Mateus de Oliveira Queiroga

Sistema de descarga de bateria com recuperação de energia - estágio de entrada

Campina Grande Outubro de 2017 Mateus de Oliveira Queiroga

Sistema de descarga de bateria com recuperação de energia - estágio de entrada

Trabalho de conclusão de curso submetido à Unidade Acadêmica de Engenharia Elétrica da Universidade Federal de Campina Grande como parte dos requisitos necessários para a obtenção do grau de Bacharel em Ciências no Dominío da Engenharia Elétrica.

Trabalho aprovado. Campina Grande, 6 de outubro de 2017:

Prof. Alexandre Cunha de Oliveira Orientador

Avaliador

Campina Grande Outubro de 2017 Mateus de Oliveira Queiroga

Sistema de descarga de bateria com recuperação de energia - estágio de entrada

Trabalho de conclusão de curso submetido à Unidade Acadêmica de Engenharia Elétrica da Universidade Federal de Campina Grande como parte dos requisitos necessários para a obtenção do grau de Bacharel em Ciências no Dominío da Engenharia Elétrica.

Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Engenharia Elétrica

Orientador: Prof. Alexandre Cunha de Oliveira

Campina Grande Outubro de 2017

Agradecimentos

Primeiramente agradeço ao Grande Arquiteto do Universo por toda a força e coragem para vencer tantos obstáculos que surgiram neste período de graduação em Engenharia Elétrica.

Para a realização deste sonho de ser um Engenheiro Eletricista contei com o apoio de inúmeras pessoas e instituições, mas gostaria particularmente de destacar e agradecer:

• A minha família em geral, em especial a minha mãe Marineide de Oliveira Queiroga e meu pai Francisco de Assis Queiroga.

• A Universidade Federal de Campina Grande, e em especialmente a Unidade Acadêmica de Engenharia Elétrica, por toda a excelente estrutura de ensino e apoio aos estudantes, em especial a Sra. Adail Silva Paz.

• Aos meus inúmeros queridos amigos e colegas que compartilharam varias horas de aula, muitas provas e muitas horas sem dormir por causa dos estudos.

• E por fim um agradecimento mais que especial a minha amada esposa Larissa Marie e ao meu filho Miguel Queiroga pelo apoio, compreensão e motivação.

Resumo

Este trabalho apresenta os resultados obtidos na simulação do estágio de entrada de um sistema de descarga de baterias com recuperação de energia e tem como objetivo projetar o controle da corrente de entrada e analisar os resultados deste controle. Este estágio se trata basicamente de um conversor boost que eleva a tensão da bateria controlando a corrente de entrada. Para realizar este controle foi utilizado um controlador PI.

Palavras-chaves: conversor. controle de corrente. controlador proporcional integral.

Lista de ilustrações

Figura 1 – Topologia do circuito conversor boost	11
Figura 3 – Gráficos da tensão e corrente do indutor no MCC	13
Figura 4 – Sistema de Controle em Malha Fechada	15
Figura 5 – Circuito subtrator. .	15
Figura 6 - Circuito integrador	16
Figura 7 – Diagrama de blocos do sistema de controle	16
Figura 8 – Geração da tensão de controle e do sinal pwm	17
Figura 9 – Demonstração gráfica da geração do sinal PWM	17
Figura 10 – Circuito elétrico equivalente	18
Figura 11 – Circuito para simulação do conversor boost	20
Figura 12 – Tensão na saída do conversor	20
Figura 13 – Corrente na saída do conversor	21
Figura 14 – Corrente no indutor	21
Figura 15 – Conversor boost com sensor de corrente	23
Figura 16 – Controlador Proporcional.	24
Figura 17 – Controlador Integral.	24
Figura 18 – Controle Proporcional Integral.	24
Figura 19 – Comparador	25
Figura 20 – Resultado com Kp = 1 e Ki = 1. \ldots	25
Figura 21 – Resultado com Kp = 10 e Ki = 1	26
Figura 22 – Resultado com Kp = 100 e Ki = 1	26
Figura 23 – Corrente no indutor seguindo a referência de 10A	27
Figura 24 – Corrente no indutor seguindo a referência de 25A	27
Figura 25 $-$ Corrente no indutor seguindo a referência que varia com o tempo	28
Figura 26 $-$ Corrente no indutor seguindo a referência que varia com o tempo indo	
para zero	28
Figura 27 – Tensão de saída para uma referência de 10A	29
Figura 28 – Tensão de saída para uma referência de 25A	29
Figura 29 – Tensão de saída para uma referência de 25A e entrada de 60V	30
Figura 30 – Corrente no indutor de 7mH.	30

Lista de tabelas

Tabela 1 –	Parâmetros	escolhidos	para o	o conversor	boost.												-	19
------------	------------	------------	--------	-------------	--------	--	--	--	--	--	--	--	--	--	--	--	---	----

Lista de abreviaturas e siglas

- MCCModo de condução contínuaMCDModo de condução descontínuaPIProporcional Integral
- IGBT Insulated Gate Bipolar Transistor

Lista de símbolos

- \varDelta Letra grega Delta
- \varOmega Letra grega Omega
- τ
 Letra grega Tau

Sumário

1	Intr	odução	0
2	Fun	damentação Teórica	1
	2.1	Conversor Boost	1
		2.1.1 Modo de condução contínua	2
		2.1.2 Corrente no indutor $\ldots \ldots \ldots$	3
		2.1.3 Indutância mínima para operar no MCC $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 14$	4
		2.1.4 Determinação da capacitancia	4
	2.2	Contrador PI analógico	5
	2.3	Controle do conversor boost	6
	2.4	Modelagem do conversor boost	8
3	Eta	oas do projeto	9
	3.1	Dimensionamento do conversor Boost	9
	3.2	Simulação do conversor	0
	3.3	Sintonia do controlador PI	1
	3.4	Simulação do controlador PI analógico	3
	3.5	Resultados	5
Co	onclu	são	1
Re	eferêr	ncias	2

1 Introdução

Em muitos experimentos que são realizados com baterias, toda a energia da bateria é dissipada em resistências, sendo um desperdício da energia que antes estava ali armazenada na bateria. Para evitar este desperdício, hoje existem diversos estudos visando a recuperação desta energia.

Este trabalho tem como objetivo projetar e analisar o estágio de entrada de um sistema de descarga de bateria com a recuperação dessa energia. Este estágio de entrada é composto por um conversor boost com a corrente de entrada controlada. Este controle de corrente é de fundamental importância para o sistema, pois controlando a corrente de entrada, teremos controle sobre a potência fornecida ao conversor, controlando também a descarga da bateria.

Para atingir os objetivos propostos, este trabalho foi composto por três capítulos, sendo abordado o projeto e análise do controle PI para o conversor boost com tensão de entrada 150V (tensão da bateria). O Capitulo 2 apresenta uma curta fundamentação teórica apresentando um estudo descritivo sobre os conversores boost, demonstrando a modelagem matemática para o dimensionamento dos mesmos. O Capitulo 3 apresenta as etapas para o projeto do conversor e do controle de corrente, mostrando como foram feitas as simulações computacionais e os resultados obtidos.

Por fim, no ultimo capítulo é feita a conclusão dos resultados que foram obtidos no projeto.

2 Fundamentação Teórica

2.1 Conversor Boost

O conversor boost tem como função regular a tensão média de saída para um nível superior ou igual ao de entrada. Na topologia do circuito conversor boost, como pode-se observar na figura 1, temos um indutor \mathbf{L} em série com a tensão de entrada (\mathbf{Vin}) e um capacitor \mathbf{C} em paralelo com a tensão de saída (\mathbf{Vo}).

Figura 1 – Topologia do circuito conversor boost

Fonte:(BARROS, 2016)

Quando a chave **S** está aberta, o diodo **D** fica inversamente polarizado e o circuito estará carregando o indutor, quando a chave está fechada, o diodo irá conduzir, descarregando o indutor. O capacitor da saída vai receber carga da tensão entrada e do indutor, provocando um aumento de V_0 com relação a V_i . Pode-se observar que quanto mais tempo a chave passar fechada, maior será a tensão de saída com relação à entrada.

Figura 2 – Circuito equivalente para as chaves aberta e fechada.

A relação entre o tempo em que a chave encontra-se aberta (T_{OFF}) e o tempo que

a chave encontra-se fechada (T_{ON}) é conhecida como ciclo de trabalho ou Duty Cycle (D). O Duty Cycle é dado por:

$$D = \frac{Ton}{T_S} \tag{2.1}$$

Onde:

 $T_S = T_{ON} + T_{OFF}$

O valor do indutor está associado ao modo de condução do conversor. Se a corrente do indutor em regime permanente não atingir o valor zero, o conversor estará em modo de condução continua (MCC). Caso esta atinja o valor zero, o conversor estará no modo de condução descontínua (MCD). Para este trabalho será utilizado o conversor boost no MCC. Para isso, é necessário analisar as equações que regem este conversor neste modo.

2.1.1 Modo de condução contínua

Como neste modo de condução a corrente não atinge zero, temos que $i_L(t) > 0$, ou seja, a corrente i_L flui continuamente. Quando a chave **S** está fechada (T_{ON}) , a tensão no indutor será $v_L = V_i$, a corrente no indutor cresce linearmente e a carga é alimentada pelo capacitor. Quando a chave está aberta, a energia armazenada em **L** é transferida para **C** e sua tensão será $v_L = V_i - V_0$. A tensão média no indutor será zero em regime permanente, então pode-se concluir que as áreas A e B da figura 3 serão iguais. Desta forma, tem-se:

$$V_i T_{ON} = -(V_i - V_0)(T_S - T_{ON})$$
(2.2)

$$V_0 = \frac{1}{1 - \frac{T_{ON}}{T_S}} V_i \tag{2.3}$$

$$V_0 = \frac{1}{1 - D} V_i \tag{2.4}$$

Com $0 \le D \le 1$ pode-se observar que $V_0 \ge V_i$.

Para encontrar a corrente média de saída I_0 em função da corrente de entrada I_i , pode-se observar que, para um conversor ideal, não havendo dissipação de potência no mesmo, tem-se que:

$$P_0 = P_i \tag{2.5}$$

$$\frac{1}{1-D}V_i I_0 = V_i I_i \tag{2.6}$$

Figura 3 – Gráficos da tensão e corrente do indutor no MCC.

$$I_0 = I_i(1 - D) (2.7)$$

2.1.2 Corrente no indutor

A corrente no indutor é dada por:

$$I_L = I_{Li} + \frac{1}{L} \int_0^t V(\tau) d\tau$$
(2.8)

Como pode ser visto na figura 3 a corrente no indutor cresce de maneira linear quando a chave está fechada e decresce da mesma forma com a chave aberta.

Isso posto, tem-se para a chave fechada:

$$I_L = I_{Li} + \frac{1}{L} \int_0^{DT_S} V_i d\tau$$
 (2.9)

$$I_L = I_{Li} + \frac{V_i DT_S}{L} \tag{2.10}$$

Onde I_{Li} é o valor mínimo da corrente no indutor. Ou seja:

$$I_L = I_{Lmin} + \frac{V_i DT_S}{L} \tag{2.11}$$

Para a chave aberta, observando a figura 3, sabendo que as áreas A e B são iguais e que I_{Li} assumirá o valor máximo da corrente no indutor, tem-se que:

$$I_L = I_{Lmax} - \frac{V_i D T_S}{L} \tag{2.12}$$

Com isso, conclui-se que a variação da corrente no indutor será:

$$\Delta i_L = \frac{V_i D}{L f_s} \tag{2.13}$$

E que as correntes máxima e mínima no indutor assumirão:

$$I_{Lmax} = I_i + \frac{\Delta i_L}{2} \tag{2.14}$$

$$I_{Lmin} = I_i - \frac{\Delta i_L}{2} \tag{2.15}$$

2.1.3 Indutância mínima para operar no MCC

Para calcular a indutância mínima em que o conversor estará operando no modo de condução contínua, se faz necessário observar quando a corrente mínima do indutor irá atingir o valor zero. A partir das equações 2.7 e 2.15, tem-se:

$$0 = \frac{I_0}{(1-D)} - \frac{\Delta i_L}{2}$$
(2.16)

$$\frac{I_0}{(1-D)} = \frac{V_i D}{2L_{min} f_s}$$
(2.17)

$$L_{min} = \frac{V_i D(1-D)}{2I_0 f_s}$$
(2.18)

2.1.4 Determinação da capacitancia

Seja ΔV_c a variação de tensão no capacitor, que é igual a saída do conversor ΔV_0 . Enquanto a chave está fechada o capacitor está sendo descarregado pela ação da corrente de carga (I_0) .

$$I_0 = C \frac{\Delta V_c}{t_{ON}} \tag{2.19}$$

Desta forma o valor do capacitor será dado por:

$$C = \frac{I_0 D}{\Delta V_c f_s} \tag{2.20}$$

2.2 Contrador PI analógico

De acordo com (FRANCKLIN, 2013), o controlador proporcional integral (PI) possui a seguinte equação no domínio do tempo:

$$u(t) = k_p e(t) + k_i \int_{t_0}^t e(\tau) d\tau$$
(2.21)

Onde k_p e k_i são os ganhos proporcional e integral, respectivamente, e a função $e(\tau)$ é o erro dado pela diferença entre a referência e o valor da saída a ser controlada.

Fonte:(MARCIEL, 2012)

No domínio da frequência, a equação 2.21 torna-se:

$$U(s) = k_p E(s) + \frac{(k_i)}{s} E(s)$$
(2.22)

Portanto, para implementação deste controlador analogicamente neste trabalho, foram utilizados circuitos subtratores e um circuito integrador para realizar as operações matemáticas da equação 2.21. Nas figuras 5 e 6 pode-se analisar o circuito subtrator e integrador com suas respectivas funções de transferência nas equações 2.23 e 2.24 como pode ser visto em (WENDLING, 2010).

Fonte:(WENDLING, 2010)

$$V_0 = \frac{R_2}{R_1} (V_2 - V_1) \tag{2.23}$$

Fonte:(WENDLING, 2010)

$$V_0 = -\frac{1}{RC} \int_0^t V_i(\tau) d\tau \tag{2.24}$$

2.3 Controle do conversor boost

Segundo (BARROS, 2016), em conversores CC-CC chaveados ideais, a tensão de saída é uma função da tensão de entrada e ciclo de trabalho. A saída do conversor de potência é regulada modulando-se o ciclo de trabalho para compensar variações na entrada ou na carga. O sistema de controle por realimentação para controlar o conversor de potência compara tensão de saída com uma referência e converte o erro em um ciclo de trabalho. O diagrama de blocos do sistema de controle é representado por um sistema em malha fechada como pode ser visto na figura 7.

Figura 7 – Diagrama de blocos do sistema de controle.

Fonte:(BARROS, 2016)

A tensão de controle é gerada a partir do circuito da figura 8, amplificando o sinal de erro. Logo em seguida, como pode ser visto ainda na figura 8 esta tensão é comparada com um sinal triangular para geração do sinal PWM. Este sinal triangular será a portadora da frequência de chaveamento, ou seja, o chaveamento será realizado na mesma frequência deste sinal.

Figura 8 – Geração da tensão de controle e do sinal pwm.

A figura 9 demonstra graficamente a comparação entre um sinal de controle e uma forma de onda triangular (no caso da figura, dente de serra) gerando um sinal PWM, modulado a partir do valor de V_c . Vale observar que quanto maior ou menor o V_c , ou seja, quanto maior ou menor o erro, o ciclo de trabalho irá aumentar ou diminuir respectivamente, até que a referencia seja seguida.

Figura 9 – Demonstração gráfica da geração do sinal PWM.

Fonte:(BARROS, 2016)

2.4 Modelagem do conversor boost

Para realizar o projeto do controlador para a corrente, é necessário inicialmente elaborar um modelo para o conversor boost com uma função de transferência da corrente em função do DutyCycle.

Como visto em (BARBI, 2015), para encontrar um modelo por valores médios instantâneos, o circuito da figura 11 foi resumido na figura 10.

Figura 10 – Circuito elétrico equivalente.

Fonte:(BARBI, 2015)

De acordo com (BARBI, 2015), é sabido que a representação de um modelo médio e obtida segundo os procedimentos a seguir.

Do circuito equivalente da figura 10, obtem-se:

$$\frac{di_L(t)}{dt} = \frac{1}{L} [V_i - (1 - D(t))V_0]$$
(2.25)

Aplicando uma pequena pertubação no sistema, pode-se reescrever a equação 2.25 como:

$$\frac{d[i_L(t) + \Delta i_L(t)]}{dt} = \frac{1}{L}V_i - [1 - (D(t) + \Delta D(t))]V_0$$
(2.26)

Substituindo 2.25 em 2.26, tem-se:

$$\frac{d\Delta i_L(t)}{dt} = \frac{V_0}{L} \Delta D(t) \tag{2.27}$$

Aplicando a transformada de Laplace em 2.27, chega-se aos modelo médio por valores instantâneos:

$$H(s) = \frac{I_L(s)}{D(s)} = \frac{V_0}{sL}$$
(2.28)

3 Etapas do projeto

3.1 Dimensionamento do conversor Boost

Deseja-se obter uma tensão de saída de 450V a partir de uma entrada de 150V. Utilizando estes dados para dimensionar o conversor com frequência de chaveamento de 10kHz, tem-se que o Duty Cycle, dado pela equação 2.1 será:

$$D = 2/3 \tag{3.1}$$

Pela lei de ohm, utilizando uma carga de 50 \varOmega para encontrar a corrente de saída, obtem-se:

$$I_0 = \frac{V_0}{R} = 9A$$
(3.2)

Para este caso específico, verifica-se que a indutância mínima para o conversor operar no MCC, dada pela equação 2.18, será aproximadamente:

$$L_{min} = 0,1852mH (3.3)$$

Já o capacitor, calculado pela equação 2.20, considerando uma variação na tensão de saída de 5%, será aproximadamente:

$$C = 27\mu F \tag{3.4}$$

Com isso, os valores escolhidos para iniciar as simulações do conversor serão conforme a tabela 1.

Nota-se que os valores escolhidos foram bem acima do calculado. Para o indutor foi escolhido um valor mais alto para obter um menor ripple na sua corrente, pois se o valor

Componente	Valor esoclhido						
Tensão de Entrada (V_i)	150V						
Tensão de Saída (V_0)	450V						
Indutor (L)	$2 \mathrm{mH}$						
Capacitor(C)	100uF						
Carga(R)	50Ω						
Frequência de Chaveamento (f_s)	10kHz						
Fonte: O autor							

Tabela 1 – Parâmetros escolhidos para o conversor boost.

da indutância for muito próximo do mínimo, o conversor estará operando muito próximo ao MCD. Já para o capacitor foi escolhido também um valor mais alto para diminuir o ripple na tensão de saída. Estes valores poderão ser ajustados conforme o resultado obtido nas simulações.

3.2 Simulação do conversor

Utilizando os valores escolhidos em 3.1 para realizar simulações computacionais, como pode ser visto na figura 11, obtendo as formas de onda das figuras 12 e 13 para a tensão e corrente, respectivamente.

Figura 11 – Circuito para simulação do conversor boost

Fonte: O autor

Figura 12 – Tensão na saída do conversor

Os resultados obtidos na simulação foram conforme o esperado para o conversor. A tensão de saída média em torno de 450V e a corrente de saída em torno de 9A.

Como o objetivo deste trabalho é o controle da corrente no indutor, o foco das próximas análises será o comportamento desta corrente. Para o conversor da figura 11 a

Figura 13 – Corrente na saída do conversor

forma de onda da corrente no indutor será conforme mostrado na figura 14, onde pode-se notar um comportamento transitório desagradável, tendo um overshoot maior que 100A, um tempo de acomodação maior que 0,04s além do ripple em regime permanente estar em torno de 17%.

3.3 Sintonia do controlador PI

Dado o sistema de controle mostrado na figura 4, sabendo que o controle será dado pela equação 2.22 e tendo o processo com a função de transferência modelada no item 2.4

pela equação 2.28, a função de transferência para o sistema em malha fechada será:

$$H_{MF}(s) = \frac{G(s)H(s)}{1 + G(s)H(s)}$$
(3.5)

Onde:

G(s)- Equação do controlador PI

H(s)- Função de transferência do processo

 ${\cal H}_{MF}(s)$ - Função de transferência em malha fechada

Substituindo G(s) pela equação dada em 2.22 e H(s) por 2.28, tem-se:

$$H_{MF}(s) = \frac{\left(\frac{k_{p}s + k_{i}}{s}\right)\frac{V_{0}}{sL}}{1 + \frac{k_{p}s + k_{i}}{s}\frac{V_{0}}{sL}}$$
(3.6)

$$H_{MF}(s) = \frac{V_0 K_p s + k_i V_0}{s^2 L + V_0 k_p s + k_i V_0}$$
(3.7)

$$H_{MF}(s) = \frac{V_0 K_p(s + \frac{k_i}{k_p})}{L(s^2 + \frac{V_0 k_p}{L}s + \frac{k_i V_0}{L}}$$
(3.8)

Onde pode-se observar um zero em $z=-\frac{k_i}{k_p}$ e os polos p_1 e $p_2,$ respectivamente em:

$$p_1 = \frac{-k_p V_0 + \sqrt{k_p^2 V_0^2 - 4k_i V_0 L}}{2L} \tag{3.9}$$

$$p_2 = \frac{-k_p V_0 - \sqrt{k_p^2 V_0^2 - 4k_i V_0 L}}{2L} \tag{3.10}$$

Para se obter um sistema estável, segundo (FRANCKLIN, 2013), os polos do sistema devem pertencer ao semi-plano esquerdo do eixo complexo. Para que isso ocorra, os polos devem ser negativos, ou seja:

$$-k_p V_0 > \sqrt{k_p^2 V_0^2 - 4k_i V_0 L} \tag{3.11}$$

$$k_p^2 V_0^2 > k_p^2 V_0^2 - 4k_i V_0 L (3.12)$$

$$0 > -4k_i V_0 L \tag{3.13}$$

Portanto, para garantir que o sistema seja estável, deve-se ter:

$$k_i > 0 \tag{3.14}$$

Para garantir que o sistema não tenha polos complexos, que ocasionaria uma característica oscilatória na saída, o argumento da raiz quadrada dos polos não pode conter um valor negativo, portanto:

$$k_p^2 V_0^2 > 4k_i V_0 L \tag{3.15}$$

$$k_p > 2\sqrt{\frac{k_i L}{V_0}} \tag{3.16}$$

Portanto, os ganhos k_p e k_i devem satisfazer as equações 3.16 e 3.14, respectivamente.

Como pode ser observado na equação 3.14, quanto menor o valor de V_0 , maior sera o ganho proporcional k_p . Portanto, como pode ser visto na equação 2.4, V_0 será sempre maior ou igual a V_i . Considerando $V_i = 150$, tem-se que o menor valor para V_0 será também 150.

3.4 Simulação do controlador PI analógico

O PI foi montado eletronicamente como visto em 2.2, utilizando uma fonte de tensão como referência, e um sensor de corrente no indutor para obter um sinal de tensão proporcional a sua corrente, como pode ser observado na figura 15. A figura 16 mostra o circuito subtrator calculando a diferença entre o I_L e a referência e multiplicando por 1000 como pode ser observado pela equação 2.23. Neste ponto temos como saída o erro multiplicado por k_p . Da mesma forma, a figura 17 mostra o erro sendo integrado e multiplicado por k_i como pode ser comprovado pela equação 2.24.

Figura 15 – Conversor boost com sensor de corrente.

Fonte: O autor

Fonte: O autor

Figura 17 – Controlador Integral.

Fonte: O autor

Após o erro ser multiplicado por k_p e separadamente ser integrado e multiplicado por k_i , a figura 18 mostra a soma entre estas duas parcelas, formando assim o controle PI como visto na equação 2.21.

Figura 18 – Controle Proporcional Integral.

Fonte: O autor

A saída do controlador deverá ser comparada com uma onda triangular com frequência 10kHz (frequência de chaveamento do conversor), como visto no item ??, para assim gerar o sinal PWM que irá chavear o conversor boost. Esta comparação é implementada no circuito da figura 19. Vale observar que esta saída está conectada na chave como pode ser visto na figura 15. A chave utilizada nesta simulação foi um transistor IGBT.

Fonte: O autor

3.5 Resultados

Escolhendo os ganhos do controlador $k_i = 1$, pela equação 3.16, temos que $k_p > 0,00731$. Escolhendo então $k_i = 1$ e $k_p = 1$, foi obtido o resultado mostrado na figura ?? para uma referência de 10A.

Figura 20 – Resultado com Kp = 1 e Ki = 1.

Com isso, observou-se que os resultados para estes ganhos foram bem insatisfatórios, apresentando oscilações muito altas e a corrente no indutor não alcançou a referência que deveria ser seguida.

Visando melhorar este fator, foi escolhido um ganho proporcional maior e realizada uma nova simulação. Como pode ser visto na figura 21, onde nota-se que houve melhora nos resultados, porém a corrente média ainda fica um pouco abaixo da referência além de ter um ripple muito alto.

Figura 21 – Resultado com Kp = 10 e Ki = 1.

Aumentando novamente o ganho proporcional, $k_p = 100$, foi obtido o resultado apresentado na figura 22. Foi verificado um resultado mais aceitável, a corrente média no indutor seguindo a referência com um ripple menor.

Figura 22 – Resultado com K
p=100e Ki=1.

Portanto, os ganhos do controlador foram escolhidos kp = 100 e ki = 1. Para estes ganhos, foi variada a referência (figuras 23 a 26) verificando o comportamento da corrente no indutor e da tensão de saída do conversor. Como pode-se observar na figura 24, ocorreu uma significativa melhora com relação aos fatores que foram apresentados no item 3.2 sobre o transitório da corrente no indutor. O overshoot agora fica pouco acima de 40A, o tempo de acomodação caiu para aproximadamente 1,4ms e o ripple ficou em torno de 5% a 10%.

Figura 23 – Corrente no indutor seguindo a referência de 10A.

Nas figuras 25 e 26 pode ser observado que variando a referencia ao longo do tempo o controle atua de maneira rápida e sem muitos transitórios, o overshoot ocorre apenas nas proximidades de t=0 onde a corrente ainda não segue a referência.

Por fim, em uma breve análise da tensão de saída após a implementação do controle, pode-se observar nas figuras 27 ??, onde as tensões para quando a corrente está controlada em 10A e 25A, alcançaram valores em regime permanente de aproximada-

Figura 25 – Corrente no indutor seguindo a referência que varia com o tempo.

Figura 26 – Corrente no indutor seguindo a referência que varia com o tempo indo para zero.

Fonte: O autor

mente 273V e 427V, respectivamente. Estes resultados mostram que a tensão de saída é proporcional a corrente do indutor. Isto ocorre pois o controle atua no Duty Cycle do chaveamento, que está diretamente relacionado com a relação entre a tensão de entrada e saída como visto na equação 2.4.

Observou-se também, que a diminuição da tensão de entrada, um efeito comum com o passar do tempo quando as baterias vão sendo descarregadas, o controle da corrente no indutor sofre pouca influência em regime permanente. Porém, como a tensão de saída do conversor é diretamente proporcional a tensão de entrada, está sofrerá uma queda

Figura 27 – Tensão de saída para uma referência de 10A.

significativa. A figura 29 mostra a tensão de saída para uma entrada de 60V, com a corrente no indutor sendo controlada em 25A. Comparando com a figura 28, nota-se uma queda na tensão de saída, chegando a aproximadamente 270V em regime permanente.

Após analisar os resultados, conclui-se que os mesmos foram satisfatórios e não houve necessidade de alterar os parâmetros escolhidos na tabela 1. Porém para análise dos efeitos da indutância, a figura 30 mostra o resultado obtido para a mesma simulação da figura 23, porém com um indutor de 7mH. Pode-se observar que nesta, o overshoot foi diminuído e o tempo de acomodação foi aumentado.

Figura 29 – Tensão de saída para uma referência de 25A e entrada de 60V.

Figura 30 – Corrente no indutor de 7mH.

Conclusão

Este trabalho teve como objetivo o projeto e análise do estágio de entrada de um sistema de descarga de baterias com recuperação de energia. O controlador PI escolhido para o controle da corrente no indutor do conversor boost foi bastante satisfatório. Foi demonstrado que o boost sem o controle de corrente apresentava um overshoot muito elevado e que com o controle foi possível diminuir o mesmo, alem de diminuir o tempo de acomudação.

Apesar de mesmo com o controle o overshoot ainda ser grande, foi visto que aumentando o valor da indutância é possível diminuir esse overshoot com a consequência do aumento do tempo de acomodação.

Este trabalho de conclusão de curso mostra a importância de se ter o conhecimento prévio das disciplinas Eletrônica, Eletrônica de Potência e Controle Analógico. Além de demonstrar o uso das mesmas de maneira conjunta.

Neste trabalho só foram feitas simulações, podendo ainda ser desenvolvida a montagem e verificação dos circuitos fisicamente, além de se poder analisar a aplicação de outras técnicas de controle.

Referências

BARBI, I. Retificadores monofásicos com correção ativa do fator de potência empregando o conversor boost. 2015. Citado na página 18.

BARROS, R. D. Eletrônica de potência. 2016. Citado 4 vezes nas páginas 11, 13, 16 e 17.

FRANCKLIN, G. F. a. a. Sistemas de controle para engenharia. 2013. Citado 2 vezes nas páginas 15 e 22.

MARCIEL, M. Controle pid com aproximação digital para utilização no pic. 2012. Citado na página 15.

WENDLING, M. Amplificadores operacionais. 2010. Citado 2 vezes nas páginas 15 e 16.