

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

DEPARTAMENTO DE SISTEMAS E COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DIEGO RODRIGUES DE ALMEIDA

CONTEXT-AWARE PATH-BASED ANDROID APPLICATIONS

TESTING

CAMPINA GRANDE - PB

2020

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Context-Aware Path-Based Android Applications

Testing

Diego Rodrigues de Almeida

Tese submetida à Coordenação do Curso de Pós-Graduação em Ciência

da Computação da Universidade Federal de Campina Grande - Campus

I como parte dos requisitos necessários para obtenção do grau de Doutor

em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

Dra. Patrícia D. L. Machado, Dr. Wilkerson L. Andrade

(Orientadores)

Campina Grande, Paraíba, Brasil

c©Diego Rodrigues de Almeida, 28/10/2020

A447c

Almeida, Diego Rodrigues de.

 Context-aware path-based android applications testing / Diego

Rodrigues de Almeida. - Campina Grande, 2020.

 193f. : il . Color.

 Tese (Doutorado em Ciência da Computação) - Universidade Federal

de Campina Grande, Centro de Engenharia Elétrica e Informática, 2020.

 "Orientação: Profa. Dra. Patrícia Duarte de Lima Machado, Prof. Dr.

Wilkerson de Lucena Andrade".

 Referências.

 1.

 1. Testing Automation. 2. Android. 3. Path-based Applications. 4.

Context-aware Application. I. Machado, Patrícia Duarte de. II. Andrade,

Wilkerson de Lucena. III. Título.

 CDU 004.415.53(043)
 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA ITAPUANA SOARES DIAS CRB-15/93

CONTEXT-AWARE PATH-BASED ANDROID APPLICATIONS TESTING

DIEGO RODRIGUES DE ALMEIDA

TESE APROVADA EM 31/07/2020

PATRICIA DUARTE DE LIMA MACHADO, PhD, UFCG
Orientador(a)

WILKERSON DE LUCENA ANDRADE, Dr., UFCG
Orientador(a)

TIAGO LIMA MASSONI, Dr., UFCG
Examinador(a)

JORGE CESAR ABRANTES DE FIGUEIREDO, Dr., UFCG
Examinador(a)

ROBERTA DE SOUZA COELHO, Dra., UFRN
Examinador(a)

ARILO CLAUDIO DIAS NETO, Dr., UFAM
Examinador(a)

CAMPINA GRANDE - PB

Resumo
Smartphones geralmente possuem vários sensores, como bússola, GPS, acelerômetro,

pedômetro, etc., permitindo que os aplicativos estejam cientes do ambiente em que estão ex-

ecutando. Aplicativos sensível ao contexto são aplicativos orientados a eventos que detectam

e reagem às informações de contexto fornecidas pelos sensores para fornecer informações

e/ou serviços ao usuário. Comparado aos aplicativos de desktop e da Web, os aplicativos

sensíveis ao contexto apresentam desafios adicionais aos testes. Esses aplicativos devem

processar a entrada dos usuários, bem como vários valores de entrada de contextos em con-

stante mudança que podem levar à explosão de possíveis situações, algumas das quais são

muito difíceis de executar. Aplicativos baseados em caminhos são uma classe muito utilizada

de aplicações sensíveis ao contexto. Esses aplicativos monitoram continuamente e em tempo

real o percurso que o usuário realiza enquanto utiliza a aplicação. O objetivo deste trabalho

é apresentar uma abordagem que permita o teste black-box de aplicativos Android sensíveis

ao contexto baseados em caminhos e, dessa forma, possibilite selecionar e executar um con-

junto viável de cenários a serem testados. Nossa abordagem consiste em selecionar, por

meio de pairwise testing, combinações de valores de sensores com eventos que ocorrem du-

rante a execução do aplicativo em teste (AUT). Desenvolvemos uma ferramenta que permite

ao testador executar variação de contexto, simulando valores de sensores em um ambiente

emulado que possibilita testar cenários difíceis de executar manualmente. Atualmente, a fer-

ramenta suporta dados de contexto GPS e status de conexão de Internet. Esse tipo de dados é

usado por quase todos os aplicativos disponíveis atualmente. Para avaliar nossa abordagem,

realizamos um estudo empírico com quatro aplicativos baseados em GPS reais amplamente

baixados por usuários do Android. Nossos resultados mostram que nossa abordagem foi

capaz de executar um conjunto otimizado de diferentes cenários e encontrar 13 defeitos nos

quatro aplicativos, dos quais 6 são defeitos de contexto, com 2 deles detectados ao executar

cenários de difícil execução manual. A combinação de pairwise testing com a execução de

casos de teste em um ambiente emulado mostrou-se eficaz, pois nos permitiu encontrar de-

feitos de contexto em aplicativos amplamente usados com um conjunto otimizado de casos

de teste.

iii

Abstract
Smartphones usually have several sensors such as touch screen, compass, gyroscope, GPS,

accelerometer, pedometer, and so on, allowing applications to be aware of the environment

on which they are running. Context-aware applications are event-driven applications that

sense and react to context information given by sensors to provide information and/or ser-

vices to the user. Compared to desktop and web applications, context-aware applications

present additional challenges to testing. These applications must process input from users as

well as various input values from constantly changing contexts that can lead to the explosion

of possible situations, some of which are very difficult to execute. A widely used class of

context-sensitive applications are path-based applications. These applications continuously

and in real-time monitor the path that the user takes while using the application. This work

aims to present an approach that makes it possible the black-box testing of context-aware

path-based Android applications and, in this way, makes it possible to select and execute an

viable set of scenarios to be tested. Our approach consists of selecting, through pairwise

testing, combinations of sensor values with events that occur during the execution of the

application under test (AUT). We developed a tool that allows the tester to execute context

variation by simulating sensor values in an emulated environment that makes it possible to

test scenarios that would be difficult to execute manually. The tool currently supports GPS

context data and internet status connection. These kind of data is used by almost all available

applications nowadays. To evaluate our approach, we performed an empirical study with four

real GPS based applications widely downloaded by Android users. Our results show that our

approach was able to execute an viable set of different scenarios and to find 13 defects in the

four applications, of which 6 are context defects, with 2 of them detected when executing

challenging scenarios for manual execution. Combining pairwise testing with the execution

of test cases in an emulated environment proved to be effective. It allowed us to find context

defects in applications widely used with an viable set of test cases.

iv

Agradecimentos
Agradeço primeiramente a Deus pela minha saúde e oportunidade de poder ter tido uma boa

educação tanto moral quanto acadêmica. Agradeço a Ele ainda, por ter ouvido algumas das

preces que fiz e ter atendido todas aquelas preces que não fiz. Por ter me guiado sempre pelo

melhor caminho, mesmo que por muitas vezes contra minha vontade.

Agradeço também ao meu pai José Neide Neres de Almeida (in memoriam) e minha mãe

Maria de Fátima Rodrigues de Almeida por terem sempre estado ao meu lado. Por terem tido

a coragem de acreditar em mim, ainda quando eu mesmo não acreditava. Por terem sempre

me apoiado nos meus momentos de alegria e mais ainda nos meus momentos de tristeza.

Pelo sacrifício que fizeram para poder financiar a melhor educação que estivesse ao nosso

alcance financeiro.

Agradeço também aos meus irmãos Thiago Danillo Rodrigues de Almeida e Diogo Ro-

drigues de Almeida por me apoiarem nas minhas decisões corretas e por criticarem as equiv-

ocadas. Por terem sido companheiros e sempre zelarem pelo melhor para mim.

Agradeço aos meus orientadores Patrícia Duarte de Lima Machado e Wilkerson de Lu-

cena Andrade por terem sido muito pacientes e me mostrado o caminho a ser seguido para a

construção deste trabalho. Agradeço pela sua ética, coerência, companheirismo e confiança

durante todos os anos que trabalhamos juntos além desse programa de Doutorado.

Por fim, agradeço a todas as pessoas as quais posso chamar de amigos e que de forma

direta ou indireta contribuíram para este trabalho.

v

Contents

1 Introduction 1

1.1 Problem . 3

1.2 Objective and Research Questions . 4

1.3 Contributions . 7

1.4 Thesis Structure . 7

2 Background 9

2.1 Android Operating System . 9

2.2 Android Applications . 11

2.3 Android Testing . 13

2.4 Context-Aware Applications . 13

2.5 Pairwise Testing . 15

2.6 Concluding Remarks . 17

3 Systematic Mapping 18

3.1 Research Method . 18

3.1.1 Research Questions . 18

3.1.2 Sources of information . 19

3.1.3 Search criteria . 20

3.1.4 Inclusion and Exclusion Criteria 21

3.1.5 Study Selection and Extraction . 21

3.1.6 Study Analysis . 24

3.1.7 Validity Evaluation . 24

3.2 Results . 25

vi

CONTENTS vii

3.3 Analysis and Discussion . 29

3.3.1 RQ 1: What are the Android testing tools published in the literature? 29

3.3.2 RQ 2: What are the Android context-aware testing studies and tools

published in the literature? . 34

3.4 Concluding Remarks . 49

4 Context-Aware Path-Based Testing Approach 50

4.1 Overview . 50

4.2 Test case generation . 54

4.3 Test case execution . 58

4.4 Concluding Remarks . 59

5 The ENVIAR Tool 61

5.1 Overview . 61

5.2 Architecture . 63

5.3 Testing Process . 65

5.4 Test Case Generation Using PICT . 69

5.5 ENVIAR Graphical Interface . 71

5.6 Concluding Remarks . 79

6 Evaluation 80

6.1 Exploratory Study . 80

6.1.1 Methodology . 81

6.1.2 Data Collection . 91

6.1.3 Results and Analysis . 91

6.1.4 Discussion . 99

6.2 Comparing ENVIAR to other tools . 101

6.3 ENVIAR Supporting Other Tools Execution 105

6.4 Concluding Remarks . 110

7 Related Works 111

7.1 State of the Art Reviews . 111

7.1.1 Matalonga et al. 111

CONTENTS viii

7.1.2 Guinea et al. 112

7.1.3 Shauvik et al. 113

7.1.4 Santiago et al. 113

7.1.5 Usman et al. 114

7.1.6 Comparison . 114

7.2 Related Solutions . 115

7.2.1 Sanders and Walcott . 115

7.2.2 Wang and et al. 115

7.2.3 Amalfitano et al. 116

7.2.4 Ami et al. 116

7.2.5 Comparison . 117

7.3 Concluding Remarks . 118

8 Concluding Remarks 119

8.1 Conclusions . 119

8.2 Limitations . 121

8.3 Future Work . 122

A PICT Rules 143

B Test Cases 156

C Raw Results 165

D Defect Report 190

List of Symbols

ADB - Android Debug Bridge

AUT - Application Under Test

AVD - Android Virtual Device

ADF - Android Development Framework

CAA - Context-Aware Application

EDS - Event-Driven Software

GPS - Geographical Positioning System

GUI - Graphical User Interface

MBT - Model-Based Testing

OCL - Object Constraint Language

RTES - Real-Time Embedded Systems

SLR - Systematic Literature Review

SMS - Systematic Mapping Study

UI - User Interface

UML - Unified Modeling Language

ix

List of Figures

2.1 Android Framework (adapted from [3]) 10

2.2 Activity Lifecycle (from [3]) . 12

3.1 Study selection and extraction summary 24

3.2 Year VS Quantity . 27

3.3 Country VS Quantity . 27

3.4 Main Conferences . 28

3.5 Main Authors . 29

5.1 ENVIAR Architecture . 64

5.2 Enviar Testing Process . 66

5.3 ENVIAR Main Window . 72

5.4 Paths . 72

5.5 ENVIAR Path Creation . 73

5.6 ENVIAR Speed Setting . 73

5.7 ENVIAR Execution . 74

5.8 ENVIAR Execution Window . 74

5.9 ENVIAR Applications Under Test . 75

5.10 Test Cases . 77

5.11 Test Cases Setup . 77

5.12 Verdicts Buttons . 78

6.1 Exploratory Study Flowchart . 83

6.2 Defects Cause Frequency Graphic . 97

6.3 Defects in Each Order . 99

x

LIST OF FIGURES xi

6.4 ENVIAR Supporting Tool . 107

List of Tables

2.1 Pairwise testing example. 16

3.1 Studies found in the Electronic Search. 22

3.2 Selected Studies. 23

3.3 Accepted Studies . 26

3.4 Tools found in the SMS. 30

3.5 Types of Testing Technique. 32

3.6 Types of Generation Strategy . 32

3.7 Number of tools that presents a given characteristic. 33

3.8 Most cited study and tools. 34

3.9 High-Level Contexts examples . 46

3.10 Tools Comparison . 48

4.1 Possible situation values. 54

4.2 Setups considered in this work. 55

4.3 Possible situation values. 56

4.4 Possibilities of waits and events for n-order test cases. 57

4.5 Number of Test Cases . 58

5.1 Logcat example . 76

5.2 Sent commands example . 76

6.1 Selected Applications . 83

6.2 Test Case Orders Comparison . 85

6.3 Generation and Execution Time . 86

6.4 Summary of Raw Result . 92

xii

LIST OF TABLES xiii

6.5 Applications Under Test Defects . 93

6.6 Context Defects and non-context defects 98

6.7 Desired Characteristics . 103

6.8 Tools comparison results. 108

7.1 Related Work Comparison . 118

A.1 Order 1 test rules . 144

A.2 Order 2 test rules . 145

A.3 Order 3 test rules . 147

A.4 Order 4 test rules . 149

A.5 Order 5 test rules . 152

B.1 Order 1 test cases . 157

B.2 Order 2 test cases . 160

C.1 Order 1 test result for OsmAnd application 166

C.2 Order 1 test result for GPS Offline Navigation 168

C.3 Order 1 test result for Genius Maps application 170

C.4 Order 1 test result for Voice GPS Navigation application 172

C.5 Order 2 test result for OsmAnd application 174

C.6 Order 2 test result for GPS Offline Navigation application 178

C.7 Order 2 test result for Genius Maps application 182

C.8 Order 2 test result for Voice GPS Navigation application 186

D.1 Defect Report . 191

List of Source Codes

5.1 ENVIAR Testing Process Pseudo-code . 66

xiv

Chapter 1

Introduction

Mobile applications have become more than entertainment. They are increasingly pervasive

in such a way that active users are wholly dependent on them. While mobile applications

have been developed primarily for the entertainment industry, they are now touching more

critical sectors, such as payment systems. The exponential growth of this market and the crit-

icality of system development demand greater attention to the reliability aspects of mobile

devices’ applications. As demonstrated in some studies [61], [92], [110], mobile applica-

tions are not bug free and new software engineering approaches are required to test these

applications [139].

Testing mobile applications is challenging. Accordingly to Muccini et al. [110], mobile

applications have a few peculiarities that make their testing more complicated than con-

ventional computer software. Some of the peculiarities are connectivity, limited resources,

autonomy, user interface, context-awareness, and diversity of devices, operating systems,

and touch screens.

Therefore, as the testing difficulty increases, so does the need for testing automation of

mobile applications. Most of the researcher’s and practitioner’s efforts in this area target the

Android platform for multiple reasons [46]. Some of them are:

i At the moment, Android has the largest mobile market share, which makes Android

extremely appealing for industry practitioners;

ii A range of different devices and different releases have Android installed. As a result,

Android apps often suffer from cross-platform and cross-version incompatibilities, which

1

2

makes manual testing of these apps particularly expensive and worth automating;

iii Android is an open-source platform. This quality makes it a more suitable target for

academic researchers, making possible the complete access to both the apps and the

underlying operating system;

iv Android is, nowadays, the most used operating system in smartphones.

According to StatCounter Web Site[2], in February 2020, the number of smartphones

using the Android operating system reached a total of 73.3% of the total number of smart-

phones in the world followed by 25.89% with iOS and 0.81% for the rest. Nowadays, mobile

devices have several sensors, such as touch screen, compass, gyroscope, GPS (Geographical

Position Systems), accelerometer, pedometer, and so on. These sensors allow applications to

know information about the environment in which they are running. Applications that use in-

formation from the environment are called Context-aware Applications. These applications

make use of environmental information to guide their behavior.

Testing mobile context-aware applications is often a costly and time-consuming process,

thus several techniques and tools have been proposed to reduce the cost of testing mobile

devices [46], [88], [137], and [150]. Context-aware applications testing presents specific

challenges compared to desktop and web applications, such as processing data from con-

tinually changing contexts. These applications are prone to bugs that are highly difficult to

reproduce and repair [88]. Using conventional techniques variations to test context-aware

software systems does not produce evidence on their feasibility to test the context-awareness

features in such systems once mobile context-aware applications often have more complex

structures to process a wide variety of dynamic context data in real-time [88], [96].

Considering the context-aware path-based applications, the execution scenarios involve

the constant variation of GPS values many of which are difficult to be executed or reproduced

in a real environment. Thus, the constant change of context, coupled with the wide variety

of possible GPS values, can lead to an explosion of possible scenarios to test.

1.1 Problem 3

1.1 Problem

Context-aware path-based applications receive user interaction as inputs through taps on GUI

elements and also through data provided by the GPS sensors and Internet connection. The

outputs of these applications are their observable behavior. Thus, to test these applications, it

is necessary to provide GUI and GPS inputs and observe the application’s behavior. Context

information changes continuously but according to Matalonga et al. [97], the techniques

used nowadays follow the same strategy: identify predefined and fixed values for context

variables.

Testing predefined and fixed values for context variables at unit testing is possible, but

testing the continually changing context variation is more suitable at the system testing.

Consider a mobile application that monitors a driver’s conduct. The application observes

if the driver:

1. Abrupt accelerate;

2. Abrupt brakes;

3. Drives counter-hand;

4. Speeds above allowed;

5. Performs a high-speed curve;

6. Parks in a prohibited place;

7. Overtakes in a prohibited place.

These are context configurations that the application should judge as reckless and inform

the user that he should avoid driving the vehicle in this way. These situations are difficult

and costly to test. Also, testing variations of these settings is even more challenging. For

example, imagine a motorist driving at a constant speed below the maximum allowable.

Subtly he makes a curve without slowing down, drives at the same speed below the maximum

allowed, and then goes to the counter-hand. Will the application detect the two imprudences

in this scenario? We can observe that in this example, there are four contextual configurations

in sequence:

1.2 Objective and Research Questions 4

i The driver drives at a constant speed below the maximum allowed;

ii The driver makes a curve without slowing down;

iii The driver drives at the same speed below of the maximum allowed;

iv The driver enters the counter-hand.

These scenarios are challenging to test at system level. They can even put the driver’s life

at risk. System testing of context-aware path-based Android Applications requires interact-

ing with the AUT through inputs and observing outputs. This thesis focuses on the black-box

test for context-aware path-based Android applications whose implementation and internal

details are unknown.

The testing technique most used in Android applications is the GUI testing technique

(Subsection 3.3.1). The GUI testing technique does not allow us to test scenarios like these

because they vary according to the context variation and not through user interaction with

the application interface. Existing tools that test context-aware applications do not support

the test case generation and execution the asynchronous context variations considering with

large sensors data (Subsection 3.3.2). So how to test the path-based ones? Besides, some

events may not be part of the application specifications, but that are possible realities. Some

examples are GPS inaccuracy, internet crash, phone call, orientation changing, and so on.

Considering the 7 scenarios mentioned and only the 4 examples of events above, we have

7 × 2 × 2 × 2 × 2 = 112 possible combinations of scenarios. In this example, each event

has only two possible values. Therefore, as we increase the number of events or the number

of possible values for each event, the number of possible combinations increases exponen-

tially. Hence, the combination of execution scenarios with events that can occur during the

execution of these scenarios can lead to a large number of test cases. Thus, how to generate

a viable number of test cases that combine execution scenarios with events that can occur at

any time?

1.2 Objective and Research Questions

Manually testing context-aware path-based applications can be very expensive or impracti-

cal. Therefore, testing these applications fully or partially automatic may be the best op-

1.2 Objective and Research Questions 5

tion in certain situations. At the unit level, methods and classes are tested in isolation as

a software unit. In context-aware applications, many behaviors are unfeasible to test at the

unit level. For example, how to test, at the unit level, if the level battery is low, will the

application consume fewer resources? Or how to test if GPS is not well accurate, will the

application use other sensors to locate it better? Therefore, this research has the following

objective:

Objective Propose a solution to test Android context-aware path-based applications

semi-automatically.

More specifically, this research is interested in automating the generation of test cases

and making their execution semi-automatic at the system level. The execution must be semi-

automatic because the decision of the verdict is the responsibility of the tester. Therefore,

during the execution of each test case, the approach sends the inputs to the AUT automati-

cally. At the same time, the tester observes its execution and decides whether the test case

passes or fails. Also, the test should be feasible and must support (i) the testing of events that

can occur during the test case execution, and (ii) the constant context variation. As the tester

observes the execution of the AUT, this work focuses on system testing. In this context, this

thesis addresses the following research questions:

Research Question 1: What are the Android context-aware testing studies and tools

published in the literature?

To answer this research question, we performed a systematic mapping in the litera-

ture looking for tools or testing techniques for context-aware Android applications, Chapter

3. The discovered tools were then analyzed to identify their potential in testing Android

context-aware path-based applications. We found 68 studies and 80 tools for testing Android

applications. From these tools, five are tools for testing context-aware applications and five

are not developed for context-aware applications, but support the test of the context-aware

feature. We were able to identify that many works deal with the generation of GUI inputs

for Android applications, but few studies on sensor inputs. Moreover, they do not support

asynchronous context variations nor events that can occur during the test case execution.

Research Question 2: How to create and execute test cases to context-aware path-based

Android applications?

To answer this research question, we developed an approach for generating and executing

1.2 Objective and Research Questions 6

test cases for context-aware path-based applications at the system level, Chapter 4. In our

approach, test cases are defined by GPS sensor data sets and sequences of events that are

more likely to find defects. These events were selected based on a search for problems

reported in open-source context-aware applications hosted on GitHub [11] and on the work

of Amalfitano et al. [25] which present a set of events that are most likely to cause failures.

Our approach uses pairwise testing to select combinations of GPS sensor values with events

that occur during the execution of the application under test (AUT). The pairwise testing

avoids the explosion of the number of event combinations, minimizing the number of test

cases significantly but maintaining their effectiveness. Regarding the test case execution,

our approach proposes a simulated execution that allows the execution of test scenarios at

low cost, and that can even test scenarios that otherwise might not be tested.

Research Question 3: What kind of defects can the approach reveal?

To answer this research question, we developed a tool (Chapter 5) that sends events to

the AUT, simulating the variation of contexts in order to evaluate our approach. The tool

supports the testing of GPS data and internet connection status. Thus, we evaluated our

technique through two studies (Chapter 6) using the implemented tool and four widely used

path-based applications. The results indicated that our technique was able to find 13 defects

which we classified into five groups of causes: (i) GPS Calibration, (ii) Simulation of long

background, (iii) internet crash in a long path, (iv) Activity went to the background or device

orientation changed and (v) by internal reasons. Among the 13 defects, six are context

defects. Besides, we found two context defects that are difficult to execute manually: (i)

defect due to GPS calibration, and (ii) defect due to a drop in internet connection over a long

path. To the best of our knowledge, no tools have been found in the literature that simulates

the long paths under adverse situations (i.e., the variation of GPS calibration, GPS signal fall

and recovery, internet connection fall and recovery). Thus, to date, we do not know any other

tool capable of executing these scenarios and discovering the defects found in our evaluation.

Our results showed that our approach is promising in the generation of test cases with

the potential to find context defects while drastically reducing the number of test cases that

would be generated without pairwise testing. The execution in an emulated environment

makes it possible to run scenarios that would be very difficult to run in a real environment

and therefore allowed to find defects in real applications widely used by Android users.

1.3 Contributions 7

1.3 Contributions

The main contributions of this work are:

• A systematic mapping exposing as main contributions: (i) the Android testing tools

published in the literature, (ii) the testing technique most used in Android testing, and

(iii) the research gaps addressed in android context-aware testing [22];

• A set of scenarios most likely to fail in path-based applications based on a search for

problems reported in open source context-aware applications hosted on Github [11]

and on the work of Amalfitano et al. [25];

• A test case generation approach whose main idea is to define test cases as sequences

of events that are more likely to find defects. In the test case generation, we use

pairwise testing to select test cases and avoid the explosion of the number of event

combinations, minimizing the number of test cases significantly but maintaining their

effectiveness [23];

• An execution approach that makes feasible the execution of challenging test scenarios;

• A tool that implements the black-box testing approach proposed by our work. The

tool makes possible the generation and execution of path-based applications test cases

[24].

1.4 Thesis Structure

The remaining parts of this document are structured as follows:

Chapter 2: Background This chapter presents the necessary theory to understand the

work proposed in this thesis. Concepts of Android Applications, Android application testing,

context-aware applications, and pairwise testing are presented.

Chapter 3: Systematic Mapping This chapter presents the planning, execution, and

results obtained from a systematic mapping that we carry out, aiming to identify and dis-

cuss the state-of-the-art tools that allow the automation of testing Android context-aware

applications.

1.4 Thesis Structure 8

Chapter 4: Context-Aware Testing Approach This chapter presents the test case gen-

eration approach proposed by our work.

Chapter 5: Tool This chapter presents the ENVIAR tool that implements the approach

described in Chapter 4. It is presented an overview of the tool and details about its func-

tionality, architecture, testing process, and the implementation of the test suite creation and

execution.

Chapter 6: Evaluation This chapter describes how an experiment was planned, exe-

cuted, and extracted the results.

Chapter 7: Related Works This chapter gives an overview of relevant work on testing

context-aware Android applications, presenting limitations and differences with our work.

Chapter 8: Concluding Remarks This chapter presents the concluding remarks and

prospects for future work.

Chapter 2

Background

This chapter describes the concepts used in this document to make it self-contained. It will be

discussed concepts as Android Operation System, Android Applications, Android Testing,

Context-Aware Application Testing and Context Failures, and Pairwise Testing.

2.1 Android Operating System

Android is Google’s mobile operating system, and it is currently the world leader in this seg-

ment. Android is available for several platforms such as smartphones, tablets, TV (Google

TV), watches (Android Wear), glasses (Google Glass), cars (Android Auto), and it is the

most widely used mobile operating system in the world.

Developers use Java to build Android applications. However, there is no Java Virtual Ma-

chine (JVM) in the Android operating system. In fact, until before the Android 4.4 (KitKat),

a virtual machine named Dalvik was used to run on mobile devices. After that, ART (An-

droid Runtime) took the place of Dalvik. Thus, the bytecode (.class) is converted to the .dex

(Dalvik Executable) format as soon as its compilation finishes. After that, the .dex files and

other resources like images are compressed into a single .apk (Android Package File) file,

representing the final application. Android applications run on top of the Android frame-

work, as can be seen in Figure 2.1.

Android comes with a set of pre-installed applications such as calendars, email, contacts,

SMS messaging, internet browsing, and so on. User-installed applications have no special

priority or status over pre-installed applications. User-installed applications can become

9

2.1 Android Operating System 10

Figure 2.1: Android Framework (adapted from [3])

standard applications such as SMS messenger, web browser, or even the standard keyboard

(but there are some exceptions, such as the system settings application)1.

Android application developers enjoy an available set of APIs written in Java that brings

together the Android operating system’s full set of features. These APIs allow the reuse of

system components and services, facilitating the development of Android applications. The

Android platform also provides Java APIs that expose native code functionality written in

C and C ++. For example, it is possible to develop 2D and 3D graphics using the Android

OpenGL Java API by accessing OpenGL ES.

Each application runs in its process and with its Android Runtime (ART) instance since

Android 4.4 (KitKat). ART was designed to support running multiple virtual machines, even

on low memory devices. For this, ART executes DEX files that are a bytecode file type

designed for Android and optimized to use minimal memory space.

Android is based on the Linux kernel structure. For example, to manage low-level chain-

ing and memory, ART uses the Linux kernel. Besides, using the Linux kernel also has the

advantage of reusing the security features that the Linux kernel provides. This allows device

manufacturers to develop hardware drivers for a known kernel.

1https://developer.android.com/guide/platform/index.html

2.2 Android Applications 11

2.2 Android Applications

Android applications were initially developed only in Java and run on top of the Java API

Framework (Section 2.1). After Google I/O2 2017, Android applications can be written using

either Java or Kotlin3. In general, an android application can be composed of four component

categories: (i) Activity, (ii) Broadcast Receiver, (iii) Content Provider, and (iv) Service.

i Activities are focused windows, and they are the only type of components that contain

Graphical User Interfaces (GUI) in which the user interaction occurs. The Activities be-

haviors are implemented in a .java file while the Activities structure graphical interface is

described in a .xml file. Just one Activity can be active at a time. Therefore, the Android

operating system manages the Activities that are in the background and the Activity that

is displayed according to the Activities lifecycle, Figure 2.2. The Activity lifecycle orga-

nizes each Activity’s state during its RAM allocation. Each state represents situations the

Activities assume from the moment of their creation until their destruction. During the

creation of an Activity (“Created” state), the onCreate() method is called. The developer

must implement the onCreate() method to manage the Activity object’s variables as well

as everything needed to create that object. Activity assumes the “Started” state when it

goes to the foreground after it has been created or after the “Stopped” state. An Activity

goes to the “Resumed” state after the “Started” state or after the “Paused” state. When in

the “Resumed” state, the onResume() method is called. The developer must implement

in the onResume() method all the care that must be taken when the Activity returns to the

foreground. Activity goes to the “Paused” state when Activity goes to the background.

In this state, the onPaused() method is called. The developer must implement all nec-

essary precautions in the onPaused() method when an Activity goes to the background

(i.e., turn off the GPS to save battery). When the Android operating system needs to free

up RAM space, it puts Activities in the “Paused” state to the “Stopped” state. In this

state, all Activity variables are deallocated from the device’s RAM. When finishing an

application, its background’s Activities goes to the “Stopped” state. Then, all Activities’

applications go to the “Destroyed” state where all the memory space of all Activities is

2https://events.google.com/io
3https://kotlinlang.org

2.2 Android Applications 12

freed up.

ii Services are used to perform long time operations and are always executed in the back-

ground. For example, an instant messaging application may be looking for new messages

while another application executes in the foreground. Services do not have a graphical

interface. Therefore, most testing tools are not suitable for testing Services.

iii Content Providers act as a structured interface to shared data stores, such as contacts,

photos, and calendar databases. Applications may have their content providers and may

make them available to other apps.

iv Broadcast Receivers are always listening and reacting to broadcast announcements. For

example, an application may receive a low battery notification and change its appearance

to darker colors.

Figure 2.2: Activity Lifecycle (from [3])

One of the most important files in the development of Android applications is the XML

manifest file. This file provides essential information such as elements of the Activities,

Services, Broadcast Receivers, and Content Providers graphical interface.

Although Android applications are GUI-based and mainly written in Java, they differ

from Java standalone GUI applications and manifest somehow different kinds of bugs [61],

[74]. Existing test input generation tools for Java [55], [94], [100] cannot be directly used

to test Android apps, and custom tools must be adopted instead. For this reason, the aca-

demic community has made much effort to research Android application testing tools and

2.3 Android Testing 13

techniques. Several test input generation techniques and tools for Android applications have

been proposed [148], [137], [106], [81].

2.3 Android Testing

Android apps are event-driven; that is, the program is running waiting for the user to interact

with the app via the GUI, sensors interaction, or some system events from the Android OS. In

Android, GUI events include user-actions such as clicks, pinches, swaps, scrolls, or system

events, such as incoming calls. Users may also use the GUI to enter specific values for the

widgets. Inputs can be entering some text-box value, selecting a particular item in a list,

clicking in a button, and so on. User-actions and the inputs can be generated either randomly

or by following a systematic approach. Generally, in the latter case, a model of the app

is used to guide the process and limit the search space. These models can be constructed

statically, dynamically, or entirely manually.

Most current techniques for dealing with traditional event-driven systems either use

capture-replay (also known as record and replay) or model-driven approaches. In capture-

replay approaches [101], the user records his/her interaction sequences with the GUI, which

are replayed at the time of testing. Model-driven techniques such as [141], [99] require the

user to provide a model usage of the software system. Both capture-replay and model-driven

approaches depend on manual effort, requiring considerable effort. There are also efforts to

extract directed graph models automatically by crawling the GUI [29], [100], and use those

graphs to generate test sequences.

2.4 Context-Aware Applications

The first mobile applications were applications with features of desktop applications but

adapted for mobile devices. Muccini et al. [110] differentiates mobile applications into two

sets:

i App4Mobile: These are traditional applications that have been recompiled for mobile

devices;

2.4 Context-Aware Applications 14

ii MobileApps: They are mobile applications that use context information to generate

context-based results.

Thus, over time, mobile applications have become increasingly pervasive. Therefore,

the behavior of applications depends not only on user input but also needs context infor-

mation. Therefore, today’s applications increasingly have characteristics of context-aware

applications.

Before understanding what a context-aware application is, it is first necessary to define

what is context. Some authors consider context to be the user’s environment, while others

consider it as the application’s environment. Some examples are:

• Brown [41] defines context as the elements of the user’s environment that the computer

knows about;

• For Franklin and Flaschbart [51], context is the situation of the user;

• Ward, Jones, and Hopper [138] view context as the state of the application’s surround-

ings;

• Rodden et al. [120] define it to be the application’s setting;

• Hull, Neaves, and Bedford-Roberts [68] consider context as aspects of the environ-

ment’s current situation.

In this work, we follow the definition provided by Abowd et al.:

Definition 2.1 (Context). Any information that can be used to characterize the situation of

entities (e.g. whether a person, place or object) that are considered relevant to the interac-

tion between a user and an application, including the user and the application themselves.

Context is typically the location, identity and state of people, groups and computational and

physical objects.

Apart from being more general, this definition facilitates the understanding of what in-

formation can be considered context information. Location is the context information most

commonly used by mobile applications. However, there are several other types of context

2.5 Pairwise Testing 15

information that may be relevant to a mobile application such as temperature, brightness,

time, date, mobile device tilt, geographic orientation (north, south, east, west), and so on.

Abowd et al. [20] define context-aware applications as “a system that uses context to

provide relevant information and/or services to the user, where relevancy depends on the

user’s task”. In this work, we consider context-aware applications as defined as follows.

Definition 2.2 (Context-Aware Application). Context-aware applications are event-driven

applications that sense and react to context information given by sensors to provide infor-

mation and/or services to the user.

2.5 Pairwise Testing

In many situations, testing all possible combinations of parameter values is a non-feasible

task.

For example, imagine that we want to test software that creates disk partitions [15]. To

create a partition, the user must choose one of the following values for each of the following

parameters:

• Type: Single, Span, Stripe, Mirror, RAID-5;

• Size: 10, 100, 500, 1000, 5000, 10000, 40000;

• Format method: Quick, Slow;

• File system: FAT, FAT32, NTFS;

• Cluster size: 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536;

• Compression: On, Off.

In this example, the software has six parameters: the first one has 5 possible values, the

second has 7, the third 2, the fourth 3, the fifth 8, and the sixth 2. Thus, 3,360 (5 × 7 ×

2 × 3 × 8 × 2 = 3, 360) test cases would be needed to test all possible combinations. The

most common software bugs are usually due to a single parameter value or the interaction

of pairs of parameter values [39]. For example, Single, FAT is one pair, 10, Slow is another.

2.5 Pairwise Testing 16

Bugs involving interactions between three or more parameter values are progressively less

common [77]. Pairwise Testing (also known as all-pairs testing) is a combinatorial testing

technique that, among all possible combinations of parameter values, guarantees to test the

smallest number of test cases that cover, at least once, all possible pairs of values.

Table 2.1 illustrates the result of performing pairwise testing for the discussed example.

Pairwise testing reduced from 3,360 test cases to just 56. All combinations of value pairs

for the type, size, format method, file system, cluster size, and compression parameters are

present in the 56 test cases selected by the pairwise testing technique.

Table 2.1: Pairwise testing example.

Type Size
Format
method

File
system

Cluster
size Compression

1 RAID-5 1000 Quick FAT32 16384 On

2 Span 5000 Slow FAT 8192 Off

3 Mirror 10000 Slow NTFS 32768 On

4 Single 40000 Quick NTFS 65536 Off

5 Stripe 500 Slow FAT32 4096 Off

6 Stripe 100 Quick FAT 65536 On

7 Span 1000 Quick NTFS 4096 On

8 RAID-5 10000 Slow FAT 16384 Off

9 Mirror 10 Quick FAT32 2048 Off

10 Single 5000 Quick FAT32 32768 On

11 Single 40000 Slow FAT 1024 On

12 RAID-5 100 Slow NTFS 32768 Off

13 RAID-5 40000 Slow FAT32 4096 Off

14 Span 500 Quick FAT 32768 On

15 Stripe 10 Quick NTFS 8192 On

16 Span 100 Slow FAT32 16384 On

17 RAID-5 5000 Slow NTFS 2048 On

18 Mirror 100 Slow FAT 4096 Off

19 Span 10000 Slow FAT32 65536 On

20 Stripe 40000 Quick FAT32 32768 On

21 Single 1000 Slow FAT32 8192 Off

22 Stripe 1000 Quick NTFS 1024 Off

23 Mirror 500 Slow NTFS 8192 On

24 Span 100 Slow FAT32 1024 On

25 Mirror 1000 Slow FAT 2048 On

26 Mirror 5000 Slow FAT32 1024 Off

27 RAID-5 500 Slow FAT32 65536 Off

28 Stripe 5000 Quick NTFS 16384 On

Type Size
Format
method

File
system

Cluster
size Compression

29 Single 500 Quick FAT 1024 On

30 Mirror 5000 Slow FAT 65536 Off

31 RAID-5 10 Slow FAT 1024 Off

32 Mirror 40000 Quick FAT 512 On

33 Single 10000 Quick FAT 8192 Off

34 Span 1000 Slow FAT32 512 Off

35 Single 10 Slow FAT 16384 Off

36 Span 40000 Quick FAT32 2048 Off

37 Span 1000 Quick NTFS 32768 On

38 Span 10 Quick FAT 65536 Off

39 Stripe 10000 Slow FAT32 1024 On

40 Single 10 Quick FAT32 4096 On

41 Stripe 1000 Slow NTFS 65536 Off

42 Single 10000 Slow NTFS 2048 Off

43 Single 10000 Slow FAT 4096 Off

44 Single 10 Quick FAT32 32768 Off

45 Stripe 500 Slow NTFS 2048 Off

46 RAID-5 500 Quick NTFS 512 Off

47 Stripe 5000 Quick NTFS 512 Off

48 Single 10 Quick FAT32 512 On

49 RAID-5 10000 Slow FAT32 512 On

50 Span 5000 Slow FAT32 4096 Off

51 Single 100 Slow FAT 512 Off

52 RAID-5 100 Quick FAT 8192 Off

53 RAID-5 40000 Quick NTFS 8192 On

54 Stripe 100 Slow FAT 2048 Off

55 Mirror 500 Quick NTFS 16384 Off

56 RAID-5 40000 Quick NTFS 16384 On

2.6 Concluding Remarks 17

2.6 Concluding Remarks

This chapter presented the necessary concepts to understand the work of this thesis. Fun-

damental concepts about the Android operating system, components and concepts about

Android applications, types of Android application tests, the definition of context-awareness

and context-aware application, and the pairwise test case selection technique were presented.

Chapter 3

Systematic Mapping

This chapter presents the planning and the execution of a systematic mapping conducted

in our work to identify and discuss the state-of-the-art tools that allow the automation of

testing Android context-aware applications. This chapter is divided as follows: Section 3.1

details how the systematic mapping was planned and performed. The results are presented

in Section 3.2. The analysis and discussion of the results are made in Section 3.3.

3.1 Research Method

The purpose of a Systematic Mapping Study (SMS for short) is to comprehensively identify,

evaluate, and interpret all work relevant to the defined research questions. Thus, this section

is based on the work of Petersen et al. [116] and details the central research questions of

this systematic mapping, as well as the procedure followed to identify the relevant studies

required to do so.

3.1.1 Research Questions

This systematic mapping aims at summarizing the current state of the art concerning test

automation tools for Android context-aware applications. In order to do so, we conducted

an SMS following the recommendations defined by Petersen et al. [116] and, therefore,

proposed the following research questions (RQs):

• RQ1: What are the Android testing tools published in the literature?

18

3.1 Research Method 19

– RQ1.1: What technique do they implement?

– RQ1.2: What are the most used ones?

• RQ2: What are the Android context-aware testing studies and tools published in the

literature?

– RQ2.1: Which research groups are involved in Android context-aware testing

research?

– RQ2.2: What are the research gaps addressed in Android context-aware testing?

For each main research question, we formulated sub-questions as listed above. Those

sub-questions are answered to support our main questions. In RQ1, we aim to determine

the existing Android testing tools currently discussed in the literature. In RQ2, we aim to

identify and better understand the existing research about Android context-aware testing. To

answer the research questions, we searched for studies from four digital libraries, as can be

seen in sub-section 3.1.2.

3.1.2 Sources of information

To gain a broad perspective, as recommended in Kitchenham’s guidelines [75], we widely

searched for references in electronic sources. The following databases were covered:

• ACM Digital Library1;

• IEEE eXplore2;

• Science Direct3;

• Springer Link4.

These databases cover the most relevant journals, conferences, and workshop proceed-

ings within Software Engineering.

1https://portal.acm.org
2https://ieeexplore.ieee.org
3https://www.sciencedirect.com
4https://link.springer.com

3.1 Research Method 20

3.1.3 Search criteria

In order to select just articles related to potentially Android context-aware applications test-

ing tools, some keywords were defined.

• Sensibility to context: Context-aware, context aware, context driven, context sensi-

tive, context sensitivity, pervasive, ubiquitous, self adaptive, self adapt.

• Others: Android, test, testing, tool, framework.

As a result of the combination between the keywords and the connectors AND and OR,

the following search string was defined:

‘‘Android’’ AND

(‘‘context-aware’’ OR ‘‘context aware’’ OR

‘‘context driven’’ OR ‘‘context sensitive’’ OR

‘‘context sensitivity’’ OR ‘‘pervasive’’ OR

‘‘ubiquitous’’ OR ‘‘self adaptive’’ OR

‘‘self adapt’’) AND

(‘‘test’’ OR ‘‘testing’’) AND

(‘‘tool’’ OR ‘‘framework’’)

However, when executing the search string, the number of results was too small. Thus,

we decided to split the search string into two search strings: in the first one, we would

address studies related to context-aware Android applications; the second one, studies related

to Android application testing tools.

Thus, the resulting search strings were the following.

Search String 1:

‘‘Android’’ AND

(‘‘context-aware’’ OR ‘‘context aware’’ OR

‘‘context driven’’ OR ‘‘context sensitive’’ OR

‘‘context sensitivity’’ OR ‘‘pervasive’’ OR

‘‘ubiquitous’’ OR ‘‘self adaptive’’ OR

‘‘self adapt’’)

3.1 Research Method 21

Search String 2:

‘‘Android’’ AND

(‘‘test’’ OR ‘‘testing’’) AND

(‘‘tool’’ OR ‘‘framework’’)

3.1.4 Inclusion and Exclusion Criteria

Studies were selected for the SMS if they met the following inclusion criteria:

1. The study describes at least one Android testing tool;

2. The study clearly describes the method and purpose of the testing tool;

3. The study is written in English, Portuguese, or Spanish.

In terms of exclusion criteria, studies were excluded if they:

1. Did not match the inclusion criteria;

2. Did not have relevant information about the tools;

3. Were published before 2008;

4. Described only obsolete Android testing tools.

3.1.5 Study Selection and Extraction

To obtain more confidence in the research results, we divided the study selection into 3

(three) steps: electronic search, selection, and extraction. The electronic search was con-

ducted executing the search strings in the Sources of Information. The search process per-

formed on all databases was based on the advanced search feature provided by the online

databases. The search strings were applied using an advanced command search feature and

set to include meta-data of studies with initial data set up since 2008.

After executing the search strings in each of the sources of information, 24,005 studies

were found. The search reported too many results diverging from the research objective in

two cases: Search String 2 of Science Direct and two Search Strings of the Springer Link.

3.1 Research Method 22

Thus, some filters were considered to obtain results closer to the objective of the work. At

Science Direct, the search was filtered to find studies that presented the search string words

in the title, abstract, or keywords. In Springer Link, the studies that were of the discipline

of Computer Science and had Software Engineering as a subdiscipline were filtered. Thus,

after applying the filters, we found 6,648, as can be seen in Table 3.1.

Table 3.1: Studies found in the Electronic Search.
First

Search

Filtered

Search

ACM

Search String 1 462 462

Search String 2 274 274

TOTAL 736 736

IEEE

Search String 1 725 725

Search String 2 267 267

TOTAL 992 992

Science

Direct

Search String 1 2284 2284

Search String 2 4995 294

TOTAL 7276 2578

Springer

Link

Search String 1 4062 763

Search String 2 10939 1549

TOTAL 15001 2342

TOTAL 24005 6648

The systematic mapping was followed using the Start [10] tool. We used this tool to

organize the systematic mapping. The Start tool also helped us by automatically identifying

duplicate articles. Only the results of Springer Link could not be manipulated in the Start

tool because it cannot be exported in any of the formats accepted by the tool. Thus, Microsoft

Excel5 was used. The file containing the search results in the search engines and the Start

tool file containing the references can be downloaded here6.

After reading the abstract of the 6,648 studies resulted from the electronic search, a total

5https://www.microsoft.com
6http://bit.ly/ArticleArchives

3.1 Research Method 23

of 143 studies were selected. The selection of these studies was carried out by reading the

abstract and verifying if the study belonged to the SMS area of interest. Table 3.2 illus-

trates how many studies were accepted, rejected, and duplicated in each of the sources of

information.

Table 3.2: Selected Studies.
Quantity

ACM

Accepted 64

Rejected 624

Duplicated 48

IEEE

Accepted 45

Rejected 910

Duplicated 37

Science Direct

Accepted 13

Rejected 2536

Duplicated 29

Springer Link

Accepted 21

Rejected 1855

Duplicated 466

TOTAL

Accepted 143

Rejected 5925

Duplicated 580

After the complete reading of each of the 143 selected studies, 68 studies were accepted

and included in this systematic mapping study. These studies were extracted by reading each

of the selected studies and noting whether they meet the inclusion and exclusion criteria of

Section 3.1.4. Figure 3.1 summarizes how the studies resulting from the systematic mapping

of this work were selected and extracted.

3.1 Research Method 24

Figure 3.1: Study selection and extraction summary

3.1.6 Study Analysis

All information extracted from the 68 found studies is presented in Section 3.2. We analyzed

the number of publications per year, the number of publications per country, the main con-

ferences in which articles were published, and the main authors. The main contribution of

this information was the inference of which are the groups that publish most in the area of

SMS.

Section 3.3 presents the analysis performed in the 80 tools found in the systematic map-

ping conducted in this work. In this analysis, we discussed the used testing techniques,

which tools generate and/or execute test cases, test case generation strategy, which sensor

data each tool considers, test approach, and whether the tool is available for download. This

information allowed us to answer the SMS research questions.

3.1.7 Validity Evaluation

There are validity threats associated with all phases during the execution of this SMS. Thus,

this section discusses the threats and possible mitigation strategies according to each SMS

phase.

3.2 Results 25

Study search and selection

We may have excluded studies during the search due to various reasons such as personal

bias; this may negatively impact on the SMS result. The following strategies were used to

reduce risks.

1. Four popular databases (e.g., IEEE Explore) on software engineering were included

for the database search, and we also used Snowballing in the main studies;

2. We designed and reached an agreement on inclusion and exclusion criteria (see 3.1.4)

for selecting studies, which helped avoid wrong exclusions;

3. The electronic search and the study selection was executed twice.

Another threat is that we may have missed primary papers published before the year

2008. The Android operating system was publicly released in September 2008. Since the

research is directed to the Android operating system, we do not believe there are any publi-

cations in the research area before 2008.

Data extraction and analysis

Personal bias may decrease the quality of the extracted data from the studies (e.g., the incom-

pleteness of the extracted data). The strategy used to mitigate this threat is the conduction of

weakly meetings where we discussed:

1. Potential problems in data extraction (e.g., whether certain data should be extracted);

2. Extracted partial results;

3. Potential problems in data analysis.

3.2 Results

The systematic mapping performed resulted in the 68 studies presented in Table 3.3. We can

see that they have been published since 2012 (Figure 3.2). The largest number of studies

(60.3% of the total) was published in 2014, 2015, and 2016. In 2017 and 2018, the number

3.2 Results 26

of publications has decreased, which supposes the beginning of disinterest in the area (Figure

3.2). However, the systematic mapping focused only on Android testing tools, so we cannot

say that the number of studies on Android testing has diminished.

Table 3.3: Accepted Studies

Studies

Imparato [69], Vieira et al. [131], Li et al. [79], Yang et al. [145], Amalfitano et al. [28] [27]

[25] [30], Griebe and Gruhn [53], Bernardo et al. [124], Prathibhan et al. [117], Anand et al.

[33], Zaeem et al. [149], Villanes et al. [132], Coppola et al. [49], Jensen et al. [71], Moran et

al. [107], [106], Haoyin et al. [58], Wang et al. [135], Anbunathan et al. [35], Liu et al. [85],

McAfee et al. [98], Nguyen et al. [112], Anbunathan et al. [34], Li et al. [81], Ye et al. [146],

Jamrozik et al. [70], Machiry et al. [90], Hu et al. [62], Song et al. [125], Linares-Vasquez et al.

[83], Mahmood et al. [91], Merwe et al. [130] [129], Meng et al. [102], Su et al. [126], Hu et

al. [65], Choi et al. [45], Paulovsky et al. [115], Hu et al. [63], Qin et al. [118], Lin et al. [82],

Wen et al. [140], Hao et al. [57], Lam et al. [78], Mirzaei et al. [105], Gomez et al. [52], Jun et

al. [153], Farto et al. [50], Mao et al. [93], Neto et al. [111], Mirzaei et al. [104], Adamsen et al.

[21], Salihu et al. [121], Azim et al. [36], Kaasila et al. [73], Morgado et al. [108], Zhauniarovich

et al. [152], Li et al. [80], Hu et al. [66], Liu et al. [86], Hu et al. [64], Cao et al. [43], Ami et al.

[32], Yan et al. [144], Chen et al. [44] and Koroglu et al. [76]

3.2 Results 27

Figure 3.2: Year VS Quantity

From Figure 3.3, the country that most published Android testing tool articles was the

USA (with 35.3% of the total), followed by China, Italy, and Brazil.

Figure 3.3: Country VS Quantity

3.2 Results 28

Figure 3.4 illustrates the major conferences in which all accepted studies were published.

The International Conference on Software Engineering (ICSE) is the event that most ac-

cepted studies related to our SMS, 11.8 % of all of them.

Figure 3.4: Main Conferences

Figure 3.5 shows the authors who most published articles in the research area of this sys-

tematic mapping. Analyzing the Google Scholar [8] profile of each of the authors, we can see

that Iulian Neamtiu7 posted 21 articles on Android application testing, Anna Rita Fasolino8

posted 9, Domenico Amalfitano9 posted 12, Porfirio Tramontana10 posted 9, Tanzirul Azim11

posted 11, and Yongjian Hu12 posted 10. In addition, considering the studies accepted in this

systematic mapping, we noticed that Iulian Neamtiu, Yongjian Hu, and Tanzirul Azim pub-

lished 6 articles in which at least two of them wrote together. Also, Domenico Amalfitano,

Anna Rita Fasolino, and Porfirio Tramontana published 4 articles together. Thus, from the

number of articles about Android application testing and the number of articles written to-
7https://scholar.google.com/citations?user=8qU-5YMAAAAJ&hl=en
8https://scholar.google.com/citations?user=lC5j76YAAAAJ&hl=en
9https://scholar.google.com/citations?user=ReafO6YAAAAJ

10https://scholar.google.com/citations?user=Q7z44GcAAAAJ&hl=en
11https://scholar.google.com/citations?user=YQ72v64AAAAJ&hl=en
12https://scholar.google.com/citations?user=gFODw24AAAAJ&hl=en

3.3 Analysis and Discussion 29

gether, we can identify two research groups with a significant amount of published work in

the scope of this study.

Figure 3.5: Main Authors

3.3 Analysis and Discussion

From the systematic mapping, we found 68 studies about Android testing tools. Section 3.2

presented an overview of the found studies. In this section, we will answer and discuss the

research questions elaborated during the systematic mapping planning.

3.3.1 RQ 1: What are the Android testing tools published in the litera-

ture?

From the 68 found studies presented in Section 3.2, we identified 80 tools (Table 3.4). The

tools were analyzed and classified with respect to:

• Testing technique: The general technique the testing tool implements to test applica-

tions;

• Test case generation: Does the tool generate test cases to test the application?

• Generation strategy: If the tool generates test cases, what strategy does the tool apply?

• Use of sensor data: Does the tool consider the data from sensors to test applications?

3.3 Analysis and Discussion 30

• Test case execution: Does the tool execute test cases?

• API: Is the tool an API?

• Download availability: Is the tool currently available to download?

• Testing approach: Is the tool designed for black-box, white-box, or gray-box testing?

For the sake of space, the table with the complete classification of the attributes can be

found here13.

Table 3.4: Tools found in the SMS.
Tools

SlumDroid[69] and GUIAnalyzer[69], Espresso[49] [78] [124], Espresso Recorder

[78], UIAutomator[49], Selendroid[49], Silk Mobile[49], Sikuli GUI Automation

Tool[49], Segen[111], DroidMate[70], FSMdroid[126], SwiftHand[45] [45], A3E[36]

[37], TrimDroid[105], AMOGA[121], AGRippin[28], AndroidRipper[30], Extended

AndroidRipper[25], T+[83], QUANTUM[149], Collider[71], EvoDroid[91], VeriDroid[86],

JPF-ANDROID[129], Improved JPF-ANDROID[130], Thor[21], Monkey[151], Improved

Monkey[58], PUMA[57], Dynodroid[90], ATT[102], Sapienz[93], DroidFuzzer[146],

VALERA[65] [63] [64] [66] [78], MobiPlay[118] [78], RERAN[52] [78], Testdroid[73],

CrashScope[106] [107], DroidBot[81], M[agi]C[112], ACTEve[33], PATS[140],

BBOXTESTER[152], AppDoctor[62], ORBIT[145], Fest[124], EasyMock[124], Hamcrest[124],

JUnit[124], Robolectric[124], Robotium[124] [78], Android.Test[124], DroidCrawler[135],

Custom-built version of the calabash-android[53], CATE[98], MobiGUITAR[31], [27],

Context Simulator[131], ADAutomation[79], MAT[117], AM-TaaS[132], VTE[35], [34],

ACRT[85], EHBDroid[125], ATG[115], SPAG-C[82], Appetizer[78], Bot-bot[78], Culebra[78],

monkeyrunner[78], Mosaic[78], Ranorex[78], HiroMacro[78], RepetiTouch[78], MAFT[153],

MBTS4MA[50], SIG-Droid[104], iMPAcT[108], UGA[80], Xdroid[43], Automate toolkit[60],

FragDroid[44], MobiCoMonkey[32], LAND[144], AndroFrame[76] and TCM[76]

RQ 1.1: What technique do they implement?

Each tool tests Android applications through its implemented technique. Table 3.5 shows

the main types of testing techniques of the identified tools. GUI Testing tools are the most
13http://bit.ly/Found_Tools

3.3 Analysis and Discussion 31

common ones. We found 32 tools that base their testing by identifying and exploring the

interface elements to test the applications. These represent 40% of the total found tools.

GUI Testing tools use algorithms to identify interface elements such as Text Views, But-

tons, Check Boxes, and Image Views to generate and/or execute tests. Many tools use these

graphical elements to construct state machines and thus determine the application behavioral

model.

Some Android applications should be prepared to react to some events coming from the

Android operating system such as low battery level, battery charging, incoming call, change

of application in the foreground, airplane mode on/off, and so on. Moreover, the interaction

between the user and many mobile applications does not occur exclusively through the in-

terface elements. Many of the interactions can also be through sensors like GPS, gyroscope,

compass, and accelerometer. Thus, some tools test Android applications not looking at the

interface components, but rather through events generated for the application simulating the

user touching the screen, events from the system, and data from the device’s sensors. For

these tools, we call them system events testing tools because they interact with the appli-

cation under test by stimulating events at the system level. We identified 17 system events

testing tools that represent 21% of the total found tools.

In functional testing, as crucial as finding a usage scenario that fails is to be able to

replicate it. Replicating a failing usage scenario allows us to identify whether the application

defect has been fixed. With that in mind, Record and Replay testing tools were developed.

These tools can record a user’s usage scenario and run the same scenario as often as the tester

wishes. We identified 14 Record and Replay tools, representing 18% of the total found tools.

Many failures occur when executing a bug code. Consequently, the higher code coverage

in a usage scenario, the greater the chance of finding bugs. For this reason, some tools

test applications to maximize the amount of code covered. Among the tools found in this

systematic mapping, 6 of them are Code Coverage tools.

3.3 Analysis and Discussion 32

Table 3.5: Types of Testing Technique.

Technique Quantity of Tools

GUI Testing 32

System events testing 17

Record and Replay 14

Code Coverage 6

Others 11

Among the identified Android testing tools, 45 of them are capable of generating test

cases. Each of these implements its generation algorithms. Thus, 24 different test strategies

were identified in the 45 tools that generate test cases. The most commonly used strategies

are presented in Table 3.6.

Model-based testing (MBT) is an approach to generate test cases using a model of the

application under test. In this strategy, (formal) models are used to describe the applica-

tion’s behavior and, thus, generate test cases. Among the identified tools that generate test

cases, we observed that 20 of them use the MBT strategy to generate their test cases. The

application models mostly describe the application’s behavior under test by identifying GUI

elements and changing Activity based on these elements.

The second most commonly used generation strategy is GUI Ripping; it has been found

7 tools that implement this strategy. GUI Ripping is a strategy that dynamically traverses an

app’s GUI and, based on its GUI elements, creates its state-machine model or a Tree Graph.

The third most used strategy by the found tools was the random strategy. A total of 6

tools implements a random strategy. Although it is a less ingenious strategy than the others,

some studies point out that it is a very efficient strategy to find crashes [46].

Table 3.6: Types of Generation Strategy

Generation Strategy Approach Quantity of Tools

MBT 20

GUI Ripping 7

Random 6

Others 14

3.3 Analysis and Discussion 33

Regarding the remaining data acquired from the questions presented at the beginning of

this section about the characteristics of the tools (use of sensor data, test case generation,

test case execution, download availability, and testing approach), table 3.7 summarizes how

many tools have each of them.

Table 3.7: Number of tools that presents a given characteristic.

Characteristic Quantity of Tools

Use of sensor data 9

Test case generation 45

Test case execution 75

Download availability 43

White-Box 14

Gray-Box 7

Black-Box 59

RQ 1.2: What are the most used ones?

Among the studies found by the systematic mapping, Bernardo et al. [124] present an inves-

tigation on 19 open-source mobile applications for Android to identify how automated tests

are employed in practice. They concluded that 47% of these applications have some auto-

mated tests, and they observed that the most used testing tools were JUnit, Android. Test,

Hamcrest, Robolectric, EasyMock, Robotium, and Fest. Finally, Bernardo et al. observed

that the most critical challenges in testing Android applications such as rich GUIs, limited

resources, and sensors had not been properly handled in the automated tests of the analyzed

19 open- source applications.

Linares-Vásquez et al. [84] conducted a survey on 102 Android mobile developers about

their practices when performing testing. One of the questions to be answered by the survey

was: “What tools do you use for automated testing?”. As a result, Linares-Vásquez et al.

concluded that: “The most used tool is JUnit (45 participants), followed by Roboelectic with

16 answers, and Robotium with 11 answers. 28 participants explicitly mentioned they had

not used any automated tool for testing mobile apps. 39 out of 55 tools were mentioned only

by one participant each, which suggests that mobile developers do not use a well-established

set of tools for automated testing.”

3.3 Analysis and Discussion 34

Villanes et al. [133] performed a study using the Stack Overflow14 to analyze and cluster

the main topics of interest on Android testing. One of their results pointed out that recently

developers have shown increased interest in the Appium15, Espresso, Monkey, and Robotium

tools.

Bernardo et al. did not present a significant amount of applications when compared to

Vasquez et al. and Villanes et al. work. Thus, based on these studies, we can say with greater

certainty that the Robotium, JUnit, Roboelectic, Appium, Espresso, and Monkey tools are,

according to Vasquez et al. and Villanes et al., the most used tools for testing Android

applications.

Also, we observed which of the studies identified in the SMS are the most cited in ACM,

IEEE, and Google Scholar. Table 3.8 presents the studies and their respective tools that are

most cited among the identified studies and tools.

Table 3.8: Most cited study and tools.
Citations

Study Tool ACM IEEE Schoolar

Machiry et al. [90] Dynodroid 119 0 395

Amalfitano et al. [30] AndroidRipper 88 94 356

Anand et al. [33] ACTEve 80 0 292

Azim et al. [36] A3E 88 0 283

Choi et al. [45] SwiftHand 63 0 233

Gomez et al. [52] RERAN 75 60 227

Yang et al. [145] ORBIT 60 0 218

Hao et al. [57] PUMA 69 0 183

Jensen et al. [71] Collider 52 0 155

Amalfitano et al. [27] MobiGUITAR 0 51 148

3.3.2 RQ 2: What are the Android context-aware testing studies and

tools published in the literature?

From the 68 selected studies, Griebe and Gruhn [53], Vieira et al. [131], and Amalfitano

et al. [25] explicitly focus on testing of context-aware applications. Sections 3.3.2, 3.3.2

14https://stackoverflow.com
15http://appium.io

3.3 Analysis and Discussion 35

and 3.3.2 discuss the found Android context-aware applications testing tools investigated in

these three studies. Besides that, these three studies cite other two tools that also explicitly

test context-aware applications: ContextDrive and TestAWARE. These tools are discussed

in Sections 3.3.2 and 3.3.2, respectively.

Custom-built version of the Calabash-Android

Griebe and Gruhn [53] propose a model-based approach to improve the testing of context-

aware mobile applications. Their approach is based on a four-tier process system as follows:

• Tier 1: UML Activity Diagrams models are enriched with context information using a

UML profile developed for integrating context information into UML models;

• Tier 2: Models are then transformed into Petri Nets for analyzing and processing struc-

tural model properties (e.g., parallel or cyclic control flows);

• Tier 3: From the Petri Net representation, a platform and technology-independent sys-

tem testing model is generated that includes context information relevant for the test

case execution;

• Tier 4: Platform and technology-specific test cases are generated that can be executed

using platform-specific automation technology (e.g., JUnit, calabash-android/ios,

Robotium).

To assess the proposed approach, Griebe and Gruhn have extended the Calabash16 tool

to implement it. Calabash is a test automation framework that supports the creation and

execution of automated acceptance tests for Android and iOS apps without the necessity of

coding skills [59]. It works by enabling automatic UI interactions within an application such

as pressing buttons, inputting text, validating responses, and so on.

Calabash is an entirely free and open-source tool. It uses the Gherkin pattern. Gherkin is

a writing pattern for an executable specification that, through keywords, maintains a standard

for the writing of execution criteria called Given, When and Then. In order to do so, Calabash

expresses the test cases as cucumber features [1].

16https://github.com/calabash/calabash-android

3.3 Analysis and Discussion 36

A limitation of the Griebe and Gruhn approach is the need for creating a model that de-

scribes possible AUT activities. Modeling is not a widely understood activity between testers

and developers, and a poorly designed model can lead to false positives or false negatives in

test verdicts.

Context Simulator

Vieira et al. [131] argue that testing context-aware applications in the lab is challenging

because of the number of different scenarios and situations that a user might be involved.

Hence, the Android platform provides simulation tools to support the physical sensor test.

However, it is not enough to test context-aware applications only at the physical sensors

level. Thus, Vieira et al. have developed a simulator that simulates a real laboratory envi-

ronment. The simulator provides support for modeling and simulating context in different

levels: physical and logical context, situations, and scenarios.

The simulation is separated into two main components: the desktop application and the

mobile component:

• The desktop application: it is responsible for context modeling, simulation execution,

and context transmission to the mobile device;

• The mobile component: it receives signals from the desktop application and processes

the data. The mobile component is responsible for simulating context data and exam-

ining the app’s reaction under the simulated context.

The modeling in the context simulator is made in four different levels:

1. Low-Level Context: the data can be acquired from hardware sensor measuring (e.g.,

location, light, movement or touch), named as physical context, or the data can be

acquired from software applications or services (e.g., current activity of an employee

determined by his calendar), named as virtual context;

2. High-Level Context (or Logical Context): the combination of low-level context and

virtual context processing results in a High-level context. For example, a context

“Room 001 at Fraunhofer” is identified through an aggregation of two low-level

sources: GPS coordinates from “Fraunhofer” and Wi-Fi identification of “Room 001”;

3.3 Analysis and Discussion 37

3. Situation: it is the composition of high-level contexts. The situation represents the

circumstances in which someone currently is. For example, the situation “Meeting

12-13 at Room 001 at Fraunhofer” is a situation composed by three high-level con-

texts: “Meeting” (it can be a specific date and time plus an appointment in the user’s

calendar); “Room 001”; and “Fraunhofer”.

4. Scenario: a Scenario is a chain of situations for causal relations. In other words, a

scenario is a time-ordered sequence of situations.

The context simulator supports a large variety of context sources, 22 contexts divided

into 6 categories supporting 41 context sources [131].

A limitation of the context simulator is that the tester must model each test case. Thus, if

the tester wishes to test an AUT under possible adverse situations such as weak GPS signal,

receiving a phone call, and changing internet connection conditions, then the tester should

model all scenarios that he/she wishes to test.

Extended AndroidRipper

Amalfitano et al. [25] analyzed bug reports from open-source applications available at

GitHub17 and Google Code18. From the results, they defined some use scenarios, called

by them as Event-patterns, that represent a use case which presents more potential to failure

in context-aware applications. Some examples of event-patterns are:

• Loss and successive recovery of GPS signal while walking;

• Network instability;

• The user enables the GPS provider through the Settings menu and starts walking;

• Incoming of a phone call after any other event.

Amalfitano et al. carried out an experiment to examine if the event-patterns represent

scenarios of a greater chance of context-aware application failures. Thus, they extended

the tool AndroidRipper [30]. The Extended AndroidRipper can fire context events such as

17https://github.com
18http://code.google.com

3.3 Analysis and Discussion 38

location changes, enabling/disabling of GPS, changes in orientation, acceleration changes,

reception of text messages and phone calls, shooting of photos with the camera. Both ver-

sions of AndroidRipper explore the application under test looking for crashes measuring the

obtained code coverage and automatically generating Android JUnit test cases that reproduce

the explored executions.

The Extended AndroidRipper tool generates test cases watching for events that cause

a reaction from the application. Once the events that cause a reaction are detected, the

technique of Amalfitano et al. generates test cases based on event-patterns identified by the

authors. Therefore, the tool does not focus on testing high-level context variations.

Other Tools from Cited Papers

By studying the papers of Griebe and Gruhn [53], Vieira et al. [131], and Amalfitano et al.

[25], we found two papers related to testing context-aware Android applications: Mirza and

Khan [103] and Luo et al. [89]. The corresponding tools are presented in the sequel.

ContextDrive Mirza and Khan [103] argues that testing context-aware applications is a

difficult task due to challenges such as:

i Developing test adequacy and coverage criteria;

ii Context adaptation;

iii Context data generation;

iv Designing context-aware test cases;

v Developing test oracle;

vi Devising new testing techniques to test context-aware applications.

In response to these challenges, they argue that context adaptation cannot be modeled

using a standard notation, such as the UML activity diagram. Therefore, Mirza and Khan

extended the UML activity diagram, by adding a context-aware activity node, for behavior

modeling of context-aware applications.

Mirza and Khan proposed a test automation framework named as ContextDrive. Its pro-

posed model consists of six phases.

3.3 Analysis and Discussion 39

1. First phase: An UML activity diagram is used to model the application under test.

In this phase, a new element for the UML activity diagram is proposed for modeling

context-aware applications;

2. Second phase: The UML activity diagram is transformed into a testing model;

3. Third phase: The test model is annotated in order to enhance readability and maintain-

ability;

4. Fourth: Abstract test cases are generated;

5. Fifth: Abstract test cases are converted into platform-specific executable test scripts;

6. Sixth: The test scripts are executed.

Mirza and Khan’s technique is similar to the one implemented in the tool of Section 3.3.2.

Therefore, there is also the restriction that the tester has experience in UML activity diagram

modeling. Also, the tool uses static data to execute test cases. Therefore, testing situations

that use many sensor data becomes infeasible (i.e., testing a GPS navigator application).

TestAWARE One of the difficulties in testing context-aware applications is the hetero-

geneity of context information and the difficulty and/or high cost of reproducing contextual

settings. As an example, Luo et al. [89] present a real-time fall detection application, the

application detects when the user drops the mobile phone under different circumstances such

as falling out of the pocket or falling out of the hand. The application is programmed to send

an email to a caregiver every time a fall event is detected by the phone. For this application,

testing new versions of the application is very costly. Thus, Luo et al. [89] introduce the

TestAWARE tool.

TestAWARE is able to download, replay and emulate contextual data on either physical

or emulators devices. In other words, the tool is able to obtain and replay “context”, and thus

provide a reliable and repeatable setting for testing context-aware applications.

Luo et al. compare their tools with other available tools. In summary, they say

TestAWARE aims at a wide variety of mobile context-aware applications and testing sce-

narios. It is possible because TestAWARE incorporates:

3.3 Analysis and Discussion 40

i Heterogeneous data (i.e., sensory data, events and audio);

ii Multiple data sources (i.e., online, local and manipulated data);

iii Black-box and white-box testing;

iv Functional/non-functional property examination;

v The environments of device/emulator.

A limitation of the tool is that it is not possible to create test cases without executing

each test case at least once in a real device in the real scenario. That is because it is a record

and replay tool, it is first necessary to record the test cases and, therefore, it is necessary to

submit the AUT on a real device under each of the conditions to be tested.

Potential tools for testing context-aware applications

Among the found studies, Moran et al. [106] [107], Z. Qin et al. [118], Yongjian and Iulian

[65], Gomez et al. [52], and Farto et al. [50] present tools that were not intended for context-

aware application testing. However, they support the testing of context-aware features.

CrashScope Moran et al. [106] [107] argue that one of the most challenging and essen-

tial maintenance tasks is the creation and resolution of bug reports. For this reason, they

introduced the CrashScope tool. The tool is capable of generating augmented crash reports

with screenshots, crash reproduction steps, and captured exception stack trace, along with a

script to reproduce the crash on a target device. In order to do so, CrashScope explores the

application under test by performing input generation by static and dynamic analyses, which

include automatic text generation capabilities based on context information such as device

orientation, wireless interfaces, and sensors data.

The CrashScope GUI Ripping Engine systematically executes the application under test

using various strategies. Then, the tool first checks for contextual features that should be

tested according to the exploration strategy. So, the GUI Ripping Engine checks if the cur-

rent Activity is suitable for exercising a particular contextual feature in adverse conditions.

The testing of contextual features in adverse conditions consists in setting unexpected values

to the sensors (GPS, Accelerometer, and so on.) that would not typically be possible under

3.3 Analysis and Discussion 41

normal conditions. For instance, to test the GPS in an adverse contextual condition, Crash-

Scope sets the value to coordinates that do not represent physical GPS coordinates. Thus, for

each running Activity, CrashScope checks the possible contextual features, checks if con-

textual features should be enabled/disabled, and sets feature values. CrashScope attempts

to produce crashes by disabling and enabling sensors as well as sending unexpected (e.g.,

highly unfeasible) values. Because of that, some scenarios cannot be tested in CrashScope

(i.e., testing if the application crashes if the user leaves a pre-established route).

MobiPlay Accordingly to Z. Qin et al. [118], MobiPlay is the first Record and Replay tool

that can capture all possible inputs at the application layer. Thus, MobiPlay is the first tool

capable of recording and replaying, at the application layer, all the interactions between the

Android app and both the user and the environment the mobile phone is inserted.

While the user executes the app, MobiPlay records every input the application receives

and the interval time between every two consecutive inputs. After that, the tool can re-

execute the application under test with the same provided inputs when executing it. The

expected result is that the application behaves the same way as the original execution. Mo-

biPlay is composed of two components: a mobile phone and a remote server. Initially, the

mobile phone sends and saves all sensor data and user interactions to the remote server that

also stores it. The remote server can then reproduce the executed scenario by sending back

the saved data to the mobile phone.

The application under test is called Target App, and it is installed at the Remote Server,

not on the mobile phone. The communication between the Mobile Phone and the Target App

will be done through the Client App. The Client App is installed at the Mobile Phone, and it

is a typical Android app that does not require root privilege and is dedicated to intercepting

all the input data for the target app. The basic idea of MobiPlay is that the target app runs

on the server, while the user interacts with the client app on the mobile phone in a way that

the user is not explicitly aware that he is, in effect, using a thin client. The client app shows

the GUI of the target app in real-time on the mobile phone, just like the way as if the target

app was running on the mobile phone. While the user interacts with the Target App through

the Client App, the server records all the touch screen gestures (pinch, swipe, click, long

click, multi touches, and so on) and the other inputs provided by the sensors like gyroscope,

3.3 Analysis and Discussion 42

compass, GPS, and so on, in a transparent way to the user. Once the inputs are recorded,

MobiPlay can re-execute the Target App with the same inputs and, at the same interval time,

simulating the interaction between the user and the target app.

Just like the TestAWARE tool (Section 3.3.2), MobiPlay first needs to record the test

cases that the tester wants to check.

VALERA VersAtile yet Lightweight rEcord and Replay for Android (VALERA) is a

tool capable of record and replay Android Apps by focusing on sensors and event streams,

rather than system calls or the stream instruction. Its approach promises to be effective yet

lightweight. VALERA can record and replay inputs from the network, GPS, camera, mi-

crophone, touchscreen, accelerometer, compass, and other apps via IPC. The authors’ main

concern is to record and replay Android applications with minimal overhead. Therefore,

they claim to be able to maintain performance overhead low, on average 1.01% for record

and 1.02% for replay. The timing overhead is critical when replaying an application. The

variation of the original time of the application data entries can cause different behavior than

when recording the iteration data with the application. Thus, VALERA is designed to min-

imize timing overhead. In order to evaluate VALERA, the tool was exercised against 50

applications with different sensors. The evaluation consisted in exercising the relevant sen-

sors of each application, e.g., scanning a barcode for the Barcode Scanner, Amazon Mobile

and Walmart apps; playing a song externally so that apps Shazam, Tune Wiki, or Sound-

Cloud would attempt to recognize it; driving a car to record a navigation route for Waze,

GPSNavig.&Maps, NavFreeUSA; and so on.

VALERA has the same limitations as TestAWARE and MobiPlay.

RERAN It is a black-box record and replay tool capable of capturing the low-level event

stream on the phone, including GUI events and sensor events, and replaying it with microsec-

ond accuracy. RERAN is a previous record and replay system of the authors of VALERA. It

is similar to VALERA but with some limitations. RERAN is unable to replay sensors whose

events are made available to applications through system services rather than through the

low-level event interface (e.g., camera and GPS). When validating the tool, the authors de-

clare RERAN was able to record and replay 86 out of the Top-100 Android apps on Google

3.3 Analysis and Discussion 43

Play and to reproduce bugs in popular apps, e.g., Firefox, Facebook, Quickoffice.

RERAN has the same limitations as TestAWARE, MobiPlay, and VALERA. Another

limitation of RERAN is that it does not support testing the GPS sensor.

MBTS4MA Farto et al. [50] proposed an MBT approach for modeling mobile apps. Their

test models are reused to reduce the effort on concretization and to verify other character-

istics such as device-specific events, unpredictable users’ interaction, telephony events for

GSM/text messages, and sensors and hardware events.

The approach is based on an MBT process with Event Sequence Graphs (ESGs) models

representing the features of a mobile app under test. Specifically, the models are focused

on system testing, mainly user’s and GUI’s events. Farto et al. implemented the proposed

testing approach in a tool called MBTS4MA (Model-Based Test Suite For Mobile Apps).

MBTS4MA provides a GUI for modeling. Thus, it supports the design of ESG models

integrated with the mobile app data like labels, activity names, and general configurations.

Although the models are focused on system testing, mainly user’s and GUI’s events, it is also

possible to test sensors and hardware events. The supported sensor events are: change accel-

eration data, change GPS data, disable Bluetooth, enable Bluetooth, and update coordinates.

However, the authors argue that extending the stereotypes of the tool to support more sensor

events is possible.

Similar to the Custom-built version of the Calabash-Android tool (Section 3.3.2),

MBTS4MA needs the creation of a model representing the features of a mobile app under

test.

RQ 2.1: Which research groups are involved in Android context-aware testing re-

search?

In order to answer this research question, we have observed the publications of the authors

of the Android context-aware testing studies, such as Griebe and Gruhn [53], Vieira et al.

[131], and Amalfitano et al. [25].

The authors of Griebe and Gruhn [53] are Tobias Griebe19 and Volker Gruhn20. Both
19https://dblp.org/pers/hd/g/Griebe:Tobias
20https://dblp.uni-trier.de/pers/hd/g/Gruhn:Volker

3.3 Analysis and Discussion 44

authors have written only two more publications that refer to context-aware applications:

• “Towards Automated UI-Tests for Sensor-Based Mobile Applications” [54]: presents

an approach that integrates sensor information into UI acceptance testing. The ap-

proach uses a sensor simulation engine to execute test cases automatically.

• “A Framework for Building and Operating Context-Aware Mobile Applications”

[123]: presents a work-in-progress paper with the description of a framework archi-

tecture design to address the following context-aware mobile applications problems:

interoperability, dynamic adaptability and context handling in a frequently changing

environment.

The authors of Vieira et al. [131] are Vaninha Vieira21, Konstantin Holl22, and Michael

Hassel23. Vaninha Vieira is a professor of Computer Science at Federal University of Bahia,

Brazil. Her research interests include Context-Aware Computing, Mobile and Ubiquitous

Computing, Collaborative Systems and Crowdsourcing, Gamification and User Engagement,

and Smart Cities (Crisis and Emergency Management, Intelligent Transportation Systems).

Among her publications, we can note the interest in mobile applications concerning to con-

text modeling, Quality Assurance, Context-Sensitive Systems Development, Context Man-

agement, and so on. Konstantin Holl has published papers related to Quality Assurance,

but nothing can be seen about the research interest of Michael Hassel due to the lack of

publications.

The authors of Amalfitano et al. [25] are Domenico Amalfitano24, Anna Rita Fasolino25,

Porfirio Tramontana26, and Nicola Amatucci27. Domenico Amalfitano, Anna Rita Fasolino,

and Porfirio Tramontana are not only professors of the same institution (University of Naples

Federico II) but most of their articles were written together. Their publication concerns

software engineering, testing, and reverse engineering. Many of the testing publications are

about Android app testing. In particular, they have much experience in the GUI Ripping

21https://scholar.google.com/citations?user=tkNSlXIAAAAJ&hl
22https://dblp.org/pers/hd/h/Holl:Konstantin
23https://dblp.org/pers/hd/h/Hassel:Michael
24https://scholar.google.com/citations?user=ReafO6YAAAAJ&hl=en
25https://scholar.google.com/citations?user=lC5j76YAAAAJ&hl=es
26https://scholar.google.com/citations?user=Q7z44GcAAAAJ&hl=en
27https://scholar.google.it/citations?user=AaLCcaAAAAAJ&hl=it

3.3 Analysis and Discussion 45

technique. Most of Nicola Amatucci’s publications are about testing on Android applica-

tions. Most of them written together with Domenico Amalfitano, Anna Rita Fasolino, or

Porfirio Tramontana.

All of these authors have significant publications regarding mobile application testing.

Besides them, as mentioned in Section 3.2, we can refer to Iulian Neamtiu, Tanzirul Azim,

and Yongjian Hu, who have significant contributions in the research area. However, among

the studied authors, Vaninha Vieira is the author who most directly contributed to the research

on context-aware applications.

RQ 2.2: What are the research gaps addressed in Android context-aware testing?

In this systematic mapping, we identify 5 tools for testing of context-aware Android appli-

cations and 5 tools that support testing of context-aware applications, totaling 10 tools.

The context-aware application testing has challenges such as a wide variety of context

data types and context variation. There is a vast variety of context data types. The most

commonly used context data type is location, acquired by the GPS sensor. However, there

are many other types of data, such as temperature, orientation, brightness, time, and date.

Context-aware applications use context data provided by sensors to provide service or

information. Waze28, for example, uses the GPS, the time, and information provided by the

cloud to inform the driver about obstacles along the way to the final destination. However,

many context-aware applications use combinations of sensor information to infer contexts

and provide service or information from these inferred contexts. Vieira et al. [131] call

Low-Level Context the context information directly collected from sensors or other sources

of information such as database or cloud, and High-Level Context for the contexts that are

the product of the combination of Low-Level Contexts.

Many context-aware applications use High-Level Context to provide their services or

information. Samsung has developed an application called Samsung Health [9] that tracks

user’s physical activities. Combined with its SmartWatch, the application monitors heart-

beat, movement, steps, geographical location, time of day, and other information. From this

information, the application infers contexts in which the user is and then concludes whether

the user is practicing physical activity or resting. Taking the example of the Samsung Health

28https://www.waze.com

3.3 Analysis and Discussion 46

application, Table 3.9 exposes some examples of High-Level Contexts from the composition

of Low-Level Contexts.

Table 3.9: High-Level Contexts examples

Brief Description Low-Level

Contexts

High-Level

Context

If the user has stopped for more than one hour since

it is not at night, the application infers that the user

is at rest for a long time and suggests that the user

take a short walk or lengthen.

Time

GPS

Pedometer

Accelerometer

Heartbeat

Long rest

If the user is in full rest with low heart rate, the ap-

plication infers that the user is sleeping and counts

the duration of sleep as well as infers the quality of

sleep based on the luminance, noise and amount of

movements that the user makes while sleeping.

Time

GPS

Pedometer

Accelerometer

Brightness

Noise

Heartbeat

Sleeping

If the user is walking, the application monitors the

distance and speed. From this information and the

user’s profile (weight and age) the application infers

the amount of lost calories.

GPS

Pedometer

Age

Weight

Walking

If the user is pedaling, the application infers that the

user is riding a bike and then calculates the time,

distance and lost calories.

GPS

Pedometer

Accelerometer

Noise

Heartbeat

Riding a bike

As we have said, another challenge in testing context-aware applications is the constant

variation of context. The context changes asynchronously, and the application must respond

3.3 Analysis and Discussion 47

correctly and effectively to context variations. Taking Samsung Health as an example, the

application must realize when the user is changing their activities throughout the day and

thus provides all the information and services in the correct way. Thus, when the user is

sleeping and get up, the application should stop counting the time and the quality of sleep.

If the user starts walking, the application must count for time, distance, and lost calories.

When the user stops walking and gets in the car and drives home, the application should stop

counting the walking information and understand that the user is resting, even though he is

moving.

Considering the difficulties of testing context-aware applications, the 10 tools identified

in this work were analyzed and compared according to 11 questions raised:

• Q1: What low-level context data does the tool support?

• Q2: Does the tool support high-level context data?

• Q3: Are context data treated differently?

• Q4: Is it possible to test context variations?

• Q5: Is it possible to test abnormal context situations?

• Q6: What criteria is used to select the context data?

• Q7: What is the test stop criterion?

• Q8: Does the tool generate test cases?

• Q9: Is the tool White Box, Black Box, or Grey Box?

• Q10: Does it need instrumentation in the code?

• Q11: Is the tool automatic or semi-automatic?

Table 3.10 presents the result of the analysis of the 10 tools by looking at the 11 questions.

3.3 Analysis and Discussion 48

Table 3.10: Tools Comparison
Tool

Custom

calabash

[53]

Context Sim-

ulator [131]

Extended

An-

droidRipper

[25]

CrashScope

[106]

MobiPlay

[118]

[78]

VALERA

[65] [63]

[64] [66]

[78]

RERAN

[52] [78]

MBTS4MA

[50]

ContextDrive

[103]

TestAWARE

[89]

Q1

GPS X X X X X X X X X

Wi-Fi X X X X X X X

Accelerometer X X X X X X X X X

Thermometer X X X X X X X

Barometer X X X X X X

Light-Sensor X X X X X X

Magnetometer X X X X X X X X X

Gyroscope X X X X X

Clock X X

Calendar X X

Other Camera,

Microphone,

Battery

Level, Call,

text message,

Alarm, etc.

Call, text

message,

Battery

Level, USB,

etc.

Microphone Bluetooth,

Call, text

message

Q2 No Yes No No No No No No Yes No

Q3 Yes Yes No No No No No No Yes Yes

Q4 Yes Yes No No No No No No Yes No

Q5 Yes Yes No Yes No No No No Yes Yes

Q6 Manually Manually Design pat-

terns

On/Off or

Abnormal

values

None None None None None Manually or

Recorded

from Sensor

Q7 all-

transition-

coverage

criterion

All scenarios

executed

Code cover-

age

Top-down

or botton-

up GUI

Hierarchy

transverse

No more

recorded

events

left

No more

recorded

events left

No more

recorded

events

left

all-edges breadth first

search

No more

recorded

events left

Q8 Yes No Yes Yes No No No Yes Yes No

Q9 Black-box Black-box White-box Black-box Black-

box

Black-box Black-

box

Black-box Black-box Black-box

and White-

box

Q10 No No No No No No No No None No

Q11 Automatic Semi-

automatic

Automatic Automatic Semi-

automatic

Semi-

automatic

Semi-

automatic

Semi-

automatic

Automatic Semi-

automatic

The first observation we had of the tools was on the type of context data they support.

Except for RERAN, they all support GPS. It was natural to expect this result since location

is the most commonly used data type by context-aware applications. We can also see that

Context Simulator and ContextDrive are the only tools that support all low-level context data

types. Also, these are the only tools that support high-level context data.

Mirza and Khan [103] propose an extension of the UML activity diagram for modeling

high-level context variation. Thus, their ContextDrive tool can test variations from one con-

text to another. The authors use static data to execute the test cases. Therefore, the tool is

unable to generate new test cases automatically.

The Context Simulator tool provides a graphical interface for the tester that enables the

creation of application usage scenarios. Thus, the tester can simulate high-level contexts.

However, the tester needs to explicitly describe each test case he/she wants to execute and

3.4 Concluding Remarks 49

which sensor values will be used in the test.

Context variations occur asynchronously, and some of them in an unexpected way. When

using a context-aware application, a phone call can be received, and, during the calling, the

user context may change. As another example, the GPS signal can drop and then return after

a few moments.

Although 3 tools support context variation testing, none of them can automatically gen-

erate test cases that use high-level contexts and test variations of high-level contexts, taking

into account unexpected scenarios such as the event-patterns described by Amalfitano et al.

[25], presented in Section 3.3.2.

3.4 Concluding Remarks

In this chapter, a systematic mapping was carried out in order to identify and investigate

tools that allow the automation of testing Android context-aware applications. A total of

6,648 studies were obtained, 68 of which were considered as relevant publications when

taking into account our research questions. These works were first analyzed according to the

conference publication, year, country, and authors. The main result of this first analysis was

the identification of research groups in the area of interest.

Another significant contribution of this systematic mapping was the identification of 80

Android application testing tools. From these tools, we identified which techniques they

implement, which generate test cases, which execute test cases, which are the test methods,

which ones are available for download, and which ones are most commonly used. We noticed

that 40% of Android testing tools implement GUI Testing. We also note that, among the tools

that generate test cases, 42% use MBT as the generation strategy approach.

The main contribution and objective of this systematic mapping were identifying context-

aware Android application testing tools and the analysis of their limitations. We have iden-

tified 10 tools that support the test of context-aware applications. Five of these tools have

been developed explicitly for context-aware applications, and five have been developed for

general applications, but they also support context-aware features testing.

Chapter 4

Context-Aware Path-Based Testing

Approach

Mobile applications are applications that respond to User Interface (UI), system events, or

sensor events. Events in mobile applications are touches on the screen, updating the geo-

graphic location, changing the orientation of the device, and so on. Therefore, many authors

(if not all) recognize that mobile applications are event-driven [119], [38], [25], [121], [128].

Each event produced in Android applications brings information (message) regarding this

event. Thus, how to test if a context-aware path-based application has faults? How to en-

sure that it behaves correctly with different context configurations, that is, with different

sequences of events?

This chapter describes the approach proposed by our work. Section 4.1 outlines the

proposed approach. Section 4.2 describes how test cases are generated while section 4.3

describes how the test cases are executed.

4.1 Overview

Context-aware applications react to inputs from the environment in which it is inserted.

Therefore, in this work, an approach is proposed whose objective is to simulate environ-

mental stimuli. The approach considers the environment as the source of all events that serve

as input to the AUT. Regarding context-aware path-based applications, its environment in-

formation is mainly composed by the GPS values captured by the GPS sensor and the events

50

4.1 Overview 51

that can occur during its execution.

The approach consists of providing a sequence of inputs (path positions and events) to

the AUT and observing if the application executes correctly in the same way as if it were

running in a real-world environment even if events occur during execution. The approach

proposed in this work does not require code and is intended to test executable versions of

context-aware path-based applications. Therefore, the proposed approach is black-box and

tests applications at the system level.

Considering:

• lat a real value representing a latitude coordinate;

• lng a real value representing a longitude coordinate;

• P a GPS position composed by a latitude and a longitude in the form (lat, lng);

• n an integer such that n ≥ 0.

We define a path as following.

Definition 4.1 (Path). A Path is a sequence of GPS positions such that: Path =

(Po, P1, P2, ..., Pn, Pd) where:

• Po represents the path origin;

• P1, P2, ..., Pn represents a sequence of zero or more points P ;

• Pd represents the path destiny;

Amalfitano et al. [25] present a set of events that they called “Event-patterns”. These

event patterns are sequences of events that, according to the authors, are most likely to cause

failure. Some of the event patterns defined by Amalfitano et al. are:

• Drop and successive recovery of GPS signal while walking;

• Internet instability;

• Phone call arrival after any event except the call event itself.

4.1 Overview 52

Observation 1: After looking for bugs reported by users of open source applications in

Github [11], we identified other scenarios with a chance of failure.

In order to identify bugs that can occur in real context-aware path-based applications, we

search for problems reported in open-source applications hosted on GitHub [11]. Github is

a collaborative platform where programmers and users of published applications can report

tips and bugs that occurred during the software’s execution.

Therefore, we perform searches initially for path-based applications. Due to the small

number of applications and few reported bugs in the path-based applications found, we

search for applications that use GPS, either to read only the current location or to perform

GPS tracking. Therefore, we selected the following applications:

• OsmAnd1;

• NextGIS2;

• Sky Map3;

• CityZen4;

• GPSLogger5;

• Traccer6.

For each selected issue, we observed its recurrence among the listed applications and

categorized in scenarios. We observed that some scenarios resort to problems well known

in the literature such as boundary-value analysis and others fall into common problems in

Android development such as the management of an Activity’s life cycle. Together, these

applications add up to more than 3,200 issues of the most varied types of bugs.

The identified scenarios are:
1https://github.com/osmandapp
2https://github.com/nextgis
3https://github.com/sky-map-team
4https://github.com/CityZenApp
5https://github.com/mendhak/gpslogger
6https://github.com/traccar/traccar

4.1 Overview 53

• Paths with coordinate limit values: Faults have been reported on some routes with

values close to the coordinate limit values, for example: (37.9872 -0.65483), (-37.9872

0.65483), (0.00001 0), (0 -0.000001);

• Short paths;

• Long paths;

• Leave the application on standby for a long time;

• Take a photo while running the application;

• Change phone orientation “portrait” <–> “landscape”.

Based on the work of Amalfitano et al. [25] and in our search for bugs events in Github

[11], our approach takes into account the following events:

i Turn on GPS;

ii Turn off GPS;

iii GPS calibrated;

iv GPS not calibrated;

v Simulate background application for a long time;

vi Receive phone call;

vii Accept phone call;

viii Cancel phone call;

ix Internet with full speed;

x No internet signal;

xi Portrait orientation;

xii Landscape orientation;

xiii Take a picture.

4.2 Test case generation 54

In our context, a test case is executed when a sequence of inputs is sent to the AUT. We

differentiate these inputs into two types:

• GPS values: GPS coordinates of a path;

• Events: system events from the Android system in response to situations that occur in

the environment, such as phone calls and internet crash.

Therefore, a test case input is a sequence of inputs and system events sent to the AUT.

4.2 Test case generation

Test cases consist of a setup and a sequence of events. Setup determines the initial envi-

ronment configuration in the test case. Considering the exposed events in Section 4.1, path

type, long background, take a photo, and phone calls do not make sense to be part of the test

setup configuration. Thus, a setup is defined by combining four situations: (i) GPS signal,

(ii) GPS calibration, (iii) orientation, and (iv) Internet Connection. Table 4.1 presents the

possible values for each one of the four situations.

Table 4.1: Possible situation values.

Event GPS Signal GPS Calibration Orientation Internet

Values
On Calibrated Portrait On

Off Not Calibrated Landscape Off

Before starting the test cases, it is crucial to define which setup to be used. Since there are

4 variables that can assume 2 values, we have 16 setup combinations (24 combinations), but

considering that GPS cannot be calibrated when it is turned off, then 12 setup combinations

are possible, with scenarios are presented in Table 4.2.

4.2 Test case generation 55

Table 4.2: Setups considered in this work.

Name GPS Signal Orientation GPS Calibration Internet Signal

S1 ON PORTRAIT CALIBRATED ON

S2 ON PORTRAIT CALIBRATED OFF

S3 ON PORTRAIT NOT CALIBRATED ON

S4 ON PORTRAIT NOT CALIBRATED OFF

S5 OFF PORTRAIT NOT CALIBRATED ON

S6 OFF PORTRAIT NOT CALIBRATED OFF

S7 ON LANDSCAPE CALIBRATED ON

S8 ON LANDSCAPE CALIBRATED OFF

S9 ON LANDSCAPE NOT CALIBRATED OFF

S10 ON LANDSCAPE NOT CALIBRATED ON

S11 OFF LANDSCAPE NOT CALIBRATED OFF

S12 OFF LANDSCAPE NOT CALIBRATED ON

In our approach, events may occur immediately or after some time interval. The sequence

of events may have one or more events; all events may or may not have a time interval

between them.

We call as “waiting situation” the condition of an event to occur immediately or after

some time interval. In other words, assume that a test case has the events E1 and E2. AUT

can receive these events in the following ways:

1. Upon starting the test case, E1 is immediately sent to the AUT, and E2 is sent to the

AUT immediately after E1;

2. Upon starting the test case, E1 is sent to the AUT after slapsed a time t, and E2 is sent

to the AUT immediately after E1;

3. Upon starting the test case, E1 is immediately sent to the AUT, and E2 is sent to the

AUT after t has elapsed after E1;

4. Upon starting the test case, E1 is sent to the AUT after slapsed a time t, and E2 is sent

to the AUT after t has elapsed after E1.

4.2 Test case generation 56

Therefore, we call as “waiting situation” the possibility of existing a waiting time t 6= 0

or t = 0 before the E1 and E2 events.

Table 4.3 present the events considered in this work.

Table 4.3: Possible situation values.
GPS CALLS INTERNET DISPLAY ORIENTATION OTHER

GPS_ON RECEIVE_CALL INTERNET_ON ORIENTATION_PORTRAIT TAKE_A_PICTURE

GPS_OFF ACCEPT_CALL INTERNET_OFF ORIENTATION_LANDSCAPE LONG_BACKGROUND

GPS_CALIBRATED CANCEL_CALL

GPS_NOT_CALIBRATED

Considering:

• S as one of the possible setups in Table 4.2;

• Ei as one of the possible events in Table 4.3;

• Wi as one of two possible waiting situations such that Wi ∈ {WAIT, NOT_WAIT}.

We can define test case and subtest case according to Definitions 4.2 and 4.3.

Definition 4.2 (Test Case). A Test Case (TC) defines the AUT setup and a sequence of pairs

of waiting situations Wi and events Ei to be sent to the AUT such that:

TC = (S,W1, E1,W2, E2, . . . ,Wn, En) where n is the order of the test case TC.

Definition 4.3 (Subtest Case). Considering TCn a test case of order n that has a Setup S

and the sequence of waiting situations and events (W1, E1, ...,Wn, En), we say that TCn is

subtest case of TCN if (i) TCN has order N such that N > n, (ii) TCN has Setup S and

(iii) its sequence of waiting situations and events starts with (W1, E1, ...,Wn, En).

In this work, we call first-order test cases the test cases with only one wait and one event.

For two-wait and two-event test cases, we call them second-order test cases, and so on. Table

4.4 illustrates the possibilities of wait and event values for test cases of n-order for each set

of sensor values.

4.2 Test case generation 57

Table 4.4: Possibilities of waits and events for n-order test cases.

 Setup Wait 1 Event 1 Wait 2 Event 2 … Wait n Event n

Sensors
Values

S1 WAIT GPS_ON WAIT GPS_ON … WAIT GPS_ON

 S2 NOT_WAIT GPS_OFF NOT_WAIT GPS_OFF … NOT_WAIT GPS_OFF

 S3 LONG_BACKGROUND LONG_BACKGROUND LONG_BACKGROUND

 S4 TAKE_A_PICTURE TAKE_A_PICTURE TAKE_A_PICTURE

 S5 ORIENTATION_PORTRAIT ORIENTATION_PORTRAIT ORIENTATION_PORTRAIT

 S6 ORIENTATION_LANDSCAPE ORIENTATION_LANDSCAPE ORIENTATION_LANDSCAPE

 S7 RECEIVE_CALL RECEIVE_CALL RECEIVE_CALL

 S8 GPS_CALIBRATED ACCEPT_CALL ACCEPT_CALL

 S9 GPS_NOT_CALIBRATED CANCEL_CALL CANCEL_CALL

 S10 INTERNET_ON GPS_CALIBRATED GPS_CALIBRATED

 S11 INTERNET_OFF GPS_NOT_CALIBRATED GPS_NOT_CALIBRATED

 S12 INTERNET_ON INTERNET_ON

 INTERNET_OFF INTERNET_OFF

In first-order test cases, we suppress ACCEPT_CALL and RECEIVE_CALL events be-

cause it is not possible to answer or reject a call without first receiving the call. There-

fore, the number of possible combinations for each set of sensor data for test cases of order

1 is 12 × 2 × 11 = 264. The number of order 2 test case combinations for each sen-

sor data is 12 × 2 × 11 × 2 × 13 = 6, 864. So, the number of test cases of order n is

12× 2× 11× (2× 13)(n−1).

Observation 2: Pairwise testing significantly decreases the number of test cases.

The number of test case combinations is impractical to execute. Pairwise testing has

been shown to be very efficient by some authors [47], [42], [87]. In addition to reducing the

number of exhaustive combinations for pairing, we can also exclude meaningless test cases,

by explicitly specifying combinations that are not valid. Some test scenarios make no sense

when executing; for example:

• Turn on GPS when it is already on;

• Turn off GPS when it is already off;

• GPS gets calibrated when it is off;

• Turn on the Internet when it is already on;

• Turn off the Internet when it is already off;

• Answer a non received call;

4.3 Test case execution 58

• Reject a non received call

• Change the device orientation to the same orientation as it is.

Table 4.5 shows the difference in the number of test cases generated with and without

pairwise considering the list of events in Table 4.4. We can see that the number of test cases

without pairwise increases exponentially as the order increases according to the formula

qte = 12×2×11×(2×13)(n−1). However, the same is not valid for the number of test cases

generated with pairwise. The number of test cases using pairwise decreases considerably by:

(i) the pairwise technique, and (ii) by eliminating combinations of sequences of events that

do not make sense (i.e. turning on GPS already on or disconnecting a phone call that did not

occur). Thus, we can create viable combinations of executions for order greater than 5.

Table 4.5: Number of Test Cases
Order 1 Order 2 Order 3 Order 4 Order 5

Without pairwise 264 6,864 178,464 4,640,064 120,641,664

With pairwise 81 178 223 270 283

Although pairwise is very effective at reducing the number of test cases, generating the

minimum set of test cases using pairwise is an NP-Complete problem [147]. Also, while

the number of test cases can be reduced from hundreds of millions to hundreds of units,

manual execution is still very costly. Therefore, it is necessary to automate the generation

process and, at least, semi-automate the test case execution process. Chapter 5 describes

a tool developed to automate the generation and semi-automate the execution of test cases

using this proposed approach.

4.3 Test case execution

In our approach, AUT execution occurs by sending two types of input: a sequence of sensor

input values and events most likely to cause failures (Section 4.1). Therefore, the execution

must take place in an emulated environment to allow the sending of the input values of the

sensors as well as allowing a controlled execution at a low cost.

4.4 Concluding Remarks 59

Before executing each test case, the AUT must be configured according to the test case

setup. After configuring the setup, the AUT must receive each input value from each sensor.

Meanwhile, events are sent to the AUT. According to Definition 4.2, there is a waiting situa-

tion before any event. Therefore, if the test case establishes that there must be a wait before

the event E, then event E must occur after a predetermined time interval. Otherwise, event

E occurs immediately after its predecessor or the setup, whether E is the first event. The test

case ends when there are no more sensor values to send to the AUT, and when there are no

more events to send.

The tester observes the AUT during the entire execution of the test case. He assigns the

fail verdict if any behavior occurs that does not conform to the specifications during the test

case execution. That is, if during the execution of the test case the application exhibits some

behavior that it shouldn’t or shows no behavior, the tester judges that that test case failed.

For example, if the AUT stops responding to inputs or adds an intermediate destination on a

route without the user having requested it, the tester will judge this behavior as faulty. If the

test case ends without any failure occurring, the tester assigns the pass verdict.

The verdict is made in parallel with the execution. The tester must observe the AUT’s

behavior during the execution of the test cases and judge the verdict of each execution. As

the approach proposed in this work generates and executes test cases automatically, the cost

of the test falls on the tester’s observation and evaluation. That is, the longer it takes to run

the entire test suite, the greater the tester’s effort to observe and judge all verdicts.

4.4 Concluding Remarks

This chapter described the approach proposed by our work. The approach allows the gen-

eration of test cases for context-aware path-based Android applications assuming that these

applications are event-driven. Thus, the approach proposes the creation of sequences of in-

puts that simulate the sending of data from the GPS sensor as well as system events with a

greater chance of causing failures.

The test case generation assumes that a test case is composed of a setup configuration

and a sequence of system events that occur during the arrival of inputs from the sensors. The

number of possible test cases grows exponentially as the number of system events (test case

4.4 Concluding Remarks 60

order) increases. Therefore, we employ the pairwise technique to reduce the number of test

cases without significantly losing the quality of the final test suite.

Chapter 5

The ENVIAR Tool

In this work, we developed the ENVIAR (ENVIronment dAta simulatoR) tool that imple-

ments the approach described in Chapter 4. The tool can simulate the environment in which

the AUT is running by sending mock data to the AUT. Section 5.1 gives an overview of the

tool. The tool’s architecture is explained in Section 5.2. Section 5.3 outlines the Testing

Process performed in ENVIAR. Section 5.4 explains how ENVIAR uses the PICT tool in

order to perform the test case generation. The ENVIAR’s graphical interface is exposed in

Section 5.5.

5.1 Overview

The Android development environment makes it possible to execute applications on real

devices or emulated devices. In this work, to reduce the cost of testing and make viable the

execution of challenging scenarios of manual execution, the execution of the applications

is performed in an emulated way. Besides that, simulating sensor values on real devices

requires modifying the Android operating system. Thus, we decided to use the Android

Emulator that facilitates GPS simulation without the need to modify the Android operating

system.

ENVIAR is a free tool capable of simulating the sending of application environment

data, system events, and simulating adverse situations (i.e., GPS not calibrated) available for

download at https://github.com/diegotabira/enviar. Using the ENVIAR tool, it is possible

to create test scenarios that would be difficult to perform manually. Besides, it is possible

61

5.1 Overview 62

to create situations during a route such as an internet connection changing. For example,

consider that a team is developing a GPS navigation application that uses data provided

over the internet. It is possible to test the application manually by turning off the internet

phone connection. However, if the route is from one city to another, this test may not be

feasible. ENVIAR can simulate any route in the Android emulator and simulate events like

the example above. Also, ENVIAR does not require any changes to the Android operating

system, does not require code instrumentation, nor does the AUT source code. ENVIAR only

needs the tester to create the test cases (Section 5.5) and opens the AUT in the functionality

he wants to test. For example, if the tester wants to check an application’s GPS navigator, he

must open the application and make it ready to use the GPS navigation functionality.

ENVIAR is capable of automatically detecting crashes in the AUTs. Still, it requires the

tester to observe the AUT’s behavior to assign the pass or fail verdicts. An AUT crashes

when a failure occurs and makes the application unable to recover, so the Android operating

system needs to terminate the application. Therefore, there are three possible verdicts in

ENVIAR: pass, fail, and crash.

In this work, we consider that a test case passes when the AUT correctly navigates

through the path. In other words, independently of what events happen, the AUT is ro-

bust enough to recover (when possible) and continue the navigation correctly after all events

happen in the test case. In this case, we assign the pass verdict. For example, the AUT must

be able to continue navigation if the GPS is switched off and then switched on again. For

obvious reasons, we consider that the application passed the test case if the GPS is turned off,

but it is not turned on again. We consider a test case to fail when the AUT does not recover

from the events in the test case or if the AUT’s behavior does not match the specifications.

In this case, we assign the fail verdict. Some failures make the application unresponsive.

That is, there are failures that when they occur, the running application no longer responds

to inputs coming from the user or the system forcing the Android operating system to close

it. Many authors call this type of failure as crash [106], [107], [46], [72] and [143]. In our

work, we attribute the crash verdict to this kind of special case of fail verdict.

Given the scenarios and events described in Section 4.1 that are more likely to fail, the

tool supports sending the following events:

• Turn on GPS;

5.2 Architecture 63

• Turn off GPS;

• GPS calibrated;

• GPS not calibrated;

• Simulate background application for a long time;

• Receive phone call;

• Accept phone call;

• Cancel phone call;

• Internet with full speed;

• No internet signal;

• Portrait orientation;

• Landscape orientation;

• Take a picture.

5.2 Architecture

Figure 5.1 illustrates the basic architecture of ENVIAR. The black components are third-

party solutions that we fully incorporate into our tool with no modifications. Gray compo-

nents are those components in which we use the third-party solution internally and increment

algorithms. White components are those that we implement entirely without adding third-

party solutions.

5.2 Architecture 64

 PICT Input

Generator
PICT

Android Emulator

Monitor

Logcather Walker

ADBComunicator

Test Suite Generator

Test Suite Executor

Figure 5.1: ENVIAR Architecture

The following components compose the tool:

• Test Suite Generator: Responsible for generating the test cases. Basically composed

of:

– PICT: PICT [15] is a command-line tool developed by Microsoft [16] that re-

ceives as input a plain-text model file and produces a set of test cases selected by

pairwise testing. More details about PICT is described in Section 5.4;

– PICT Input Generator: As mentioned, PICT needs a plain-text model file as input.

This plain-text model file contains rules and descriptions of what parameters will

be used to execute the pairwise testing. The PICT Input Generator is responsible

for creating the plain-text model file from the paths, events, speeds, and order

chosen by the tester. The plain-text model file will be further detailed in Section

5.4;

• Test Suite Executor: Responsible for executing the test cases. Basically composed of:

– Walker: This module is responsible for sending the geographic coordinates of the

path and the system events to the AUT;

5.3 Testing Process 65

– Monitor: Module responsible for observing if an AUT crashes. This module also

notifies the Test Suite Executor about the verdicts associated by the tester, so the

current test case execution ends, and the next test case can be executed;

– Logcatcher: Logcat [12] is a command-line tool developed by Google that logs

system messages, crash traces, and Log class messages produced by application

developers. The Logcatcher module encapsulates the use of Logcat to facilitate

the identification of failures or crashes produced by AUT;

– Android Emulator: The Android Emulator [17] is a tool developed by Google

that simulates Android Devices in the computer making possible the application

testing without the need for the real device. ENVIAR uses the Android Emulator

tool to execute the AUT test cases in a simulated way;

– ADBComunicator: The Android Debug Bridge (ADB) [13] is a command-line

tool developed by Google that communicates with the Android Emulator. The

ADBComunicator module encapsulates all the necessary commands to facilitate

communication between ENVIAR and the Android emulator through ADB. Be-

sides, ADBComunicator is also responsible for storing all commands sent to the

emulator during the execution of a test case to facilitate the later reproduction of

scenarios that have caused the failure.

5.3 Testing Process

The ENVIAR testing process initiates with the tester informing which path(s) to test and the

order of the test (first-order, second-order, and so on). By default, ENVIAR generates tests

for all the system events described in Section 4. From these inputs, the PICT Input Generator

creates the plain-text model file (PICT Input). The Test Suite Generator calls the PICT

passing the PICT Input, which, consequently, generates a file containing the combinations of

paths and events following pairwise testing. The test suites in ENVIAR are stored internally

in the output format of the PICT tool.

The Test Suite Executor module receives the test cases that are the result of the PICT

execution. Thus, for each test case, the Test Suite Executor configures the Android emulator

according to the test case setup configuration and executes the test case. On execution, the

5.3 Testing Process 66

Walker component simulates (in a new thread) the variation of the geographical position of

the path(s) while the ADBComunicator sends the events of the test case. At the end of the

execution of each test case, the Test Suite Executor generates three outputs:

i Verdict of the test case;

ii File containing all sent commands to AUT during the execution of the test case;

iii File with the execution logcat of the test case.

Figure 5.2 summarises the ENVIAR testing process.

Setup Device

Execute test case

Test suite executor

Verdict

Sent
Commands

Logcat

Test suite generator

PICT Input
Generator

PICT
Input

PICT

Test
Cases

Paths
and

speeds

Order System
Events

Figure 5.2: Enviar Testing Process

The pseudo-code 5.1 describes in more details the ENVIAR testing process.

Source Code 5.1: ENVIAR Testing Process Pseudo-code

1 ExecuteENVIAR () {

2 Set < Tuple [Path , speed] > pa thsAndSpeeds = T e s t e r . ge t Pa th s And Spe eds () ;

3 i n t t e s t O r d e r = T e s t e r . g e t T e s t O r d e r () ;

4 Set < Sys temEvents > s y s t e m E v e n t s = ENVIAR . g e t S y s t e m E v e n t s () ;

5.3 Testing Process 67

5 Set < Tes tCase > t e s t C a s e s = g e n e r a t e T e s t C a s e s (pa thsAndSpeeds ,

sys t emEven t s , t e s t O r d e r) ;

6 e x e c u t e T e s t S u i t e (t e s t C a s e s) ;

7 }

8

9 g e n e r a t e T e s t C a s e s (Set < Tuple [Path , speed] > pathsAndSpeeds , Set <

Sys temEvents > sys t emEven t s , i n t t e s t O r d e r) {

10 T e x t F i l e PICTInput = P I C T I n p u t G e n e r a t o r . g e n e r a t e P i c t I n p u t (

pa thsAndSpeeds , sys t emEven t s , t e s t O r d e r) ;

11 T e x t F i l e PICTOutput = PICT . e x e c u t e P a i r w i s e (PICTInput) ;

12 Set < Tes tCase > t e s t C a s e s = ENVIAR . e x t r a c t T e s t C a s e s (PICTOutput) ;

13 re turn t e s t C a s e s ;

14 }

15

16 e x e c u t e T e s t S u i t e (Set < Tes tCase > t e s t C a s e s) {

17 Andro idEmula to r . s t a r t () ;

18 T e s t e r . prepareAUT () ;

19 Moni to r . s t a r t M o n i t o r i n g () ;

20 f o r e a c h (T e s t C a s e t e s t C a s e : t e s t C a s e s) {

21 s e t u p T e s t C a s e (t e s t C a s e) ;

22 e x e c u t e T e s t C a s e (t e s t C a s e) ;

23 }

24 }

25

26 e x e c u t e T e s t C a s e (T e s t C a s e t e s t C a s e) {

27 Walker . s i m u l a t e W a l k (t e s t C a s e . g e t P a t h ()) ;

28 whi le (NOT Walker . f i n i s h e d () AND NOT T e s t e r . v e r d i c t S e t t e d ()) {

29 i f (t e s t C a s e . hasWai t () {

30 ENVIAR . w a i t () ;

31 }

32 i f (t e s t C a s e . hasNex tSys temEven t ()) {

33 ADBComunicator . s endEven t (t e s t C a s e . ge tNex tSys t emEven t ()) ;

34 }

35 T e s t e r . ve r i fyAUTBehav ior () ;

36 }

37 save (v e r d i c t) ;

38 save (ADBComunicator . getSentCommands ()) ;

5.3 Testing Process 68

39 save (L o g c a t h e r . getAUTLogcat ()) ;

40 }

Initially, ENVIAR receives from the tester a set of tuples composed by the path and

respective maximum speeds and the order of the test case (lines 2 and 3). In line 4, ENVIAR

loads all system events supported by the tool. The generateTestCases subroutine generates

the test cases for the entered parameters in line 5. In line 6, ENVIAR passes the test suite to

the executeTestSuite subroutine.

To generate the test cases, the generateTestCases subroutine initially generates the plain-

text model file (PICT Input) through the PICTInputGenerator component (line 10). This file

is passed as a parameter to the PICT component, which executes pairwise to select the set of

test cases (line 11). In line 12, the test cases are extracted from the PICT output.

The test suite is executed by the executeTestSuite subroutine (line 16). Whenever the test

suite starts to run, the Android Emulator starts (line 17), the tester “prepares” the AUT (line

18), that is, the tester opens the AUT and leaves the application ready to test the functionality

of interest. In our case, the navigation functionality along the simulated path. In line 19, The

Monitor module starts monitoring. It will check if the AUT crashes or if the tester associates

any verdict during the execution. For each test case (line 20), ENVIAR performs the test

case setup (line 21) and executes the test case (line 22).

To execute a test case, the Walker component initially starts its simulation of geographic

location variation for the path points (line 27). This walking simulation is an asynchronous

function, that is, as soon as the Walker component starts executing the walking, ENVIAR

continues its execution and goes to line 28. As long as the Walker has not finished simulating

the walking and the tester has not assigned a verdict (line 28), ENVIAR waits the pre-defined

time of 15 seconds (lines 29 and 30) if the test case has a “wait” condition (Section 4.2) and

then sends the next system event if there is any system event yet to be sent (lines 32 and 33).

During the walking and sending events, the user observes the AUT to see if any incorrect

behavior occurs (line 35). At the end of the test case execution, ENVIAR stores the verdict,

the sent commands, and the execution logcat (lines 37, 38, and 39).

5.4 Test Case Generation Using PICT 69

5.4 Test Case Generation Using PICT

ENVIAR implements the test case generation approach described in Chapter 4. As described

in Section 4.2, the selection of test cases is done by pairwise technique. The ENVIAR tool

implements the technique using the PICT tool [15]. PICT is a command-line tool developed

by Microsoft [16]. PICT receives as input a plain-text model file and produces a set of test

cases. The model file consists of the following sections:

• parameter definitions

• sub-model definitions (optional and not used by our work)

• constraint definitions (optional and used by our work)

Each parameter definition is listed in a separate line with the respective values delimited

by commas:

<ParamName>: <Value1>, <Value2>, <Value3>, ...

Example:

Path: Perfect, Small, Long, Limit

Speed: 80, 5, 200

Setup: S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12

First_Delay: WAIT, NOT_WAIT

First_Event: GPS_ON, GPS_OFF, SIMULATE_LONG_BACKGROUND,

TAKE_A_PICTURE, ORIENTATION_PORTRAIT, ORIENTATION_LANDSCAPE,

RECEIVE_CALL, GPS_CALIBRATED, GPS_NOT_CALIBRATED, INTER-

NET_ON, INTERNET_OFF

The PICT tool makes possible the creation of constraints definitions to avoid unwanted

combinations from the final combination result or to specify limitations on the domain. Con-

sidering the given example, if we want to:

5.4 Test Case Generation Using PICT 70

• limit the speed of the Perfect and Limit paths to 80 km/h;

• limit the speed of the small path to 5 km/h;

• limit the speed of the long path to 200 km/h;

• avoid the first event from being GPS_ON in setups that start with GPS on;

• avoid the first event from being GPS_OFF in setups that start with GPS off.

The model file should be:

Path: Perfect, Small, Long, Limit

Speed: 80, 5, 200

Setup: S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12

First_Delay: WAIT, NOT_WAIT

First_Event: GPS_ON, GPS_OFF, SIMULATE_LONG_BACKGROUND,

TAKE_A_PICTURE, ORIENTATION_PORTRAIT, ORIENTATION_LANDSCAPE,

RECEIVE_CALL, GPS_CALIBRATED, GPS_NOT_CALIBRATED, INTER-

NET_ON, INTERNET_OFF

IF [Path] = "Perfect" THEN [Speed] = 80;

IF [Path] = "Limit" THEN [Speed] = 80;

IF [Path] = "Small" THEN [Speed] = 5;

IF [Path] = "Long" THEN [Speed] = 200;

IF [Setup] in {"S1", "S2", "S3", "S4", "S6", "S7", "S8", "S9", "S10"} THEN

[First_Event] <>"GPS_ON";

IF [Setup] in {"S5", "S11", "S12"} THEN [First_Event] <>"GPS_OFF";

When creating the PICT input model file, the definitions of the parameters are determined

by choosing which paths the tester wants to take, the maximum speed on each path, and the

order of the test suite. ENVIAR generates the constraint definitions considering the test order

and the following restrictions:

• GPS cannot be turned on while it is already turned on;

5.5 ENVIAR Graphical Interface 71

• GPS cannot be turned off while it is already turned off;

• Cannot calibrate an already calibrated GPS;

• It is not possible to make not calibrated an already not calibrated GPS;

• It is not possible to change the orientation of the device to the orientation it is already

in;

• Internet connection cannot be turned on while it is already turned on;

• Internet connection cannot be turned off while it is already turned off;

• A call that did not occur cannot be accepted;

• A call that did not occur cannot be canceled.

To generate test cases, ENVIAR creates the PICT input model file internally and then

executes the PICT tool by passing the created model file as input to the tool. The rules used

for test cases of order 1, 2, 3, 4 and 5 are respectively A.1, A.2, A.3, A.4 and A.5.

5.5 ENVIAR Graphical Interface

Figure 5.3 illustrates the main ENVIAR window. It is divided into two parts: “Test Suite

Generation” and “Test Suite Execution”. To generate test cases, it is necessary to choose

which path(s) to test. It is possible to choose more than one path by holding down the

keyboard CTRL or SHIFT button and clicking which paths to generate test cases. Four

paths are pre-installed in ENVIAR (Figure 5.4). As explained in Section 4.1, paths with

geographic coordinate values close to the limit values (Figure 5.4(a)), long paths (Figure

5.4(b)) and short paths (Figure 5.4(d)) can be faulty paths. The perfect path (Figure 5.4(c))

is a straight path that does not fit into any of the types of paths that can cause failure. It was

used to generate test cases whose possible failure is not linked to the path, but to the system

events.

5.5 ENVIAR Graphical Interface 72

Figure 5.3: ENVIAR Main Window

(a) Limit (b) Long

(c) Perfect (d) Small

Figure 5.4: Paths

The “+” and “-” buttons are respectively for creating or deleting paths. As can be seen in

5.5 ENVIAR Graphical Interface 73

Figure 5.5, to create a path, it is necessary to enter the points to go through.

Figure 5.5: ENVIAR Path Creation

The tester must set which maximum speed (in km/h) will be emulated in each of the

chosen paths (Figure 5.6) and which order of the test suite to generate.

Figure 5.6: ENVIAR Speed Setting

5.5 ENVIAR Graphical Interface 74

The generated test suites are available to execute in the test suite list, Figure 5.7. To

execute a test suite, click on one of the generated suites and click the “Test Suite Execution”

button. By pressing the button, it will open the execution window, Figure 5.8.

Figure 5.7: ENVIAR Execution

Figure 5.8: ENVIAR Execution Window

5.5 ENVIAR Graphical Interface 75

Information about executions is arranged in the execution window. The information is

separated by AUT organized in the application list, Figure 5.9. The tester should add the

name and package of the application to be tested via the “New” button. For each added

application, information about the number of test cases tested, the number of test cases ac-

cepted, rejected, and not yet tested is displayed.

Figure 5.9: ENVIAR Applications Under Test

After running the test case, the tool generates two outputs: logcat and sentCommands.

• Logcat: ENVIAR retrieves the emulator-generated logcat from the time the test case

execution starts until it ends. In Table 5.1 is a part of a logcat generated by running a

crashed application. Note that logcat informs precisely which part of the code caused

the failure, making it easier for the developer to identify the reason.

• sentCommands: All commands sent by the tool to the AUT are saved in this output.

Thus, it is possible to rerun the same test case under the same conditions, enabling the

re-execution of failed scenarios. In Table 5.2 is a part of a generated sentCommands. In

it, it is possible to see that initially, the internet was at full speed. After traversing two

geographical points, the AUT was opened. After traversing 4 geographical positions,

5.5 ENVIAR Graphical Interface 76

the internet connection was interrupted. As can be seen, all data simulated by ENVIAR

is sent to AUT via the Android Debug Bridge (ADB) [13].

Table 5.1: Logcat example
——— beginning of crash

08-21 14:50:23.700 9280 13480 E AndroidRuntime: FATAL EXCEPTION: AsyncTask #11

08-21 14:50:23.700 9280 13480 E AndroidRuntime: Process: com.voicenavigation.gps.driving.directions, PID: 9280

08-21 14:50:23.700 9280 13480 E AndroidRuntime: java.lang.RuntimeException:

08-21 14:50:23.700 9280 13480 E AndroidRuntime: at android.os.AsyncTask$3.done(AsyncTask.java:353)

08-21 14:50:23.700 9280 13480 E AndroidRuntime: at java.util.concurrent.FutureTask.finishCompletion(FutureTask.java:383)

08-21 14:50:23.700 9280 13480 E AndroidRuntime: at java.util.concurrent.FutureTask.setException(FutureTask.java:252)

08-21 14:50:23.700 9280 13480 E AndroidRuntime: at java.util.concurrent.FutureTask.run(FutureTask.java:271)

08-21 14:50:23.700 9280 13480 E AndroidRuntime: at android.os.AsyncTaskSerialExecutor1.run(AsyncTask.java:245)

08-21 14:50:23.700 9280 13480 E AndroidRuntime: at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1162)

08-21 14:50:23.700 9280 13480 E AndroidRuntime: at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:636)

08-21 14:50:23.700 9280 13480 E AndroidRuntime: at java.lang.Thread.run(Thread.java:764)

08-21 14:50:23.700 9280 13480 E AndroidRuntime: Caused by: java.lang.IndexOutOfBoundsException: Index: 0, Size: 0

08-21 14:50:23.700 9280 13480 E AndroidRuntime: at java.util.ArrayList.remove(ArrayList.java:503)

08-21 14:50:23.700 9280 13480 E AndroidRuntime: at c.d.e.a.a.a.a.g.l.doInBackground(:1)

08-21 14:50:23.700 9280 13480 E AndroidRuntime: at android.os.AsyncTask$2.call(AsyncTask.java:333)

08-21 14:50:23.700 9280 13480 E AndroidRuntime: at java.util.concurrent.FutureTask.run(FutureTask.java:266)

08-21 14:50:23.700 9280 13480 E AndroidRuntime: ... 4 more

Table 5.2: Sent commands example
adb emu network speed full

adb emu geo fix -37.541069 -7.589196

adb emu geo fix -35.884482 -7.219515

adb shell monkey -p com.voicenavigation.gps.driving.directions -c android.intent.category.LAUNCHER 1

adb emu geo fix -37.541069 -7.589196

adb emu geo fix -37.541069 -7.589196

adb emu geo fix -37.541069 -7.589196

adb emu geo fix -37.541069 -7.589196

adb emu network speed 1 1

adb emu geo fix -37.541069 -7.589196

adb emu geo fix -37.541069 -7.589196

adb emu geo fix -37.541069 -7.589196

Clicking on one of the executed test cases (Figure 5.10) displays information about sent

commands and logcat. Sent commands and logcat are also displayed in real-time while the

test case is running.

5.5 ENVIAR Graphical Interface 77

Figure 5.10: Test Cases

By clicking the “Execute” button, ENVIAR will check if there are any Android Emu-

lator (emulator for short) running. If not, ENVIAR will ask to choose one of the installed

emulators to run. As explained in Section 4.2, each test case has one of 12 Table Setups 4.2.

Therefore, the first step of running each test case is the AUT setup, Figure 5.11.

Figure 5.11: Test Cases Setup

5.5 ENVIAR Graphical Interface 78

After setup, ENVIAR will start sending the geographical coordinates of the path. During

path creation (Figure 5.5), the tester describes the geographic coordinates through where the

simulator should travel. Based on these coordinates and the maximum velocity that the tester

sets during the creation of the test suite (Figure 5.6), ENVIAR calculates intermediate points

between the coordinates setted by the tester on path creation so that the speed never exceed

the maximum.

ENVIAR automatically identifies AUT crashes and allows the tester to assign verdicts

during test case execution, Figure 5.12. If during the execution of a test case, the AUT

crashes, then ENVIAR determines the Crash verdict and stops the execution so the tester

can prepare the AUT again for testing. If the tester observes any abnormal behavior during

the execution of the test case, he/she may press the “Reject” button. Thus, ENVIAR will

determine the Reject verdict for that test case and then start the next test case. The Accept

verdict can be given to the test case if it ends execution without the tester having determined

the Reject verdict or if the tester presses the “Accept” button. The tester may press the “Stop”

button while the test case is running if it wishes to stop the test without giving any verdict on

the test case execution.

Figure 5.12: Verdicts Buttons

5.6 Concluding Remarks 79

5.6 Concluding Remarks

This chapter described the implementation of the approach proposed in Chapter 4. ENVIAR

is a tool capable of generating and executing test cases for context-aware path-based Android

applications simulating variation of GPS location and system events that can cause failures.

The ENVIAR architecture, its components, and the implementation of the generation and

execution of test cases were described in this chapter. The ENVIAR graphical interface was

also described, allowing a more detailed comprehension of the tool.

Chapter 6

Evaluation

In this chapter, we show an evaluation of the approach proposed in Chapter 4. The evaluation

was carried out through an exploratory study realized to identify which kind of defects the

approach can find and features on test case orders, Section 6.1. We compared ENVIAR with

other existing tools in Section 6.2. Section 6.3 highlights how ENVIAR can be used as a

support tool to assist other existing tools for testing context-aware path-based applications.

6.1 Exploratory Study

The goal of this study, according to the description in the GQM template, was to analyze

the defects found with the intention of evaluating them with respect to their nature and

quantity from the tester’s point of view in the context of GPS based Android applications.

Hence, the research questions in this study are as follows:

• RQ1: What kind of defects can the approach reveal?

• RQ2: Are any of the defects found contextual?

• RQ3: Is there a difference between test case orders?

We use as a metric to answer the questions the number of context defects found by

ENVIAR.

Software testing is part of the software development process, and its main objective is to

find defects (bugs) in the source code to be corrected. This activity can be done statically

80

6.1 Exploratory Study 81

(through code analysis) or dynamically (through the execution of test cases). However, in

both cases, it is necessary to perform the debugging process to identify defects.

In our study, we do not have access to the source code of the AUTs. Therefore, instead

of investigating defects in the code, we observed possible defects from failures during the

execution of the test cases. That is, we identified possible defects from scenarios that caused

failures.

Therefore, the dynamics performed to define the possible defects were:

1. We observed the execution of each test case;

2. We documented the observed behavior of each test case that failed;

3. At the end of the test suite execution, we grouped the test cases that failed to match by

AUT and observed behavior;

4. Observing the logcat saved by the ENVIAR tool and the events sent to the AUT during

the test case execution, we reorganized the test cases observing cause/effect relation-

ships.

Thus, for the same test cases that failed under the same scenario, we assumed that the

same defect in the code possibly caused it. Hence, in the evaluation, we did not look at the

number of test cases that failed, but at the number of possible different defects found. From

now on, we will call simply as defect each possible defect in the source code.

The next subsection describes how the exploratory study was carried out.

6.1.1 Methodology

Figure 6.1 illustrates how the exploratory study was planned, executed, and how its results

were analyzed. The flowchart is composed of activities (represented by rectangles with

rounded corners), flow (represented by arrows), and artifacts (represented by several doc-

uments picture).

Initially, we selected the applications used to evaluate our approach, resulting in 4 real

GPS navigation applications (Subsection 6.1.1). In parallel, we carried out a study of a set of

test cases we would use to execute in each one of the selected applications in our approach

6.1 Exploratory Study 82

and which GPS data to use (Subsection 6.1.1). We observe generation and execution time

in each of the possible orders of test cases and select the paths to be emulated observing the

types of paths most likely to fail (Section 4.1).

The execution time did not take into account the time for the setup. Setup can take 10 to

60 seconds. When an AUT is opened, the tester must inform the path it will take and then

start the test case in ENVIAR. In this case, the tester takes about 60 seconds to prepare the

AUT to execute the test cases. If the test case does not crash, the application does not need

to be started again, so ENVIAR only needs about 10 seconds to perform the setup and start

the execution of the next test case.

With the selected applications, the choice of test orders, and GPS data, we carried out the

planning of the execution of the exploratory study. The approach proposed by our work was

implemented in the ENVIAR tool, and through it, we executed the exploratory study.

At the end of the execution, the ENVIAR tool saved files containing the verdict, execu-

tion time, and sent events from each test case. We call this set of saved files as raw results.

The raw results contain no analysis of defects or whether the failures occurred due to context

variation.

The ENVIAR tool does not automatically evaluate verdict in test cases. ENVIAR auto-

matically detects crashes in the AUT, but it cannot automatically determine if a test case has

passed or failed. Therefore, the execution is monitored by a tester who observes the AUT’s

behavior and associates the pass and fail verdicts for the test case.

After the execution of the test cases, we performed the analysis of the raw results and dis-

tinguished the defects found and cataloged them as context defects and non-context defects.

A defect is a context defect when the failure of the test case was due to a context variation

(i.e., failure due to a change in GPS calibration or a change in the internet connection). We

identify context defects by looking at whether the context variation of the test case caused

the failure. This analysis was performed after running all the test cases in the AUTs. The

following subsections explain each of the activities in Figure 6.1 flowchart.

Applications Selection

We chose four path-based applications widely used for the execution of the exploratory study,

as shown in Table 6.1.

6.1 Exploratory Study 83

Applications
Selection

Apps

Test Cases
Selection

Test Cases

Exploratory Study
Execution

Raw Results

Results Analysis

Exploratory
Study Results

Exploratory Study
Planning

Exploratory
Study Design

Figure 6.1: Exploratory Study Flowchart

Table 6.1: Selected Applications
Application Installations Stars Version

OsmAnd [6] 5,000,000+ 4.7 3.3.8

Genius Maps: Offline GPS Navigator [4] 500,000+ 4.2 2.5.0

GPS Offline Navigation Route Maps & Directions [5] 100,000+ 4.0 1.0.3

Voice GPS Navigation: Live Driving Direction [7] 10,000+ 4.2 1.13

All applications are similar in the service they offer, GPS navigation applications. All

applications are available for download from the Google Play web store [14].

It was chosen real applications in order to avoid any bias by the authors. Also, it was

chosen applications with few downloads (more than 10,000) and many downloads (more

6.1 Exploratory Study 84

than 5,000,000). The number of downloads indirectly influences the quality of the software.

Google Play provides a platform for users to report their impressions about the apps. There-

fore, they also report bugs they identify throughout use. For this reason, applications with

many downloads tend to have fewer bugs than applications with few downloads, as it is

natural that there will be more posts about presented bugs.

Test Cases Selection

Given the approach defined in Chapter 4, we can automatically generate test cases for ap-

plications. ENVIAR generates and executes test cases receiving as input the route the tester

wishes to travel and the events the tester wants to occur during the path travel. The approach

proposed in our work aims to identify context defects by sending events and/or as a result

of one of the paths with the highest chance of failure (Section 4.1). Thus, we define a path

that we call the “Perfect Path” where we hope that failures will not occur due to the path

execution itself. As explained in Section 4.1, we identified scenarios with a chance of fail-

ure, from where, there are bug reports about GPS based applications that indicate failures

in executing short paths, long paths, and paths with coordinate limit values. Therefore, we

made the “Perfect Path” as simple as possible to prevent the application from failing due to

the path being executed. Thus, the “Perfect Path” is a straight line on which the application

will travel without leaving the route. We have defined this path so that if it fails, it will most

likely be due to events.

We generated test cases using four different paths:

• Limit Path (Figure 5.4(a)): a path that goes over the equator line;

• Long Path (Figure 5.4(b)): a path with more than 1.000 kilometers;

• Perfect Path (Figure 5.4(c)): a straight line on which the application will travel without

leaving the route;

• Small Path (Figure 5.4(d)): a path with less than 350 meters.

As explained in Chapter 5, ENVIAR is capable of generating test cases of order 1, 2,

3, 4, and 5. We generate test cases of order 1, 2, 3, 4, and 5 and calculate the number

of possible test cases without pairwise. Table 6.2 shows the difference in the number of

6.1 Exploratory Study 85

test cases with and without pairwise in each order. We can see that the number of test cases

without pairwise increases exponentially as the order of the test case increases since, without

pairwise, all possible combinations of events and paths in the test cases are generated.

Table 6.2: Test Case Orders Comparison

Order 1 Order 2 Order 3 Order 4 Order 5

Without pairwise 1,056 27,456 713,856 18,560,256 482,566,656

With pairwise 88 183 223 255 284

Each test case in Table 6.2 is composed of (i) a path that will be sent to the AUT, (ii) the

maximum speed that will be simulated, (iii) a setup that will be configured when starting the

test case, and (iv) a sequence of N waits and events that will be dispatched for N-order test

cases (see Section 4.2). The execution of the test case only ends after all events and after

walking all the route.

It is possible to calculate an estimate of how long a test case can take to execute. In our

work, we used the speed of 5 km/h to the small path, 80 km/h to the perfect path, 80 km/h

to the limit path, and 1000 km/h to the long path. We chose the speed of 5 km/h for a small

path to simulate a person walking. The speed of 80 km/h was chosen because it is an average

maximum speed widely used on highways in Brazil. The speed of 1000 km/h was chosen

for the long path to reduce the execution time of the test case and, at the same time, test the

AUTs at speed limit values. After several executions of test cases with each of the types of

paths with the mentioned speeds, we were able to conclude that:

• Test cases that have a small path can take up to 312 seconds to execute completely;

• Test cases that have a perfect path can take up to 156 seconds to execute completely;

• Test cases that have a limit path can take up to 404 seconds to execute completely;

• Test cases that have a long path can take up to 6134 seconds to execute completely;

This time that we measure is the maximum time that each test case can take. In these

executions, the test cases were run until the end of each path. In other words, the time may

be shorter because the test case may fail at some point in the path and, consequently, it will

take less time to execute it from the beginning of the path to the point that failed.

6.1 Exploratory Study 86

Considering:

• QSm as the number of test cases with small path;

• QPf the number of test cases with perfect path;

• QLm the number of test cases with limit path;

• QLg the number of test cases with long path.

We can estimate the time in hours of the execution of a test suite using the formula

Time = (QSm × 312 +QPf × 156 +QLm × 404 +QLg × 6134)÷ 3600.

After generating the test cases of order 1, 2, 3, 4, and 5, we count the number of test

cases with each kind of path for each order. Also, we measure how long it takes the tool to

generate the test cases for each of the orders. Table 6.3 illustrates how long the test cases for

each order take to generate and how long it can take to execute on each of the AUTs when

executing on the machine described in the context selection (subsection 6.1.1).

Table 6.3: Generation and Execution Time
Order 1 Order 2 Order 3 Order 4 Order 5

Generation Time <1 second <1 second 00:00:01 00:01:33 04:20:06

Execution Time Estimate 54:09:54 120:44:58 133:26:54 146:15:26 183:47:18

This increase is because pairwise testing is an NP-Complete problem. For example, to

generate the order 5 test cases, PICT needs to generate the 482,566,656 test cases internally

to select 284. It was necessary 04 hours, 20 minutes, and 06 seconds to generate the test

cases of order 5. It is important to remember that the generation and execution times of the

Table 6.3 can vary depending on the used computer hardware. However, regardless of the

power of the hardware, the difference in generation times between the orders will still be

exponential.

On the other hand, the execution time does not increase exponentially because the num-

ber of test cases with pairwise does not increase exponentially yet. The execution time was

calculated by observing the time necessary to execute the entire test case route considering

that the test case only ends at the end of the path simulation. Thus, as test cases can fail, the

total execution time may be less than that calculated in Table 6.3.

6.1 Exploratory Study 87

The generation time for test cases of orders 1, 2, 3, and 4 is low. The test cases of order

5 took 04:20:06 to be generated. Although it is a long time compared to the generation time

for the 1, 2, 3, and 4 test cases, it is not a long time compared to the execution time.

In our approach, test cases are generated automatically and its execution is semi-

automated once the analysis of the execution is done manually. That is, a tester must ob-

serve the execution of the test case in order to assign a verdict. Thus, the execution time is a

limitation in this study since we only have a single tester to observe the execution of all test

cases in each of the four applications. The tester monitors the execution of the test case. If he

perceives any behavior that is not consistent with the specifications, then the tester assigns

the failure verdict and notes the visualized behavior. At the end of all test case executions,

the tester observes in each test case the verdict, the path traveled, and the events received

and, based on this information and notes, catalogs defects found. Thus, in this study, we

only consider test cases of order 1 and order 2.

The generation of the test cases for both orders takes only 2 seconds. However, the exe-

cution time takes approximately 54 and 121 hours in each of the four selected applications,

totaling up to 700 hours of execution in all four applications (without considering the data

analysis time). A study of all five orders would take approximately 2,548 hours of execution

in the four selected applications, which is not feasible in this study’s reality. To make this

study’s execution feasible, we decided to generate test cases of orders 1 and 2 only. There-

fore, 88 test cases of order 1 (Table B.1) and 183 test cases of order 2 (Table B.2) were

generated to be used to execute each one of the selected applications.

Exploratory Study Planning

With the selected applications, the choice of test orders, and GPS data, we carried out the

planning of the execution of the exploratory study. In order to give more confidence, the

exploratory study was planned based on the Wohlin et al. [142] approach. Therefore, the

planning is organized by the sequence of the following subsections (i) context selection, (ii)

selection of subjects, (iii) instrumentation, and (iv) validity evaluation.

i. Context Selection The planning starts with the decision about the context in which

the study would be carried out. The Android development environment makes it possible

6.1 Exploratory Study 88

to execute applications on real devices or emulated devices. Initially, we were interested

in running the test cases on real devices. However, it would be necessary to modify the

Android operating system to allow simulation of values on real devices. Thus, we decided

to use the Android Emulator [17] that facilitates GPS simulation without the need to modify

the Android operating system. Therefore, we defined the context of our study in an emulated

environment.

ENVIAR performs tests in the emulated environment. We ran the test cases on an em-

ulator that simulates a smartphone with 1.5 GB of RAM, 64 GB of internal storage, and

running Android Oreo 8.1. The emulators are very faithful to the real devices; they use the

same operating system, have emulated hardware, and provide an interface for the tester to

enter data from some sensors, such as GPS and accelerometer. They can also simulate phone

calls and SMS messages arrivals. However, because they do not have their own hardware,

the emulator suffers from physical limitations imposed by its own computer that executes the

emulator, such as the limit of RAM and processor capacity. The process scheduler also limits

the execution speed of applications since the process that runs the emulator is not the only

one allocated by the operating system of the running computer. To minimize this problem,

we ran the tests on a dedicated computer to execute only this activity. The emulator ran on

a computer equipped with an Intel Core i7 2.4 GHz processor (3.0 GHz with Turbo Boost),

16GB of RAM, 1TB of SSD hard disk and dedicated AT RADEON 2GB graphics card. As

the computer’s hardware is much superior to the hardware allocated to the emulator, the em-

ulator’s performance is similar to the performance of a real device with the same emulated

configurations. Also, we use real apps that are available on the Google Play web store to

eliminate any bias by the part of the authors.

ii. Selection of Subjects In this work, we identified events and paths that have a good

chance of causing context-aware applications to fail (Section 4.1). Therefore, we selected

GPS navigators Applications as path-based applications.

iii. Instrumentation Accordingly to Wohlin et al. [142], the instruments for an experiment

are of three types, namely objects, guidelines, and measurement instruments. The objects are

4 Android GPS based applications. The measurement instrument is the defects captured by

6.1 Exploratory Study 89

the ENVIAR tool. In this study, the guidelines are not applicable.

iv. Validity Evaluation There are different classification schemes for different types of

threats to the validity of a study. In this work, we will follow the Cook and Campbell [48]

classification. Cook and Campbell classify validity evaluation in four categories: conclusion,

internal, construction, and external.

1. Conclusion validity: We may not have correctly classified the defects found because

we do not have access to the AUT code. To minimize this risk, we organized the

defects at the end of the execution of all test cases. In this way, we were able to

make comparisons between executions of similar test cases. Thus, it was possible to

observe groups of executions with similar scenarios that exhibited the same failure and,

therefore, to state more confidently that a defect was found based on similar execution

scenarios. Once the scenarios that caused the failures were identified, we were able to

more reliably determine if the defect is a context defect based on context variation.

2. Internal validity: 88 test cases of order 1 and 183 test cases of order 2 were performed

in each of the 4 AUTs, totaling 1,084 executions, which could take up to 700 hours.

As the tester gives the verdict of each test case, the tester could become fatigued and

assign an incorrect verdict. Therefore, we took care to take rest breaks while observing

the test case executions. Moreover, the sequence of executions can cause a threat of

internal validity because there is a possibility that a test case execution will affect the

result of the execution of the next test case. To avoid this risk, ENVIAR configures

the test case setup before executing it. Besides, ENVIAR waits for the AUT to be

configured according to the setup that was sent to the AUT. For example, if the test

case setup determines that the GPS is on, ENVIAR waits for the GPS to be turned on

and ready for use. Since each test case has its own setup and ENVIAR waits for it to be

properly configured, we believe that each test case’s verdict is not affected by previous

test cases. Another internal threat risk factor is that a test case fails not due to a defect

found, but for another reason (i.e., failure due to the Android Emulator). To eliminate

this risk, we re-run all failed test cases to see if they failed again and only catalog

the test cases that failed again. Finally, a possible cause of threat to internal validity

6.1 Exploratory Study 90

would be defects in the implementation of ENVIAR that would cause false failures in

the execution of AUT. To minimize this threat, we chose to use the Android Emulator

and the ADB to carry out the communication between ENVIAR and the AUT. Both

the Android Emulator and the ADB were developed and tested by Google. Also, our

solution uses the Android operating system without modifications. In this way, we

minimize the possibility of ENVIAR to cause false failures in the AUT.

3. Construction validity: Smartphones currently have several sensors, such as a barome-

ter, gyroscope, pedometer, compass, and GPS. Faced with so many resources provided

by smartphones, the possibilities and heterogeneity between the types of context-aware

applications are great. However, it is impracticable in our work’s scope to test our ap-

proach for context-aware applications that can receive information from several sen-

sors. Most context-aware applications use GPS. For this reason, we decided to use

GPS based applications to represent context-aware applications.

4. External validity: We select four real applications from the Google Play Market

place. These selected applications have up to 5,000,000 downloads. Therefore, they

are widely used. Thus, we believe the applications well represent the applications used

in practice by Android users. All applications were executed by the ENVIAR tool on

a dedicated machine. In this way, the selection of the applications well represents

the GPS based applications, and the test case execution environment is free of external

interferences. Besides, manually introducing faults into applications could lead the ex-

ploratory study to bias. To minimize this threat, we selected events based on reported

bugs and Amalfitano et al. Section 4.1. Consequently, the external validity threat has

been minimized.

Exploratory Study Execution

With the exploratory study planning, we defined which applications to test under which test

cases, in which context, and how to minimize threats to validity (exploratory study design).

Thus, the next step is to execute the exploratory study under the planning guidelines.

The execution of the exploratory study was done by using the ENVIAR tool observing the

design of the exploratory study defined in the planning. Therefore, test cases of order 1 and

6.1 Exploratory Study 91

order 2 were executed in each of the four selected applications. Before starting the execution,

the environment was prepared to run the test cases. A computer was prepared (described in

the context selection subsection 6.1.1), leaving it dedicated to the task of executing the test

cases. Thus, we configured the computer so that only the essential processes for the operation

of the ENVIAR tool and the Android Emulator were to be loaded by the Windows operating

system to minimize delays and slowness or interference in the execution of the test cases.

The collection of the raw result is described in subsection 6.1.2.

Results and Analysis

We analyzed the raw result in order to answer the research questions. To do so, we catalog

defects from failed test cases from each order and each AUT. The analysis of the raw result

is more detailed in subsection 6.1.3.

6.1.2 Data Collection

At the end of the execution, the ENVIAR tool saved files (available here1) containing the

verdict, execution time, and sent events from each test case of orders 1 and 2, the raw results.

Tables C.1, C.2, C.3, C.4, C.5, C.6, C.7 and C.8 show the verdicts for each test case execution

of order 1 and 2 in each AUT.

6.1.3 Results and Analysis

We can summarize the raw results from Tables C.1, C.2, C.3, C.4, C.5, C.6, C.7 and C.8 in

Table 6.4.
1https://bit.ly/30z8t4h

6.1 Exploratory Study 92

Table 6.4: Summary of Raw Result

Pass Fail Crash Slept Time

App # % # % # %

OsmAnd 248 91.51% 23 8.49% 0 0% 105.2h

GPS Offline Navigation 254 93.73% 17 6.27% 0 0% 118.2h

Genius Maps 263 97.05% 8 2.95% 0 0% 124.4h

Voice GPS Navigation 219 80.81% 52 19.19% 27 9.96% 87.5h

Total 984 90.77% 100 9.23% 27 2.49% 435.3h

Table 6.4 summarizes the result of the execution of the 271 test cases in each of the four

applications. The table shows the number of test cases that passed, failed, crashed, and the

time it took to run all 271 test cases in each of the applications. We discussed in Section

6.1.1 that running all test cases in all applications could take up to 700 hours. However, we

can see that the total time of 435.3 hours has been spent. The total time of 700 hours is the

maximum time that the test could take if all test cases had passed. Once a test case fails,

its execution is terminated, and the next test case is executed. Therefore, test cases that fail

take less time than those that pass. Considering that approximately 35% of the test suite runs

the long path, and each long path takes a little over 1 hour, we can see that time can drop

significantly if test cases fail.

Defects Found

Test case execution found different defects in the four applications: 2 defects in the OsmAnd

application, 4 defects in the GPS Offline Navigation application, 2 in the Genius Maps appli-

cation, and 5 in the Voice GPS Navigation application, totaling 13 defects. Table 6.5 presents

them.

In the table 6.5, we have six columns: (i) name of the AUTs, (ii) the defect identifier, (iii)

brief description about the defect, (iv) test case number identifiers from the tables C.1, C.2,

C.3, C.4, C.5, C.6, C.7 and C.8 where the failures occurred, (v) order of the test cases and

(vi) what triggered the failures.

6.1 Exploratory Study 93

Table 6.5: Applications Under Test Defects

Application
Defect

ID
Failure Description Test Case Number

Test

Order
Cause

16 1

9, 12, 21, 31, 39,

41, 47, 49, 67, 71,

81

2

40, 57, 61 1

83, 123, 133, 134,

144, 148, 169, 170
2

3, 15, 26, 28, 30,

64, 66, 77, 81
1

85, 123, 168, 179 2

D04

The AUT included a distant point

in the path's route (which should

not be part of the route) when the

GPS initially out of calibration is

calibrated

9 2 GPS Calibration

D05 Navigation stopped working 22, 144 2 GPS Calibration

D06 The AUT restarted 160 2 Internal reasons

3, 30 1

32, 46 2

13 1

60, 61, 129 2

4, 7, 21, 51, 61,

76, 82, 84
1

30, 35, 37, 40, 44,

58, 66, 71, 88, 89,

102, 111, 124,

135, 148, 153,

156, 176, 180

2

11, 13 1

39 2

D11

The AUT included a distant point

in the path's route (which should

not be part of the route) when the

GPS initially out of calibration is

calibrated

16 1 GPS Calibration

63, 85, 87 1

103 2

69, 72, 75 1

125, 128, 133,

134, 137, 140,

141, 144, 145,

149, 159, 162,

165, 170

2

Voice GPS

Navigation

OsmAnd

GPS Offline

Navigation

Navigation stopped working

The AUT included a distant point

in the path's route (which should

not be part of the route) when the

GPS initially out of calibration is

calibrated

Did not recalculate the route

Did not rendered the arrow which

indicates the user's position

Genius

Maps

Finished the Navigation Activity.

The AUT stopped working abruptly

(Crashed)

The application did not respond,

but it did not crash

D01

D02

D07

D08

Finished the Navigation Activity

D10

D12

D13

D09

D03

The execution of AUT become

very slow

GPS Calibration

GPS Calibration

The event

SIMULATE_LONG_BACKGROUND

Internal reasons

The event

SIMULATE_LONG_BACKGROUND

Activity went to the background or

device orientation changed.

Activity went to the background or

device orientation changed.

Internal reasons

The event Internet_OFF in a long path

6.1 Exploratory Study 94

D01 was found in scenarios where the GPS was initially out of calibration and then

became calibrated again. When the GPS is out of calibration, the GPS accuracy is low

and the AUT can understand that the device is in a distant location from where it is [19],

[18]. During the execution of test cases that failed because of defect D02, OsmAnd tried

calculating the new route, but never managed to finish calculating.

Regarding defect D03, when ENVIAR simulated the execution of the GPS Offline Navi-

gation application in the background for a considerable time, the Navigation Activity ended,

and navigation finished abruptly. Failure from defect D04 had a behavior similar to the fail-

ures from defect D01. In the test cases that fail for D05, the AUT stopped providing the

navigation service: the AUT started with GPS out of calibration and then it was recalibrated.

From that moment, the AUT should react to the user’s location variation and indicate the

path to the destination. However, the navigation Activity was not rendered. In the test cases

that fail for defect D06, the AUT should normally return to navigation after having executed

the photography application. However, AUT restarted.

During the execution of test cases from defect D07, the AUT returned to the Navigation

Activity but finished the navigation functionality unexpectedly. During the execution of test

cases from defect D08, the arrow indicating the direction the user is in navigation was not

rendered in the graphical interface.

Failures from defect D09 caused a crash in the AUT. Failures from defect D10 are similar

to failures from defect D03, and defect D11 failures are similar to failures from defect D01.

Failures from defect D12 occur when the AUT does not close abruptly but remains unre-

sponsive to any stimuli from the sensors or the user. That is, the AUT becomes unresponsive

to any stimulus forcing the user to close it. Failures from defect D13 occur when the AUT

continues to function but is very slow in responding to stimuli from the sensors or the user.

More details on the defects found and a report describing the observation of the 13 de-

fects’ behavior can be found in Table D.1.

If we compare our approach with manual execution, we can classify the 13 defects in the

following categories:

• Impossible to be reproduced: D01, D02, D04, D05, D11;

• Difficult to reproduce: D13;

6.1 Exploratory Study 95

• Easily reproducible: D03, D07, D08, D10.

Defects D01, D02, D04, D05, and D11 are defects that cannot be reproduced manually

because there is no way for the user to test these test cases without computational assistance.

All of these defects are defects due to GPS Calibration. This scenario cannot be reproduced

without the tester using simulated data. For this reason, we believe that these defects were

present in three of the four tested applications.

The D13 defect is considered a difficult defect to reproduce manually because it occurs

due to the combination of two situations: internet failure and long path. It is easily possible

for a user to simulate a failed internet connection over a long path; it is enough to disconnect

the antennas’ internet connection during the trip. However, we find this test difficult as it re-

quires much effort to execute. That is, to reproduce this scenario manually, it is necessary for

the tester to physically move during a long path without an internet connection and observe

if the application behaves correctly. Our study simulated the displacement from Campina

Grande - PB to Teresina - PI; approximately 1,025 km. To reduce execution time, we set

up the test case to simulate a maximum speed of 1,000 km/h. In a manual simulation, this

speed cannot be reached. It is impossible to reach more than 120 km/h on this route without

violating traffic laws. According to Google Maps2, the path takes more than 15 hours to

complete. Therefore, this scenario is difficult to be tested manually.

Defects D03, D07, D08, and D10 are defects that we believe can be reproduced manually

without much effort. These defects occurred due to long background simulation, Activity

went to the background, or device orientation changed. It is entirely possible to test these

situations manually.

As defects D06, D09, and D12 occurred for internal reasons, we have not been able to

conclude which of the three categories they belong to.

RQ1: The tool was able to find 13 defects that were classified into 5 groups of causes:

(i) GPS Calibration, (ii) Simulation of long background, (iii) The event Internet_OFF in

a long path, (iv) Activity went to the background or device orientation changed, and (v)

by internal reasons.

2https://maps.google.com

6.1 Exploratory Study 96

Failures from defect D01, D02, D04, D05, and D11 were caused after the

GPS_CALIBRATED event happened. However, it was not the GPS_CALIBRATED event

that alone triggered the failures. The failures occurred because the GPS was out of calibra-

tion (in the test case setup or because it received the GPS_NOT_CALIBRATED event during

the execution of the test case) and later received the GPS_CALIBRATED event. Failures

from defect D03 and D07 occurred after the event SIMULATE_LONG_BACKGROUND.

As the name suggests, this event simulates the user leaving the AUT in the background

for a long period of time. Failures from defect D08 and D10 occurred after the AUT

went into the background. Unlike the D03 and D07 defects, it was not the SIMU-

LATE_LONG_BACKGROUND event that caused the failures. Failures from defect D08

and D10 were due to the same lack of data management as Activity, but it was not necessary

to force Activity to leave the paused state for the stopped state. The failures from defect

D13 happened when the INTERNET_OFF event occurs during the route of a very long path.

Unlike the other applications, the Voice GPS Navigation application requires the internet to

calculate its route. During the route of not so long paths, the Voice GPS Navigation appli-

cation did not fail when the internet connection failed, but on the long route, the application

was extremely slow to respond to stimuli when the internet connection failed, even if the

connection becomes on again.

Failures from defects D02, D03, D04, D05, D07, D08, D10 and D11 occurred under the

same context scenarios and by the same events respectively, but failures from defects D06,

D09 and D12 occurred under different events and different context conditions. As we do not

have access to the application code, it was not possible to identify what caused the failures.

In this case, accessing the code would allow us to look, using the logcat of the execution,

which part of the code caused the failure and identify the reason. We attributed as internal

reasons for these defects. For this reason, as D09 was observed in more than one test case

failure and the same can be said of D12, it is possible they are not just two single defects in

the code.

Figure 6.2 presents a graph that illustrates the number of defects found by each of the

described causes. We can see that GPS calibration was the cause that revealed the most

defects.

Table 6.6 organizes the defects found as context defects and non-context defects. Thus,

6.1 Exploratory Study 97

5

3

1 1

3

0

2

4

6

Cause

N
u

m
b

er

GPS Calibration

Simulation of long background

The event Internet_OFF in a long path

Activity went to the background or device orientation changed

Internal Reasons

Figure 6.2: Defects Cause Frequency Graphic

it answers the RQ2 of our exploratory study. Defects D01, D02, D04, D05, D11 and D13 are

classified as context defects as it was exclusively the context circumstances that triggered

the failures. The other defects found caused failures that did not occur due to exclusively

contextual circumstances. Therefore, they are not context defects. Even so, although other

tools can simulate some events such as placing an application in the background or changing

the orientation of the device (landscape or portrait), we do not know tools that generate test

cases combining types of paths with events with greater possibility of fail using the technique

of selection of pairwise test cases.

RQ2: ENVIAR found 6 context defects. GPS calibration events contributes to reveal

most of them.

6.1 Exploratory Study 98

Table 6.6: Context Defects and non-context defects

Defect
type

Defect
IDs

Failure Description Cause

Context
Defects

D01,
D04,
D11

The AUT included a distant point in the
path's route (which should not be part
of the route) when the GPS initially out
of calibration is calibrated

GPS Calibration

D02 Did not recalculate the route GPS Calibration

D05
Navigation stopped working. The AUT
behaved just like if the GPS was turned
off.

GPS Calibration

D13
The execution of AUT become very
slow

The event Internet_OFF in a long
path

Non-
Context
Defects

D03,
D10

Finished the Navigation Activity
The event
SIMULATE_LONG_BACKGROUND

D06 The AUT restarted
We were unable to identify the
reason

D07
The navigation feature stopped
working

The event
SIMULATE_LONG_BACKGROUND

D08
Did not rendered the arrow which
indicates the user's position

Activity went to the background
or device orientation changed.

D09
The AUT stopped working abruptly
(Crashed)

We were unable to identify the
reason

D12
The application did not respond, but it
did not crash

We were unable to identify the
reason

From Table 6.5, we can see that defect D11 was captured only by test cases of order

1, defects D04, D05 and D06 were captured only by test cases of order 2 and both orders

captured D01, D02, D03, D07, D08, D09, D10, D12, and D13 (Figure 6.3(a)). Thus, test

cases of order 1 were able to find 10 defects in 88 test cases (8.8 test cases by defect), while

test cases of order 2 found 12 defects in 183 test cases (15.25 test cases by defect).

For context defects only, we can see that context defect D11 was captured only by test

cases of order 1, context defects D04 and D05 were captured only by test cases of order 2

and that the context defects D01, D02 and D13 were captured by both orders (Figure 6.3(b)).

Thus, test cases of order 1 found four context defects in 88 test cases (22 test cases by context

defects), while test cases of order 2 found 5 context defects in 183 test cases (36.6 test cases

by context defects).

6.1 Exploratory Study 99

Order 1

Order 2

D11

D04

D05

D06

D01

D02

D03

D07

D08

D09

D10

D12

D13

(a) All Defects

Order 1

Order 2

D11

D04

D05

D01

D02

D13

(b) Context Defects

Figure 6.3: Defects in Each Order

RQ3: Test cases of orders 1 and 2 may find different defects. The rate of test cases per

defect is lower for order 1, but order 2 adds value to the test suite by identifying additional

defects.

The average is 20.846 test cases by defect found considering orders 1 and 2 together

and 45.167 by context defect found. Thus, order 1 presented a lower average than order 2

or even than order 1 and 2 together, considering all defects and considering only context

defects. However, by executing only test cases of order 1, it would not be possible to find

defects D04, D05, and D06. In contrast, by executing only test cases of order 2, it would not

be possible to find defect D11.

6.1.4 Discussion

In this subsection, we discuss some observations of the results.

Factors that contributed to revealing defects.

GPS calibration was the factor that most triggered failures in AUTs. The fact that the GPS is

momentarily out of calibration revealed five defects in the tested applications. It is important

to highlight that the GPS calibration is a scenario that should be tested in a simulated envi-

ronment. Thus, it would be impossible or very difficult to test this circumstance in manual

testing, which may explain why it was the most found.

6.1 Exploratory Study 100

To find defect D13, it was necessary to use a long route and eliminate the internet con-

nection. This scenario is also challenging to test manually. Therefore, it was so frequent in

the Voice GPS Navigation application because it requires an internet connection to calculate

the route. To the best of our knowledge, no tool can be found in the literature that simulates

the path of short, long, and limit values under adverse situations such as the variation of GPS

calibration, fall, and recovery of GPS signal, fall, and recovery of internet connection.

Pairwise Testing and Different Test Orders

Although test cases of order 2 did not found defect D11, we cannot say that test cases of

order 2 are not able to find defect D11. From Definition 4.3, if we had not used pairwise

testing, each test case of order 1 would be a subtest case of at least one test case of order 2.

Therefore, without pairwise, any defect found in order n test cases could possibly be found

in order n + x for every x > 0. The pairwise technique eliminates test cases to achieve

the smallest set of test cases that ensures that all pairs of events are combined. We have

drastically reduced the number of test cases, but we have also eliminated some combinations

of event groups.

Defect D04 can be detected by test case 9 of order 2. The test case starts with setup S3

and, as soon as the tool begins simulating the path, the GPS calibrates again. After a few

moments, the GPS is turned off. The failure of this test case occurred shortly after the GPS

was calibrated. Thus, the event of turning off the GPS did not influence the failure. For this

reason, this defect could be discovered by test cases of order 1 (excluded due to the pairwise

technique).

On the other hand, defect D05 was found in test cases whose setup forced the GPS to be

initially turned off. After starting the path simulation, the GPS is turned on, and then it is

calibrated. In this scenario, two events were required: GPS_ON and GPS_CALIBRATED.

Therefore, no order 1 test case would be able to find this defect.

Regarding defect D06, we cannot say for sure whether it would be possible to be detected

by test cases of order 1, as it was not possible to determine what motivated the failure.

In summary, we can observe that:

6.2 Comparing ENVIAR to other tools 101

Lower-order test cases are more concise and punctual: the lower the order of the test

case, the more punctual is the detection of the defect, that is, order 1 test cases that failed

were probably due to the event sent by the test case whereas failures that occur in a test

case of order n may be triggered by any (subset) of the n events in the test case or by the

combination of the all n events together.

Trade off between execution time and the number of defects found: the lower the order

of the test case, the less time it will take to run the test suite, but also fewer defects can be

captured. The execution time between orders 1 and 2 more than doubles, but the growth of

the time curve is not so great between test cases of orders 2 and 3, 3 and 4, 4 and 5. Taking

into account the execution time, the decision of which order to choose will depend on how

much time the test team has available to test the AUT and how much they are willing to take

the risk of leaving a defect without being captured.

If execution time is not a great problem, execute more than one test order is a good

strategy to increase the chances of finding defects and, at the same time, being more punctual

in the defects found.

The higher the order of the test case, the more different combinations of events are

tested: n order test cases generate combinations that n − 1 test cases do not explore. The

higher the order, the greater the combination of events generated in the test cases. However,

the execution time will be longer, and the accuracy of which event triggered the failure will

be smaller.

6.2 Comparing ENVIAR to other tools

Some context-aware applications make use of a constant variation of context data. GPS nav-

igators, for example, must always respond promptly to changes in the user’s geographic po-

sition. Therefore, context-aware application testing tools must support the constant variation

of context data. In addition to this feature, ENVIAR is capable of generating and executing

test cases for context-aware applications that use location data type. Thus, in order to make

it possible to compare other tools with ENVIAR, the following characteristics are required

in the tools:

6.2 Comparing ENVIAR to other tools 102

1. Be able to execute scenarios with large context data variations such as a user’s path in

a GPS navigator;

2. Be able to generate test cases;

3. Be able to execute test cases;

4. Be available to download.

The systematic mapping (from Chapter 3) brings results from articles published between

2008 and 2018. Thus, we performed new searches in IEEE and ACM, from 2018 to 2020,

looking for test case generation tools for context-aware Android applications. We used the

same search strings as the systematic mapping. The new search resulted in:

• 5172 articles search engine results;

• 520 articles selected for abstract, introduction and conclusion reading;

• 170 articles selected for full reading;

• 1 result article.

As a result of the new search, we found the DroidMate2 tool. Borges et al. [40] present

the DroidMate2 tool, which is an evolution of the DroidMate tool. DroidMate2 makes it

possible to test applications using random strategies, fitness-based or re-execute previous

recorded executions enabling the tester to implement systematic testing strategies on top of

a ready to use selection of strategies. DroidMate2 interacts with AUT through events such

as click on coordinates (x,y), enable the device wi-fi, Bluetooth, and restart the app from its

initial screen.

Monkey is a stress testing tool developed by Google. It sends pseudo-random GUI and

system events to the AUT. Some studies attest that, although using a simple strategy, Monkey

is one of the tools that can most reveal failures and has more code coverage capability [46],

[114], [136]. For this reason, this tool is used by many authors as a comparison tool [90],

[46]. We did not find studies exclusively related to study Monkey. However, since Monkey

is used as a comparative study by many authors, we decided to choose Monkey for our

comparative study.

6.2 Comparing ENVIAR to other tools 103

Table 6.7 illustrates the characteristics presented by each of the ten tools discussed in

the Subsection 3.3.2, Monkey, DroidMate2, and ENVIAR among the desired characteristics

listed.

The table consists of five columns:

i Column indicating the name of the tool;

ii Column indicating which tools support the execution of test cases with large context data

variations scenarios;

iii Column indicating the test case generation strategy used by the tool;

iv Column indicating which tools execute test cases;

v Column indicating which are available for download.

Table 6.7: Desired Characteristics

Tool

Desired characteristics

Execution of
large context

data variations
scenarios

Test case
generation

strategy

Test case
execution

Available

Calabash-Android Custom-built version

Model-
Based

Testing X
Context Simulator X

Extended AndroidRipper X
GUI

Ripping X

ContextDrive

Model-
Based

Testing X X

TestAWARE X X X

CrashScope

GUI
Ripping X X

MobiPlay X X X

VALERA X X X

RERAN X X X

MBTS4MA

Model-
Based

Testing X X

DroidMate2 Random X X

Monkey Random X X

ENVIAR X
Pairwise
Testing X X

Looking at the second column, we can see that:

6.2 Comparing ENVIAR to other tools 104

• Except for ENVIAR, no tool that supports the execution of test cases with large context

data variations scenarios is capable of generating test cases. The tools that support this

type of execution are the Record and Replay tools. These tools allow re-executing

previously executed scenarios, but first, they need the data to be executed. This data is

generated through a previous real execution of the AUT. In this execution, the sensor

data are stored for later re-execution. In the ENVIAR tool, the sensor data is written

in a script and provided by the tester. Therefore, ENVIAR does not require the AUT

to be executed beforehand. Thus, unlike Record and Replay tools, it is possible to test

through ENVIAR scenarios that are difficult to execute manually;

• ENVIAR uses an innovative test case generation strategy. Tools that use Model-Based

Testing are widely used in the literature. However, this technique has two inherent

problems: the need for familiarity with modeling, and cost to build and maintain the

AUT model. Thus, to test an application using this technique, it is necessary first to

build the AUT model. Complex applications can add a high cost to their modeling.

Also, the models must always be in line with any changes to the AUT specification.

Tools that use GUI Ripping have a lower cost than those that use Model-Based Testing

because they build the AUT model as they run it. These techniques identify GUI ele-

ments through the description of graphic elements in the .xml files of the applications.

However, there are graphic elements that are created dynamically and that are not ex-

plicitly described in .xml files. Therefore, they may not test specific features of AUT.

Random strategies are simple to use and have a low cost but have limitations when we

want to test specific features. ENVIAR uses pairwise testing to generate test cases.

This strategy allows the creation of execution scenarios by selecting pairs of events

that are more likely to find defects and combining them with sets of sensor values.

The use of pairwise testing allowed us to generate test cases with viable sizes to be

executed. Also, it showed us to be able to find context defects and defects in scenarios

of difficult manual execution, Subsection 6.1.3. Besides, unlike the approach that uses

Model-Based Testing, the approach implemented in ENVIAR does not require testers’

experience in modeling. All that the tester needs is to provide a script with the main

geographic points of the path to be simulated and open the AUT in the functionality to

be tested;

6.3 ENVIAR Supporting Other Tools Execution 105

• Excepting ENVIAR, none of the tools can generate and execute test cases for context-

aware applications that make use of a constant variation of context data;

• All the tools mentioned execute test cases;

• Calabash-Android Custom-built version, Context Simulator, and Extended An-

droidRipper are not available to download.

To be able to compare the execution of a tool with the ENVIAR, the tool must have all

the characteristics mentioned in Table 6.7. Calabash-Android Custom-built version, Context

Simulator, and Extended AndroidRipper are not available for download. Thus, we cannot

execute them.

TestAWARE, MobiPlay, VALERA, and RERAN are not able to generate test cases.

These tools are record and replay tools. One of the paths we used in the exploratory study

(Subsection 6.1.1) was a path with approximately 1,000 km. Creating test cases in these

tools with this path for each of the four chosen applications (Subsection 6.1.1) is unfeasible

for our work scope.

ContextDrive, CrashScope, MBTS4MA, DroidMate2, and Monkey are not able to exe-

cute test cases with large context data variations scenarios. Thus, it is not possible to test

scenarios that simulate the paths used in the exploratory study of Section 6.1.

None of the tools can generate and execute test cases with large context data variations

scenarios. Therefore, we could not compare the execution of any of them with ENVIAR.

However, it is possible to execute ENVIAR as a supporting tool allowing the simulation of

the paths. Section 6.3 details how we can use ENVIAR as a supporting tool.

6.3 ENVIAR Supporting Other Tools Execution

The ENVIAR tool sends two types of inputs to the AUT: (i) GPS positions, (ii) events more

likely to find defects. The sending of GPS positions gives the ENVIAR the ability to simulate

the variation of GPS positions and, consequently, simulate a user walking path. We can add

this ability to simulate the variation of GPS positions to other tools if we use ENVIAR as a

supporting tool. Therefore, we can improve other tools providing them the ability to simulate

the constant variation of GPS positions. This improvement makes possible the execution of

6.3 ENVIAR Supporting Other Tools Execution 106

scenarios with large GPS data variations, such as a user’s path in a GPS navigator. Hence, we

can use the ENVIAR tool to simulate the user’s path without sending system events. Figure

6.4 illustrates how it is possible to use ENVIAR as a supporting tool for the simulation of

paths to be taken.

Initially, we used the ENVIAR tool to create test cases. Each test case contains only each

path to be tested. After generating the ENVIAR test cases, the tester prepares the AUT and

the other tool. That is, the tester opens the AUT and makes it ready to be tested, and the

tester configures the other tool and makes it ready to execute. Once the ENVIAR test cases

are generated, and the AUT and the other tool are ready, the tester executes the ENVIAR

and the other tool and keeps observing the AUT. If any incorrect behavior occurs, the test

case fails. Otherwise, the test case passes. This procedure is performed for each test case

generated by ENVIAR. In other words, for each path to be tested, the tester prepares the

AUT, prepares the other tool, executes both tools, and observes the AUT.

Some of the mentioned tools in Section 6.2 (CrashScope, MBTS4MA, DroidMate2, and

Monkey) can be used as examples for the use of ENVIAR as a supporting tool. These

tools generate and execute test cases and could be used as examples, but CrashScope and

MBTS4MA could not be used by the following reasons:

• CrashScope is an online tool3. The tester needs to uploads the AUT’s .akp file to use

it. CrashScope executes in a server. Therefore, it is impossible to simulate the user’s

path through ENVIAR, making it impossible to compare it with our tool;

• Unlike CrashScope, MBTS4MA is a stand-alone tool that makes it possible to use

ENVIAR to simulate a path. However, for MBTS4MA to generate test cases, the AUT

source code is needed, but we do not have access to the code of the applications used in

our experiment. Furthermore, to use MBTS4MA, the AUT source code must be made

using Eclipse ADT4. Eclipse ADT was discontinued by Google in 2016 and replaced

by Android Studio5 since then. Therefore, it is not possible to compare MBTS4MA

with ENVIAR.
3https://www.android-dev-tools.com/crashscope
4https://marketplace.eclipse.org/content/android-development-tools-eclipse
5https://developer.android.com/studio

6.3 ENVIAR Supporting Other Tools Execution 107

Test cases
(Paths)

Create ENVIAR

test cases

Execute each

test case

Prepare

AUT

AUT
prepared

Prepare

Other Tool

Other tool
prepared

Observe

AUT

Execute

other tool

Test Case
Result

Figure 6.4: ENVIAR Supporting Tool

Therefore, we selected Monkey and DroidMate2 to use as examples for the ENVIAR

supporting. We configured these two tools so that we could test the same paths as the test

cases of the exploratory study of Section 6.1 in the four selected applications. Hence, we

configured Monkey and DroidMate2 to send their random events to AUT while ENVIAR

sends the paths’ GPS coordinates. In other words, ENVIAR sends geographic positions to

the AUT to simulate the walking path, while the compared tools (Monkey and DroidMate2)

sends its events. While the test case runs, the tester observes whether the AUTs exhibit any

behavior that is considered incorrect and then catalogs the failures of the test cases and looks

at the stimuli sent to the AUT.

Patel et al. [114] ran the Monkey tool on 15 famous popular commercial apps and affirm

that apps fail after entering an average of 7,513 events. Therefore, we set up Monkey to send

10,000 events in the four applications tested.

6.3 ENVIAR Supporting Other Tools Execution 108

DroidMate2 does not have the option of choosing how many random events should be

sent to the AUT. Therefore, we set up for DroidMate2 to send random events during the time

necessary to run the entire path.

We used the same four paths described in Section 6.1.1 and run Monkey and DroidMate2

in the same four applications (Section 6.1.1) from the exploratory study of the Section 6.1.

At the end of the execution, ENVIAR saved files containing the verdict, execution time,

and GPS Coordinates. Monkey saved files containing the random seed, event kind percent-

age, sent events, and some Android system outputs. Finally, the DroidMate2 saved files

containing screen-shots, logcats, and UI app states representation. All saved files from these

tools are available here6.

Table 6.8 shows the results of the test cases execution. It shows ten failures and one false

crash when running Monkey, 12 inconclusive verdicts when running DroidMate2.

Table 6.8: Tools comparison results.

App
Test
Case

id
Path

Monkey DroidMate2

Verdict
Context
Defect

Observation Verdict
Context
Defect

Observation

OsmAnd

TC01 Small Pass No Inconclusive -- Need to download map

TC02 Perfect Pass No Inconclusive -- Need to download map

TC03 Limit Fail No The app became too slow Inconclusive -- Need to download map

TC04 Long Fail No Stopped the navigation. Inconclusive -- Need to download map

GPS OffLine
Navigation

TC05 Small Fail No Crashed Inconclusive -- Need to download map

TC06 Perfect Fail No Crashed Inconclusive -- Need to download map

TC07 Limit Pass No False Crash Inconclusive -- Need to download map

TC08 Long Fail No Crashed Inconclusive -- Need to download map

Genius
Maps

TC09 Small Fail No Crashed Inconclusive -- Need to download map

TC10 Perfect Pass No Inconclusive -- Need to download map

TC11 Limit Pass No Inconclusive -- Need to download map

TC12 Long Pass No Inconclusive -- Need to download map

Voice GPS
Navigation

TC13 Small Fail No Crashed Pass No

TC14 Perfect Fail No Crashed Pass No

TC15 Limit Fail No Crashed Pass No

TC16 Long Fail No Crashed Pass No

The OsmAnd application failed in the TC03 and TC04. In the TC03, the AUT became

slow. After some time (precisely 6 minutes and 18 seconds), OsmAnd showed slowness

between the receipt of stimuli and the production of their respective responses. During the

TC04, the application stopped running navigation after 2 minutes and 28 seconds. That is,

OsmAnd was showing the user’s current location, but without showing the path that he must

take to his destination.
6https://bit.ly/2Yvxvj8

6.3 ENVIAR Supporting Other Tools Execution 109

The GPS OffLine Navigation application crashed during the TC05, TC06, and TC08.

When it crashes, the AUT closed abruptly and had to be restarted manually by the tester.

Monkey accused that AUT crashed while executing the TC07. However, we observed the

execution of the test case and did not see the application showing any incorrect behavior.

The Genius Maps application crashed in the execution of the TC09 while the Voice GPS

Navigation application crashed in the test cases TC13, TC14, TC15 and TC16.

The output generated by Monkey in each test case describes, in general terms:

• What arguments were used to execute Monkey;

• What was the used seed;

• Percentage of types of events;

• Elapsed time.

Although it is possible to re-run a test case with the same events through the seed of the

test case, Monkey does not sufficiently detail which events caused the AUT crash. Thus,

it was not possible to identify which reasons caused the AUT’s failures and then identify

the defect. Also, Monkey cannot run the scenarios that review defects D01, D02, D03,

D04, D05, D07, D11, and D13 from Table 6.5 since it focus on GUI interaction. These

defects caused failures due to GPS Calibration, Long Background Simulation, and internet

connection failure in a long path that accounted for most of the causes of ENVIAR failures.

As Monkey does not generate events these events, it was unable to identify context defects

in the studied AUTs.

DroidMate2 did not fail in any test case in its executions. The test cases TC01, TC02,

TC03, TC04, TC05, TC06, TC07, TC08, TC09, TC10, TC11, and TC12 were inconclusive

because OsmAnd, GPS OffLine Navigation, and Genius Maps need to download the map of

the path’s location before starting GPS navigation. For each execution, DroidMate2 unin-

stalls the AUT and reinstalls it again, so the map is deleted from the AUT database. For

this reason, we attribute the inconclusive verdict to these test cases since the AUT did not

proceed to the Navigation Activity. The Voice GPS Navigation application does not require

a previously downloaded map. Therefore, it was possible to carry out its execution, but there

were no failures.

6.4 Concluding Remarks 110

Monkey is a GUI stress testing tool that also sends some system events, so although it has

been very effective at finding GUI errors, we cannot say that it is efficient at finding context

defects. Even using ENVIAR as a support tool to send GPS positions, we could not say that

we found context defects because the outputs of Monkey do not make it clear which events

occurred when we identified the failures. As ENVIAR generates the AUT logcat, the access

to the AUT code could allow the identification of the defect in the code, and then understand

which event caused the failure.

6.4 Concluding Remarks

This chapter carried out an exploratory study in order to evaluate the approach proposed in

Chapter 4. The exploratory study identified 13 defects. Among these, 6 are context defects.

We also analyzed the results from the perspective of the test case orders by observing the

advantages and disadvantages of using order 1 or order 2 test cases.

We compared ENVIAR with other existing tools and exposed why other tools could not

be used instead of ENVIAR to test context-aware path-based applications that respond to

constant context variation. Finally, we highlighted how ENVIAR can be used as a supporting

tool to assist other existing tools in testing context-aware applications.

Chapter 7

Related Works

This chapter presents an overview of relevant work on testing context-aware Android appli-

cations. Although research on testing context-aware applications is growing, there are still

few studies related to this area. Section 7.1 presents related works on reviewing the state of

the art in the area of interest in our work. Section 7.2 presents solutions from other authors

related to the research area of our work.

7.1 State of the Art Reviews

This section presents five works presenting state of the art in the area of interest in our work.

At the end of this section, the works are compared with the systematic mapping of Chapter

3.

7.1.1 Matalonga et al.

A quasi-systematic review was performed by Matalonga et al. [97]. The quasi-systematic

review aimed to find and characterize methods used for testing Context-Aware Software

Systems (named as CASS for short). Among their found results, they argue that there is

no complete context-aware test method for testing such software systems. In addition, Mat-

alonga et al. emphasize that CASS context information changes continuously. Thus, it is

important to test whether the constant variations of context information cause unexpected

behavior. However, the identified techniques follow the same strategy: identify predefined

111

7.1 State of the Art Reviews 112

and fixed values for context variables. For example, when testing a context-aware applica-

tion that uses GPS, the test case will test predefined fixed location values, and these values

will not change during the execution of the test case. Therefore, Matalonga et al. highlight

the importance of testing context diversity in context-aware applications.

7.1.2 Guinea et al.

A systematic review to evaluate the different phases of the software development life cycle

for ubiquitous systems was conducted by Guinea et al. [56]. In their work, the main interests

and limitations of each phase of the development cycle were classified. As a result, the

systematic review identified 132 approaches that are related to the phases of the ubiquitous

software systems development cycle. Among them, ten are related to the testing phase, which

Guinea et al. argue that perhaps the testing stage is where research is most needed. After

classifying the ten approaches by their focus or concern, the authors obtained five dedicated

to context-aware testing, including 3 to simulators and 2 to test adequacy:

1. Approach of Wang et al. (Subsection 7.2.2);

2. Neill et al. [113] present an approach based on prototyping and environment simula-

tion. This approach is more convenient for indoor environments. General approach

and not directed to Android;

3. Wang et al. [134] present an approach that defines the concept of context diversity and

does a study on how this concept may improve the effectiveness of the data flow testing

criteria. The authors argue that data flow testing is a very efficient testing approach

as it produces high code coverage and has been pointed out by several authors and

empirical studies as an efficient form of testing. The study result shows that test cases

with higher context diversity results in significantly improvement of existing data flow

testing criteria efficiency;

4. Morla and Davies [109] present a solution and test for a ubiquitous remote patient

monitoring system. Through a jacket with sensors, the Health-monitoring application

monitors and reports location, lung and heart conditions through internet connection.

7.1 State of the Art Reviews 113

To test the system, the authors propose the prototyping and emulation of the environ-

ment in which they perform atypical situations such as internet connection failure;

5. Huang et al. [67] argue that in civil construction, it is common to implement testing

of structures on smaller scales. However, time scales are not considered in these tests.

Hybrid testing is a solution that integrates physical components of a structure of inter-

est with computational models that can be promising for a computational solution for

testing civil structures. Due to a lack of real-time hybrid testing support, the authors

developed the design and implementation of novel middleware for their previous work

where they developed an initial prototype of a Cyber-physical Instrument for Real-time

hybrid Structural Testing.

7.1.3 Shauvik et al.

Shauvik et al. [46] performed a complete comparison of the main existing test input gener-

ation tools for Android. Four metrics were used to evaluate the effectiveness of these tools

and their corresponding techniques: (i) code coverage, (ii) ability to detect faults, (iii) ability

to work on multiple platforms, and (iv) ease of use. The authors consider that Android appli-

cations are event-driven. Therefore, the interaction with applications is through events such

as clicks, pinches, text inputs, scrolls, or system events, such as the notification of the battery

level. The generation of events (inputs) from these tools can be made randomly or following

a systematic exploration strategy. In this sense, several techniques in the literature differ in

how they generate inputs, and the strategies and heuristics used to explore AUT’s behavior.

The results of the tool comparison highlight the strengths and weaknesses of the tools and

future research directions. However, none of the analyzes, conclusions, or tools studied took

into account context-aware applications.

7.1.4 Santiago et al.

Santiago et al. [95] carried out a quasi systematic literature review and identified 11 rele-

vant sources that mention 15 problems and 4 proposed solutions. The authors analyzed and

classified the data into 3 groups of challenges and strategies for dealing with context-aware

software systems testing.

7.1 State of the Art Reviews 114

7.1.5 Usman et al.

Usman et al. [127] performed a search on Scopus and Google Scholar databases between

2010 and 2017 in order to make a comparative study of mobile app testing approaches fo-

cusing on context events. The comparison was based on six key points:

1. Events identification;

2. Method of analyzing mobile apps;

3. Testing technique;

4. Classification of context event;

5. Validation method;

6. Evaluation metrics.

Their results indicate that the popular approaches offer limited coverage of mobile app

context events.

7.1.6 Comparison

Although relevant, except Usman et al. 7.1.5, none of these studies discussed so far have

investigated the ability of current testing tools for handling Android context-aware applica-

tions. Matalonga et al. 7.1.1 presented a quasi-systematic review to characterize methods

but did not discuss whether the current tools are capable of testing context-aware applica-

tions. Shauvik et al. 7.1.3 aimed to perform a complete comparison on the main existing

test input generation tools for Android, not focusing at context-awareness. Santiago et al.

7.1.4 aimed to identify the available knowledge on testing context-aware software systems.

Usman et al. 7.1.5 performed a search on Scopus and Google Scholar databases. Therefore,

they did not carry out a systematic search as occurs in a systematic mapping. Issues such

as research questions, search criteria, number of studies identified, and validity evaluation

are not discussed in their work. Also, Usman et al. conducted searches between 2010 and

2017 while our SMS (Chapter 3) surveyed studies between 2008 and 2018. Guinea et al.

7.2 Related Solutions 115

7.1.2 aimed to evaluate the different phases of the software development life cycle for ubiq-

uitous systems. The authors present studies of challenges and solutions, some with tools, but

with their respective limitations. The systematic mapping we carry out (Chapter 3) not only

allowed us to know tools, but also allowed us to identify:

• The techniques the authors implement;

• Which tools generate test cases;

• Which tools execute test cases;

• Which are the test methods;

• Which tools are available for download;

• Which tools are most commonly used.

7.2 Related Solutions

This section presents the solutions proposed by other authors related to the context of our

work.

7.2.1 Sanders and Walcott

Sanders and Walcott [122] have proposed a technique that promises to test existing Espresso

test suites easily. The authors developed a tool called TADS (Test Application to Device

State) that enables a developer to run Espresso test suites against different changes of state

of the device. However, so far, the technique focuses only on Wi-fi and Bluetooth device

states.

7.2.2 Wang and et al.

Wang et al. [137] define the concept of context-aware program points (CAPPS). A CAPPS is

a piece of code that identifies context change and, consequently, computes the application’s

behavior for that change. In its approach, input context data are systematically manipulated

7.2 Related Solutions 116

to expose potentially valuable context variations. Thus, the technique performs the following

tasks:

• Identify CAPPS;

• Generate variants for existing test cases allowing to test different context sequences;

• Dynamically direct the application’s execution to the generated context sequences.

7.2.3 Amalfitano et al.

Amalfitano et al. [25] present a test solution for context-aware applications based on the

assumption that apps are event-driven systems that receive context and GUI events. The

authors present approaches based on event-patterns. An event-pattern is a sequence of events

that represent a test scenario with a greater chance of failure. Amalfitano et al. define three

strategies for generating test cases with event-patterns:

1. Manual technique: The tester manually chooses one or more event-patterns to define

scenario-based test cases;

2. Mutation-based technique: The tester inserts event-patterns into existing test cases;

3. Exploration-based technique: This technique is used in automatic black-box test-

ing based on dynamic analysis. During the test execution, the exploration technique

detects the current set of sensing events of the app and then chooses one or more event-

patterns to execute. The choice can be made systematically or in a random manner.

Amalfitano et al. implemented the exploration-based technique in the Android Ripper

tool [26].

7.2.4 Ami et al.

Ami et al. [32] present a tool called MobiCoMonkey (Mobile Contextual Monkey) capable

of automatically testing Android apps against auto-generated (random) or custom contex-

tual scenarios. MobiCoMonkey is also able to create bug reports connecting the bug and

contextual factors, making possible the later reproduction of bugs. Despite being a tool for

7.2 Related Solutions 117

context-awareness, the tool currently only supports events of changing state of internet con-

nection.

7.2.5 Comparison

Although relevant, none of these works present a solution for testing Android context-aware

applications that generates and executes test cases simulating the environment in which the

AUT is inserted and system events that are more likely to fail. Amalfitano et al. 7.2.3

present approaches based on event-patterns that resemble and inspired the insertion of our

system events. However, the authors emphasize the interaction with AUT via GUI while our

work focuses on applications that react more to stimuli from the environment than from the

user. Also, our work performs the generation of test cases that, through pairwise testing,

guarantees the combination of pairs of different system events in the test suite. Our work

also presents a simple and efficient way to emulate fake events without the need to change

the Android operating system or instrument the AUT code. While Amalfitano et al. ana-

lyzes their technique through code coverage, our work observes defects that occurred in real

applications.

Wang et al. 7.2.2 present a white-box approach in which it identifies CAPPS in the AUT

code. Our approach is black-box and does not use the AUT code. Also, the result by Wang

et al. is a more general approach, not specifically for Android.

Sanders and Walcott 7.2.1 propose a technique that extends an Espresso test suite in order

to make it possible to test different changes of state of the device. The authors consider only

Wi-fi and Bluetooth device states. Our approach not only runs test cases with GPS positions

changing, but it also generates test cases.

Ami et al. 7.2.4 present a tool that at first resembles ENVIAR. MobiCoMonkey generates

bug reports and is able to test Android against auto-generated or custom contextual scenarios

automatically. However, MobiCoMonkey only supports events for changing the state of the

internet connection.

Table 7.1 illustrates a summary of the related work solutions mentioned above. The Table

is divided into 7 columns: (i) authors, (ii) the level of the test, (iii) the name of the tool, (iv)

a brief description of how the test activity is carried out on the tool, (v) sensors that the tool

supports, (vi) whether the tool generates test cases, and (vii) whether the tool performs test

7.3 Concluding Remarks 118

cases.

Table 7.1: Related Work Comparison

Work
Test
Level

Tool Testing Method Sensors Generate Test Case
Execute Test
Case

Sanders and
Walcott

System TADS

Extending an existing
Espresso test suite to
enable the testing of
different changes of state of
the device.

Wi-fi and
Bluetooth

No
Espresso test
suite execution

Wang et al. System No

Generate potential variants
for an existing test suite
that explore the execution
of identified key program
points context information
can effectively affect the
application’s behavior.

Any No

Construction of
middleware to
simulate the
environment.
The solution is
not specific to
Android.

Amalfitano
et al.

System
Extended
Ripper

Combination of both
context events and GUI
events. The former is based
on the definition of reusable
event patterns.

Any

Exploration-based
technique. The
technique runs the
application and detects
which events the app
can sense and react to.
From the detected
events, the tool
generates test cases
with event-patterns
that explore these
detected events.

Execute
sequences of
event-patterns

Ami et al. System MobiCoMonkey

The tool injects low-level
contextual factors (i.e., GSM
Profile, Network Delay, and
Network Status) in each
Activity.

Internet

Generates random
contextual
scenarios based on a
user provided seed
value.

Executes each
application's
Activity by
interacting with
its widgets
while injects
the low-level
contextual
factors.

Our Work System ENVIAR

It tests a reduced set of test
cases. The test cases
combine (i) large sets of
sensor data with (ii) events
that are more likely to cause
failures.

Any

Use pairwise testing to
generate a reduced set
of test cases that
combine sequences of
sensor values with
events that are more
likely to cause failures.

Executes
combinations
of sensor
values with
events that are
more likely to
cause failures
in a simulated
environment.

7.3 Concluding Remarks

This chapter presented a review of relevant works to the research of this thesis. The authors

present solutions for testing context-aware applications with limitations that do not satisfy

the purpose of our work. Therefore, in addition to describing the solution proposed by each

author, we discussed a comparison with our work at the end of the chapter.

Chapter 8

Concluding Remarks

This chapter summarizes the main results of this work, discusses some limitations, and

presents some suggestions for future work.

8.1 Conclusions

In this work, we present a black-box approach to test context-aware path-based applications

at the system level, considering the difficulty and cost of generating and executing test cases.

To generate test cases, we use the technique of pairwise testing to select test cases with pairs

of events more likely to find defects. The pairwise testing drastically reduces the number of

test cases without significantly losing its efficiency to find defects. The execution is done

in an emulated environment making possible the execution of scenarios that would be very

difficult to run in a real environment.

Considering the research questions exposed in Chapter 1:

Research Question 1: What are the Android context-aware testing studies and tools

published in the literature?

To answer research question 1, we carried out a systematic mapping of existing tech-

niques in testing context-aware Android applications. The systematic mapping allowed us to

know:

i The tools and studies for testing Android applications in the literature;

ii Which techniques are used in the literature;

119

8.1 Conclusions 120

iii Which studies aim at testing context-aware applications;

iv Which tools are available for download;

v Which are techniques limitations.

This knowledge was necessary for guiding the definition of the approach we use in our

work. Thus, we defined that our approach should be able to generate test cases that deal with

scenarios that are more prone to failures and test the constant variation of context (Section

4.1). We also defined the generation and execution of test cases that must be feasible to be

done.

Research Question 2: How to create and execute test cases to context-aware path-based

Android applications?

To answer research question 2, we defined that the generation of test cases should receive

data sets from the GPS sensor and combine them with sequences of events more prone to

failures (Section 4.2). However, the combination of sets of GPS values with sequences of

events can take to a large number of test cases. Thus, to make the test case generation more

feasible without significantly losing the ability to reveal failures, we used the technique of

pairwise testing (Section 2.5) to select a viable number of test cases without significantly

losing their ability to reveal defects. We also defined that the execution of the test cases must

be done in a simulated environment. Thus, it is possible to execute the test cases in an easier

way and in a controlled environment that allows the execution of challenging scenarios to be

tested manually.

Research Question 3: What kind of defects can the approach reveal?

To answer research question 3, we implemented our approach in the ENVIAR tool

(Chapter 5). We defined an exploratory study (Section 6.1) to evaluate the approach proposed

in this work. Our results (Section 6.1.3) gave us evidence that our approach is promising in

the generation of test cases with the potential to find context defects while drastically reduc-

ing the number of test cases that would be generated without pairwise testing. The execution

in an emulated environment made it possible to run scenarios that would be very difficult

to run in a real environment and, therefore, allowed us to find defects in real applications

widely used by Android users.

In summary, this thesis provides the following contributions:

8.2 Limitations 121

1. A complete review of relevant work throw a conducted systematic mapping;

2. A set of scenarios most likely to fail in path-based applications;

3. A test case generation approach capable of generating feasible and efficient test cases;

4. An execution approach that makes feasible the execution of challenging test scenarios;

5. A tool that implements the black-box testing approach proposed by our work.

8.2 Limitations

Some limitations identified in our work are:

• The tester needs to follow the execution to define the verdict: This limitation does

not make our execution fully automatic;

• Lack of automation of the ENVIAR tool in identifying defects: The tester needs

to look at the logs to decide which defect caused the failure in the test case. It would

be interesting to automate the identification of possible pieces of code that caused the

failure. This automation would reduce the cost of testing and the chance of the tester’s

wrong decisions;

• Our approach does not currently test general context-aware applications: This

limitation does not allow us to test applications that use other sensors (e.g., accelerom-

eter, compass, barometer);

• Maximum of 5 events per test case: Very long paths can reveal more defects if using

more than five events;

• The tester needs to inform path data: Our approach does not automatically generate

paths; it is necessary for the tester to inform the main points of the route that he wants

to test;

• Race condition when ENVIAR Supporting Other Tools Execution: The ENVIAR

tool stores all inputs that are sent to the AUT. Therefore, it is possible to re-execute

faulty scenarios by sending the inputs in the same order as they were sent. However,

8.3 Future Work 122

when executing ENVIAR combined with another tool (Section X), race condition may

occur because we have no control over the thread of the tool to be combined. There-

fore, it is not possible to re-execute faulty scenarios under the same conditions.

8.3 Future Work

With the completion of this work, there are several opportunities for future work. Next, some

ideas are described:

1. Extend the approach and tool: Our approach focus on path-based applications.

Thus, we plan to extend the approach and the ENVIAR tool to simulate more types of

sensors to allow testing for other types of context-aware Android applications;

2. Evaluate the ENVIAR tool: We also plan to perform empirical studies that include

more applications and investigate the use of ENVIAR by industry testers;

3. Facilitate sensor data modeling: GPS data modeling is currently composed only as

a sequence of GPS values. We intend to study how we could easily model this data

so that it would be possible to simulate situations such as standing, walking, running,

jumping, and so on;

4. Extend the scenarios most likely to fail: Currently, the scenarios most likely to fail

we cataloged are more focused on GPS based applications. We intend to extend this

event catalog to more general context-aware applications;

5. Testing with more test case orders: Due to time constraints, we evaluate our tech-

nique in test cases of order 1 and order 2. We intend to extend our assessment to orders

3, 4 and 5 to catalog more advantages, disadvantages, and limitations concerning the

choice of each test case order;

6. Propose new combinations of test cases: Currently, our technique generates test case

suites for only one test case order at a time. We intend to evaluate the generation of

test cases that combine different orders of test cases by suppressing test cases that are

subtest cases;

8.3 Future Work 123

7. Propose exhaustive testing: Currently, our approach supports only combinations of

up to 5 events which is adequate to simulate specific context changes. However, we

intend to extend the tool also to generate random combinations of more than 5 events

to support more exhaustive testing, suitable for long paths.

Bibliography

[1] Cucumber. https://github.com/cucumber/cucumber/wiki/Given-When-Then, 2016

(accessed December 7, 2016).

[2] Statcounter globalstats. https://gs.statcounter.com/os-market-

share/mobile/worldwide, Accessed: 20120-03-19.

[3] Android developer. https://developer.android.com, Accessed: 2018-12-20.

[4] Genius maps: Offline gps navigator. https://play.google.com/store/apps/details?id=hr.mireo.arthur,

Accessed: 2019.

[5] Gps offline navigation route maps & directions.

https://play.google.com/store/apps/details?id=com.offline.routemaps.gps.directionfinder.freer,

Accessed: 2019.

[6] Osmand. https://play.google.com/store/apps/details?id=net.osmand, Accessed: 2019.

[7] Voice gps navigation: Live driving direction.

https://play.google.com/store/apps/details?id=com.voicenavigation.gps.driving.directions,

Accessed: 2019.

[8] Google scholar. https://scholar.google.com, Accessed: 2019-08-10.

[9] Samsung health. https://health.apps.samsung.com, Accessed: 2019-08-10.

[10] Start tool home page. http://lapes.dc.ufscar.br/tools/start_tool, Accessed: 2019-08-10.

[11] Github. https://github.com, Accessed: 2019-09-05.

124

BIBLIOGRAPHY 125

[12] Logcat. https://developer.android.com/studio/command-line/logcat, Accessed: 2019-

09-05.

[13] Android debug bridge. https://developer.android.com/studio/command-line/adb.html,

Accessed: 2019-09-09.

[14] Google play store. https://play.google.com, Accessed: 2019-09-09.

[15] Pairwise independent combinatorial tool (pict). https://github.com/microsoft/pict, Ac-

cessed: 2019-09-23.

[16] Microsoft home page. https://www.microsoft.com, Accessed: 2020-01-15.

[17] Android emulator. https://developer.android.com/studio/run/emulator, Accessed:

2020-02-01.

[18] Arko flow. https://flowsupport.akvo.org/article/show/33694-calibrate-your-gps, Ac-

cessed: 2020-02-11.

[19] Gps.gov. https://www.gps.gov/systems/gps/performance/accuracy, Accessed: 2020-

02-11.

[20] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and

Pete Steggles. Towards a better understanding of context and context-awareness. In

Proceedings of the 1st International Symposium on Handheld and Ubiquitous Com-

puting, HUC ’99, pages 304–307, London, UK, UK, 1999. Springer-Verlag.

[21] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. Systematic ex-

ecution of android test suites in adverse conditions. In Proceedings of the 2015 In-

ternational Symposium on Software Testing and Analysis, ISSTA 2015, pages 83–93,

New York, NY, USA, 2015. ACM.

[22] Diego R. Almeida, Patrícia D. L. Machado, and Wilkerson L. Andrade. Testing tools

for android context-aware applications: a systematic mapping. Journal of the Brazil-

ian Computer Society, 25, December 2019.

BIBLIOGRAPHY 126

[23] Diego R. Almeida, Patrícia D. L. Machado, and Wilkerson L. Andrade. Context-

aware android applications testing. SBES’20: 34st Brazilian Symposium on Software

Engineering, 2020.

[24] Diego R. Almeida, Patrícia D. L. Machado, and Wilkerson L. Andrade. Enviar -

environment data simulator. SBES’20: 34st Brazilian Symposium on Software Engi-

neering, Tools Track, 2020.

[25] D. Amalfitano, A. R. Fasolino, P. Tramontana, and N. Amatucci. Considering context

events in event-based testing of mobile applications. In 2013 IEEE Sixth International

Conference on Software Testing, Verification and Validation Workshops, pages 126–

133, March 2013.

[26] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and G. Imparato. A

toolset for gui testing of android applications. In 2012 28th IEEE International Con-

ference on Software Maintenance (ICSM), pages 650–653, Sep. 2012.

[27] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon. Mobi-

guitar: Automated model-based testing of mobile apps. IEEE Software, 32(5):53–59,

Sept 2015.

[28] Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, and Porfirio Tramon-

tana. Agrippin: A novel search based testing technique for android applications. In

Proceedings of the 3rd International Workshop on Software Development Lifecycle

for Mobile, DeMobile 2015, pages 5–12, New York, NY, USA, 2015. ACM.

[29] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. A gui crawling-

based technique for android mobile application testing. In Proceedings of the 2011

IEEE Fourth International Conference on Software Testing, Verification and Valida-

tion Workshops, ICSTW ’11, pages 252–261, Washington, DC, USA, 2011. IEEE

Computer Society.

[30] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore

De Carmine, and Atif M. Memon. Using gui ripping for automated testing of android

BIBLIOGRAPHY 127

applications. In Proceedings of the 27th IEEE/ACM International Conference on Au-

tomated Software Engineering, ASE 2012, pages 258–261, New York, NY, USA,

2012. ACM.

[31] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung Ta,

and Atif M. Memon. Mobiguitar – a tool for automated model-based testing of mobile

apps. IEEE Software, NN(N):NN–NN, 2014.

[32] Amit Seal Ami, Md. Mehedi Hasan, Md. Rayhanur Rahman, and Kazi Sakib. Mobi-

comonkey: Context testing of android apps. In Proceedings of the 5th International

Conference on Mobile Software Engineering and Systems, MOBILESoft ’18, pages

76–79, New York, NY, USA, 2018. ACM.

[33] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Automated

concolic testing of smartphone apps. In Proceedings of the ACM SIGSOFT 20th In-

ternational Symposium on the Foundations of Software Engineering, FSE ’12, pages

59:1–59:11, New York, NY, USA, 2012. ACM.

[34] R. Anbunathan and A. Basu. Data driven architecture based automated test genera-

tion for android mobile. In 2015 IEEE International Conference on Computational

Intelligence and Computing Research (ICCIC), pages 1–5, Dec 2015.

[35] R. Anbunathan and A. Basu. Automation framework for test script generation for

android mobile. In 2017 2nd IEEE International Conference on Recent Trends in

Electronics, Information Communication Technology (RTEICT), pages 1914–1918,

May 2017.

[36] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for system-

atic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN International

Conference on Object Oriented Programming Systems Languages & Applica-

tions, OOPSLA ’13, pages 641–660, New York, NY, USA, 2013. ACM.

[37] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for systematic

testing of android apps. SIGPLAN Not., 48(10):641–660, October 2013.

BIBLIOGRAPHY 128

[38] Z. Babaei, A. M. Rahmani, and A. Rezaei. Real-time reusable event-driven archi-

tecture for context aware systems. In 2016 24th Iranian Conference on Electrical

Engineering (ICEE), pages 294–299, May 2016.

[39] Rex Black. Pragmatic Software Testing: Becoming an Effective and Efficient Test

Professional. John Wiley & Sons, Inc., New York, NY, USA, 2007.

[40] Nataniel P. Borges Jr., Jenny Hotzkow, and Andreas Zeller. Droidmate-2: A platform

for android test generation. In Proceedings of the 33rd ACM/IEEE International Con-

ference on Automated Software Engineering, ASE 2018, pages 916–919, New York,

NY, USA, 2018. ACM.

[41] P. J. Brown. The stick-e document: a framework for creating context-aware appli-

cations. In Proceedings of EP’96, Palo Alto, pages 182–196. also published in it

EP–odd, January 1996.

[42] Kevin Burr and William Young. Combinatorial test techniques: Table-based automa-

tion, test generation and code coverage. In Proceedings of the Intl. Conf. on Software

Testing Analysis and Review, pages 503–513. West, 1998.

[43] C. Cao, C. Meng, H. Ge, P. Yu, and X. Ma. Xdroid: Testing android apps with

dependency injection. In 2017 IEEE 41st Annual Computer Software and Applications

Conference (COMPSAC), volume 1, pages 214–223, July 2017.

[44] J. Chen, G. Han, S. Guo, and W. Diao. Fragdroid: Automated user interface interac-

tion with activity and fragment analysis in android applications. In 2018 48th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),

pages 398–409, June 2018.

[45] Wontae Choi, George Necula, and Koushik Sen. Guided gui testing of android apps

with minimal restart and approximate learning. In Proceedings of the 2013 ACM

SIGPLAN International Conference on Object Oriented Programming Systems Lan-

guages & Applications, OOPSLA ’13, pages 623–640, New York, NY, USA,

2013. ACM.

BIBLIOGRAPHY 129

[46] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. Automated test

input generation for android: Are we there yet? (e). In Proceedings of the 2015

30th IEEE/ACM International Conference on Automated Software Engineering (ASE),

ASE ’15, pages 429–440, Washington, DC, USA, 2015. IEEE Computer Society.

[47] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The combinatorial design

approach to automatic test generation. IEEE Software, 13(5):83–88, Sep. 1996.

[48] T.D. Cook and D.T. Campbell. Quasi-experimentation: Design and analysis issue for

field settings. 1979.

[49] Riccardo Coppola, Emanuele Raffero, and Marco Torchiano. Automated mobile ui

test fragility: An exploratory assessment study on android. In Proceedings of the 2Nd

International Workshop on User Interface Test Automation, INTUITEST 2016, pages

11–20, New York, NY, USA, 2016. ACM.

[50] Guilherme de Cleva Farto and Andre Takeshi Endo. Reuse of model-based tests in

mobile apps. In Proceedings of the 31st Brazilian Symposium on Software Engineer-

ing, SBES’17, pages 184–193, New York, NY, USA, 2017. ACM.

[51] David Franklin and Joshua Flachsbart. All gadget and no representation makes jack

a dull environment. In AAAI 1998 Spring Symposium on Intelligent Environments,

pages 155–160, 1998.

[52] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. Reran: Timing-

and touch-sensitive record and replay for android. In Proceedings of the 2013 Inter-

national Conference on Software Engineering, ICSE ’13, pages 72–81, Piscataway,

NJ, USA, 2013. IEEE Press.

[53] Tobias Griebe and Volker Gruhn. A model-based approach to test automation for

context-aware mobile applications. In Proceedings of the 29th Annual ACM Sympo-

sium on Applied Computing, SAC ’14, pages 420–427, New York, NY, USA, 2014.

ACM.

[54] Tobias Griebe, Marc Hesenius, and Volker Gruhn. Towards automated ui-tests for

sensor-based mobile applications. In Intelligent Software Methodologies, Tools and

BIBLIOGRAPHY 130

Techniques - 14th International Conference, SoMeT 2015, Naples, Italy, September

15-17, 2015. Proceedings, pages 3–17, 2015.

[55] F. Gross, G. Fraser, and A. Zeller. Exsyst: Search-based gui testing. In 2012 34th

International Conference on Software Engineering (ICSE), pages 1423–1426, June

2012.

[56] Alejandro Sánchez Guinea, Grégory Nain, and Yves Le Traon. A systematic review on

the engineering of software for ubiquitous systems. Journal of Systems and Software,

118:251 – 276, 2016.

[57] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govindan.

Puma: Programmable ui-automation for large-scale dynamic analysis of mobile apps.

In Proceedings of the 12th Annual International Conference on Mobile Systems, Ap-

plications, and Services, MobiSys ’14, pages 204–217, New York, NY, USA, 2014.

ACM.

[58] L. V. Haoyin. Automatic android application gui testing - a random walk approach. In

2017 International Conference on Wireless Communications, Signal Processing and

Networking (WiSPNET), pages 72–76, March 2017.

[59] Ville-Veikko Helppi. Calabash 101 - basics, getting started, and advanced

tips. http://bitbar.com/new-ebook-calabash-101-basics-getting-started-and-advanced-

tips, 2016. [Online; accessed March, 17, 2017].

[60] Clemens Holzmann, Dustin Steiner, Andreas Riegler, and Christian Grossauer. An an-

droid toolkit for supporting field studies on mobile devices. In Proceedings of the 16th

International Conference on Mobile and Ubiquitous Multimedia, MUM ’17, pages

473–479, New York, NY, USA, 2017. ACM.

[61] Cuixiong Hu and Iulian Neamtiu. Automating gui testing for android applications. In

Proceedings of the 6th International Workshop on Automation of Software Test, AST

’11, pages 77–83, New York, NY, USA, 2011. ACM.

[62] Gang Hu, Xinhao Yuan, Yang Tang, and Junfeng Yang. Efficiently, effectively de-

tecting mobile app bugs with appdoctor. In Proceedings of the Ninth European Con-

BIBLIOGRAPHY 131

ference on Computer Systems, EuroSys ’14, pages 18:1–18:15, New York, NY, USA,

2014. ACM.

[63] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. Improving the android develop-

ment lifecycle with the valera record-and-replay approach. In Proceedings of the 3rd

International Workshop on Mobile Development Lifecycle, MobileDeLi 2015, pages

7–8, New York, NY, USA, 2015. ACM.

[64] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. Versatile yet lightweight record-

and-replay for android. In Proceedings of the 2015 ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and Applica-

tions, OOPSLA 2015, pages 349–366, New York, NY, USA, 2015. ACM.

[65] Yongjian Hu and Iulian Neamtiu. Fuzzy and cross-app replay for smartphone apps.

In Proceedings of the 11th International Workshop on Automation of Software Test,

AST ’16, pages 50–56, New York, NY, USA, 2016. ACM.

[66] Yongjian Hu and Iulian Neamtiu. Valera: An effective and efficient record-and-replay

tool for android. In Proceedings of the International Conference on Mobile Software

Engineering and Systems, MOBILESoft ’16, pages 285–286, New York, NY, USA,

2016. ACM.

[67] Huang-Ming Huang, Terry Tidwell, Christopher Gill, Chenyang Lu, Xiuyu Gao, and

Shirley Dyke. Cyber-physical systems for real-time hybrid structural testing: A case

study. In Proceedings of the 1st ACM/IEEE International Conference on Cyber-

Physical Systems, ICCPS ’10, page 69–78, New York, NY, USA, 2010. Association

for Computing Machinery.

[68] R. Hull, P. Neaves, and J. Bedford-Roberts. Towards situated computing. In Digest of

Papers. First International Symposium on Wearable Computers, pages 146–153, Oct

1997.

[69] Gennaro Imparato. A combined technique of gui ripping and input perturbation testing

for android apps. In Proceedings of the 37th International Conference on Software

BIBLIOGRAPHY 132

Engineering - Volume 2, ICSE ’15, pages 760–762, Piscataway, NJ, USA, 2015. IEEE

Press.

[70] Konrad Jamrozik and Andreas Zeller. Droidmate: A robust and extensible test gener-

ator for android. In Proceedings of the International Conference on Mobile Software

Engineering and Systems, MOBILESoft ’16, pages 293–294, New York, NY, USA,

2016. ACM.

[71] Casper S. Jensen, Mukul R. Prasad, and Anders Møller. Automated testing with tar-

geted event sequence generation. In Proceedings of the 2013 International Symposium

on Software Testing and Analysis, ISSTA 2013, pages 67–77, New York, NY, USA,

2013. ACM.

[72] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. Characterizing android-specific

crash bugs. In Proceedings of the 6th International Conference on Mobile Software

Engineering and Systems, MOBILESoft ’19, page 111–122. IEEE Press, 2019.

[73] Jouko Kaasila, Denzil Ferreira, Vassilis Kostakos, and Timo Ojala. Testdroid: Auto-

mated remote ui testing on android. In Proceedings of the 11th International Confer-

ence on Mobile and Ubiquitous Multimedia, MUM ’12, pages 28:1–28:4, New York,

NY, USA, 2012. ACM.

[74] Maria Kechagia, Dimitris Mitropoulos, and Diomidis Spinellis. Charting the api mine-

field using software telemetry data. Empirical Softw. Engg., 20(6):1785–1830, De-

cember 2015.

[75] B. Kitchenham and S Charters. Guidelines for performing systematic literature re-

views in software engineering, 2007.

[76] Yavuz Koroglu and Alper Sen. Tcm: Test case mutation to improve crash detection in

android. In Alessandra Russo and Andy Schürr, editors, Fundamental Approaches to

Software Engineering, pages 264–280, Cham, 2018. Springer International Publish-

ing.

BIBLIOGRAPHY 133

[77] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interactions and impli-

cations for software testing. IEEE Transactions on Software Engineering, 30(6):418–

421, June 2004.

[78] Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang, Haibing Zheng, Hui Luo, Peng

Yan, Yuetang Deng, and Tao Xie. Record and replay for android: Are we there yet

in industrial cases? In Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2017, pages 854–859, New York, NY, USA, 2017.

ACM.

[79] Ang Li, Zishan Qin, Mingsong Chen, and Jing Liu. Adautomation: An activity di-

agram based automated gui testing framework for smartphone applications. In Pro-

ceedings of the 2014 Eighth International Conference on Software Security and Relia-

bility, SERE ’14, pages 68–77, Washington, DC, USA, 2014. IEEE Computer Society.

[80] X. Li, Y. Jiang, Y. Liu, C. Xu, X. Ma, and J. Lu. User guided automation for testing

mobile apps. In 2014 21st Asia-Pacific Software Engineering Conference, volume 1,

pages 27–34, Dec 2014.

[81] Y. Li, Z. Yang, Y. Guo, and X. Chen. Droidbot: A lightweight ui-guided test input

generator for android. In 2017 IEEE/ACM 39th International Conference on Software

Engineering Companion (ICSE-C), pages 23–26, May 2017.

[82] Y. D. Lin, J. F. Rojas, E. T. H. Chu, and Y. C. Lai. On the accuracy, efficiency,

and reusability of automated test oracles for android devices. IEEE Transactions on

Software Engineering, 40(10):957–970, Oct 2014.

[83] Mario Linares-Vásquez. Enabling testing of android apps. In Proceedings of the

37th International Conference on Software Engineering - Volume 2, ICSE ’15, pages

763–765, Piscataway, NJ, USA, 2015. IEEE Press.

[84] M. Linares-Vásquez, C. Bernal-Cardenas, K. Moran, and D. Poshyvanyk. How do

developers test android applications? In 2017 IEEE International Conference on

Software Maintenance and Evolution (ICSME), pages 613–622, Sept 2017.

BIBLIOGRAPHY 134

[85] C. H. Liu, C. Y. Lu, S. J. Cheng, K. Y. Chang, Y. C. Hsiao, and W. M. Chu. Capture-

replay testing for android applications. In 2014 International Symposium on Com-

puter, Consumer and Control, pages 1129–1132, June 2014.

[86] Yepang Liu and Chang Xu. Veridroid: Automating android application verification. In

Proceedings of the 2013 Middleware Doctoral Symposium, MDS ’13, pages 5:1–5:6,

New York, NY, USA, 2013. ACM.

[87] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: A

comprehensive study on real world concurrency bug characteristics. In Proceedings

of the 13th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS XIII, pages 329–339, New York, NY, USA,

2008. ACM.

[88] Chu Luo, Jorge Goncalves, Eduardo Velloso, and Vassilis Kostakos. A survey of

context simulation for testing mobile context-aware applications. ACM Comput. Surv.,

53(1), February 2020.

[89] Chu Luo, Miikka Kuutila, Simon Klakegg, Denzil Ferreira, Huber Flores, Jorge

Goncalves, Mika Mäntylä, and Vassilis Kostakos. Testaware: A laboratory-oriented

testing tool for mobile context-aware applications. Proc. ACM Interact. Mob. Wear-

able Ubiquitous Technol., 1(3):80:1–80:29, September 2017.

[90] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input generation

system for android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations

of Software Engineering, ESEC/FSE 2013, pages 224–234, New York, NY, USA,

2013. ACM.

[91] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. Evodroid: Segmented evo-

lutionary testing of android apps. In Proceedings of the 22Nd ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering, FSE 2014, pages

599–609, New York, NY, USA, 2014. ACM.

[92] Amiya Kumar Maji, Kangli Hao, Salmin Sultana, and Saurabh Bagchi. Characterizing

failures in mobile oses: A case study with android and symbian. In Proceedings of

BIBLIOGRAPHY 135

the 2010 IEEE 21st International Symposium on Software Reliability Engineering,

ISSRE ’10, pages 249–258, Washington, DC, USA, 2010. IEEE Computer Society.

[93] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated testing for

android applications. In Proceedings of the 25th International Symposium on Software

Testing and Analysis, ISSTA 2016, pages 94–105, New York, NY, USA, 2016. ACM.

[94] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro. Autoblacktest: Automatic black-

box testing of interactive applications. In 2012 IEEE Fifth International Conference

on Software Testing, Verification and Validation, pages 81–90, April 2012.

[95] Santiago Matalonga, Felyppe Rodrigues, and Guilherme Travassos. Challenges in

testing context aware software systems. In Brazilian Conference on Software: Theory

and Practice, CBSOFT ’15, pages 51–60, 09 2015.

[96] Santiago Matalonga, Felyppe Rodrigues, and Guilherme H. Travassos. Matching con-

text aware software testing design techniques to iso/iec/ieee 29119. In Terry Rout,

Rory V. O’Connor, and Alec Dorling, editors, Software Process Improvement and Ca-

pability Determination, pages 33–44, Cham, 2015. Springer International Publishing.

[97] Santiago Matalonga, Felyppe Rodrigues, and Guilherme Horta Travassos. Charac-

terizing testing methods for context-aware software systems: Results from a quasi-

systematic literature review. Journal of Systems and Software, 131:1 – 21, 2017.

[98] P. McAfee, M. Wiem Mkaouer, and D. E. Krutz. Cate: Concolic android testing

using java pathfinder for android applications. In 2017 IEEE/ACM 4th International

Conference on Mobile Software Engineering and Systems (MOBILESoft), pages 213–

214, May 2017.

[99] P. Mehlitz, O. Tkachuk, and M. Ujma. Jpf-awt: Model checking gui applications. In

2011 26th IEEE/ACM International Conference on Automated Software Engineering

(ASE 2011), pages 584–587, Nov 2011.

[100] A. Memon, I. Banerjee, and A. Nagarajan. Gui ripping: reverse engineering of graph-

ical user interfaces for testing. In 10th Working Conference on Reverse Engineering,

2003. WCRE 2003. Proceedings., pages 260–269, Nov 2003.

BIBLIOGRAPHY 136

[101] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Automated test oracles for

guis. In Proceedings of the 8th ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering: Twenty-first Century Applications, SIGSOFT ’00/FSE-

8, pages 30–39, New York, NY, USA, 2000. ACM.

[102] Zhanshuai Meng, Yanyan Jiang, and Chang Xu. Facilitating reusable and scalable

automated testing and analysis for android apps. In Proceedings of the 7th Asia-Pacific

Symposium on Internetware, Internetware ’15, pages 166–175, New York, NY, USA,

2015. ACM.

[103] A. M. Mirza and M. N. A. Khan. An automated functional testing framework for

context-aware applications. IEEE Access, 6:46568–46583, 2018.

[104] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek. Sig-droid: Automated system in-

put generation for android applications. In 2015 IEEE 26th International Symposium

on Software Reliability Engineering (ISSRE), pages 461–471, Nov 2015.

[105] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and Sam Malek.

Reducing combinatorics in gui testing of android applications. In Proceedings of the

38th International Conference on Software Engineering, ICSE ’16, pages 559–570,

New York, NY, USA, 2016. ACM.

[106] K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, C. Vendome, and D. Poshy-

vanyk. Crashscope: A practical tool for automated testing of android applications. In

2017 IEEE/ACM 39th International Conference on Software Engineering Companion

(ICSE-C), pages 15–18, May 2017.

[107] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and D. Poshy-

vanyk. Automatically discovering, reporting and reproducing android application

crashes. In 2016 IEEE International Conference on Software Testing, Verification

and Validation (ICST), pages 33–44, April 2016.

[108] I. C. Morgado and A. C. R. Paiva. The impact tool: Testing ui patterns on mobile ap-

plications. In 2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 876–881, Nov 2015.

BIBLIOGRAPHY 137

[109] Ricardo Morla and Nigel Davies. Evaluating a location-based application: A hybrid

test and simulation environment. IEEE Pervasive Computing, 3(3):48–56, July 2004.

[110] Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. Software testing of

mobile applications: Challenges and future research directions. In Proceedings of the

7th International Workshop on Automation of Software Test, AST ’12, pages 29–35,

Piscataway, NJ, USA, 2012. IEEE Press.

[111] Nelson Mariano Leite Neto, Patrícia Vilain, and Ronaldo dos Santos Mello. Segen:

Generation of test cases for selenium and selendroid. In Proceedings of the 18th

International Conference on Information Integration and Web-based Applications and

Services, iiWAS ’16, pages 433–442, New York, NY, USA, 2016. ACM.

[112] Cu D. Nguyen, Alessandro Marchetto, and Paolo Tonella. Combining model-based

and combinatorial testing for effective test case generation. In Proceedings of the

2012 International Symposium on Software Testing and Analysis, ISSTA 2012, pages

100–110, New York, NY, USA, 2012. ACM.

[113] Eleanor O’Neill, Owen Conlan, and David Lewis. Situation-based testing for perva-

sive computing environments. Pervasive Mob. Comput., 9(1):76–97, February 2013.

[114] Priyam Patel, Gokul Srinivasan, Sydur Rahaman, and Iulian Neamtiu. On the effec-

tiveness of random testing for android: Or how i learned to stop worrying and love

the monkey. In Proceedings of the 13th International Workshop on Automation of

Software Test, AST ’18, pages 34–37, New York, NY, USA, 2018. ACM.

[115] F. Paulovsky, E. Pavese, and D. Garbervetsky. High-coverage testing of navigation

models in android applications. In 2017 IEEE/ACM 12th International Workshop on

Automation of Software Testing (AST), pages 52–58, May 2017.

[116] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic map-

ping studies in software engineering. In Proceedings of the 12th International Confer-

ence on Evaluation and Assessment in Software Engineering, EASE’08, pages 68–77,

Swindon, UK, 2008. BCS Learning & Development Ltd.

BIBLIOGRAPHY 138

[117] C. M. Prathibhan, A. Malini, N. Venkatesh, and K. Sundarakantham. An automated

testing framework for testing android mobile applications in the cloud. In 2014

IEEE International Conference on Advanced Communications, Control and Comput-

ing Technologies, pages 1216–1219, May 2014.

[118] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. Mobiplay: A remote execution

based record-and-replay tool for mobile applications. In Proceedings of the 38th Inter-

national Conference on Software Engineering, ICSE ’16, pages 571–582, New York,

NY, USA, 2016. ACM.

[119] Valentim Realinho, Teresa Romão, and A. Eduardo Dias. An event-driven workflow

framework to develop context-aware mobile applications. In Proceedings of the 11th

International Conference on Mobile and Ubiquitous Multimedia, MUM ’12, pages

22:1–22:10, New York, NY, USA, 2012. ACM.

[120] Tom Rodden, Keith Chervest, Nigel Davies, and Alan Dix. Exploiting context in hci

design for mobile systems. In in Workshop on Human Computer Interaction with

Mobile Devices, pages 21–22, 1998.

[121] Ibrahim Anka Salihu and Rosziati Ibrahim. Systematic exploration of android apps’

events for automated testing. In Proceedings of the 14th International Conference

on Advances in Mobile Computing and Multi Media, MoMM ’16, pages 50–54, New

York, NY, USA, 2016. ACM.

[122] J. Sanders and K. R. Walcott. Tads: Automating device state to android test suite

testing. In Proceedings of the 2018 International Conference on Wireless Networks,

ICWN’18, pages 10–14, 2018.

[123] Aaratee Shrestha, Bettina Biel, Tobias Griebe, and Volker Gruhn. A framework for

building and operating context-aware mobile applications. In Mobile Wireless Mid-

dleware, Operating Systems, and Applications - 4th International ICST Conference,

Mobilware 2011, London, UK, June 22-24, 2011, Revised Selected Papers, pages

135–142, 2011.

BIBLIOGRAPHY 139

[124] D. Bernardo Silva, A. T. Endo, M. M. Eler, and V. H. S. Durelli. An analysis of auto-

mated tests for mobile android applications. In 2016 XLII Latin American Computing

Conference (CLEI), pages 1–9, Oct 2016.

[125] Wei Song, Xiangxing Qian, and Jeff Huang. Ehbdroid: Beyond gui testing for android

applications. In Proceedings of the 32Nd IEEE/ACM International Conference on

Automated Software Engineering, ASE 2017, pages 27–37, Piscataway, NJ, USA,

2017. IEEE Press.

[126] Ting Su. Fsmdroid: Guided gui testing of android apps. In Proceedings of the 38th

International Conference on Software Engineering Companion, ICSE ’16, pages 689–

691, New York, NY, USA, 2016. ACM.

[127] Asmau Usman, Noraini Ibrahim, and Ibrahim Anka Salihu. Comparative study of

mobile applications testing techniques for context events. Advanced Science Letters,

24(10):7305–7310, 2018.

[128] Asmau Usman, Noraini Ibrahim, and Ibrahim Anka Salihu. Test case generation from

android mobile applications focusing on context events. In Proceedings of the 2018

7th International Conference on Software and Computer Applications, ICSCA 2018,

pages 25–30, New York, NY, USA, 2018. ACM.

[129] Heila van der Merwe, Brink van der Merwe, and Willem Visser. Verifying android

applications using java pathfinder. SIGSOFT Softw. Eng. Notes, 37(6):1–5, November

2012.

[130] Heila van der Merwe, Brink van der Merwe, and Willem Visser. Execution and prop-

erty specifications for jpf-android. SIGSOFT Softw. Eng. Notes, 39(1):1–5, February

2014.

[131] Vaninha Vieira, Konstantin Holl, and Michael Hassel. A context simulator as testing

support for mobile apps. In Proceedings of the 30th Annual ACM Symposium on

Applied Computing, SAC ’15, pages 535–541, New York, NY, USA, 2015. ACM.

[132] I. K. Villanes, E. A. B. Costa, and A. C. Dias-Neto. Automated mobile testing as

BIBLIOGRAPHY 140

a service (am-taas). In 2015 IEEE World Congress on Services, pages 79–86, June

2015.

[133] Isabel K. Villanes, Silvia M. Ascate, Josias Gomes, and Arilo Claudio Dias-Neto.

What are software engineers asking about android testing on stack overflow? In

Proceedings of the 31st Brazilian Symposium on Software Engineering, SBES’17,

pages 104–113, New York, NY, USA, 2017. ACM.

[134] Huai Wang, W. K. Chan, and T. H. Tse. Improving the effectiveness of testing perva-

sive software via context diversity. ACM Trans. Auton. Adapt. Syst., 9(2), July 2014.

[135] P. Wang, B. Liang, W. You, J. Li, and W. Shi. Automatic android gui traversal with

high coverage. In 2014 Fourth International Conference on Communication Systems

and Network Technologies, pages 1161–1166, April 2014.

[136] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang Deng,

and Tao Xie. An empirical study of android test generation tools in industrial cases. In

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering, ASE 2018, pages 738–748, New York, NY, USA, 2018. ACM.

[137] Zhimin Wang, Sebastian Elbaum, and David S. Rosenblum. Automated generation of

context-aware tests. In Proceedings of the 29th International Conference on Software

Engineering, ICSE ’07, pages 406–415, Washington, DC, USA, 2007. IEEE Com-

puter Society.

[138] A. Ward, A. Jones, and A. Hopper. A new location technique for the active office.

IEEE Personal Communications, 4(5):42–47, Oct 1997.

[139] Anthony I. Wasserman. Software engineering issues for mobile application develop-

ment. In Proceedings of the FSE/SDP Workshop on Future of Software Engineering

Research, FoSER ’10, pages 397–400, New York, NY, USA, 2010. ACM.

[140] H. L. Wen, C. H. Lin, T. H. Hsieh, and C. Z. Yang. Pats: A parallel gui testing

framework for android applications. In 2015 IEEE 39th Annual Computer Software

and Applications Conference, volume 2, pages 210–215, July 2015.

BIBLIOGRAPHY 141

[141] Lee White and Husain Almezen. Generating test cases for gui responsibilities using

complete interaction sequences. In Proceedings of the 11th International Symposium

on Software Reliability Engineering, ISSRE ’00, pages 110–, Washington, DC, USA,

2000. IEEE Computer Society.

[142] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and An-

ders Wessln. Experimentation in Software Engineering. Springer Publishing Com-

pany, Incorporated, 2012.

[143] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim. Crashlocator:

Locating crashing faults based on crash stacks. In Proceedings of the 2014 Interna-

tional Symposium on Software Testing and Analysis, ISSTA 2014, page 204–214, New

York, NY, USA, 2014. Association for Computing Machinery.

[144] Jiwei Yan, Linjie Pan, Yaqi Li, Jun Yan, and Jian Zhang. Land: A user-friendly and

customizable test generation tool for android apps. In Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018,

pages 360–363, New York, NY, USA, 2018. ACM.

[145] Wei Yang, Mukul R. Prasad, and Tao Xie. A grey-box approach for automated gui-

model generation of mobile applications. In Proceedings of the 16th International

Conference on Fundamental Approaches to Software Engineering, FASE’13, pages

250–265, Berlin, Heidelberg, 2013. Springer-Verlag.

[146] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. Droidfuzzer: Fuzzing the

android apps with intent-filter tag. In Proceedings of International Conference on

Advances in Mobile Computing & Multimedia, MoMM ’13, pages 68:68–68:74,

New York, NY, USA, 2013. ACM.

[147] Yu Lei and K. C. Tai. In-parameter-order: a test generation strategy for pairwise test-

ing. In Proceedings Third IEEE International High-Assurance Systems Engineering

Symposium (Cat. No.98EX231), pages 254–261, Nov 1998.

[148] Songhui Yue, Songqing Yue, and Randy Smith. A survey of testing context-aware

software: Challenges and resolution. In Proceedings of the International Conference

BIBLIOGRAPHY 142

on Software Engineering Research and Practice (SERP) 2016, pages 102–108, Las

Vegas, NE, USA, 2016. IEEE Computer Society.

[149] R. N. Zaeem, M. R. Prasad, and S. Khurshid. Automated generation of oracles for

testing user-interaction features of mobile apps. In 2014 IEEE Seventh International

Conference on Software Testing, Verification and Validation, pages 183–192, March

2014.

[150] Samer Zein, Norsaremah Salleh, and John Grundy. A systematic mapping study of

mobile application testing techniques. J. Syst. Softw., 117(C):334–356, July 2016.

[151] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam, Wei Yang,

and Tao Xie. Automated test input generation for android: Are we really there yet

in an industrial case? In Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, pages 987–992, New

York, NY, USA, 2016. ACM.

[152] Y. Zhauniarovich, A. Philippov, O. Gadyatskaya, B. Crispo, and F. Massacci. To-

wards black box testing of android apps. In 2015 10th International Conference on

Availability, Reliability and Security, pages 501–510, Aug 2015.

[153] D. Zun, T. Qi, and L. Chen. Research on automated testing framework for multi-

platform mobile applications. In 2016 4th International Conference on Cloud Com-

puting and Intelligence Systems (CCIS), pages 82–87, Aug 2016.

Appendix A

PICT Rules

143

144

Ta
bl

e
A

.1
:O

rd
er

1
te

st
ru

le
s

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

145

Ta
bl

e
A

.2
:O

rd
er

2
te

st
ru

le
s

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
R
E
C
E
I
V
E
_
C
A
L
L
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

146

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

N
O
T

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
A
C
C
E
P
T
_
C
A
L
L
"
;

I
F

N
O
T

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
C
A
N
C
E
L
_
C
A
L
L
"
;

147

Ta
bl

e
A

.3
:O

rd
er

3
te

st
ru

le
s

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

148

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
G
P
S
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
G
P
S
_
O
F
F
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
R
E
C
E
I
V
E
_
C
A
L
L
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
R
E
C
E
I
V
E
_
C
A
L
L
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

N
O
T

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
A
C
C
E
P
T
_
C
A
L
L
"
;

I
F

N
O
T

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
A
C
C
E
P
T
_
C
A
L
L
"
;

I
F

N
O
T

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
C
A
N
C
E
L
_
C
A
L
L
"
;

I
F

N
O
T

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
C
A
N
C
E
L
_
C
A
L
L
"
;

149

Ta
bl

e
A

.4
:O

rd
er

4
te

st
ru

le
s

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

150

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
G
P
S
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
G
P
S
_
O
N
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
G
P
S
_
O
F
F
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
G
P
S
_
O
F
F
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"
;

151

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
R
E
C
E
I
V
E
_
C
A
L
L
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
R
E
C
E
I
V
E
_
C
A
L
L
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
R
E
C
E
I
V
E
_
C
A
L
L
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

N
O
T

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
A
C
C
E
P
T
_
C
A
L
L
"
;

I
F

N
O
T

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
A
C
C
E
P
T
_
C
A
L
L
"
;

I
F

N
O
T

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
A
C
C
E
P
T
_
C
A
L
L
"
;

I
F

N
O
T

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
C
A
N
C
E
L
_
C
A
L
L
"
;

I
F

N
O
T

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
C
A
N
C
E
L
_
C
A
L
L
"
;

I
F

N
O
T

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
C
A
N
C
E
L
_
C
A
L
L
"
;

152

Ta
bl

e
A

.5
:O

rd
er

5
te

st
ru

le
s

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
6
"
,

"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

A
N
D

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

A
N
D

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

153

I
F

[
S
e
t
u
p
]

i
n

{
"
S
7
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

A
N
D

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
2
"
,

"
S
7
"
,

"
S
8
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
3
"
,

"
S
4
"
,

"
S
5
"
,

"
S
6
"
,

"
S
9
"
,

"
S
1
0
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

A
N
D

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
5
"
,

"
S
1
1
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

A
N
D

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

154

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
1
"
,

"
S
3
"
,

"
S
5
"
,

"
S
7
"
,

"
S
1
0
"
,

"
S
1
2
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

A
N
D

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

T
H
E
N

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
S
e
t
u
p
]

i
n

{
"
S
2
"
,

"
S
4
"
,

"
S
6
"
,

"
S
8
"
,

"
S
9
"
,

"
S
1
1
"
}

A
N
D

[
F
i
r
s
t
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

A
N
D

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

A
N
D

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

A
N
D

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
G
P
S
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
G
P
S
_
O
N
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
F
o
u
r
t
h
_
E
v
e
n
t
]

=

"
G
P
S
_
O
N
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
N
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
G
P
S
_
O
F
F
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
G
P
S
_
O
F
F
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
F
o
u
r
t
h
_
E
v
e
n
t
]

=

"
G
P
S
_
O
F
F
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
O
F
F
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"
;

I
F

[
F
o
u
r
t
h
_
E
v
e
n
t
]

=

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
S
I
M
U
L
A
T
E
_
L
O
N
G
_
B
A
C
K
G
R
O
U
N
D
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"
;

I
F

[
F
o
u
r
t
h
_
E
v
e
n
t
]

=

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
T
A
K
E
_
A
_
P
I
C
T
U
R
E
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

155

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
F
o
u
r
t
h
_
E
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
P
O
R
T
R
A
I
T
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
F
o
u
r
t
h
_
E
v
e
n
t
]

=

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
O
R
I
E
N
T
A
T
I
O
N
_
L
A
N
D
S
C
A
P
E
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
R
E
C
E
I
V
E
_
C
A
L
L
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
R
E
C
E
I
V
E
_
C
A
L
L
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
R
E
C
E
I
V
E
_
C
A
L
L
"
;

I
F

[
F
o
u
r
t
h
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
R
E
C
E
I
V
E
_
C
A
L
L
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
F
o
u
r
t
h
_
E
v
e
n
t
]

=

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
F
o
u
r
t
h
_
E
v
e
n
t
]

=

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
G
P
S
_
N
O
T
_
C
A
L
I
B
R
A
T
E
D
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
F
o
u
r
t
h
_
E
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
N
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
N
"
;

I
F

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

[
F
o
u
r
t
h
_
E
v
e
n
t
]

=

"
I
N
T
E
R
N
E
T
_
O
F
F
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
I
N
T
E
R
N
E
T
_
O
F
F
"
;

I
F

N
O
T

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
A
C
C
E
P
T
_
C
A
L
L
"
;

I
F

N
O
T

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
A
C
C
E
P
T
_
C
A
L
L
"
;

I
F

N
O
T

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
A
C
C
E
P
T
_
C
A
L
L
"
;

I
F

N
O
T

[
F
o
u
r
t
h
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
A
C
C
E
P
T
_
C
A
L
L
"
;

I
F

N
O
T

[
F
i
r
s
t
_
e
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
S
e
c
o
n
d
_
E
v
e
n
t
]

<
>

"
C
A
N
C
E
L
_
C
A
L
L
"
;

I
F

N
O
T

[
S
e
c
o
n
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
T
h
i
r
d
_
E
v
e
n
t
]

<
>

"
C
A
N
C
E
L
_
C
A
L
L
"
;

I
F

N
O
T

[
T
h
i
r
d
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
F
o
u
r
t
h
_
E
v
e
n
t
]

<
>

"
C
A
N
C
E
L
_
C
A
L
L
"
;

I
F

N
O
T

[
F
o
u
r
t
h
_
E
v
e
n
t
]

=

"
R
E
C
E
I
V
E
_
C
A
L
L
"

T
H
E
N

[
F
i
f
t
h
_
E
v
e
n
t
]

<
>

"
C
A
N
C
E
L
_
C
A
L
L
"
;

Appendix B

Test Cases

156

157

Table B.1: Order 1 test cases

 Path Setup First Delay First event

1 Small S8 NOT_WAIT ORIENTATION_PORTRAIT

2 Small S11 WAIT RECEIVE_CALL

3 Small S2 WAIT LONG_BACKGROUND

4 Small S9 NOT_WAIT INTERNET_ON

5 Small S5 NOT_WAIT INTERNET_OFF

6 Small S5 WAIT TAKE_A_PICTURE

7 Small S10 NOT_WAIT ORIENTATION_PORTRAIT

8 Small S6 WAIT ORIENTATION_LANDSCAPE

9 Small S9 NOT_WAIT RECEIVE_CALL

10 Small S12 WAIT INTERNET_OFF

11 Small S7 NOT_WAIT ORIENTATION_PORTRAIT

12 Small S4 WAIT ORIENTATION_LANDSCAPE

13 Small S8 WAIT TAKE_A_PICTURE

14 Small S3 WAIT INTERNET_OFF

15 Small S4 WAIT LONG_BACKGROUND

16 Small S3 WAIT GPS_CALIBRATED

17 Small S4 WAIT GPS_CALIBRATED

18 Small S4 NOT_WAIT GPS_OFF

19 Small S11 WAIT TAKE_A_PICTURE

20 Small S1 NOT_WAIT RECEIVE_CALL

21 Small S1 WAIT GPS_OFF

22 Small S8 NOT_WAIT GPS_NOT_CALIBRATED

23 Small S1 WAIT TAKE_A_PICTURE

24 Small S11 NOT_WAIT GPS_ON

25 Small S2 NOT_WAIT GPS_NOT_CALIBRATED

26 Small S12 NOT_WAIT LONG_BACKGROUND

27 Small S2 NOT_WAIT TAKE_A_PICTURE

28 Small S11 NOT_WAIT LONG_BACKGROUND

29 Small S7 WAIT GPS_OFF

30 Small S7 NOT_WAIT LONG_BACKGROUND

158

31 Perfect S11 NOT_WAIT INTERNET_ON

32 Perfect S1 WAIT GPS_NOT_CALIBRATED

33 Perfect S4 NOT_WAIT TAKE_A_PICTURE

34 Perfect S10 WAIT INTERNET_OFF

35 Perfect S8 WAIT LONG_BACKGROUND

36 Perfect S6 WAIT GPS_CALIBRATED

37 Perfect S12 NOT_WAIT GPS_ON

38 Perfect S5 NOT_WAIT ORIENTATION_LANDSCAPE

39 Perfect S10 NOT_WAIT TAKE_A_PICTURE

40 Perfect S9 WAIT GPS_CALIBRATED

41 Perfect S9 NOT_WAIT GPS_OFF

42 Perfect S7 WAIT TAKE_A_PICTURE

43 Perfect S2 NOT_WAIT GPS_OFF

44 Perfect S12 WAIT ORIENTATION_PORTRAIT

45 Perfect S3 WAIT ORIENTATION_LANDSCAPE

46 Perfect S9 WAIT RECEIVE_CALL

47 Limit S9 WAIT ORIENTATION_PORTRAIT

48 Limit S3 NOT_WAIT GPS_OFF

49 Limit S10 WAIT LONG_BACKGROUND

50 Limit S8 NOT_WAIT RECEIVE_CALL

51 Limit S2 WAIT INTERNET_ON

52 Limit S6 NOT_WAIT TAKE_A_PICTURE

53 Limit S12 WAIT TAKE_A_PICTURE

54 Limit S4 WAIT INTERNET_ON

55 Limit S5 NOT_WAIT ORIENTATION_LANDSCAPE

56 Limit S7 WAIT INTERNET_OFF

57 Limit S9 WAIT GPS_CALIBRATED

58 Limit S1 WAIT GPS_NOT_CALIBRATED

59 Limit S11 WAIT GPS_ON

60 Long S3 WAIT TAKE_A_PICTURE

61 Long S10 NOT_WAIT GPS_CALIBRATED

159

62 Long S6 NOT_WAIT RECEIVE_CALL

63 Long S8 WAIT INTERNET_ON

64 Long S1 NOT_WAIT LONG_BACKGROUND

65 Long S12 NOT_WAIT ORIENTATION_PORTRAIT

66 Long S9 NOT_WAIT LONG_BACKGROUND

67 Long S10 WAIT RECEIVE_CALL

68 Long S9 NOT_WAIT TAKE_A_PICTURE

69 Long S2 NOT_WAIT RECEIVE_CALL

70 Long S4 WAIT RECEIVE_CALL

71 Long S11 NOT_WAIT ORIENTATION_PORTRAIT

72 Long S2 NOT_WAIT ORIENTATION_LANDSCAPE

73 Long S6 WAIT GPS_OFF

74 Long S5 WAIT GPS_ON

75 Long S7 WAIT INTERNET_OFF

76 Long S7 NOT_WAIT GPS_NOT_CALIBRATED

77 Long S5 WAIT LONG_BACKGROUND

78 Long S12 NOT_WAIT RECEIVE_CALL

79 Long S6 WAIT INTERNET_ON

80 Long S10 NOT_WAIT GPS_OFF

81 Long S6 NOT_WAIT LONG_BACKGROUND

82 Long S1 WAIT INTERNET_OFF

83 Long S5 WAIT RECEIVE_CALL

84 Long S3 NOT_WAIT RECEIVE_CALL

85 Long S1 NOT_WAIT ORIENTATION_LANDSCAPE

86 Long S3 WAIT LONG_BACKGROUND

87 Long S7 WAIT RECEIVE_CALL

88 Long S8 WAIT GPS_OFF

160

Table B.2: Order 2 test cases

 Path Setup First Delay First event Second Delay Second event

1 Small S1 WAIT INTERNET_OFF NOT_WAIT TAKE_A_PICTURE

2 Small S10 NOT_WAIT RECEIVE_CALL WAIT ORIENTATION_PORTRAIT

3 Small S12 NOT_WAIT ORIENTATION_PORTRAIT WAIT RECEIVE_CALL

4 Small S9 NOT_WAIT RECEIVE_CALL NOT_WAIT ACCEPT_CALL

5 Small S7 WAIT GPS_OFF NOT_WAIT GPS_ON

6 Small S8 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT LONG_BACKGROUND

7 Small S2 NOT_WAIT TAKE_A_PICTURE WAIT GPS_NOT_CALIBRATED

8 Small S11 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF

9 Small S3 NOT_WAIT GPS_CALIBRATED WAIT GPS_OFF

10 Small S4 WAIT RECEIVE_CALL NOT_WAIT CANCEL_CALL

11 Small S5 NOT_WAIT GPS_ON NOT_WAIT RECEIVE_CALL

12 Small S9 WAIT LONG_BACKGROUND WAIT GPS_CALIBRATED

13 Small S6 NOT_WAIT INTERNET_ON NOT_WAIT INTERNET_OFF

14 Small S6 NOT_WAIT ORIENTATION_LANDSCAPE WAIT TAKE_A_PICTURE

15 Small S10 WAIT ORIENTATION_PORTRAIT WAIT TAKE_A_PICTURE

16 Small S6 WAIT TAKE_A_PICTURE WAIT ORIENTATION_LANDSCAPE

17 Small S5 WAIT INTERNET_OFF WAIT INTERNET_ON

18 Small S9 WAIT GPS_OFF WAIT GPS_ON

19 Small S4 NOT_WAIT TAKE_A_PICTURE WAIT GPS_CALIBRATED

20 Small S6 NOT_WAIT RECEIVE_CALL WAIT INTERNET_ON

21 Small S9 NOT_WAIT GPS_CALIBRATED NOT_WAIT INTERNET_ON

22 Small S5 WAIT GPS_ON WAIT GPS_CALIBRATED

23 Small S4 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT

24 Small S2 WAIT INTERNET_ON WAIT GPS_OFF

25 Small S10 WAIT TAKE_A_PICTURE WAIT INTERNET_OFF

26 Small S5 WAIT ORIENTATION_LANDSCAPE NOT_WAIT ORIENTATION_PORTRAIT

27 Small S1 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT INTERNET_OFF

28 Small S7 WAIT GPS_NOT_CALIBRATED WAIT TAKE_A_PICTURE

29 Small S11 WAIT LONG_BACKGROUND NOT_WAIT GPS_ON

30 Small S1 NOT_WAIT GPS_NOT_CALIBRATED WAIT ORIENTATION_LANDSCAPE

31 Small S6 WAIT RECEIVE_CALL NOT_WAIT GPS_CALIBRATED

32 Small S7 WAIT LONG_BACKGROUND NOT_WAIT INTERNET_OFF

33 Small S10 WAIT INTERNET_OFF WAIT LONG_BACKGROUND

34 Small S11 WAIT GPS_ON WAIT TAKE_A_PICTURE

35 Small S7 WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL

36 Small S8 WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_OFF

37 Small S2 WAIT GPS_NOT_CALIBRATED NOT_WAIT INTERNET_ON

38 Small S3 WAIT RECEIVE_CALL NOT_WAIT INTERNET_OFF

39 Small S10 WAIT GPS_CALIBRATED NOT_WAIT ORIENTATION_PORTRAIT

40 Small S10 NOT_WAIT GPS_OFF NOT_WAIT GPS_CALIBRATED

41 Small S4 WAIT INTERNET_ON NOT_WAIT LONG_BACKGROUND

42 Small S7 WAIT GPS_NOT_CALIBRATED NOT_WAIT INTERNET_OFF

43 Small S11 NOT_WAIT RECEIVE_CALL WAIT ACCEPT_CALL

161

44 Small S11 WAIT GPS_ON NOT_WAIT INTERNET_ON

45 Small S3 NOT_WAIT GPS_OFF NOT_WAIT INTERNET_OFF

46 Small S7 NOT_WAIT TAKE_A_PICTURE WAIT LONG_BACKGROUND

47 Small S3 NOT_WAIT GPS_CALIBRATED NOT_WAIT INTERNET_OFF

48 Small S2 WAIT RECEIVE_CALL WAIT CANCEL_CALL

49 Small S4 NOT_WAIT INTERNET_ON NOT_WAIT GPS_CALIBRATED

50 Small S1 NOT_WAIT INTERNET_OFF WAIT GPS_NOT_CALIBRATED

51 Small S11 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL

52 Small S7 NOT_WAIT GPS_OFF NOT_WAIT GPS_NOT_CALIBRATED

53 Small S2 WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED

54 Small S8 WAIT GPS_OFF WAIT GPS_ON

55 Small S6 WAIT LONG_BACKGROUND WAIT ORIENTATION_LANDSCAPE

56 Small S12 NOT_WAIT INTERNET_OFF NOT_WAIT INTERNET_ON

57 Small S2 NOT_WAIT RECEIVE_CALL WAIT ACCEPT_CALL

58 Small S2 WAIT GPS_OFF WAIT INTERNET_ON

59 Small S2 WAIT LONG_BACKGROUND NOT_WAIT GPS_NOT_CALIBRATED

60 Small S12 WAIT ORIENTATION_PORTRAIT WAIT ORIENTATION_LANDSCAPE

61 Small S12 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL

62 Small S11 NOT_WAIT INTERNET_ON WAIT GPS_ON

63 Small S5 NOT_WAIT ORIENTATION_LANDSCAPE WAIT GPS_ON

64 Small S6 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL

65 Small S12 NOT_WAIT INTERNET_OFF NOT_WAIT RECEIVE_CALL

66 Perfect S7 NOT_WAIT INTERNET_OFF WAIT INTERNET_ON

67 Perfect S3 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT GPS_CALIBRATED

68 Perfect S9 WAIT INTERNET_ON NOT_WAIT ORIENTATION_PORTRAIT

69 Perfect S9 NOT_WAIT GPS_OFF WAIT LONG_BACKGROUND

70 Perfect S6 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON

71 Perfect S10 WAIT GPS_CALIBRATED NOT_WAIT RECEIVE_CALL

72 Perfect S8 NOT_WAIT RECEIVE_CALL NOT_WAIT ACCEPT_CALL

73 Perfect S1 NOT_WAIT LONG_BACKGROUND WAIT GPS_OFF

74 Perfect S2 NOT_WAIT RECEIVE_CALL WAIT LONG_BACKGROUND

75 Perfect S5 WAIT GPS_ON WAIT ORIENTATION_LANDSCAPE

76 Perfect S11 WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE

77 Perfect S5 WAIT LONG_BACKGROUND WAIT TAKE_A_PICTURE

78 Perfect S7 WAIT GPS_NOT_CALIBRATED WAIT GPS_OFF

79 Perfect S7 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL

80 Perfect S9 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF

81 Perfect S9 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED

82 Perfect S12 WAIT GPS_ON WAIT GPS_OFF

83 Perfect S4 WAIT GPS_CALIBRATED WAIT ORIENTATION_LANDSCAPE

84 Perfect S8 NOT_WAIT TAKE_A_PICTURE NOT_WAIT INTERNET_ON

85 Perfect S12 NOT_WAIT LONG_BACKGROUND NOT_WAIT ORIENTATION_PORTRAIT

86 Perfect S5 WAIT ORIENTATION_LANDSCAPE WAIT LONG_BACKGROUND

87 Perfect S8 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE

162

88 Perfect S1 NOT_WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT

89 Limit S3 WAIT LONG_BACKGROUND WAIT TAKE_A_PICTURE

90 Limit S9 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL

91 Limit S12 WAIT GPS_ON NOT_WAIT INTERNET_OFF

92 Limit S9 WAIT ORIENTATION_PORTRAIT WAIT ORIENTATION_LANDSCAPE

93 Limit S4 NOT_WAIT GPS_OFF WAIT GPS_ON

94 Limit S1 WAIT GPS_NOT_CALIBRATED WAIT LONG_BACKGROUND

95 Limit S3 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT

96 Limit S3 WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL

97 Limit S2 WAIT INTERNET_ON WAIT RECEIVE_CALL

98 Limit S8 WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_NOT_CALIBRATED

99 Limit S7 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE

100 Limit S3 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON

101 Limit S7 NOT_WAIT RECEIVE_CALL WAIT ACCEPT_CALL

102 Limit S5 NOT_WAIT TAKE_A_PICTURE WAIT GPS_ON

103 Limit S10 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED

104 Limit S2 WAIT INTERNET_ON WAIT INTERNET_OFF

105 Limit S1 WAIT ORIENTATION_LANDSCAPE WAIT GPS_NOT_CALIBRATED

106 Limit S5 NOT_WAIT INTERNET_OFF WAIT GPS_ON

107 Limit S8 NOT_WAIT INTERNET_ON NOT_WAIT GPS_NOT_CALIBRATED

108 Limit S6 WAIT GPS_OFF NOT_WAIT RECEIVE_CALL

109 Limit S6 NOT_WAIT RECEIVE_CALL WAIT GPS_OFF

110 Limit S12 WAIT RECEIVE_CALL WAIT ACCEPT_CALL

111 Limit S12 NOT_WAIT GPS_ON WAIT GPS_CALIBRATED

112 Limit S1 WAIT INTERNET_OFF WAIT ORIENTATION_LANDSCAPE

113 Limit S11 WAIT GPS_ON NOT_WAIT GPS_OFF

114 Limit S8 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT ORIENTATION_PORTRAIT

115 Limit S11 NOT_WAIT GPS_ON WAIT ORIENTATION_PORTRAIT

116 Limit S5 NOT_WAIT GPS_ON WAIT INTERNET_OFF

117 Limit S8 NOT_WAIT LONG_BACKGROUND WAIT INTERNET_ON

118 Limit S10 WAIT LONG_BACKGROUND NOT_WAIT TAKE_A_PICTURE

119 Long S2 NOT_WAIT GPS_OFF NOT_WAIT ORIENTATION_LANDSCAPE

120 Long S9 WAIT TAKE_A_PICTURE NOT_WAIT GPS_OFF

121 Long S2 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT

122 Long S3 WAIT RECEIVE_CALL WAIT ACCEPT_CALL

123 Long S6 WAIT GPS_CALIBRATED WAIT LONG_BACKGROUND

124 Long S8 NOT_WAIT INTERNET_ON WAIT TAKE_A_PICTURE

125 Long S8 WAIT LONG_BACKGROUND NOT_WAIT RECEIVE_CALL

126 Long S3 WAIT RECEIVE_CALL WAIT CANCEL_CALL

127 Long S3 WAIT INTERNET_OFF NOT_WAIT INTERNET_ON

128 Long S1 NOT_WAIT GPS_OFF WAIT GPS_ON

129 Long S12 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT LONG_BACKGROUND

130 Long S10 NOT_WAIT RECEIVE_CALL WAIT ACCEPT_CALL

131 Long S4 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF

163

132 Long S4 NOT_WAIT ORIENTATION_LANDSCAPE WAIT GPS_OFF

133 Long S10 WAIT INTERNET_OFF WAIT GPS_CALIBRATED

134 Long S8 NOT_WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED

135 Long S1 WAIT RECEIVE_CALL WAIT ACCEPT_CALL

136 Long S5 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL

137 Long S1 WAIT INTERNET_OFF WAIT INTERNET_ON

138 Long S11 WAIT RECEIVE_CALL WAIT CANCEL_CALL

139 Long S5 WAIT GPS_ON NOT_WAIT GPS_OFF

140 Long S7 WAIT RECEIVE_CALL WAIT GPS_NOT_CALIBRATED

141 Long S1 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT GPS_CALIBRATED

142 Long S4 WAIT RECEIVE_CALL WAIT ACCEPT_CALL

143 Long S10 WAIT RECEIVE_CALL WAIT CANCEL_CALL

144 Long S11 WAIT GPS_ON NOT_WAIT GPS_CALIBRATED

145 Long S8 WAIT INTERNET_ON WAIT INTERNET_OFF

146 Long S4 NOT_WAIT LONG_BACKGROUND NOT_WAIT INTERNET_ON

147 Long S10 NOT_WAIT INTERNET_OFF NOT_WAIT INTERNET_ON

148 Long S7 NOT_WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED

149 Long S8 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL

150 Long S9 WAIT RECEIVE_CALL NOT_WAIT TAKE_A_PICTURE

151 Long S6 WAIT RECEIVE_CALL WAIT ACCEPT_CALL

152 Long S10 WAIT INTERNET_OFF NOT_WAIT GPS_OFF

153 Long S1 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL

154 Long S11 NOT_WAIT TAKE_A_PICTURE NOT_WAIT ORIENTATION_PORTRAIT

155 Long S1 WAIT RECEIVE_CALL NOT_WAIT CANCEL_CALL

156 Long S3 WAIT GPS_CALIBRATED NOT_WAIT GPS_NOT_CALIBRATED

157 Long S12 NOT_WAIT INTERNET_OFF WAIT TAKE_A_PICTURE

158 Long S8 NOT_WAIT GPS_OFF NOT_WAIT ORIENTATION_PORTRAIT

159 Long S2 NOT_WAIT LONG_BACKGROUND NOT_WAIT TAKE_A_PICTURE

160 Long S4 WAIT GPS_OFF WAIT TAKE_A_PICTURE

161 Long S6 WAIT GPS_CALIBRATED NOT_WAIT GPS_NOT_CALIBRATED

162 Long S7 NOT_WAIT INTERNET_OFF NOT_WAIT ORIENTATION_PORTRAIT

163 Long S12 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_ON

164 Long S3 NOT_WAIT TAKE_A_PICTURE NOT_WAIT LONG_BACKGROUND

165 Long S2 WAIT GPS_OFF NOT_WAIT GPS_ON

166 Long S10 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON

167 Long S9 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL

168 Long S11 NOT_WAIT GPS_ON WAIT LONG_BACKGROUND

169 Long S10 WAIT GPS_CALIBRATED WAIT TAKE_A_PICTURE

170 Long S9 NOT_WAIT ORIENTATION_PORTRAIT WAIT GPS_CALIBRATED

171 Long S5 NOT_WAIT RECEIVE_CALL WAIT ACCEPT_CALL

172 Long S4 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED

173 Long S2 WAIT GPS_NOT_CALIBRATED NOT_WAIT RECEIVE_CALL

174 Long S3 NOT_WAIT RECEIVE_CALL WAIT ORIENTATION_LANDSCAPE

175 Long S11 NOT_WAIT RECEIVE_CALL WAIT GPS_ON

164

176 Long S7 WAIT ORIENTATION_PORTRAIT WAIT INTERNET_OFF

177 Long S10 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE

178 Long S4 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT RECEIVE_CALL

179 Long S6 WAIT INTERNET_ON NOT_WAIT ORIENTATION_LANDSCAPE

180 Long S2 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT INTERNET_ON

181 Long S6 WAIT ORIENTATION_LANDSCAPE NOT_WAIT ORIENTATION_PORTRAIT

182 Long S11 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT INTERNET_ON

183 Long S12 NOT_WAIT TAKE_A_PICTURE WAIT GPS_ON

Appendix C

Raw Results

165

166

Table C.1: Order 1 test result for OsmAnd application

Path Setup First Delay First event Verdict Crash

1 Small S8 NOT_WAIT ORIENTATION_PORTRAIT Pass

2 Small S11 WAIT RECEIVE_CALL Pass

3 Small S2 WAIT LONG_BACKGROUND Pass

4 Small S9 NOT_WAIT INTERNET_ON Pass

5 Small S5 NOT_WAIT INTERNET_OFF Pass

6 Small S5 WAIT TAKE_A_PICTURE Pass

7 Small S10 NOT_WAIT ORIENTATION_PORTRAIT Pass

8 Small S6 WAIT ORIENTATION_LANDSCAPE Pass

9 Small S9 NOT_WAIT RECEIVE_CALL Pass

10 Small S12 WAIT INTERNET_OFF Pass

11 Small S7 NOT_WAIT ORIENTATION_PORTRAIT Pass

12 Small S4 WAIT ORIENTATION_LANDSCAPE Pass

13 Small S8 WAIT TAKE_A_PICTURE Pass

14 Small S3 WAIT INTERNET_OFF Pass

15 Small S4 WAIT LONG_BACKGROUND Pass

16 Small S3 WAIT GPS_CALIBRATED Fail

17 Small S4 WAIT GPS_CALIBRATED Pass

18 Small S4 NOT_WAIT GPS_OFF Pass

19 Small S11 WAIT TAKE_A_PICTURE Pass

20 Small S1 NOT_WAIT RECEIVE_CALL Pass

21 Small S1 WAIT GPS_OFF Pass

22 Small S8 NOT_WAIT GPS_NOT_CALIBRATED Pass

23 Small S1 WAIT TAKE_A_PICTURE Pass

24 Small S11 NOT_WAIT GPS_ON Pass

25 Small S2 NOT_WAIT GPS_NOT_CALIBRATED Pass

26 Small S12 NOT_WAIT LONG_BACKGROUND Pass

27 Small S2 NOT_WAIT TAKE_A_PICTURE Pass

28 Small S11 NOT_WAIT LONG_BACKGROUND Pass

29 Small S7 WAIT GPS_OFF Pass

30 Small S7 NOT_WAIT LONG_BACKGROUND Pass

31 Perfect S11 NOT_WAIT INTERNET_ON Pass

32 Perfect S1 WAIT GPS_NOT_CALIBRATED Pass

33 Perfect S4 NOT_WAIT TAKE_A_PICTURE Pass

34 Perfect S10 WAIT INTERNET_OFF Pass

35 Perfect S8 WAIT LONG_BACKGROUND Pass

36 Perfect S6 WAIT GPS_CALIBRATED Pass

37 Perfect S12 NOT_WAIT GPS_ON Pass

38 Perfect S5 NOT_WAIT ORIENTATION_LANDSCAPE Pass

39 Perfect S10 NOT_WAIT TAKE_A_PICTURE Pass

40 Perfect S9 WAIT GPS_CALIBRATED Fail

41 Perfect S9 NOT_WAIT GPS_OFF Pass

42 Perfect S7 WAIT TAKE_A_PICTURE Pass

43 Perfect S2 NOT_WAIT GPS_OFF Pass

44 Perfect S12 WAIT ORIENTATION_PORTRAIT Pass

45 Perfect S3 WAIT ORIENTATION_LANDSCAPE Pass

46 Perfect S9 WAIT RECEIVE_CALL Pass

47 Limit S9 WAIT ORIENTATION_PORTRAIT Pass

48 Limit S3 NOT_WAIT GPS_OFF Pass

OsmAnd

167

49 Limit S10 WAIT LONG_BACKGROUND Pass

50 Limit S8 NOT_WAIT RECEIVE_CALL Pass

51 Limit S2 WAIT INTERNET_ON Pass

52 Limit S6 NOT_WAIT TAKE_A_PICTURE Pass

53 Limit S12 WAIT TAKE_A_PICTURE Pass

54 Limit S4 WAIT INTERNET_ON Pass

55 Limit S5 NOT_WAIT ORIENTATION_LANDSCAPE Pass

56 Limit S7 WAIT INTERNET_OFF Pass

57 Limit S9 WAIT GPS_CALIBRATED Fail

58 Limit S1 WAIT GPS_NOT_CALIBRATED Pass

59 Limit S11 WAIT GPS_ON Pass

60 Long S3 WAIT TAKE_A_PICTURE Pass

61 Long S10 NOT_WAIT GPS_CALIBRATED Fail

62 Long S6 NOT_WAIT RECEIVE_CALL Pass

63 Long S8 WAIT INTERNET_ON Pass

64 Long S1 NOT_WAIT LONG_BACKGROUND Pass

65 Long S12 NOT_WAIT ORIENTATION_PORTRAIT Pass

66 Long S9 NOT_WAIT LONG_BACKGROUND Pass

67 Long S10 WAIT RECEIVE_CALL Pass

68 Long S9 NOT_WAIT TAKE_A_PICTURE Pass

69 Long S2 NOT_WAIT RECEIVE_CALL Pass

70 Long S4 WAIT RECEIVE_CALL Pass

71 Long S11 NOT_WAIT ORIENTATION_PORTRAIT Pass

72 Long S2 NOT_WAIT ORIENTATION_LANDSCAPE Pass

73 Long S6 WAIT GPS_OFF Pass

74 Long S5 WAIT GPS_ON Pass

75 Long S7 WAIT INTERNET_OFF Pass

76 Long S7 NOT_WAIT GPS_NOT_CALIBRATED Pass

77 Long S5 WAIT LONG_BACKGROUND Pass

78 Long S12 NOT_WAIT RECEIVE_CALL Pass

79 Long S6 WAIT INTERNET_ON Pass

80 Long S10 NOT_WAIT GPS_OFF Pass

81 Long S6 NOT_WAIT LONG_BACKGROUND Pass

82 Long S1 WAIT INTERNET_OFF Pass

83 Long S5 WAIT RECEIVE_CALL Pass

84 Long S3 NOT_WAIT RECEIVE_CALL Pass

85 Long S1 NOT_WAIT ORIENTATION_LANDSCAPE Pass

86 Long S3 WAIT LONG_BACKGROUND Pass

87 Long S7 WAIT RECEIVE_CALL Pass

88 Long S8 WAIT GPS_OFF Pass

168

Table C.2: Order 1 test result for GPS Offline Navigation

Path Setup First Delay First event Verdict Crash

1 Small S8 NOT_WAIT ORIENTATION_PORTRAIT Pass

2 Small S11 WAIT RECEIVE_CALL Pass

3 Small S2 WAIT LONG_BACKGROUND Fail

4 Small S9 NOT_WAIT INTERNET_ON Pass

5 Small S5 NOT_WAIT INTERNET_OFF Pass

6 Small S5 WAIT TAKE_A_PICTURE Pass

7 Small S10 NOT_WAIT ORIENTATION_PORTRAIT Pass

8 Small S6 WAIT ORIENTATION_LANDSCAPE Pass

9 Small S9 NOT_WAIT RECEIVE_CALL Pass

10 Small S12 WAIT INTERNET_OFF Pass

11 Small S7 NOT_WAIT ORIENTATION_PORTRAIT Pass

12 Small S4 WAIT ORIENTATION_LANDSCAPE Pass

13 Small S8 WAIT TAKE_A_PICTURE Pass

14 Small S3 WAIT INTERNET_OFF Pass

15 Small S4 WAIT LONG_BACKGROUND Fail

16 Small S3 WAIT GPS_CALIBRATED Pass

17 Small S4 WAIT GPS_CALIBRATED Pass

18 Small S4 NOT_WAIT GPS_OFF Pass

19 Small S11 WAIT TAKE_A_PICTURE Pass

20 Small S1 NOT_WAIT RECEIVE_CALL Pass

21 Small S1 WAIT GPS_OFF Pass

22 Small S8 NOT_WAIT GPS_NOT_CALIBRATED Pass

23 Small S1 WAIT TAKE_A_PICTURE Pass

24 Small S11 NOT_WAIT GPS_ON Pass

25 Small S2 NOT_WAIT GPS_NOT_CALIBRATED Pass

26 Small S12 NOT_WAIT LONG_BACKGROUND Fail

27 Small S2 NOT_WAIT TAKE_A_PICTURE Pass

28 Small S11 NOT_WAIT LONG_BACKGROUND Fail

29 Small S7 WAIT GPS_OFF Pass

30 Small S7 NOT_WAIT LONG_BACKGROUND Fail

31 Perfect S11 NOT_WAIT INTERNET_ON Pass

32 Perfect S1 WAIT GPS_NOT_CALIBRATED Pass

33 Perfect S4 NOT_WAIT TAKE_A_PICTURE Pass

34 Perfect S10 WAIT INTERNET_OFF Pass

35 Perfect S8 WAIT LONG_BACKGROUND Pass

36 Perfect S6 WAIT GPS_CALIBRATED Pass

37 Perfect S12 NOT_WAIT GPS_ON Pass

38 Perfect S5 NOT_WAIT ORIENTATION_LANDSCAPE Pass

39 Perfect S10 NOT_WAIT TAKE_A_PICTURE Pass

40 Perfect S9 WAIT GPS_CALIBRATED Pass

41 Perfect S9 NOT_WAIT GPS_OFF Pass

42 Perfect S7 WAIT TAKE_A_PICTURE Pass

43 Perfect S2 NOT_WAIT GPS_OFF Pass

44 Perfect S12 WAIT ORIENTATION_PORTRAIT Pass

45 Perfect S3 WAIT ORIENTATION_LANDSCAPE Pass

46 Perfect S9 WAIT RECEIVE_CALL Pass

47 Limit S9 WAIT ORIENTATION_PORTRAIT Pass

48 Limit S3 NOT_WAIT GPS_OFF Pass

GPS Offline Navigation Route Maps & Directions

169

49 Limit S10 WAIT LONG_BACKGROUND Pass

50 Limit S8 NOT_WAIT RECEIVE_CALL Pass

51 Limit S2 WAIT INTERNET_ON Pass

52 Limit S6 NOT_WAIT TAKE_A_PICTURE Pass

53 Limit S12 WAIT TAKE_A_PICTURE Pass

54 Limit S4 WAIT INTERNET_ON Pass

55 Limit S5 NOT_WAIT ORIENTATION_LANDSCAPE Pass

56 Limit S7 WAIT INTERNET_OFF Pass

57 Limit S9 WAIT GPS_CALIBRATED Pass

58 Limit S1 WAIT GPS_NOT_CALIBRATED Pass

59 Limit S11 WAIT GPS_ON Pass

60 Long S3 WAIT TAKE_A_PICTURE Pass

61 Long S10 NOT_WAIT GPS_CALIBRATED Pass

62 Long S6 NOT_WAIT RECEIVE_CALL Pass

63 Long S8 WAIT INTERNET_ON Pass

64 Long S1 NOT_WAIT LONG_BACKGROUND Fail

65 Long S12 NOT_WAIT ORIENTATION_PORTRAIT Pass

66 Long S9 NOT_WAIT LONG_BACKGROUND Fail

67 Long S10 WAIT RECEIVE_CALL Pass

68 Long S9 NOT_WAIT TAKE_A_PICTURE Pass

69 Long S2 NOT_WAIT RECEIVE_CALL Pass

70 Long S4 WAIT RECEIVE_CALL Pass

71 Long S11 NOT_WAIT ORIENTATION_PORTRAIT Pass

72 Long S2 NOT_WAIT ORIENTATION_LANDSCAPE Pass

73 Long S6 WAIT GPS_OFF Pass

74 Long S5 WAIT GPS_ON Pass

75 Long S7 WAIT INTERNET_OFF Pass

76 Long S7 NOT_WAIT GPS_NOT_CALIBRATED Pass

77 Long S5 WAIT LONG_BACKGROUND Fail

78 Long S12 NOT_WAIT RECEIVE_CALL Pass

79 Long S6 WAIT INTERNET_ON Pass

80 Long S10 NOT_WAIT GPS_OFF Pass

81 Long S6 NOT_WAIT LONG_BACKGROUND Fail

82 Long S1 WAIT INTERNET_OFF Pass

83 Long S5 WAIT RECEIVE_CALL Pass

84 Long S3 NOT_WAIT RECEIVE_CALL Pass

85 Long S1 NOT_WAIT ORIENTATION_LANDSCAPE Pass

86 Long S3 WAIT LONG_BACKGROUND Pass

87 Long S7 WAIT RECEIVE_CALL Pass

88 Long S8 WAIT GPS_OFF Pass

170

Table C.3: Order 1 test result for Genius Maps application

Path Setup First Delay First event Verdict Crash

1 Small S8 NOT_WAIT ORIENTATION_PORTRAIT Pass

2 Small S11 WAIT RECEIVE_CALL Pass

3 Small S2 WAIT LONG_BACKGROUND Fail

4 Small S9 NOT_WAIT INTERNET_ON Pass

5 Small S5 NOT_WAIT INTERNET_OFF Pass

6 Small S5 WAIT TAKE_A_PICTURE Pass

7 Small S10 NOT_WAIT ORIENTATION_PORTRAIT Pass

8 Small S6 WAIT ORIENTATION_LANDSCAPE Pass

9 Small S9 NOT_WAIT RECEIVE_CALL Pass

10 Small S12 WAIT INTERNET_OFF Pass

11 Small S7 NOT_WAIT ORIENTATION_PORTRAIT Pass

12 Small S4 WAIT ORIENTATION_LANDSCAPE Pass

13 Small S8 WAIT TAKE_A_PICTURE Fail

14 Small S3 WAIT INTERNET_OFF Pass

15 Small S4 WAIT LONG_BACKGROUND Pass

16 Small S3 WAIT GPS_CALIBRATED Pass

17 Small S4 WAIT GPS_CALIBRATED Pass

18 Small S4 NOT_WAIT GPS_OFF Pass

19 Small S11 WAIT TAKE_A_PICTURE Pass

20 Small S1 NOT_WAIT RECEIVE_CALL Pass

21 Small S1 WAIT GPS_OFF Pass

22 Small S8 NOT_WAIT GPS_NOT_CALIBRATED Pass

23 Small S1 WAIT TAKE_A_PICTURE Pass

24 Small S11 NOT_WAIT GPS_ON Pass

25 Small S2 NOT_WAIT GPS_NOT_CALIBRATED Pass

26 Small S12 NOT_WAIT LONG_BACKGROUND Pass

27 Small S2 NOT_WAIT TAKE_A_PICTURE Pass

28 Small S11 NOT_WAIT LONG_BACKGROUND Pass

29 Small S7 WAIT GPS_OFF Pass

30 Small S7 NOT_WAIT LONG_BACKGROUND Fail

31 Perfect S11 NOT_WAIT INTERNET_ON Pass

32 Perfect S1 WAIT GPS_NOT_CALIBRATED Pass

33 Perfect S4 NOT_WAIT TAKE_A_PICTURE Pass

34 Perfect S10 WAIT INTERNET_OFF Pass

35 Perfect S8 WAIT LONG_BACKGROUND Pass

36 Perfect S6 WAIT GPS_CALIBRATED Pass

37 Perfect S12 NOT_WAIT GPS_ON Pass

38 Perfect S5 NOT_WAIT ORIENTATION_LANDSCAPE Pass

39 Perfect S10 NOT_WAIT TAKE_A_PICTURE Pass

40 Perfect S9 WAIT GPS_CALIBRATED Pass

41 Perfect S9 NOT_WAIT GPS_OFF Pass

42 Perfect S7 WAIT TAKE_A_PICTURE Pass

43 Perfect S2 NOT_WAIT GPS_OFF Pass

44 Perfect S12 WAIT ORIENTATION_PORTRAIT Pass

45 Perfect S3 WAIT ORIENTATION_LANDSCAPE Pass

46 Perfect S9 WAIT RECEIVE_CALL Pass

47 Limit S9 WAIT ORIENTATION_PORTRAIT Pass

48 Limit S3 NOT_WAIT GPS_OFF Pass

Genius Maps: Offline GPS Navigator

171

49 Limit S10 WAIT LONG_BACKGROUND Pass

50 Limit S8 NOT_WAIT RECEIVE_CALL Pass

51 Limit S2 WAIT INTERNET_ON Pass

52 Limit S6 NOT_WAIT TAKE_A_PICTURE Pass

53 Limit S12 WAIT TAKE_A_PICTURE Pass

54 Limit S4 WAIT INTERNET_ON Pass

55 Limit S5 NOT_WAIT ORIENTATION_LANDSCAPE Pass

56 Limit S7 WAIT INTERNET_OFF Pass

57 Limit S9 WAIT GPS_CALIBRATED Pass

58 Limit S1 WAIT GPS_NOT_CALIBRATED Pass

59 Limit S11 WAIT GPS_ON Pass

60 Long S3 WAIT TAKE_A_PICTURE Pass

61 Long S10 NOT_WAIT GPS_CALIBRATED Pass

62 Long S6 NOT_WAIT RECEIVE_CALL Pass

63 Long S8 WAIT INTERNET_ON Pass

64 Long S1 NOT_WAIT LONG_BACKGROUND Pass

65 Long S12 NOT_WAIT ORIENTATION_PORTRAIT Pass

66 Long S9 NOT_WAIT LONG_BACKGROUND Pass

67 Long S10 WAIT RECEIVE_CALL Pass

68 Long S9 NOT_WAIT TAKE_A_PICTURE Pass

69 Long S2 NOT_WAIT RECEIVE_CALL Pass

70 Long S4 WAIT RECEIVE_CALL Pass

71 Long S11 NOT_WAIT ORIENTATION_PORTRAIT Pass

72 Long S2 NOT_WAIT ORIENTATION_LANDSCAPE Pass

73 Long S6 WAIT GPS_OFF Pass

74 Long S5 WAIT GPS_ON Pass

75 Long S7 WAIT INTERNET_OFF Pass

76 Long S7 NOT_WAIT GPS_NOT_CALIBRATED Pass

77 Long S5 WAIT LONG_BACKGROUND Pass

78 Long S12 NOT_WAIT RECEIVE_CALL Pass

79 Long S6 WAIT INTERNET_ON Pass

80 Long S10 NOT_WAIT GPS_OFF Pass

81 Long S6 NOT_WAIT LONG_BACKGROUND Pass

82 Long S1 WAIT INTERNET_OFF Pass

83 Long S5 WAIT RECEIVE_CALL Pass

84 Long S3 NOT_WAIT RECEIVE_CALL Pass

85 Long S1 NOT_WAIT ORIENTATION_LANDSCAPE Pass

86 Long S3 WAIT LONG_BACKGROUND Pass

87 Long S7 WAIT RECEIVE_CALL Pass

88 Long S8 WAIT GPS_OFF Pass

172

Table C.4: Order 1 test result for Voice GPS Navigation application

Path Setup First Delay First event Verdict Crash

1 Small S8 NOT_WAIT ORIENTATION_PORTRAIT Pass

2 Small S11 WAIT RECEIVE_CALL Pass

3 Small S2 WAIT LONG_BACKGROUND Pass

4 Small S9 NOT_WAIT INTERNET_ON Fail X

5 Small S5 NOT_WAIT INTERNET_OFF Pass

6 Small S5 WAIT TAKE_A_PICTURE Pass

7 Small S10 NOT_WAIT ORIENTATION_PORTRAIT Fail X

8 Small S6 WAIT ORIENTATION_LANDSCAPE Pass

9 Small S9 NOT_WAIT RECEIVE_CALL Pass

10 Small S12 WAIT INTERNET_OFF Pass

11 Small S7 NOT_WAIT ORIENTATION_PORTRAIT Fail

12 Small S4 WAIT ORIENTATION_LANDSCAPE Pass

13 Small S8 WAIT TAKE_A_PICTURE Fail

14 Small S3 WAIT INTERNET_OFF Pass

15 Small S4 WAIT LONG_BACKGROUND Pass

16 Small S3 WAIT GPS_CALIBRATED Fail

17 Small S4 WAIT GPS_CALIBRATED Pass

18 Small S4 NOT_WAIT GPS_OFF Pass

19 Small S11 WAIT TAKE_A_PICTURE Pass

20 Small S1 NOT_WAIT RECEIVE_CALL Pass

21 Small S1 WAIT GPS_OFF Fail X

22 Small S8 NOT_WAIT GPS_NOT_CALIBRATED Pass

23 Small S1 WAIT TAKE_A_PICTURE Pass

24 Small S11 NOT_WAIT GPS_ON Pass

25 Small S2 NOT_WAIT GPS_NOT_CALIBRATED Pass

26 Small S12 NOT_WAIT LONG_BACKGROUND Pass

27 Small S2 NOT_WAIT TAKE_A_PICTURE Pass

28 Small S11 NOT_WAIT LONG_BACKGROUND Pass

29 Small S7 WAIT GPS_OFF Pass

30 Small S7 NOT_WAIT LONG_BACKGROUND Pass

31 Perfect S11 NOT_WAIT INTERNET_ON Pass

32 Perfect S1 WAIT GPS_NOT_CALIBRATED Pass

33 Perfect S4 NOT_WAIT TAKE_A_PICTURE Pass

34 Perfect S10 WAIT INTERNET_OFF Pass

35 Perfect S8 WAIT LONG_BACKGROUND Pass

36 Perfect S6 WAIT GPS_CALIBRATED Pass

37 Perfect S12 NOT_WAIT GPS_ON Pass

38 Perfect S5 NOT_WAIT ORIENTATION_LANDSCAPE Pass

39 Perfect S10 NOT_WAIT TAKE_A_PICTURE Pass

40 Perfect S9 WAIT GPS_CALIBRATED Pass

41 Perfect S9 NOT_WAIT GPS_OFF Pass

42 Perfect S7 WAIT TAKE_A_PICTURE Pass

43 Perfect S2 NOT_WAIT GPS_OFF Pass

44 Perfect S12 WAIT ORIENTATION_PORTRAIT Pass

45 Perfect S3 WAIT ORIENTATION_LANDSCAPE Pass

46 Perfect S9 WAIT RECEIVE_CALL Pass

47 Limit S9 WAIT ORIENTATION_PORTRAIT Pass

48 Limit S3 NOT_WAIT GPS_OFF Pass

Voice GPS Navigation: Live Driving Direction

173

49 Limit S10 WAIT LONG_BACKGROUND Pass

50 Limit S8 NOT_WAIT RECEIVE_CALL Pass

51 Limit S2 WAIT INTERNET_ON Fail X

52 Limit S6 NOT_WAIT TAKE_A_PICTURE Pass

53 Limit S12 WAIT TAKE_A_PICTURE Pass

54 Limit S4 WAIT INTERNET_ON Pass

55 Limit S5 NOT_WAIT ORIENTATION_LANDSCAPE Pass

56 Limit S7 WAIT INTERNET_OFF Pass

57 Limit S9 WAIT GPS_CALIBRATED Pass

58 Limit S1 WAIT GPS_NOT_CALIBRATED Pass

59 Limit S11 WAIT GPS_ON Pass

60 Long S3 WAIT TAKE_A_PICTURE Pass

61 Long S10 NOT_WAIT GPS_CALIBRATED Fail X

62 Long S6 NOT_WAIT RECEIVE_CALL Pass

63 Long S8 WAIT INTERNET_ON Fail

64 Long S1 NOT_WAIT LONG_BACKGROUND Pass

65 Long S12 NOT_WAIT ORIENTATION_PORTRAIT Pass

66 Long S9 NOT_WAIT LONG_BACKGROUND Pass

67 Long S10 WAIT RECEIVE_CALL Pass

68 Long S9 NOT_WAIT TAKE_A_PICTURE Pass

69 Long S2 NOT_WAIT RECEIVE_CALL Fail

70 Long S4 WAIT RECEIVE_CALL Pass

71 Long S11 NOT_WAIT ORIENTATION_PORTRAIT Pass

72 Long S2 NOT_WAIT ORIENTATION_LANDSCAPE Fail

73 Long S6 WAIT GPS_OFF Pass

74 Long S5 WAIT GPS_ON Pass

75 Long S7 WAIT INTERNET_OFF Fail

76 Long S7 NOT_WAIT GPS_NOT_CALIBRATED Fail X

77 Long S5 WAIT LONG_BACKGROUND Pass

78 Long S12 NOT_WAIT RECEIVE_CALL Pass

79 Long S6 WAIT INTERNET_ON Pass

80 Long S10 NOT_WAIT GPS_OFF Pass

81 Long S6 NOT_WAIT LONG_BACKGROUND Pass

82 Long S1 WAIT INTERNET_OFF Fail X

83 Long S5 WAIT RECEIVE_CALL Pass

84 Long S3 NOT_WAIT RECEIVE_CALL Fail X

85 Long S1 NOT_WAIT ORIENTATION_LANDSCAPE Fail

86 Long S3 WAIT LONG_BACKGROUND Pass

87 Long S7 WAIT RECEIVE_CALL Fail

88 Long S8 WAIT GPS_OFF Pass

174

Table C.5: Order 2 test result for OsmAnd application

Path Setup First Delay First event Second Delay Second event Verdict Crash

1 Small S1 WAIT INTERNET_OFF NOT_WAIT TAKE_A_PICTURE Pass

2 Small S10 NOT_WAIT RECEIVE_CALL WAIT ORIENTATION_PORTRAIT Pass

3 Small S12 NOT_WAIT ORIENTATION_PORTRAIT WAIT RECEIVE_CALL Pass

4 Small S9 NOT_WAIT RECEIVE_CALL NOT_WAIT Pass_CALL Pass

5 Small S7 WAIT GPS_OFF NOT_WAIT GPS_ON Pass

6 Small S8 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT LONG_BACKGROUND Pass

7 Small S2 NOT_WAIT TAKE_A_PICTURE WAIT GPS_NOT_CALIBRATED Pass

8 Small S11 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF Pass

9 Small S3 NOT_WAIT GPS_CALIBRATED WAIT GPS_OFF Fail

10 Small S4 WAIT RECEIVE_CALL NOT_WAIT CANCEL_CALL Pass

11 Small S5 NOT_WAIT GPS_ON NOT_WAIT RECEIVE_CALL Pass

12 Small S9 WAIT LONG_BACKGROUND WAIT GPS_CALIBRATED Fail

13 Small S6 NOT_WAIT INTERNET_ON NOT_WAIT INTERNET_OFF Pass

14 Small S6 NOT_WAIT ORIENTATION_LANDSCAPE WAIT TAKE_A_PICTURE Pass

15 Small S10 WAIT ORIENTATION_PORTRAIT WAIT TAKE_A_PICTURE Pass

16 Small S6 WAIT TAKE_A_PICTURE WAIT ORIENTATION_LANDSCAPE Pass

17 Small S5 WAIT INTERNET_OFF WAIT INTERNET_ON Pass

18 Small S9 WAIT GPS_OFF WAIT GPS_ON Pass

19 Small S4 NOT_WAIT TAKE_A_PICTURE WAIT GPS_CALIBRATED Pass

20 Small S6 NOT_WAIT RECEIVE_CALL WAIT INTERNET_ON Pass

21 Small S9 NOT_WAIT GPS_CALIBRATED NOT_WAIT INTERNET_ON Fail

22 Small S5 WAIT GPS_ON WAIT GPS_CALIBRATED Pass

23 Small S4 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

24 Small S2 WAIT INTERNET_ON WAIT GPS_OFF Pass

25 Small S10 WAIT TAKE_A_PICTURE WAIT INTERNET_OFF Pass

26 Small S5 WAIT ORIENTATION_LANDSCAPE NOT_WAIT ORIENTATION_PORTRAIT Pass

27 Small S1 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT INTERNET_OFF Pass

28 Small S7 WAIT GPS_NOT_CALIBRATED WAIT TAKE_A_PICTURE Pass

29 Small S11 WAIT LONG_BACKGROUND NOT_WAIT GPS_ON Pass

30 Small S1 NOT_WAIT GPS_NOT_CALIBRATED WAIT ORIENTATION_LANDSCAPE Pass

31 Small S6 WAIT RECEIVE_CALL NOT_WAIT GPS_CALIBRATED Fail

32 Small S7 WAIT LONG_BACKGROUND NOT_WAIT INTERNET_OFF Pass

33 Small S10 WAIT INTERNET_OFF WAIT LONG_BACKGROUND Pass

34 Small S11 WAIT GPS_ON WAIT TAKE_A_PICTURE Pass

35 Small S7 WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

36 Small S8 WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_OFF Pass

37 Small S2 WAIT GPS_NOT_CALIBRATED NOT_WAIT INTERNET_ON Pass

38 Small S3 WAIT RECEIVE_CALL NOT_WAIT INTERNET_OFF Pass

39 Small S10 WAIT GPS_CALIBRATED NOT_WAIT ORIENTATION_PORTRAIT Fail

40 Small S10 NOT_WAIT GPS_OFF NOT_WAIT GPS_CALIBRATED Fail

41 Small S4 WAIT INTERNET_ON NOT_WAIT LONG_BACKGROUND Pass

42 Small S7 WAIT GPS_NOT_CALIBRATED NOT_WAIT INTERNET_OFF Pass

43 Small S11 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

44 Small S11 WAIT GPS_ON NOT_WAIT INTERNET_ON Pass

45 Small S3 NOT_WAIT GPS_OFF NOT_WAIT INTERNET_OFF Pass

46 Small S7 NOT_WAIT TAKE_A_PICTURE WAIT LONG_BACKGROUND Pass

47 Small S3 NOT_WAIT GPS_CALIBRATED NOT_WAIT INTERNET_OFF Fail

48 Small S2 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

49 Small S4 NOT_WAIT INTERNET_ON NOT_WAIT GPS_CALIBRATED Fail

50 Small S1 NOT_WAIT INTERNET_OFF WAIT GPS_NOT_CALIBRATED Pass

51 Small S11 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

52 Small S7 NOT_WAIT GPS_OFF NOT_WAIT GPS_NOT_CALIBRATED Pass

53 Small S2 WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED Pass

54 Small S8 WAIT GPS_OFF WAIT GPS_ON Pass

OsmAnd

175

55 Small S6 WAIT LONG_BACKGROUND WAIT ORIENTATION_LANDSCAPE Pass

56 Small S12 NOT_WAIT INTERNET_OFF NOT_WAIT INTERNET_ON Pass

57 Small S2 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

58 Small S2 WAIT GPS_OFF WAIT INTERNET_ON Pass

59 Small S2 WAIT LONG_BACKGROUND NOT_WAIT GPS_NOT_CALIBRATED Pass

60 Small S12 WAIT ORIENTATION_PORTRAIT WAIT ORIENTATION_LANDSCAPE Pass

61 Small S12 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

62 Small S11 NOT_WAIT INTERNET_ON WAIT GPS_ON Pass

63 Small S5 NOT_WAIT ORIENTATION_LANDSCAPE WAIT GPS_ON Pass

64 Small S6 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

65 Small S12 NOT_WAIT INTERNET_OFF NOT_WAIT RECEIVE_CALL Pass

66 Perfect S7 NOT_WAIT INTERNET_OFF WAIT INTERNET_ON Pass

67 Perfect S3 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT GPS_CALIBRATED Fail

68 Perfect S9 WAIT INTERNET_ON NOT_WAIT ORIENTATION_PORTRAIT Pass

69 Perfect S9 NOT_WAIT GPS_OFF WAIT LONG_BACKGROUND Pass

70 Perfect S6 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON Pass

71 Perfect S10 WAIT GPS_CALIBRATED NOT_WAIT RECEIVE_CALL Fail

72 Perfect S8 NOT_WAIT RECEIVE_CALL NOT_WAIT Pass_CALL Pass

73 Perfect S1 NOT_WAIT LONG_BACKGROUND WAIT GPS_OFF Pass

74 Perfect S2 NOT_WAIT RECEIVE_CALL WAIT LONG_BACKGROUND Pass

75 Perfect S5 WAIT GPS_ON WAIT ORIENTATION_LANDSCAPE Pass

76 Perfect S11 WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

77 Perfect S5 WAIT LONG_BACKGROUND WAIT TAKE_A_PICTURE Pass

78 Perfect S7 WAIT GPS_NOT_CALIBRATED WAIT GPS_OFF Pass

79 Perfect S7 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

80 Perfect S9 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF Pass

81 Perfect S9 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED Fail

82 Perfect S12 WAIT GPS_ON WAIT GPS_OFF Pass

83 Perfect S4 WAIT GPS_CALIBRATED WAIT ORIENTATION_LANDSCAPE Fail

84 Perfect S8 NOT_WAIT TAKE_A_PICTURE NOT_WAIT INTERNET_ON Pass

85 Perfect S12 NOT_WAIT LONG_BACKGROUND NOT_WAIT ORIENTATION_PORTRAIT Pass

86 Perfect S5 WAIT ORIENTATION_LANDSCAPE WAIT LONG_BACKGROUND Pass

87 Perfect S8 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

88 Perfect S1 NOT_WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

89 Limit S3 WAIT LONG_BACKGROUND WAIT TAKE_A_PICTURE Pass

90 Limit S9 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

91 Limit S12 WAIT GPS_ON NOT_WAIT INTERNET_OFF Pass

92 Limit S9 WAIT ORIENTATION_PORTRAIT WAIT ORIENTATION_LANDSCAPE Pass

93 Limit S4 NOT_WAIT GPS_OFF WAIT GPS_ON Pass

94 Limit S1 WAIT GPS_NOT_CALIBRATED WAIT LONG_BACKGROUND Pass

95 Limit S3 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

96 Limit S3 WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

97 Limit S2 WAIT INTERNET_ON WAIT RECEIVE_CALL Pass

98 Limit S8 WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_NOT_CALIBRATED Pass

99 Limit S7 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

100 Limit S3 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON Pass

101 Limit S7 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

102 Limit S5 NOT_WAIT TAKE_A_PICTURE WAIT GPS_ON Pass

103 Limit S10 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED Pass

104 Limit S2 WAIT INTERNET_ON WAIT INTERNET_OFF Pass

105 Limit S1 WAIT ORIENTATION_LANDSCAPE WAIT GPS_NOT_CALIBRATED Pass

106 Limit S5 NOT_WAIT INTERNET_OFF WAIT GPS_ON Pass

107 Limit S8 NOT_WAIT INTERNET_ON NOT_WAIT GPS_NOT_CALIBRATED Pass

108 Limit S6 WAIT GPS_OFF NOT_WAIT RECEIVE_CALL Pass

109 Limit S6 NOT_WAIT RECEIVE_CALL WAIT GPS_OFF Pass

110 Limit S12 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

176

111 Limit S12 NOT_WAIT GPS_ON WAIT GPS_CALIBRATED Pass

112 Limit S1 WAIT INTERNET_OFF WAIT ORIENTATION_LANDSCAPE Pass

113 Limit S11 WAIT GPS_ON NOT_WAIT GPS_OFF Pass

114 Limit S8 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT ORIENTATION_PORTRAIT Pass

115 Limit S11 NOT_WAIT GPS_ON WAIT ORIENTATION_PORTRAIT Pass

116 Limit S5 NOT_WAIT GPS_ON WAIT INTERNET_OFF Pass

117 Limit S8 NOT_WAIT LONG_BACKGROUND WAIT INTERNET_ON Pass

118 Limit S10 WAIT LONG_BACKGROUND NOT_WAIT TAKE_A_PICTURE Pass

119 Long S2 NOT_WAIT GPS_OFF NOT_WAIT ORIENTATION_LANDSCAPE Pass

120 Long S9 WAIT TAKE_A_PICTURE NOT_WAIT GPS_OFF Pass

121 Long S2 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

122 Long S3 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

123 Long S6 WAIT GPS_CALIBRATED WAIT LONG_BACKGROUND Fail

124 Long S8 NOT_WAIT INTERNET_ON WAIT TAKE_A_PICTURE Pass

125 Long S8 WAIT LONG_BACKGROUND NOT_WAIT RECEIVE_CALL Pass

126 Long S3 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

127 Long S3 WAIT INTERNET_OFF NOT_WAIT INTERNET_ON Pass

128 Long S1 NOT_WAIT GPS_OFF WAIT GPS_ON Pass

129 Long S12 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT LONG_BACKGROUND Pass

130 Long S10 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

131 Long S4 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF Pass

132 Long S4 NOT_WAIT ORIENTATION_LANDSCAPE WAIT GPS_OFF Pass

133 Long S10 WAIT INTERNET_OFF WAIT GPS_CALIBRATED Fail

134 Long S8 NOT_WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED Fail

135 Long S1 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

136 Long S5 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

137 Long S1 WAIT INTERNET_OFF WAIT INTERNET_ON Pass

138 Long S11 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

139 Long S5 WAIT GPS_ON NOT_WAIT GPS_OFF Pass

140 Long S7 WAIT RECEIVE_CALL WAIT GPS_NOT_CALIBRATED Pass

141 Long S1 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT GPS_CALIBRATED Pass

142 Long S4 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

143 Long S10 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

144 Long S11 WAIT GPS_ON NOT_WAIT GPS_CALIBRATED Fail

145 Long S8 WAIT INTERNET_ON WAIT INTERNET_OFF Pass

146 Long S4 NOT_WAIT LONG_BACKGROUND NOT_WAIT INTERNET_ON Pass

147 Long S10 NOT_WAIT INTERNET_OFF NOT_WAIT INTERNET_ON Pass

148 Long S7 NOT_WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED Fail

149 Long S8 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

150 Long S9 WAIT RECEIVE_CALL NOT_WAIT TAKE_A_PICTURE Pass

151 Long S6 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

152 Long S10 WAIT INTERNET_OFF NOT_WAIT GPS_OFF Pass

153 Long S1 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

154 Long S11 NOT_WAIT TAKE_A_PICTURE NOT_WAIT ORIENTATION_PORTRAIT Pass

155 Long S1 WAIT RECEIVE_CALL NOT_WAIT CANCEL_CALL Pass

156 Long S3 WAIT GPS_CALIBRATED NOT_WAIT GPS_NOT_CALIBRATED Pass

157 Long S12 NOT_WAIT INTERNET_OFF WAIT TAKE_A_PICTURE Pass

158 Long S8 NOT_WAIT GPS_OFF NOT_WAIT ORIENTATION_PORTRAIT Pass

159 Long S2 NOT_WAIT LONG_BACKGROUND NOT_WAIT TAKE_A_PICTURE Pass

160 Long S4 WAIT GPS_OFF WAIT TAKE_A_PICTURE Pass

161 Long S6 WAIT GPS_CALIBRATED NOT_WAIT GPS_NOT_CALIBRATED Pass

162 Long S7 NOT_WAIT INTERNET_OFF NOT_WAIT ORIENTATION_PORTRAIT Pass

163 Long S12 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_ON Pass

164 Long S3 NOT_WAIT TAKE_A_PICTURE NOT_WAIT LONG_BACKGROUND Pass

165 Long S2 WAIT GPS_OFF NOT_WAIT GPS_ON Pass

166 Long S10 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON Pass

177

167 Long S9 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

168 Long S11 NOT_WAIT GPS_ON WAIT LONG_BACKGROUND Pass

169 Long S10 WAIT GPS_CALIBRATED WAIT TAKE_A_PICTURE Fail

170 Long S9 NOT_WAIT ORIENTATION_PORTRAIT WAIT GPS_CALIBRATED Fail

171 Long S5 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

172 Long S4 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED Pass

173 Long S2 WAIT GPS_NOT_CALIBRATED NOT_WAIT RECEIVE_CALL Pass

174 Long S3 NOT_WAIT RECEIVE_CALL WAIT ORIENTATION_LANDSCAPE Pass

175 Long S11 NOT_WAIT RECEIVE_CALL WAIT GPS_ON Pass

176 Long S7 WAIT ORIENTATION_PORTRAIT WAIT INTERNET_OFF Pass

177 Long S10 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

178 Long S4 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT RECEIVE_CALL Pass

179 Long S6 WAIT INTERNET_ON NOT_WAIT ORIENTATION_LANDSCAPE Pass

180 Long S2 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT INTERNET_ON Pass

181 Long S6 WAIT ORIENTATION_LANDSCAPE NOT_WAIT ORIENTATION_PORTRAIT Pass

182 Long S11 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT INTERNET_ON Pass

183 Long S12 NOT_WAIT TAKE_A_PICTURE WAIT GPS_ON Pass

178

Table C.6: Order 2 test result for GPS Offline Navigation application

Path Setup First Delay First event Second Delay Second event Verdict Crash

1 Small S1 WAIT INTERNET_OFF NOT_WAIT TAKE_A_PICTURE Pass

2 Small S10 NOT_WAIT RECEIVE_CALL WAIT ORIENTATION_PORTRAIT Pass

3 Small S12 NOT_WAIT ORIENTATION_PORTRAIT WAIT RECEIVE_CALL Pass

4 Small S9 NOT_WAIT RECEIVE_CALL NOT_WAIT Pass_CALL Pass

5 Small S7 WAIT GPS_OFF NOT_WAIT GPS_ON Pass

6 Small S8 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT LONG_BACKGROUND Pass

7 Small S2 NOT_WAIT TAKE_A_PICTURE WAIT GPS_NOT_CALIBRATED Pass

8 Small S11 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF Pass

9 Small S3 NOT_WAIT GPS_CALIBRATED WAIT GPS_OFF Fail

10 Small S4 WAIT RECEIVE_CALL NOT_WAIT CANCEL_CALL Pass

11 Small S5 NOT_WAIT GPS_ON NOT_WAIT RECEIVE_CALL Pass

12 Small S9 WAIT LONG_BACKGROUND WAIT GPS_CALIBRATED Pass

13 Small S6 NOT_WAIT INTERNET_ON NOT_WAIT INTERNET_OFF Pass

14 Small S6 NOT_WAIT ORIENTATION_LANDSCAPE WAIT TAKE_A_PICTURE Pass

15 Small S10 WAIT ORIENTATION_PORTRAIT WAIT TAKE_A_PICTURE Pass

16 Small S6 WAIT TAKE_A_PICTURE WAIT ORIENTATION_LANDSCAPE Pass

17 Small S5 WAIT INTERNET_OFF WAIT INTERNET_ON Pass

18 Small S9 WAIT GPS_OFF WAIT GPS_ON Pass

19 Small S4 NOT_WAIT TAKE_A_PICTURE WAIT GPS_CALIBRATED Pass

20 Small S6 NOT_WAIT RECEIVE_CALL WAIT INTERNET_ON Pass

21 Small S9 NOT_WAIT GPS_CALIBRATED NOT_WAIT INTERNET_ON Pass

22 Small S5 WAIT GPS_ON WAIT GPS_CALIBRATED Fail

23 Small S4 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

24 Small S2 WAIT INTERNET_ON WAIT GPS_OFF Pass

25 Small S10 WAIT TAKE_A_PICTURE WAIT INTERNET_OFF Pass

26 Small S5 WAIT ORIENTATION_LANDSCAPE NOT_WAIT ORIENTATION_PORTRAIT Pass

27 Small S1 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT INTERNET_OFF Pass

28 Small S7 WAIT GPS_NOT_CALIBRATED WAIT TAKE_A_PICTURE Pass

29 Small S11 WAIT LONG_BACKGROUND NOT_WAIT GPS_ON Pass

30 Small S1 NOT_WAIT GPS_NOT_CALIBRATED WAIT ORIENTATION_LANDSCAPE Pass

31 Small S6 WAIT RECEIVE_CALL NOT_WAIT GPS_CALIBRATED Pass

32 Small S7 WAIT LONG_BACKGROUND NOT_WAIT INTERNET_OFF Pass

33 Small S10 WAIT INTERNET_OFF WAIT LONG_BACKGROUND Pass

34 Small S11 WAIT GPS_ON WAIT TAKE_A_PICTURE Pass

35 Small S7 WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

36 Small S8 WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_OFF Pass

37 Small S2 WAIT GPS_NOT_CALIBRATED NOT_WAIT INTERNET_ON Pass

38 Small S3 WAIT RECEIVE_CALL NOT_WAIT INTERNET_OFF Pass

39 Small S10 WAIT GPS_CALIBRATED NOT_WAIT ORIENTATION_PORTRAIT Pass

40 Small S10 NOT_WAIT GPS_OFF NOT_WAIT GPS_CALIBRATED Pass

41 Small S4 WAIT INTERNET_ON NOT_WAIT LONG_BACKGROUND Pass

42 Small S7 WAIT GPS_NOT_CALIBRATED NOT_WAIT INTERNET_OFF Pass

43 Small S11 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

44 Small S11 WAIT GPS_ON NOT_WAIT INTERNET_ON Pass

45 Small S3 NOT_WAIT GPS_OFF NOT_WAIT INTERNET_OFF Pass

46 Small S7 NOT_WAIT TAKE_A_PICTURE WAIT LONG_BACKGROUND Pass

47 Small S3 NOT_WAIT GPS_CALIBRATED NOT_WAIT INTERNET_OFF Pass

48 Small S2 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

49 Small S4 NOT_WAIT INTERNET_ON NOT_WAIT GPS_CALIBRATED Pass

50 Small S1 NOT_WAIT INTERNET_OFF WAIT GPS_NOT_CALIBRATED Pass

51 Small S11 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

52 Small S7 NOT_WAIT GPS_OFF NOT_WAIT GPS_NOT_CALIBRATED Pass

53 Small S2 WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED Pass

54 Small S8 WAIT GPS_OFF WAIT GPS_ON Pass

GPS Offline Navigation Route Maps & Directions

179

55 Small S6 WAIT LONG_BACKGROUND WAIT ORIENTATION_LANDSCAPE Pass

56 Small S12 NOT_WAIT INTERNET_OFF NOT_WAIT INTERNET_ON Pass

57 Small S2 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

58 Small S2 WAIT GPS_OFF WAIT INTERNET_ON Pass

59 Small S2 WAIT LONG_BACKGROUND NOT_WAIT GPS_NOT_CALIBRATED Pass

60 Small S12 WAIT ORIENTATION_PORTRAIT WAIT ORIENTATION_LANDSCAPE Pass

61 Small S12 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

62 Small S11 NOT_WAIT INTERNET_ON WAIT GPS_ON Pass

63 Small S5 NOT_WAIT ORIENTATION_LANDSCAPE WAIT GPS_ON Pass

64 Small S6 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

65 Small S12 NOT_WAIT INTERNET_OFF NOT_WAIT RECEIVE_CALL Pass

66 Perfect S7 NOT_WAIT INTERNET_OFF WAIT INTERNET_ON Pass

67 Perfect S3 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT GPS_CALIBRATED Pass

68 Perfect S9 WAIT INTERNET_ON NOT_WAIT ORIENTATION_PORTRAIT Pass

69 Perfect S9 NOT_WAIT GPS_OFF WAIT LONG_BACKGROUND Pass

70 Perfect S6 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON Pass

71 Perfect S10 WAIT GPS_CALIBRATED NOT_WAIT RECEIVE_CALL Pass

72 Perfect S8 NOT_WAIT RECEIVE_CALL NOT_WAIT Pass_CALL Pass

73 Perfect S1 NOT_WAIT LONG_BACKGROUND WAIT GPS_OFF Pass

74 Perfect S2 NOT_WAIT RECEIVE_CALL WAIT LONG_BACKGROUND Pass

75 Perfect S5 WAIT GPS_ON WAIT ORIENTATION_LANDSCAPE Pass

76 Perfect S11 WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

77 Perfect S5 WAIT LONG_BACKGROUND WAIT TAKE_A_PICTURE Pass

78 Perfect S7 WAIT GPS_NOT_CALIBRATED WAIT GPS_OFF Pass

79 Perfect S7 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

80 Perfect S9 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF Pass

81 Perfect S9 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED Pass

82 Perfect S12 WAIT GPS_ON WAIT GPS_OFF Pass

83 Perfect S4 WAIT GPS_CALIBRATED WAIT ORIENTATION_LANDSCAPE Pass

84 Perfect S8 NOT_WAIT TAKE_A_PICTURE NOT_WAIT INTERNET_ON Pass

85 Perfect S12 NOT_WAIT LONG_BACKGROUND NOT_WAIT ORIENTATION_PORTRAIT Fail

86 Perfect S5 WAIT ORIENTATION_LANDSCAPE WAIT LONG_BACKGROUND Pass

87 Perfect S8 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

88 Perfect S1 NOT_WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

89 Limit S3 WAIT LONG_BACKGROUND WAIT TAKE_A_PICTURE Pass

90 Limit S9 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

91 Limit S12 WAIT GPS_ON NOT_WAIT INTERNET_OFF Pass

92 Limit S9 WAIT ORIENTATION_PORTRAIT WAIT ORIENTATION_LANDSCAPE Pass

93 Limit S4 NOT_WAIT GPS_OFF WAIT GPS_ON Pass

94 Limit S1 WAIT GPS_NOT_CALIBRATED WAIT LONG_BACKGROUND Pass

95 Limit S3 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

96 Limit S3 WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

97 Limit S2 WAIT INTERNET_ON WAIT RECEIVE_CALL Pass

98 Limit S8 WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_NOT_CALIBRATED Pass

99 Limit S7 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

100 Limit S3 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON Pass

101 Limit S7 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

102 Limit S5 NOT_WAIT TAKE_A_PICTURE WAIT GPS_ON Pass

103 Limit S10 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED Pass

104 Limit S2 WAIT INTERNET_ON WAIT INTERNET_OFF Pass

105 Limit S1 WAIT ORIENTATION_LANDSCAPE WAIT GPS_NOT_CALIBRATED Pass

106 Limit S5 NOT_WAIT INTERNET_OFF WAIT GPS_ON Pass

107 Limit S8 NOT_WAIT INTERNET_ON NOT_WAIT GPS_NOT_CALIBRATED Pass

108 Limit S6 WAIT GPS_OFF NOT_WAIT RECEIVE_CALL Pass

109 Limit S6 NOT_WAIT RECEIVE_CALL WAIT GPS_OFF Pass

110 Limit S12 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

180

111 Limit S12 NOT_WAIT GPS_ON WAIT GPS_CALIBRATED Pass

112 Limit S1 WAIT INTERNET_OFF WAIT ORIENTATION_LANDSCAPE Pass

113 Limit S11 WAIT GPS_ON NOT_WAIT GPS_OFF Pass

114 Limit S8 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT ORIENTATION_PORTRAIT Pass

115 Limit S11 NOT_WAIT GPS_ON WAIT ORIENTATION_PORTRAIT Pass

116 Limit S5 NOT_WAIT GPS_ON WAIT INTERNET_OFF Pass

117 Limit S8 NOT_WAIT LONG_BACKGROUND WAIT INTERNET_ON Pass

118 Limit S10 WAIT LONG_BACKGROUND NOT_WAIT TAKE_A_PICTURE Pass

119 Long S2 NOT_WAIT GPS_OFF NOT_WAIT ORIENTATION_LANDSCAPE Pass

120 Long S9 WAIT TAKE_A_PICTURE NOT_WAIT GPS_OFF Pass

121 Long S2 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

122 Long S3 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

123 Long S6 WAIT GPS_CALIBRATED WAIT LONG_BACKGROUND Fail

124 Long S8 NOT_WAIT INTERNET_ON WAIT TAKE_A_PICTURE Pass

125 Long S8 WAIT LONG_BACKGROUND NOT_WAIT RECEIVE_CALL Pass

126 Long S3 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

127 Long S3 WAIT INTERNET_OFF NOT_WAIT INTERNET_ON Pass

128 Long S1 NOT_WAIT GPS_OFF WAIT GPS_ON Pass

129 Long S12 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT LONG_BACKGROUND Pass

130 Long S10 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

131 Long S4 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF Pass

132 Long S4 NOT_WAIT ORIENTATION_LANDSCAPE WAIT GPS_OFF Pass

133 Long S10 WAIT INTERNET_OFF WAIT GPS_CALIBRATED Pass

134 Long S8 NOT_WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED Pass

135 Long S1 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

136 Long S5 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

137 Long S1 WAIT INTERNET_OFF WAIT INTERNET_ON Pass

138 Long S11 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

139 Long S5 WAIT GPS_ON NOT_WAIT GPS_OFF Pass

140 Long S7 WAIT RECEIVE_CALL WAIT GPS_NOT_CALIBRATED Pass

141 Long S1 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT GPS_CALIBRATED Pass

142 Long S4 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

143 Long S10 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

144 Long S11 WAIT GPS_ON NOT_WAIT GPS_CALIBRATED Fail

145 Long S8 WAIT INTERNET_ON WAIT INTERNET_OFF Pass

146 Long S4 NOT_WAIT LONG_BACKGROUND NOT_WAIT INTERNET_ON Pass

147 Long S10 NOT_WAIT INTERNET_OFF NOT_WAIT INTERNET_ON Pass

148 Long S7 NOT_WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED Pass

149 Long S8 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

150 Long S9 WAIT RECEIVE_CALL NOT_WAIT TAKE_A_PICTURE Pass

151 Long S6 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

152 Long S10 WAIT INTERNET_OFF NOT_WAIT GPS_OFF Pass

153 Long S1 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

154 Long S11 NOT_WAIT TAKE_A_PICTURE NOT_WAIT ORIENTATION_PORTRAIT Pass

155 Long S1 WAIT RECEIVE_CALL NOT_WAIT CANCEL_CALL Pass

156 Long S3 WAIT GPS_CALIBRATED NOT_WAIT GPS_NOT_CALIBRATED Pass

157 Long S12 NOT_WAIT INTERNET_OFF WAIT TAKE_A_PICTURE Pass

158 Long S8 NOT_WAIT GPS_OFF NOT_WAIT ORIENTATION_PORTRAIT Pass

159 Long S2 NOT_WAIT LONG_BACKGROUND NOT_WAIT TAKE_A_PICTURE Pass

160 Long S4 WAIT GPS_OFF WAIT TAKE_A_PICTURE Fail

161 Long S6 WAIT GPS_CALIBRATED NOT_WAIT GPS_NOT_CALIBRATED Pass

162 Long S7 NOT_WAIT INTERNET_OFF NOT_WAIT ORIENTATION_PORTRAIT Pass

163 Long S12 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_ON Pass

164 Long S3 NOT_WAIT TAKE_A_PICTURE NOT_WAIT LONG_BACKGROUND Pass

165 Long S2 WAIT GPS_OFF NOT_WAIT GPS_ON Pass

166 Long S10 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON Pass

181

167 Long S9 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

168 Long S11 NOT_WAIT GPS_ON WAIT LONG_BACKGROUND Fail

169 Long S10 WAIT GPS_CALIBRATED WAIT TAKE_A_PICTURE Pass

170 Long S9 NOT_WAIT ORIENTATION_PORTRAIT WAIT GPS_CALIBRATED Pass

171 Long S5 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

172 Long S4 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED Pass

173 Long S2 WAIT GPS_NOT_CALIBRATED NOT_WAIT RECEIVE_CALL Pass

174 Long S3 NOT_WAIT RECEIVE_CALL WAIT ORIENTATION_LANDSCAPE Pass

175 Long S11 NOT_WAIT RECEIVE_CALL WAIT GPS_ON Pass

176 Long S7 WAIT ORIENTATION_PORTRAIT WAIT INTERNET_OFF Pass

177 Long S10 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

178 Long S4 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT RECEIVE_CALL Pass

179 Long S6 WAIT INTERNET_ON NOT_WAIT ORIENTATION_LANDSCAPE Fail

180 Long S2 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT INTERNET_ON Pass

181 Long S6 WAIT ORIENTATION_LANDSCAPE NOT_WAIT ORIENTATION_PORTRAIT Pass

182 Long S11 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT INTERNET_ON Pass

183 Long S12 NOT_WAIT TAKE_A_PICTURE WAIT GPS_ON Pass

182

Table C.7: Order 2 test result for Genius Maps application

Path Setup First Delay First event Second Delay Second event Verdict Crash

1 Small S1 WAIT INTERNET_OFF NOT_WAIT TAKE_A_PICTURE Pass

2 Small S10 NOT_WAIT RECEIVE_CALL WAIT ORIENTATION_PORTRAIT Pass

3 Small S12 NOT_WAIT ORIENTATION_PORTRAIT WAIT RECEIVE_CALL Pass

4 Small S9 NOT_WAIT RECEIVE_CALL NOT_WAIT Pass_CALL Pass

5 Small S7 WAIT GPS_OFF NOT_WAIT GPS_ON Pass

6 Small S8 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT LONG_BACKGROUND Pass

7 Small S2 NOT_WAIT TAKE_A_PICTURE WAIT GPS_NOT_CALIBRATED Pass

8 Small S11 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF Pass

9 Small S3 NOT_WAIT GPS_CALIBRATED WAIT GPS_OFF Pass

10 Small S4 WAIT RECEIVE_CALL NOT_WAIT CANCEL_CALL Pass

11 Small S5 NOT_WAIT GPS_ON NOT_WAIT RECEIVE_CALL Pass

12 Small S9 WAIT LONG_BACKGROUND WAIT GPS_CALIBRATED Pass

13 Small S6 NOT_WAIT INTERNET_ON NOT_WAIT INTERNET_OFF Pass

14 Small S6 NOT_WAIT ORIENTATION_LANDSCAPE WAIT TAKE_A_PICTURE Pass

15 Small S10 WAIT ORIENTATION_PORTRAIT WAIT TAKE_A_PICTURE Pass

16 Small S6 WAIT TAKE_A_PICTURE WAIT ORIENTATION_LANDSCAPE Pass

17 Small S5 WAIT INTERNET_OFF WAIT INTERNET_ON Pass

18 Small S9 WAIT GPS_OFF WAIT GPS_ON Pass

19 Small S4 NOT_WAIT TAKE_A_PICTURE WAIT GPS_CALIBRATED Pass

20 Small S6 NOT_WAIT RECEIVE_CALL WAIT INTERNET_ON Pass

21 Small S9 NOT_WAIT GPS_CALIBRATED NOT_WAIT INTERNET_ON Pass

22 Small S5 WAIT GPS_ON WAIT GPS_CALIBRATED Pass

23 Small S4 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

24 Small S2 WAIT INTERNET_ON WAIT GPS_OFF Pass

25 Small S10 WAIT TAKE_A_PICTURE WAIT INTERNET_OFF Pass

26 Small S5 WAIT ORIENTATION_LANDSCAPE NOT_WAIT ORIENTATION_PORTRAIT Pass

27 Small S1 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT INTERNET_OFF Pass

28 Small S7 WAIT GPS_NOT_CALIBRATED WAIT TAKE_A_PICTURE Pass

29 Small S11 WAIT LONG_BACKGROUND NOT_WAIT GPS_ON Pass

30 Small S1 NOT_WAIT GPS_NOT_CALIBRATED WAIT ORIENTATION_LANDSCAPE Pass

31 Small S6 WAIT RECEIVE_CALL NOT_WAIT GPS_CALIBRATED Pass

32 Small S7 WAIT LONG_BACKGROUND NOT_WAIT INTERNET_OFF Fail

33 Small S10 WAIT INTERNET_OFF WAIT LONG_BACKGROUND Pass

34 Small S11 WAIT GPS_ON WAIT TAKE_A_PICTURE Pass

35 Small S7 WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

36 Small S8 WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_OFF Pass

37 Small S2 WAIT GPS_NOT_CALIBRATED NOT_WAIT INTERNET_ON Pass

38 Small S3 WAIT RECEIVE_CALL NOT_WAIT INTERNET_OFF Pass

39 Small S10 WAIT GPS_CALIBRATED NOT_WAIT ORIENTATION_PORTRAIT Pass

40 Small S10 NOT_WAIT GPS_OFF NOT_WAIT GPS_CALIBRATED Pass

41 Small S4 WAIT INTERNET_ON NOT_WAIT LONG_BACKGROUND Pass

42 Small S7 WAIT GPS_NOT_CALIBRATED NOT_WAIT INTERNET_OFF Pass

43 Small S11 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

44 Small S11 WAIT GPS_ON NOT_WAIT INTERNET_ON Pass

45 Small S3 NOT_WAIT GPS_OFF NOT_WAIT INTERNET_OFF Pass

46 Small S7 NOT_WAIT TAKE_A_PICTURE WAIT LONG_BACKGROUND Pass

47 Small S3 NOT_WAIT GPS_CALIBRATED NOT_WAIT INTERNET_OFF Fail

48 Small S2 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

49 Small S4 NOT_WAIT INTERNET_ON NOT_WAIT GPS_CALIBRATED Pass

50 Small S1 NOT_WAIT INTERNET_OFF WAIT GPS_NOT_CALIBRATED Pass

51 Small S11 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

52 Small S7 NOT_WAIT GPS_OFF NOT_WAIT GPS_NOT_CALIBRATED Pass

53 Small S2 WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED Pass

54 Small S8 WAIT GPS_OFF WAIT GPS_ON Pass

Genius Maps: Offline GPS Navigator

183

55 Small S6 WAIT LONG_BACKGROUND WAIT ORIENTATION_LANDSCAPE Pass

56 Small S12 NOT_WAIT INTERNET_OFF NOT_WAIT INTERNET_ON Pass

57 Small S2 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

58 Small S2 WAIT GPS_OFF WAIT INTERNET_ON Pass

59 Small S2 WAIT LONG_BACKGROUND NOT_WAIT GPS_NOT_CALIBRATED Pass

60 Small S12 WAIT ORIENTATION_PORTRAIT WAIT ORIENTATION_LANDSCAPE Fail

61 Small S12 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Fail

62 Small S11 NOT_WAIT INTERNET_ON WAIT GPS_ON Pass

63 Small S5 NOT_WAIT ORIENTATION_LANDSCAPE WAIT GPS_ON Pass

64 Small S6 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

65 Small S12 NOT_WAIT INTERNET_OFF NOT_WAIT RECEIVE_CALL Pass

66 Perfect S7 NOT_WAIT INTERNET_OFF WAIT INTERNET_ON Pass

67 Perfect S3 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT GPS_CALIBRATED Pass

68 Perfect S9 WAIT INTERNET_ON NOT_WAIT ORIENTATION_PORTRAIT Pass

69 Perfect S9 NOT_WAIT GPS_OFF WAIT LONG_BACKGROUND Pass

70 Perfect S6 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON Pass

71 Perfect S10 WAIT GPS_CALIBRATED NOT_WAIT RECEIVE_CALL Pass

72 Perfect S8 NOT_WAIT RECEIVE_CALL NOT_WAIT Pass_CALL Pass

73 Perfect S1 NOT_WAIT LONG_BACKGROUND WAIT GPS_OFF Pass

74 Perfect S2 NOT_WAIT RECEIVE_CALL WAIT LONG_BACKGROUND Pass

75 Perfect S5 WAIT GPS_ON WAIT ORIENTATION_LANDSCAPE Pass

76 Perfect S11 WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

77 Perfect S5 WAIT LONG_BACKGROUND WAIT TAKE_A_PICTURE Pass

78 Perfect S7 WAIT GPS_NOT_CALIBRATED WAIT GPS_OFF Pass

79 Perfect S7 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

80 Perfect S9 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF Pass

81 Perfect S9 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED Pass

82 Perfect S12 WAIT GPS_ON WAIT GPS_OFF Pass

83 Perfect S4 WAIT GPS_CALIBRATED WAIT ORIENTATION_LANDSCAPE Pass

84 Perfect S8 NOT_WAIT TAKE_A_PICTURE NOT_WAIT INTERNET_ON Pass

85 Perfect S12 NOT_WAIT LONG_BACKGROUND NOT_WAIT ORIENTATION_PORTRAIT Pass

86 Perfect S5 WAIT ORIENTATION_LANDSCAPE WAIT LONG_BACKGROUND Pass

87 Perfect S8 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

88 Perfect S1 NOT_WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

89 Limit S3 WAIT LONG_BACKGROUND WAIT TAKE_A_PICTURE Pass

90 Limit S9 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

91 Limit S12 WAIT GPS_ON NOT_WAIT INTERNET_OFF Pass

92 Limit S9 WAIT ORIENTATION_PORTRAIT WAIT ORIENTATION_LANDSCAPE Pass

93 Limit S4 NOT_WAIT GPS_OFF WAIT GPS_ON Pass

94 Limit S1 WAIT GPS_NOT_CALIBRATED WAIT LONG_BACKGROUND Pass

95 Limit S3 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

96 Limit S3 WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

97 Limit S2 WAIT INTERNET_ON WAIT RECEIVE_CALL Pass

98 Limit S8 WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_NOT_CALIBRATED Pass

99 Limit S7 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

100 Limit S3 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON Pass

101 Limit S7 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

102 Limit S5 NOT_WAIT TAKE_A_PICTURE WAIT GPS_ON Pass

103 Limit S10 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED Pass

104 Limit S2 WAIT INTERNET_ON WAIT INTERNET_OFF Pass

105 Limit S1 WAIT ORIENTATION_LANDSCAPE WAIT GPS_NOT_CALIBRATED Pass

106 Limit S5 NOT_WAIT INTERNET_OFF WAIT GPS_ON Pass

107 Limit S8 NOT_WAIT INTERNET_ON NOT_WAIT GPS_NOT_CALIBRATED Pass

108 Limit S6 WAIT GPS_OFF NOT_WAIT RECEIVE_CALL Pass

109 Limit S6 NOT_WAIT RECEIVE_CALL WAIT GPS_OFF Pass

110 Limit S12 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

184

111 Limit S12 NOT_WAIT GPS_ON WAIT GPS_CALIBRATED Pass

112 Limit S1 WAIT INTERNET_OFF WAIT ORIENTATION_LANDSCAPE Pass

113 Limit S11 WAIT GPS_ON NOT_WAIT GPS_OFF Pass

114 Limit S8 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT ORIENTATION_PORTRAIT Pass

115 Limit S11 NOT_WAIT GPS_ON WAIT ORIENTATION_PORTRAIT Pass

116 Limit S5 NOT_WAIT GPS_ON WAIT INTERNET_OFF Pass

117 Limit S8 NOT_WAIT LONG_BACKGROUND WAIT INTERNET_ON Pass

118 Limit S10 WAIT LONG_BACKGROUND NOT_WAIT TAKE_A_PICTURE Pass

119 Long S2 NOT_WAIT GPS_OFF NOT_WAIT ORIENTATION_LANDSCAPE Pass

120 Long S9 WAIT TAKE_A_PICTURE NOT_WAIT GPS_OFF Pass

121 Long S2 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

122 Long S3 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

123 Long S6 WAIT GPS_CALIBRATED WAIT LONG_BACKGROUND Pass

124 Long S8 NOT_WAIT INTERNET_ON WAIT TAKE_A_PICTURE Pass

125 Long S8 WAIT LONG_BACKGROUND NOT_WAIT RECEIVE_CALL Pass

126 Long S3 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

127 Long S3 WAIT INTERNET_OFF NOT_WAIT INTERNET_ON Pass

128 Long S1 NOT_WAIT GPS_OFF WAIT GPS_ON Pass

129 Long S12 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT LONG_BACKGROUND Fail

130 Long S10 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

131 Long S4 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF Pass

132 Long S4 NOT_WAIT ORIENTATION_LANDSCAPE WAIT GPS_OFF Pass

133 Long S10 WAIT INTERNET_OFF WAIT GPS_CALIBRATED Pass

134 Long S8 NOT_WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED Pass

135 Long S1 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

136 Long S5 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

137 Long S1 WAIT INTERNET_OFF WAIT INTERNET_ON Pass

138 Long S11 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

139 Long S5 WAIT GPS_ON NOT_WAIT GPS_OFF Pass

140 Long S7 WAIT RECEIVE_CALL WAIT GPS_NOT_CALIBRATED Pass

141 Long S1 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT GPS_CALIBRATED Pass

142 Long S4 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

143 Long S10 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

144 Long S11 WAIT GPS_ON NOT_WAIT GPS_CALIBRATED Pass

145 Long S8 WAIT INTERNET_ON WAIT INTERNET_OFF Pass

146 Long S4 NOT_WAIT LONG_BACKGROUND NOT_WAIT INTERNET_ON Pass

147 Long S10 NOT_WAIT INTERNET_OFF NOT_WAIT INTERNET_ON Pass

148 Long S7 NOT_WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED Pass

149 Long S8 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

150 Long S9 WAIT RECEIVE_CALL NOT_WAIT TAKE_A_PICTURE Pass

151 Long S6 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

152 Long S10 WAIT INTERNET_OFF NOT_WAIT GPS_OFF Pass

153 Long S1 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

154 Long S11 NOT_WAIT TAKE_A_PICTURE NOT_WAIT ORIENTATION_PORTRAIT Pass

155 Long S1 WAIT RECEIVE_CALL NOT_WAIT CANCEL_CALL Pass

156 Long S3 WAIT GPS_CALIBRATED NOT_WAIT GPS_NOT_CALIBRATED Pass

157 Long S12 NOT_WAIT INTERNET_OFF WAIT TAKE_A_PICTURE Pass

158 Long S8 NOT_WAIT GPS_OFF NOT_WAIT ORIENTATION_PORTRAIT Pass

159 Long S2 NOT_WAIT LONG_BACKGROUND NOT_WAIT TAKE_A_PICTURE Pass

160 Long S4 WAIT GPS_OFF WAIT TAKE_A_PICTURE Pass

161 Long S6 WAIT GPS_CALIBRATED NOT_WAIT GPS_NOT_CALIBRATED Pass

162 Long S7 NOT_WAIT INTERNET_OFF NOT_WAIT ORIENTATION_PORTRAIT Pass

163 Long S12 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_ON Pass

164 Long S3 NOT_WAIT TAKE_A_PICTURE NOT_WAIT LONG_BACKGROUND Pass

165 Long S2 WAIT GPS_OFF NOT_WAIT GPS_ON Pass

166 Long S10 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON Pass

185

167 Long S9 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

168 Long S11 NOT_WAIT GPS_ON WAIT LONG_BACKGROUND Pass

169 Long S10 WAIT GPS_CALIBRATED WAIT TAKE_A_PICTURE Pass

170 Long S9 NOT_WAIT ORIENTATION_PORTRAIT WAIT GPS_CALIBRATED Pass

171 Long S5 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

172 Long S4 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED Pass

173 Long S2 WAIT GPS_NOT_CALIBRATED NOT_WAIT RECEIVE_CALL Pass

174 Long S3 NOT_WAIT RECEIVE_CALL WAIT ORIENTATION_LANDSCAPE Pass

175 Long S11 NOT_WAIT RECEIVE_CALL WAIT GPS_ON Pass

176 Long S7 WAIT ORIENTATION_PORTRAIT WAIT INTERNET_OFF Pass

177 Long S10 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

178 Long S4 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT RECEIVE_CALL Pass

179 Long S6 WAIT INTERNET_ON NOT_WAIT ORIENTATION_LANDSCAPE Pass

180 Long S2 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT INTERNET_ON Pass

181 Long S6 WAIT ORIENTATION_LANDSCAPE NOT_WAIT ORIENTATION_PORTRAIT Pass

182 Long S11 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT INTERNET_ON Pass

183 Long S12 NOT_WAIT TAKE_A_PICTURE WAIT GPS_ON Pass

186

Table C.8: Order 2 test result for Voice GPS Navigation application

Path Setup First Delay First event Second Delay Second event Verdict Crash

1 Small S1 WAIT INTERNET_OFF NOT_WAIT TAKE_A_PICTURE Pass

2 Small S10 NOT_WAIT RECEIVE_CALL WAIT ORIENTATION_PORTRAIT Pass

3 Small S12 NOT_WAIT ORIENTATION_PORTRAIT WAIT RECEIVE_CALL Pass

4 Small S9 NOT_WAIT RECEIVE_CALL NOT_WAIT Pass_CALL Pass

5 Small S7 WAIT GPS_OFF NOT_WAIT GPS_ON Pass

6 Small S8 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT LONG_BACKGROUND Pass

7 Small S2 NOT_WAIT TAKE_A_PICTURE WAIT GPS_NOT_CALIBRATED Pass

8 Small S11 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF Pass

9 Small S3 NOT_WAIT GPS_CALIBRATED WAIT GPS_OFF Pass

10 Small S4 WAIT RECEIVE_CALL NOT_WAIT CANCEL_CALL Pass

11 Small S5 NOT_WAIT GPS_ON NOT_WAIT RECEIVE_CALL Pass

12 Small S9 WAIT LONG_BACKGROUND WAIT GPS_CALIBRATED Pass

13 Small S6 NOT_WAIT INTERNET_ON NOT_WAIT INTERNET_OFF Pass

14 Small S6 NOT_WAIT ORIENTATION_LANDSCAPE WAIT TAKE_A_PICTURE Pass

15 Small S10 WAIT ORIENTATION_PORTRAIT WAIT TAKE_A_PICTURE Pass

16 Small S6 WAIT TAKE_A_PICTURE WAIT ORIENTATION_LANDSCAPE Pass

17 Small S5 WAIT INTERNET_OFF WAIT INTERNET_ON Pass

18 Small S9 WAIT GPS_OFF WAIT GPS_ON Pass

19 Small S4 NOT_WAIT TAKE_A_PICTURE WAIT GPS_CALIBRATED Pass

20 Small S6 NOT_WAIT RECEIVE_CALL WAIT INTERNET_ON Pass

21 Small S9 NOT_WAIT GPS_CALIBRATED NOT_WAIT INTERNET_ON Pass

22 Small S5 WAIT GPS_ON WAIT GPS_CALIBRATED Pass

23 Small S4 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

24 Small S2 WAIT INTERNET_ON WAIT GPS_OFF Pass

25 Small S10 WAIT TAKE_A_PICTURE WAIT INTERNET_OFF Pass

26 Small S5 WAIT ORIENTATION_LANDSCAPE NOT_WAIT ORIENTATION_PORTRAIT Pass

27 Small S1 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT INTERNET_OFF Pass

28 Small S7 WAIT GPS_NOT_CALIBRATED WAIT TAKE_A_PICTURE Pass

29 Small S11 WAIT LONG_BACKGROUND NOT_WAIT GPS_ON Pass

30 Small S1 NOT_WAIT GPS_NOT_CALIBRATED WAIT ORIENTATION_LANDSCAPE Fail X

31 Small S6 WAIT RECEIVE_CALL NOT_WAIT GPS_CALIBRATED Pass

32 Small S7 WAIT LONG_BACKGROUND NOT_WAIT INTERNET_OFF Pass

33 Small S10 WAIT INTERNET_OFF WAIT LONG_BACKGROUND Pass

34 Small S11 WAIT GPS_ON WAIT TAKE_A_PICTURE Pass

35 Small S7 WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Fail X

36 Small S8 WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_OFF Pass

37 Small S2 WAIT GPS_NOT_CALIBRATED NOT_WAIT INTERNET_ON Fail X

38 Small S3 WAIT RECEIVE_CALL NOT_WAIT INTERNET_OFF Pass

39 Small S10 WAIT GPS_CALIBRATED NOT_WAIT ORIENTATION_PORTRAIT Fail

40 Small S10 NOT_WAIT GPS_OFF NOT_WAIT GPS_CALIBRATED Fail X

41 Small S4 WAIT INTERNET_ON NOT_WAIT LONG_BACKGROUND Pass

42 Small S7 WAIT GPS_NOT_CALIBRATED NOT_WAIT INTERNET_OFF Pass

43 Small S11 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

44 Small S11 WAIT GPS_ON NOT_WAIT INTERNET_ON Fail X

45 Small S3 NOT_WAIT GPS_OFF NOT_WAIT INTERNET_OFF Pass

46 Small S7 NOT_WAIT TAKE_A_PICTURE WAIT LONG_BACKGROUND Pass

47 Small S3 NOT_WAIT GPS_CALIBRATED NOT_WAIT INTERNET_OFF Pass

48 Small S2 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

49 Small S4 NOT_WAIT INTERNET_ON NOT_WAIT GPS_CALIBRATED Pass

50 Small S1 NOT_WAIT INTERNET_OFF WAIT GPS_NOT_CALIBRATED Pass

51 Small S11 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

52 Small S7 NOT_WAIT GPS_OFF NOT_WAIT GPS_NOT_CALIBRATED Pass

53 Small S2 WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED Pass

54 Small S8 WAIT GPS_OFF WAIT GPS_ON Pass

Voice GPS Navigation: Live Driving Direction

187

55 Small S6 WAIT LONG_BACKGROUND WAIT ORIENTATION_LANDSCAPE Pass

56 Small S12 NOT_WAIT INTERNET_OFF NOT_WAIT INTERNET_ON Pass

57 Small S2 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

58 Small S2 WAIT GPS_OFF WAIT INTERNET_ON Fail X

59 Small S2 WAIT LONG_BACKGROUND NOT_WAIT GPS_NOT_CALIBRATED Pass

60 Small S12 WAIT ORIENTATION_PORTRAIT WAIT ORIENTATION_LANDSCAPE Pass

61 Small S12 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

62 Small S11 NOT_WAIT INTERNET_ON WAIT GPS_ON Pass

63 Small S5 NOT_WAIT ORIENTATION_LANDSCAPE WAIT GPS_ON Pass

64 Small S6 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

65 Small S12 NOT_WAIT INTERNET_OFF NOT_WAIT RECEIVE_CALL Pass

66 Perfect S7 NOT_WAIT INTERNET_OFF WAIT INTERNET_ON Fail X

67 Perfect S3 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT GPS_CALIBRATED Pass

68 Perfect S9 WAIT INTERNET_ON NOT_WAIT ORIENTATION_PORTRAIT Pass

69 Perfect S9 NOT_WAIT GPS_OFF WAIT LONG_BACKGROUND Pass

70 Perfect S6 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON Pass

71 Perfect S10 WAIT GPS_CALIBRATED NOT_WAIT RECEIVE_CALL Fail X

72 Perfect S8 NOT_WAIT RECEIVE_CALL NOT_WAIT Pass_CALL Pass

73 Perfect S1 NOT_WAIT LONG_BACKGROUND WAIT GPS_OFF Pass

74 Perfect S2 NOT_WAIT RECEIVE_CALL WAIT LONG_BACKGROUND Pass

75 Perfect S5 WAIT GPS_ON WAIT ORIENTATION_LANDSCAPE Pass

76 Perfect S11 WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

77 Perfect S5 WAIT LONG_BACKGROUND WAIT TAKE_A_PICTURE Pass

78 Perfect S7 WAIT GPS_NOT_CALIBRATED WAIT GPS_OFF Pass

79 Perfect S7 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

80 Perfect S9 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF Pass

81 Perfect S9 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED Pass

82 Perfect S12 WAIT GPS_ON WAIT GPS_OFF Pass

83 Perfect S4 WAIT GPS_CALIBRATED WAIT ORIENTATION_LANDSCAPE Pass

84 Perfect S8 NOT_WAIT TAKE_A_PICTURE NOT_WAIT INTERNET_ON Pass

85 Perfect S12 NOT_WAIT LONG_BACKGROUND NOT_WAIT ORIENTATION_PORTRAIT Pass

86 Perfect S5 WAIT ORIENTATION_LANDSCAPE WAIT LONG_BACKGROUND Pass

87 Perfect S8 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

88 Perfect S1 NOT_WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Fail X

89 Limit S3 WAIT LONG_BACKGROUND WAIT TAKE_A_PICTURE Fail X

90 Limit S9 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

91 Limit S12 WAIT GPS_ON NOT_WAIT INTERNET_OFF Pass

92 Limit S9 WAIT ORIENTATION_PORTRAIT WAIT ORIENTATION_LANDSCAPE Pass

93 Limit S4 NOT_WAIT GPS_OFF WAIT GPS_ON Pass

94 Limit S1 WAIT GPS_NOT_CALIBRATED WAIT LONG_BACKGROUND Pass

95 Limit S3 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

96 Limit S3 WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

97 Limit S2 WAIT INTERNET_ON WAIT RECEIVE_CALL Pass

98 Limit S8 WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_NOT_CALIBRATED Pass

99 Limit S7 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

100 Limit S3 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON Pass

101 Limit S7 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

102 Limit S5 NOT_WAIT TAKE_A_PICTURE WAIT GPS_ON Fail X

103 Limit S10 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED Fail

104 Limit S2 WAIT INTERNET_ON WAIT INTERNET_OFF Pass

105 Limit S1 WAIT ORIENTATION_LANDSCAPE WAIT GPS_NOT_CALIBRATED Pass

106 Limit S5 NOT_WAIT INTERNET_OFF WAIT GPS_ON Pass

107 Limit S8 NOT_WAIT INTERNET_ON NOT_WAIT GPS_NOT_CALIBRATED Pass

108 Limit S6 WAIT GPS_OFF NOT_WAIT RECEIVE_CALL Pass

109 Limit S6 NOT_WAIT RECEIVE_CALL WAIT GPS_OFF Pass

110 Limit S12 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

188

111 Limit S12 NOT_WAIT GPS_ON WAIT GPS_CALIBRATED Fail X

112 Limit S1 WAIT INTERNET_OFF WAIT ORIENTATION_LANDSCAPE Pass

113 Limit S11 WAIT GPS_ON NOT_WAIT GPS_OFF Pass

114 Limit S8 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT ORIENTATION_PORTRAIT Pass

115 Limit S11 NOT_WAIT GPS_ON WAIT ORIENTATION_PORTRAIT Pass

116 Limit S5 NOT_WAIT GPS_ON WAIT INTERNET_OFF Pass

117 Limit S8 NOT_WAIT LONG_BACKGROUND WAIT INTERNET_ON Pass

118 Limit S10 WAIT LONG_BACKGROUND NOT_WAIT TAKE_A_PICTURE Pass

119 Long S2 NOT_WAIT GPS_OFF NOT_WAIT ORIENTATION_LANDSCAPE Pass

120 Long S9 WAIT TAKE_A_PICTURE NOT_WAIT GPS_OFF Pass

121 Long S2 WAIT ORIENTATION_LANDSCAPE WAIT ORIENTATION_PORTRAIT Pass

122 Long S3 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

123 Long S6 WAIT GPS_CALIBRATED WAIT LONG_BACKGROUND Pass

124 Long S8 NOT_WAIT INTERNET_ON WAIT TAKE_A_PICTURE Fail X

125 Long S8 WAIT LONG_BACKGROUND NOT_WAIT RECEIVE_CALL Fail

126 Long S3 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

127 Long S3 WAIT INTERNET_OFF NOT_WAIT INTERNET_ON Pass

128 Long S1 NOT_WAIT GPS_OFF WAIT GPS_ON Fail

129 Long S12 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT LONG_BACKGROUND Pass

130 Long S10 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

131 Long S4 NOT_WAIT INTERNET_ON WAIT INTERNET_OFF Pass

132 Long S4 NOT_WAIT ORIENTATION_LANDSCAPE WAIT GPS_OFF Pass

133 Long S10 WAIT INTERNET_OFF WAIT GPS_CALIBRATED Fail

134 Long S8 NOT_WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED Fail

135 Long S1 WAIT RECEIVE_CALL WAIT Pass_CALL Fail X

136 Long S5 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

137 Long S1 WAIT INTERNET_OFF WAIT INTERNET_ON Fail

138 Long S11 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

139 Long S5 WAIT GPS_ON NOT_WAIT GPS_OFF Pass

140 Long S7 WAIT RECEIVE_CALL WAIT GPS_NOT_CALIBRATED Fail

141 Long S1 NOT_WAIT GPS_NOT_CALIBRATED NOT_WAIT GPS_CALIBRATED Fail

142 Long S4 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

143 Long S10 WAIT RECEIVE_CALL WAIT CANCEL_CALL Pass

144 Long S11 WAIT GPS_ON NOT_WAIT GPS_CALIBRATED Fail

145 Long S8 WAIT INTERNET_ON WAIT INTERNET_OFF Fail

146 Long S4 NOT_WAIT LONG_BACKGROUND NOT_WAIT INTERNET_ON Pass

147 Long S10 NOT_WAIT INTERNET_OFF NOT_WAIT INTERNET_ON Pass

148 Long S7 NOT_WAIT GPS_NOT_CALIBRATED WAIT GPS_CALIBRATED Fail X

149 Long S8 NOT_WAIT RECEIVE_CALL WAIT CANCEL_CALL Fail

150 Long S9 WAIT RECEIVE_CALL NOT_WAIT TAKE_A_PICTURE Pass

151 Long S6 WAIT RECEIVE_CALL WAIT Pass_CALL Pass

152 Long S10 WAIT INTERNET_OFF NOT_WAIT GPS_OFF Pass

153 Long S1 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Fail X

154 Long S11 NOT_WAIT TAKE_A_PICTURE NOT_WAIT ORIENTATION_PORTRAIT Pass

155 Long S1 WAIT RECEIVE_CALL NOT_WAIT CANCEL_CALL Pass

156 Long S3 WAIT GPS_CALIBRATED NOT_WAIT GPS_NOT_CALIBRATED Fail X

157 Long S12 NOT_WAIT INTERNET_OFF WAIT TAKE_A_PICTURE Pass

158 Long S8 NOT_WAIT GPS_OFF NOT_WAIT ORIENTATION_PORTRAIT Pass

159 Long S2 NOT_WAIT LONG_BACKGROUND NOT_WAIT TAKE_A_PICTURE Fail

160 Long S4 WAIT GPS_OFF WAIT TAKE_A_PICTURE Pass

161 Long S6 WAIT GPS_CALIBRATED NOT_WAIT GPS_NOT_CALIBRATED Pass

162 Long S7 NOT_WAIT INTERNET_OFF NOT_WAIT ORIENTATION_PORTRAIT Fail

163 Long S12 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT GPS_ON Pass

164 Long S3 NOT_WAIT TAKE_A_PICTURE NOT_WAIT LONG_BACKGROUND Pass

165 Long S2 WAIT GPS_OFF NOT_WAIT GPS_ON Fail

166 Long S10 NOT_WAIT GPS_OFF NOT_WAIT GPS_ON Pass

189

167 Long S9 NOT_WAIT TAKE_A_PICTURE WAIT RECEIVE_CALL Pass

168 Long S11 NOT_WAIT GPS_ON WAIT LONG_BACKGROUND Pass

169 Long S10 WAIT GPS_CALIBRATED WAIT TAKE_A_PICTURE Pass

170 Long S9 NOT_WAIT ORIENTATION_PORTRAIT WAIT GPS_CALIBRATED Fail

171 Long S5 NOT_WAIT RECEIVE_CALL WAIT Pass_CALL Pass

172 Long S4 WAIT GPS_CALIBRATED WAIT GPS_NOT_CALIBRATED Pass

173 Long S2 WAIT GPS_NOT_CALIBRATED NOT_WAIT RECEIVE_CALL Pass

174 Long S3 NOT_WAIT RECEIVE_CALL WAIT ORIENTATION_LANDSCAPE Pass

175 Long S11 NOT_WAIT RECEIVE_CALL WAIT GPS_ON Pass

176 Long S7 WAIT ORIENTATION_PORTRAIT WAIT INTERNET_OFF Fail X

177 Long S10 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT ORIENTATION_LANDSCAPE Pass

178 Long S4 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT RECEIVE_CALL Pass

179 Long S6 WAIT INTERNET_ON NOT_WAIT ORIENTATION_LANDSCAPE Pass

180 Long S2 NOT_WAIT ORIENTATION_LANDSCAPE NOT_WAIT INTERNET_ON Fail X

181 Long S6 WAIT ORIENTATION_LANDSCAPE NOT_WAIT ORIENTATION_PORTRAIT Pass

182 Long S11 NOT_WAIT ORIENTATION_PORTRAIT NOT_WAIT INTERNET_ON Pass

183 Long S12 NOT_WAIT TAKE_A_PICTURE WAIT GPS_ON Pass

Appendix D

Defect Report

190

191

Ta
bl

e
D

.1
:D

ef
ec

tR
ep

or
t

D
ef

ec
t

O
b

se
rv

ed
 b

eh
av

io
r

Ex
p

ec
te

d
 b

eh
av

io
r

D
em

o
n

st
ra

ti
o

n
 v

id
eo

D
0

1

Th
e

A
U

T
st

ar
ts

 in
it

ia
lly

 w
it

h
 G

P
S

n
o

t
ca

lib
ra

te
d

, a
s

d
et

er
m

in
ed

 b
y

th
e

 t
es

t
ca

se
 s

et
u

p
. A

ft
er

w
ar

d
, l

o
n

g
b

ac
kg

ro
u

n
d

 s
im

u
la

ti
o

n
 is

 p
er

fo
rm

ed
. T

h
e

ap
p

lic
at

io
n

 n
o

rm
al

ly
 r

et
u

rn
s

to
 n

av
ig

at
io

n
.

H
o

w
ev

er
, w

h
en

 t
h

e
 A

U
T

re
ca

lc
u

la
te

s
th

e
 r

o
u

te
 t

o

th
e

d
es

ti
n

at
io

n
 (

3
:4

3
 o

f
th

e
vi

d
eo

)
th

e
ro

u
te

in

cl
u

d
es

 t
h

e
lo

ca
ti

o
n

 t
h

at
 s

im
u

la
te

s
a

p
o

ss
ib

le

in
ac

cu
ra

te
 lo

ca
ti

o
n

 a
s

an
 in

te
rm

ed
ia

te
 d

es
ti

n
at

io
n

.

Th
e

A
U

T
st

ar
ts

 in
it

ia
lly

 w
it

h
 G

P
S

n
o

t
ca

lib
ra

te
d

,
as

 d
et

e
rm

in
ed

 b
y

th
e

te
st

 c
as

e
se

tu
p

.
A

ft
er

w
ar

d
, l

o
n

g
b

ac
kg

ro
u

n
d

 s
im

u
la

ti
o

n
 is

p

er
fo

rm
ed

. T
h

e
ap

p
lic

at
io

n
 n

o
rm

al
ly

 r
e

tu
rn

s
to

n

av
ig

at
io

n
. T

h
en

 t
h

e
 A

U
T

re
ca

lc
u

la
te

s
th

e
 r

o
u

te

n
o

rm
al

ly
 t

o
 t

h
e

 d
es

ti
n

at
io

n
 w

it
h

o
u

t
in

cl
u

d
in

g
u

n
w

an
te

d
 in

te
rm

ed
ia

te
 d

es
ti

n
at

io
n

s
in

 t
h

e
ro

u
te

.

h
tt

p
s:

//
yo

u
tu

.b
e/

K
yb

_G
vt

ZI
a0

D
0

2

Th
e

A
U

T
st

ar
ts

 in
it

ia
lly

 w
it

h
 G

P
S

n
o

t
ca

lib
ra

te
d

, a
s

d
et

er
m

in
ed

 b
y

th
e

 t
es

t
ca

se
 s

et
u

p
. A

ft
er

 4
2

se

co
n

d
s

o
f

th
e

vi
d

eo
, t

h
e

G
P

S
is

 c
al

ib
ra

te
d

 a
ga

in
.

Th
e

ap
p

lic
at

io
n

 s
ta

rt
s

sh
o

w
in

g
th

e
u

se
r'

s
p

o
si

ti
o

n

o
n

 t
h

e
m

ap
 b

u
t

d
o

es
 n

o
t

re
ca

lc
u

la
te

 t
h

e
 r

o
u

te
 a

s
ex

p
ec

te
d

 u
n

ti
l t

h
e

 e
n

d
 o

f
th

e
 t

es
t

ca
se

.

Th
e

A
U

T
st

ar
ts

 in
it

ia
lly

 w
it

h
 G

P
S

n
o

t
ca

lib
ra

te
d

,
as

 d
et

e
rm

in
ed

 b
y

th
e

te
st

 c
as

e
se

tu
p

. W
h

en
 t

h
e

G
P

S
is

 c
al

ib
ra

te
d

 a
ga

in
, t

h
e

ap
p

lic
at

io
n

 m
u

st

ag
ai

n
 s

h
o

w
 t

h
e

 u
se

r'
s

p
o

si
ti

o
n

 o
n

 t
h

e
 m

ap
 a

n
d

re

ca
lc

u
la

te
 t

h
e

ro
u

te
 f

ro
m

 t
h

e
cu

rr
en

t
p

o
si

ti
o

n

to
 t

h
e

d
es

ti
n

at
io

n
.

h
tt

p
s:

//
yo

u
tu

.b
e/

3
d

C
yG

v5
A

0
rU

D
0

3

A
s

so
o

n
 a

s
th

e
A

U
T

st
ar

ts
 d

is
p

la
yi

n
g

th
e

G
P

S
n

av
ig

at
io

n
, t

h
e

te
st

 c
as

e
ex

ec
u

te
s

th
e

 lo
n

g
b

ac
kg

ro
u

n
d

 s
im

u
la

ti
o

n
. T

h
e

ap
p

lic
at

io
n

 r
es

u
m

es
 a

t
2

:3
3

 o
f

th
e

vi
d

eo
. H

o
w

ev
e

r,
 n

av
ig

at
io

n
 is

 c
lo

se
d

,
an

d
 t

h
e

 A
ct

iv
it

y
o

f
ch

o
o

si
n

g
w

h
ic

h
 m

ap
 t

h
e

 u
se

r
w

an
ts

 t
o

 u
se

 is
 r

eo
p

en
ed

.

A
s

so
o

n
 a

s
th

e
A

U
T

st
ar

ts
 d

is
p

la
yi

n
g

th
e

G
P

S
n

av
ig

at
io

n
, t

h
e

te
st

 c
as

e
ex

ec
u

te
s

th
e

 lo
n

g
b

ac
kg

ro
u

n
d

 s
im

u
la

ti
o

n
. T

h
e

ap
p

lic
at

io
n

 r
es

u
m

es

at
 2

:3
3

 o
f

th
e

vi
d

eo
. T

h
e

 a
p

p
lic

at
io

n
 s

h
o

u
ld

co

n
ti

n
u

e
to

 p
er

fo
rm

 n
av

ig
at

io
n

 n
o

rm
al

ly
.

h
tt

p
s:

//
yo

u
tu

.b
e/

YP
e

V
H

C
es

d
q

8

D
0

4

Th
e

A
U

T
st

ar
ts

 in
it

ia
lly

 w
it

h
 G

P
S

n
o

t
ca

lib
ra

te
d

, a
s

d
et

er
m

in
ed

 b
y

th
e

 t
es

t
ca

se
 s

et
u

p
. I

m
m

ed
ia

te
ly

w

h
en

 t
h

e
te

st
 c

as
e

st
ar

ts
 t

o
 r

u
n

, t
h

e
G

P
S

is

ca
lib

ra
te

d
. A

s
so

o
n

 a
s

it
 r

e
tu

rn
s

to
 t

h
e

 r
o

u
te

p

o
si

ti
o

n
 (

2
7

 s
ec

o
n

d
s

o
f

th
e

vi
d

eo
),

 t
h

e
ap

p
lic

at
io

n

in
cl

u
d

es
 in

 t
h

e
ro

u
te

 t
h

e
lo

ca
ti

o
n

 t
h

at
 s

im
u

la
te

s
a

Th
e

A
U

T
st

ar
ts

 in
it

ia
lly

 w
it

h
 G

P
S

n
o

t
ca

lib
ra

te
d

,
as

 d
et

e
rm

in
ed

 b
y

th
e

te
st

 c
as

e
se

tu
p

.
Im

m
ed

ia
te

ly
 w

h
en

 t
h

e
 t

es
t

ca
se

 s
ta

rt
s

to
 r

u
n

,
th

e
G

P
S

is
 c

al
ib

ra
te

d
. A

s
so

o
n

 a
s

it
 r

et
u

rn
s

to
 t

h
e

ro
u

te
 p

o
si

ti
o

n
, t

h
e

 a
p

p
lic

at
io

n
 m

u
st

 t
ra

ce
 t

h
e

ro

u
te

 t
o

 t
h

e
d

es
ti

n
at

io
n

 w
it

h
o

u
t

in
cl

u
d

in
g

h
tt

p
s:

//
yo

u
tu

.b
e/

LN
U

p
D

_2
YK

h
4

192

p
o

ss
ib

le
 in

ac
cu

ra
te

 lo
ca

ti
o

n
 a

s
an

 in
te

rm
ed

ia
te

d

es
ti

n
at

io
n

.
u

n
w

an
te

d
 in

te
rm

ed
ia

te
 d

es
ti

n
at

io
n

s
in

 t
h

e
ro

u
te

.

D
0

5

A
U

T
st

ar
ts

 in
it

ia
lly

 w
it

h
 G

P
S

o
ff

, a
s

d
et

er
m

in
e

d
 b

y
th

e
te

st
 c

as
e

se
tu

p
. A

s
so

o
n

 a
s

th
e

 G
P

S
is

 t
u

rn
ed

o

n
 a

t
2

8
 s

ec
o

n
d

s
o

f
th

e
vi

d
eo

, t
h

e
n

av
ig

at
io

n
 m

ap

is
 n

o
t

re
n

d
er

ed
.

A
U

T
st

ar
ts

 in
it

ia
lly

 w
it

h
 G

P
S

o
ff

, a
s

d
et

er
m

in
e

d

b
y

th
e

te
st

 c
as

e
se

tu
p

. A
s

so
o

n
 a

s
th

e
 G

P
S

is

tu
rn

ed
 o

n
, t

h
e

ap
p

lic
at

io
n

 s
h

o
u

ld
 in

d
ic

at
e

a
m

es
sa

ge
 o

r
sh

o
w

 t
h

e
p

at
h

 f
ro

m
 t

h
e

 p
o

si
ti

o
n

re

ce
iv

ed
 b

y
th

e
 s

en
so

r
to

 t
h

e
 d

es
ti

n
at

io
n

.

h
tt

p
s:

//
yo

u
tu

.b
e/

q
cy

Q
vy

aC
N

Ec

D
0

6

Th
e

A
U

T
w

as
 r

u
n

n
in

g
th

e
te

st
 c

as
e

n
o

rm
al

ly
 u

n
ti

l
th

e
EN

V
IA

R
 t

o
o

l s
im

u
la

te
d

 a
 lo

n
g

b
ac

kg
ro

u
n

d
.

A
ft

er
 r

es
u

m
in

g
th

e
ex

e
cu

ti
o

n
 o

f
th

e
ap

p
lic

at
io

n
,

n
av

ig
at

io
n

 w
as

 in
te

rr
u

p
te

d
 a

t
3

:5
1

 o
f

th
e

 v
id

eo
.

Th
e

A
U

T
sh

o
u

ld
 n

o
rm

al
ly

 e
xe

cu
te

 t
h

ro
u

gh
o

u
t

th
e

te
st

 c
as

e.

h
tt

p
s:

//
yo

u
tu

.b
e/

W
W

d
eb

zK
au

tc

D
0

7

A
U

T
ex

ec
u

te
s

th
e

 t
es

t
ca

se
 n

o
rm

al
ly

 u
n

ti
l t

h
e

EN

V
IA

R
 t

o
o

l s
im

u
la

te
s

th
e

d
ev

ic
e'

s
o

ri
en

ta
ti

o
n

ch

an
ge

 (
at

 2
1

 s
ec

o
n

d
s

o
f

th
e

vi
d

eo
).

 F
ro

m
 t

h
at

m

o
m

en
t

o
n

, t
h

e
ap

p
lic

at
io

n
 n

o
 lo

n
ge

r
d

is
p

la
ys

 t
h

e
ar

ro
w

 in
d

ic
at

in
g

th
e

u
se

r'
s

p
o

si
ti

o
n

.

Th
e

A
U

T
sh

o
u

ld
 n

o
rm

al
ly

 e
xe

cu
te

 t
h

ro
u

gh
o

u
t

th
e

te
st

 c
as

e.

h
tt

p
s:

//
yo

u
tu

.b
e/

H
ZN

w
k1

0
h

X
6

k

D
0

8

A
t

3
1

 s
ec

o
n

d
s

o
f

th
e

vi
d

eo
, A

U
T

st
ar

te
d

 c
al

cu
la

ti
n

g
th

e
ro

u
te

. T
h

e
 r

o
u

te
 w

as
 r

e
ca

lc
u

la
te

d
 s

ev
er

al

ti
m

es
, a

s
w

e
ca

n
 s

e
e

at
 5

2
 s

e
co

n
d

s,
 a

t
0

1
:0

6
 a

n
d

0

1
:1

6
 o

f
th

e
vi

d
eo

. T
h

e
 a

p
p

lic
at

io
n

 w
as

 c
al

cu
la

ti
n

g
th

e
ro

u
te

 u
n

ti
l 2

:1
5

 w
h

en
 t

h
e

ap
p

lic
at

io
n

 c
lo

se
d

ab

ru
p

tl
y

an
d

 d
is

p
la

ye
d

 a
n

 e
rr

o
r

m
es

sa
ge

.

Th
e

A
U

T
sh

o
u

ld
 b

e
ab

le
 t

o
 r

ec
o

ve
r

fr
o

m
 e

ve
n

ts

se
n

t
b

y
th

e
EN

V
IA

R
 t

o
o

l w
it

h
o

u
t

en
d

in
g

ab
ru

p
tl

y.

h
tt

p
s:

//
yo

u
tu

.b
e/

9
1

N
n

rl
ru

8
D

g

D
0

9

D
u

ri
n

g
th

e
se

tu
p

 o
f

th
e

 t
es

t
ca

se
, t

h
e

 E
N

V
IA

R
 t

o
o

l
le

av
es

 t
h

e
 A

U
T

in
 t

h
e

b
ac

kg
ro

u
n

d
. W

h
en

 s
ta

rt
in

g
th

e
te

st
 c

as
e,

 t
h

e
A

U
T

re
tu

rn
s

to
 t

h
e

fo
re

gr
o

u
n

d
.

A
t

th
at

 m
o

m
en

t
(a

t
2

0
 s

ec
o

n
d

s
o

f
th

e
vi

d
eo

),
 t

h
e

A
U

T
en

d
ed

 t
h

e
N

av
ig

at
io

n
 A

ct
iv

it
y.

D
u

ri
n

g
th

e
se

tu
p

 o
f

th
e

 t
es

t
ca

se
, t

h
e

 E
N

V
IA

R

to
o

l l
ea

ve
s

th
e

A
U

T
in

 t
h

e
 b

ac
kg

ro
u

n
d

. W
h

en

st
ar

ti
n

g
th

e
 t

es
t

ca
se

, t
h

e
 A

U
T

re
tu

rn
s

to
 t

h
e

fo
re

gr
o

u
n

d
. T

h
e

A
U

T
sh

o
u

ld
 c

o
n

ti
n

u
e

n
av

ig
at

io
n

 n
o

rm
al

ly
.

h
tt

p
s:

//
yo

u
tu

.b
e/

kE
t3

Sm
h

A
U

t4

193

D
1

0

Th
e

A
U

T
st

ar
ts

 in
it

ia
lly

 w
it

h
 G

P
S

n
o

t
ca

lib
ra

te
d

, a
s

d
et

er
m

in
ed

 b
y

th
e

 t
es

t
ca

se
 s

et
u

p
. W

h
en

 t
h

e
 G

P
S

is
 c

al
ib

ra
te

d
 a

ga
in

 (
1

:1
1

 o
f

th
e

vi
d

eo
),

 t
h

e
ap

p
lic

at
io

n
 in

cl
u

d
es

 in
 t

h
e

ro
u

te
 a

 lo
ca

ti
o

n
 t

h
at

si

m
u

la
te

s
a

p
o

ss
ib

le
 in

ac
cu

ra
te

 lo
ca

ti
o

n
 a

s
an

in

te
rm

ed
ia

te
 d

es
ti

n
at

io
n

.

Th
e

A
U

T
sh

o
u

ld
 n

o
t

in
cl

u
d

e
an

 in
te

rm
ed

ia
te

d

es
ti

n
at

io
n

 w
it

h
o

u
t

th
e

 u
se

r'
s

re
q

u
es

t.

h
tt

p
s:

//
yo

u
tu

.b
e/

fN
2

q
ex

fH
sD

U

D
1

1

A
ft

er
 s

ta
rt

in
g

th
e

 t
es

t
ca

se
 a

t
2

5
 s

ec
o

n
d

s
o

f
th

e
vi

d
eo

, t
h

e
ap

p
lic

at
io

n
 p

re
se

n
te

d
 a

 s
lo

w
n

es
s

th
at

m

ad
e

it
 im

p
o

ss
ib

le
 t

o
 u

se
 it

.

Th
e

A
U

T
sh

o
u

ld
 p

er
fo

rm
 e

ff
ic

ie
n

tl
y

in
 o

rd
e

r
to

m

o
n

it
o

r
th

e
 u

se
r'

s
d

is
p

la
ce

m
en

t
in

 r
ea

l-
ti

m
e.

h

tt
p

s:
//

yo
u

tu
.b

e/
C

Y1
tY

8
Jd

K
o

Q

D
1

2

Th
e

A
U

T
st

ar
ts

 w
it

h
 t

h
e

in
te

rn
e

t
tu

rn
ed

 o
ff

ac

co
rd

in
g

to
 t

h
e

 t
es

t
ca

se
 s

et
u

p
. A

ft
er

 s
ta

rt
in

g
th

e
ex

ec
u

ti
o

n
 (

2
8

 s
ec

o
n

d
s

o
f

th
e

vi
d

eo
),

 t
h

e
 A

U
T

w
as

re

ca
lc

u
la

ti
n

g
th

e
ro

u
te

 a
n

d
 n

o
 lo

n
ge

r
u

p
d

at
e

d
 t

h
e

u
se

r'
s

p
o

si
ti

o
n

 o
n

 t
h

e
m

ap
 e

ve
n

 w
h

en
 t

h
e

in
te

rn
et

w

as
 t

u
rn

ed
 o

n
 a

ga
in

.

A
 A

U
T

in
ic

ia
 c

o
m

 a
 in

te
rn

et
 d

es
lig

ad
a

co
n

fo
rm

e
o

 s
et

u
p

 d
o

 c
as

o
 d

e
 t

es
te

. A
p

ó
s

in
ic

ia
r

a
ex

ec
u

çã
o

, a
 A

U
T

 d
ev

er
ia

 c
o

n
ti

n
u

ar
 e

xe
cu

ta
n

d
o

n

o
rm

al
m

en
te

.

h
tt

p
s:

//
yo

u
tu

.b
e/

p
b

U
m

u
B

H
jO

tw

D
1

3

Th
e

A
U

T
st

ar
ts

 w
it

h
 a

n
 in

te
rn

et
 c

o
n

n
ec

ti
o

n
, a

s
sp

ec
if

ie
d

 in
 t

h
e

te
st

 c
as

e
se

tu
p

. A
lt

h
o

u
gh

 s
h

o
w

in
g

so
m

e
sl

o
w

n
es

s,
 A

U
T

u
p

d
at

es
 t

h
e

u
se

r'
s

p
o

si
ti

o
n

 o
n

th

e
m

ap
. A

ft
er

 d
ro

p
p

in
g

th
e

in
te

rn
e

t
co

n
n

e
ct

io
n

,
A

U
T

is
 n

o
 lo

n
ge

r
ab

le
 t

o
 r

ec
al

cu
la

te
 t

h
e

ro
u

te
 t

o

th
e

d
es

ti
n

at
io

n
. A

t
ap

p
ro

xi
m

at
el

y
4

:3
0

 in
 t

h
e

vi

d
eo

, A
U

T
st

o
p

s
re

sp
o

n
d

in
g

to
 s

ti
m

u
li

in
 t

h
e

en
vi

ro
n

m
en

t.

It
 w

as
 e

xp
ec

te
d

 t
h

at
 it

 w
o

u
ld

 b
e

p
o

ss
ib

le
 t

o

ex
p

er
ie

n
ce

 s
lo

w
d

o
w

n
s

b
ec

au
se

 t
h

e
sp

ee
d

p

ro
gr

am
m

ed
 f

o
r

th
is

 t
es

t
ca

se
 w

as
 v

er
y

h
ig

h

(1
0

0
0

 k
m

/h
).

 It
 w

as
 e

xp
e

ct
ed

 t
h

at
 t

h
e

A
U

T
co

u
ld

n

o
t

ca
lc

u
la

te
 t

h
e

ro
u

te
 t

o
 t

h
e

 d
es

ti
n

at
io

n

w
it

h
o

u
t

th
e

in
te

rn
et

 b
ec

au
se

 it
 n

ee
d

s
th

e

in
te

rn
et

 f
o

r
th

is
 t

as
k.

 H
o

w
ev

er
, w

e
d

id
 n

o
t

ex
p

ec
t

th
e

 A
U

T
to

 s
to

p
 r

es
p

o
n

d
in

g
to

 s
ti

m
u

li
fr

o
m

 t
h

e
en

vi
ro

n
m

en
t.

h
tt

p
s:

//
yo

u
tu

.b
e/

iy
Lz

H
u

iR
TR

8

	Introduction
	Problem
	Objective and Research Questions
	Contributions
	Thesis Structure

	Background
	Android Operating System
	Android Applications
	Android Testing
	Context-Aware Applications
	Pairwise Testing
	Concluding Remarks

	Systematic Mapping
	Research Method
	Research Questions
	Sources of information
	Search criteria
	Inclusion and Exclusion Criteria
	Study Selection and Extraction
	Study Analysis
	Validity Evaluation

	Results
	Analysis and Discussion
	RQ 1: What are the Android testing tools published in the literature?
	RQ 2: What are the Android context-aware testing studies and tools published in the literature?

	Concluding Remarks

	Context-Aware Path-Based Testing Approach
	Overview
	Test case generation
	Test case execution
	Concluding Remarks

	The ENVIAR Tool
	Overview
	Architecture
	Testing Process
	Test Case Generation Using PICT
	ENVIAR Graphical Interface
	Concluding Remarks

	Evaluation
	Exploratory Study
	Methodology
	Data Collection
	Results and Analysis
	Discussion

	Comparing ENVIAR to other tools
	ENVIAR Supporting Other Tools Execution
	Concluding Remarks

	Related Works
	State of the Art Reviews
	Matalonga et al.
	Guinea et al.
	Shauvik et al.
	Santiago et al.
	Usman et al.
	Comparison

	Related Solutions
	Sanders and Walcott
	Wang and et al.
	Amalfitano et al.
	Ami et al.
	Comparison

	Concluding Remarks

	Concluding Remarks
	Conclusions
	Limitations
	Future Work

	PICT Rules
	Test Cases
	Raw Results
	Defect Report

