UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENG. ELÉTRICA E INFORMÁTICA UNIDADE ACADÊMICA DE ENGENHARIA ELÉTRICA

TRABALHO DE CONCLUSÃO DO CURSO

Conversor Trifásico CA-CA de Três Braços Utilizando Nove Chaves

Edgard Luiz Lopes Fabricio

Orientador: Cursino Brandão Jacobina fevereiro de 2010 F126c Fabricio, Edgard Luiz Lopes. Conversor trifásico CA-CA de três braços utilizando nove chaves. / Edgard Luiz Lopes Fabricio. - Campina Grande - PB: [s.n], 2010.

15f.

Orientador: Professor Dr. Cursino Brandão Jacobina.

Trabalho de Conclusão de Curso - Monografia; (Curso de Bacharelado em Engenharia Elétrica) - Universidade Federal de Campina Grande; Centro de Engenharia Elétrica e Informática.

1. Conversor trifásico CA-CA. 2. Conversor de nove chaves. 3. Distorção harmônica total. 4. Distorção harmônica das tensões. I. Jacobina, Cursino Brandão. II. Título.

CDU:621.3(043.1)

Elaboração da Ficha Catalográfica:

Johnny Rodrigues Barbosa Bibliotecário-Documentalista CRB-15/626

Agradecimento

Agradeço a Deus que desde o início da minha vida e dos meus estudos tem iluminado meus pensamentos e me conduzindo por bons caminhos. À minha família, me dando orientação, alegria e companherismo. Ao meu professor orientador Cursino Brandão Jacobina. À dedicação e paciênca dos meus professores da graduação. Aos colegas do LEIAM e amigos da graduação.

Sumário

1	Introdução	4								
2	Conversor de Nove Chaves 2.1 Modelo do Sistema	5 5								
3	Modulação3.1Restrições de Chaveamento3.2Estratégia PWM 3.2.1Modo FC3.2.2Modo FV	7 7 8 10								
4	Estratégia de Controle	11								
5	Análise de Distorção Harmônica Total (WTHD)									
6	6 Resultado do Sistema									
7	Conclusão									

Lista de Figuras

1	Conversor convencional monofásico
2	Conversor proposto monofásico de nove chaves
3	Formas de onda do PWM e tensões de polo. $\dots \dots \dots$
4	Diferença entre $v_{a0}^* \in v_{b0}^*$
5	Diagrama Lógico para o cálculo do μ_r e μ_l
6	Diagrama de controle
7	WTHD da tensão de entrada
8	WTHD da tensão de saída 13
9	Correntes de entrada e suas referências
10	Tensão do barramento

1 Introdução

Neste relatório é descrito a topologia do conversor trifásico CA-CA utilizando três braços com o total de nove chaves de um conversor trifásico. O estudo tem como base [1] sendo feita aprimorações na estratégia PWM no aproveitamento da tensão do barramento.

Os conversores CA-CA apresentam grandes aplicações na industria. A configuração mais popular de conversores CA-CA utiliza fontes inversoras de tensão com retificadores a diodo na entrada para ajuste de velocidade, para fontes de tensão ininterrupitas e outras aplicações da industria [2]. Esta configuração apresenta baixo custo e operação confiável, devido a utilização do reficador a diodo, mas ela gera alta distorção nas correntes de entrada. Este problema pode ser resolvido usando o conversor back-to-back (B2B), mostrado na Fig. 1.

O conversor convencional, denominado back-to-back utiliza um número (12) relativamente alto de chaves, IGBTs.

Em algumas aplicações, pode ser conveniente para reduzir o número de componentes dos conversores estáticos [3–6]. Por outro lado, a procura em várias aplicações de alto desempenho nos conversores [7–13] são caracterizados pela necessidade de aumentar a capacidade de potência, fiabilidade, eficiência e redundância. Esses conversores de alto desempenho podem ser obtidos através de um arranjo de conversor de baixa frequência.

O estudo que será feito irá propor uma estratégia PWM diferente da proposta por [1]. A estratágia abordada aqui aproveita melhor a tensão do

barramento.

O trabalho está organizado da seguinte forma. Inicialmente o sistema de modelagem será apresentado. Depois, a estratégia de PWM e de controle. E em seguida, é feito análise de distorção harmônica total (WTHD) das tensões de entrada e saída do conversor.

Figura 1: Conversor convencional monofásico.

2 Conversor de Nove Chaves

E mostrado na Fig. 2 a topologia do conversor proposto com nove chaves. Este conversor tem apenas três braços com três chaves instaladas em cada um deles. A novidade é que uma chave de cada braço é compartilhada pelo retificador e o inversor reduzindo 3 chaves em comparação a topologia convencional.

A potência de entrada é entregue a saída parcialmente pelas três chaves do meio e parcialmente pelo banco de capacitores. Por conveniência nós consideraremos as chaves de cima e do meio compondo o retificador e as chaves do meio e de baixo compondo o inversor.

O conversor tem dois modos de operação: 1) modo de frequência constante (FC), onde a frequência da tensão de saída é a mesma que a da tensão de entrada, sendo apenas ajustável em módulo; e 2) modo frequência variável (VF) onde módulo e frequência são variáveis. O modo de operação FC é usado em UPS e o modo FV pode ser aplicado em unidades de controle de velocidade.

Figura 2: Conversor proposto monofásico de nove chaves.

2.1 Modelo do Sistema

O sistema é composto por fontes de alimentação v_{as} , v_{bs} e v_{cs} (com mesma amplitude, frequência e defasadas de 120°), por indutores de entrada (L_a , L_b e L_c), por um banco de capacitores, por um retificador, um inversor e na saída do inversor uma carga trifásica RL composta por R_x , R_y e R_z e L_x , L_y e L_z .

O retificador é formado pelas chaves q_{a1} , q_{a2} , q_{b1} , q_{b2} , $q_{c1} e q_{c2}$; e o inversor é formado pelas chaves q_{a2} , q_{a3} , q_{b2} , q_{b3} , $q_{c2} e q_{c3}$. Observa-se que as chaves q_{a2} , $q_{b2} e q_{c2}$ constituem tanto o retificador quanto o inversor.

Da Fig. 2 pela L.K., obtêm-se as seguintes equações:

$$v_{a0} - v_{n0} = v_{as} - r_a i_a - l_a p i_a \tag{1}$$

$$v_{b0} - v_{n0} = v_{bs} - r_b i_b - l_b p i_b \tag{2}$$

$$v_{x0} - v_{l0} = -r_x i_x - l_x p i_x \tag{4}$$

$$v_{y0} - v_{l0} = -r_y i_y - l_y p i_y \tag{5}$$

$$v_{z0} - v_{l0} = -r_z i_z - l_z p i_z \tag{6}$$

Onde $p = \frac{d}{dt}$ e os símbolos r e l representam as resistências e indutâncias respectivamente.

3 Modulação

3.1 Restrições de Chaveamento

A redução do número de chaves na topologia proposta impõe certas restrições de chaveamento em relação a topologia convencional. Na topologia convencional a tensão v_{a0} do nó A com relação ao meio do barramento 0, pode ser controlado pelas chaves $q_{a1} e q_{a2}$ do retificador e a tensão v_{X0} do braço do inversor pode ser controlado por $q_{x1} e q_{x2}$, isto significa que o retificador e o inversor podem ser controlados independentemente. Ao contrário da topologia proposta que o retificador e o inversor dividem uma chave por braço, fazendo com que as tensões do retificador não sejam controladas independentemente das do inversor. Para o conversor proposto o controle das tensões de entrada e de saída é realizado por três chaves de cada braço.

O back-to-back tem quatro estados de chaves por fase, gerando todas as possíveis conbinações de tensões de polo entre uma fase do retificador e outra do inversor, como definido na Tabela 1. Já a topologia de nove chaves possui apenas três estados de chave por fase, como é mostrado na Tabela 2, pois as chaves centrais são compartilhadas entre o retificador e o inversor. Pode ser observado que o estado 4 das chaves para o B2B não existe para o conversor de nove chaves. O estado 4 é o que a tensão do inversor é maior do que a do retificador, o que implica que a tensão do braço do inversor v_{X0} não pode ser superior à tensão do braço do retificador v_{A0} em qualquer instante, sendo válido para todas as outras fases. Este é, de fato, a principal restrinção para a mudança da topologia convencional para o conversor de nove braços.

Nas tabelas para o estado das chaves é atribuido 1 para a chave fechada e 0 para a chave aberta.

					-					
Estado das chaves	q_{a1}	q_{a2}	q_{x1}	q_{x2}	v_{AO}	v_{XO}				
1	1	0	1	0	$\frac{v_d}{2}$	$\frac{v_d}{2}$				
2	0	1	0	1	$-\frac{v_d}{2}$	$-\frac{v_d}{2}$				
3	1	0	0	1	$\frac{v_d}{2}$	$-\frac{v_d}{2}$				
4	0	1	1	0	$-\frac{v_d}{2}$	$\frac{v_d}{2}$				
Tabela 2: Estados das chaves e tensões de polo do conversor de nove chaves										
Estado das chaves	q_{a1}	q_{a2}	q_{a3}	v_{AO}	v_{XO}					
1	1	1	0	$\frac{v_d}{2}$	$\frac{v_d}{2}$					
2	0	1	1	$-\frac{v_d}{2}$	$-\frac{v_d}{2}$					
3	1	0	1	$\frac{v_d}{2}$	$-\frac{v_d}{2}$					

Tabela 1: Estados das chaves e tensões de polo do conversor B2B.

3.2 Estratégia *PWM*

Será apresentado a estratégia PWM para o retificador e para o inversor da topologia de nove chaves.

Dadas as tensões de polo de referência do retificador v_a^* , $v_b^* \in v_c^*$, estas são determinadas pelo controle de corrente, e do inversor v_x^* , $v_y^* \in v_z^*$, determinadas em malha aberta. Sabe-se que para o retificador e inversor respectivamente tem-se, isolando as tensões de polo:

$$v_{a0}^* = v_a^* + v_n^* \tag{7}$$

$$v_{b0}^{*} = v_{b}^{*} + v_{n}^{*} \tag{8}$$

$$v_{c0}^* = v_c^* + v_n^* \tag{9}$$

$$v_{x0}^* = v_x^* + v_l^* \tag{10}$$

$$v_{u0}^* = v_u^* + v_l^* \tag{11}$$

$$v_{z0}^* = v_z^* + v_l^* \tag{12}$$

As tensões v_{a0}^* , v_{b0}^* e v_{c0}^* que denominaremos de v_{m_r} , são os sinais modulante do retificador e v_{x0}^* , v_{y0}^* e v_{z0}^* que denominaremos de v_{m_i} , os sinais modulante do inversor. Estes são manipulados por v_n^* e v_l^* para que v_{m_r} não seja inferior a v_{m_i} em qualquer instante de tempo. Estes dois sinais modulantes são comparados com a portadora triangular v_t , definindo o estado das chaves.

Neste caso $v_n^* \in v_l^*$ são calculados levando em conta o máximo $\frac{V_d^*}{2}$ e mínimo $-\frac{V_d^*}{2}$ valor de tensão de polo onde V_d^* é a referência da tensão do barramento. Para v_n^* também é levado em conta $v_{r_{\max}}^* = \max \varsigma_r, v_{r\min}^* = \min \varsigma_r$ onde $\varsigma_r = \{v_a^*, v_b^*, v_c^*\}$ e para $v_l^* v_{i_{\max}}^* = \max \varsigma_l, v_{i\min}^* = \min \varsigma_i$ onde $\varsigma_i = \{v_x^*, v_y^*, v_z^*\}$.

$$v_{n\,\text{max}}^* = \frac{V_d^*}{2} - v_{r_{\text{max}}}^* \tag{13}$$

$$v_{n\min}^{*} = -\frac{V_{d}^{*}}{2} - v_{r\min}^{*}$$
(14)

$$v_{l\,\text{max}}^* = \frac{V_d^*}{2} - v_{i_{\text{max}}}^* \tag{15}$$

$$v_{l\,\min}^* = -\frac{V_d^*}{2} - v_{i\,\min}^* \tag{16}$$

Introduzindo o parâmetro μ_r e μ_l que podem variar de 0 a 1 as variáveis v_n^* e v_l^* podem ser escritas como

$$v_n^* = V_d^*(\mu_r - 0, 5) - \mu_r v_{r_{\max}}^* + (\mu_r - 1) v_{r_{\min}}^*$$
(17)

$$v_l^* = V_d^*(\mu_l - 0, 5) - \mu_l v_{i_{\max}}^* + (\mu_l - 1) v_{i_{\min}}^*$$
(18)

A Fig. 3 ilustra o esquema de modulação para um período PWM para o conversor de nove chaves. As tensões de polo do retificador e do inversor também são mostradas genericamente na figura. Nesta é mostrado a lógica de chaveamento para um braço genérico e as tensões de polo são definidas por v_{r0} para o retificador e v_{l0} para o inversor. Os quatro estado das chaves são definidos pela comparação entre os sinais modulante do retificador, inversor e a portadora triangurar.

Esta estratégia PWM permite um melhor aproveitamento da tensão do barramento. A diferença entre v_{m_r} e v_{ml} é variável ao contrário da estratégia proposta por [1], em que esta diferença é um valor constante. É mostrado na Fig. 4 é mostrado a variação da diferença entre v_{m_r} e v_{ml} para um dos casos de FC.

3.2.1 Modo FC

O modo de operação de frequência constante (FC) consiste nas tensões do retificador e do inversor possuirem, para o mesmo braço, fase e frequência iguais diferindo apenas em módulo. Isto é a tensão modulante v_{m_r} possuirá mesma fase e frequência de v_{m_l} . Tendo como restrição $v_{m_r} \ge v_{m_l}$.

Para o modo a frequência constante o valor de μ_r pode ser fixo, escolhido no intervalo entre 0 e 1, já o valor de μ_l será escolhido de forma a satisfazer a condição $v_{m_r} \ge v_{m_l}$.

Figura 3: Formas de onda do PWM e tensões de polo.

Figura 4: Diferença entre $v_{a0}^* \in v_{b0}^*$.

Tem-se que para cada fase:

$$v_{a0}^{*} \geq v_{x0}^{*}$$
 (19)
 $v_{b0}^{*} \geq v_{y0}^{*}$ (20)

(20)

$$v_{c0}^* \ge v_{z0}^*$$
 (21)

Substituindo 7, 8, 9, 10, 11 e 12 em 19, 20 e 21 e isolando $v_l^\ast,$ tem-se

$$v_l^* \le \min(v_a^* - v_x^* + v_n^*, v_b^* - v_y^* + v_n^*, v_c^* - v_z^* + v_n^*)$$
(22)

Para se obter o v_l^* que satisfaça a condição é atribuido um valor pra μ_l e calculado o novo v_l^* caso não seja satisfeita a condição é decrementa-se μ_l até que a condição seja satisfeita.

A seguir é apresentado uma lógica para a escolha do μ_r e μ_l :

Escolhe-se:

$$\mu_r = x$$
$$\mu_l = y$$

sendo $x \in y$ um valor entre $0 \in 1$. Calcula-se v_n^* para o μ_r escolhido por 17. Daí obtêm-se v_l^* para cada uma das fases:

Calcula-se o v_l^* para o valor de μ_l de preferência por 18.

$$v_{lteste}^* \min = \min \left(v_{lxteste}^*, v_{lyteste}^*, v_{lzteste}^* \right)$$

Enquanto $v_l^* > v_{lteste}^* \min$

$$\mu_l = \mu_l - 0, 1$$

Calcula-se v_l^* até que $v_l^* \leq v_{lteste}^*$ min. Este procedimento é realizado sempre otimizando sempre o valor de $\mu_r \in \mu_l$.

3.2.2 Modo FV

No modo de operação de frequência variável (VF) a frequência e fase das tensões do retificador e inversor são ajustadas independentemente uma da outra.

Para se aplicar este modo ao conversor deve-se observar as restrições. Como restrições temse que a soma dos índices de modulação m_r e m_l não poderá ser maior que 1 e $m_r \ge m_l$ de modo que satisfaça $v_{m_r} \ge v_{m_l}$.

A condição 22 deve também ser satisfeita. Neste caso de frequências variáveis, μ_r não será fixo, será escolhido um μ_r e μ_l de preferência, mas estes serão alterados para satisfazer 22. Isto é, caso o valor de v_l^* seja menor que $v_{l\min}^* \mu_r$ será acrescentado de 0, 1 até que v_l^* , para as três fases, seja maior que o $v_{l\min}^*$ e o valor de μ_l será decrementado até que o valor de v_l^* seja menor do que o calculado para o valor de μ_r e μ_l escolhido.

A seguir, na Fig. é apresentado uma lógica para a escolha do μ_r e μ_l :

Figura 5: Diagrama Lógico para o cálculo do $\mu_r \in \mu_l$.

4 Estratégia de Controle

Apresenta-se na Fig. 6 a estratégia para o controle do retificador e inversor do conversor de nove chaves.

A tensão do capacitor v_d é controlada por meio de um controlador PI, Rc. A saída deste controlador define a amplitude das corrents de referência I^* , daí é sincronizada, por meio do bloco Ge - i, com as tensões das fontes $v_{as} e v_{bs}$. Obtendo-se as correntes $i_a^* e i_b^*$, assim temos o fator de potência da entrada unitário. O controle da conrrentes do retificador é feito usando-se os controladores $R_a e R_b$, estes controladores definem as tensões $v_a^* e v_b^*$ respectivemente. A terceira tensão do retificador, v_c^* , é obtida por $v_c^* = -v_a^* - v_b^*$.

O controle do inversor é realizado em malha aberta, definindo-se diretamente as tensões v_x^* , $v_y^* \in v_z^*$.

As tensões v_a^* , $v_b^* \in v_c^*$ do retificador v_x^* , $v_y^* \in v_z^*$ junto com $v_n^* \in v_l^*$ compõem as modulantes que são comparadas com a portadora triangular definindo os estados das chaves.

Figura 6: Diagrama de controle.

5 Análise de Distorção Harmônica Total (WTHD)

A distorção harmônica das tensões foi avaliada usando a distorção harmônica total ponderada dada por

$$WTHD(p)\% = \frac{100}{Y_1} \sqrt{\sum_{n=2}^{p} \left(\frac{Y_n}{n}\right)^2}$$

onde n = 2, 3, 4, 5... é a ordem do harmônico, Y_1 é a amplitude da tensão fundamental, Y_n é a amplitude do n-ésimo e p é o número de harmônicos que serão considerados.

Foram analisadas a tensão de entrada, v_{ab} , do conversor proposto. Variou-se o o valor de μ_r entre 0 e 1 e manteve-se constantes as amplitudes das tensões de entrada e saída iguais. Isto para o modo FC. Pode-se observar o resultado na Fig. 7.

O WTHD da tensão de entrada depende apenas de μ_r e do valor do índice de modulação m_r . Observa-se na Fig. 7 que a o comportamento do WTHD da tensão de entrada do conversor proposto é o mesmo do convencional, apresentando menor valor em $\mu_r = 0, 5$, isto é, pulso centrado e maior valor em $\mu_r = 0$ e $\mu_r = 1$.

Para estas variações dos valores de μ_r o

Para a tensão de saída foi fixado o $\mu_r = 0,5$ e variado o índice de modulação m_i de 0,1 a 1. Pode-se observar o comportamento do WTHD da tensão de saída na Fig. 8 observa-se que a medida que o índice de modulação aumenta, isto é a tensão de saída aumenta, o WTHD diminui. Isto ocorre devido o aumento da largura dos pulsos da tensão fazendo com que diminua a distorsão.

Figura 7: WTHD da tensão de entrada.

Figura 8: WTHD da tensão de saída.

6 Resultado do Sistema

Todos os resultados obtidos para o conversor proposto foram adquiridos por simulação na ferramenta MATLAB.

Na Fig.9 é mostrado as correntes de entrada, i_a , i_b e i_c e as tensões das fontes v_{as} , v_{bs} e v_{cs} . Observa-se que o controle foi realizado considerando que as correntes estão em fase com as respectivas tensões, isto é com fator de potência unitário.

Na Fig.10 é mostrado o tensão do barramento e a sua referência em 400V.

Figura 9: Correntes de entrada e suas referências.

Figura 10: Tensão do barramento.

7 Conclusão

Neste relatório foi apresentado o conversor AC-AC utilizando nove chaves. Este utiliza uma estratégia PWM, que trouxe vantagens em relação ao proposto por [1], já em relação ao conversor convencional back-to-back houve uma redução significativa do número de chaves, IGBTs, o que é bastante satisfatório na redução de custos.

O conversor proposto apresenta entrada e saída senoidal com fator de potência unitário na entrada. Saída controlado em malha aberta. Embora não tenha sido implementado na prática o estudo foi satisfatório para a análise desta topologia.

Referências

- Congwei Liu; Bin Wu; Zargari, N.R.; Dewei Xu; Jiacheng Wang; A Novel Three-Phase Three-Leg AC/AC Converter Using Nine IGBTs, Power Electronics, IEEE Transactions on, 2009, Page(s): 1151 - 1160.
- [2] B. Wu, High-power Converters and AC Drives. Piscataway, NJ: IEEE/Wiley, 2006.
- [3] A. Bouscayrol, B. Franc, ois, P. Delarue, and J. Niiranen, Control implementation of a five-leg AC/AC converter to supply a three-phase induction machine, IEEE Trans. Power Electron, 2005, pag.107–115.
- [4] J. R. Rodríguez, J. W. Dixon, J. R. Espinoza, J. Pontt, and P. Lezana, *PWM regenerative rectifiers: state of the art*, IEEE Trans. Power Electron, 2005, pag.5-22.
- [5] O. Ojo, W. Zhiqiao, G. Dong, and S. Asuri, High-performance speed-sensorless control of an induction motor drive using a minimalist single-phase PWM converter, IEEE Trans. Ind. Appl., 2005, pag.996–1.004.
- [6] J.-H. Choi, J.-M. B. Kwon, J.-H. Jung, and B.-H. Kwon, *High-performance online UPS using three-leg-type converter*, IEEE Trans. Ind. Electron, 2005, pag.889-897.
- [7] Z. Ye, D. Boroyevich, J.-Y. Choi, and F. C. Lee, *Control of circulating current in two parallel three-phase boost rectifiers*, IEEE Trans. Ind. Electron, 2002, pag.609–615.
- [8] S. K. Mazumder, A novel discrete control strategy for independent stabilization of parallel three-phase boost converters by combining space-vector modulation with variable-structure control, IEEE Trans. Power Electron, 2003, pag.1.070-1.083.
- [9] Z. Ye, P. Jain, and P. Sen, Circulating current minimization in high-frequency AC power distribution architecture with multiple inverter modules operated in parallel, IEEE Trans. Ind. Electron, 2007, pag.2.673-2.687.
- [10] M. Baumann and J. Kolar, Parallel connection of two three-phase three-switch buck-type unity-power-factor rectifier systems with dc-link current balancing, IEEE Trans. Power Electron, 2007, pag.3.042-3.053.
- [11] S. Kouro, R. Bernal, H. Miranda, C. Silva, and J. Rodriguez, *High-performance torque and flux control for multilevel inverter fed induction motors*, IEEE Trans. Power Electron, 2007, pag.3.042-3.053.
- [12] V. Agelidis, A. Balouktsis, and M. Dahidah, A five-level symmetrically defined selective harmonic elimination PWM strategy: Analysis and experimental validation, IEEE Trans. Power Electron, 2008, pag.19-26.
- [13] L. MatakasJr. and W. Kaiser, Low harmonics, decoupled histeresis type current control of a multi-converter consisting of a parallel transformer-less connection of VSC converters, Conf. Rec. IEEE-IAS Annu. Meeting, 1997, pag. 1.633–1.640.