

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

BEATRIZ BEZERRA DE SOUZA

MOST HIGHER ORDER MUTANTS ARE USELESS FOR METHOD

LEVEL MUTATION OPERATORS USING WEAK MUTATION

CAMPINA GRANDE PB

2020

BEATRIZ BEZERRA DE SOUZA

MOST HIGHER ORDER MUTANTS ARE USELESS FOR METHOD

LEVEL MUTATION OPERATORS USING WEAK MUTATION

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharela em
Ciência da Computação.

Orientador: Professor Dr. Rohit Gheyi.

CAMPINA GRANDE PB

2020

Elaboração da Ficha Catalográfica:

Johnny Rodrigues Barbosa

Bibliotecário-Documentalista

CRB-15/626

 S729m Souza, Beatriz Bezerra de.
 Most higher mutants are useless for method-level

mutation operators using weak mutation. / Beatriz Bezerra

de Souza. – 2020.

 9 f.

 Orientador: Prof. Dr. Rohit Gheyi.

 Trabalho de Conclusão de Curso - Artigo (Curso de

Bacharelado em Ciência da Computação) - Universidade

Federal de Campina Grande; Centro de Engenharia Elétrica

e Informática.

 1. Mutation analysis. 2. Method-level mutation

operaors. 3. Weak mutation. 4. Redundant mutants. 5.

Mutant subsumption relations. 6. Subsumption relations

I. Gheyi, Rohit. II. Título.

 CDU:004(045)

BEATRIZ BEZERRA DE SOUZA

MOST HIGHER ORDER MUTANTS ARE USELESS FOR METHOD

LEVEL MUTATION OPERATORS USING WEAK MUTATION

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

BANCA EXAMINADORA:

Professor Dr. Rohit Gheyi

Orientador – UASC/CEEI/UFCG

Professor Dr. Wilkerson de Lucena Andrade
Examinador – UASC/CEEI/UFCG

Professor Dr. Tiago Lima Massoni
Professor da Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 2020.

CAMPINA GRANDE PB

Most Higher Order Mutants are Useless for Method-Level
Mutation Operators Using Weak Mutation
Beatriz Souza

beatriz.souza@ccc.ufcg.edu.br
Federal University of Campina Grande

Campina Grande, Brazil

Rohit Gheyi
rohit@dsc.ufcg.edu.br

Federal University of Campina Grande
Campina Grande, Brazil

ABSTRACT
Mutation analysis is a popular but costly approach to assess the
quality of test suites. One of the attempts to reduce the costs asso-
ciated to mutation analysis is to identify subsuming higher order
mutants (HOMs), i.e., mutants that are harder to kill than the first
order mutants (FOMs) from which they are constructed. However,
it is not known how many HOMs subsume FOMs. In this paper,
we use our previous approach, which discovers redundancy in
mutations by proving subsumption relations among method-level
mutation operators using weak mutation testing, to encode and
prove subsumption relations among FOMs and HOMs. We encode
a theory of subsumption relations in the Z3 theorem prover for
27 mutation targets (mutations of an expression or statement). We
encode 233 FOMS and 438 HOMs and automatically prove a number
of subsumption relations using Z3. Our results indicate that 91% of
all mutants could be discarded on average. Moreover, 97.5% of all
HOMs could be discarded and HOMs compose only 16.67% of the
subsuming mutants sets on average.

ACM Reference Format:
Beatriz Souza and Rohit Gheyi. 2020. Most Higher OrderMutants are Useless
for Method-Level Mutation Operators Using Weak Mutation. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Mutation analysis [4, 12] is a popular technique to assess quality of
test suites. The technique introduces syntactic changes to the code,
creating faulty programs called mutants, and checks if the mutants
are detected by the test suite. If at least a test case fails on a given
mutant, it is said that the test suite killed the mutant; otherwise,
the mutant survived. Test suites that kill more mutants are more
adequate to detect real errors [13].

The expensiveness associated to mutation testing is high, mainly
due to the high number of generated mutants and the high com-
puting time to execute the test suite against each mutant. However,
some mutants are redundant, that is, they may not be necessary
for the effectiveness of mutation analysis and thus we may discard

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

them [28]. A redundant mutant does not contribute to the test as-
sessment process because they are killed when other mutants are
also killed [18, 28]. In other words, redundant mutants are always
subsumed by other mutants. Then, the generation of these mutants
increases the total cost and does not help to improve the test suite.
Ammann et al. [1] empirically identified that almost 99% of the gen-
erated mutants are redundant. Also, Papadakis et al. [29] identified
that such redundant mutants inflate the mutation score and that
68% of recent research papers are vulnerable to threats to validity
due to the effect of these mutants.

To identify redundant mutants, we can take subsumption re-
lations into account. Kaminski et al. [17] manually constructed
subsumption hierarchies with the support of truth tables produced
by the outcomes of mutants associated with the Relational Opera-
tor Replacement (ROR) mutation operator. This operator generates
seven different mutations, but Kaminski et al. identified that only
three mutations are sufficient to cover all input domains, yielding a
reduction of 57% of redundant mutants. Just et al. [14] expanded
this idea with two more mutation operators. Both works use truth
table to infer logical relationships across the operations. Although
the idea is promising, we cannot apply it for non-logical operators.
For instance, a binary expression with two numeric variables a +
b has a very large set of input possibilities, which turns the manual
and logical approach more difficult. Guimarães et al. [8] proposes an
approach to yield dynamic subsumption relations among method-
level mutants by using automatic test suite generators, such as
Randoop [27] and EvoSuite [5] in the context of strong mutation
testing. However, the approach is time consuming since it needs
to generate mutants, compile them, generate test suites, and exe-
cute them. Our previous work proposes an approach consisting of
six steps to discover subsumption relations among method-level
mutants using theorem proving in the context of weak mutation
testing [6]. We encode a theory of subsumption relations in Z3
and use its theorem prover [2] to automatically identify redundant
mutants.

Higher order mutation testing (HOMT) [11], an approach that
generates mutants by applying mutation operators more than once,
is one of the attempts to reduce the expensiveness associated to
mutation testing [23]. However, the costs of creating HOMs are also
high, since the large number of possible fault combinations creates
a set of candidate combinations that is exponentially large [11].
Moreover, combination of faults that are harder to detect than any
of the individual constituent faults are relatively rare [11].

In this paper, we use our previous approach [6] to find subsump-
tion relations among FOMs and HOMs. Our goal is to answer the
following research questions:

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

• [RQ1] How many mutants could be discarded when consid-
ering both FOMs and HOMs?

• [RQ2] How many HOMs could be discarded?
• [RQ3] Are HOMs harder to kill than FOMs?

We organize this paper as follows. We explain mutant subsump-
tion relations in Section 2. Section 3 describes our approach to
identify subsumption relations using Z3 [6]. Section 4 presents our
findings. Finally, we relate our approach to others (Section 5), and
present concluding remarks (Section 6).

2 MUTANT SUBSUMPTION RELATIONS
Mutation analysis uses mutation operators to introduce faults in the
program to create mutants deliberately [4]. In this context, there
is a wide variety of mutation operators. Each mutation operator
can implement a set of mutations. In this work, we follow the same
definition for “mutation” of previous work [16]: a mutation refers
to a syntactic change (e.g., a && b → a || b). For example, in
a binary expression with a relational operator lexp <op> rexp,
where lexp and rexp indicate expressions or literals and <op> is
a relational operator (==, !=, >, >=, <, or <=), the Relational
Operator Replacement (ROR) mutation operator performs seven
mutations, replacing the original operator <op> with each of the
other five relational operators and replacing the entire expression
with true and false. Thus, for the binary expression a > b, the
ROR operator performs the following seven mutations: a > b → a
== b, a > b → a != b, a > b → a >= b, a > b → a < b, a >
b → a <= b, a > b → true, and a > b → false. However, some
mutations may not be necessary for the effectiveness of mutation
analysis and are actually useless.

Subsumption relationships identify redundancy in sets of mu-
tants and hence can be used to optimize approaches to both mutant
and test generation [19]. The subsumed mutants do not need to
be generated, and test generation methods can target subsuming
mutants.

There are three types of subsumption relations: True subsump-
tion, Dynamic subsumption, and Static subsumption [19]. True
subsumption assumes full knowledge of the relationships among
mutants and though valuable as a concept, is undecidable to com-
pute, either through enumeration or analysis. Dynamic subsump-
tion is computed relative to a specific set of tests. As the number
of tests tends towards the entire domain of the artifact under test
(not possible, of course), dynamic subsumption approximates “true”
subsumption. Static subsumption is computed based on an analysis
of the mutants, either manual or automated. Still, as the analysis
tends toward capturing the complete semantics of the artifact un-
der test, (again not possible), static subsumption also approximates
“true” subsumption.

In our approach, supposing that m1 and m2 belong to a set of
mutants M of a program p, we say that m2 subsumes m1 if and only
if the following conditions are satisfied:

(1) There exists some test case t such that m2 and p compute
different outcomes on t (t kills m2);

(2) For every possible test case t for p, if m2 computes a different
outcome than p on t (t kills m2), then so does m1 (t kills m1);

(3) There exists some test case t such that m1 and p compute
different outcomes on t (t kills m1), but t does not kill m2.

The first condition guarantees that m2 is not an equivalent mu-
tant. In the second condition, m2 is killed by at least the same set of
test cases that kill m1. Notice that we can have more test cases that
kill m1 but cannot kill m2. The last condition guarantees that m2 is
harder to kill than m1. We consider a stronger notion of subsumption
relations than Kurtz et al. [19] by including the last condition.

Studying subsumption relations can help us build more efficient
mutation testing tools, significantly improving the practical appli-
cability of mutation in industry.

3 ENCODING AND PROVING SUBSUMPTION
RELATIONS

We use the Z3 [2] API for Python, which has a theorem prover, to
prove subsumption relations using weak mutation testing. We con-
sider most MuJava method-level mutation operators [26], such as
operators that mutate arithmetic, relational, and logical expressions.
We do not focus on the object-oriented ones, i.e., the class-level
mutation operators.

When executing our approach to discover mutant subsumption
relations, we considered the parts of each target as:

• exp: unary expression, such as identifiers, variables, literals;
• lexp and rexp: unary expressions, or binary expression;
• rhs: unary expressions, or binary expression used in state-
ments.

Table 3 illustrates a number of method-level mutation targets in
which MuJava is able to apply a set of mutations from one or more
mutation operators. Accordingly, for each target, we present the
number of possible mutations that can be generated for the target
using FOMT and HOMT. For example, 15 FOMs and 42 HOMs can
be created from the target lexp && rexp. From the mutation target
lexp | rexp, we can create 10 FOMs and 24 HOMs, and so on.

3.1 Overview of Our Approach
The approach proposed in our previouswork consists of six steps [6],
which we followed as follow:

(1) Declare variables and conditions
In this step, we reduced expressions to x and y, where the
types of x and y depend on the mutation target. E.g. For
the mutation target lexp && rexp, we declared x and y as
boolean variables in the Z3 Python API. We can declare other
types of variables in Z3 [2]: Int (integer numbers), BitVec
(bit-vector variables) and so on.

(2) Specify a program
To specify our programs, we use the declared variables and
available operations. In Z3, we have the following boolean
operators: And, Or, Not, Implies (implication), If, and so on.

(3) Specify a list of mutants
Here, we specify the FOMs for each program, as we did in
our previous work. Moreover, we also specify the HOMs that
we were able to create by combining the FOMs.

(4) Identify and remove equivalent mutants
We identify and remove equivalent mutants by calling the
removeEquivalentMutants function defined in our previ-
ous work.

(5) Identify subsumption relations

Most Higher Order Mutants are Useless for Method-Level Mutation Operators Using Weak Mutation Conference’17, July 2017, Washington, DC, USA

To identify all subsumption relations, we call the compareAllMuts
function, defined in our previous work, passing the program
and the mutants. Based on the output, the script automati-
cally derives the mutant subsumption graph.

(6) Identify redundant mutants in the minimal set
In this step, we call the identifyRedundantMutants func-
tion passing all dominant mutants identified in Step 5. We
discarded the HOMS that were duplicate to FOMs, since
FOMs are easier to create.

3.2 Running Example
To better illustrate our approach, we use the lexp == rexp mu-
tation target as a running example. The first step of our approach
consists of declaring variables and conditions. For the integer ex-
pression lexp == rexp, we simplify it to x == y and declare x and
y as integer variables in the Z3 Python API (Step 1) as shown in
Listing 1. Then, in Step 2, we specify the program and in Step 3 we
create all possible mutations of all possible mutation operators for
our target (See Listing 1). Table 1 outlines all possible mutations
applied to the lexp == rexp mutation target. The first eight mu-
tants are FOMs, whereas the last seven mutants are HOMs derived
from COI and ROR mutation operators.

Before identifying subsumption relations, we have to call the
removeEquivalentMutants function in Step 4. If we find an equiv-
alent mutant, we have to remove it from our analysis. Otherwise
an equivalent mutant will dominate all other mutants since it is
impossible to kill it. We find equivalent mutants in some targets. For
instance, consider the exp mutation target. Some mutants (exp++,
and exp–) are equivalent to the program exp in our encoding using
weak mutation testing.

To identify all subsumption relations in Step 5, we have to call
the compareAllMuts function passing p and muts as parameters.
Based on the output, our script automatically derives the following
mutant subsumption graph presented in Figure 1 for the lexp ==
rexp mutation target. We create a node for each mutation, and
an arrow between two nodes, when a mutation subsumes another
one. For example, since ROR false subsumes ROR >, we specify this
subsumption relation by including an arrow between the nodes.
For the lexp == rexpmutation target, our results indicate that we
only need to use the following mutations: ROR <=, ROR >=, ROR
false, COI ROR !(x>y), COI ROR !(x<y), COI ROR true. These nodes
dominate the others since they do not have incoming arrows. It is
important to mention that ODL exp, and VDL exp or CDL exp yield
syntactic equivalent mutants when we are dealing with variables
or constants. We only need to select one of them.

Finally, we can reduce even more the number of mutations by
checking whether there are some dominant mutants that are re-
dundant to other ones in the subsuming mutants set in Step 6. We
can check it by calling the identifyRedundantMutants function
passing all dominant mutants identified in Step 5. For the lexp
== rexp mutation target, the following mutations are redundants:
ROR (false) and COI ROR (true), ROR (lexp >= rexp) and COI ROR
!(lexp < rexp), ROR (lexp <= rexp) and COI ROR !(lexp > rexp). Since
they are redundant, we can select one of each redundant mutation,
instead of selecting all of them. As FOMs are simpler than HOMs,
we selected the FOMs instead of the HOMs. Hence, for the lexp

Table 1: Mutations applied to the lexp == rexp mutation
target.

Operator(s) Mutation(s)
ROR lexp == rexp =⇒ lexp != rexp
ROR lexp == rexp =⇒ lexp > rexp
ROR lexp == rexp =⇒ lexp >= rexp
ROR lexp == rexp =⇒ lexp < rexp
ROR lexp == rexp =⇒ lexp <= rexp
ROR lexp == rexp =⇒ true
ROR lexp == rexp =⇒ false
COI lexp == rexp =⇒ !(lexp == rexp)
COI ROR lexp == rexp =⇒ !(lexp != rexp)
COI ROR lexp == rexp =⇒ !(lexp > rexp)
COI ROR lexp == rexp =⇒ !(lexp >= rexp)
COI ROR lexp == rexp =⇒ !(lexp < rexp)
COI ROR lexp == rexp =⇒ !(lexp <= rexp)
COI ROR lexp == rexp =⇒ !(true)
COI ROR lexp == rexp =⇒ !(false)

== rexp mutation target, the subsuming mutants set contains only
three mutations: ROR (false), ROR (lexp >= rexp), and ROR (lexp
<= rexp), which represents a reduction of 98% of the mutants for
this target, as presented in Table 3.

4 RESULTS
In this section we present the answer to each research question in
turn, indicating how the results answer each.

All mutant subsumption relation graphs and proof scripts are
publicly available [32].

4.1 Answer to RQ1
RQ1 is designed to investigate the quantity of the subsumedmutants
in general. To begin the analysis, the fifth column of Table 3 presents
the size of the subsuming mutants set found in each mutation
target by our approach. On average, the size of the minimal set of
mutations for each target is 9%. Which implies that, when applying
both FOMT and HOMT, 91% of all mutants could be discarded on
average.

4.2 Answer to RQ2
RQ2 is designed to investigate the quantity of the subsumed HOMs.
In total, we encoded 438 HOMs. However, only 11 HOMs, which
are highlighted in Table 2, were considered subsuming according
to our approach. Therefore, 97.5% of all encoded HOMs could be
discarded.

Table 2: Subsuming HOMs found by our approach for the
mutation targets presented in Table 3.

Mutation Target Subsuming HOMs
lexp ˆ rexp (bool) COI COR(lexp&&!rexp), COI COR(!lexp&&rexp)
lexp == rexp (bool) COI COR(!x| |y), COI COR(x| |!y), COI COR !(x| |y)
lexp != rexp (bool) COI COR(!x&&y), COI COR(x&&!y), COI COR !(x&&y)
exp LOI AOIS ∼(++exp)
++exp LOI AODS(∼exp)
--exp LOI AORS(∼exp)

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

4.3 Answer to RQ3
RQ3 is designed to investigate whether HOMs are harder to kill than
FOMs. We found that HOMs compose just 16.67% of all the mutants
present in the subsuming mutants set on average (See the HOMs
⊂ Minimal Set column in Table 3), whereas FOMs compose 83.33%
(See the FOMs ⊂Minimal Set column in Table 3). HOMs are present
in the subsuming mutants set of 5 out of the 27 mutation targets,
as can be seen in Table 3 and highligheted in Table 2. Only two of
the mutation targets have the subsuming mutants set composed
uniquely byHOMs: ++exp and --exp. Therefore, to our study, FOMs
seen to be harder to kill than FOMs and only 11 HOMs are as hard
to kill as FOMs.

Listing 1: Identify Subsumption Relations for lexp == rexp
target.
S t e p 1
x = I n t (' x ')
y = I n t (' y ')
conds = True
S t e p 2
p = x==y
S t e p 3
muts = [True , F a l s e , x>=y , x<=y ,

x>y , x<y , Not (programa) ,
Not (x>=y) , Not (x<=y) ,
Not (x>y) , Not (x<y) ,
Not (x != y) , True , F a l s e]

S t e p 4
muts = removeEqu iva l en tMutan t s (p , muts)
S t e p 5
compareAl lMuts (p , muts , conds)

5 RELATEDWORK
There are some strategies to reduce costs for mutation analysis
in the literature [30]. Kaminski et al. [17] defined a sufficient re-
placements for ROR mutations. Using a similar strategy, Just et
al. [14] presented sufficient sets of non- redundant mutations for
the COR and UOI operators. These subsumption hierarchies are de-
fined by manually analyzing the combinations of all possible input
situations. However, in several other cases, analyzing all possible
combinations is prohibitive due to the high costs. Our approach
encodes a theory in Z3 and uses the Z3 theorem prover to automati-
cally deduce the subsumption relations.

Guimarães et al. [8] proposed an approach to identify subsump-
tion relations using automatic test suite generators in the context
of strong mutation testing. In contrast, we use an approach that
is simpler to derive subsumption relations. Indeed we do not need
to generate and compile a number of mutants. We do not need to
automatically generate tests, nor execute them. Instead by using
our theory, we have to encode the program and mutation operators.
Then the Z3 theorem prover automatically proved a number of
subsumption relations for weak mutation testing.

Just and Schweiggert [16] presented a study that analyzes the ef-
fect of redundant mutants on mutation analysis efficiency, mutation
score, and mutation coverage ratio. They show that the mutants

generated by COR, ROR, and UOI have a mean ratio of 45% of the
total mutants generated. Using the sufficient set of non-redundant
mutations for these operators, the number of mutants was reduced
by 27% overall. Just and Schweiggert also show that redundant
mutants worsen the accuracy of the mutation score.

Papadakis and Malevris [29] showed that random selection of
subsets containing 10%-60% of the generated mutants reduces the
ability to detect failures by 26%-6%, respectively. Offutt et al. [25]
presented an empirical approach to define an appropriate set of
selective mutation operators. The idea was to randomly select a
subset of mutation operators [22], [33]. Perez et al. [3] explored
Evolutionary Mutation Testing to reduce the number of mutants
to be executed. Namin et al. [31] formulated the selective muta-
tion problem as a statistical problem. They applied linear statistical
approaches to identify a subset of 28 mutation operators for C.
Some techniques used clustering algorithms to reduce the num-
ber of mutants by selecting only a subset of mutants from each
cluster [10],[9].

However, in another study, Gopinath et al. [7] found no dif-
ferences in effectiveness between selective mutation and random
selection. The main challenge in reducing the mutants set is not
losing useful information. Just et al. [15] stated that existing ap-
proaches to selective mutation take no account of program context
and this is fundamental to avoid losing useful information.

Jia and Harman [11] introduced the concept of subsuming HOMs.
They define a subsuming HOM as mutant that is harder to kill than
their constituent FOMs. They suggested some approaches to find
the subsuming HOMs by using some meta-heuristic algorithms:
greedy algorithm, genetic algorithm and hill climbing algorithm.
They experimented with 10 benchmark C programs under test
(14850 LoC and 35473 test cases in total) and the results indicate
that the genetic algorithm is the most efficient algorithm for finding
those subsuming HOMs, while the greedy algorithm and the hill
climbing algorithm can also be used to improve the quality of the
results. In order to find higher order mutants that are hard to kill and
more realistic complex faults, Langdon et al. [20] introduced a new
form of mutation testing: Multi Objective Higher Order Mutation
Testing. They find examples that pose challenges to testing in the
higher order space that cannot be represented in the first order
space.

Nguyen and Pham [24] performed an empirical study to investi-
gate whether HOMs are harder to kill than FOMs. They selected 8
real-world open-source projects and used an extended Judy tool [21]
as the supporting tool to generate HOMs, execute mutation testing
and evaluate HOMs with the full set of built-in mutation operators
of Judy. To generate the HOMs, they applied 6 different algorithms,
5 multi objective optimization algorithms and a random algorithm.
To answer their research question, they focus on the ratio of number
of test cases which can kill each generated HOM to the number of
test cases which can kill each constituent FOMs. Their experimental
results indicate that about 50% HOMs are harder to kill than their
constituent FOMs.

Most recently and closer to our current work, our previous work
proposes an approach consisting of six steps to discover subsump-
tion relations among method-level mutants using theorem proving
in the context of weak mutation testing [6]. We encode a theory of

Most Higher Order Mutants are Useless for Method-Level Mutation Operators Using Weak Mutation Conference’17, July 2017, Washington, DC, USA

Table 3: It presents themutation targets, the amount ofmethod-level first order and second ordermutations that the operators
are able to create in the corresponding target, the subsuming mutants set for each target identified in our approach, the size
of the subsuming mutants set compared to the original set of mutants, and the amount of FOMs and HOMs in relation to the
total size of the subsuming mutants set. OP1: select CDL, ODL, or VDL.

Mutation Target # FOMs # HOMs Subsuming Mutants Set Size FOMs ⊂ Minimal Set HOMs ⊂ Minimal Set
lexp + rexp (for Z+) 8 12 AORB(*) 5% 100% 0%
lexp - rexp (for Z+) 8 12 OP1(lexp) 5% 100% 0%
lexp * rexp (for Z+) 8 12 AORB(+), OP1(lexp), OP1(rexp) 15% 100% 0%
lexp ˆ rexp (bool) 15 42 COI(lexp ˆ !rexp), COR(| |), COI COR(lexp&&!rexp), COI COR(!lexp&&rexp) 7% 50% 50%
lexp && rexp 15 42 OP1(lexp), OP1(rexp), COR(False), ROR(==) 7% 100% 0%
lexp || rexp 15 42 OP1(lexp), OP1(rexp), COR(True), COR(ˆ) 7% 100% 0%
lexp == rexp (bool) 15 42 COR(&&), COI COR(!x | |y), COI COR(x | |!y), COI COR !(x | |y) 7% 25% 75%
lexp != rexp (bool) 15 42 COR(| |), COI COR(!x&&y), COI COR(x&&!y), COI COR !(x&&y), 7% 25% 75%
lexp == rexp 8 7 ROR(false), ROR(>=), ROR(<=) 2% 100% 0%
lexp != rexp 8 7 ROR(<), ROR(True), ROR(>) 2% 100% 0%
lexp > rexp 8 7 ROR(False), ROR(!=), ROR(>=) 2% 100% 0%
lexp >= rexp 8 7 ROR(True), ROR(==), ROR(>) 2% 100% 0%
lexp < rexp 8 7 ROR(False), ROR(!=), ROR(<=) 2% 100% 0%
lexp <= rexp 8 7 ROR(True), ROR(==), ROR(<) 2% 100% 0%
lexp != rexp (obj) 8 5 ROR(True), ROR(>), ROR(<) 2% 100% 0%
lexp & rexp 10 24 OP1(lexp), OP1(rexp), SOR(<<), SOR(>>) 11.8% 100% 0%
lexp | rexp 10 24 OP1(lexp), OP1(rexp), LOR(ˆ), SOR(>>) 11.8% 100% 0%
lexp ˆ rexp 10 24 LOR(|), SOR(<<), SOR(>>) 8.8% 100% 0%
lexp >> rexp 10 24 OP1(lexp), OP1(rexp), LOR(ˆ), LOR(|), LOR(&), SOR(<<) 17.6% 100% 0%
lexp << rexp 10 24 LOR(ˆ), SOR(>>), LOR(&) 8.8% 100% 0%
exp 6 9 AOIU(-exp), LOI AOIS ∼(++exp) 13.3% 50% 50%
+exp 3 2 LOI(∼exp) 20% 100% 0%
-exp 3 2 AODU(exp) 20% 100% 0%
++exp 4 3 LOI AODS(∼exp) 14.3% 0% 100%
exp++ 4 3 LOI(∼exp) 14.3% 100% 0%
--exp 4 3 LOI AORS(∼exp) 14.3% 0% 100%
exp-- 4 3 LOI(∼exp) 14.3% 100% 0%

Figure 1: Mutation subsumption graph for the lexp == rexp mutation target. Mutations ROR(<=), ROR(>=), ROR(false), COI
ROR!(x>y), COI ROR!(x<y), COI ROR(true) dominate the other mutations.

subsumption relations in Z3 and use its theorem prover [2] to auto-
matically identify redundant mutants.We found that developers can
avoid using on average 66.3% of mutations during mutation testing.
Our previous work differ from our current work in the amount of
encoded HOMs. Previously, we only encoded two HOMs, whereas
currently we encode 438 HOMs.

6 CONCLUSIONS
In this work, we prove a number of subsumption relations for
method-level FOMs and HOMs using our previous approach [6].
We encode 233 FOMS and 438 HOMs in 27 mutation targets and
automatically prove a number of subsumption relations using Z3.
Developers can avoid using on average 91% of mutations when
considering both FOMs and HOMs. Moreover, most HOMs may
be useless, since 97.5% of them could be discarded and HOMs only
compose 16.67% of the subsuming mutants set on average. The

results may help to challenge the importance of HOMs [11, 24] and
also help to build better mutation testing tools that will allow to
reduce the mutation testing costs.

As future work, we intend to prove more subsumption relations
by considering more mutation targets, other language constructs
and mutations. We may also compare the subsuming HOMs found
by other approaches, such as the meta-heuristic algorithms used
by Jia et al. [11], with the subsuming HOMs found by our approach
to identify whether they differ or not. Finally, the expressions and
commands considered in this work for Java have a similar seman-
tics in other languages, such as Python and C#. We intend to check
whether the subsumption relations found also hold for other lan-
guages in the context of weak mutation testing.

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

REFERENCES
[1] Paul Ammann, Marcio Eduardo Delamaro, and Jeff Offutt. 2014. Establishing

Theoretical Minimal Sets of Mutants. In Proceedings of the 2014 IEEE Interna-
tional Conference on Software Testing, Verification, and Validation (ICST ’14). IEEE
Computer Society, USA, 21–30. https://doi.org/10.1109/ICST.2014.13

[2] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337–340.

[3] Pedro Delgado-Pérez, Sergio Segura, and Inmaculada Medina-Bulo. 2017. Assess-
ment of C++ object-oriented mutation operators: A selective mutation approach.
Softw. Test., Verif. Reliab. 27 (2017).

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer 11, 4 (April 1978), 34–41. https:
//doi.org/10.1109/C-M.1978.218136

[5] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (ESEC/FSE ’11). Association for Computing Machinery, New York, NY,
USA, 416–419. https://doi.org/10.1145/2025113.2025179

[6] Rohit Gheyi, Márcio Ribeiro, Beatriz Souza, Marcio Guimarães, Leo Fernandes,
Marcelo d’Amorim, Vander Alves, Leopoldo Teixeira, and Baldoino Fonseca. 2020.
Identifying Method-Level Mutation Subsumption Relations using Z3 (To appear).
IST (2020).

[7] R. Gopinath, I. Ahmed, M. A. Alipour, C. Jensen, and A. Groce. 2017. Mutation
Reduction Strategies Considered Harmful. IEEE Transactions on Reliability 66, 3
(Sep. 2017), 854–874. https://doi.org/10.1109/TR.2017.2705662

[8] Marcio Guimarães, Leo Fernandes, Marcio Ribeiro, Marcelo d’Amorim, and Rohit
Gheyi. 2020. Optimizing mutation testing by discovering dynamic mutant sub-
sumption relations. In Proceedings of the 13th International Conference on Software
Testing, Verification and Validation(ICST). IEEE, To appear.

[9] Shamaila Hussain. 2008. Mutation Clustering. (01 2008).
[10] Changbin Ji, Zhenyu Chen, Baowen Xu, and Zhihong Zhao. 2009. A Novel

Method of Mutation Clustering Based on Domain Analysis. In Proceedings of the
21st International Conference on Software Engineering & Knowledge Engineering
(SEKE’2009), Boston, Massachusetts, USA, July 1-3, 2009. Knowledge Systems
Institute Graduate School, 422–425.

[11] Y. Jia and M. Harman. 2009. Higher Order Mutation Testing. Information and
Software Technology 51, 10 (2009), 1379 – 1393. https://doi.org/10.1016/j.infsof.
2009.04.016 Source Code Analysis and Manipulation, SCAM 2008.

[12] Y. Jia and M. Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (Sep. 2011),
649–678. https://doi.org/10.1109/TSE.2010.62

[13] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2014). Association for Computing Ma-
chinery, New York, NY, USA, 654–665. https://doi.org/10.1145/2635868.2635929

[14] Rene Just, Gregory M. Kapfhammer, and Franz Schweiggert. 2012. Do Redun-
dant Mutants Affect the Effectiveness and Efficiency of Mutation Analysis?. In
Proceedings of the 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation (ICST ’12). IEEE Computer Society, USA, 720–725.
https://doi.org/10.1109/ICST.2012.162

[15] René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring Mutant Utility from Pro-
gram Context. In Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2017). Association for Computing Ma-
chinery, New York, NY, USA, 284–294. https://doi.org/10.1145/3092703.3092732

[16] René Just and Franz Schweiggert. 2015. Higher Accuracy and Lower Run Time:
Efficient Mutation Analysis Using Non-Redundant Mutation Operators. Softw.
Test. Verif. Reliab. 25, 5–7 (Aug. 2015), 490–507. https://doi.org/10.1002/stvr.1561

[17] Gary Kaminski, Paul Ammann, and Jeff Offutt. 2011. Better Predicate Testing.
In Proceedings of the 6th International Workshop on Automation of Software Test
(AST ’11). Association for Computing Machinery, New York, NY, USA, 57–63.
https://doi.org/10.1145/1982595.1982608

[18] Marinos Kintis, Mike Papadakis, and Nicos Malevris. 2010. Evaluating Mutation
Testing Alternatives: A Collateral Experiment. In Proceedings of the 2010 Asia
Pacific Software Engineering Conference (APSEC ’10). IEEE Computer Society,
USA, 300–309. https://doi.org/10.1109/APSEC.2010.42

[19] Bob Kurtz, Paul Ammann, Marcio E. Delamaro, Jeff Offutt, and Lin Deng. 2014.
Mutant Subsumption Graphs. In Proceedings of the 2014 IEEE International Con-
ference on Software Testing, Verification, and Validation Workshops (ICSTW ’14).
IEEE Computer Society, USA, 176–185. https://doi.org/10.1109/ICSTW.2014.20

[20] William B. Langdon, Mark Harman, and Yue Jia. 2009. Multi Objective Higher
Order Mutation Testing with Genetic Programming. In Proceedings of the 2009
Testing: Academic and Industrial Conference - Practice and Research Techniques
(TAIC-PART ’09). IEEE Computer Society, USA, 21–29. https://doi.org/10.1109/
TAICPART.2009.18

[21] L. Madeyski and N. Radyk. 2010. Judy - a mutation testing tool for java. IET
Software 4, 1 (Feb 2010), 32–42. https://doi.org/10.1049/iet-sen.2008.0038

[22] A. P. Mathur. 1991. Performance, effectiveness, and reliability issues in software
testing. In [1991] Proceedings The Fifteenth Annual International Computer Software
Applications Conference. 604–605. https://doi.org/10.1109/CMPSAC.1991.170248

[23] Quang-Vu Nguyen and Lech Madeyski. 2014. Problems of Mutation Testing and
Higher Order Mutation Testing. Advances in Intelligent Systems and Computing
282 (01 2014), 157–172. https://doi.org/10.1007/978-3-319-06569-4_12

[24] Quang-Vu Nguyen and Duong-Thu-Hang Pham. 2018. Is Higher Order Mutant
Harder to Kill Than First Order Mutant? An Experimental Study. In Intelligent
Information and Database Systems, Ngoc Thanh Nguyen, Duong Hung Hoang,
Tzung-Pei Hong, Hoang Pham, and Bogdan Trawiński (Eds.). Springer Interna-
tional Publishing, Cham, 664–673.

[25] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian
Zapf. 1996. An Experimental Determination of Sufficient Mutant Operators. ACM
Trans. Softw. Eng. Methodol. 5, 2 (April 1996), 99–118. https://doi.org/10.1145/
227607.227610

[26] J. Offutt, Y. Ma, and Y. Kwon. 2006. MuJava: a mutation system for java. In
Software Engineering, International Conference on. IEEE Computer Society, Los
Alamitos, CA, USA, 827–830. https://doi.org/10.1145/1134285.1134425

[27] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In Proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE ’07). IEEE Computer Society,
USA, 75–84. https://doi.org/10.1109/ICSE.2007.37

[28] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Threats to the Validity of Mutation-Based Test Assessment. In Proceedings
of the 25th International Symposium on Software Testing and Analysis (ISSTA
2016). Association for Computing Machinery, New York, NY, USA, 354–365.
https://doi.org/10.1145/2931037.2931040

[29] Mike Papadakis and Nicos Malevris. 2010. An Empirical Evaluation of the First
and Second Order Mutation Testing Strategies. In Proceedings of the 2010 Third
International Conference on Software Testing, Verification, and Validation Work-
shops (ICSTW ’10). IEEE Computer Society, USA, 90–99. https://doi.org/10.1109/
ICSTW.2010.50

[30] Alessandro Pizzoleto, Fabiano Ferrari, Jeff Offutt, Leo Fernandes, and Márcio
Ribeiro. 2019. A Systematic Literature Review of Techniques and Metrics to
Reduce the Cost of Mutation Testing. Journal of Systems and Software 157 (07
2019). https://doi.org/10.1016/j.jss.2019.07.100

[31] Akbar Siami Namin, James H. Andrews, and Duncan J. Murdoch. 2008. Suf-
ficient Mutation Operators for Measuring Test Effectiveness. In Proceedings
of the 30th International Conference on Software Engineering (ICSE ’08). As-
sociation for Computing Machinery, New York, NY, USA, 351–360. https:
//doi.org/10.1145/1368088.1368136

[32] Beatriz Souza and Rohit Gheyi. 2020. Most Higher Order Mutants
are Useless for Method-Level Mutation Operators Using Weak Muta-
tion (Artifact). https://drive.google.com/drive/folders/1L8qSCSFOUX5-
gxBXw1iraKdczOmHoj62?usp=sharing Accessed: 2020-06-10.

[33] W. Eric Wong and Aditya P. Mathur. 1995. Reducing the Cost of Mutation
Testing: An Empirical Study. J. Syst. Softw. 31, 3 (Dec. 1995), 185–196. https:
//doi.org/10.1016/0164-1212(94)00098-0

https://doi.org/10.1109/ICST.2014.13
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/TR.2017.2705662
https://doi.org/10.1016/j.infsof.2009.04.016
https://doi.org/10.1016/j.infsof.2009.04.016
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1145/3092703.3092732
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1145/1982595.1982608
https://doi.org/10.1109/APSEC.2010.42
https://doi.org/10.1109/ICSTW.2014.20
https://doi.org/10.1109/TAICPART.2009.18
https://doi.org/10.1109/TAICPART.2009.18
https://doi.org/10.1049/iet-sen.2008.0038
https://doi.org/10.1109/CMPSAC.1991.170248
https://doi.org/10.1007/978-3-319-06569-4_12
https://doi.org/10.1145/227607.227610
https://doi.org/10.1145/227607.227610
https://doi.org/10.1145/1134285.1134425
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/2931037.2931040
https://doi.org/10.1109/ICSTW.2010.50
https://doi.org/10.1109/ICSTW.2010.50
https://doi.org/10.1016/j.jss.2019.07.100
https://doi.org/10.1145/1368088.1368136
https://doi.org/10.1145/1368088.1368136
https://drive.google.com/drive/folders/1L8qSCSFOUX5-gxBXw1iraKdczOmHoj62?usp=sharing
https://drive.google.com/drive/folders/1L8qSCSFOUX5-gxBXw1iraKdczOmHoj62?usp=sharing
https://doi.org/10.1016/0164-1212(94)00098-0
https://doi.org/10.1016/0164-1212(94)00098-0

	3ce5f6400020a291e063a383eb26e56bd959322f13fb7f5f279f6e222f07581f.pdf
	Most Higher Order Mutants are Useless for Method-Level Mutation Operators Using Weak Mutation
	Abstract
	1 Introduction
	2 Mutant Subsumption Relations
	3 Encoding and Proving Subsumption Relations
	3.1 Overview of Our Approach
	3.2 Running Example

	4 Results
	4.1 Answer to RQ1
	4.2 Answer to RQ2
	4.3 Answer to RQ3

	5 Related Work
	6 Conclusions
	References

