%) 0.60 (m) 1.0 (h) [Sabbah	agem 1Hg) m^-1.m^-2)] – [⊤hompson]	1	
tempo	Te	eor de ág	gua (Xe 9	6) Camada	15		
(h)	1ª	2ª	3a	4ª	Média		
0.0 1.0 2.0 3.0 4.0 5.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 14.0 15.0 14.0 15.0 19.0 20.0	20.00 19.37 18.01 16.77 15.68 14.73 13.16 12.51 11.94 11.44 10.98 10.58 10.22 9.90 9.61 9.35 9.12 8.91 8.71 8.54	20.00 20.79 20.84 20.55 19.93 19.31 18.47 17.69 16.94 16.22 15.54 14.89 14.29 13.73 13.21 12.72 12.27 11.85 11.47 11.11 10.78	20.00 20.59 20.99 21.03 20.96 20.95 20.84 20.65 20.39 19.88 19.39 18.68 19.39 18.68 18.03 17.39 16.78 16.18 15.60 15.05 14.53 14.03	20.00 20.59 20.99 21.19 21.18 21.17 21.16 21.13 21.09 21.02 21.04 21.00 21.02 20.96 20.84 20.66 20.42 19.94 19.49 19.04 18.37	20.00 20.34 20.21 19.87 19.45 19.04 18.62 18.21 17.80 17.39 16.97 16.57 16.14 15.74 15.34 14.94 14.56 14.13 13.73 13.35 12.93		
							~

Figura 3.12 – Representação dos dados simulados, no formato texto para transferência à outros meios e/ou softwares

3.10.2 A opção Sobre

Segunda opção da barra de função presta-se à identificação da sua autoria, conforme a Figura 3.13.

Figura 3.13 - Tela operacional de apresentação dos créditos do O SASSArroz Vermelho

A avaliação do grau de adequação dos modelos empregados para comparar os dados experimentais com os dados simulados foi feito através da medição do erro percentual absoluto, conforme equação:

$$D_{esv} \% = \left| \frac{X_{exp} - X_{sim}}{X_{exp}} \right| x \ 100 \tag{86}$$

Onde,

 $D_{esv} \% \rightarrow Desvio percentual, \%$

 $X_{exp} \rightarrow$ valor do dado experimental, b.s

 $X_{sim} \rightarrow$ valor do dado simulado, b.s.

4. RESULTADOS E DISCUSSÃO

Serão apresentados os resultados experimentais desta pesquisa em diferentes condições de temperatura e teor de água inicial para o estudo das isotermas de dessorção e cinética de secagem em camada fina e espessa, assim como os valores determinados do calor latente de vaporização, massa específica aparente, massa específica real, porosidade intergranular, calor específico dos grãos de arroz vermelho em casca e a comparação dos dados experimentais com os dados simulados pelo **SASS**_{Arroz Vermelho}, Software Aplicado à Simulação de Secagem – Arroz Vermelho.

4.1 – Massa específica e porosidade

4.1.1 - Massa específica aparente e Real

A Tabela 4.1 mostra os resultados da massa específica aparente, massa específica real e a porosidade intergranular, obtidas para o arroz vermelho em casca, variando com o teor de água da amostra.

Tabela 4.1. Valores médios da massa específica aparente (ρ_{ap}), massa específica real (ρ) e porosidade intergranular (ϵ) do arroz vermelho em casca em função do teor de água

Teor de água	$ ho_{ap}$	ρ	3
(% b.u.)	(kg m^{-3})	$({\rm kg \ m^{-3}})$	(%)
9,52	558,5	1049,3	46,77
15,95	568,7	1138,7	49,70
21,19	587,2	1177,8	50,14
23,21	598,8	1211,7	50,58
27,12	609,0	1255,3	51,49
28,07	610,4	1264,4	51,74

Observa-se na Tabela 4.1, que houve um aumento da massa específica aparente e real na medida em que ocorreu um aumento do teor de água da amostra do arroz vermelho em casca, tendo a massa específica aparente variada entre 558,5 a 610,4 kg m⁻³ e a massa específica real entre 1049,3 a 1264,4 kg m⁻³, para uma variação do teor de água de 9,52 até 28,07%. Resultados semelhantes obtiveram Araújo et al. (2014), ao estudarem a massa específica aparente e real dos grãos de amendoim durante a secagem, encontrando valores equivalentes a 544 a 598 kg m⁻³ e 885 a 966 kg m s⁻³, respectivamente, para uma faixa de teor de água entre 4 a 56% (b.s.); Siqueira et al. (2012), estudando a massa específica aparente e real das sementes de pinhão-manso, encontraram valores equivalentes a 78,8 a 80,6 kg m⁻³ e 198,8 a 209,2 kg m⁻³, respectivamente, para uma faixa de teor de água entre 9,09 a 33,33% (b.u.).

Verifica-se pelos resultados obtidos para a massa específica real (Tabela 4.1), que a massa de um grão de arroz vermelho aumenta proporcionalmente mais que o seu volume. Para a massa específica aparente, os dados experimentais encontrados significam que o aumento da massa em função do ganho de água foi maior que o aumento do volume da massa de grãos.

As expressões lineares, equações (87) e (88), podem ser usadas para analisar a relação existente entre o teor de água (X%) e as massas específicas aparente (ρ_a) e real (ρ_r) do arroz vermelho em casca, onde ambas apresentam elevados coeficientes de determinação (\mathbb{R}^2).

$$\rho_{ap} = 526,32 + 2,9957 X \qquad \qquad R^2 = 97,39\% \tag{87}$$

$$\rho_r = 945,71 + 11,378 X \qquad \qquad R^2 = 99,26\% \tag{88}$$

Os valores experimentais e estimados da massa específica aparente e massa específica real do arroz vermelho em casca em função do teor de água (b.u.), bem como as equações de ajuste e o coeficiente de determinação, são apresentados graficamente na Figura 4.1.

Figura 4.1 - Valores experimentais e estimados da massa específica aparente (ρ_{ap}) e massa específica real (ρ) do arroz vermelho em casca em função do teor de água

4.1.2 – Porosidade

Na Figura 4.2, são apresentados graficamente os valores experimentais e preditos da porosidade intergranular do arroz vermelho em casca em função do teor de água (b.u.), bem como a equação de ajuste e o coeficiente de determinação.

Os dados experimentais e estimados da massa específica aparente, massa específica real e porosidade intergranular em função da variação do teor de água encontrase no Apêndice 01.

Figura 4.2 - Valores experimentais e estimados da porosidade interanular (ε) do arroz vermelho em casca em função do teor de água

A porosidade da massa de grãos do arroz vermelho em casca aumentou com o aumento do teor de água, apresentando valores entre 46,77 a 51,74%, para faixa de teor de água estudado. Portanto, fica evidente no processo de secagem que a redução do teor de água no produto influência diretamente sobre a porosidade intergranular.

Vários pesquisadores estudando a porosidade de diversos produtos agrícolas observaram comportamento semelhante, entre eles: Siqueira et al. (2012), estudando as sementes pinhão-manso, observaram a porosidade variando de 44,48 a 48,38% para uma faixa de teor de água entre 9,09 a 33,33% (b.u.); Resende et al. (2008), estudando grãos de feijão da cultivar Vermelho Coimbra, observaram a porosidade variando de 38,3 a 44,1% para uma faixa de teor de água entre 13 a 45% (b.s.); Ribeiro et al. (2005), estudando grãos de soja durante o processo de secagem, observaram a porosidade variando de 41,1 a 44,7% para uma faixa de teor de água entre 15 a 31% (b.s.).

A expressão linear, equação 89, representa satisfatoriamente o comportamento da porosidade intergranular (ϵ) do arroz vermelho em casca em função da variação do teor de água (X%), apresentando elevado valor de coeficiente de determinação (\mathbb{R}^2).

$$\varepsilon = 44,9415 + 0,246 X$$
 $R^2 = 93,84\%$ (89)

4.2 - Isotermas de dessorção

As isotermas de dessorção são de fundamental importância no processo de secagem dos produtos agrícolas, pois permitem o conhecimento do teor de água de equilíbrio de um material higroscópico para diversas condições de temperatura e umidade relativa de um determinado ambiente. Além disso, a obtenção de equações que expressem o teor de água de equilíbrio para cada produto em função de umidade relativa e temperatura do ar.

Os valores experimentais dos teores de água de equilíbrio higroscópico do arroz vermelho em casca contidos na Tabela 4.2 representam um valor médio de três repetições para cada temperatura e umidade relativa do ar estudada nesta pesquisa. Observa-se que para uma mesma umidade relativa, os valores do teor de água de equilíbrio higroscópico diminuíram com a elevação de temperatura. Além disso, constata-se que para uma mesma temperatura o teor de equilíbrio higroscópico aumenta com o aumento da umidade relativa do ar, seguindo a mesma tendência da maioria dos produtos agrícolas.

Conforme Campos et al. (2009), a diminuição do teor de água de equilíbrio com o aumento de temperatura pode ser justificada com base no aumento da pressão de vapor da água no ar e na superfície do produto. Este aumento é maior na superfície do produto, tendo em vista que existe uma maior quantidade de moléculas de água na superfície do grão do que no ar. Portanto, a maior pressão de vapor implica em maior perda de água, para que se atinja o equilíbrio.

Existe na literatura várias publicações sobre o comportamento do teor de equilíbrio higroscópico em função da temperatura e umidade relativa do ar que estão compatíveis com os obtidos neste trabalho de pesquisa, entre eles: Smaniotto et al. (2012), estudando isotermas de dessorção dos grãos de milho da cultivar AG 7088 para as temperaturas de 10, 20, 30 e 40 °C e atividade de água variando entre 0,56 e 0,89 pelo método estático; Costa et al. (2013), estudando isotermas de dessorção dos frutos de crambe para as temperaturas de 25, 30, 35 e 40 °C e atividade de água variando entre 0,11 e 0,81 pelo método estático; Oliveira et al. (2014), estudando isotermas de 10, 20, 30 e 40 °C e atividade de água variando entre 0,10 e 0,71 pelo método estático; Silva et al. (2015), estudando isotermas de dessorção das sementes de pimenta (Capsicum chinense

L.) para as temperaturas de 10, 20, 30 e 40 °C e atividade de água variando entre 0,213 e 0,975 pelo método estático.

Tabela 4.2. Valores médios do teor de água de equilíbrio (% base seca) dos grãos de arroz vermelho em casca, para diferentes condições de temperatura (°C) e da umidade relativa do ar (decimal)

	r	Femperatura (°C)	
	10	20	30	40
UK -	Xe (%b.s)	Xe (%b.s)	Xe (%b.s)	Xe (%b.s)
0,1115	5,686	4,202	4,180	4,055
0,3273	8,417	7,997	7,739	7,500
0,5286	13,104	11,700	10,802	10,566
0,7532	17,480	16,382	14,176	14,066
0,8432	21,311	19,741	17,899	15,457

Na Tabela 4.3, estão apresentados os parâmetros dos modelos ajustados aos dados observados do teor de água de equilíbrio higroscópico para os grãos de arroz vermelho em casca obtida por dessorção, pelo método estático para diferentes condições de temperatura e umidade relativa do ar. De acordo com os valores dos coeficientes de determinação, erro médio relativo e o desvio quadrático médio, os modelos de Henderson modificada por Cavalcanti Mata e Henderson modificada por Thompson foram os que melhor representaram a higroscopicidade dos grãos de arroz vermelho em casca, tendo em vista que apresentaram elevados valores para o coeficiente de determinação (R²), superior a 99%, reduzidos valores para o desvio quadrático médio (DQM) e erro médio relativo (P) inferior a 10%, que indica ser adequado para a descrição do fenômeno estudado (MOHAPATRA E RAO, 2005). O modelo de Sabbah apresentou um coeficiente de determinação (R²) superior a 97% e erro médio relativo (P) inferior 10%, porém, o desvio quadrático médio relativo (P) inferior médio (DQM) elevado em relação aos modelos citados anteriormente.

Os demais modelos analisados, Chung – Pfost, Halsey modificada, Cavalcanti Mata e Henderson, mesmo apresentando um coeficiente de determinação superior a 88%, o erro relativo médio dos dados experimentais e preditos estão acima de 10%, o que torna os modelos, citados anteriormente, inadequados para descrever as isotermas de dessorção.

Tabela 4.3 – Coeficientes dos modelos ajustados aos teores de água de equilíbrio higroscópico para os grãos de arroz vermelho em casca com seus respectivos coeficientes de determinação (\mathbb{R}^2), erro médio relativo (\mathbb{P}) e desvio quadrático médio ($\mathbb{D}QM$)

Modelo	1	Coeficiente	S	$\mathbf{P}^2(\mathcal{O}_2)$	D (0%)	DOM
	a	b	c	K (%)	F (%)	DQM
Henderson modificada por Cavalcanti Mata	0,00279	0,31876	1,89911	99,37	5,16	0,0213
Henderson modificada por Thompson	0,00011	43,3558	1,89965	99,38	5,39	0,0211
Chung – Pfost	32,8248	5,54451	52,95973	99,21	14,60	0,0275
Cavalcanti Mata	-0,06452	0,16689	0,39659	97,42	12,61	0,0432
Sabbah	34,9648	0,80443	0,17732	97,02	8,52	0,9021
Halsey modificada	4,14613	0,01218	1,82412	96,93	15,55	0,0472
Henderson	-0,00009	2,40169		88,18	16,11	0,0845

Oliveira et al. (2014), estudando as isotermas de dessorção para sementes de arroz em casca da cultivar BRS Sertanejo, encontraram coeficientes de determinação elevados, para os modelos de Henderson modificada por Cavalcanti Mata (99,57%) e Henderson modificada por Thompson (99,63%), valores próximos ao encontrado neste trabalho de pesquisa. Dos modelos utilizados pelos pesquisadores, citados anteriormente, o modelo de Chung – Pfost foi o que melhor representou os dados experimentais da higroscopicidade do arroz em casca com coeficiente de determinação de 99,65% e erro médio relativo de 2,20%.

Nas Figuras 4.3 a 4.9 encontram-se as superfícies de respostas das isotermas de dessorção de equilíbrio higroscópico para todos os modelos estudados com suas respectivas equações e coeficientes de determinação. A superfície de resposta das isotermas é importante para definir limites de secagem do produto, estimar as mudanças de teor de água de equilíbrio sob determinada condição de temperatura e umidade relativa do ar ambiente.

Figura 4.3 - Superfície de resposta das isotermas de dessorção dos grãos de arroz vermelho em casca, estimada pelo modelo de Henderson modificada por Cavalcanti Mata, para diferentes condições de temperatura e umidade relativa do ar

0,6 0,4 0,2 essorção dos grãos

0,8

Figura 4.4 - Superfície de resposta das isotermas de dessorção dos grãos de arroz vermelho em casca, estimada pelo modelo de Henderson modificada por Thompson, para diferentes condições de temperatura e umidade relativa do ar

0,8 0,6 0,4 0,2

0,8

0,6 0,4 0,2 0 -0,2

Figura 4.5 - Superfície de resposta das isotermas de dessorção dos grãos de arroz vermelho em casca, estimada pelo modelo de Chung-Pfost, para diferentes condições de temperatura e umidade relativa do ar

Figura 4.6 - Superfície de resposta das isotermas de dessorção dos grãos de arroz vermelho em casca, estimada pelo modelo de Cavalcanti Mata, para diferentes condições de temperatura e umidade relativa do ar

0,8 0,6 0,4 0,2

Figura 4.7 - Superfície de resposta das isotermas de dessorção dos grãos de arroz vermelho em casca, estimada pelo modelo de Sabbah, para diferentes condições de temperatura e umidade relativa do ar

Figura 4.8 - Superfície de resposta das isotermas de dessorção dos grãos de arroz vermelho em casca, estimada pelo modelo de Halsey modificada, para diferentes condições de temperatura e umidade relativa do ar

0,8 0,6 0,4 0,2

Figura 4.9 - Superfície de resposta das isotermas de dessorção dos grãos de arroz vermelho em casca, estimada pelo modelo de Henderson, para diferentes condições de temperatura e umidade relativa do ar

4.3 - Determinação do calor latente de vaporização

Diante da importância do conhecimento da higroscopicidade dos produtos agrícolas, a obtenção do calor latente de vaporização da água em função do teor de água e temperatura é fundamental nos estudos de pesquisa, pois representa quantificar gastos energéticos no processo de secagem. O processo de determinação do calor latente de vaporização foi realizado através da teoria apresentada por Othmer.

Para os valores estabelecidos de temperatura variando entre 10 a 40 °C e teor de água de equilíbrio de 5 a 35% base seca do arroz vermelho em casca foram obtidas, por meio da equação de Henderson modificada por Cavalcanti Mata (equação 20) e as umidades relativas, conforme exposto na Tabela 4.4.

Teor de água de		Tempe	eratura (°C)			
equilíbrio	10	20	30	40		
(% b. s.)		Umidade relativa (decimal)				
5	0,151005	0,184684	0,207332	0,224824		
10	0,369101	0,437014	0,479916	0,511567		
15	0,630217	0,710854	0,756349	0,787248		
20	0,820578	0,882675	0,912704	0,930930		
25	0,927534	0,962131	0,975894	0,983144		
30	0,975537	0,990227	0,994839	0,996888		
35	0,993075	0,997975	0,999139	0,999563		

Tabela 4.4 – Dados da umidade relativa obtidos pela equação de Henderson modificada por Cavalcanti Mata para o arroz vermelho em casca, em função do teor de água de equilíbrio e temperatura

Com os dados da umidade relativa de equilíbrio (*UR*) e da pressão do vapor de saturação (P_{vs}) encontrado pela equação (79), determinou-se, utilizando a equação (25), os valores da pressão de vapor (P_v) para cada temperatura e seu respectivo teor de água de equilíbrio, ilustrados através da Tabela 4.5.

equilíbrio		Tempe	eratura (°C)	
(% b. s.)	10	•••	20	
	10	20 P _v (m	30 nm Hg)	40
5	1,0115	2,3193	4,6526	8,6335
10	2,4723	5,4881	10,7696	19,6449
15	4,2213	8,9271	16,9730	30,2314
20	5,4964	11,0849	20,4817	35,7490
25	6,2128	12,0827	21,8997	37,7541
30	6,5343	12,4355	22,3248	38,2819
35	6,6518	12,5328	22,4213	38,3846
P _{vs} (mm Hg)	6,6982	12,5583	22,4406	38,4014

Tabela 4.5 – Dados da pressão do vapor de água do arroz vermelho em casca, em função do teor de água de equilíbrio e temperatura

Na Tabela 4.6 apresentam-se os valores do logaritmo neperiano das pressões do vapor e do vapor de saturação exposto na Tabela 4.5. Pelo método de Othmer, foram plotados os valores do logaritmo neperiano da pressão do vapor em função do logaritmo neperiano da pressão do vapor de saturação, conforme ilustrado na Figura 4.10, obtendose, desta forma, o coeficiente angular de cada reta que corresponde à relação $h'_{fg}/h_{fg} = b$, para cada valor de teor de água de equilíbrio previamente estabelecido. Os valores do coeficiente de determinação (R²) e coeficiente angular de cada reta (b) estão mostrados na Tabela 4.7.

Teor de água de		Temp	eratura (°C)			
equilíbrio	10	20	30	40		
(% b. s.)	Ln P _v (mm Hg)					
5	0,0114	0,8413	1,5374	2,1557		
10	0,9051	1,7026	2,3767	2,9778		
15	1,4401	2,1891	2,8316	3,4089		
20	1,7041	2,4056	3,0195	3,5765		
25	1,8266	2,4918	3,0865	3,6311		
30	1,8771	2,5206	3,1057	3,6450		
35	1,8949	2,5284	3,1100	3,6477		
Ln P _{vs}	1 9018	2 5304	3 1109	3 6481		
(mm Hg)	1,2010	2,5504	5,1109	5,0+01		

Tabela 4.6 – Dados do logaritmo neperiano da pressão do vapor de água do arroz vermelho em casca, em função do teor de água de equilíbrio e temperatura

Tabela 4.7 – Dados dos coeficientes das retas de "Othmer" para determinação do calor latente de vaporização do arroz vermelho em casca

Teor de água de		Coeficientes	
equinbrio — (% b.s.)	а	b	\mathbf{R}^2
5	-2,2947	1,2264	99,90%
10	-1,3264	1,1855	99,91%
15	-0,6837	1,1263	99,94%
20	-0,3211	1,0714	99,97%
25	-0,1306	1,0328	99,99%
30	-0,0445	1,0121	100%
35	-0,0126	1,0036	100%

Figura 4.10 - Retas de "Othmer" para determinação do calor latente de vaporização do arroz vermelho em casca com teor médio de água de equilíbrio variando de 5 a 35%, base seca

Os valores calculados do calor latente de vaporização da água do arroz vermelho em casca em função da temperatura e teor de água de equilíbrio, com seus respectivos coeficientes angulares, são apresentados na Tabela 4.8.

Na Tabela 4.8 constata-se que a energia necessária para evaporar a água dos grãos do arroz vermelho em casca aumenta com a diminuição do teor de água e da temperatura, ou seja, a retirada de água do grão com elevado teor de água necessita de uma quantidade de energia menor do que do grão com baixo teor de água. Observa-se também, que quanto maior o teor de água do grão, independente da temperatura estudada, o valor do calor latente de vaporização da água do produto tende a se aproximar do valor do calor latente de vaporização da água. Desta forma, conclui-se que no início do processo de secagem o consumo de energia no produto é menor, obtendo-se uma maior taxa de secagem. Esses fenômenos têm sido observados por vários pesquisadores, como: Silva et al. (2008) estudando o feijão macassar (*Vigna unguiculata (L.) Walp.*), variedade sempre-verde;

Ferreira et al. (2011), estudando semente de pimenta Cumari Amarela (*Capsicum Chinense L.*); Smaniotto et al. (2012), estudando grãos de milho da cultivar AG 7088; Oliveira et al. (2014), estudando as sementes de Pinhão-Manso.

Tabela 4.8 – Calor latente de vaporização dos grãos de arroz vermelho em casca em função da temperatura e teor de água de equilíbrio

Teor de água		Tempe	eratura (°C)		Coeficiente		
de equilíbrio	10	20	30	40	angular		
(% b. s.)		hfg' = hfg x b (kcal/kg)					
5	736,21	729,22	722,23	715,24	1,2264		
10	711,66	704,90	698,14	691,38	1,1855		
15	676,12	669,70	663,28	656,86	1,1263		
20	643,16	637,05	630,95	624,84	1,0714		
25	619,99	614,10	608,22	602,33	1,0328		
30	607,56	601,79	596,03	590,26	1,0121		
35	602,46	596,74	591,02	585,30	1,0036		
hfg	600,30	594,60	588,90	583,20			
(kcal/kg)							

Com estes resultados foi possível verificar que o calor latente de vaporização, para os grãos de arroz vermelho, na faixa de teor de água de 5 a 35% (b.s.) e temperatura de 10 a 40 °C, variaram de 585,30 kcal kg⁻¹ a 736,21 kcal kg⁻¹.

Na Figura 4.11 são mostrados os dados observados e estimados do calor latente de vaporização da água do arroz vermelho em casca. A superfície de resposta dos dados estimados são apresentados graficamente a partir da equação do calor latente de vaporização em função da temperatura e do seu teor de água obtida por regressão nãolinear. Observa-se na Figura 4.11 que a equação apresentada ajusta-se de modo adequado aos valores do calor latente de vaporização do arroz vermelho em casca, onde se constata um coeficiente de determinação elevado de 95,53%.

700

Figura 4.11 – Superfície de resposta do calor latente de vaporização dos grãos de arroz vermelho em casca em função da temperatura e teor de água de equilíbrio

4.4 - Entalpia, entropia e energia livre de Gibbs

As propriedades termodinâmicas, entalpia, entropia e energia livre de Gibbs encontradas no processo de secagem dos grãos de arroz vermelho em casca para diferentes temperaturas e teores de água inicial são apresentadas na Tabela 4.9.

Teor de	Т	ΔΗ	ΔS	ΔG
agua inicial (% b.u.)	(° C)	J mol ⁻¹	J mol ⁻¹ K ⁻¹	J mol ⁻¹
	40	16915,27	-177,92	72630,92
	50	16832,13	-178,17	74407,77
20	60	16748,99	-178,42	76189,61
	70	16665,85	-178,67	77976,46
	80	16582,71	-178,92	79768,31
	40	17527,47	-172,72	71614,74
	50	17444,33	-172,98	73342,82
25	60	17361,19	-173,24	75076,10
	70	17278,05	-173,48	76807,71
	80	17194,91	-173,72	78544,13
	40	25832,75	-144,25	71004,64
	50	25749,61	-144,49	72441,55
30	60	25666,47	-144,74	73886,60
	70	25583,33	-144,99	75336,65
	80	25500,19	-145,26	76798,76

Tabela 4.9 – Valores da entalpia (Δ H), entropia (Δ S) e energia livre de Gibbs (Δ G) para diferentes condições de temperatura e teor de água inicial

Analisando a Tabela 4.9, observa-se que a entalpia diminui com a elevação da temperatura do ar de secagem para cada teor de água inicial estudado. Verifica-se também, que para uma mesma temperatura, quanto maior o teor de água inicial maior será o valor da entalpia. Esse comportamento está relacionado com o aumento da pressão parcial de vapor de água nos grãos com o aumento da temperatura do ar de secagem. Desta forma, ocorre o aumento da velocidade de difusão da água do interior para a superfície do grão, ocorrendo perda da água do produto por dessorção. Segundo Oliveira et al. (2010), o menor valor de entalpia para temperaturas maiores de secagem indica que menor será a quantidade de energia necessária para remover a água ligada ao produto durante a secagem.

A entropia reduziu com elevação na temperatura de secagem para cada teor de água inicial analisado. Com o aumento da temperatura do ar de secagem ocorre um aumento na excitação das moléculas e redução da viscosidade da água, fatores que combinados propiciam o aumento da velocidade do processo de difusão de água e redução da entropia no processo (MOREIRA et al., 2008).

Verifica-se ainda na Tabela 4.9, que a energia livre de Gibbs aumentou com o aumento de temperatura e com a redução do teor de água, sendo seus valores positivos para toda faixa de temperatura e teor de água estudado. De acordo com Corrêa et al. (2010), o valor positivo da energia livre de Gibbs é característico de uma reação endergônica, em que requer uma adição de energia proveniente do meio em que o produto está envolvido para que ocorra a reação. Portanto, este resultado está coerente, tendo em vista que o processo de dessorção não é espontâneo.

4.5 - Calor específico

Os valores observados experimentalmente do calor específico para as amostras dos grãos de arroz vermelho em casca para diferentes teores de água são apresentados na Tabela 4.10, tendo um calor específico mínimo de 2,2642 kJ/kg °C e máximo de 3,5422 kJ/kg °C. Nota-se que o calor específico teve um acréscimo com o aumento do teor de água do produto. Este comportamento esta coerente com os obtidos por diversos pesquisadores, tais como: Borem et al. (2002), estudando cinco variedades de café cereja descascado; Andrade et al. (2004), estudando grãos de milho; Oliveira (2006), estudando grãos de feijão-macassar; Ribeiro et al. (2007), estudando grãos de trigo; Gama (2011), estudando sementes das frutas tropicais: cajá, graviola, tamarindo e Umbu.

Teor de água	Calor específico			
(% base úmida)	Cal/g °C	kJ/kg °C		
11,60	0,5413	2,2642		
15,30	0,5620	2,3508		
19,08	0,6117	2,5587		
22,43	0,6960	2,9114		
27,76	0,7719	3,2287		
30,06	0,8468	3,5422		

Tabela 4.10 – Valores do calor específico do arroz vermelho em casca em função do teor de água
Para analisar a relação existente entre o calor específico e o teor de água, foi ajustado um modelo linear simples, conforme as equações (90) e (91), que apresentou elevado valor do coeficiente de determinação (\mathbb{R}^2), equivalente a 96,72%.

$$C_p = 1,3338 + 0,0701 X \quad (kJ \ kg^{-1} \circ C^{-1})$$
(90)

$$C_p = 0.3189 + 0.0168 X \quad (Cal \ g^{-1} \circ C^{-1}) \tag{91}$$

Na Figura 4.12 são apresentados graficamente os dados observados e os obtidos por análise de regressão linear do calor específico do arroz vermelho, bem como as equações de ajuste e o coeficiente de determinação.

Figura 4.12 - Valores observados e estimados do calor específico dos grãos de arroz vermelho em casca, em função do teor de água

4.6 - Curvas da cinética de secagem em camada fina

Nas Tabelas 4.11, 4.12, 4.13, 4.14 e 4.15 são apresentados os valores dos coeficientes de determinação (R^2), erro médio relativo (P) e o desvio quadrático médio (DQM), para os modelos de Fick, Henderson e Pabis, Page, Cavalcanti Mata e Thompson empregados para descrever a cinética de secagem do arroz vermelho com teores de água inicial médio de 20, 25 e 30%, temperaturas de 40, 50, 60, 70 e 80 °C e velocidade do ar secagem de 0,8 m s⁻¹. Estes parâmetros foram utilizados como critério para avaliar a eficiência dos modelos descritos para predizer o fenômeno de secagem do arroz vermelho em casca.

Conforme Madamba et al. (1996), fazer a análise de um modelo não linear utilizando um único parâmetro, não constitui uma forma eficiente de avaliação.

De acordo com Mohapatra e Rao (2005), valores inferiores a 10% de erro médio relativo (P) indicam uma representação adequada do fenômeno que está sendo estudado. Para o desvio quadrático médio (QDM), quanto menor for seu valor melhor é a representação do modelo matemático (LIMA et al. 2007).

Neste trabalho todos os modelos estudados apresentaram coeficiente de determinação (R^2) superior a 96,25%, indicando, segundo Madamba et al. (1996), uma representação satisfatória para predição do processo de secagem. Entretanto, quando se considera também o erro médio relativo (P < 10%) e o desvio quadrático médio (DQM) para um ajuste adequado, observa-se que os resultados obtidos para o modelo de Page apresentaram valores superiores a 10% para as temperaturas de 50, 60, 70 e 80 °C em todos os teores de água inicial analisado, enquanto na temperatura de 40 °C o erro médio relativo foi inferior a 10% e o desvio quadrático médio (DQM) menores que 0,0206.

Verifica-se, na Tabela 4.13, que a magnitude do parâmetro "k" para o modelo de Page, que representa a constante da taxa de secagem, aumentou com a elevação da temperatura do ar de secagem para cada teor de água inicial estudado. De acordo com Madamba et al. (1996), a constante de secagem "k" pode ser utilizada como uma aproximação para caracterizar o efeito da temperatura e está relacionada com a difusividade efetiva no processo de secagem no período decrescente.

Em virtude do comportamento crescente com as condições de temperatura do ar de secagem e teor de água inicial, o parâmetro "k", para o modelo de Page, pode ser estimado por um modelo polinomial de segunda ordem e representado pela superfície de resposta ilustrado na Figura 4.13.

Figura 4.13 – Superfície de resposta do parâmetro "k" da equação de Page em função do teor de água inicial e da temperatura do ar de secagem, obtidos por regressão não linear

Para o modelo de Henderson e Pabis, apresentaram-se valores inferiores a 10% para o erro médio relativo (P) em toda faixa de temperatura estudada nos teores de água inicial de 20 e 25%, exceto na temperatura de 80 °C com teor de água inicial de 25% base úmida. No entanto, o teor de água inicial de 30% do referido modelo apresentou valores superiores a 10% em toda faixa de temperatura, que não são aceitáveis para representar o processo de secagem. Quanto ao desvio quadrático médio (DQM), os resultados obtidos foram inferiores a 0,0451.

O modelo de Fick, considerando a forma geométrica cilíndrica de raio equivalente a 1,619 mm, foi utilizado para a modelagem da secagem do arroz vermelho e cálculo da difusividade efetiva (D_{ef}). Foram utilizados 4 termos da série infinita, tendo em vista que acima dessa quantidade não houve variação considerável no coeficiente de difusividade efetiva, assim como, uma melhora significativa no ajuste das curvas da cinética de secagem, representado nas Figuras 4.15, 4.16 e 4.17. Observa-se, pela análise da Tabela 4.11, que o coeficiente de difusividade efetiva (D_{ef}) na secagem do arroz vermelho, estimado pelo modelo Fick, apresenta um comportamento crescente com a elevação da temperatura, isto ocorre, pois a difusividade representa a velocidade com que a água migra do interior para a superfície do produto. Percebe-se também, que para cada temperatura analisada a difusividade efetiva aumenta com o aumento do teor de água inicial, conforme ilustrado no gráfico da superfície de resposta (Figura 4.14). Os valores do coeficiente de difusividade efetiva obtidos nesta pesquisa variaram entre $1,895 \times 10^{-11}$ a $4,337 \times 10^{-11}$ m² s⁻¹ para o teor de água inicial de 20%, $2,332 \times 10^{-11}$ a $6,451 \times 10^{-11}$ m² s⁻¹ para o teor de água inicial de 20%, $2,332 \times 10^{-11}$ m² s⁻¹ para o teor de água inicial de 20%). Segundo Madamba (2003) os valores do coeficiente de difusividade para materiais alimentícios encontra-se dentro de uma faixa de 10^{-11} a 10^{-9} m² s⁻¹. Analisando-se o erro relativo médio (P) e o desvio quadrático médio (DQM), critério de avaliação dos modelos, o modelo Fick apresenta erro relativo médio superior a 10% para toda faixa de temperatura e teor de água inicial estudado e um desvio quadrático médio inferior a 0,0714.

Figura 4.14 – Superfície de resposta do coeficiente da difusividade efetiva do modelo de Fick em função do teor de água inicial e da temperatura de secagem, obtidos por regressão não linear O modelo de Thompson, para as temperaturas de 40 e 50 °C e teores de água inicial de 20, 25 e 30% base úmida apresentaram valores inferiores a 10% para erro relativo médio (P), tendo um desvio quadrático médio inferior a 0,0206 para toda a faixa de temperatura e teor de água inicial estudado.

Entre os modelos utilizados neste experimento para descrever o processo de secagem do arroz vermelho, constata-se que o modelo de Cavalcanti Mata foi o que melhor se ajustou aos dados experimentais para toda faixa de temperatura e teor de água inicial. Esses apresentaram coeficiente de determinação (R²) superior a 99,74%, erro relativo médio (P) inferior a 10% para toda a faixa de temperatura e teor de água inicial analisado e um desvio quadrático médio (DQM) inferior a 0,0174, sendo as melhores condições experimentais verificadas para a secagem a 70 °C e teor de água médio inicial de 25% base úmida.

Fazendo-se uma relação entre os modelos estudados, verifica-se que a superioridade dos resultados obtidos pelo modelo de Cavalcanti Mata pode ser justificada pelo fato da equação apresentar um maior número de parâmetros associada a uma elevada quantidade de termos.

Modelo de Fick											
$RX = 0,6917Exp(-2,2077D_{ef}t) + 0,1313Exp(-11,6320D_{ef}t) + 0,0534Exp(-28,5872D_{ef}t) + 0,0288Exp(-53,0769D_{ef}t)$											
Condições d	e Secagem	Parâmetros									
Teor de água inicial (% b.u.)	Т (°С)	$\begin{array}{c} D_{ef} \\ (10^{-11} \text{m}^2.\text{s}^{-1}) \end{array}$	$R^{2}(\%)$	P (%)	DQM						
	40	1,895	96,25	29,45	0,0714						
	50	2,322	96,49	25,38	0,0699						
20	60	2,848	96,59	17,50	0,0671						
	70	3,583	96,33	21,30	0,0692						
	80	4,337	96,69	26,91	0,0634						
	40	2,332	97,79	19,77	0,0536						
	50	3,622	98,16	23,66	0,0469						
25	60	4,698	97,52	35,71	0,0536						
	70	5,161	96,89	37,00	0,0606						
	80	6,451	96,43	37,72	0,0648						
	40	3,410	98,42	14,96	0,0429						
	50	4,502	98,79	29,57	0,0361						
30	60	7,688	99,03	44,50	0,0291						
	70	8,124	98,50	42,69	0,0375						
	80	12,169	98,41	49,72	0,0358						

Tabela 4.11 – Parâmetros estimados do modelo proposto por Fick obtida por meio de regressão não linear para diferentes condições de temperatura e teor de água médio inicial

Tabela 4.12 – Parâmetros estimados do modelo proposto por Henderson e Pabis obtida por meio de regressão não linear para diferentes condições de temperatura e teor de água médio inicial

Modelo de Henderson e Pabis											
$RX = A_1 Exp(-k_1 t) + A_2 Exp(-k_2 t)$											
Condições de Seca	gem _		Parâmetros								
Teor de água inicial (% b.u.)	Т (°С)	\mathbf{A}_{1}	\mathbf{k}_1	\mathbf{A}_{2}	\mathbf{k}_2	$R^{2}(\%)$	P (%)	DQM			
	40	0,764748	0,179321	0,247268	0,590068	99,98	2,44	0,0047			
	50	0,694634	0,445132	0,317227	0,157551	99,99	1,92	0,0033			
20	60	0,204021	0,116969	0,814622	0,557426	99,97	3,45	0,0064			
	70	0,856459	0,679585	0,166908	0,121516	99,96	3,16	0,0075			
	80	0,192879	0,134570	0,825122	0,884154	99,97	2,10	0,0061			
	40	0,585862	0,195792	0,410257	0,663082	99,99	2,70	0,0042			
	50	0,726602	0,706518	0,257336	0,172880	99,97	2,59	0,0058			
25	60	0,159289	0,145772	0,839206	0,843878	99,99	2,40	0,0035			
	70	0,876374	0,933892	0,137245	0,127220	99,97	3,50	0,0056			
	80	0,494155	0,867688	0,494155	0,867688	99,14	42,39	0,0316			
	40	0,621715	0,254838	0,406117	1,857641	99,87	10,28	0,0121			
	50	0,544294	1,279917	0,437782	0,259874	99,90	14,31	0,0106			
30	60	0,386742	0,333900	0,571539	2,205781	99,63	26,11	0,0180			
	70	0,741997	1,714504	0,233753	0,235560	99,83	11,06	0,0125			
	80	0,450871	1,410128	0,450871	1,410128	97,48	57,23	0,0451			

Tabela 4.13 – Parâmetros estimados do modelo proposto por Page obtida por meio de regressão não linear para diferentes condições de temperatura e teor de água inicial, com os respectivos coeficientes de determinação

Modelo de Page										
$RX = Exp(-k t^n)$										
Secagem		Parâmetros								
Т (°С)	k	n	$R^{2}(\%)$	P (%)	DQM					
40	0,255242	0,914366	99,93	3,66	0,0095					
50	0,338130	0,918239	99,87	13,23	0,0135					
60	0,431864	0,879018	99,52	22,69	0,0249					
70	0,525289	0,900224	99,42	27,82	0,0271					
80	0,640083	0,842081	99,19	28,98	0,0607					
40	0,369305	0,843904	99,96	6,77	0,0075					
50	0,553057	0,815497	99,85	24,40	0,0131					
60	0,675634	0,858810	99,67	37,35	0,0195					
70	0,728952	0,884194	99,37	39,57	0,0271					
80	0,879617	0,923214	99,22	39,55	0,0302					
40	0,561059	0,736666	99,64	8,25	0,0206					
50	0,684151	0,737749	99,87	20,97	0,0119					
60	1,006728	0,640285	99,83	26,30	0,0121					
70	1,045577	0,707617	99,56	31,91	0,0202					
80	1,349813	0,651135	99,47	38,66	0,0205					
	Secagem T (°C) 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 80 80 80 80 80 80 80 80 8	M RX Secagem T k 40 0,255242 50 0,338130 60 0,431864 70 0,525289 80 0,640083 40 0,369305 50 0,553057 60 0,675634 70 0,728952 80 0,879617 40 0,561059 50 0,684151 60 1,006728 70 1,349813	Modelo de Pag $RX = Exp(-k)$ Secagem $RX = Exp(-k)$ T (°C)kn400,2552420,914366500,3381300,918239600,4318640,879018700,5252890,900224800,6400830,842081400,3693050,843904500,5530570,815497600,6756340,858810700,7289520,884194800,8796170,923214400,5610590,736666500,6841510,737749601,0067280,640285701,0455770,707617801,3498130,651135	Modelo de Page $RX = Exp(-k t^n)$ SecagemParâmetrosT (°C)kn R^2 (%)400,2552420,91436699,93500,3381300,91823999,87600,4318640,87901899,52700,5252890,90022499,42800,6400830,84208199,19400,3693050,84390499,96500,5530570,81549799,85600,6756340,85881099,67700,7289520,88419499,37800,8796170,92321499,22400,5610590,73666699,64500,6841510,73774999,83601,0067280,64028599,83701,0455770,70761799,56801,3498130,65113599,47	Modelo de Page $RX = Exp(-k t^n)$ SecagemParâmetrosT (°C)kn $R^2 (\%)$ P (%)400,2552420,91436699,933,66500,3381300,91823999,8713,23600,4318640,87901899,5222,69700,5252890,90022499,4227,82800,6400830,84208199,1928,98400,3693050,84390499,966,77500,5530570,81549799,8524,40600,6756340,85881099,6737,35700,7289520,88419499,3739,57800,8796170,92321499,2239,55400,5610590,73666699,648,25500,6841510,73774999,8720,97601,0067280,64028599,8326,30701,0455770,70761799,5631,91801,3498130,65113599,4738,66					

Tabela 4.14 – Parâmetro	s estimados do mode	elo proposto por	r Cavalcanti M	lata obtida	por meio	de regressão	não linear pa	ara diferentes	condições o	de
temperatura e teor de águ	a inicial, com os res	pectivos coefici	entes de deterr	ninação						

Modelo de Cavalcanti Mata												
$RX = A_1 Exp(-k_1 t^{n_1}) + A_2 Exp(-k_2 t^{n_2}) + A_3$												
Condições de S	becagem	Parâmetros										
Teor de água inicial (% b.u.)	Т (°С)	\mathbf{A}_{1}	k ₁	n ₁	\mathbf{A}_2	k ₂	n ₂	A_3	$R^{2}(\%)$	P (%)	DQM	
	40	0,446392	0,429748	1,007036	0,585803	0,137659	0,999848	-0,022704	99,99	1,81	0,0045	
	50	0,463734	0,192398	0,973691	0,543310	0,474462	1,081839	-0,001972	99,99	1,43	0,0024	
20	60	0,124705	-0,347407	0,000006	1,016863	0,510252	0,873807	-0,141443	99,90	7,64	0,0100	
	70	0,658784	0,742341	1,170975	0,338856	0,252155	0,910765	0,006925	99,99	1,72	0,0035	
	80	0,651595	0,952359	1,165973	0,352722	0,313664	0,790192	-0,001671	99,99	1,26	0,0024	
-	40	0,448304	0,513155	0,945113	0,564108	0,267845	0,847836	-0,007342	99,99	2,17	0,0032	
	50	0,444062	0,489909	0,647030	0,564477	0,601027	1,048793	-0,005599	99,99	2,13	0,0032	
25	60	0,298240	0,421086	0,655034	0,711348	0,827186	1,056001	-0,007242	99,99	2,07	0,0034	
	70	0,309292	0,406566	0,669020	0,699469	0,967331	1,169733	-0,007882	99,99	0,98	0,0020	
	80	0,510392	0,781493	0,585499	0,486124	1,179649	1,811948	0,002147	99,99	2,43	0,0036	
	40	0,533604	0,614842	0,704846	0,500710	0,615774	0,705623	0,006547	99,74	5,25	0,0174	
	50	0,599267	0,943808	0,826529	0,401403	0,439221	0,768035	0,005287	99,97	3,09	0,0053	
30	60	0,455540	0,869319	0,457378	0,556102	1,149655	0,865287	-0,010276	99,96	2,90	0,0058	
	70	0,145327	-0,685564	0,000013	1,123183	1,265788	0,628441	-0,268620	99,92	9,44	0,0080	
	80	0,389036	0,876215	0,437394	0,624432	1,986204	0,936803	-0,013337	99,99	2,61	0,0024	

Modelo de Thompson											
$RX = exp\left(\frac{-a - \sqrt{a^2 + 4bT}}{2b}\right)$											
Condições de S	Secagem			Parâmetros							
Teor de água inicial (% b.u.)	Т (°С)	a	P (%)	DQM							
	40	-6,78547	1,318227	99,96	3,98	0,0067					
	50	-5,70372	1,419572	99,96	4,78	0,0075					
20	60	-3,47030	1,296513	99,79	13,14	0,0167					
	70	-3,39990	1,430387	99,69	17,01	0,0197					
	80	-2,25523	1,347681	99,61	18,70	0,0216					
	40	-3,55205	1,186246	99,98	5,67	0,0047					
	50	-2,38016	1,264189	99,96	9,40	0,0069					
25	60	-2,55210	1,451754	99,86	24,88	0,0128					
	70	-2,66612	1,537575	99,64	29,20	0,0205					
	80	-3,27671	1,834661	99,41	32,23	0,0262					
	40	-1,41011	1,066908	99,78	9,98	0,0158					
	50	-1,33550	1,173843	99,97	5,20	0,0060					
30	60	-0,56736	1,213670	99,90	13,29	0,0095					
	70	-0,91448	1,356118	99,82	23,18	0,0128					
	80	-0,58674	1,450474	99,72	30,06	0,0148					

Tabela 4.15 – Parâmetros estimados do modelo proposto por Thompson obtida por meio de regressão não linear para diferentes condições de temperatura e teor de água inicial, com os respectivos coeficientes de determinação

4.6.1 - Curvas da cinética de secagem do arroz vermelho em casca para diversas condições de temperatura e teor de água inicial.

As Figuras de 4.15 a 4.29 ilustram as curvas de cinética de secagem do arroz vermelho em camada fina para as temperaturas de 40, 50, 60, 70, 80 °C com teores médios de água inicial de 20, 25 e 30%, base úmida e velocidade do ar de secagem de 0,8 m s⁻¹. Com base nos resultados experimentais obtidos foi realizado o tratamento dos dados através do programa computacional STATISTACA, versão 7. Entre os modelos matemáticos existente na literatura foram estimados os parâmetros para os modelos de Fick, Henderson e Pabis, Page, Cavalcanti Mata e Thompson. Os dados experimentais e preditos da cinética de secagem encontram-se nos Apêndices 02 a 16.

Como pode ser verificado, o aumento da temperatura de atuação exerce efeito importante na cinética de secagem. Observa-se que a relação entre a temperatura utilizada no processo de secagem dos grãos é inversamente proporcional ao tempo gasto para que os mesmos atingissem o teor de água de equilíbrio.

Constata-se que a perda do teor de água do produto ocorreu com mais intensidade na temperatura mais elevada, reduzindo assim o tempo de secagem e tornando a curva de secagem mais acentuada.

No início de todos os processos de secagem realizados houve uma intensa perda de água devido à rápida evaporação e intenso transporte de água livre contida na superfície do produto, proveniente do interior do produto para sua superfície. Após este período de taxa de secagem o processo ocorre de forma mais lenta demonstrando a dificuldade de se retirar água do produto até atingir o equilíbrio entre o produto e o ar de secagem. Nesse período a resistência interna ao transporte de água se torna maior que a resistência externa, podendo o transporte de água ocorrer por escoamento capilar, difusão de líquido ou/e difusão de vapor.

Estas relações entre temperatura, tempo de secagem e teor de água inicial foram observadas por vários pesquisadores estudando diferentes produtos agrícolas, dentre eles: Isquierdo (2011), estudando frutos de café natural; Oliveira et al. (2012), estudando grãos de milho; Resende et al. (2010), estudando grãos de feijão adzuki; Maneghetti et al. (2012), estudando grãos de arroz com casca e Morais et al. (2013), estudando grãos de feijão-caupi.

Percebe-se, nessas Figuras, a elevada concordância entre os resultados da razão do teor de água observados experimentalmente e os resultados estimados pelo modelo de

Cavalcanti Mata, para todas as condições estudadas, o que confirma o ajuste satisfatório do referido modelo matemático para descrever a cinética de secagem do arroz vermelho.

Figura 4.15 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

Figura 4.16 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

Figura 4.17 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 30%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

Figura 4.18 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

Modelo Henderson e Pabis

Figura 4.19 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

Figura 4.20 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 30%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

Figura 4.21 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

Figura 4.22 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

Figura 4.23 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 30%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

Figura 4.24 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

Modelo Cavalcanti Mata

Figura 4.25 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

Modelo Thompson

Figura 4.27 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 20%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

Figura 4.28 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 25%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

Modelo Thompson

Figura 4.29 – Curvas da cinética de secagem em camada fina do arroz vermelho em casca com teor médio de água inicial de 30%, base úmida, obtidos por regressão não linear para diferentes condições de temperatura

4.6.2 - Análise do comportamento da difusividade efetiva para diferentes modelos matemáticos.

Nas Tabelas 4.16, 4.17 e 4.18 estão apresentados os valores da difusividade efetiva determinadas pelos modelos de Page, Cavalcanti Mata e Fick ajustadas para as temperaturas de 40, 50, 60, 70 e 80 °C e teores de água inicial médio de 20, 25 e 30%, com seus respectivos coeficiente de determinação (\mathbb{R}^2).

Modelo de Page										
$RX = Exp\left(-\frac{\lambda_1^2}{R_e^2}D_{ef}t^n\right)$										
Condições de Secagem			Parâmetros							
Teor de água inicial (% b.u.)	Т (°С)	$\frac{D_{ef}}{(10^{-11}m^2 s^{-1})}$	n	$R^{2}(\%)$						
	40	2,619	0,914309	99,93						
	50	3,471	0,917871	99,87						
20	60	4,432	0,878740	99,52						
	70	5,389	0,900206	99,42						
	80	6,566	0,842094	99,19						
	40	3,788	0,844028	99,96						
	50	5,675	0,815353	99,85						
25	60	6,931	0,858777	99,67						
	70	7,478	0,884235	99,37						
	80	9,024	0,923212	99,22						
	40	5,756	0,736668	99,64						
	50	7,019	0,737715	99,87						
30	60	10,328	0,640309	99,83						
	70	10,729	0,707596	99,56						
	80	13,849	0,651204	99,47						

Tabela 4.16 – Parâmetros do modelo proposto por Page, com seu respectivo coeficiente de determinação (R^2) para diferentes condições de temperatura e teor de água inicial

Modelo de Cavalcanti Mata												
	$RX = A_1 Exp\left(-\frac{\lambda_1^2}{R_e^2}D_{ef}t^{n_1}\right) + A_2 Exp\left(-\frac{\lambda_2^2}{R_e^2}D_{ef}t^{n_2}\right) + A_3$											
Condições de S	Condições de Secagem Parâmetros											
Teor de água inicial (% b.u.)	T (°C)	A ₁	$\frac{D_{ef}}{(10^{-11}m^2 s^{-1})}$	n ₁	\mathbf{A}_{2}	n ₂	\mathbf{A}_{3}	$R^{2}(\%)$				
	40	0,866874	2,014	0,995569	0,137957	1,286028	0,002586	99,98				
	50	0,903794	3,104	0,989752	0,083407	1,667498	0,019641	99,97				
20	60	0,924549	4,553	0,928958	0,054393	4,365955	0,035608	99,90				
	70	0,915647	5,726	0,920479	0,066542	5,347901	0,035799	99,90				
	80	0,850878	6,668	0,862617	0,121072	3,473029	0,037547	99,88				
	40	0,755943	2,478	0,997842	0,238272	0,979920	0,010005	99,98				
	50	0,975179	5,906	0,830690	0,014870	214,7052	0,017761	99,96				
25	60	0,957656	7,419	0,859053	0,031582	11,00107	0,024214	99,92				
	70	0,914396	8,230	0,853409	0,076607	6,917789	0,030947	99,87				
	80	0,798339	9,317	0,820309	0,174197	5,699220	0,027324	99,89				
	40	0,799516	4,514	0,787340	0,223882	1,123240	0,000687	99,86				
	50	0,966850	7,185	0,754467	0,030599	1,471229	0,015344	99,96				
30	60	0,987465	10,793	0,664832	0,001021	1,091892	0,015602	99,92				
	70	0,960659	11,607	0,727885	0,030845	2,260476	0,025438	99,86				
	80	0,769598	12,569	0,594309	0,211494	1,762141	0,012479	99,90				

Tabela 4.17 – Parâmetros do modelo proposto por Cavalcanti Mata, com seu respectivo coeficiente de determinação (R^2) para diferentes condições de temperatura e teor de água inicial

Tabela 4.18 – Parâmetros do modelo proposto por Fick, com seu respectivo coeficiente de determinação (R^2) para diferentes condições de temperatura e teor de água inicial

Modelo de Fick													
$RX = \sum_{n=1}^{\infty} \frac{4}{\lambda_n^2} exp\left(-\frac{\lambda_n^2}{R_e^2}D_{ef}t\right)$													
Condições de Secagem Parâmetros													
Teor de	Т	1 Teri	no	2 Tern	105	3 Tern	105	4 term	105	5 Tern	nos	6 Teri	mos
agua iniciai (% b.u.)	(°C)	$(10^{-11} \text{m}^2 \text{ s}^{-1})$	$R^{2}(\%)$										
	40	1,888	83,90	1,892	93,69	1,893	95,64	1,895	96,25	1,895	96,49	1,896	96,61
	50	2,314	85,59	2,339	94,26	2,328	95,96	2,322	96,49	2,318	96,69	2,317	96,79
20	60	2,818	86,18	2,870	94,47	2,856	96,09	2,848	96,59	2,842	96,79	2,841	96,88
	70	3,551	86,24	3,613	94,29	3,595	95,86	3,583	96,33	3,576	96,52	3,573	96,60
	80	4,251	87,15	4,364	94,77	4,350	96,24	4,337	96,69	4,330	96,87	4,328	96,95
	40	2,293	88,06	2,338	95,83	2,336	97,32	2,332	97,79	2,328	97,97	2,327	98,06
	50	3,527	90,05	3,626	96,56	3,626	97,78	3,622	98,16	3,618	98,31	3,617	98,38
25	60	4,605	89,28	4,720	95,89	4,709	97,13	4,698	97,52	4,693	97,67	4,691	97,74
	70	5,089	88,60	5,194	95,25	5,174	96,51	5,161	96,89	5,154	97,04	5,150	97,11
	80	6,395	88,33	6,488	94,89	6,464	96,08	6,451	96,43	6,446	96,57	6,444	96,65
	40	3,255	89,92	3,404	96,61	3,414	97,97	3,410	98,42	3,406	98,60	3,404	98,69
	50	4,300	91,53	4,489	97,34	4,503	98,44	4,502	98,79	4,498	98,94	4,497	99,10
30	60	7,193	93,48	7,620	97,87	7,679	98,72	7,688	99,03	7,689	99,17	7,689	99,24
	70	7,753	91,93	8,103	97,13	8,128	98,16	8,124	98,50	8,121	98,65	8,119	98,73
	80	11,544	92,46	12,115	97,10	12,165	98,07	12,169	98,41	12,168	98,57	12,168	98,66

Os dados contidos nas Tabelas 4.16, 4.17 e 4.18 mostram que para todos os modelos estudados o coeficiente de difusividade efetiva (D_{ef}) na secagem do arroz vermelho aumenta com o aumento da temperatura, assim como para cada temperatura analisada a difusividade efetiva aumenta com a elevação do teor de água inicial, o que evidencia uma menor resistência interna ao transporte de água do interior para a superfície do grão com a elevação de temperatura e do teor de água. Segundo Goneli et al. (2009), com o aumento da temperatura a viscosidade da água diminui e, sendo a viscosidade uma medida de resistência do fluido ao escoamento, variações dessa propriedade implicam alterações na difusão da água nos interstícios das amostras, favorecendo a movimentação da água no produto. Dessa forma, verifica-se que quanto maior o teor de água e a temperatura no grão maior será a velocidade de remoção da água livre do interior para a superfície do grão.

Observa-se que os coeficientes de determinação para as equações propostas por Page e Cavalcanti Mata são superiores a 99%, sendo possível verificar que estas duas equações se equivalem para os resultados obtidos, já que a diferença dos valores da difusividade efetiva foram semelhantes. Para o modelo de Page, os valores do coeficiente de difusividade efetiva obtidos nesta pesquisa variaram entre $2,619\times10^{-11}$ a $6,566\times10^{-11}$ m² s⁻¹ para o teor de água inicial de 20%, $3,788\times10^{-11}$ a $10,024\times10^{-11}$ m² s⁻¹ para o teor de água inicial de 20%, $3,788\times10^{-11}$ a $10,024\times10^{-11}$ m² s⁻¹ para o teor de água inicial de 30%. Já no modelo Cavalcanti Mata os valores da difusividade efetiva ficaram entre $2,014\times10^{-11}$ a $6,668\times10^{-11}$ m² s⁻¹ para o teor de água inicial de 20%, $2,478\times10^{-11}$ a $9,317\times10^{-11}$ m² s⁻¹ para o teor de água inicial de $4,514\times10^{-11}$ a $12,569\times10^{-11}$ m² s⁻¹ para o teor de água inicial de 30%.

Na Tabela 4.18 encontram-se os valores da difusividade efetiva determinada pela equação de Fick com um a seis termos, no qual os valores da difusividade efetiva determinada pela referida equação para seis termos, variaram entre $1,896 \times 10^{-11}$ a $4,328 \times 10^{-11}$ m² s⁻¹ para o teor de água inicial de 20%, $2,327 \times 10^{-11}$ a $6,444 \times 10^{-11}$ m² s⁻¹ para o teor de água inicial de 25%, $3,404 \times 10^{-11}$ a $12,168 \times 10^{-11}$ m² s⁻¹ para o teor de água inicial de 30%. Verifica-se que a partir do quarto termos não existe uma variação acentuada dos valores da difusividade efetiva, já que essas diferenças são mínimas e estão na ordem da segunda e terceira casa decimal, tendo o coeficiente de determinação (R²) para cada temperatura e teor de água analisado valores semelhantes, entre 96 a 99%, em que os coeficientes de

determinação são inferiores as demais equações estudadas, assim como os valores da difusividade efetiva para toda faixa de temperatura e teor de água inicial.

O comportamento do coeficiente de difusividade efetiva também foi observada por Resende et al. (2005), estudando arroz em casca, no qual obtiveram valores de $6,32x10^{-11}$ a 22,78x10⁻¹¹ m² s⁻¹, durante a secagem nas temperaturas de 25° e 55 °C e teor de água de 17,9%. Dessa forma, pode-se concluir que a água foi removida com uma maior velocidade comparada ao arroz vermelho em casca estudado neste trabalho de pesquisa.

As superfícies de respostas dos dados experimentais e estimados do coeficiente de difusividade efetiva do arroz vermelho em casca são apresentados graficamente na Figura 4.30 para todos os modelos estudados com suas respectivas equações e coeficientes de determinação (\mathbb{R}^2).

Figura 4.30 - Superfícies de respostas do coeficiente de difusividade efetiva do arroz vermelho em casca, estimada pelos modelos de Fick, Page e Cavalcanti Mata, para diferentes condições de temperatura e teor de água inicial

A relação do coeficiente de difusividade efetiva dos grãos de arroz vermelho em casca com relação à temperatura do ar de secagem foi satisfatoriamente representada pela expressão de Arrhenius. Através da referida expressão foram plotados os valores do logaritmo neperiano dos coeficientes da difusividade efetiva $[\ln(D_{ef})]$ em função do inverso da temperatura absoluta, obtendo-se, desta forma, o coeficiente angular de cada reta que corresponde à relação E/R, para cada faixa de temperatura e teor de água previamente estabelecido, conforme ilustrado na Figura 4.31. Portanto, ao multiplicar-se o valor do coeficiente angular da reta por 8,314 tem-se o valor da energia de ativação para cada faixa de temperatura e teor de água analisado.

Figura 4.31 – Representação de Arrhenius para a difusividade efetiva em função da temperatura do ar de secagem e teor de água inicial estimada pelos modelos de Fick, Page e Cavalcanti Mata

Na Tabela 4.19 são apresentados os valores da energia de ativação dos grãos de arroz vermelho para cada modelo analisado e teor de água inicial.

	E	nergia de ativação (kJ r	nol ⁻¹)
Teor de agua inicial —— (% b.u.)		Modelos	
· · · · · · · · · · · · · · · · · · ·	Fick	Page	Cavalcanti Mata
20	19,88	20,50	24,63
25	20,14	19,73	20,72
30	28,46	19,50	19,21

Tabela 4.19 – Valores médios da energia de ativação em função do teor de água para diferentes modelos matemáticos nas temperaturas de 40, 50, 60, 70 e 80 °C

Como pode ser observada na Tabela 4.19, a energia de ativação para a difusão da água diminui com a elevação do teor de água do produto para os modelos Page e Cavalcanti Mata. De acordo com Correia et al. (2007), para um processo de secagem, a energia de ativação é a facilidade com que as moléculas de água superam a barreira de energia durante a migração no interior do produto, quanto menor a energia de ativação, maior será a difusividade de água no produto.

A energia de ativação para difusão líquida dos grãos de arroz vermelho em função do teor de água apresentaram valores entre 19,88 a 28,46 kJ mol⁻¹ para o modelo Fick, 20,50 a 19,50 kJ mol⁻¹ para o modelo Page e 24,63 a 19,21 kJ mol⁻¹ para o modelo Cavalcanti Mata. Segundo Zogzas et al. (1996) para os produtos agrícolas a energia de ativação deve estar entre 12,7 a 110 kJ mol⁻¹. Logo, os valores encontrados no trabalho de pesquisa para todos os modelos apresentam-se dentro da faixa.

4.6.3 - Influência do teor de água inicial no processo de secagem do arroz vermelho em casca.

Nas Figuras de 4.32 a 4.36 estão apresentadas as curvas das cinéticas de secagem para os grãos de arroz vermelho submetido à secagem de 40, 50, 60, 70 e 80 °C de temperatura em camada fina com teores médios de água inicial de 20, 25 e 30%, base úmida. As Figuras têm por finalidade mostrar a influência do teor de água inicial sobre o tempo de secagem, assim como analisar o comportamento da taxa de secagem do produto (perda de teor de água em função do tempo) em cada processo.

Verifica-se que o aumento do teor de água inicial do produto, nas mesmas temperaturas, as taxas de secagem aumenta no início do processo de secagem de forma significativa. No decorrer do tempo de secagem, a taxa diminui e a dependência com relação ao teor de água inicial não se torna evidente. Com o aumento da temperatura, a taxa de secagem cresce para todos os valores de teor de água inicial do grão, constatando-se de forma mais acentuada nas temperaturas elevadas.

Conforme as Figuras de 4.32 a 4.36 mostram, à medida que a temperatura de secagem aumenta, o teor de água inicial reduz sua influência na taxa de secagem. Tal fato pode ser observado pelos espaçamentos das curvas de cinética de secagem que diminui de acordo com o aumento de temperatura.

Para analisar o tempo de secagem do produto, foi tomado como referência o teor de água final de 12% base úmida para teor médio de água inicial de 20% e 30% base úmida, mesmo mantendo as amostras no secador até que atingissem o equilíbrio higroscópico. Verifica-se que o tempo necessário para que os grãos com teor de água inicial de 20% atingissem o teor de água final estabelecido anteriormente foi de 350, 191, 139, 82 e 64 min para as temperaturas de secagem de 40, 50, 60, 70 e 80 °C, respectivamente. Para um teor de água inicial de 30%, o tempo de secagem foi de 310, 167, 127, 70 e 48 min para as temperaturas de 40, 50, 60, 70 e 80 °C, respectivamente, evidenciando, através dos experimentos realizados, que o aumento de temperatura do ar de secagem promove redução no tempo de secagem dos grãos. Constata-se também que ocorreu um menor tempo de secagem do produto que apresentava um maior teor de água inicial. De acordo com Oliveira (2006), o menor tempo de secagem do produto é função de uma maior taxa de secagem, que por sua vez, é consequência da grande quantidade de água contida no produto.

Figura 4.32 – Influência do teor de água inicial na secagem dos grãos de arroz vermelho para temperatura de 40 $^{\circ}$ C

Figura 4.33 – Influência do teor de água inicial na secagem dos grãos de arroz vermelho para temperatura de 50 °C

Figura 4.34 – Influência do teor de água inicial na secagem dos grãos de arroz vermelho para temperatura de 60 °C

Figura 4.35 – Influência do teor de água inicial na secagem dos grãos de arroz vermelho para temperatura de 70 °C

Figura 4.36 – Influência do teor de água inicial na secagem dos grãos de arroz vermelho para temperatura de 80 °C

4.7 – Resultados experimentais e simulações em camada espessa

As Figuras 4.37 a 4.60 ilustram as curvas da cinética de secagem em camada espessa obtidas experimentalmente e por simulação para as temperaturas de 40, 50, 60 e 70 °C e teores de água médio inicial de 20, 25 e 30% base úmida. As Tabelas contendo os dados experimentais, os dados simulados pelo modelo Thompson e seus respectivos desvios percentuais encontram-se nos Apêndices de 17 a 28.

Por meio dos dados experimentais e simulados foi analisado a diferença entre o teor de água experimental final e simulado em cada camada do processo de secagem, assim como o desvio médio final, de modo a predizer as melhores condições de secagem do produto em camada espessa a partir do modelo estudado, além do tempo de secagem realizado.

Figura 4.37 - Dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca com teor de água médio inicial de 20% base úmida e temperatura de 40 $^{\circ}$ C

Figura 4.38 – Valores do teor de água médio dos dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca

Pode-se observar no Apêndice 17, para a temperatura de secagem a 40 °C e 20% b.u. de teor de água médio inicial, que o desvio percentual ao término do processo de secagem entre os dados experimentais e simulados para cada camada são de: 29,20% na 1^a camada, 27,61% na 2^a camada, 18,75% na 3^a camada e 9,06% na 4^a camada, que corresponde a uma diferença entre o teor de água experimental final e simulado de |3,34|%, |3,78|%, |2,92|% e |1,43|%, respectivamente. O desvio médio final é de 11,97%, o que significa um teor de água de |2,15|%. As condições de secagem para esta simulação foram: temperatura de bulbo seco (25,3 °C); temperatura de bulbo úmido (20,2 °C); temperatura de secagem (40 °C); teor de água inicial (20,2% b.u.); pressão atmosférica (760mm Hg); fluxo do ar de secagem (3,5 m³ min⁻¹ m⁻²); espessura de cada camada (0,15m).

Figura 4.39 - Dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca com teor de água médio inicial de 20% base úmida e temperatura de 50 °C

Figura 4.40 – Valores do teor de água médio dos dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca

Verifica-se no Apêndice 18, para a temperatura de secagem a 50 °C e 20% b.u. de teor de água médio inicial, que o desvio percentual ao término do processo de secagem entre os dados experimentais e simulados para cada camada são de: 16,72% na 1ª camada, 13,72% na 2ª camada, 21,26% na 3ª camada e 10,25% na 4ª camada, que corresponde a uma diferença entre o teor de água experimental final e simulado de |1,10|%, |1,15|%, |2,84|% e |1,55|%, respectivamente. O desvio médio final é de 15,50%, o que significa um teor de água de |0,88|%.

Para a simulação realizada neste trabalho de pesquisa, as condições de secagem foram: temperatura de bulbo seco (25,3 °C); temperatura de bulbo úmido (20,2 °C); temperatura de secagem (50 °C); teor de água inicial (20,8% b.u.); pressão atmosférica (760mm Hg); fluxo do ar de secagem (2,8 m³ min⁻¹ m⁻²); espessura de cada camada (0,15m).

Figura 4.41 - Dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca com teor de água médio inicial de 20% base úmida e temperatura de $60 \degree C$

Figura 4.42 – Valores do teor de água médio dos dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca

No Apêndice 19 que contém os dados experimentais, os dados simulados e os seus respectivos desvios para a temperatura de secagem a 60 °C e 20% b.u. de teor de água médio inicial, observa-se que o desvio percentual ao término do processo de secagem entre os dados experimentais e simulados para cada camada são de: 9,16% na 1^a camada, 8,90% na 2^a camada, 20,35% na 3^a camada e 8,08% na 4^a camada, que corresponde a uma diferença entre o teor de água experimental final e simulado de |0,34|%, |0,47|%, |2,37|% e |1,23|%, respectivamente. O desvio médio final é de 11,62%, o que significa um teor de água de |0,09|%, tendo as seguintes condições de secagem para a simulação: temperatura de bulbo seco (25,3 °C); temperatura de bulbo úmido (20,2 °C); temperatura de secagem (60 °C); teor de água inicial (21,84% b.u.); pressão atmosférica (760 mm Hg); fluxo do ar de secagem (2,4 m³ min⁻¹ m⁻²); espessura de cada camada (0,15m).

Figura 4.43 - Dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca com teor de água médio inicial de 20% base úmida e temperatura de 70 $^{\circ}$ C

Figura 4.44 – Valores do teor de água médio dos dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca

No Apêndice 20 contém os resultados experimentais, simulados e seus respectivos desvios para a temperatura de secagem a 70 °C e 20% b.u. de teor de água médio inicial, verifica-se que o desvio percentual ao término do processo de secagem entre os dados experimentais e simulados para cada camada são de: 14,09% na 1ª camada, 23,35% na 2ª camada, 18,24% na 3ª camada e 17,44% na 4ª camada, que corresponde a uma diferença entre o teor de água experimental final e simulado de 10,621%, 11,841%, 12,411% e 12,731%, respectivamente. O desvio médio final é de 18,28%, o que significa um teor de água de 10,531%.

As condições de secagem para a simulação realizada neste trabalho de pesquisa foram: temperatura de bulbo seco (25,3 °C); temperatura de bulbo úmido (20,2 °C); temperatura de secagem (70 °C); teor de água inicial (20,43% b.u.); pressão atmosférica (760 mm Hg); fluxo do ar de secagem (2,4 m³ min⁻¹ m⁻²); espessura de cada camada (0,15m).

vermelho em casca com teor de água médio inicial de 25% base úmida e temperatura de 40 °C

Figura 4.46 – Valores do teor de água médio dos dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca

De acordo com os dados contidos no Apêndice 21, para a temperatura de secagem a 40 °C e 25% b.u. de teor de água médio inicial, verifica-se que o desvio percentual ao término do processo de secagem entre os dados experimentais e simulados para cada camada são de: 22,91% na 1ª camada, 36,93% na 2ª camada, 22,90% na 3ª camada e 20% na 4ª camada, que corresponde a uma diferença entre o teor de água experimental final e simulado de l2,061%, l4,661%, l3,331% e l6,401%, respectivamente. O desvio médio final é de 30,74%, o que significa um teor de água de l0,911%. Para as condições de secagem na simulação foram utilizados os seguintes parâmetros: temperatura de bulbo seco (25,3 °C); temperatura de bulbo úmido (20,2 °C); temperatura de secagem (40 °C); teor de água inicial (24,5% b.u.); pressão atmosférica (760 mm Hg); fluxo do ar de secagem (2,66 m³ min⁻¹ m⁻²); espessura de cada camada (0,15m).

Figura 4.47 - Dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca com teor de água médio inicial de 25% base úmida e temperatura de 50 $^{\circ}$ C

Figura 4.48 – Valores do teor de água médio dos dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca

Pode-se observar no Apêndice 22, para a temperatura de secagem a 50 °C e 25% b.u. de teor de água médio inicial, que o desvio percentual ao término do processo de secagem entre os dados experimentais e simulados para cada camada são de: 19,10% na 1^a camada, 32,93% na 2^a camada, 22,05% na 3^a camada e 21,01% na 4^a camada, que corresponde a uma diferença entre o teor de água experimental final e simulado de 11,141%, 12,971%, 12,651% e 13,341%, respectivamente. O desvio médio final é de 23,77%, o que significa um teor de água de 10,861%, tendo a temperatura de bulbo seco (25,3 °C); temperatura de bulbo úmido (20,2 °C); temperatura de secagem (50 °C); teor de água inicial (24,5% b.u.); pressão atmosférica (760 mm Hg); fluxo do ar de secagem (2,66 m³ min⁻¹ m⁻²); espessura de cada camada (0,15m) como condições de secagem na simulação realizada.

Figura 4.49 - Dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca com teor de água médio inicial de 25% base úmida e temperatura de 60 °C

Figura 4.50 – Valores do teor de água médio dos dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca

No Apêndice 23 que contém os dados experimentais, os dados simulados e os seus respectivos desvios para a temperatura de secagem a 60 °C e 25% b.u. de teor de água médio inicial, verifica-se que o desvio percentual ao término do processo de secagem entre os dados experimentais e simulados para cada camada são de: 12,93% na 1^a camada, 30,80% na 2^a camada, 5,13% na 3^a camada e 29,36% na 4^a camada, que corresponde a uma diferença entre o teor de água experimental final e simulado de 10,561%, 12,351%, 10,501% e 14,461%, respectivamente. O desvio médio final é de 19,56%, o que significa um teor de água de 10,301%. As condições de secagem para a simulação realizada neste trabalho de pesquisa foram: temperatura de bulbo seco (25,3 °C); temperatura de bulbo úmido (20,2 °C); temperatura de secagem (60 °C); teor de água inicial (24,5% b.u.); pressão atmosférica (760 mm Hg); fluxo do ar de secagem (2,6 m³ min⁻¹ m⁻²); espessura de cada camada (0,15m).

Figura 4.51 - Dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca com teor de água médio inicial de 25% base úmida e temperatura de 70 $^{\circ}$ C

Figura 4.52 – Valores do teor de água médio dos dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca

Verifica-se no Apêndice 24, para a temperatura de secagem a 70 °C e 25% b.u. de teor de água médio inicial, que o desvio percentual ao término do processo de secagem entre os dados experimentais e simulados para cada camada são de: 5,37% na 1^a camada, 38,40% na 2^a camada, 48,08% na 3^a camada e 15,71% na 4^a camada, que corresponde a uma diferença entre o teor de água experimental final e simulado de |0,16|%, |2,40|%, |5,75|% e |2,46|%, respectivamente. O desvio médio final é de 26,89%, o que significa um teor de água de |2,69|%, em que as condições de secagem utilizadas para a simulação foram: temperatura de bulbo seco (25,3 °C); temperatura de bulbo úmido (20,2 °C); temperatura de secagem (70 °C); teor de água inicial (24,73% b.u.); pressão atmosférica (760 mm Hg); fluxo do ar de secagem (2,6 m³ min⁻¹ m⁻²); espessura de cada camada (0,15m).

Figura 4.53 - Dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca com teor de água médio inicial de 30% base úmida e temperatura de 40 $^{\circ}$ C

Figura 4.54 – Valores do teor de água médio dos dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca

No Apêndice 25 contém os resultados experimentais, simulados e seus respectivos desvios para a temperatura de secagem a 40 °C e 30% b.u. de teor de água médio inicial, verifica-se que o desvio percentual ao término do processo de secagem entre os dados experimentais e simulados para cada camada são de: 2,69% na 1ª camada, 27,39% na 2ª camada, 37,89% na 3ª camada e 23,77% na 4ª camada, que corresponde a uma diferença entre o teor de água experimental final e simulado de 10,171%, 12,521%, 14,771% e 13,711%, respectivamente. O desvio médio final é de 22,93%, o que significa um teor de água de 10,851%.

As condições de secagem para a simulação realizada neste trabalho de pesquisa são: temperatura de bulbo seco (25,3 °C); temperatura de bulbo úmido (20,2 °C); temperatura de secagem (40 °C); teor de água inicial (30% b.u.); fluxo do ar de secagem (2,0 m³ min⁻¹ m⁻²); espessura de cada camada (0,15m).

Figura 4.55 - Dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca com teor de água médio inicial de 30% base úmida e temperatura de 50 $^{\circ}$ C

Figura 4.56 – Valores do teor de água médio dos dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca

De acordo com os dados contidos no Apêndice 26, para a temperatura de secagem a 50 °C e 30% b.u. de teor de água médio inicial, verifica-se que o desvio percentual ao término do processo de secagem entre os dados experimentais e simulados para cada camada são de: 15,75% na 1ª camada, 42,04% na 2ª camada, 36,56% na 3ª camada e 48,24% na 4ª camada, que corresponde a uma diferença entre o teor de água experimental final e simulado de |0,57|%, |3,30|%, |4,23|% e |7,68|%, respectivamente. O desvio médio final é de 35,65%, o que significa um teor de água de |0,18|%. As condições de secagem para esta simulação foram: temperatura de bulbo seco (25,3 °C); temperatura de bulbo úmido (20,2 °C); temperatura de secagem (50 °C); teor de água inicial (31% b.u.); pressão atmosférica (760 mm Hg); fluxo do ar de secagem (1,5 m³ min⁻¹ m⁻²); espessura de cada camada (0,15m).

Figura 4.57 - Dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca com teor de água médio inicial de 30% base úmida e temperatura de $60 \degree C$

Figura 4.58 – Valores do teor de água médio dos dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca

Pode-se observar no Apêndice 27, para a temperatura de secagem a 60 °C e 30% b.u. de teor de água médio inicial, que o desvio percentual ao término do processo de secagem entre os dados experimentais e simulados para cada camada são de: 134,06% na 1ª camada, 56,66% na 2ª camada, 49,11% na 3ª camada e 43,51% na 4ª camada, que corresponde a uma diferença entre o teor de água experimental final e simulado de 11,721%, 14,851%, 16,381% e 16,911%, respectivamente. O desvio médio final é de 70,84%, o que significa um teor de água de 10,651%.

As condições de secagem para a simulação realizada neste trabalho de pesquisa são: temperatura de bulbo seco (25,3 °C); temperatura de bulbo úmido (20,2 °C); temperatura de secagem (60 °C); teor de água inicial (29% b.u.); pressão atmosférica (760 mm Hg); fluxo do ar de secagem (2,0 m³ min⁻¹ m⁻²); espessura de cada camada (0,15m).

Figura 4.59 - Dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca com teor de água médio inicial de 30% base úmida e temperatura de 70 °C

Figura 4.60 – Valores do teor de água médio dos dados experimentais e simulados da secagem em camada espessa do arroz vermelho em casca

No Apêndice 28 que contém os dados experimentais, os dados simulados e os seus respectivos desvios para a temperatura de secagem a 70 °C e 30% b.u. de teor de água médio inicial, observa-se que o desvio percentual ao término do processo de secagem entre os dados experimentais e simulados para cada camada são de: 237,68% na 1^a camada, 52,50% na 2^a camada, 51,05% na 3^a camada e 26,09% na 4^a camada, que corresponde a uma diferença entre o teor de água experimental final e simulado de 11,641%, 13,461%, 16,071% e 14,121%, respectivamente. O desvio médio final é de 91,83%, o que significa um teor de água de 10,941%, tendo a temperatura de bulbo seco (25,3 °C); temperatura de bulbo úmido (20,2 °C); temperatura de secagem (70 °C); teor de água inicial (28,5% b.u.); pressão atmosférica (760 mm Hg); fluxo do ar de secagem (2,04 m³ min⁻¹ m⁻²); espessura de cada camada (0,15m) como os parâmetros de condições de secagem para a simulação.

Observa-se através dos gráficos das curvas da cinética de secagem em camada espessa, para toda a faixa de temperatura e teor de água inicial, que nos primeiros noventa minutos, aproximadamente, a água retirada da primeira camada fica retida nas camadas seguintes, ou seja, a secagem inicia-se na primeira camada e vai progredindo até atingir a última camada. Durante este período, distinguem-se quatro camadas de grãos com diferentes teores de água. A umidade relativa do ar também aumenta nos minutos iniciais com a maior retirada de água dos grãos e em seguida ocorre a sua redução.

Verifica-se, pelos resultados obtidos entre os dados experimentais e simulados, que a secagem realizada com temperatura de 60 °C e teor de água inicial de 20% base úmida apresenta o menor desvio percentual em cada camada isoladamente. Assim como, o menor desvio médio final equivale a 11,62% que corresponde a um teor de água de 0,09%, podendo ser considerado satisfatório o resultado da simulação.

Quanto às divergências dos resultados experimentais com relação aos simulados existentes neste processo, considera-se alguns fatores como: os possíveis erros ocorridos durante as práticas experimentais, que são comuns e inevitáveis, mesmo procedendo-se com bastante rigor em sua execução; os coeficientes da equação de equilíbrio higroscópico utilizados no processo de simulação foram obtidos para uma faixa de temperatura abaixo das temperaturas da secagem em camada espessa; a falta do conhecimento dos mecanismos de transferência de calor e massa no interior do produto. Mesmo assim, a análise do teor de água médio das camadas e o desvio médio final entre os dados experimentais comparados com os dados simulados foram satisfatórios, permitindo dar uma boa credibilidade ao processo de simulação.

Conclusões

5. CONCLUSÕES

- Ocorreu um aumento linear da massa específica aparente e real na medida em que houve um aumento do teor de água da amostra.
- A porosidade intergranular da massa de grãos do arroz vermelho em casca aumento proporcionalmente com o aumento do teor de água.
- O calor específico teve um acréscimo com o aumento do teor de água do produto, sendo a relação entre o calor específico e o teor de água diretamente proporcional.
- O teor de água de equilíbrio higroscópico dos grãos de arroz vermelho em casca diminui com a elevação de temperatura para uma mesma umidade relativa.
- Para uma mesma temperatura, o teor de equilíbrio higroscópico aumenta com o aumento da umidade relativa do ar.
- Dentre os modelos estudados para ajustar os dados experimentais do teor de água de equilíbrio, os modelos de Henderson modificada por Cavalcanti Mata e Henderson modificada por Thompson foram os que melhor representaram a higroscopicidade dos grãos de arroz vermelho em casca, tendo em vista que apresentaram elevados valores para o coeficiente de determinação (R²), superior a 99%, reduzidos valores para o desvio quadrático médio (DQM) e erro médio relativo (P) inferior a 10%.
- O calor latente de vaporização aumenta com a diminuição do teor de água de equilíbrio do produto e da temperatura do sistema.
- A entalpia e entropia decresceram com a elevação da temperatura do ar de secagem para cada teor de água inicial estudado.
- A energia livre de Gibbs foi positiva para toda a faixa de temperatura e aumentou com o aumento de temperatura em cada teor de água inicial analisado, demonstrando ser um processo não espontâneo.

Conclusões

- Dentre os modelos estudados para a cinética de secagem em camada fina, o modelo de Cavalcanti Mata apresentou os melhores parâmetros de ajustes para as amostras dos grãos de arroz vermelho, tendo coeficiente de determinação (R²) superior a 99,74%, erro relativo médio (P) inferior a 10% e desvio quadrático médio (DQM) inferior a 0,0174, sendo a melhor condição de secagem a 70 °C de temperatura e 25% b.u. de teor de água inicial.
- A Difusividade efetiva de massa para os grãos aumentou com a elevação de temperatura para todo o teor de água inicial durante o processo de secagem. Concluiu-se também, que para cada temperatura analisada a difusividade efetiva aumenta com o aumento do teor de água inicial.
- A temperatura e o teor de água inicial exercem grande influência na secagem do produto. Quando se eleva a temperatura ocorre uma diminuição do tempo de secagem, tornando as curvas que representa a cinética de secagem mais acentuada, enquanto para o teor de água inicial, quanto maior seu valor, maior será a taxa de secagem no início do processo.
- A secagem em camada espessa com temperatura de 60 °C e teor de água inicial de 20% base úmida, apresentou o menor desvio médio final entre os dados experimentais e simulados pelos modelos matemáticos em leito fixo proposto por Thompson et al. (1968).

6. REFERÊNCIAS BIBLIOGRÁFICAS

ANDRADE, E. T.; COUTO, A. M.; QUEIROZ, D. M.; PEIXOTO, A. B. Determinação de propriedades térmicas de grãos de milho. **Ciência e Agrotecnologia**, Lavras, v. 28, n.3, p. 488-498, 2004.

ARAUJO, W. D.; GONELI, A. L. D.; SOUZA, C. M. A.; GONÇALVES, A. A.; VILHASANTI, H. C. B. Propriedades físicas dos grãos de amendoim durante a secagem. **Revista brasileira de Engenharia agrícola e Ambiental**, Campina Grande, v. 18, n. 3, p. 279 – 286, 2014.

BARROZO, M. A. S., **Transferência de calor e massa entre o ar e sementes de soja em leito deslizante e escoamento cruzados**, UFSCar, São Carlos-SP, 1995. (Tese)

BENEDETTI, P. C. D. Caqui em pó: Influência de aditivos e do método de secagem.São José do Rio Preto, Universidade Estadual Paulista, 2010. 129.p (Tese)

BOREM, F. M.; RIBEIRO, R. C. de M. S.; CORREA, P. C.; PEREIRA, R. G. F. A.. Propriedades térmicas de cinco variedades de café cereja descascado. **Revista Brasileira de Engenharia agrícola e Ambiental**. 2002, vol.6, n.3, pp. 475-480. ISSN 1807-1929.

BORGES, S. R. S.; OLIVEIRA, M. R. T. ; ARAÚJO, W. P.; SILVA, E. M.; SOARES, C.
D. F. Proposição de um modelo para a cadeia produtiva do arroz vermelho na Paraiba.
Revista Brasileira de Produtos Agroindustriais, Campina Grande, v.14, n.4, p.353-362, 2012.

BROOKER, D. B.; BAKKER-ARKEMA, F. W.; HALL, C. W. Drying and Storage of Grains and Oilseeds. New York: AVI, 1992. 450p.

CAMPOS, A. N. R.; SILVA F. L. H.; GOMES, J. P.; OLIVEIRA, L. S. C.; OLIVEIRA, M. M. Isotermas de adsorção e calor isostérico da palma forrageira enriquecida proteicamente. **Revista brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 13, n. 6, p. 734 – 740, 2009.

CAVALCANTI MATA, M. E. R. M. Efeitos da secagem em altas temperaturas por curtos períodos de tempo, em camada estacionária, sobre a armazenabilidade de sementes de feijão (*Phaseolus vulgaris* L.), variedade "carioca": Avaliação experimental, modelagem e simulação. Campinas: Universidade Estadual de Campinas, 1997. 229p. (Tese)

CAVALCANTI MATA, M. E. R. M.; MARTINS, J. H.; ALMEIDA, F. A. C. Histerese em sementes de feijão mulatinho (*Phaseolus vulgaris* L.) variedade paulista. **Revista Nordestina de Armazenagem**, Campina Grande, v.2, p.28-44, 1985.

CAVALCANTI MATA, M. E. R.M., DUARTE, M. E. M. Porosidade intergranular de produtos agrícolas. **Revista Brasileira de Produtos Agroindustriais**, Campina Grande, v.4, n.1, p.79-93, 2002.

CAVALCANTI, M. E. R. M.; DUARTE, M. E. M.; ALMEIDA, F. A. C. Secagem de sementes. In: ALMEIDA, F. A. C.; DUARTE, M. E. M.; CAVALCANTI, M. E. R. M. **Tecnologia de armazenamento em sementes.** Campina Grande, Área de Armazenamento e Processamento de Produtos Agrícolas da Universidade Federal de Campina Grande, 2006, 271-370p.

CHUNG, D. S.; PFOST, H. B. In: Transactions of the ASAE, 1967. V 10, p. 594.

COSTA, L. M.; RESENDE, O.; OLIVEIRA, D. E. C. Isotermas de dessorção e calor isostérico dos frutos crambe. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v.17, n.4, p.412-4, 2013.

CORRÊA, P. C.; RESENDE, O.; MARTINAZZO A. P.; GONELI, A. L. G.; BOTELHO, F. M. Modelagem matemática para a descrição do processo de secagem do feijão (*Phaseolus vulgaris L.*) em camadas delgadas. **Engenharia Agrícola**, Viçosa, MG, v. 27, n. 2, p. 501-510, 2007.

CORRÊA, P. C. Modelagem matemática e determinação das propriedades termodinâmicas do café (*Coffea arabica* L.) durante o processo de secagem. **Revista Ceres**, Viçosa, v. 57, n. 5, p. 595-601, 2010.

DANTAS, L. A.; CAVALCANTI MATA; M. E. R. M.; DUARTE, M. E. M. Programa computacional dinâmico para simulação de secagem de grãos e sementes de milho. **Revista Brasileira de Produtos Agroindustriais**, Campina Grande, v.13, n.3, p.311-320, 2011.

DANTAS, L. A. Soluções Computacionais Analítico-Numéricas aplicadas à simulação de secagem de Produtos Biológicos. 2012. 127p. Tese (Doutorado em Engenharia de Processos), Universidade Federal de Campina Grande, Campina Grande, 2012.

DUARTE, M. E. M.; CAVALCANTI, M. E. R. M.; ALMEIDA, F. A. C. Características físicas de sementes. In: ALMEIDA, F. A. C.; DUARTE, M. E. M.; CAVALCANTI, M. E. R. M. **Tecnologia de armazenamento em sementes.** Campina Grande, Área de Armazenamento e Processamento de Produtos Agrícolas da Universidade Federal de Campina Grande, 2006, 189-270p.

FERREIRA, S. C. S.; SILVA, H. W.; RODOVALHO, R. S. Isoterma de dessorção e calor latente de vaporização da semente de pimenta Cumari Amarela (*Capsicum Chinense L.*).Revista Liberato, Novo Hamburgo, v.12, n.18, p.107-206, 2011.

FIOREZE, R. **Princípios de secagem de produtos biológicos**. 1. ed. João Pessoa: Editora Universitária/UFPB, 2004. 229p.

GAMA, M. J. A. Propriedades termofísicas de sementes de frutos tropicais. 2011.354p. Tese (Doutorado em Engenharia de Processos), Universidade Federal de CampinaGrande, Campina Grande, 2011.

GONELI, A. L. D.; CORRÊA, P. C.; AFONSO JÚNIOR, P. C.; OLIVEIRA, G. H. H. Cinética de secagem dos grãos de café descascados em camada delgada. **Revista Brasileira de Armazenamento**, Viçosa, MG, n. 11, p.64-73, 2009.

162

HENDERSON, S. M.; PABIS, S. Grain drying theory – I. Temperature effect on drying coefficient. **Journal of Agricultural Engineering Research**, Wrest park, Silsol, Gedford, v. 6, n. 32, p. 169-174, 1961.

HUKILL, W. V. Drying of grain. In: CRISTENSEN, C. M. Ed. Storage of cereal grains and their products. 2 Ed. St. Paul, Minn. American Society of cereal Chemists, 1974, p. 481-508.

ISQUIERDO, E.P. Cinética de secagem de café natural e suas relações com a qualidade para diferentes temperaturas e umidades relativas do ar. Lavras: Universidade Federal de Lavras, 2011. 157p. (Tese)

JIDEANI, V. A.; MPOTOKWANA, S. M. Modeling of water absorption of Botswana Bambara varieties using Peleg's equation. **Journal of Food Engineering**, Essex, v. 92, n.2, p. 182-188, 2009.

LIMA, E. E.; FIQUEIREDO, R. M. F.; QUEIROZ, A. J. M. Cinética de secagem de polpa de facheiro. **Revista Brasileira de Produtos Agroindustriais**, Campina Grande, v.9, n.1, p.17-28, 2007.

LUIKOV, A. V. Heat and mass transfer in capillaty-porous bodies. Oxford: Pergamon Press, 196, 523p.

LUIKOV, A. V.; MIKHAILOV, Y. A Theory of energy and mass transfer. Oxford: Pergamon Press, 1965, 392p.

MADAMBA, P. S.; DRISCOLL, R.H.; BUCKLE, K. A. The thin layer drying characteristics of garlic slices. **Journal of Food Engineering**, Essex, v. 29, n.1, p.75-97, 1996.

MADAMBA, P. S. Thin layer drying models for osmotically pré-dried young coconut. Drying technology, v.21, n.9, p.1759-1780, 2003.

MENEGHETTI, V. L.; AOSANI E.; ROCHA J. C.; OLIVEIRA M.; ELIAS M. C.; POHNDORF R. S. Modelos matemáticos para a secagem intermitente de arroz em casca. **Revista Brasileira de Engenharia Agrícola e Ambiental** v.16, n.10, p.1115–1120, 2012.

MOHAPATRA, D.; RAO, P. S. A thin layer drying model of parboiled wheat. **Journal of Food Engineering**, Essex, v. 66, n.4, p.513-518, Feb. 2005.

MOHSENIN, N. N. **Physical properties of plant and animal materials.** New York: Goldon and Breach Publishers, 1986. 841 p.

MORAIS S. J. S.; DEVILLA I. A.; FERREIRA D. A.; TEIXEIRA I. R. Modelagem matemática das curvas de secagem e coeficiente de difusão de grãos de feijão-caupi (*Vigna unguiculata* (L.) Walp.). **Revista Ciência Agronômica**, v. 44, n. 3, p. 455-463, 2013.

MOREIRA R.; CHENLO, F.; TORRES, M.D.; VALLEJO, N. Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering, v. 88, n. 4, p. 514-521. 2008.

MOREIRA, L. B.; LOPES, H. M.; MENEZES, B. R. S.; SOARES, A. P.; SILVA, E. R. Caracterização agronômica e qualidade fisiológica de sementes de arroz vermelho. **Revista Caatinga**, Mossoró, v. 24, n. 1, p. 9-14, 2011.

MOREY, R. V.; CLOUD, H. A. & NELSON, W.W. **Simulation of solar energy graindrying -** Minnesota contribution. Agricultural Engineering Department, University of Minnesota. St. Paul, Minnesota, 1976. 43 p.

OLIVEIRA, J. R. Desenvolvimento de um sistema de secagem para grãos, em camada fina e espessa: Comparação entre modelos matemáticos de simulação para grãos de feijão-macaçar (*Vigna unguiculata (L.) Walpers*). Campina Grande: Universidade Federal de Campina Grande, 2006. 204p. (Tese)

OLIVEIRA, G. H. H.; CORRÊA, P. C.; ARAÚJO, E. F.; VALENTE, D. S. M.; BOTELHO, F. M. Desorption isotherms and thermodynamic properties of sweet corn cultivars (*Zea mays* L.). International Journal of Food Science & Technology, v. 45, n.3, p. 546-554, 2010.

OLIVEIRA, D. E. C.; RESENDE O.; SMANIOTTO T. A. S.; CAMPOS R. C.; CHAVES T. H. Cinética de secagem dos grãos de milho. **Revista Brasileira de Milho e Sorgo**, v.11, n.2, p. 190-201, 2012.

OLIVEIRA, D. E. C., RESENDE, O.; CAMPOS, R. C.; DONADON, J. R. Obtenção e modelagem das isotermas de dessorção e do calor isostérico para sementes de arroz em casca. **Revista de Ciências Agrárias**, v.42, n.3, p. 203-210, 2014.

OLIVEIRA, D. E. C.; RESENDE, O.; CHAVES, T. H.; SOUZA, K. A.; SMANIOTTO, T. A. S. Propriedades Termodinâmicas das sementes de Pinhão-Manso. **Journal Bioscience**, v.30, supplement 1, p. 147-157, 2014.

OTHMER, D. F. Correlating vapor pressure and latent heat data. Industrial and Engineering Chemistry, v.32, n.6, p. 841-846, 1940.

PAGE, C. Factors Influencing the Maximum Rate of Drying Shelled Corn in Layers. West Lafayette, 1949. 72f. Thesis (Agricultura Engineering MSc.). Agricultural Engineering Department, Ind. Purdue University, West Lafayette.

PARK, K. J.; ANTONIO, G. C.; OLIVEIRA, R. A.; PARK, K. J. B. Conceitos de processos e equipamentos de secagem. 121p. 2007.

PARRY, J. L. Mathematical Modelling and computer Simulation of heatang Mass Transfer in Agricultural Grain Drying: A Review, Journal of Agricultural Engineering Research, Volume 32, Issue 1, Pages 1-29, 1985.

PEREIRA, J. A. Arroz Vermelho Cultivado no Brasil. Teresina: Emprapa Meio Norte, 2004. 90 p.

PEREIRA, J. A. et al. Comparação entre características agronômicas, culinárias e nutricionais em variedades de arroz branco e vermelho. **Revista Caatinga**, Mossoró, v. 22, n. 1, p. 243-248, 2009.

PAGLARINI, C. S.; SILVA, F. S.; PORTO, A. G.; PIASSON, D.; SANTOS, P. Histerese das isotermas de sorção da polpa de manga (*Mangifera indica* L.) variedade manteiga. **Revista Brasileira de Engenharia Agrícola e Ambiental** v.17, n.3, p.299–305, 2013.

PRADO. M. E. T. Secagem de tâmaras (Phoenix dactylifera L.) para obtenção de tâmara passa. Campinas: Universidade Estadual de Campinas, 1998. 151p. (tese)

RESENDE, O.; CORRÊA, P. C.; GONELI, A. L. D.; MARTINAZZO, A. P.; RIBEIRO, R.M. Contração volumétrica na difusão líquida durante o processo de secagem do arroz em casca. **Revista Brasileira de Armazenamento,** Viçosa, v. 30, n. 2, p. 163-171, 2005.

RESENDE, O.; CORRÊA, P. C.; GONELI, A. L. D.; RIBEIRO, D. M. Propriedades físicas do feijão durante a secagem: determinação e modelagem. **Ciência Agrotécnica.** v.32, n.1, p.225-230, 2008.

RESENDE O.; FERREIRA L. U.; ALMEIDA D. P.; Modelagem matemática para descrição da cinética de secagem do feijão adzuki (Vigna angularis). **Revista Brasileira de Produtos Agroindustriais**, Campina Grande, v.12, n.2, p.171-178, 2010.

RIBEIRO D. M.; CORREA P. C.; RESENDE O; BOTELHO F. M. Propriedades Térmicas de Grãos de Trigo: Determinação e Modelagem. **Ciência Agrotecnologia**, Lavras, v.31, n.2, p. 462-467, 2007.

RIBEIRO D. M.; CORREA P. C.; RODRIGUES D. H.; GONELI A. L. D. Análise da Variação das propriedades físicas dos grãos de soja durante o processo de secagem. **Revista Ciências e Tecnologia de Alimentos**, Campinas, 25(3): 611-617, 2005.

ROA, G.; MACEDO, I.C., **Drying of carioca dry beans with solar energy in a stationary bin.**American Society of Agricultural Engineers, Lincoln, Annual Meeting.Paper n° 76.3021.1976.

166

RODOVALHO, R. S; SILVA, H. W.; SILVA, I. L.; ROSSETTO, C. A. V. Cinética de secagem dos grãos de pimenta bode. **Global Science and Technology,** Rio verde, v.8, n.2, p.128-142, 2015.

SABBAH M. A. Empirical corn drying equation, 1968, personal communication.

SILVA, J. S. Secagem e armazenagem de produtos agrícolas. Viçosa: Aprenda Fácil, 2008. 559 p.

SILVA, W. P.; SILVA, C. M. D. S.; PRECKER, J. W.; SILVA, D. D. P. S. Influência da temperatura do ar de secagem no calor latente de vaporização de água em feijão macassar (*Vigna unguiculata (L.) Walp.*), variedade sempre-verde. **Revista de Engenharia Agrícola,** Jaboticabal, v.28, n.2, p.315–324, 2008.

SILVA, H. W.; COSTA, L. M.; RESENDE, O.; OLIVEIRA, D. E. C.; SOARES, R. S.; VALE, L. S. R. Higroscopicidade das sementes de pimenta (*Capsicum chinense L.*). Revista Brasileira de Engenharia Agrícola e Ambiental, v.19, n.8, p.780–784, 2015.

SIQUEIRA, V. C.; RESENDE O.; CHAVES, T. H. Propriedades físicas das sementes de pinhão-manso ao longo da secagem em diferentes temperaturas. **Revista de Ciências Agrárias**, v.33, suplemento 1, p. 2705-2714, 2012.

SMANIOTTO, T. A. S.; RESENDE, O.; OLIVEIRA, D. E. C.; SOUSA, K.A.; CAMPOS,
R. Isotermas e calor latente de dessorção dos grãos de milho da cultivar AG 7088. Revista
Brasileira de Milho e Sorgo, v.11, n.2, p. 312-322, 2012.

SPIESS, W. E. L.; WOLF, W. Critical evaluation of methods to determine moisture sorption isotherms. In: ROCKLAND, L. B.; BEUCHAT, L. R. Water Activity: Theory and Applications to Food. New York: Marcel Dekker, Inc., 1987.

TELIS, V. R. N. Water sorption thermodynamic properties applied to persimmon skin and pulp. **Thermochimica Acta**, Higashi-Hiroshima, v. 343, n. 1-2, p. 49-56, 2000.

THOMPSON, T. L.; PEART, R. M.; FOSTER, G.H. Mathematical simulation of corn drying – A new model. **Transactions of the ASAE**, v.11, n.4, p.582-586, 1968.

ZOGZAS, N. P.; MAROULIS, Z. B.; MARINOSKOURIS, D. Moisture diffusivity data compilation in foodstuffs. **Drying Technology**, New York, v.14, n.10, p. 2225-2253, 1996.

Apêndices

Apêndices

Apêndices

Massa específica aparente, massa específica real e Porosidade intergranular

Teor de água (% b.u.)	$\rho_{ap} (exp)$ (kg m ⁻³)	β ap (pred) (kg m ⁻³)	$\mathbf{\rho}_{\mathbf{r}}$ (exp) (kg m ⁻³)	ρ r (exp) (kg m ⁻³)	Ecalculado (%)	E _{pred} (%)
9,52	558,5	554,8	1049,3	1054,1	46,77	47,28
15,95	568,7	574,1	1138,7	1127,2	49,70	48,87
21,19	587,2	589,8	1177,8	1186,8	50,14	50,15
23,21	598,8	595,6	1211,7	1209,9	50,58	50,65
27,12	609,0	607,6	1255,3	1254,3	51,49	51,61
28,07	610,4	610,4	1264,4	1265,1	51,74	51,85

Apêndice 01 – Valores experimentais e preditos da massa específica aparente, massa específica real e porosidade intergranular em função da variação do teor de água

Apêndices

Cinética de secagem em camada fina

Apêndice 02 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 20%, base úmida, temperatura de ar de secagem de 40 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Field	Dogo	Henderson	Cavalcanti	Thompson
I (IIIII)		FICK	1 age	e Pabis	Mata	Thompson
	RX _{exp}	RX predito				
0	1,000000	0,905200	1,000000	1,012016	1,009491	1,000000
5	0,989429	0,875162	0,974029	0,988808	0,987371	0,978934
10	0,970402	0,848384	0,951615	0,966338	0,965719	0,958409
15	0,951374	0,824288	0,930667	0,944576	0,944615	0,938407
20	0,926004	0,802415	0,910762	0,923493	0,924064	0,918912
30	0,887949	0,763953	0,873344	0,883257	0,884586	0,881381
40	0,847780	0,730860	0,838473	0,845428	0,847192	0,845701
50	0,809725	0,701736	0,805696	0,809820	0,811773	0,811761
70	0,733615	0,651930	0,745368	0,744605	0,746418	0,748703
90	0,684989	0,609937	0,690874	0,686429	0,687678	0,691477
110	0,634249	0,573352	0,641289	0,634301	0,634790	0,639446
140	0,570825	0,525707	0,574714	0,565677	0,564971	0,569944
170	0,505285	0,484421	0,516086	0,506574	0,504854	0,509305
200	0,456660	0,447902	0,464191	0,455245	0,452825	0,456214
260	0,363636	0,385454	0,376992	0,370772	0,367964	0,368497
320	0,308668	0,333479	0,307435	0,304507	0,302381	0,300045
380	0,255814	0,289352	0,251532	0,251526	0,250657	0,246070
440	0,205074	0,251469	0,206352	0,208577	0,209098	0,203116
500	0,171247	0,218741	0,169678	0,173417	0,175157	0,168650
560	0,141649	0,190367	0,139802	0,144439	0,147048	0,140786
620	0,120507	0,165719	0,115391	0,120445	0,123503	0,118107
680	0,107822	0,144285	0,095393	0,100516	0,103597	0,099533
740	0,088795	0,125633	0,078974	0,083928	0,086646	0,084235
800	0,071882	0,109398	0,065467	0,070102	0,072128	0,071567
860	0,061311	0,095263	0,054336	0,058567	0,059641	0,061027
920	0,050740	0,082956	0,045147	0,048938	0,048865	0,052218
980	0,038055	0,072239	0,037551	0,040896	0,039543	0,044823
1040	0,033827	0,062907	0,031263	0,034178	0,031463	0,038592
1100	0,023256	0,054780	0,026051	0,028565	0,024449	0,033322
1160	0,016913	0,047704	0,021727	0,023874	0,018356	0,028849
1220	0,012685	0,041542	0,018135	0,019954	0,013057	0,025040

Apêndice 03 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 20%, base úmida, temperatura de ar de secagem de 50 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Fick	Раде	Henderson	Cavalcanti	Thompson
I (IIIII)		TICK	1 age	e Pabis	Mata	Thompson
	RX _{exp}	RX predito	RXpredito	RX predito	RX predito	RX predito
0	1,000000	0,905200	1,000000	1,011861	1,005073	1,000000
5	0,981884	0,865882	0,966064	0,982428	0,979954	0,971090
10	0,960145	0,832013	0,936837	0,953971	0,953879	0,943213
15	0,929348	0,802363	0,909666	0,926454	0,927915	0,916325
20	0,902174	0,776027	0,883996	0,899845	0,902323	0,890381
30	0,851449	0,730782	0,836170	0,849224	0,852697	0,841171
40	0,802536	0,692649	0,792139	0,801868	0,805470	0,795280
50	0,759058	0,659502	0,751257	0,757551	0,760786	0,752440
70	0,679348	0,603399	0,677365	0,677217	0,679030	0,674954
90	0,603261	0,556505	0,612224	0,606727	0,606913	0,607022
110	0,547101	0,515920	0,554365	0,544786	0,543553	0,547249
140	0,465580	0,463476	0,478948	0,465497	0,462833	0,470410
170	0,396739	0,418469	0,414852	0,399801	0,396560	0,406234
200	0,342391	0,379067	0,360077	0,345154	0,342016	0,352298
260	0,257246	0,312847	0,272617	0,261211	0,259437	0,267979
320	0,201087	0,259246	0,207487	0,201586	0,201575	0,206568
380	0,163043	0,215227	0,158578	0,158394	0,159781	0,161075
440	0,125000	0,178832	0,121618	0,126459	0,128636	0,126878
500	0,103261	0,148649	0,093549	0,102356	0,104751	0,100842
560	0,083333	0,119837	0,069101	0,081135	0,083253	0,077921
620	0,070652	0,102750	0,055761	0,069261	0,070963	0,065203
680	0,059783	0,085433	0,043187	0,057674	0,058760	0,052968
740	0,050725	0,071035	0,033510	0,048312	0,048747	0,043288
800	0,041667	0,059064	0,026045	0,040657	0,040471	0,035572
860	0,034420	0,049111	0,020274	0,034338	0,033595	0,029381
920	0,027174	0,040835	0,015805	0,029082	0,027864	0,024382
980	0,025362	0,033954	0,012337	0,024682	0,023075	0,020322
1040	0,018116	0,028232	0,009642	0,020981	0,019066	0,017008
1100	0,014493	0,023475	0,007544	0,017856	0,015707	0,014288
1160	0,010870	0,019519	0,005909	0,015211	0,012889	0,012047

Apêndice 04 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 20%, base úmida, temperatura de ar de secagem de 60 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Fick	Раде	Henderson	Cavalcanti	Thompson
1 (11111)		TICK	1 age	e Pabis	Mata	Thompson
	RX _{exp}	RXpredito	RXpredito	RX predito	RX predito	RX predito
0	1,000000	0,905200	1,000000	1,018643	1,000126	1,000000
5	0,980000	0,857787	0,952552	0,979688	0,994452	0,960781
10	0,946667	0,818124	0,914480	0,942431	0,949090	0,923734
15	0,908333	0,784159	0,880134	0,906795	0,908581	0,888696
20	0,880000	0,754473	0,848387	0,872708	0,871459	0,855518
30	0,813333	0,704257	0,790713	0,808902	0,804787	0,794222
40	0,756667	0,662457	0,739054	0,750494	0,745907	0,738915
50	0,700000	0,626369	0,692177	0,697010	0,693174	0,688826
70	0,605000	0,565649	0,609856	0,603125	0,602230	0,601818
90	0,526667	0,515204	0,539676	0,524230	0,526474	0,529130
110	0,460000	0,471793	0,479138	0,457820	0,462542	0,467787
140	0,370000	0,416103	0,402724	0,377154	0,383908	0,392331
170	0,306667	0,368765	0,340017	0,314365	0,321299	0,332094
200	0,250000	0,327769	0,288108	0,265205	0,270958	0,283337
260	0,193333	0,250425	0,197886	0,186833	0,187280	0,200635
320	0,153333	0,207100	0,152436	0,151002	0,147384	0,159616
380	0,115000	0,165042	0,112170	0,121127	0,113666	0,123246
440	0,106667	0,131581	0,083023	0,100193	0,090460	0,096558
500	0,091667	0,104921	0,061754	0,084802	0,074340	0,076588
560	0,078333	0,083667	0,046130	0,072960	0,063056	0,061399
620	0,068333	0,066720	0,034590	0,063486	0,055105	0,049682
680	0,056667	0,053207	0,026023	0,055664	0,049471	0,040532
740	0,050000	0,042430	0,019638	0,049054	0,045459	0,033310
800	0,045000	0,033836	0,014860	0,043372	0,042589	0,027557
860	0,040000	0,026983	0,011273	0,038432	0,040528	0,022933
920	0,030000	0,021518	0,008572	0,034102	0,039043	0,019189
980	0,026667	0,017160	0,006532	0,030287	0,037969	0,016137
1040	0,020000	0,013684	0,004987	0,026915	0,037191	0,013632
1100	0,016667	0,010913	0,003815	0,023928	0,036624	0,011565

Apêndice 05 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 20%, base úmida, temperatura de ar de secagem de 70 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Field	Daga	Henderson	Cavalcanti	Thomason
1 (11111)		FICK	rage	e Pabis	Mata	Thompson
	RX _{exp}	RX predito	RX predito	RX predito	RXpredito	RX predito
0	1,000000	0,905200	1,000000	1,023367	1,004565	1,000000
5	0,975194	0,846902	0,945453	0,974530	0,969677	0,951570
10	0,933333	0,799977	0,900608	0,928307	0,930912	0,906368
15	0,893023	0,760851	0,860017	0,884553	0,891502	0,864106
20	0,848062	0,727259	0,822521	0,843134	0,852416	0,824531
30	0,775194	0,671312	0,754688	0,766798	0,777012	0,752560
40	0,705426	0,625268	0,694440	0,698356	0,706734	0,688916
50	0,643411	0,585764	0,640327	0,636969	0,642298	0,632359
70	0,536434	0,519726	0,546903	0,532440	0,531189	0,536644
90	0,435659	0,465300	0,469216	0,448124	0,441934	0,459249
110	0,370543	0,418844	0,403930	0,379961	0,371205	0,395862
140	0,300775	0,359904	0,324226	0,301108	0,292273	0,320488
170	0,231008	0,310572	0,261472	0,243166	0,237006	0,262551
200	0,198450	0,268618	0,211662	0,200219	0,197719	0,217256
260	0,148837	0,201588	0,139954	0,143638	0,147405	0,152507
320	0,111628	0,151531	0,093424	0,110137	0,116726	0,109976
380	0,096124	0,113959	0,062835	0,088886	0,095425	0,081036
440	0,080620	0,085715	0,042526	0,074331	0,079308	0,060783
500	0,068217	0,064474	0,028934	0,063604	0,066548	0,046281
560	0,057364	0,048497	0,019776	0,055200	0,056226	0,035695
620	0,048062	0,036480	0,013572	0,048314	0,047791	0,027841
680	0,038760	0,027440	0,009348	0,042496	0,040863	0,021931
740	0,037209	0,020641	0,006460	0,037487	0,035152	0,017428
800	0,029457	0,015526	0,004477	0,033123	0,030434	0,013958
860	0,027907	0,011679	0,003112	0,029296	0,026528	0,011260
920	0,023256	0,008785	0,002168	0,025924	0,023290	0,009142
980	0,018605	0,006608	0,001514	0,022948	0,020602	0,007466

Apêndice 06 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 20%, base úmida, temperatura de ar de secagem de 80 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Field	Dago	Henderson	Cavalcanti	Thomason
1 (11111)		FICK	rage	e Pabis	Mata	Thompson
	RX _{exp}	RXpredito	RXpredito	RX predito	RX predito	RX predito
0	1,000000	0,905200	1,000000	1,018001	1,002646	1,000000
5	0,959276	0,836223	0,924065	0,957241	0,954102	0,936419
10	0,906486	0,782705	0,867995	0,900668	0,904324	0,879177
15	0,850679	0,739095	0,819400	0,847987	0,855228	0,827357
20	0,806938	0,702172	0,775861	0,798921	0,807677	0,780217
30	0,714932	0,641336	0,699729	0,710634	0,718776	0,697658
40	0,642534	0,591652	0,634487	0,633974	0,639134	0,627771
50	0,571644	0,549229	0,577537	0,567359	0,568869	0,567908
70	0,453997	0,478738	0,482486	0,458984	0,454240	0,470947
90	0,368024	0,421125	0,406337	0,376673	0,368669	0,396161
110	0,303167	0,372394	0,344257	0,313845	0,305409	0,337087
140	0,239819	0,311366	0,270772	0,245749	0,239954	0,269167
170	0,199095	0,261240	0,214696	0,199119	0,197364	0,218531
200	0,170437	0,219546	0,171328	0,166470	0,168403	0,179814
260	0,128205	0,155366	0,110764	0,125544	0,131556	0,125652
320	0,107089	0,110039	0,072747	0,101489	0,107790	0,090717
380	0,090498	0,077951	0,048372	0,085304	0,090070	0,067158
440	0,076923	0,055222	0,032490	0,073156	0,075952	0,050723
500	0,063348	0,039121	0,022010	0,063364	0,064386	0,038948
560	0,054299	0,027715	0,015019	0,055146	0,054786	0,030325
620	0,048265	0,019634	0,010315	0,048104	0,046753	0,023894
680	0,040724	0,013910	0,007125	0,042006	0,039993	0,019022
740	0,037707	0,009854	0,004947	0,036700	0,034276	0,015283
800	0,030166	0,006981	0,003450	0,032072	0,029420	0,012378
860	0,024133	0,004945	0,002417	0,028031	0,025282	0,010099
920	0,018100	0,003504	0,001700	0,024501	0,021743	0,008293

Apêndice 07 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 25%, base úmida, temperatura de ar de secagem de 40 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Fick	Page	Henderson	Cavalcanti	Thompson
1 (mm)		TICK	1 age	e Pabis	Mata	Thompson
	RX _{exp}	RXpredito	RXpredito	RX predito	RX predito	RXpredito
0	1,000000	0,905200	1,000000	0,996118	1,005069	1,000000
5	0,971950	0,865730	0,955655	0,964582	0,965546	0,967772
10	0,938289	0,831748	0,921812	0,934386	0,932576	0,937046
15	0,901823	0,802012	0,891695	0,905462	0,902346	0,907723
20	0,872370	0,775610	0,864045	0,877748	0,874095	0,879717
30	0,817672	0,730263	0,814035	0,825715	0,822180	0,827329
40	0,771388	0,692056	0,769288	0,777849	0,775163	0,779307
50	0,730715	0,658850	0,728594	0,733754	0,732155	0,735159
70	0,653576	0,602653	0,656645	0,655494	0,655979	0,656870
90	0,594670	0,555687	0,594531	0,588504	0,590480	0,589747
110	0,537167	0,515044	0,540135	0,530819	0,533599	0,531732
140	0,465638	0,462531	0,470031	0,458334	0,461277	0,458411
170	0,402525	0,417473	0,410916	0,399094	0,401391	0,398081
200	0,347826	0,378034	0,360558	0,350034	0,351307	0,347872
260	0,270687	0,311772	0,280013	0,273982	0,273165	0,269917
320	0,213184	0,258166	0,219433	0,218148	0,215995	0,213146
380	0,173913	0,214169	0,173181	0,175691	0,173124	0,170751
440	0,136045	0,177818	0,137471	0,142561	0,140281	0,138443
500	0,116410	0,147692	0,109659	0,116238	0,114644	0,113405
560	0,099579	0,122692	0,087842	0,095068	0,094308	0,093725
620	0,079944	0,101931	0,070625	0,077905	0,077949	0,078066
680	0,064516	0,084686	0,056969	0,063919	0,064634	0,065474
740	0,054698	0,070360	0,046089	0,052484	0,053688	0,055254
800	0,044881	0,058458	0,037387	0,043116	0,044613	0,046890
860	0,032258	0,048569	0,030402	0,035431	0,037036	0,039993
920	0,028050	0,040353	0,024777	0,029122	0,030672	0,034269
980	0,026648	0,033527	0,020235	0,023938	0,025300	0,029488
1040	0,022440	0,027856	0,016557	0,019679	0,020747	0,025474
1100	0,016830	0,023144	0,013572	0,016179	0,016874	0,022086
1160	0,014025	0,019229	0,011145	0,013301	0,013570	0,019213
1220	0,011220	0,015976	0,009165	0,010936	0,010743	0,016766
1280	0,008415	0,013274	0,007549	0,008991	0,008319	0,014674

Apêndice 08 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 25%, base úmida, temperatura de ar de secagem de 50 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Fick	Page	Henderson	Cavalcanti	Thompson
- ()				e Pabis	Mata	
	RX _{exp}	RXpredito	RXpredito	RX predito	RXpredito	RXpredito
0	1,000000	0,905200	1,000000	0,983938	1,002941	1,000000
5	0,946891	0,846341	0,929698	0,938713	0,936934	0,946531
10	0,892487	0,799058	0,879599	0,895915	0,890177	0,897600
15	0,841969	0,759682	0,836471	0,855409	0,848569	0,852640
20	0,805699	0,725905	0,797896	0,817066	0,810336	0,811180
30	0,737047	0,669685	0,730333	0,746388	0,741328	0,737238
40	0,680052	0,623439	0,672102	0,682991	0,680135	0,673261
50	0,628238	0,583772	0,620861	0,626082	0,625314	0,617389
70	0,533679	0,517482	0,534117	0,528987	0,531341	0,524624
90	0,457254	0,462872	0,463110	0,450346	0,454341	0,450950
110	0,395078	0,416280	0,403872	0,386394	0,390878	0,391266
140	0,314767	0,357205	0,331639	0,311662	0,315534	0,320762
170	0,253886	0,307803	0,274430	0,255836	0,258331	0,266653
200	0,211140	0,265834	0,228480	0,213567	0,214516	0,224203
260	0,152850	0,198901	0,160653	0,155676	0,154116	0,162849
320	0,116580	0,149056	0,114648	0,119127	0,116285	0,121668
380	0,094560	0,111754	0,082767	0,094377	0,091281	0,092908
440	0,073834	0,083798	0,060316	0,076513	0,073804	0,072203
500	0,059585	0,062838	0,044303	0,062945	0,060939	0,056933
560	0,053109	0,047122	0,032762	0,052251	0,051043	0,045446
620	0,042746	0,035336	0,024372	0,043609	0,043164	0,036662
680	0,036269	0,026498	0,018225	0,036515	0,036729	0,029849
740	0,033679	0,019870	0,013693	0,030634	0,031374	0,024499
800	0,028497	0,014901	0,010332	0,025729	0,026855	0,020254
860	0,023316	0,011174	0,007826	0,021624	0,023005	0,016853
920	0,019430	0,008379	0,005949	0,018181	0,019698	0,014106
980	0,015544	0,006283	0,004537	0,015289	0,016841	0,011869
1040	0,012953	0,004712	0,003471	0,012859	0,014360	0,010036
1100	0,011658	0,003533	0,002663	0,010817	0,012196	0,008525
1160	0,010363	0,002650	0,002048	0,009099	0,010302	0,007271
1220	0.007772	0.001987	0.001579	0.007654	0.008640	0.006225

Apêndice 09 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 25%, base úmida, temperatura de ar de secagem de 60 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Field	Daga	Henderson	Cavalcanti	Thomason
I (IIIII)		FICK	rage	e Pabis	Mata	rnompson
	RX _{exp}	RX predito				
0	1,000000	0,905200	1,000000	0,998495	1,002345	1,000000
5	0,945042	0,831271	0,923149	0,939583	0,937265	0,934647
10	0,884110	0,774859	0,865005	0,884564	0,882534	0,875577
15	0,827957	0,729332	0,814300	0,833176	0,831879	0,821947
20	0,780167	0,690992	0,768742	0,785173	0,784591	0,773064
30	0,692951	0,628071	0,688976	0,698421	0,698876	0,687314
40	0,623656	0,576833	0,620667	0,622661	0,623624	0,614692
50	0,562724	0,533173	0,561182	0,556461	0,557551	0,552551
70	0,452808	0,460836	0,462426	0,447919	0,448678	0,452253
90	0,369176	0,401957	0,384019	0,364667	0,364881	0,375429
110	0,301075	0,352389	0,320759	0,300568	0,300342	0,315261
140	0,222222	0,290743	0,246910	0,230506	0,229975	0,246890
170	0,178017	0,240618	0,191565	0,182213	0,181722	0,196689
200	0,148148	0,199410	0,149561	0,148361	0,148081	0,158900
260	0,102748	0,128885	0,085550	0,101482	0,101707	0,100778
320	0,084827	0,094409	0,058141	0,082522	0,082898	0,074899
380	0,071685	0,064987	0,036982	0,067282	0,067645	0,053747
440	0,046595	0,030795	0,015395	0,048015	0,048165	0,029420
500	0,040621	0,021198	0,010049	0,041180	0,041252	0,022295
560	0,033453	0,014593	0,006601	0,035456	0,035479	0,017117
620	0,032258	0,010045	0,004361	0,030587	0,030578	0,013291
680	0,027479	0,006915	0,002896	0,026412	0,026373	0,010423
740	0,022700	0,004760	0,001932	0,022818	0,022737	0,008247
800	0,020311	0,003277	0,001295	0,019719	0,019574	0,006578
860	0,015532	0,002256	0,000871	0,017042	0,016809	0,005284
920	0,014337	0,001553	0,000588	0,014729	0,014382	0,004273
980	0,011947	0,001069	0,000398	0,012731	0,012243	0,003476
1040	0,009558	0,000736	0,000271	0,011004	0,010351	0,002843

Apêndice 10 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 25%, base úmida, temperatura de ar de secagem de 70 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Field	Daga	Henderson	Cavalcanti	Thomason
I (IIIII)		FICK	rage	e Pabis	Mata	rnompson
	RX _{exp}	RX predito				
0	1,000000	0,905200	1,000000	1,013619	1,000879	1,000000
5	0,947608	0,825084	0,922192	0,946555	0,941903	0,929965
10	0,883827	0,765187	0,861132	0,884419	0,886748	0,866916
15	0,829157	0,717386	0,807369	0,826843	0,833243	0,809904
20	0,782460	0,677369	0,758850	0,773487	0,781875	0,758148
30	0,685649	0,611973	0,673721	0,678198	0,686644	0,667895
40	0,603645	0,558893	0,600897	0,596304	0,602084	0,592065
50	0,529613	0,513779	0,537717	0,525881	0,528075	0,527684
70	0,412301	0,439309	0,433702	0,413101	0,408796	0,424925
90	0,317768	0,379026	0,352300	0,329332	0,321389	0,347370
110	0,257403	0,328600	0,287705	0,266861	0,258167	0,287483
140	0,193622	0,266483	0,213970	0,201152	0,194800	0,220550
170	0,156036	0,216669	0,160301	0,157872	0,155441	0,172344
200	0,129841	0,176359	0,120801	0,128781	0,130033	0,136713
260	0,101367	0,116969	0,069567	0,094398	0,099928	0,089171
320	0,082005	0,077608	0,040655	0,075654	0,081827	0,060382
380	0,069476	0,051496	0,024036	0,063682	0,068718	0,042092
440	0,056948	0,034170	0,014348	0,054921	0,058336	0,030037
500	0,050114	0,022673	0,008634	0,047907	0,049798	0,021853
560	0,042141	0,015045	0,005232	0,042006	0,042646	0,016162
620	0,036446	0,009983	0,003191	0,036918	0,036589	0,012122
680	0,033030	0,006624	0,001956	0,032480	0,031417	0,009204
740	0,027335	0,004395	0,001205	0,028589	0,026970	0,007064
800	0,022779	0,002917	0,000746	0,025170	0,023125	0,005475
860	0,020501	0,001935	0,000464	0,022161	0,019784	0,004280
920	0,017084	0,001284	0,000289	0,019513	0,016867	0,003372
980	0,013667	0,000852	0,000181	0,017182	0,014310	0,002676
1040	0,010251	0,000565	0,000114	0,015129	0,012061	0,002137

Apêndice 11 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 25%, base úmida, temperatura de ar de secagem de 80 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Fick	Page	Henderson	Cavalcanti	Thompson
1 (mm)		TICK	1 age	e Pabis	Mata	Thompson
	RX _{exp}	RXpredito	RXpredito	RX predito	RX predito	RXpredito
0	1,000000	0,905200	1,000000	0,988309	0,998663	1,000000
5	0,904079	0,808623	0,915110	0,919370	0,907244	0,919047
10	0,847850	0,740102	0,845162	0,855239	0,854637	0,846546
15	0,810364	0,686795	0,783014	0,795582	0,804633	0,781384
20	0,759647	0,642709	0,726866	0,740086	0,754387	0,722629
30	0,653804	0,571293	0,628857	0,640438	0,652747	0,621300
40	0,553473	0,513775	0,546098	0,554206	0,553779	0,537549
50	0,458655	0,465230	0,475519	0,479586	0,463240	0,467683
70	0,317530	0,385955	0,362712	0,359133	0,321318	0,359148
90	0,239250	0,322854	0,278321	0,268933	0,233186	0,280325
110	0,189636	0,271137	0,214532	0,201388	0,183743	0,221794
140	0,145535	0,209347	0,146145	0,130502	0,145601	0,159437
170	0,121279	0,161883	0,100188	0,084567	0,123523	0,117056
200	0,100331	0,125244	0,069035	0,054801	0,107131	0,087460
260	0,081588	0,074997	0,033181	0,023012	0,082875	0,050941
320	0,065050	0,044913	0,016157	0,009663	0,065752	0,031035
380	0,054024	0,026897	0,007949	0,004058	0,053169	0,019587
440	0,042999	0,016108	0,003944	0,001704	0,043653	0,012721
500	0,038589	0,009647	0,001972	0,000716	0,036299	0,008462
560	0,030871	0,005777	0,000992	0,000300	0,030516	0,005745
620	0,029768	0,003460	0,000502	0,000126	0,025903	0,003969
680	0,024256	0,002072	0,000255	0,000053	0,022180	0,002785
740	0,018743	0,001241	0,000130	0,000022	0,019144	0,001980
800	0,015436	0,000743	0,000067	0,000009	0,016647	0,001426
860	0,012128	0,000445	0,000034	0,000004	0,014577	0,001038
Apêndice 12 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 30%, base úmida, temperatura de ar de secagem de 40 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Fick	Раде	Henderson	Cavalcanti	Thompson
1 (mm)		TICK	1 age	e Pabis	Mata	Thompson
	RX _{exp}	RXpredito	RXpredito	RX predito	RX predito	RX predito
0	1,000000	0,905200	1,000000	1,027832	1,040862	1,000000
5	0,986063	0,849409	0,913975	0,956525	0,936217	0,937532
10	0,914053	0,804107	0,860803	0,893844	0,875761	0,883138
15	0,842044	0,766110	0,817042	0,838588	0,827137	0,835086
20	0,782811	0,733367	0,778985	0,789724	0,785508	0,792157
30	0,679443	0,678662	0,714119	0,707760	0,715725	0,718307
40	0,636469	0,633541	0,659557	0,642285	0,658011	0,656664
50	0,588850	0,594780	0,612293	0,589129	0,608657	0,604161
70	0,521487	0,529889	0,533375	0,508315	0,527438	0,518996
90	0,454123	0,476309	0,469371	0,449241	0,462564	0,452515
110	0,413473	0,430486	0,416088	0,403139	0,409182	0,398996
140	0,353078	0,372191	0,350872	0,348368	0,344572	0,335691
170	0,301974	0,323209	0,298683	0,304107	0,293412	0,286656
200	0,259001	0,281361	0,256133	0,266705	0,252040	0,247635
260	0,197445	0,213970	213970 0,191576 0,206193 0,18		0,189815	0,189760
320	0,147503	0,163027	0,145790	0,159728	0,146045	0,149326
380	0,118467	0,124287	0,112426	0,123784	0,114309	0,119871
440	0,090592	0,094770	0,087623	0,095936	0,090781	0,097744
500	0,075494	0,072267	0,068898	0,074354	0,073034	0,080721
560	0,061556	0,055108	0,054582	0,057627	0,059460	0,067373
620	0,053426	0,042024	0,043523	0,044664	0,048959	0,056741
680	0,042973	0,032047	0,034903	0,034616	0,040754	0,048160
740	0,034843	0,024438	0,028132	0,026829	0,034289	0,041156
800	0,029036	0,018636	0,022779	0,020794	0,029158	0,035384
860	0,023229	0,014211	0,018521	0,016116	0,025059	0,030585
920	0,019744	0,010837	0,015115	0,012491	0,021765	0,026566
980	0,013937	0,008264	0,012379	0,009681	0,019103	0,023176
1040	0,013937	0,006302	0,010170	0,007503	0,016943	0,020300
1100	0,011614	0,004806	0,008381	0,005815	0,015182	0,017847
1160	0,009292	0,003665	0,006925	0,004507	0,013741	0,015743

Apêndice 13 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 30%, base úmida, temperatura de ar de secagem de 50 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Field	Dago	Henderson	Cavalcanti	Thompson
1 (11111)		FICK	rage	e Pabis	Mata	Thompson
	RX _{exp}	RX predito	RXpredito	RX predito	RX predito	RX predito
0	1,000000	0,905200	1,000000	0,982077	1,005957	1,000000
5	0,925255	0,833952	0,896379	0,917632	0,912330	0,921530
10	0,857305	0,779095	0,833252	0,858960	0,848050	0,855249
15	0,789354	0,734595	0,781901	0,805492	0,794180	0,798116
20	0,734994	0,697013	0,737715	0,756716	0,747144	0,748116
30	0,655719	0,635209	0,663473	0,671453	0,667392	0,664240
40	0,602492	0,584803	0,602136	0,600022	0,601377	0,596187
50	0,550396	0,541804	0,549884	0,539873	0,545404	0,539574
70	0,459796	0,470451	0,464612	0,445558	0,455243	0,450340
90	0,390713	0,412241	0,397442	0,376267	0,385806	0,382936
110	0,335221	0,363110	0,343030	0,323950	0,330922	0,330160
140	0,268403	0,301772	0,278515	0,266202	0,267759	0,269544
170	0,217441	0,251618	0,228746	0,224129	0,220634	0,224048
200	0,178935	0,210120	0,189560	0,191737	0,184578	0,188840
260	0,130238	0,146786	0,132893	0,144092	0,134017	0,138456
320	0,098528	0,102615	0,095149	0,110069	0,101133	0,104766
380	0,081540	0,071747	0,069233	0,084589	0,078606	0,081159
440	0,064553	0,050166	0,051033	0,065149	0,062531	0,064039
500	0,052095	0,035077	0,038024	0,050217	0,050684	0,051291
560	0,044168	0,023107	0,027287	0,037077	0,040453	0,040208
620	0,032843	0,017149	0,021670	0,029856	0,034820	0,034086
680	0,029445	0,011991	0,016538	0,023023	0,029406	0,028190
740	0,024915	0,008384	0,012700	0,017754	0,025108	0,023499
800	0,022650	0,005863	0,009808	0,013691	0,021661	0,019727
860	0,021518	0,004099	0,007612	0,010558	0,018874	0,016665
920	0,018120	0,002866	0,005935	0,008142	0,016604	0,014157
980	0,013590	0,002004	0,004647	0,006278	0,014745	0,012089
1040	0,012458	0,001401	0,003653	0,004842	0,013215	0,010371
1100	0,010193	0,000980	0,002882	0,003734	0,011950	0,008935
1160	0,007928	0,000685	0,002281	0,002879	0,010900	0,007728

Apêndice 14 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 30%, base úmida, temperatura de ar de secagem de 60 °C e velocidade do ar de 0,8 m s⁻¹

	Modelo Henderson Cavalcanti										
T (min)		Fick	Раде	Henderson	Cavalcanti	Thompson					
I (IIIII)		TICK	1 age	e Pabis	Mata	Thompson					
	RX _{exp}	RX predito	RXpredito	RX predito	RX predito	RX predito					
0	1,000000	0,905200	1,000000	0,958281	1,001366	1,000000					
5	0,838095	0,793851	0,814580	0,851701	0,820774	0,841200					
10	0,722751	0,718279	0,726404	0,761526	0,736032	0,740026					
15	0,659259	0,660545	0,660735	0,685042	0,670259	0,665188					
20	0,610582	0,613172	0,607613	0,619991	0,615539	0,605950					
30	0,530159	0,536902	0,524189	0,516977	0,527435	0,515876					
40	0,468783	0,475893	0,459995	0,440905	0,458497	0,449142					
50	0,409524	0,424753	0,408279	0,383744	0,402781	0,396968					
70	0,321693	0,342175	0,329176	0,305558	0,318446	0,319701					
90	0,256085	0,277664	0,271132	0,255270	0,258352	0,264724					
110	0,210582	0,226001	0,226707	0,219704	0,214111	0,223455					
140	0,159788	0,166313	0,176948	0,180770	0,167074	0,177832					
170	0,131217	0,122492	0,140696	0,151265	0,134873	0,144786					
200	0,112169	0,090238	0,090238 0,113469 0,127439 0,111		0,111965	0,119912					
260	0,083598	0,048979	0,076207	0,091040	0,082264	0,085415					
320	0,065608	0,026586	0,052847	0,065172	0,064147	0,063124					
380	0,056085	0,014431	0,037540	0,046668	0,051922	0,047924					
440	0,046561	0,007833	0,027177	0,033420	0,043013	0,037149					
500	0,035979	0,004252	0,019982	0,023933	0,036147	0,029282					
560	0,032804	0,002308	0,014885	0,017139	0,030647	0,023401					
620	0,026455	0,001253	0,011213	0,012274	0,026118	0,018920					
680	0,021164	0,000680	0,008529	0,008790	0,022315	0,015451					
740	0,017989	0,000369	0,006543	0,006294	0,019075	0,012728					
800	0,015873	0,000200	0,005058	0,004508	0,016284	0,010566					
860	0,013757	0,000109	0,003937	0,003228	0,013858	0,008831					
920	0,010582	0,000059	0,003083	0,002312	0,011734	0,007427					
980	0,009524	0,000032	0,002429	0,001655	0,009862	0,006280					
1040	0,007407	0,000017	0,001923	0,001185	0,008203	0,005338					
1100	0,005291	0,000009	0,001530	0,000849	0,006726	0,004557					

Apêndice 15 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 30%, base úmida, temperatura de ar de secagem de 70 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Field	Dago	Henderson	Cavalcanti	Thomason
1 (11111)		FICK	rage	e Pabis	Mata	Thompson
	RX _{exp}	RXpredito	RXpredito	RX predito	RX predito	RX predito
0	1,000000	0,905200	1,000000	0,975750	0,999891	1,000000
5	0,885128	0,788853	0,835119	0,872418	0,881065	0,861094
10	0,749744	0,711022	0,745087	0,782327	0,764845	0,759997
15	0,677949	0,651875	0,675679	0,703724	0,681168	0,681192
20	0,623590	0,603449	0,618445	0,635090	0,615273	0,617196
30	0,526154	0,525636	0,527167	0,522630	0,515114	0,518290
40	0,452308	0,463540	0,456218	0,436375	0,440932	0,444542
50	0,386667	0,411617	0,398909	0,369878	0,383116	0,387027
70	0,290256	0,328135	0,311586	0,277977	0,298328	0,302734
90	0,226667	0,263388	0,248321	0,220863	0,239215	0,243887
110	0,184615	0,211996	0,200774	0,183787	0,195980	0,200626
140	0,141538	0,153363	0,148922	0,148496	0,149915	0,154021
170	0,115897	0,111022	0,111022 0,112501 0,125686 0,1			0,121294
200	0,100513	0,080384	0,086202	0,109044	0,095516	0,097381
260	0,076923	0,042144	0,052283	0,084667	0,066504	0,065525
320	0,059487	0,022096	0,032773	0,066629	0,049793	0,045989
380	0,050256	0,011585	0,021065	0,052597	0,039654	0,033296
440	0,042051	0,006074	0,013813	0,041550	0,033261	0,024693
500	0,036923	0,003184	0,009209	0,032828	0,029109	0,018672
560	0,030769	0,001670	0,006227	0,025938	0,026346	0,014347
620	0,026667	0,000875	0,004261	0,020494	0,024471	0,011174
680	0,024615	0,000459	0,002947	0,016193	0,023177	0,008805
740	0,019487	0,000241	0,002058	0,012795	0,022270	0,007009
800	0,015385	0,000126	0,001449	0,010109	0,021628	0,005630
860	0,014359	0,000066	0,001028	0,007988	0,021166	0,004558
920	0,011282	0,000035	0,000734	0,006311	0,020832	0,003717
980	0,008205	0,000018	0,000528	0,004987	0,020588	0,003051

Apêndice 16 – Dados experimentais e preditos da secagem em camada fina do arroz vermelho em casca com teor de água inicial 30%, base úmida, temperatura de ar de secagem de 80 °C e velocidade do ar de 0,8 m s⁻¹

				Modelo		
T (min)		Field	Daga	Henderson	Cavalcanti	Thomason
1 (11111)		FICK	rage	e Pabis	Mata	Thompson
	RX _{exp}	RXpredito	RXpredito	RX predito	RX predito	RXpredito
0	1,000000	0,905200	1,000000	0,901742	1,000132	1,000000
5	0,794494	0,746968	0,765169	0,801767	0,790656	0,791122
10	0,670600	0,652110	0,656829	0,712876	0,678401	0,667016
15	0,591937	0,582291	0,578491	0,633840	0,591069	0,579228
20	0,523107	0,525942	0,516805	0,563567	0,520043	0,512153
30	0,413963	0,436868	0,423360	0,445530	0,411602	0,414389
40	0,332350	0,367408	0,354656	0,352216	0,333936	0,345444
50	0,278269	0,310843	0,301582	0,278445	0,276930	0,293771
70	0,198623	0,224164	0,224848	0,174022	0,201971	0,221194
90	0,157325	0,162204	0,172449	0,108759	0,157538	0,172757
110	0,129794	0,117471	0,134931	0,067972	0,129579	0,138381
140	0,105211	0,072425	0,095985	0,033583	0,103716	0,102632
170	0,088496	0,044655	0,069992	0,016593	0,087576	0,078430
200	0,069813	0,019946	0,043045	0,005124	0,070266	0,052525
260	0,058014	0,010468	0,029988	0,002001	0,060584	0,039332
320	0,050147	0,003980	0,018049	0,000489	0,049604	0,026487
380	0,042281	0,001513	0,011221	0,000119	0,041228	0,018476
440	0,035398	0,000575	0,007157	0,000029	0,034566	0,013245
500	0,029499	0,000219	0,004661	0,000007	0,029129	0,009704
560	0,027532	0,000083	0,003090	0,000002	0,024608	0,007239
620	0,020649	0,000032	0,002079	0,000000	0,020793	0,005483
680	0,015733	0,000012	0,001418	0,000000	0,017535	0,004208
740	0,012783	0,000005	0,000978	0,00000	0,014724	0,003266
800	0,012783	0,000002	0,000682	0,00000	0,012278	0,002561
860	0,009833	0,000001	0,000480	0,00000	0,010133	0,002026
920	0,007866	0,000000	0,000340	0,000000	0,008241	0,001615

Cinética de secagem em camada espessa

Apêndice 17 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 40 °C teor de água inicial de 20% base seca

		Dados Experimentais					Da	dos Simu	ılados			Desvi	o Percen	tual (%)
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			DCSVI	o i ciccii	tuai (70)
tempo			Camad	as				Camada	as				Camada	as	
(h)	1 ^a	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média
1	19,98	20,20	20,13	20,28	20,15	19,53	21,00	20,8	20,8	20,53	2,25	3,96	3,33	2,56	3,03
2	19,46	19,98	19,98	20,27	19,92	18,13	21,03	21,2	21,2	20,39	6,83	5,26	6,11	4,59	5,70
3	18,91	19,59	19,82	20,14	19,62	16,86	20,72	21,2	21,4	20,04	10,84	5,77	6,96	6,26	7,46
4	18,41	18,41 19,07 19,62 20,01 19, 17,97 18,86 19,33 19,76 18					20,07	21,22	21,59	19,66	14,45	5,24	8,15	7,90	8,94
5	17,97	18,86	19,33	19,76	18,98	14,78	19,43	21,15	21,71	19,27	17,75	3,02	9,42	9,87	10,01
7	16,80	18,12	18,83	19,23	18,25	13,19	17,76	21,00	21,88	18,46	21,49	1,99	11,52	13,78	12,19
8	16,20	17,82	18,46	18,84	17,83	12,53	16,99	20,79	21,92	18,06	22,65	4,66	12,62	16,35	14,07
9	15,78	17,51	18,13	18,66	17,52	11,95	16,26	20,52	21,91	17,66	24,27	7,14	13,18	17,42	15,50
10	15,46	17,20	17,87	18,50	17,26	11,44	15,56	19,98	21,99	17,25	26,00	9,53	11,81	18,86	16,55
11	15,12	16,78	17,66	18,27	16,96	10,99	14,91	19,47	22,00	16,84	27,31	11,14	10,25	20,42	17,28
13	14,25	16,27	17,21	17,87	16,40	10,22	13,72	18,07	22,04	16,01	28,28	15,67	5,00	23,34	18,07
15	13,67	15,59	16,88	17,44	15,90	9,61	12,7	16,79	21,78	15,22	29,70	18,54	0,53	24,89	18,41
20	12,26	14,33	16,11	16,45	14,79	8,53	10,75	13,99	19,33	13,15	30,42	24,98	13,16	17,51	21,52
23	11,44	13,69	15,57	15,78	14,12	8,10	9,91	12,65	17,21	11,97	29,20	27,61	18,75	9,06	21,16

Apêndices

Apêndice 18 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 50 °C teor de água inicial de 20% base seca

	Dados Experimentais Teor de água (% h s)						Da	dos Simu	lados		Desvio Percentual (%)				
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			DESVI	0 I ercen	tuai (70)	
tempo			Camada	as				Camada	as				Camada	as	
(h)	1 ^a	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média	1 a	2ª	3ª	4 ^a	Média
1	20,47	20,62	20,96	21,00	20,76	19,83	21,65	21,48	21,31	21,07	3,13	5,00	2,48	1,47	3,02
2	19,29	19,98	20,86	20,96	20,27	17,89	22,00	21,83	21,83	20,89	7,26	10,11	4,65	4,14	6,54
3	18,41	19,45	20,60	20,61	19,77	16,22	21,81	22,00	22,00	20,51	11,90	12,13	6,80	6,74	9,39
4	17,62	18,88	20,31	20,46	19,32	14,79	21,19	22,13	22,07	20,05	16,06	12,24	8,96	7,87	11,28
5	16,77	18,34	19,94	20,42	18,87	13,55	20,51	22,13	22,11	19,58	19,20	11,83	10,98	8,30	12,58
7	16,15	16,15 17,85 19,55 20,19 18,4 15,27 17,26 10,10 10,20 17,26					19,6	22,17	22,14	19,10	22,72	9,80	13,40	9,69	13,90
6	15,37	17,36	19,19	19,80	17,93	11,56	18,54	22,18	22,17	18,61	24,79	6,80	15,58	12,00	14,79
8	14,57	16,86	18,82	19,61	17,46	10,76	17,37	22,17	22,2	18,13	26,15	3,02	17,80	13,24	15,05
9	13,84	16,12	18,29	18,99	16,81	10,06	16,31	22,00	22,22	17,65	27,31	1,18	20,28	16,98	16,44
10	13,25	15,53	18,10	18,37	16,31	9,46	15,32	21,72	22,22	17,18	28,60	1,35	20,00	20,96	17,73
11	12,70	15,20	17,76	18,08	15,94	8,92	14,39	21,16	22,30	16,69	29,76	5,33	19,14	23,34	19,39
13	11,30	14,14	16,97	17,75	15,04	8,04	12,74	19,81	22,33	15,73	28,85	9,90	16,74	25,82	20,33
15	10,33	13,07	16,49	17,38	14,32	7,35	11,34	17,86	22,42	14,74	28,85	13,24	8,31	29,00	19,85
17	9,52	12,06	15,76	16,58	13,48	6,8	10,18	16,01	22,12	13,78	28,57	15,59	1,59	33,39	19,78
20	8,40	10,65	14,88	16,17	12,52	6,18	8,81	13,59	20,84	12,35	26,43	17,28	8,67	28,91	20,32
23	7,09	9,04	13,88	15,70	11,43	5,72	7,78	11,61	18,47	10,89	19,32	13,94	16,35	17,64	16,81
25	6,58	8,38	13,36	15,03	10,84	5,48	7,23	10,52	16,58	9,96	16,72	13,72	21,26	10,28	15,50

Apêndice 19 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 60 °C teor de água inicial de 20% base seca

		Dado	os Experi	mentais		Dados Simulados					Desvio Percentual (%)				
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)						
tempo			Camada	as				Camad	as				Camada	as	
(n)	1ª	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
1	21,52	21,93	22,04	22,05	21,88	20,51	22,81	22,64	22,32	22,07	4,69	4,00	2,74	1,25	3,17
2	20,27	21,67	21,65	22,06	21,41	18,03	23,3	23,13	22,81	21,82	11,05	7,52	6,84	3,41	7,20
3	19,38	20,98	21,47	22,02	20,96	15,84	23,11	23,3	22,97	21,31	18,27	10,13	8,51	4,32	10,31
4	18,13	20,25	21,25	21,83	20,36	14,06	22,52	23,36	22,97	20,73	22,45	11,20	9,96	5,24	12,21
5	16,51	19,65	20,86	21,65	19,67	12,56	21,58	23,44	22,95	20,13	23,92	9,84	12,35	6,02	13,03
6	15,60	18,60	20,64	21,40	19,06	11,31	20,43	23,47	22,94	19,54	27,50	9,82	13,72	7,20	14,56
7	14,67	17,53	20,41	21,15	18,44	10,24	18,98	23,57	22,94	18,93	30,20	8,25	15,51	8,45	15,60
8	13,76	17,09	20,01	20,48	17,83	9,34	17,36	23,64	22,94	18,32	32,12	1,59	18,14	12,02	15,97
9	12,99	16,43	19,47	20,20	17,27	8,58	15,94	23,43	22,97	17,73	33,95	2,95	20,35	13,72	17,74
10	12,17	15,36	19,23	20,02	16,70	7,92	14,64	23,04	22,98	17,14	34,92	4,71	19,84	14,76	18,56
11	11,42	14,53	18,83	19,79	16,15	7,35	13,45	22,49	22,95	16,56	35,64	7,46	19,42	15,94	19,61
12	10,74	14,03	18,41	19,31	15,62	6,86	12,37	21,66	22,98	15,97	36,13	11,83	17,63	18,99	21,14
13	10,00	13,27	18,05	19,04	15,09	6,44	11,4	20,65	22,99	15,37	35,60	14,07	14,39	20,76	21,20
14	9,25	12,48	17,69	18,76	14,55	6,07	10,53	19,52	22,96	14,77	34,38	15,65	10,36	22,38	20,69

Apêndice 19 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 60 °C teor de água inicial de 20% base seca

	Dados Experimentais					Dados Simulados					Desvio Percentual (%)				
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)						
tempo			Camad	as				Camad	as				Camad	as	
(n)	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
15	8,31	12,11	17,09	18,41	13,98	5,74	9,76	18,14	23,02	14,16	30,93	19,41	6,16	25,05	20,39
16	7,67	11,76	16,74	17,88	13,51	5,45	9,08	16,75	22,94	13,56	28,94	22,78	0,06	28,32	20,03
18	6,59	10,31	16,02	17,31	12,56	4,98	7,92	14,36	22,25	12,37	24,43	23,21	10,36	28,51	21,63
20	5,49	9,63	14,95	16,78	11,71	4,6	7,00	12,33	20,89	11,2	16,21	27,31	17,53	24,50	21,39
22	4,61	7,48	13,33	15,98	10,35	4,3	6,28	10,64	18,83	10,01	6,72	16,08	20,15	17,81	15,19
24	3,71	3,71 5,23 11,64 15,17 8,9					5,69	9,27	16,4	8,85	9,16	8,90	20,35	8,08	11,62

	Dados Experimentais						Da	dos Simu	ilados			Docui	o Dorcon	tual (%)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			DESVI	0 I CICCII	tual (70)	
tempo			Camada	as				Camada	as				Camada	as	
(h)	1 a	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
1	19,65	20,41	20,47	20,43	20,24	18,77	21,49	21,33	20,88	20,62	4,48	5,29	4,20	2,20	4,04
2	18,28	19,75	20,24	20,43	19,68	16,22	21,8	21,79	21,49	20,32	11,27	10,38	7,66	5,19	8,62
3	16,9	18,81	20,01	20,33	19,01	14,1	21,31	21,95	21,64	19,75	16,57	13,29	9,70	6,44	11,50
4	15,57	17,92	19,76	20,24	18,37	12,33	20,34	22,04	21,66	19,09	20,81	13,50	11,54	7,02	13,22
6	13,01	16,33	18,85	19,96	17,04	9,65	17,57	22,08	21,64	17,74	25,83	7,59	17,14	8,42	14,74
7	11,96	15,24	18,52	19,75	16,37	8,63	16	21,96	21,63	17,06	27,84	4,99	18,57	9,52	15,23
8	10,98	14,45	17,93	19,46	15,70	7,78	14,57	21,6	21,61	16,39	29,14	0,83	20,47	11,05	15,37
9	10,06	13,38	17,37	19,16	14,99	7,06	13,24	21,07	21,56	15,73	29,82	1,05	21,30	12,53	16,17
10	9,24	12,29	16,96	18,84	14,34	6,45	12,02	20,23	21,56	15,06	30,19	2,20	19,28	14,44	16,53
11	8,55	11,74	16,35	18,47	13,77	5,93	10,92	19,19	21,53	14,39	30,64	6,98	17,37	16,57	17,89
12	7,86	11,25	15,81	18,09	13,25	5,48	9,94	17,85	21,57	13,71	30,28	11,64	12,90	19,24	18,52
15	5,84	9,65	14,48	16,79	11,69	4,46	7,63	13,97	20,8	11,71	23,63	20,93	3,52	23,88	17,99
16	5,31	9	14,08	16,42	11,2	4,21	7,03	12,83	20,23	11,07	20,72	21,89	8,88	23,20	18,67
17	4,83	8,42	13,69	16,03	10,74	3,98	6,51	11,77	19,39	10,41	17,60	22,68	14,02	20,96	18,82
18	4,4	7,88	13,21	15,65	10,28	3,78	6,04	10,8	18,38	9,75	14,09	23,35	18,24	17,44	18,28

Apêndice 20 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 70 °C teor de água inicial de 20% base seca

Apêndice 21 –	Dados exp	erimentais e	simulados	pelo mode	lo Thompson	da secagem	em cam	ada espessa	do arr	oz vermelho	em	casca	para a
temperatura de 4	40 °C teor d	le água inicial	de 25% ba	se seca									

		Dado	os Experi	mentais		Dados Simulados					Desvio Percentual (%)				
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			Desvi	0 I CICCII	tual (<i>70</i>)	
tempo			Camada	as				Camada	as				Camada	as	
(h)	1 ^a	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
1	24,35	24,51	24,62	24,59	24,52	24,26	25,18	25,01	25,01	24,86	0,37	2,73	1,58	1,71	1,60
2	23,83	24,37	24,4	24,6	24,3	23,08	25,53	25,35	25,52	24,87	3,15	4,76	3,89	3,74	3,89
3	23,2	24,03	24,24	24,41	23,97	21,84	25,48	25,53	25,69	24,64	5,86	6,03	5,32	5,24	5,62
4	22,61	23,73	24,04	24,24	23,65	20,51	25,47	25,7	25,79	24,37	9,29	7,33	6,91	6,39	7,48
5	21,91	23,36	23,81	24,03	23,28	19,13	25,49	25,81	25,79	24,06	12,69	9,12	8,40	7,32	9,38
6	21,24	23,00	23,50	23,83	22,89	17,88	25,55	25,75	25,85	23,76	15,82	11,09	9,57	8,48	11,24
7	20,64	22,66	23,06	23,65	22,5	16,52	25,66	25,76	25,87	23,45	19,96	13,24	11,71	9,39	13,57
8	20,14	22,31	22,66	23,42	22,13	15,42	25,46	25,85	25,87	23,15	23,44	14,12	14,08	10,46	15,52
9	19,69	21,99	22,41	23,16	21,81	14,47	25,15	25,9	25,89	22,85	26,51	14,37	15,57	11,79	17,06
10	19,24	21,62	22,21	22,95	21,5	13,65	24,74	25,93	25,92	22,56	29,05	14,43	16,75	12,94	18,29
11	18,84	21,19	21,97	22,73	21,18	12,92	24,26	25,92	25,97	22,27	31,42	14,49	17,98	14,25	19,54
12	18,45	20,84	21,73	22,5	20,88	12,28	23,58	26,02	25,97	21,96	33,44	13,15	19,74	15,42	20,44
13	18,06	20,44	21,51	22,29	20,58	11,71	22,97	25,94	26,04	21,67	35,16	12,38	20,60	16,82	21,24
14	17,72	20,17	21,33	22,09	20,33	11,21	22,19	25,99	26,05	21,36	36,74	10,01	21,85	17,93	21,63

Apêndice 21 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 40 °C teor de água inicial de 25% base seca

		Dado	os Experi	mentais			Da	dos Simu	ilados			Docvi	o Dorcon	tual (%)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			DESVI	0 I CICCII	tual (<i>70</i>)	
tempo			Camada	as				Camada	as				Camada	as	
(h)	1 ^a	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média
15	17,38	19,9	21,15	21,9	20,08	10,77	21,35	26,02	26,08	21,05	38,03	7,29	23,03	19,09	21,86
16	17,04	19,64	20,94	21,7	19,83	10,38	20,45	26,05	26,1	20,74	39,08	4,12	24,40	20,28	21,97
17	16,71	19,37	20,72	21,49	19,57	10,03	19,51	26,07	26,13	20,43	39,98	0,72	25,82	21,59	22,03
20	15,69	18,5	20,03	20,88	18,77	9,18	16,51	26,06	26,21	19,49	41,49	10,76	30,10	25,53	26,97
23	14,67	17,69	19,21	20,27	17,96	8,57	14,12	25,51	26,08	18,57	41,58	20,18	32,80	28,66	30,81
25	13,98	17,19	18,69	19,72	17,39	8,25	12,89	24,57	26,12	17,96	40,99	25,01	31,46	32,45	32,48
27	13,28	16,64	18,25	19,16	16,83	7,99	11,88	23,37	26,1	17,34	39,83	28,61	28,05	36,22	33,18
29	12,58	16,06	17,79	18,69	16,28	7,77	11,05	21,78	26,23	16,71	38,24	31,20	22,43	40,34	33,05
31	11,85	15,44	17,31	18,22	15,7	7,59	10,36	20,23	26,35	16,13	35,95	32,90	16,87	44,62	32,59
33	11,25	14,89	16,84	17,81	15,2	7,44	9,79	18,43	26,43	15,52	33,87	34,25	9,44	48,40	31,49
35	10,78	14,44	16,44	17,44	14,77	7,31	9,32	16,49	26,49	14,9	32,19	35,46	0,30	51,89	29,96
37	10,33	14,03	16,03	17,08	14,37	7,20	8,92	14,89	26,1	14,28	30,30	36,42	7,11	52,81	31,66
41	9,53	13,27	15,13	16,42	13,59	7,03	8,31	12,49	24,38	13,05	26,23	37,38	17,45	48,48	32,38
44	8,99	12,62	14,54	15,92	13,02	6,93	7,96	11,21	22,32	12,11	22,91	36,93	22,90	40,20	30,74

Apêndice 22 – Dados	experimentais e	simulados p	pelo modelo	Thompson	da secagem	em camada	espessa	do arroz	vermelho e	em casca	para a
temperatura de 50 °C te	eor de água inicia	l de 25% bas	e seca								

		Dade	os Experi	mentais			Da	dos Simu	ilados			Dogyi	o Doroon	tual (<i>0</i> /2)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			DESVI	0 I CICCII	iuai (<i>70)</i>	
tempo			Camada	as				Camad	as				Camada	as	
(h)	1 ^a	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
1	24,25	24,53	24,71	24,71	24,55	23,64	25,34	25,17	25,00	24,79	2,52	3,30	1,86	1,17	2,21
2	23,48	24,01	24,49	24,71	24,17	21,80	25,68	25,68	25,51	24,67	7,16	6,96	4,86	3,24	5,55
3	22,63	23,67	23,78	24,59	23,67	19,77	25,85	25,85	25,68	24,29	12,64	9,21	8,70	4,43	8,75
4	21,90	22,92	23,39	24,38	23,14	17,74	25,95	25,89	25,67	23,82	19,00	13,22	10,69	5,29	12,05
5	20,98	22,29	22,83	24,11	22,55	15,85	25,87	25,97	25,63	23,33	24,45	16,06	13,75	6,30	15,14
6	20,08	21,62	22,49	23,74	21,98	14,34	25,60	25,92	25,62	22,87	28,59	18,41	15,25	7,92	17,54
7	19,16	20,94	22,15	23,36	21,40	13,08	25,05	25,95	25,59	22,42	31,73	19,63	17,16	9,55	19,52
8	18,70	20,68	21,60	23,18	21,04	12,00	24,20	26,06	25,56	21,95	35,83	17,02	20,65	10,27	20,94
9	17,85	20,20	21,03	22,94	20,51	11,08	23,21	26,12	25,56	21,49	37,93	14,90	24,20	11,42	22,11
10	16,91	19,87	20,54	22,68	20,00	10,29	22,11	26,15	25,58	21,03	39,15	11,27	27,31	12,79	22,63
11	16,29	19,58	20,35	22,44	19,66	9,61	20,96	26,11	25,61	20,57	41,01	7,05	28,30	14,13	22,62
13	14,73	17,98	19,67	22,24	18,66	8,51	18,15	26,23	25,61	19,63	42,23	0,95	33,35	15,15	22,92
15	13,62	17,08	18,77	21,78	17,81	7,67	15,32	26,20	25,55	18,69	43,69	10,30	39,58	17,31	27,72
17	12,56	15,86	18,31	21,33	17,01	7,03	13,18	25,34	25,56	17,78	44,03	16,90	38,39	19,83	29,79
20	11,21	14,64	17,36	20,34	15,89	6,31	10,77	22,91	25,56	16,39	43,71	26,43	31,97	25,66	31,94
23	9,82	13,39	16,40	19,33	14,73	5,80	9,08	19,49	25,53	14,98	40,94	32,19	18,84	32,07	31,01
25	8,80	12,81	15,56	18,90	14,02	5,54	8,24	16,67	25,65	14,02	37,05	35,68	7,13	35,71	28,89

Apêndice 22 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 50 °C teor de água inicial de 25% base seca

		Dado	os Experi	mentais			Da	dos Simı	ılados			Desvi	o Percen	tual (%)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			DUSVI	0 I CICCI	tuai (<i>70)</i>	
tempo			Camada	as				Camad	as				Camad	as	
(h)	1ª	1 ^a 2 ^a 3 ^a 4 ^a Méd 12 11,27 14,75 18,53 13,1				1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
27	8,12	11,27	14,75	18,53	13,17	5,32	7,56	14,37	25,23	13,12	34,48	32,92	2,58	36,16	26,53
29	7,54	10,74	14,01	17,97	12,56	5,15	7,01	12,53	24,22	12,23	31,70	34,73	10,56	34,78	27,94
31	6,73	10,01	13,39	16,74	11,72	5,00	6,57	11,05	22,53	11,29	25,71	34,37	17,48	34,59	28,03
33	6,20	9,50	12,35	16,19	11,06	4,88	6,20	9,87	20,50	10,36	21,29	34,74	20,08	26,62	25,68
34	5,97	9,02	12,02	15,90	10,73	4,83	6,05	9,37	19,24	9,87	19,10	32,93	22,05	21,01	23,77

Apêndice 23 -	- Dados	experimentais e	e simulados	pelo mode	o Thompson	da secagem	em camada	espessa	do arro	z vermelho	em	casca	para a
temperatura de	60 °C tee	or de água inicia	al de 25% ba	ise seca									

		Dade	os Experi	mentais			Da	dos Simu	ilados			Docvi	o Dorcon	tual (%)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			DCSVI		iuai (70)	
tempo			Camada	as				Camada	as				Camada	as	
(h)	1 ^a	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
1	23,98	24,70	24,63	24,64	24,49	23,27	25,48	25,31	24,98	24,76	2,96	3,16	2,76	1,38	2,56
2	23,10	24,34	24,70	24,82	24,24	20,76	25,98	25,81	25,48	24,51	10,13	6,74	4,49	2,66	6,01
3	22,13	23,85	24,24	24,75	23,74	18,22	26,07	25,97	25,64	23,98	17,67	9,31	7,14	3,60	9,43
4	21,23	23,00	23,89	24,64	23,19	15,70	26,00	26,08	25,69	23,37	26,05	13,04	9,17	4,26	13,13
5	20,20	22,30	23,14	24,35	22,50	13,80	25,51	26,09	25,67	22,77	31,68	14,39	12,75	5,42	16,06
6	19,15	21,59	22,38	24,05	21,79	12,25	24,69	26,12	25,66	22,18	36,03	14,36	16,71	6,69	18,45
7	18,01	20,64	22,04	23,60	21,07	10,97	23,55	26,18	25,67	21,59	39,09	14,10	18,78	8,77	20,19
8	17,08	20,03	21,41	23,14	20,42	9,91	22,27	26,13	25,71	21,00	41,98	11,18	22,05	11,11	21,58
9	16,13	19,48	20,51	22,58	19,68	9,02	20,75	26,14	25,71	20,40	44,08	6,52	27,45	13,86	22,98
10	15,17	18,76	19,92	22,12	18,99	8,27	18,97	26,23	25,70	19,79	45,48	1,12	31,68	16,18	23,62
11	14,40	18,20	19,22	21,90	18,43	7,63	17,21	26,16	25,75	19,19	47,01	5,44	36,11	17,58	26,54
13	12,56	17,03	17,42	21,41	17,10	6,61	13,94	25,68	25,73	17,99	47,37	18,14	47,42	20,18	33,28
15	11,13	16,20	16,35	19,78	15,86	5,85	11,54	24,09	25,79	16,82	47,44	28,77	47,34	30,38	38,48
17	8,97	15,37	15,66	19,20	14,80	5,27	9,71	21,78	25,72	15,62	41,25	36,82	39,08	33,96	37,78
20	7,50	12,38	14,22	18,19	13,07	4,63	7,75	17,02	25,78	13,80	38,27	37,40	19,69	41,73	34,27
23	5,98	9,16	12,68	17,15	11,24	4,19	6,43	12,82	24,69	12,03	29,93	29,80	1,10	43,97	26,20
25	5,09	8,32	11,02	16,45	10,22	3,96	5,79	10,81	22,94	10,87	22,20	30,41	1,91	39,45	23,49
27	4,33	7,63	9,75	15,77	9,37	3,77	5,28	9,25	20,40	9,67	12,93	30,80	5,13	29,36	19,56

Apêndice 24 – Da	dos experimentais e	e simulados p	elo modelo	Thompson	da secagem	em camada	espessa	do arroz	z vermelho	em c	casca	para a
temperatura de 70	C teor de água inici	al de 25% bas	e seca									

		Dado	os Experi	mentais			Da	dos Simu	ılados			Desvi	o Percen	tual (%)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			DCSVI	0 I CICCII	tuai (<i>70)</i>	
tempo			Camada	as				Camada	as				Camada	as	
(h)	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média
1	23,96	24,83	24,87	24,92	24,65	22,87	25,86	25,69	25,37	24,94	4,55	4,15	3,30	1,81	3,45
2	22,62	24,29	24,83	24,95	24,17	19,81	26,35	26,18	26,02	24,59	12,42	8,48	5,44	4,29	7,66
3	21,23	23,67	24,52	24,75	23,54	16,50	26,52	26,35	26,18	23,89	22,28	12,04	7,46	5,78	11,89
4	20,14	22,69	24,08	24,52	22,86	14,02	26,00	26,32	26,34	23,17	30,39	14,59	9,30	7,42	15,43
5	18,82	21,71	23,62	24,14	22,07	12,11	24,97	26,36	26,33	22,44	35,65	15,02	11,60	9,07	17,84
6	17,45	20,70	23,15	23,75	21,26	10,59	23,56	26,36	26,39	21,72	39,31	13,82	13,87	11,12	19,53
7	16,51	19,76	22,48	23,43	20,54	9,36	21,84	26,33	26,43	20,99	43,31	10,53	17,13	12,80	20,94
8	15,52	18,93	21,94	23,08	19,87	8,36	19,86	26,31	26,47	20,25	46,13	4,91	19,92	14,69	21,41
9	14,53	18,27	21,41	22,65	19,21	7,53	17,61	26,35	26,48	19,49	48,18	3,61	23,07	16,91	22,94
10	13,66	17,63	20,67	22,19	18,54	6,84	15,36	26,20	26,55	18,74	49,93	12,88	26,75	19,65	27,30
11	12,88	16,71	20,36	21,69	17,91	6,26	13,57	25,67	26,55	18,01	51,40	18,79	26,08	22,41	29,67
13	11,12	15,38	19,13	20,96	16,65	5,35	10,76	23,56	26,61	16,57	51,89	30,04	23,16	26,96	33,01
15	9,80	13,74	17,67	20,25	15,36	4,67	8,74	20,32	26,78	15,13	52,35	36,39	15,00	32,25	34,00

Apêndice 24 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 70 °C teor de água inicial de 25% base seca

		Dado	os Experi	mentais			Da	dos Sim	ılados			Desvi	o Percen	tual (%)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			Desti	o i ci cei	(<i>10</i>)	
tempo			Camada	as				Camad	as				Camad	as	
(n)	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
17	8,53	11,82	16,77	19,73	14,21	4,15	7,26	16,32	26,81	13,64	51,35	38,58	2,68	35,88	32,12
20	6,68	10,30	15,22	18,58	12,70	3,59	5,74	11,61	25,01	11,49	46,26	44,27	23,72	34,61	37,21
23	4,76	8,73	13,61	17,39	11,12	3,19	4,73	8,62	20,56	9,27	32,98	45,82	36,66	18,23	33,42
25	3,78	7,41	12,79	16,56	10,13	2,98	4,24	7,24	16,57	7,76	21,16	42,78	43,39	0,06	26,85
27	2,98	6,25	11,96	15,66	9,21	2,82	3,85	6,21	13,20	6,52	5,37	38,40	48,08	15,71	26,89

Apêndice 25 – Dade	os experimentais e	e simulados	pelo modelo	• Thompson	da secagem	em camada	espessa	do arroz	vermelho	em casca	a para a
temperatura de 40 °C	teor de água inicia	al de 30% ba	ise seca								

		Dado	os Experi	mentais			Da	dos Simu	ılados			Docvi	o Dorcon	tual (%)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			Desvi	0 I CICCII	tual (<i>70</i>)	
tempo			Camada	as				Camada	as				Camada	as	
(h)	1 ^a	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
1	29,78	29,94	29,95	29,97	29,91	29,98	30,59	30,44	30,29	30,33	0,67	2,17	1,64	1,07	1,39
2	29,34	29,74	29,9	29,96	29,74	29,06	31,04	30,89	30,74	30,43	0,95	4,37	3,31	2,60	2,81
3	28,77	29,45	29,75	29,88	29,46	27,86	31,19	31,19	31,04	30,32	3,16	5,91	4,84	3,88	4,45
4	28,21	29,12	29,5	29,74	29,14	26,73	31,08	31,34	31,19	30,09	5,25	6,73	6,24	4,88	5,77
5	27,67	28,7	29,22	29,57	28,79	25,55	30,99	31,29	31,15	29,75	7,66	7,98	7,08	5,34	7,02
6	27,09	28,31	28,91	29,34	28,41	24,47	30,87	31,24	31,09	29,42	9,67	9,04	8,06	5,96	8,18
7	26,5	27,92	28,59	29,12	28,03	23,34	30,93	31,09	31,03	29,10	11,92	10,78	8,74	6,56	9,50
8	26,01	27,6	28,34	28,95	27,72	22,37	30,84	30,99	30,96	28,79	13,99	11,74	9,35	6,94	10,51
9	25,5	27,24	28,05	28,73	27,38	21,34	30,75	31,02	30,79	28,47	16,31	12,89	10,59	7,17	11,74
10	25,03	26,88	27,81	28,51	27,06	20,34	30,78	30,93	30,62	28,17	18,74	14,51	11,22	7,40	12,97
11	24,56	26,59	27,55	28,33	26,76	19,32	30,83	30,77	30,57	27,87	21,34	15,95	11,69	7,91	14,22
13	23,56	25,91	27,04	27,93	26,11	17,49	30,62	30,62	30,51	27,31	25,76	18,18	13,24	9,24	16,60
15	22,64	25,26	26,55	27,54	25,5	15,68	30,47	30,49	30,51	26,79	30,74	20,63	14,84	10,78	19,25
17	21,79	24,58	26,06	27,17	24,9	13,81	30,26	30,38	30,47	26,23	36,62	23,11	16,58	12,15	22,11
19	20,94	23,93	25,53	26,75	24,29	12,11	29,91	30,31	30,40	25,68	42,17	24,99	18,72	13,64	24,88
21	20,07	23,27	24,99	26,32	23,66	10,91	29,11	30,30	30,33	25,16	45,64	25,10	21,25	15,24	26,81
23	19,19	22,6	24,44	25,88	23,03	9,99	28,00	30,26	30,16	24,60	47,94	23,89	23,81	16,54	28,05

Apêndice 25 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 40 °C teor de água inicial de 30% base seca

		Dado	os Experi	mentais			Da	dos Simu	ılados			Desvi	o Percen	tual (%)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			DUST	o i ciccii	(<i>10</i>)	
tempo			Camad	as				Camad	as				Camada	as	
(h)	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
25	18,57	22,15	24,03	25,57	22,58	9,28	26,70	30,14	30,12	24,06	50,03	20,54	25,43	17,79	28,45
27	17,85	21,59	23,58	25,23	22,06	8,74	25,14	30,06	30,13	23,52	51,04	16,44	27,48	19,42	28,60
29	17,18	21,06	23,13	24,86	21,56	8,31	23,51	30,16	29,94	22,98	51,63	11,63	30,39	20,43	28,52
31	16,36	20,37	22,55	24,39	20,92	7,98	21,83	30,19	29,86	22,46	51,22	7,17	33,88	22,43	28,67
33	15,70	19,86	22,14	24,03	20,43	7,71	20,11	30,23	29,73	21,95	50,89	1,26	36,54	23,72	28,10
35	15,01	19,2	21,65	23,62	19,87	7,50	18,36	30,28	29,66	21,45	50,03	4,38	39,86	25,57	29,96
37	14,31	18,53	21,15	23,2	19,3	7,32	16,69	30,27	29,56	20,96	48,85	9,93	43,12	27,41	32,33
39	13,76	18,04	20,72	22,85	18,84	7,18	14,87	30,26	29,42	20,43	47,82	17,57	46,04	28,75	35,05
41	13,17	17,57	20,31	22,45	18,38	7,07	13,06	30,14	29,32	19,90	46,32	25,67	48,40	30,60	37,75
43	12,65	17,05	19,88	22,08	17,91	6,98	11,74	29,71	29,21	19,41	44,82	31,14	49,45	32,29	39,43
45	12,12	16,53	19,44	21,71	17,45	6,90	10,71	28,81	29,22	18,91	43,07	35,21	48,20	34,59	40,27
47	11,58	16,00	19,01	21,33	16,98	6,84	9,90	27,57	29,14	18,36	40,93	38,13	45,03	36,62	40,18
49	11,2	15,57	18,63	21,05	16,61	6,78	9,26	26,23	29,15	17,86	39,46	40,53	40,79	38,48	39,82
51	10,78	14,94	18,24	20,69	16,16	6,74	8,76	24,74	29,18	17,35	37,48	41,37	35,64	41,03	38,88
53	10,36	14,44	17,88	20,38	15,77	6,70	8,36	23,15	29,15	16,84	35,33	42,11	29,47	43,03	37,49

Apêndice 25 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 40 °C teor de água inicial de 30% base seca

		Dado	os Experi	mentais			Da	dos Simu	ılados			Desvi	io Percen	tual (%)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			DUSVI	U I CICCI	tuai (70)	
tempo			Camad	as				Camad	as				Camad	as	
(h)	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
55	9,93	13,98	17,47	20,03	15,35	6,67	8,04	21,51	29,20	16,35	32,83	42,49	23,13	45,78	36,06
57	9,54	13,5	17,08	19,67	14,95	6,64	7,78	19,95	29,22	15,90	30,40	42,37	16,80	48,55	34,53
59	9,22	13,12	16,73	19,36	14,61	6,62	7,57	18,26	29,17	15,40	28,20	42,30	9,15	50,67	32,58
61	8,89	12,73	16,37	19,03	14,26	6,60	7,40	16,49	29,19	14,92	25,76	41,87	0,73	53,39	30,44
63	8,47	12,25	15,9	18,6	13,8	6,58	7,26	14,81	29,20	14,46	22,31	40,73	6,86	56,99	31,72
73	7,10	10,50	14,01	17,03	12,16	6,53	6,84	9,30	25,47	12,03	8,03	34,86	33,62	49,56	31,52
75	6,93	10,20	13,73	16,73	11,9	6,52	6,79	8,80	24,03	11,53	5,92	33,43	35,91	43,63	29,72
77	6,78	9,98	13,47	16,46	11,67	6,51	6,74	8,40	22,48	11,03	3,98	32,46	37,64	36,57	27,66
79	6,64	9,72	13,20	16,20	11,44	6,51	6,71	8,08	20,98	10,57	1,96	30,97	38,79	29,51	25,30
80	6,5	9,46	12,94	15,94	11,21	6,51	6,69	7,94	20,13	10,32	0,15	29,28	38,64	26,29	23,59
81	6,33	9,2	12,59	15,61	10,93	6,50	6,68	7,82	19,32	10,08	2,69	27,39	37,89	23,77	22,93

Apêndice 26 -	- Dados	experimentais	e simulados	pelo m	nodelo	Thompson	da secagem	em	camada	espessa	do a	arroz	vermelho	em	casca	para a	ł
temperatura de	50 °C te	or de água inici	ial de 30% ba	ase seca	l												

		Dado	os Experi	mentais			Da	dos Simu	ilados			Docvi	o Porcon	tual (<i>%</i>)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			DESVI	0 I CICCII	tual (<i>70)</i>	
tempo			Camada	as				Camada	as				Camada	as	
(h)	1 ^a	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média
1	30,82	31,05	31,13	31,12	31,03	30,87	31,64	31,38	31,13	31,25	0,16	1,90	0,80	0,03	0,72
2	30,17	30,82	31,10	31,16	30,81	29,47	32,29	32,03	31,64	31,36	2,32	4,77	2,99	1,54	2,91
3	29,39	30,50	30,95	31,12	30,49	27,56	32,55	32,42	32,16	31,17	6,23	6,72	4,75	3,34	5,26
4	28,67	30,05	30,71	30,99	30,11	25,80	32,31	32,55	32,42	30,77	10,01	7,52	5,99	4,61	7,03
5	28,01	29,69	30,46	30,83	29,74	24,13	31,92	32,26	32,69	30,25	13,85	7,51	5,91	6,03	8,33
6	27,36	29,08	30,18	30,63	29,31	22,65	31,55	31,85	32,28	29,58	17,21	8,49	5,53	5,39	9,16
7	26,71	28,46	29,90	30,43	28,87	21,34	31,15	31,39	31,73	28,90	20,10	9,45	4,98	4,27	9,70
8	25,93	28,07	29,57	30,23	28,45	20,18	30,78	31,02	31,17	28,29	22,18	9,65	4,90	3,11	9,96
9	25,33	27,57	29,16	30,02	28,02	19,07	30,50	30,71	30,72	27,75	24,71	10,63	5,32	2,33	10,75
10	24,80	27,16	28,87	29,78	27,65	17,97	30,24	30,41	30,49	27,28	27,54	11,34	5,33	2,38	11,65
11	24,20	26,72	28,57	29,62	27,27	16,87	30,05	30,26	30,15	26,83	30,29	12,46	5,92	1,79	12,61
13	22,95	25,85	27,90	29,12	26,45	14,78	29,78	29,89	29,66	26,03	35,60	15,20	7,13	1,85	14,95
15	21,81	25,04	27,21	28,61	25,67	12,70	29,46	29,69	29,27	25,28	41,77	17,65	9,11	2,31	17,71
17	20,70	24,27	26,50	28,11	24,89	10,58	29,28	29,34	29,15	24,59	48,89	20,64	10,72	3,70	20,99
20	19,09	22,91	25,52	27,39	23,72	8,54	27,70	29,15	28,78	23,54	55,26	20,91	14,22	5,07	23,87
23	17,40	21,49	24,52	26,65	22,51	7,19	25,30	28,94	28,48	22,48	58,68	17,73	18,03	6,87	25,33
25	16,41	20,69	23,90	26,16	21,79	6,55	23,58	28,67	28,29	21,78	60,09	13,97	19,96	8,14	25,54

Apêndice 26 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 50 °C teor de água inicial de 30% base seca

		Dado	os Experi	mentais			Da	dos Simu	ılados			Docv	o Porcon	tual (%)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			Desvi		iuai (<i>70)</i>	
tempo			Camad	as				Camad	as				Camad	as	
(h)	1 ^a	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
27	15,40	19,94	22,94	25,66	20,98	6,07	21,80	28,48	28,15	21,12	60,58	9,33	24,15	9,70	25,94
29	14,52	19,13	22,31	25,16	20,28	5,69	19,90	28,32	28,01	20,48	60,81	4,03	26,94	11,33	25,78
31	13,63	18,32	21,65	24,61	19,55	5,40	18,10	28,18	27,84	19,88	60,38	1,20	30,16	13,12	26,22
33	12,81	17,61	21,02	24,13	18,89	5,16	16,29	28,12	27,70	19,32	59,72	7,50	33,78	14,79	28,95
35	12,06	16,98	20,48	23,71	18,31	4,98	14,44	28,02	27,64	18,77	58,71	14,96	36,82	16,58	31,76
37	11,26	16,29	19,86	23,20	17,65	4,83	12,48	27,95	27,54	18,20	57,10	23,39	40,74	18,71	34,98
39	10,45	15,55	19,23	22,69	16,98	4,71	10,59	27,74	27,57	17,65	54,93	31,90	44,25	21,51	38,15
41	9,78	14,91	18,59	22,24	16,38	4,62	9,24	27,08	27,51	17,11	52,76	38,03	45,67	23,70	40,04
44	8,77	13,98	17,68	21,45	15,47	4,50	7,75	25,14	27,46	16,21	48,69	44,56	42,19	28,02	40,87
47	7,74	13,02	16,74	20,63	14,53	4,42	6,74	22,90	27,23	15,32	42,89	48,23	36,80	31,99	39,98
49	7,20	12,42	16,16	20,19	13,99	4,38	6,25	21,21	27,19	14,76	39,17	49,68	31,25	34,67	38,69
51	6,56	11,79	15,58	19,63	13,39	4,34	5,86	19,50	27,08	14,19	33,84	50,30	25,16	37,95	36,81
53	6,13	11,30	15,11	19,21	12,94	4,31	5,55	17,75	27,03	13,66	29,69	50,88	17,47	40,71	34,69
55	5,66	10,76	14,55	18,72	12,42	4,28	5,30	15,96	26,98	13,13	24,38	50,74	9,69	44,12	32,23
57	5,16	10,16	13,94	18,20	11,86	4,26	5,11	14,07	26,94	12,59	17,44	49,70	0,93	48,02	29,03

Apêndice 26 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 50 °C teor de água inicial de 30% base seca

		Dado Teor	os Experi de água	mentais (% b.s.)			Da Teor	dos Simu de água	ulados (% b.s.)			Desvi	o Percen	tual (%)	
tempo			Camada	as				Camad	as				Camada	as	
(h)	1 ^a	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média
27	15,40	19,94	22,94	25,66	20,98	6,07	21,80	28,48	28,15	21,12	60,58	9,33	24,15	9,70	25,94
29	14,52	19,13	22,31	25,16	20,28	5,69	19,90	28,32	28,01	20,48	60,81	4,03	26,94	11,33	25,78
31	13,63	18,32	21,65	24,61	19,55	5,40	18,10	28,18	27,84	19,88	60,38	1,20	30,16	13,12	26,22
33	12,81	17,61	21,02	24,13	18,89	5,16	16,29	28,12	27,70	19,32	59,72	7,50	33,78	14,79	28,95
35	12,06	16,98	20,48	23,71	18,31	4,98	14,44	28,02	27,64	18,77	58,71	14,96	36,82	16,58	31,76

Apêndice 27 – Dados es	experimentais e	simulados p	pelo modelo	Thompson	da secagem	em camada	espessa	do arroz	vermelho	em cas	sca para	a
temperatura de 60 °C teor	r de água inicial	l de 30% bas	e seca									

		Dado	os Experi	mentais			Da	dos Simu	ilados			Docvi	o Porcon	tual (<i>%</i>)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			Desvi	0 I CICCII	tual (70)	
tempo			Camada	as				Camada	as				Camada	as	
(h)	1 ^a	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média	1 ^a	2ª	3ª	4 ^a	Média
1	28,61	28,97	29,11	29,15	28,96	28,13	30,00	29,57	29,43	29,28	1,68	3,56	1,58	0,96	1,94
2	27,49	28,69	29,02	29,15	28,59	26,18	30,44	30,15	30,00	29,20	4,77	6,10	3,89	2,92	4,42
3	26,31	28,22	28,78	29,02	28,08	24,01	30,59	30,30	30,44	28,84	8,74	8,40	5,28	4,89	6,83
4	25,33	27,75	28,41	28,83	27,58	21,85	30,50	30,45	30,59	28,35	13,74	9,91	7,18	6,10	9,23
5	24,11	27,33	28,13	28,63	27,05	19,84	30,45	30,28	30,55	27,78	17,71	11,42	7,64	6,71	10,87
6	23,05	26,68	27,72	28,31	26,44	17,79	30,42	30,18	30,60	27,25	22,82	14,02	8,87	8,09	13,45
7	21,96	26,02	27,31	27,99	25,82	15,81	30,42	30,04	30,49	26,69	28,01	16,91	10,00	8,93	15,96
8	20,82	25,30	26,87	27,68	25,17	13,88	30,33	29,97	30,38	26,14	33,33	19,88	11,54	9,75	18,63
9	20,10	24,85	26,52	27,35	24,70	11,91	30,31	29,91	30,37	25,62	40,75	21,97	12,78	11,04	21,64
10	19,19	24,25	26,00	26,97	24,10	10,52	29,85	29,78	30,31	25,11	45,18	23,09	14,54	12,38	23,80
11	18,42	23,75	25,65	26,71	23,63	9,40	29,05	29,76	30,26	24,62	48,97	22,32	16,02	13,29	25,15
13	16,40	22,56	24,47	25,96	22,35	7,70	26,79	29,78	30,15	23,60	53,05	18,75	21,70	16,14	27,41
15	14,93	21,39	23,77	25,25	21,33	6,52	24,04	29,71	29,95	22,56	56,33	12,39	24,99	18,61	28,08
17	13,61	20,39	23,07	24,64	20,42	5,68	20,98	29,60	29,93	21,55	58,27	2,89	28,31	21,47	27,73
20	11,42	18,72	21,92	23,69	18,94	4,82	16,25	29,46	29,74	20,07	57,79	13,19	34,40	25,54	32,73
23	9,11	16,99	20,74	22,71	17,39	4,25	11,43	29,06	29,66	18,60	53,35	32,73	40,12	30,60	39,20
25	7,95	16,08	19,93	22,12	16,52	3,97	9,29	27,68	29,63	17,64	50,06	42,23	38,89	33,95	41,28

Apêndice 27 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 60 °C teor de água inicial de 30% base seca

		Dado	os Experi	mentais			Da	dos Simu	ılados			Desvi	o Percen	tual (%)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			Desti		(70)	
tempo			Camad	as				Camad	as				Camad	as	
(h)	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
27	6,82	15,15	18,97	21,35	15,57	3,76	7,77	25,57	29,57	16,67	44,87	48,71	34,79	38,50	41,72
29	5,81	14,17	18,21	20,65	14,71	3,59	6,66	22,94	29,60	15,70	38,21	53,00	25,97	43,34	40,13
31	4,82	13,24	17,34	19,98	13,84	3,45	5,85	20,17	29,42	14,72	28,42	55,82	16,32	47,25	36,95
33	4,09	12,42	16,62	19,30	13,11	3,34	5,24	17,08	29,36	13,75	18,34	57,81	2,77	52,12	32,76
35	3,35	11,59	15,89	18,61	12,36	3,24	4,77	13,93	29,25	12,80	3,28	58,84	12,33	57,17	32,91
37	2,74	10,77	15,08	17,95	11,63	3,17	4,40	11,00	28,88	11,86	15,69	59,15	27,06	60,89	40,70
39	2,11	9,94	14,25	17,28	10,89	3,10	4,12	9,06	27,48	10,94	46,92	58,55	36,42	59,03	50,23
41	1,70	9,30	13,64	16,71	10,34	3,05	3,89	7,65	25,37	9,99	79,41	58,17	43,91	51,83	58,33
43	1,29	8,56	12,99	15,88	9,68	3,01	3,71	6,61	22,79	9,03	134,06	56,66	49,11	43,51	70,84

Apêndice 28 – Dados experimentais e simulados pelo modelo '	Thompson da secagem of	em camada espessa do ar	rroz vermelho em casca para a
temperatura de 70 °C teor de água inicial de 30% base seca			

		Dado	os Experi	mentais			Da	dos Simu	ilados			Docvi	o Porcon	tual (%)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			Desvi	0 I CICCII	tual (<i>70</i>)	
tempo			Camada	as				Camada	as				Camada	as	
(h)	1 ^a	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
1	27,73	28,53	28,57	28,74	28,39	27,21	29,64	29,21	28,92	28,74	1,88	3,89	2,24	0,63	2,16
2	26,34	28,09	28,53	28,64	27,90	24,62	30,23	29,79	29,64	28,57	6,53	7,62	4,42	3,49	5,51
3	24,91	27,49	28,20	28,49	27,27	21,87	30,38	30,09	29,94	28,07	12,20	10,51	6,70	5,09	8,63
4	23,69	26,77	27,74	28,27	26,62	19,28	30,28	30,18	30,09	27,45	18,62	13,11	8,80	6,44	11,74
5	22,59	26,03	27,23	27,94	25,94	16,77	30,18	30,11	29,98	26,76	25,76	15,94	10,58	7,30	14,90
6	21,45	25,28	26,71	27,60	25,26	14,19	30,20	30,09	29,89	26,09	33,85	19,46	12,65	8,30	18,56
7	20,22	24,49	26,25	27,16	24,53	11,86	30,02	30,06	29,81	25,44	41,35	22,58	14,51	9,76	22,05
8	19,05	23,76	25,72	26,82	23,84	10,23	29,24	29,98	29,73	24,79	46,30	23,06	16,56	10,85	24,19
9	17,97	23,06	25,05	26,42	23,12	8,95	28,19	29,90	29,70	24,18	50,19	22,25	19,36	12,41	26,05
10	16,99	22,32	24,66	26,05	22,51	7,92	26,82	29,87	29,63	23,56	53,38	20,16	21,13	13,74	27,10
11	16,04	21,65	24,19	25,71	21,90	7,09	25,13	29,80	29,62	22,91	55,80	16,07	23,19	15,21	27,57
12	15,23	20,72	23,73	25,28	21,24	6,41	23,39	29,69	29,59	22,27	57,91	12,89	25,12	17,05	28,24
14	13,37	19,07	22,75	24,58	19,94	5,37	19,60	29,66	29,53	21,04	59,84	2,78	30,37	20,14	28,28
16	11,73	17,75	21,45	23,83	18,69	4,63	15,53	29,65	29,28	19,77	60,53	12,51	38,23	22,87	33,53
18	10,29	16,62	20,61	23,15	17,67	4,08	11,60	29,36	29,20	18,56	60,35	30,20	42,46	26,13	39,79
21	8,05	14,75	19,10	21,96	15,96	3,50	8,09	26,40	29,06	16,76	56,52	45,15	38,22	32,33	43,06
24	5,70	12,79	17,54	20,73	14,19	3,10	6,08	21,57	29,01	14,94	45,61	52,46	22,98	39,94	40,25

Apêndice 28 – Dados experimentais e simulados pelo modelo Thompson da secagem em camada espessa do arroz vermelho em casca para a temperatura de 70 °C teor de água inicial de 30% base seca

		Dado	os Experi	mentais			Da	dos Simu	ılados			Desvi	o Percen	tual (%)	
		Teor	de água	(% b.s.)			Teor	de água	(% b.s.)			Desti	o i ci cei	uui (<i>1</i> 0)	
tempo			Camada	as				Camad	as				Camada	as	
(n)	1ª	1 ^a 2 ^a 3 ^a 4 ^a Médi .38 11,68 16,44 19,76 13,0'					2ª	3ª	4 ^a	Média	1ª	2ª	3ª	4 ^a	Média
26	4,38	11,68	16,44	19,76	13,07	2,90	5,20	17,81	28,97	13,72	33,79	55,48	8,33	46,61	36,05
28	3,40	10,41	15,43	19,07	12,08	2,73	4,55	13,80	28,98	12,52	19,71	56,29	10,56	51,97	34,63
30	2,58	9,34	14,56	18,22	11,18	2,60	4,05	10,54	28,23	11,36	0,78	56,64	27,61	54,94	34,99
32	1,76	8,25	13,66	17,36	10,26	2,49	3,67	8,39	26,24	10,20	41,48	55,52	38,58	51,15	46,68
34	1,14	7,46	12,68	16,63	9,47	2,40	3,37	6,90	23,31	9,00	110,53	54,83	45,58	40,17	62,78
36	0,69	6,59	11,89	15,79	8,74	2,33	3,13	5,82	19,91	7,80	237,68	52,50	51,05	26,09	91,83