Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Curso de Graduação em Engenharia Elétrica

Sistema de medição e armazenamento de leituras de irradiância solar

Louelson A. L. de Azevedo C. Costa

Campina Grande - PB Julho de 2014

LOUELSON A. L. de AZEVEDO C. COSTA

SISTEMA DE MEDIÇÃO E ARMAZENAMENTO DE LEITURAS DE IRRADIÂNCIA SOLAR

Relatório de Estágio Supervisionado submetido à Unidade Acadêmica de Engenharia Elétrica da Universidade Federal de Campina Grande como parte dos requisitos necessários para a obtenção do grau de Bacharel em Ciências no Domínio da Engenharia Elétrica.

Orientador: Prof. Dr. Montiê Alves Vitorino

Campina Grande - PB Julho de 2014

LOUELSON A. L. de AZEVEDO C. COSTA

SISTEMA DE MEDIÇÃO E ARMAZENAMENTO DE LEITURAS DE IRRADIÂNCIA SOLAR

Relatório de Estágio Supervisionado submetido à Unidade Acadêmica de Engenharia Elétrica da Universidade Federal de Campina Grande como parte dos requisitos necessários para a obtenção do grau de Bacharel em Ciências no Domínio da Engenharia Elétrica.

Aprovada em Agosto de 2014.

BANCA EXAMINADORA

Prof. Dr. Montiê Alves Vitorino - Orientador
 UFCG

Prof. Dr. Maurício Beltrão de Rossiter Correa
 UFCG

Campina Grande - PB Agosto de 2014

Dedicado aos meus pais e ao meu irmão.

Agradecimentos

Agradeço aos professores Maurício e Montiê pelas oportunidades dadas até aqui, e por acreditarem em mim.

Agradeço aos colegas de laboratório que me sanaram dúvidas e me ajudaram no desenvolvimento do trabalho.

Agradeço a minha namorada, Nayara, pelo apoio e ajuda dados durante todo o curso.

"Stay hungry. Stay foolish." Steve Jobs

Resumo

O presente trabalho, que foi feito durante o Estágio Supervisionado no LEIAM (Laboratório de Eletrônica Industrial e Acionamento de Máquinas), que pertence ao Departamento de Engenharia Elétrica (DEE) da Universidade Federal de Campina Grande (UFCG), tem por objetivo implementar um sistema de aquisição e amazenamento de leituras de irradiância solar feitas com um piranômetro e processadas pelo software Labview, de modo a se traçar o perfil de irradiância solar que o prédio do laboratório recebe, com a finalidade de dar suporte às pesquisas com sistemas fotovoltaicos que são desenvolvidas pela equipe do LEIAM.

Palavras-chave: Fotovolaico, Piranômetro, Labview.

Sumário

A	grade	cimentos	v
Re	esum	D V	ii
Li	sta d	e Figuras	x
1	Intr	odução	1
	1.1	Objetivos	1
	1.2	Justificativa	1
	1.3	Cronograma de atividades	2
2	Lab	oratório de Eletrônica Industrial e Acionamento de Máquinas - LEIAM	3
3	O S	stema de aquisição e armazenamento de leituras de irradiância solar	5
	3.1	Piranômetro CM21 e amplificador de sinal CT24	6
	3.2	Fieldlogger NOVUS	9
	3.3	Labview	9
	3.4	MySQL	0
4	Des	envolvimento do projeto 1	1
	4.1	Instalação e configuração do hardware	1
	4.2	Instalação e configuração do <i>software</i>	5
		4.2.1 Configuração do MySQL	5
		4.2.2 Programação no Labview	8
5	Res	ultados e sugestões de melhorias 2	4
6	Con	clusão 2	6

		ix
Re	eferências Bibliográficas	27
7	Anexos	28

Lista de Figuras

3.1	Datagrama ilustrativo do projeto	6
3.2	Fotografia do piranômetro CM21	7
3.3	Ilustração de um corte transversal ao piranômetro CM21	8
3.4	Fotografia de um amplificador de sinal CT24.	8
3.5	Fotografia de um Fieldlogger.	9
3.6	Modelo de tabela para o banco de dados	10
4.1	Fotografia do piranômetro instalado adjacente à painéis fotovoltaicos	12
4.2	Fotografia do amplificador de sinal instalado na parte interna do laboratório.	12
4.3	Fotografia do field logger fixado em uma bancada do laboratório. \ldots \ldots	13
4.4	Captura da tela inicial do software de configuração do Fieldlogger	14
4.5	Captura da tela de configuração da interface serial do Fieldlogger	14
4.6	Captura da tela de configuração do canal analógico do Fieldlogger	15
4.7	Captura da tela de criação do DS	16
4.8	Captura da tela de escolha do driver do DS	16
4.9	Captura da tela de configuração do DS	17
4.10	Captura da tela de configuração do arquivo UDL	17
4.11	Visão geral do diagrama de blocos implementado no Labview	19
4.12	Diagrama de blocos que implementam a comunicação MODBUS no Labview.	20
4.13	Diagrama de blocos para conexão com o banco de dados	20
4.14	Diagrama de blocos para condicionamento da irradiância e do tempo	21
4.15	Diagrama de blocos para conexão com o banco de dados	22
4.16	Painel frontal do programa feito no Labview	23
4.17	Diagrama de blocos que imprime a hora atual no painel frontal	23
5.1	Perfis de irradiância solar.	24

Introdução

1.1 Objetivos

A irradiância solar incidente sobre uma determinada área é um fator de extrema importância no estudo de sistemas fotovoltaicos, principalmente porque a quantidade de incidência em determinado local irá definir a viabilidade de instalação de um conjunto de painéis. Uma vez instalados os painéis, é importante monitorar a quantidade de energia incidente, para que seja feita a comparação com a energia produziada pelos painéis para estudos de eficiência energética.

1.2 Justificativa

O monitoramento da irradiância solar em uma determinada área é de suma importância na área fotovoltaica. Então, um sistema de aquisição e armazenamento de leituras de irradiância solar feitas com um piranômetro é montado de modo a monitorar a irradiância solar diária, bem como o seu histórico.

Utiziliando um piranômetro, um *datalogger* e um computador com o software Labview instalado, foi feita a instalação, conexão e programação do sistema para que qualquer pessoa com acesso ao computador possa verificar a irradiância solar instantânea, ou recuperar os dados de qualquer dia anterior.

Apesar de o sistema funcionar independentemente de um usuário, ao final do trabalho algumas sugestões são feitas para melhorias de interface e armazenamento dos dados.

1.3 Cronograma de atividades

O cronograma proposto é registrado na Tabela 1.1. Foram dedicadas 4h diárias, totalizando 20h semanais no intervalo de 12/05/2014 a 14/07/2014, totalizando 9 semanas (onde cada semana equivale a uma etapa). As tarefas realizadas foram divididas da seguinte forma: MODBUS, estudo do protocolo de comunicação serial MODBUS; Banco de Dados (BD), estudo de BD baseados em *Structured Query Language* (SQL); MOD-BUS+BD, junção da interface de comunicação serial MODBUS com o BD; Interface, elaboração da interface e de sua comunicação com o BD; Documentação, elaboração do relatório e correção de *bugs*.

> Tabela 1.1: Cronograma de atividades. $\mathbf{2}$ 3 4 59 Etapa 1 678 MODBUS Х Х BD Х Х MODBUS+BD Х Х Interface Х Х Х Documentação

Sendo assim, resume-se o cronograma na Tabela 1.1.

Laboratório de Eletrônica Industrial e Acionamento de Máquinas -LEIAM

O Laboratório de Eletrônica Industrial e Acionamento de Máquinas do Departamento de Engenharia Elétrica da Universidade Federal de Campina Grande, dispõe de uma infraestrutura laboratorial distribuída numa área ed 330 m². A infraestrutura é dividida em quatro ambientes: laboratório de simulação digital, acionamento de máquinas, eletrônica de potência e de qualidade de energia.

O laboratório de simulação digital é equipado com 20 (vinte) computadores. O de acionamento de máquinas possui bancadas de estrutura flexível para ensaios experimentais e desenvolvimento de sistemas de acionamento de alto desempenho, cada bancada dispõe de um conversor de potência conectado a uma máquina elétrica e um computador com placas de controle e aquisição de dados. O laboratorio de eletrônica de potência possui quatro bancadas dotadas de plataformas experimentais para conversores de potência. Os três laboratório de ensaios experimentais são servidos por diversos equipamento de medição: osciloscópios digitais, sondas de tensão e corrente, frequencímetros, multímetros e medidores de potência real.

Na área de sistemas fotovoltaicos, o laboratório possui 34 (trinta e quatro) painéis fotovoltaicos variando entre 80 (oitenta), 130 (cento e trinta) e 210 (duzentos e dez) Watts pico. Deste, dois painéis de 210 (duzentos e dez) Watts pico estão conectados à rede elétrica, de modo a medir a sua produção e desempenho. Os demais painéis ficam à disposição dos pesquisadores do laboratorio para realização de experimentos envolvendo geração distribuída e alimentação de motores/bombas hidráulicas.

O Sistema de aquisição e armazenamento de leituras de irradiância solar

O sistema a ser montado tem por objetivo de fazer a leitura (instantânea) do piranômetro e armazená-la, de modo a criar um histórico de perfis de irradiância solar. Essas leituras são então repassadas aos usuários do laboratório que tiverem interesse sobre os dados coletados.

O trabalho foi dividido em duas partes: *hardware* e *software*. A primeira se refere ao piranômetro CM21, fabricado pela Kipp & Zonen, elemento sensor de medição de irradiância; e ao Fieldlogger NOVUS, que é um *datalogger* (equipamento de aquisição e registro de dados analógicos e digitais). A segunda se refere ao Labview, software que irá processar as informações recebidas do *datalogger*; e ao software MySQL, que é um sistema gerenciador de banco de dado, onde são armazenados os dados coletados.

Na Figura 3.1 pode-se observar um datagrama que ilustra a visão macro do sistema. A fonte primária de energia é o Sol, cuja irradiância será medida, no piranômetro há a primeira conversão de energia: térmica (proporcional à irradiância) para elétrica. O sinal elétrico, após passar por um amplificador de sinal, é convertido de analógico para digital pelo conversor analógico/digital (A/D) do *datalogger*. O computador recebe o sinal digital através de uma porta USB, para então ser processado pelo Labview em conjunto com o banco de dados. Por fim, as informações são exportadas em formas de planilhas para que seja repassada ao usuário que queira informações sobre o pefil de irradiância solar

Figura 3.1: Datagrama ilustrativo do projeto.

sobre os painéis do laboratório. Cada etapa será discutida detalhadamente no decorrer do relatório.

3.1 Piranômetro CM21 e amplificador de sinal CT24

A conversão da irradiância solar (W/m^2) em um sinal elétrico é feita através de um piranômetro. No caso, o piranômetro utilizado foi um CM21 fabricado pela Kipp & Zonen [1], cuja fotografia pode ser observada na Figura 3.2.

Os piranômetros partem do princípio de funcionamento do termopar, onde a diferença de temperatura entre dois corpos gera um sinal elétrico proporcional à essa diferença.

Figura 3.2: Fotografia do piranômetro CM21.

Desta forma, um corpo negro dentro do piranômetro é atingido pelos raios solares, que o aquecem, um outro corpo branco que permanece protegido dos raios solares permanece na temperatura ambiente. Com a diferença de temperatura entre eles, e através da calibração do sensor, pode-se aferir a irradiância sobre o piranômetro.

Na Figura 3.3 pode-se obsevar as diversas partes constituíntes do piranômetro utilizado. Os domos (*outer glassdome* e *inner glassdome*) são de vidro transparente, sua forma, bem como a associação deles, garante que a os raios solares incidam equitativamente sobre o elemento sensor durante todo o dia, visto que o sol descreve uma função cosseno ao decorrer do dia. O corpo negro (*sensins element*), que sofrerá ação direta dos raios solares, e o corpo branco (*compensation element*), que permanece na temperatura ambiente, farão com que a diferença de temperatura entre eles seja sentida pelo termistor, gerando um sinal elétrico proporcional a essa diferença. Por fim, o dissecador (*dessicator*) tem por função manter o ambiente interno do piranômetro seco e livre de impurezas, para garantir que ele funcione corretamente.

Em conjunto com o CM21, é utilizado um aplificador de sinal CT24, também da Kipp & Zonen (Figura 3.4). O CT24, além de amplificar o sinal elétrico que percorrerá o cabo de comunicação com um conversor A/D (o que possibilita o aumento da distância entre o conversor A/D e o amplificador CT24), também condiciona o sinal elétrico gerado pelo piranômetro para 4 a 20 mA (ou 2 a 10 V), que é um dos padrões de entradas de *datalogger*.

Figura 3.3: Ilustração de um corte transversal ao piranômetro CM21.

Figura 3.4: Fotografia de um amplificador de sinal CT24.

Figura 3.5: Fotografia de um Fieldlogger.

3.2 Fieldlogger NOVUS

O datalogger utilizado foi um Fieldlogger fabricado pela NOVUS [3], Figura 3.5. Neste equipamento se encontra o conversor analógico digital que recebe o sinal oriundo do CT24. Aqui são feitas as configurações necessárias para se obter o resultado em W/m^2 , ou seja, deve-se informar ao equipamento a calibração do sensor. Apesar do Fieldlogger ter a opção de armazenar informação em sua memória interna, ou num pen drive conectado à ele, seria necessário transferir os dados em um local com maior capacidade de armazenamento de tempos em tempos, até que a memória portátil fosse preenchida novamente. Este é um dos motivos que justifica a utilização de um computador para processar e armazenar esses dados.

Assim como possui entradas analógicas e digitais, o Fieldlogger também possui saídas digitais. A partir do manual [4], identifica-se em quais registradores estão sendo armazenadas as leituras recebidas na porta analógica onde está conectado o amplificador CT24, e a partir deles recupera-se a informação sobre a irradiância medida naquele instante.

3.3 Labview

O software que lê os dados recebidos na porta USB oriundos do Fiedlogger, os armazena no banco de dados, os exporta do banco de dados e implementa a interface é o Labview. O software apresenta uma grande diversidade de aplicações, que se tornam ainda mais numerosas e específicas através de novas bibliotecas, *toolkits* e atualizações do programa.

data_nome				
horario_hhmmss	irradiancia_valor			

Figura 3.6: Modelo de tabela para o banco de dados.

Por oferecer as ferramentas computacionais necessárias para o objetivo do trabalho e ser de fácil manuseio, o Labview foi escolhido. Além do Labview básico, foi utilizado o *Database Connectivity Toolkit* (DCT), que é uma biblioteca de funções para operações com banco de dados (conexão, leitura, escrita e criação de tabelas), e a biblioteca NI MODBUS, que serão comentadas a seguir.

3.4 MySQL

Na etapa de estudo do banco de dados, escolheu-se o Sistema Gerenciador de Banco de Dados (SGBD) MySQL (referência à linguagem SQL (*structured query language*), utilizada em bancos de dados), que é um *software livre*. Pelo uso do banco de dados ser bem simples (apenas escrita e leitura), o software gratuito supre as necessidades do projeto. A ideia de usar banco de dados veio com a necessidade de criar um histórico das leituras feitas para que futuramente possam ser utilizadas. Automaticamente, o programa exporta as informações para um arquivo .csv (*comma separated values*), que é um formato de planilha do excel, este arquivo é então disponibilizado para os usuários do laboratório que desajam ter informações sobre o perfil de irradiância solar que incide sobre o laboratório.

O banco de dados, e todos eles de uma foram geral, consistem de tabelas, onde cada coluna possui uma informação e cada linha compõe um conjunto de informações sobre algo ou alguém. Para a finalidade deste trabalho, imaginou-se uma tabela conforme a Figura 3.6, onde o nome da tabela se refere ao dia daquelas medições, enquanto que a primeira coluna se refere ao horário em que a medição foi feita (formato TIME, em hh:mm:ss) e a segunda coluna armazena a leitura feita naquele instante (formato FLOAT).

Desenvolvimento do projeto

Uma vez definido o objetivo bem como as ferramentas utilizadas para alcançálo, deu-se início pela instalação e configuração dos *hardwares*: piranômetro e Fieldlogger. Posteriormente foi feita a instalação dos *softwares* Labview e MySQL, foram criados então o programa que faz as leituras da porta USB, armazena e exporta os dados e expõe as leituras instantâneas em uma interface para o usuário e o banco de dados propriamente ditos.

4.1 Instalação e configuração do hardware

O piranômetro foi instalado adjacente a um dos arranjos de painéis fotovoltaicos instalados na laje do laboratório (Figura 4.1), de modo a obter exatamente a mesma irradiância ao qual os painéis estão submetidos. Com o certificado de calibração do piranômetro encontra-se os limites de W/m^2 proporcionais ao sinal elétrico gerado pelo mesmo, com ele configura-se o Fieldlogger.

O amplificador de sinal CT24 está instalado dentro da edificação (Figura 4.2), a 10 m do piranômetro devido ao comprimento limitado do cabo que faz a conexão entre eles, todavia o cabo que sai do CT24 e chega no *datalogger* tem um comprimento maior, o que é possível devido a amplificação do sinal.

O Fieldlogger foi fixado na bancada 19 do laboratório, conforme a fotografia da Figura 4.3, em sua alimentação foi conectado um disjuntor por medidas protetivas. Nos detalhes pode-se observar o cabo oriundo do amplificador CT24 (detalhe vermelho), conectado a uma das entradas analógicas do *datalogger* e o cabo USB que está conectado a

Figura 4.1: Fotografia do piranômetro instalado adjacente à painéis fotovoltaicos.

Figura 4.2: Fotografia do amplificador de sinal instalado na parte interna do laboratório.

Figura 4.3: Fotografia do fieldlogger fixado em uma bancada do laboratório.

um computador (detalhe verde).

Para configurar o Fieldlogger é ncessário o *software* fornecido gratuitamente pelo frabicante em seu site, com ele pode-se acessar a memória do aparelho para configurá-lo ou para extrair dados coletados. A configuração do Fieldlogger é simples e rápida, devido à interface intuitiva e ao manual do equipamento.

A primeira tela do Configurador do Fieldlogger pode ser observada na Figura 4.4. Cria-se então uma nova configuração, cujos parâmetros serão salvos em um arquivo de configuração. O aplicativo ajuda a definir a configuração desejada, podendo configurar as várias portas do aparelho, porém apenas a interface de comunicação RS485 (serial) foi utilizada. Configurou-se o *datalogger* conforme a Figura 4.5, note que por trabalhar com o protocolo MODBUS ([4]), definiu-se que o Fieldlogger seria o escravo, enquanto que o computador da bancada seria o mestre, ou seja, toda vez que o mestre solicitar, o escravo enviará uma informação que, no caso, é a leitura de irradiância feita pelo seu canal analógico convertido para um sinal digital.

O canal analógico utilizado foi configurado conforme a Figura 4.6, aqui utiliza-se os valores limites fornecidos pelo atestado de calibração do piranômetro. O intervalo de medição (ou taxa de amostragem) foi escolhido de modo a evitar excesso de dados, bem como a perda de informações (1 s).

Configu	urador	do Field	Logger
CONFIGURAÇÃO	*		COLETA
DIAGNÓSTICO	~	Ş 0	PREFERÊNCIAS
formações) Crie e edite configurações para se) Colete os dados da memória inte) Consulte o diagnóstico para acess	us novos equipan rna dos equipam ar rapidamente i	mentos FieldLogger entos e exporte pa nformações essenci	r. ra formatos conhecidos. iais do seu equipamento.
1.5.2			PORTUGUESE

Figura 4.4: Captura da tela inicial do software de configuração do Fieldlogger.

	🕝 Desabilitado	🕝 Mestre	Escr	avo
Parâmetros				
	Endereço		Bits de Parada	
	1		1	•
	Baud Rate		Paridade	
	19200		Nenhuma	

Figura 4.5: Captura da tela de configuração da interface serial do Fieldlogger.

Canais		Parâmetros	
		Tag	Valor de Erro
Canal 1	🔽 Habilitado	radiacao	-1,000
🖱 Canal 2	Habilitado	Tipo de Entrada	
🕐 Canal 3	Habilitado	Linear 4 a 20 mA	•
🕑 Canal 4	Habilitado	Limites	
🜔 Canal 5	Habilitado	Min 0	1010
🕐 Canal 6	Habilitado	Min. 0	Max. 1010
🜔 Canal 7	Habilitado	Unidade	
🕙 Canal 8	Habilitado	<u>_</u> ~	W/m²
		Filtro Digital	Casas Decimais
ntervalo de Varredu	ura	10	• 0 •
	🔘 x 1 ms		
1	() x 1 s	Calibraçã	io Customizada
		Pontos de Calibração (Configurados 0/10

Figura 4.6: Captura da tela de configuração do canal analógico do Fieldlogger.

4.2 Instalação e configuração do *software*

Os dois *softwares* utilizados foram o MySQL, para criação e gerenciamento do banco de dados, e o Labview, responsável pela leitura, processamento, armazenamento e exportação dos dados. A instalação de ambos é muito simples ([5], [6]) e não será abordada, todavia os demais passos necessários para implementação do projeto serão abordados a seguir.

4.2.1 Configuração do MySQL

A criação e configuração de um banco de dados ou de um servidor é bem descrita no manual do MySQL [6], e pode ser feita com a ajuda de um assistente de criação e configuração (*wizard*) disponível no MySQL *Workbench*. Portanto, será dado destaque ao arquivo *.udl (UDL - *Data Link File*), este arquivo indica onde está o *Data Sources - DS*, responsável pela conexão entre o banco de dados e o seu servidor. O arquivo UDL e o DS são necessários para que o programa que está sendo executado no Labview encontre as informações necessárias para conectar e interagir com o banco de dados.

A descrição dos processos será feita no Windows 7, Service Pack 1. Para criar um DS, deve-se acessar Administrative Tools > Data Sources (ODBC), Figura 4.7, e na aba

User DSN System D	SN File DSN Drivers Tracing Connection Po	oling About
User Data Sources:		
Name	Driver	Add
dBASE Files Excel Files	Microsoft Access dBASE Driver (*.dbf, *.ndx Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *.x	Remove
fotovoltaico	MySQL ODBC 5.3 ANSI Driver	Configure
•	4 [11]	
An ODBC the indica and can o	User data source stores information about how to c ted data provider. A User data source is only visibl nly be used on the current machine.	connect to e to you,

Figura 4.7: Captura da tela de criação do DS.

Name	1.
Microsoft Visual FoxPro-Treiber	£
MySQL ODBC 5.3 ANSI Driver	£
MySQL ODBC 5.3 Unicode Driver	E
SQL Native Client	2
SQL Server	e
SQL Server Native Client 10.0	2 =
SQL Server Native Client 11.0	4 -
▲	E.

Figura 4.8: Captura da tela de escolha do driver do DS.

de *User* DSN clica-se em *Add....* Na janela da Figura 4.8, escolhe-se o driver MySQL ODBC 5.3 ANSI Driver, após isso deve-se configurar o MySQL *Connector*, Figura 4.9, onde são definidos o nome, usuário, senha e o banco de dados ao qual se deseja fazer a associação.

O próximo passo é criar o arquivo UDL, que deverá ser indicado para o bloco de conexão com o banco de dados no Labview. Após escolher a pasta destino, cria-se um arquivo *.txt e depois renomeia-se seu tipo para *.udl (esse procedimento é uma particularidade do Windows). Após a criação, ao se executar o arquivo encontra-se a janela da Figura 4.10, aqui escolhe-se o DS (passo 1), informa-se o login e senha (passo 2) e então escolhe-se a qual banco de dados deseja-se conectar-se (passo 3).

Com isso, ao se apontar para o arquivo UDL, o programa que o busca irá ter as

С	1	-
exemplo		
exemplo para demonst	ração	
	Port: 3306	
Louelson		

	- Test	
fy_db information_schema mysql performance_schema	ancel He	elp
	C exemplo exemplo para demonst Louelson fy.db information_schema mysql performance_schema	C s exemplo exemplo para demonstração exemplo para demonstração Port: 3306 Louelson touelson

Figura 4.9: Captura da tela de configuração do DS.

🗊 Data Link Properties 🛛 🔀					
Provider Connection Advanced All					
Specify the following to connect to ODBC data: 1. Specify the source of data: (a) Use data source name fotovoltaico					
Use connection string Connection string: Build					
2. Enter information to log on to the server					
Password: ••••• Blank password I Allow saving password					
3. Enter the initial catalog to use:					
▼ Test Connection					
OK Cancel Help					

Figura 4.10: Captura da tela de configuração do arquivo UDL.

informações necessárias para interagir com o banco de dados associado.

4.2.2 Programação no Labview

No Labview foram utilizadas duas bibliotecas em específico: a NI MODBUS, para comunuicação do computador com o *datalogger*, que implementa o protocolo de mesmo nome; e a *Database Connectivity Toolkit* (DTC), que possui funções de escrita, leitura, criação e diversas outras operações para bancos de dados, sendo estas três listadas as utilizadas no projeto.

A interface do programa se assemelha muito com a do SIMULINK (ferramenta de programação com blocos do MATLAB \bigcirc), visto que há uma diversidade de blocos que implementam as mais variadas funções. O diagrama de blocos completo pode ser visto na Figura 4.11, e ele possui um timer de 1000 (mil) ms, que funciona como o *clock* do programa, ditando o ritmo da estrutura *while*, que contêm todas as funções implementadas.

Figura 4.11: Visão geral do diagrama de blocos implementado no Labview.

Figura 4.12: Diagrama de blocos que implementam a comunicação MODBUS no Labview.

Figura 4.13: Diagrama de blocos para conexão com o banco de dados.

Para a comunicação via protocolo MODBUS, criou-se o esquema da Figura 4.12. Neste diagrama utiliza-se o bloco *MB Serial Master Query*, que a partir da *droplist* foi configurado para ler os registradores do aparelho escravo (uma *Remote Terminal Unit* -RTU), cujo identificador é 1 (um). Também indica-se em qual porta USB do computador o *datalogger* está conectado, bem como em qual registrador está a informação que se quer ler. Pelo manual, identificou-se que os registradores 224 (duzentos e vinte e quatro) e 225 (duzentos e vinte e cinco) contêm o sinal lido do canal analôgico 1 (um), que foi configurado no Fieldlogger. Como a informação está dividida em dois registradores, programa-se que o computador deve ler o primeiro registrador (224) e a partir dele ler mais um, totalizando 2 (dois) registradores a serem lidos. Após a leitura, deve-se fazer a concatenação dos bits dos registradores e convertê-los para FLOAT32, destaque da Figura 4.12.

Antes de realizar qualquer operação com o banco de dados, deve-se criar uma conexão com ele. Para tal, utiliza-se o bloco *DB Tools Open Connection*, Figura 4.13. Com ele indica-se o local do arquivo .udl, bem como o login e senha (caso necessário) de acesso ao banco de dados.

Como o sinal lido separa as casas decimais com uma ',' (virgula), faz-se necessário a substituição por um '.' (ponto final), pois o formato final das informações é um *.csv (comma separated values), formato de planilha do Excel onde as colunas são separadas

Figura 4.14: Diagrama de blocos para condicionamento da irradiância e do tempo.

por vírgulas. Essa substituição é feita no destaque em verde da Figura 4.14(a), além de definir o tamanho da palavra como um tipo FLOAT, de até dez casas inteiras, e duas decimais. Esta padronização é necessária pois caso não haja indicação, o programa irá criar o primeiro valor lido, ou seja, o primeiro valor de irradiância no começo da manhã que seria muito pequeno, e quando os valor aumentasse (perto do meio-dia, por exemplo), o tamanho da palavra não seria suficiente para representar esse número maior. Ainda na Figura 4.14(a), observa-se o bloco "Irrad. vs. tempo", que implementa a interface e será comentando a seguir.

Em par ao valor de irradiância lido, armazena-se também o instante da medição, para tal foi implementado o diagrama da Figura 4.14(b). No destaque em vermelho há a substituição das '' (barras) da data por '_' (sublinha), tal substituição é necessária visto que a data é o nome da tabela que armazenará as informações daquele dia, e a barra gera problemas para com o banco de dados. Ainda no destaque em vermelho, há a junção da hora (hh:mm:ss) com o valor de irradiância lido, uma vez criado esse par ele é passado para o bloco em destaque azul (*DB Tools Insert Data*), que irá inserir o par na tabela indicada pela data. Note que caso não exista a tabela daquela data, o próprio bloco irá criá-la e inserir as informações.

A criação automática da tabela irá ocorrer sempre na primeira medição do dia, feita às 04h31min e a última às 18h30min. Essa lógica é implementada no destaque verde da Figura 4.14(b), onde uma lógica simples de comparação é responsável por parar ou iniciar a gravação dos dados. Há ainda um botão de Habilitar / Desabilitar, permitindo o controle ao usuário. O horário foi escolhido baseado na disponibilidade de sol do dia 21/12/2012,

Figura 4.15: Diagrama de blocos para conexão com o banco de dados.

dia do solstício de dezembro, quando ocorre o dia mais longo do ano no hemisfério sul, e neste dia houveram medições entre 04h45min e 18h15min. Com esse intervalo de tempo, evita-se ocupar espaço em disco com informações de irradiância durante a noite, que seriam nulas.

Para a exportação, foi implementado o diagrama de blocos da Figura 4.15. No destaque verde há uma lógica semelhante ao da Figura 4.14(b), onde à 23h30min o programa exporta a tabeça referente àquele dia para um arquivo .csv gerado pelo bloco Write To Spreadsheet File, cujo nome será <data>.csv. Para recuperar as informações, deve-se informar o nome da tabela para o bloco DB Tools Select Data. Aqui já se encontra um problema que irá surgir quando a população do banco aumentar, ou seja, houver mais informação nele a busca pela tabela referente a determinado dia será muito dispendiosa.

Com o bloco "Irrad. vs. tempo" (Figura 4.14(a)), constrói-se o painel frontal da Figura 4.16. Além de mostrar um gráfico com as medições dos últimos minutos, observa-se o botão que habilita ou desabilita a gravação de dados, bem como o valor medido (com vírgula e três casas decimais) e o armazenado (com ponto final e duas casas decimais). Há ainda os botões de exportar e de parar o programa. De modo a obter a hora atual no eixo das abscissas, utiliza-se o diagrama de blocos ilustrado na Figura 4.17.

Figura 4.16: Painel frontal do programa feito no Labview.

Figura 4.17: Diagrama de blocos que imprime a hora atual no painel frontal.

Resultados e sugestões de melhorias

Com o arquivo exportado (*.csv), pode-se manipular a informação nele contida para, por exemplo, estudar a disponibilidade de energia ao decorrer do dia, ou fazer simulações de painéis fotovoltaicos utilizando os valores de irradiância medidos ou fazer um estudo entre a quantidade de energia disponível e a produzida pelos painéis. A Figura 5.1 mostra os perfis de irradiância dos dias 31 de julho de 2014 e 01 de agosto de 2014, figura esta gerada por um código feito no MATLAB ©(Anexo A).

Figura 5.1: Perfis de irradiância solar.

Para trabalhos futuros, sugere-se uma melhor estruturação do banco de dados, visto que com o passar do tempo a quantidade de informação irá crescer muito, e de modo a facilitar buscas futuras uma organização por ano e mês já reduziria muito o tempo de processamento. Há também a possibilidade do usuário não querer o perfil de irradiância de um dia completo, mas apenas de um certo intervalo de tempo de determinado dia, logo, outra implementação a ser feita seria esse mecanismo de busca por data e horário.

Por fim, apesar de que com a ajuda de *softwares* de compartilhamento na nuvem isso ter sido temporaiamente solucionado, sugere-se a implementação da interface remota, ou seja, o usuário teria acesso à interface seja para observar o valor de irradiância naquele instante, seja para exportar uma data e horário específico. Na forma como o trabalho se encontra, cabe ao administrador do sistema compartilhar a pasta que será guardada na nuvem com os usuários que desejam ter acesso aos dados.

Conclusão

No decorrer da atividade novos equipamentos (sensores e *dataloggers*) e programas (banco de dados e Labview) foram estudados pelo aluno, que com a ajuda do orientador conseguiu finalizar a tarefa dentro do prazo, apesar da falta de conhecimento inicial.

O trabalho desenvolvido abordou vários temas estudados durante a graduação: instrumentação eletrônica, sistemas supervisórios, protocolos de comunicação e programação com banco de dados, além da abordagem de novas ferramentas de trabalho (MySQL e Labview).

Ao final do trabalho, o resultado obtido foi satisfatório, visto que antes o laboratório não possuía um sistema para registro dos níveis da energia primária estudada (irradiância solar). Apesar do piranômetro estar com a sua calibração atrasada, gerando alguns níveis de irradiância acima do esperado, as leituras feitas já podem ser utilizadas pelos usuários do laboratório que trabalham com sistemas fotovoltaicos.

Por fim, nota-se que devido a estrutura modular do trabalho, pode-se facilmente adicionar novos sensores ao Fieldlogger e ao programa, como por exemplo um sensor de temperatura, outro sensor de irradiância para fazer um controle de erro por redundância ou um sensor de potência gerada pelo painel.

Referências Bibliográficas

- [1] CM21 Precision Pyranometer. Instruction Manual, Kipp & Zonen, 2004.
- [2] CT24 Signal Amplifier 4-20 mA. Instruction Manual, Kipp & Zonen, 2003.
- [3] Fieldlogger Novus. Manual de instruções, v1.5x, Novus.
- [4] Fieldlogger Novus. Manual de comunicação MODBUS, Novus.
- [5] ni.com (National Instruments Discussion Forums), http://forums.ni.com/, acessado em junho de 2014.
- [6] mysql.com (MySQL 5.6 Reference Manual), http://dev.mysql.com/doc/refman/5.6/en/, acessado em junho de 2014.
- [7] Labview Database Connectivity Toolkit (DCT). User Manual, National Instruments, 2008.

Anexos

Anexo A - Código para leitura do arquivo *.csv e plotagem no MATLAB \bigodot

```
clear all;
close all;
clc;
% Irradiancia medida com o PIRANOMETRO, leituras feitas a cada 1 s
G = csvread('01_08_2014.csv', 0, 1, [0 1 50459 1]);
t_irrad(1) = 4.5*60*60; % 04h30min da manha
dt_irrad = 1;
for 1 = 2:50459 + 1
    t_irrad(1) = t_irrad(1-1) + dt_irrad;
end
% Grafico da Irradiancia
plot(t_irrad./3600, G), grid, xlabel('Tempo (h)'),
ylabel('Irradiância (W/m2)'), legend('Instantânea'),
title('Perfil de Irradiância (01/08/2014)')
```