

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

GABRIEL SILVA VINHA

CHALLENGES IN MONITORING LARGE SCALE

SECURE APPLICATIONS

CAMPINA GRANDE ­ PB

2019

GABRIEL SILVA VINHA

CHALLENGES IN MONITORING LARGE SCALE

SECURE APPLICATIONS

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

Orientador: Professor Dr. Andrey Elísio Monteiro Brito.

CAMPINA GRANDE ­ PB

2019

Elaboração da Ficha Catalográfica:

Johnny Rodrigues Barbosa

Bibliotecário-Documentalista

CRB-15/626

 V784c Vinha, Gabriel Silva.
 Challenges in monitoring large scale secure

applications. / Gabriel Silva Vinha. – 2019.

 10 f.

 Orientador: Prof. Dr. Andrey Elísio Monteiro Brito.

 Trabalho de Conclusão de Curso - Artigo (Curso de

Bacharelado em Ciência da Computação) - Universidade

Federal de Campina Grande; Centro de Engenharia Elétrica

e Informática.

 1. Confidential computing. 2. Monitoring large scale

secure applications. 3. Trustworthness applications. 4.

User`s privacy. 5. Data protection. I. Brito, Andrey

Elísio Monteiro. II. Título.

 CDU:004(045)

GABRIEL SILVA VINHA

CHALLENGES IN MONITORING LARGE SCALE

SECURE APPLICATIONS

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

BANCA EXAMINADORA:

Professor Dr. Andrey Elísio Monteiro Brito

Orientador – UASC/CEEI/UFCG

Professor Dr. Thiago Emmanuel Pereira da Cunha Silva

Examinador – UASC/CEEI/UFCG

Professor Dr. Tiago Lima Massoni
Examinador – UASC/CEEI/UFCG

Trabalho aprovado em: 25 de novembro 2019.

CAMPINA GRANDE ­ PB

Challenges in Monitoring Large Scale Secure Applications

GABRIEL SILVA VINHA and ANDREY BRITO, Universidade Federal de Campina Grande, Brazil

One of the major concerns for researchers and application developers is to
safeguard user’s privacy. To provision secure applications developers and
researchers are making use of trusted execution environments. This enables
isolation for data processing and secure communications across entities. The
cost of provisioning such applications comes in availability and scalability
for high load systems. Running production and large scale trusted applica-
tions can be very resource intensive. Therefore, achieving certain quality
requirements for these applications and maintaining the trustworthiness
is a challenge. In this paper we propose an environment system capable
of provisioning secure applications in a large infrastructure for variable
load demand. The system can be provisioned in any set of machines with
access to Intel SGX hardware. We enabled the monitoring of application and
infrastructure metrics with information specific to the security hardware,
which can be later used to make scheduling and setup decisions. In a current
large-scale operation, we observed that the average response times across
all servers were elevate in the initial parts of experiments, but the operation
latency values were around 10ms , showing good scalability and providing
confidence that the system would work satisfactorily in production.

Additional Key Words and Phrases: Confidential Computing, Monitoring,
Distributed Systems, Scalability

1 INTRODUCTION
New laws and regulations such as the European Union’s General
Data Protection Law1 or the Brazilian government’s Lei Geral de
Proteção de Dados Pessoais (general personal data protection law)
have recently been published and approved by governments. This
shows that security and privacy protection became major concerns
in private corporations and governments. We can see it with the
latest. One of the main fields where data protection is required
is with energy consumption and distribution data. We see that,
with smart metering and other public information it is possible to
violate the privacy of users in a grid [5]. The metering information
is required then to be collected and securely stored and processed.
The admin-level attack model is a much common way to sabotage
these processing and storage systems and breach user privacy by
accessing the memory of disks from the machines designated to do
the processing and storage of the above mentioned information [8].
To prevent data breach from this attack model, it is possible to

make use of trusted execution environments, where the application
runs in a safe hardwaremode and needs to be attested before starting
up and receiving data, this also involves receiving secrets such as
keys and other important system information from a trusted part.
In our use case, information is very sensitive and clients of the

application should be isolated from each other to prevent leakage
(ex., through software bugs). All the customers data is encrypted
and only decrypted inside the SGX enclave, but, in addition, the
servers or processes where the data will be processed need to be
isolated. Thus, although a physical node can host several servers,
1https://gdpr-info.eu/

Authors’ address: Gabriel Silva Vinha; Andrey Brito, gabrielvinha@lsd.ufcg.edu.br,
andrey@computacao.ufcg.edu.br, Universidade Federal de Campina Grande, R. Aprígio
Veloso, 882 - Universitário, Campina Grande, Paraíba, Brazil, 58429-900.

each server process should not be able to decrypt other customer
data and the data from different customers will not be mixed in one
database.
As isolation is required and clients can spend a long period be-

tween accesses keeping the exact same number of servers and clients
can be overkill and result in unnecessary spending with hardware,
energy, cooling, etc. Therefore we need to dynamically increase and
decrease the number of servers as the load in the system increase.
That way we can use an optimal number of services ready for new
clients thus providing high availability. Additionally, the requests
and data traffic need to be done with a good performance since
the systems may be under heavy load, unexpectedly resulting in
poor quality of service (QoS) for customers. For our application,
QoS is defined as the response time by the system. As there are
many factors that can increase the response time, such as network
issues, memory leaks, high CPU utilization, etc., in this paper we
consider a large variety of metrics that may harm the client’s expe-
rience, including metrics that are not currently collected by cloud
providers or orchestration systems, such as the Intel SGX’s Enclave
Page Cache (EPC) usage.
In order to achieve the desired state of resource and hardware

economy, high availability and QoS requirements we propose the
Electronic Client Meterign service (ECM). The ECM provides an API
for metering clients to securely push encrypted information that
will be processed inside SGX enclaves. It also provides a monitoring
platform with state-of-the-art and cloud native monitoring tools
to help the decision and scaling of resources in the system. As
a consequence, we were able to reach the QoS requirements for
response times in clients requests, which was a request latency of
around 10ms , with peaks during log in and log out operations.
The rest of the paper is organized as follows. In Section 2 we

present some background information, introducing Intel SGX, SCONE,
Kubernetes and Prometheus as requirements for the development.
The use case is presented and detailed in Section 3, where the re-
quirements, implementation, and security issues for a smart grid use
case are presented. This sections details as well as the monitoring of
the system. In Section 4, we detail the ECM system with information
about the services that composes the architecture, the platform, and
some of the monitoring requirements. Finally, we conclude with
the evaluation and discussion of the results in Sections 5 and 6,
presenting the metrics collected and the system’s functionality.

2 BACKGROUND

2.1 Intel SGX
Intel Software Guard eXtensions (SGX) is a Trusted Execution Envi-
ronment (TEE) based on Intel hardware. TEEs are useful for ensuring

The authors retain the rights, under a Creative Commons Attribution CC BY license,
to all content in this article (including any elements they may contain, such as pictures,
drawings, tables), as well as all materials produced by authors that are related to the
reported work and are referenced in the article (such as source code and databases).
This license allows others to distribute, adapt and evolve their work, even commercially,
as long as the authors are credited for the original creation.

https://gdpr-info.eu/

2 • Gabriel Silva Vinha and Andrey Brito

security of sensitive data or code from disclosure or modification.
In the case of Intel SGX, it enables user-level code to allocate en-
claves (i.e., private regions of memory) that are protected even from
processes running at higher privilege levels. Intel SGX capabilities
are available from a set of instructions introduced in off-the-shelf
processors based on the Skylake microarchitecture, starting from
the 6th Generation Intel Core family and 5th generation of some
Xeon E3 family.

An application of the Intel SGX technology typically requires four
main components: (i) the availability of the instructions set in the
processor, (ii) the operating system driver, (iii) the software devel-
opment kit to facilitate the access to the driver from the application
code, and (iv) Platform Software.
The Enclave Page Cache (EPC) is a protected memory used to

store enclave pages and SGX structures. The EPC is divided into
4KB chunks called EPC pages. EPC pages can either be valid or
invalid. A valid EPC page contains either an enclave page or an SGX
structure. Each enclave instance has an enclave control structure,
SECS. Every valid enclave page in the EPC belongs to exactly one
enclave instance. System software is required to map enclave virtual
addresses to a valid EPC page.
Before designing a new secure application using SGX, there are

some limitations that need to be kept in mind by developers, the
main one being the memory limitation. When starting a machine,
the SGX capable processor needs to reserve a portion of memory
to itself (PRM). Also, the entire EPC must reside inside the PRM.
In the current version of SGX, this portion of memory is limited
to 128MB. If more space is needed than what is available, a large
overhead in processing time is added, due to the need to re-encrypt
the data before swapping from EPC to DRAM and re-encrypting
the data after swapping from DRAM to EPC. This re-encryption
is needed since data in the EPC is cache-line encrypted and in the
DRAM it is page-encrypted.

The SGX Linux SDK provided by Intel is only available for C/C++
development. This leaves secure application developers with no
choice over what programming language to use when writing an
enclave’s code.

2.2 SCONE
SCONE [4] (short for Secure CONtainer Environment) is a toolset
that allows containerized applications to transparently run inside
Intel SGX enclaves. This considerably reduces the learning curve to
implement security and integrity guarantees.
SCONE supports many popular programming languages, offers

an asynchronous threading model for system calls, and also remote
attestation schemes to verify containers’ authenticity and securely
load secrets into the container environment. As with other SGX
application, besides having the applications inside SGX enclaves, it
is also necessary to make sure the correct code is running, which is
done by the remote attestation.

Applications can run parallel pieces of software, in SCONE this is
possible without leaving the enclave. The process of context switch-
ing from and to the enclave has proven to be a large overhead to the

https://01.org/intel-software-guard-extensions

application performance. SCONE provides application level thread-
ing, which enables it to not leave the enclave whenever a thread
is blocked (e.g. by a system call), switching to a new application
thread during this wait.

Instead of requiring a third party to attest the application before
giving it some secret (e.g., certificate, credentials), as with applica-
tions based on the Intel SGX, SCONE manages attestation trans-
parently. As the runtime loads an application, the SCONE runtime
will attest the application and then embed the secrets into the appli-
cation memory space as environment variables or command line
arguments.
A variety of applications make use of SCONE’s advantages of

virtualization and secure enhancing such as [3, 12–14, 16].

2.3 Kubernetes
The usage of containers has become the dominant approach to or-
chestrate applications. Not only a larger number of IT professionals
are using containers, but they are also using them in production.
Two recent surveys on OpenStack [1] and Kubernetes [7] also con-
firm the tendency of adopting container-based orchestration. On
the one hand, the OpenStack survey reports that 61% of OpenStack
users that need container orchestration use Kubernetes on top of
OpenStack. The Kubernetes survey reports that 75% or Kubernetes
users participating in the survey use it also in production. On the
other hand, according to the Kubernetes survey the main challenge
is container deployments is security, reported by 43% of the users
and followed by challenges in storage (38%), networking (38%), and
monitoring (38%).

The basic working unit in Kubernetes is a pod -– an abstraction of
a set of containers tightly coupled with some shared resources (the
network interface and the storage system). With this abstraction,
Kubernetes adds persistence to the deployment of single containers.
It is important to note two aspects of a pod: (i) a pod is scheduled
to execute on one machine, with all containers inside the pod being
deployed on the same machine; (ii) a pod has a local IP address
inside the cluster network, and all containers inside the pod share
the same port space. The main implication of this is that two services
which listen on the same port by default cannot be deployed inside
a pod. A pod can be replicated along several machine for scalability
and fault-tolerance purposes

2.4 Prometheus
Prometheus is an open source monitoring system and time series
database platform. Prometheus also provides client libraries for nu-
merous languages, PromDash for presentation, Alertmanager for
alerting and numerous plugins. The architecture works by having
each Prometheus instance independent of each other, and each in-
stance will monitor their own subset of jobs, exporters, or anything
that exposes metrics to it. Prometheus uses mainly polling tech-
niques to get metrics, but has support of pushing by the use of an
intermediate node named a push gateway. Prometheus also uses a
query language called PromQL.

https://01.org/intel-software-guard-extensions

Challenges in Monitoring Large Scale Secure Applications • 3

3 USE CASE: SMART GRID PERSISTENCE

3.1 Smart Grids
Smart grids are electrical grids with the ability to control the con-
sumption, distribution and production of electricity. Smart grids
rely on monitoring energy consumption on a variety of grid con-
sumers such as households, industries, commerce and other physical
locations with access to energy.
There is a limited availability of non-renewable energy sources

such as coal, gas, and oil. On the other hand, renewable sources
are playing a more important role for future energy supply [17].
Advanced technologies are needed to make these energy supplies
more reliable and secure [2].
The main aspects of a smart grid are the following.
(1) Self-healing: the ability to detect and recover faults in the

grid;
(2) Consumer empowering: when operating and planning the

grid, it should be able to include the customers own equip-
ment and behaviour;

(3) External threats tolerance: the grid should be able to detect
and avoid cybernetic and physical attacks;

(4) Energy quality: the standards require certain energy quality,
this needs to be provided;

(5) Variety in sources and demands: with no additional effort the
grid needs to be able to integrate many sources of energy in
different scales;

(6) Environmental impact reduction: using green energy sources
and avoiding waste.

There are three main innovation areas to provide these char-
acteristics in a power grid: digital control and automation in the
grid, smart metering, integration with various energy sources and
storage [11].
Smart meters record the measured consumption over a given

measurement interval and transfer recorded values individually, or
in block, in a transfer interval. In this paper we focus on the smart
metering aspects of a smart grid which is an essential part in its
construction. It enables the consumer to have information such as
consumption and price signaling.
In our use case we consider a smart grid consisted of different

consumers with their own smart meters regularly collecting energy
consumption data from the physical locations they are installed in.
The flow is described as illustrated in Figure 1:

(1) The clients or consumers are operated by an Energy Distribu-
tion Company. These physical locations have smart meters
installed to collect their consumption information. This in-
formation can then be queried by the Energy Distribution
Company or pushed by the smart meters. This information
is then stored locally by the Energy Distribution Company.

(2) After the data is accumulated by the Energy Distribution
Centers it is then sent via the internet to the Electronic Client
Meter, using state-of-the-art communication protocols such
as HTTP/{1,2}, REST protocol, SOAP protocol, etc. After the
requests are received, they can be processed and stored safely
in reliable storages such as Ceph.

https://ceph.io/

Fig. 1. Smart meters data collection architecture

3.2 Security Threats in Smart Grids
Data collected from smart meters are considered sensitive. Those
who have access to the data are able to draw conclusions about the
behaviour of energy consumers. We see that many organizations in
Europe and across the globe are identifying risks and vulnerabilities
in the private data that were not considered previously in the energy
industry [15].

Some actions were taken to minimize the risk of leaks and attacks
such as: limit the information push interval in 15 minutes to allow
information to be used in energy saving actions. But even with the
15 minutes interval it was possible to infer holiday periods [9], elec-
tronics and appliances usage patterns [10] and religious practices [6]
from the data retrieved from smart meters.

4 METHODOLOGY
To provide the necessary services for smart meters to safely persist
consumers information we propose the Electronic Client Meter
platform, a platform for clients to publish their metrics on reliable
storages using encryption to secure private data.

The other main component is the monitoring platform, responsi-
ble to enable a view of the system state and infrastructure. Using
the tools in the ECM, the monitoring platform is able to publish and
save metrics over to later be compared and used by autoscalers and
controllers.

4.1 Architecture
The life cycle of a server is changed as requests arrive from the
clients (depicted in Figure 3). Each server serves one client during
a cycle providing isolation and safely making operations in data
designated to the client logged in.

The client has the information to be persisted in the ECM and it
makes several HTTP requests in order to do that. The entry point
for all clients is the same: a load balancer that redirects packages

https://ceph.io/

4 • Gabriel Silva Vinha and Andrey Brito

Fig. 2. Electronic Client Meter architecture

based on the parameters from the header information of the request
received. It looks for the ClientID field and forwards it to the proper
server. If this client ID has already logged in, it uses the same con-
nection to the same server to forward the package, if not it uses one
of the servers in the READY state.

Fig. 3. Server life cycle and operations

Initially all servers are in the READY state, waiting for a client
to login. After a log in request is forwarded to this server by the
load balancer, the server then begins the process of unsealing the
consumer data. This process requires a key exchange with the client,
after that it decrypts the loaded client data with the key it received
from the client, finishing the unseal process. The state is now AC-
TIVE as login succeeds.

When a server is in ACTIVE state, all requests made from this
specific client ID is forwarded to the same server and all operations
are made in the proper database. It now can handle any kind of
request from the client.
After the client finishes all operations for the session, it then

sends a logout request, which returns the server to READY state
and the data is encrypted and unmounted.

4.2 Monitoring Platform
The scalability mechanisms are based on information retrieved from
the infrastructure and from the framework components, as depicted
in Figure 4. To aggregate all the needed metrics we use Prometheus
and set the targets to be all the exporters we wish to collect metrics
from.
Prometheus uses exporters to collect metrics and saves them in

a time series database. In order to customize the metrics we want
to collect from the framework we have to use custom exporters
so that the information from the components can then be scraped
and persisted by Prometheus. The first one is the SGX exporter,
it collects information from the Linux drivers and exports them
through a REST API. The main metrics exported are the following:

• Total of EPC pages;
• Number of free pages;
• Number of initialized epc enclaves;
• Number of evicted/loaded epc pages.

In order to save the mentioned metrics, the Linux SGX driver was
changed to add module parameters and make arithmetic operations
on them as the driver is used. The following counters were added:

• sgx_nr_total_epc_pages;
• sgx_nr_free_pages;
• sgx_nr_evicted;
• sgx_nr_alloc_pages;
• sgx_nr_enclaves;
• sgx_nr_reclaimed;
• sgx_nr_added_pages;
• sgx_init_enclaves;
• sgx_loaded_back.

Each of these metrics are added to a file in the sys filesystem,
where the exporter collects and exposes via the Prometheus exporter
REST API.
To collect node metrics such as memory usage, CPU time, I/O

operations, network bandwidth, and traffic, we use Node Exporter
version 0.18. We also use Kubernetes standard exporters to collect
metrics from Kubelet, Docker, and overlay networking information.
eBPF is part of the Linux that allows external users to define

small programs defined to run in a virtual environment. The eBPF
programs allow users to define trace code. Tracing refers to perfor-
mance analysis and observability tools that can produce per-event
info. We use bpftrace to calculate the total number of page faults,
context switches, exit and enter system calls, context switches and
cache status.

5 SYSTEM EVALUATION
We use Grafana to visualize the new metrics and new values added
for each component. The monitoring platform provide a better un-
derstanding of the environment. Thus, it can be used when making
scheduling and scaling decisions resulting in a better resource uti-
lization and use of hardware resources specially when load balanc-
ing new clients or horizontally/vertically scaling the cluster, server
number or other infrastructure pattern during peak load.

/sys/module/isgx/parameters/

Challenges in Monitoring Large Scale Secure Applications • 5

Fig. 4. Monitoring framework components

Fig. 5. Servers and states dashboard

EPC availability is important since each node has a set of servers
scheduled to it. This can be seen in dashboard 5. It is possible to know
how many are currently assigned to a client, ready to be assigned
or stopped due to some reason. At peak load, this information can
be used to provide availability for new clients as every server is
isolated for one specific client during its life time. Also, to identify
load patterns and see points in time where the clients increased or
decreased, it is possible to see the historical number of assigned
servers, as depicted in Figure 6.

Fig. 6. Active servers over time graph

It is also useful to have application level metrics instead of infras-
tructure ones. This is made possible by using the server exporter
that has server information based on logging, files and traffic from
the port the server is listening to. The most common metric used
by scalability controllers is the server response time by operation.
Nevertheless, additional metrics that reflect the QoS for the specific
application can also be used. The server exports the time taken to
respond to the query received and Prometheus is able to save this
metric via the exporter. These application metrics are the direct
result from other infrastructure information, as when the nodes are
stressed or the enclave page cache is full and the driver has to do
pagination the response time decreases. As depicted in Figure 8, the
response time QoS can be shown using the metrics collected in the
servers via the exporter.
The dashboard in Figure 9 shows client level metrics. To collect

these metrics we make use of Prometheus application PushGate-
way, which provides an exporter api so that Prometheus can scrape
its metrics, but also provides an HTTP API so that authenticated

external entities can push, using PromQL, non-constant metrics or
limited life cycle targets. In this case the clients have limited life
cycle, as they log in, complete all necessary operations and then
log out. This is commonly used by production systems where client
push reports of errors, operations, bugs and other information con-
sidered important during app development. The downside is that
the Push Gateway endpoint has to be exposed so that client can push
their metrics to it. We can see that the clients push the operations
made by them and this information is shown in the dashboard.

6 CONCLUSION
With the work developed, we were able to add a rich monitoring
capability to a large and complex system. This monitoring included
all interactions between clients and servers as well as the whole
infrastructure resource usage. This shows that the robust monitoring
platform is able to save metrics from all points in the smart metering
data persistence framework.
Results show that the average response times across all servers

were high in the beginning due to the mapping and mounting of
encrypted databases, after the servers were successfully logged
in and went into ACTIVE state, satisfying QoS goals. When the
life cycle comes to an end, we see that the still pending clients
have higher response time because the earlier created ones were
unmounting their databases and logging out.
The monitoring platform enables the replication and scalability

setups or decision to be taken based on all sorts of metrics. This
decision can be taken based on CPU usage for each node, memory
usage or disk for IO intensive systems. All of these metrics are
available via deployed node exporters or through the Kubernetes
framework. Our main contribution in this work was adding the
above mentioned metrics so that this decision may include security
resources and combining all this exporters and dashboards into a
simplified instalation process with the rest of the system. With this
dashboard in hand, operators can quickly evaluate the application
QoS and resource metrics, matching the resources to align with the
QoS requirements.

ACKNOWLEDGMENTS
I thank God in his absolute majesty for making this possible.
To my wife Thirza for being so caring and loving in good times

and in bad, in happiness as well as in sadness.
To my mother Maria for the unconditional support and my father

Jeremias for being my reference until this day.
To the friends I gathered in the last three years of professional

and personal growth: Clenimar, Lucas, Sergei, Oleh, Karin, Lília,
Javan, Marcus, Fábio, Icaro, Joab, Whasley, Sergio and Marta.

To all my professors, but in special: Andrey, Fubica,Manel, Nazareno,
Joseana, Francisco Neto, Matheus, Massoni, Reinaldo, João, Livia
and Raquel.

Tomy advisors Andrey Brito andChristof Fetzer for their patience,
wisdom and all the concerns and happiness we shared in the past
years of advising.
This work considered results from the EU-Brazil SecureCloud

and Atmosphere projects, funded by the European Commission and
MCTIC/RNP/CTIC.

6 • Gabriel Silva Vinha and Andrey Brito

Fig. 7. SGX information dashboard

Fig. 8. Servers response time dashboard

REFERENCES
[1] [n. d.]. Openstack User Survery 2018. https://www.openstack.org/user-survey/

2018-user-survey-report/. [Online; Last access: December 21st, 2018].
[2] D. Abbott. 2010. Keeping the Energy Debate Clean: How Do We Supply the

World’s Energy Needs? Proc. IEEE 98, 1 (Jan 2010), 42–66. https://doi.org/10.1109/
JPROC.2009.2035162

[3] S. Arnautov, P. Felber, C. Fetzer, and B. Trach. 2017. FFQ: A Fast Single-
Producer/Multiple-Consumer Concurrent FIFO Queue. In 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). 907–916. https:
//doi.org/10.1109/IPDPS.2017.41

[4] Gregor F. Arnautov S., Trach B. 2016. SCONE: Secure Linux Containers with Intel
SGX. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association.

[5] Alvaro Cardenas and Reihaneh Safavi-Naini. 2012. Security and Privacy in the
Smart Grid. 637–654. https://doi.org/10.1016/B978-0-12-415815-3.00025-X

[6] S Cleemput. 2018. Secure and Privacy-friendly Smart Electricity Meter-
ing. $$Uhttps://lirias.kuleuven.be/retrieve/509996$$DPhd_CleemputSara_May25.
pdf[freelyavailable]

[7] Cloud Native Computing Foundation. 2017. Cloud Native Technologies Are Scal-
ing Production Applications. https://www.cncf.io/blog/2017/12/06/cloud-native-
technologies-scaling-production-applications/. [Online; Published: December
6th, 2017; Last access: December 26th, 2017].

[8] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1–118.

[9] Günther Eibl., Sebastian Burkhart., and Dominik Engel. 2018. Unsupervised
Holiday Detection from Low-resolution Smart Metering Data. In Proceedings of the
4th International Conference on Information Systems Security and Privacy - Volume 1:
ICISSP,. INSTICC, SciTePress, 477–486. https://doi.org/10.5220/0006719704770486

[10] G. Eibl and D. Engel. 2015. Influence of Data Granularity on Smart Meter Privacy.
IEEE Transactions on Smart Grid 6, 2 (March 2015), 930–939. https://doi.org/10.
1109/TSG.2014.2376613

[11] Djalma M Falcão. 2009. Smart grids e microredes: o futuro já é presente. Simpósio
de Automação de Sistemas Elétricos 8 (2009).

[12] C. Fetzer. 2016. Building Critical Applications Using Microservices. IEEE Security
Privacy 14, 6 (Nov 2016), 86–89. https://doi.org/10.1109/MSP.2016.129

[13] Robert Krahn, Bohdan Trach, Anjo Vahldiek-Oberwagner, Thomas Knauth,
Pramod Bhatotia, and Christof Fetzer. 2018. Pesos: Policy Enhanced Secure Object
Store. In Proceedings of the Thirteenth EuroSys Conference (EuroSys ’18). ACM, New
York, NY, USA, Article 25, 17 pages. https://doi.org/10.1145/3190508.3190518

[14] Do Le Quoc, Franz Gregor, Jatinder Singh, and Christof Fetzer. 2019. SGX-PySpark:
Secure Distributed Data Analytics. In The World Wide Web Conference (WWW ’19).

ACM, New York, NY, USA, 3564–3563. https://doi.org/10.1145/3308558.3314129
[15] Robert Rieman. 2019. TechDispatch 2: Smart Meters in Smart Homes.

https://www.edps.europa.eu/data-protection/our-work/publications/
techdispatch/techdispatch-2-smart-meters-smart-homes_en

[16] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhatotia,
and Christof Fetzer. 2018. ShieldBox: Secure Middleboxes Using Shielded Exe-
cution. In Proceedings of the Symposium on SDN Research (SOSR ’18). ACM, New
York, NY, USA, Article 2, 14 pages. https://doi.org/10.1145/3185467.3185469

[17] X. Yu, C. Cecati, T. Dillon, and M. G. Simões. 2011. The New Frontier of Smart
Grids. IEEE Industrial Electronics Magazine 5, 3 (Sep. 2011), 49–63. https://doi.
org/10.1109/MIE.2011.942176

https://www.openstack.org/user-survey/2018-user-survey-report/
https://www.openstack.org/user-survey/2018-user-survey-report/
https://doi.org/10.1109/JPROC.2009.2035162
https://doi.org/10.1109/JPROC.2009.2035162
https://doi.org/10.1109/IPDPS.2017.41
https://doi.org/10.1109/IPDPS.2017.41
https://doi.org/10.1016/B978-0-12-415815-3.00025-X
$$Uhttps://lirias.kuleuven.be/retrieve/509996$$DPhd_CleemputSara_May25.pdf [freely available]
$$Uhttps://lirias.kuleuven.be/retrieve/509996$$DPhd_CleemputSara_May25.pdf [freely available]
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://doi.org/10.5220/0006719704770486
https://doi.org/10.1109/TSG.2014.2376613
https://doi.org/10.1109/TSG.2014.2376613
https://doi.org/10.1109/MSP.2016.129
https://doi.org/10.1145/3190508.3190518
https://doi.org/10.1145/3308558.3314129
https://www.edps.europa.eu/data-protection/our-work/publications/techdispatch/techdispatch-2-smart-meters-smart-homes_en
https://www.edps.europa.eu/data-protection/our-work/publications/techdispatch/techdispatch-2-smart-meters-smart-homes_en
https://doi.org/10.1145/3185467.3185469
https://doi.org/10.1109/MIE.2011.942176
https://doi.org/10.1109/MIE.2011.942176

Challenges in Monitoring Large Scale Secure Applications • 7

Fig. 9. Client requests dashboard

	e4f47a2338b8cc5d2f0b80bc9e3686859fac3a7b9df2d336706d451d796db447.pdf
	Challenges in Monitoring Large Scale Secure Applications
	Abstract
	1 Introduction
	2 Background
	2.1 Intel SGX
	2.2 SCONE
	2.3 Kubernetes
	2.4 Prometheus

	3 Use Case: Smart Grid Persistence
	3.1 Smart Grids
	3.2 Security Threats in Smart Grids

	4 Methodology
	4.1 Architecture
	4.2 Monitoring Platform

	5 System Evaluation
	6 Conclusion
	Acknowledgments
	References

