

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

KAIO KASSIANO MOURA OLIVEIRA

ASSESSING THE USE OF THE BEEFS DISTRIBUTED FILE

SYSTEM ON THE PERFORMANCE OF OPENSTACK

CAMPINA GRANDE PB

2019

KAIO KASSIANO MOURA OLIVEIRA

ASSESSING THE USE OF THE BEEFS DISTRIBUTED FILE

SYSTEM ON THE PERFORMANCE OF OPENSTACK

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

Orientador: Professor Dr. Francisco Vilar Brasileiro.

CAMPINA GRANDE PB

2019

Elaboração da Ficha Catalográfica:

Johnny Rodrigues Barbosa

Bibliotecário-Documentalista

CRB-15/626

 O48a Oliveira, Kaio Kassiano Moura.
 Assessing the use of the BeeFS distributed file

system on the performance of OpenStack. / Kaio Kassiano

Moura Oliveira. – 2019.

 12 f.

 Orientadores: Prof. Dr. Francisco Vilar Brasileiro.

 Trabalho de Conclusão de Curso - Artigo (Curso de

Bacharelado em Ciência da Computação) - Universidade

Federal de Campina Grande; Centro de Engenharia Elétrica

e Informática.

 1. OpenStack. 2. Distributed file storage. 3. Ceph.

4. BeeFS. 5. OpenStack cloud. I. Brasileiro, Francisco

Vilar. II. Título.

 CDU:004(045)

KAIO KASSIANO MOURA OLIVEIRA

ASSESSING THE USE OF THE BEEFS DISTRIBUTED FILE

SYSTEM ON THE PERFORMANCE OF OPENSTACK

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

BANCA EXAMINADORA:

Professor Dr. Francisco Vilar Brasileiro

Orientador – UASC/CEEI/UFCG

Professora Dra. Lívia Maria Rodrigues Sampaio Campos

Examinadora – UASC/CEEI/UFCG

Professor Dr. Tiago Lima Massoni
Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 02 de julho de 2019.

CAMPINA GRANDE PB

Assessing the use of the BeeFS distributed file system
on the performance of OpenStack

Kaio Kassiano Moura Oliveira
kaio.kassiano.oliveira@ccc.ufcg.edu.br

Universidade Federal de Campina Grande

ABSTRACT
OpenStack is one of the most used open source solutions
to create private clouds for researching, testing and busi-
ness purposes. As a cloud orchestrator, service aggregator,
and IaaS provider, OpenStack controls pools of computing,
storage and network resources in a data center. OpenStack
services that provide some kind of storage (e.g., block, image,
blob) rely on an underlying file system to provide the service
and also for performance matters. This work presents the in-
tegration of the Beehive File System (BeeFS) as a distributed
file system back-end storage for an OpenStack cloud, and
a performance assessment considering Nova, a fundamen-
tal service in charge of managing virtual machines in the
cloud. Experimental benchmarking results show that, in av-
erage, Nova performs 5 times faster using Ceph - the de facto
distributed storage technology used in OpenStack - then
when using BeeFS as its storage back-end. Although BeeFS
reduces costs of creating distributed storage infrastructure,
its integration with OpenStack is not complete which causes
significant impact in the cloud applications performance.

KEYWORDS
OpenStack, distributed file storage, Ceph, BeeFS

1 ACKNOWLEDGEMENTS
I would like to dedicate this work to my family who helped
me through this journey: without them, my victory and
success would never be possible. To my mother Celia Moura,
who always provided everything for me; I will be forever
thankful for your support and unconditional love. To my
father, Josue Rufino, who guided and taught me to be a decent
and reasonable person; I will always miss you - may you
rest in peace. To my love Rayane Dantas, who believed and
encouraged me when times were difficult; I will always be
thankful for your love and your company.
To Ph.D. Francisco "Fubica" Vilar Brasileiro, who guided

me through the development of this work; thank you for
your patience and suggestions.
To my colleagues Sérgio Duarte, Lucas Cavalcante, Guil-

herme Steinmüller, Joab Silva, Paulo Feitosa, Benardi Nunes
in Distributed Systems Laboratory; thank for all your help
and support. To my friends and Ph.Ds. Thiago Emannuel and
Matheus Gaudêncio; thank you for your assistance, input,

and advice. To Ph.D. Andrey Brito; thank you for believing
in me and giving me the opportunity to work with you.

2 INTRODUCTION
OpenStack is an open source, distributed, scalable, and flex-
ible service aggregator as well a cloud orchestrator. It con-
trols resources of computing, storage, and network on a data
center, providing a cloud Infrastructure-as-a-Service (IaaS)
environment. OpenStack coordinates multiple services, and
each service is responsible for managing and providing a
given functionality. For instance, Nova is the compute ser-
vice and the main component of OpenStack, and it is respon-
sible for launch VMs (Virtual Machines) and manage the
compute nodes in which VMs will be launched, along with
appropriate VM placement heuristics; Neutron is the service
responsible for managing the OpenStack network; Keystone
manages users, projects, access control. There are 50+ exist-
ing projects [8], and many of them are not obligatory to be
used on OpenStack.

Some OpenStack services that provides some kind of stor-
age (e.g., Nova - disk, Glance - volume, Cinder - image) re-
quire a file system back-end. For instance, when Nova runs
a virtual machine, it can use many approaches storage tech-
nologies, such as distributed file systems or object storage.
Depending on user’s needs, one or many of these storage
technologies could be deployed on the cloud. The perfor-
mance of such services depends on the back-end architecture
and characteristics, which means a given distributed storage
solution could determine the overall performance of Open-
Stack. A few examples of common back-ends used are NFS,
Gluster, LVM, and Ceph, the latter being the most used and
the state-of-practice as distributed storage for OpenStack
[3]. In this work we focus on evaluating the performance of
OpenStack Nova when launching VMs to run a well-known
performance workload, the FIO benchmark [1]. Nova will be
configured to use two different storage solutions: Ceph (the
state-of-practice in terms of distributed storage for Open-
Stack), and BeeFS (a cheap and naturally-scalable distributed
file system, created and developed at the Distributed Systems
Laboratory [20]).

Ceph is a distributed, fault-tolerant, reliable and massively
scalable storage technology. First proposed in 2007 [22], Ceph
focuses on implementing object storage using an algorithm

Kaio Kassiano Moura Oliveira

called CRUSH to place and organize data in a unified storage
system, called RADOS. Ceph architecture uses a monitor
entity to manage cluster consistency and coherence. Also,
monitorsmaintain amastermap of the RADOS cluster, which
includes, for instance, how many and where are the cluster
monitors and the cluster OSDs. OSDs are the object storage
daemons and they are responsible for storing the actual data
(i.e., objects). A Ceph client interacts with the monitor to
obtain a recent cluster map, and using the CRUSH algorithm,
it can compute the location of any object across the RADOS
cluster, and then interacts with the OSD to retrieve/access
the object. Monitors manage security and access control of
clients to objects.
Our main purpose will be the introduction of the BeeFS

file system as another back-end storage technology for Open-
Stack, particularly for OpenStack Nova. BeeFS is a distributed
file system that relies on the harnessing of free disk space
of machines to provide distributed storage. Following a hy-
brid architecture, BeeFS consists of a centralised node, the
queen-bee, that is responsible for metadata and file replica-
tion management. Data is actually stored on data servers,
the honeycombs, that collaboratively store all the file sys-
tem data. BeeFS clients, the honeybees, retrieve metadata
and file localisation from the queen-bee, and then interact
directly with honeycombs to fetch/send data. BeeFS is fully
POSIX-compliant, and the coupling between the user level
application and the Linux kernel file system modules is done
via FUSE [13, 20]. A single node can act as both client and
data server at the same time, which indicates a possible per-
formance leverage.

We believe that the BeeFS, a cheap and naturally scalable
storage technology, can actually serve as storage back-end
for OpenStack. Specially when using data servers running
on the same nodes as where the clients are, performance
should be compared to a state-of-practice distributed storage
technology.

However, our hypotheses have shown wrong. In average,
results are that Nova+Ceph performs 5 times faster than
Nova+BeeFS for FIO benchmark execution. Also, the time for
VM initialisation should perform better on BeeFS than on
Ceph, because BeeFS does not pre-allocate the VM entire disk
as Ceph does [19]. This shows that when Nova is aware of
the file system back-end it implies on enormous performance
gain, as Nova knows how Ceph operates and uses proper
drives for communicating with Ceph cluster [5].

The rest of this document is organised as follows: Section
II presents a short summary of related work; Section III is
an overview of OpenStack as cloud provider orchestrator;
Section IV provides a brief discussion of centralised versus
distributed storage and presents the state-of-practice dis-
tributed storage technology used in OpenStack; Section V

an overview of BeeFS; Section VI the methodology to inte-
grate and evaluate BeeFS as back-end storage for OpenStack;
Section VII provides performance results and discussion; fi-
nally Section VIII presents the conclusion with the final work
remarks.

3 RELATEDWORK
Virtual Machine disk performance using different back-ends
were analysed by Johari et al [14]. They found better per-
formance execution for GlusterFS when compared to Ceph,
using mixed read/write workloads with block sizes ranging
from 16K to 256K. Specially for writing or rewriting small
size of files between 4K and 8K, Ceph seems to be the rea-
sonable choice for most applications.
Other performance comparison works focuses on isolat-

ing the storage technologies and file systems, removing the
cloud and hypervisor layer (e.g., QEMU) and measuring per-
formance only without any further integration [6]. In this
work, wewanted to understand howOpenStack performance
could change with different storage technologies as its back-
end.

4 OPENSTACK IN A NUTSHELL
OpenStack is an Infrastructure-as-a-Service (IaaS) provider
solution1 and a cloud computing platform. Initially devel-
oped by NASA and Rackspace on 2010 [10], its code was
open sourced right after the development of the first version
of Nova, a "Python-based cloud computing fabric controller".
OpenStack consists of various projects that can control pools
of computing, storage, and network resources in a data cen-
ter. Managed by a consortium that includes about 600 IT
companies (such as Red Hat, Cisco, Dell EMC, VEXXHOST,
Rackspace, and SUSE), OpenStack is still under active devel-
opment. Its main characteristics are the following:

• Open: as an open source technology, the entire source
code can be modified and adapted by anyone who
needs to. OpenStack is licensed under the Apache 2
license.

• Scalable: developed following a distributed architec-
ture, OpenStack can scale up to hundreds of thousands
of physical and virtual machines [15].

• Flexible: supports many existing virtualisation tech-
nologies, such as KVM, QEMU, Xen, Microsoft Hyper-
V, and LXC [9].

OpenStack services offer interfaces (APIs) that ease inte-
gration between services. An OpenStack deployer (e.g., cloud

1IaaS is a provisioning model in which an organization outsources phys-
ical components of a data center, such as storage, hardware, servers, and
networking components. A service provider owns the equipment and is
responsible for housing, operating and maintaining it. The client typically
pays on a per-use basis.

Assessing the use of the BeeFS distributed file system on the performance of OpenStack

operator) can install some or several OpenStack services, de-
pending on what she needs. Typical OpenStack deployments
normally comprise: one or more infrastructure nodes, where
all APIs are running; one or more compute nodes, where
OpenStack can launch Virtual Machines (VMs), containers
or even functions; and one or more storage nodes.

Common OpenStack services and projects
Figure 1 provides an overview of a basic OpenStack service
architecture including components characterized as core
components [7], which should exist on any OpenStack de-
ployment.

Figure 1: OpenStack map

The description of the core components are the following:
• OpenStack Compute (Nova) is the main component
of OpenStack. It manages the computing service. Nova
creates an abstraction layer for virtualizing hardware
of physical machines (e.g., compute nodes) resources
such as CPU, RAM, network adapters, and hard drives.
Nova provides management functions to launch, resize,
suspend, stop, and reboot VMs.

• OpenStack Networking (Neutron) provides "net-
work connectivity as a service". Neutron includes the
capability to manage LANs and VLANs, Dynamic Host
Configuration Protocol (DHCP), and Internet Protocol
versions 4 and 6. Neutron users and operators can cre-
ate networks, subnets, and routers to configure their
internal topology. Floating IP addresses allow users to
assign (and reassign) fixed IP addresses to the VMs.

• OpenStack Image Service (Glance) provides sup-
port for VM images. Images are the system disks to be
used when launching new VMs. Glance also provides
capabilities for creating VM snapshots and backups,
which can be used as templates to launch new VMs.
Images are provided by users as private or public im-
ages in a variety of formats, such as QCOW2, RAW,
VDI, RAW, VDI, and VHD.

• OpenStack Identity Mangement (Keystone) man-
ages domains, projects, users, and a list of services

they can access. It exposes a central authentication
mechanism across OpenStack components. Keystone
can integrate with many other directory services, for
instance, LDAP and OAuth. Administrators can create
projects and users, assign them to administrative do-
mains, and also configure access policies that apply to
users and services. Users and components can retrieve
a listing of which services they can access.

• OpenStack Dashboard (Horizon) provides a web-
based user interface to OpenStack. Administrators and
users can interact with almost all OpenStack services
through Horizon. For instance, users can use Hori-
zon to request the creation of VMs and images; cloud
operators can create networks and routers; and so on.

The deployment of some OpenStack services require a file
system back-end. This is the case for the storage services
(e.g., Cinder, Glance and Swift), but also to services like Nova,
which require to instantiate disks to store the images of the
VMs it manages. The back-end file system used is typically
a shared file system or a distributed storage system that pro-
vides storage for the services. The next section describes the
trade-offs between using centralized and distributed storage
and also presents the state-of-practice of storage back-end
and distributed storage used in OpenStack.

5 DISTRIBUTED STORAGE ON OPENSTACK
As an instance of a distributed system, OpenStack must cater
to aspects like security, high availability, and fault tolerance.
Also, as an a IaaS provider, it needs to orchestrate at least
three resources: compute, network, and storage. Standard
virtualized environments and several cloud environments
often use centralized storage. In this scenario, each com-
pute node accesses the centralized storage over the network
using a protocol such as iSCSI or NFS. This is a common
architecture that has been used for many years. The main
problem here is the potential bottleneck of the centralized
architecture if the system scale to a large number of clients.
Of course, centralized storage is not the only choice avail-
able. In a local storage architecture, data is stored on hard
disks within the compute nodes. This is relatively cheap as
it requires no specific hardware, and failure occurrences are
far less catastrophic. There is also no bottleneck of I/O in
the network. Whatever architecture is chosen, the VM and
the compute node become inevitably connected: the VM can-
not run on another compute node because its virtual disk is
stored within the source compute node. This presents several
placement issues, and also prevents key operations such as
VM live migration from working efficiently (i.e., when live
migrating, a VM disk would need to be copied through the
network from a compute node to another).

Kaio Kassiano Moura Oliveira

Distributed storage intends to offer benefits of centralized
storage with the cost and scalability of local storage. It is
basically made up of a combination of many individual cen-
tralized storages, consisting of one or any number of physical
disks, stored as objects. In this scenario, VM disks are split
up into segments, and each segment is stored several times
among the storage disks. A copy of a segment is called a
replica. This model is designed to be fault-tolerant, as data
is replicated across the storage cluster, and VM disks are not
stored in the compute nodes themselves. Therefore, VMs can
be live migrated between compute nodes at a feasible time.
Moreover, VMs can be evacuated from a compute node in
case of failure.

Ceph is an open source distributed, reliable, fault-tolerant,
and massively scalable storage technology used in a vari-
ety of cloud orchestration systems [4]. It implements object
storage on a distributed cluster, and provides interfaces for
object-, block- and file-based storage under a unified system,
called RADOS (Reliable Autonomic Distributed Object Store).
Ceph is designed to run on commodity hardware2. It uses
an algorithm called CRUSH (Controlled Replication Under
Scalable Hashing) to ensure that data is evenly distributed
across the Ceph cluster and all cluster object store devices
(OSDs) can receive, as well as provide, data quickly. Ceph
has three main components: a client, a cluster of OSDs, and
a cluster of Monitors. Clients interact with Ceph through
RESTful APIs, POSIX interfaces, and using librados which
enables clients to create their own interface to Ceph. OSDs
collectively store all data. Monitors manage the namespace
(file names and directories) and regulate consistency, coher-
ence, and security. Other metadata are stored in the OSDs.
Figure 2 illustrates this behavior.

Ceph has been integrated with the Linux kernel, KVM and
included by default in many GNU/Linux distributions. This
increased overall interest in Ceph, which ended up in Ceph
beeing the preferred and the state-of-practice solution for
corporate and production OpenStack clouds [3].

Although it would be great if there was a one-size-fits-all
storage architecture which is perfect for all use cases, there is
not. Ceph also has some drawbacks to be considered. For in-
stance, there is no active data deduplication [23], which leads
to unnecessary storage consumption. Before BlueStore, Ceph
had no copy-on-write (COW) functionality for RBD (RADOS
Block Device) [21], which caused overhead when creating
large block devices (e.g., 200 GB in size) as the entirety of
RAW data is needed to be pre-allocated and placed across
the cluster. Another concern is that OSDs performance are
highly affected if OSDs’ physical disks are not formatted

2Commodity hardware is a device or component that is relatively inexpen-
sive, widely available and more or less interchangeable with other hardware
of its type.

Figure 2: Ceph architecture. Clients perform file I/O by com-
municating directly with OSDs.

as XFS [16]. Also, topology changes on the cluster (e.g., the
addition of new OSDs) leads to intense data movement to
maintain CRUSH contracts, which can cause overhead on
the network [24]. Ceph also requires monitors deployed in
an odd number to obtain a quorum and reduce the likelihood
of data loss occurrences.
Storage systems involve trade-offs that we can think of

as responses to their particular requirements and circum-
stances. For instance, some Ceph cons will not appear on
other storage technologies. On the next section, we present
BeeFS, a cheap, dynamic, naturally scalable, and distributed
storage solution.

6 THE BEEFS FILE SYSTEM
BeeFS is "a distributed file system that essentially harnesses
on the free disk space of machines deployed in a corporation
to provide distributed storage" [20]. Following a hybrid archi-
tecture3 with a centralised node, the queen-bee, to store and
maintain metadata and file replication, distributed storage
nodes, the honeycombs, collaboratively store data, which re-
duces overload on the central server. BeeFS "provides a global
file namespace and location-transparent access to files which
are stored in the disks of the participating machines" [20].
BeeFS count on the usage of commodity hardware, which en-
ables honeycombs deployment on any desktop or rack- and
blade-server with disk space to spare, and eases the scalable
growth of the filesystem. The clients, called the honeybees,
are served by the queen-bee and the honeycombs. A node
can run both a client and a server component at the same
time. BeeFS is fully POSIX-compliant, meaning it offers sup-
port for applications compatibility. Furthermore, the hybrid
architecture facilitates the system design and enables simple
administration on the entire file system. Unlike Ceph, BeeFS
does not rely on a particular format of the storage servers
disks: it can store data on top of any POSIX file system. The

3Hybrid architecture, in this case, relates to an implementation that mixes
aspects of client-server and peer-to-peer systems.

Assessing the use of the BeeFS distributed file system on the performance of OpenStack

coupling between the user level application and the Linux
kernel file system modules is done via FUSE [13, 20].

Architecture overview
A typical BeeFS deployment comprises a single queen-bee,
running on a dedicated machine, handling naming, metadata
and replica management, providing global file namespace,
access control, resource discovery and placement coordina-
tion services [20]; one or more honeycomb servers storing
the data. The queen-bee does not store anything but meta-
data. The honeybees contact the queen-bee to obtain the
location of honeycomb servers. Then, the honeybees are able
to send/fetch data directly to/from the appropriate honey-
comb server [20]. A data placement strategy tries to keep
data as close as possible from its users [20], meaning nodes
acting as a data server and client may read/write files stored
in the local data server, which indicate a performance gain.
Figure 3 presents the aforementioned design [20].

Figure 3: BeeFS Components overview.

BeeFS does not cache data on the client [20], but only
on the honeycombs. Also, BeeFS maintains a single copy of
a file at any time [20], which creates a strong consistency
model. On the other hand, the absence of data-caching on
clients may lead to to significant performance issues. This
could be mitigated with a proper data placement mechanism
forcing that only a tiny fraction of data access is performed
in remote honeycombs [20].
When it comes to fault tolerance, BeeFS employs a repli-

cation model that focuses on the non-blocking model, which
means honeybees perform blocking operations on the pri-
mary honeycomb and eventually the data replication/updates

are persisted on the replicas. In that way, data is always con-
sistent on the primary honeycomb and eventually consistent
on the replicas. BeeFS does not implement erasure coding.

7 METHODOLOGY
We want to evaluate the performance of OpenStack Nova
when using two different distributed storage solutions as its
back-end: Ceph and BeeFS. Different solutions mean that
Nova interacts differently with each one. For instance, when
using Ceph as a back-end, the hypervisor (QEMU, libvirt) has
its own RBD driver implementation to communicate with
RADOS [5]. This architecture is shown in Figure 4 [18].

Figure 4: QEMU communication with RADOS.

One can say QEMU then is optimized for Ceph in compari-
son to QEMU interactionwith BeeFS. On BeeFS, every QEMU
operation on a VM virtual disk is captured by FUSE [20] and
then forwarded to BeeFS honeybee component running on
the client (Figure 5), which can lead to several performance
penalties for QEMU operation. This process causes QEMU
to be fooled into thinking that it is manipulating a local
QCOW2 virtual disk, which is not true. QEMU, then, is not
even aware of BeeFS existence: it keeps using its QCOW2
driver to manipulate a file stored the local file-system, when
the file is actually stored across BeeFS honeycombs.

Figure 5: QEMU unaware communication with BeeFS.

System configuration and setup
For the experiment, we have used four physical machines
HPE ProLiant BL460c Gen9 (Intel(R) Xeon(R) CPU E5-2620
v3 @ 2.40GHz, 16GB RAM) as a modules of a Blade server
providing 10Gb/s network interfaces through its backplane.
All servers running Ubuntu server 16.04, and the network
not isolated.

Kaio Kassiano Moura Oliveira

We deployed a small OpenStack cloud comprised of one
infrastructure node and one compute node. OpenStack
was deployed on the Rocky (stable/rocky) tag, the 18th re-
lease of OpenStack. The deployment was made through
OpenStack-Ansible (OSA) [12].

Experiment design
To evaluate Nova performance with BeeFS (proposed) and
Ceph (the state-of-practice), we defined two different scenar-
ios: the baseline and the optimized scenarios.

Baseline scenario. The baseline is comprised of an unfeasible
configuration for production environments, regarding per-
formance and fault tolerance. This scenario uses three nodes,
described as follows:

• Ceph:
(1) Ceph monitor
(2) Ceph OSD 1, comprised of 1 SAS HDD for Journal

and 1 SAS HDD for data
(3) Ceph client

• BeeFS:
(1) Queen-bee server
(2) Honeycomb server
(3) A honeybee - client

Optimized scenario. The optimized scenario is comprised of
a more feasible, although small, distributed storage deploy-
ment for production. Unlike the baseline, this scenario uses
four nodes for Ceph and three nodes for BeeFS:

• Ceph:
(1) Ceph monitor;
(2) Ceph OSD 1, comprised of 1 SAS SSD for Journal

and 1 SAS HDD for data;
(3) Ceph OSD 2, comprised of 1 SAS SSD for Journal

and 1 SAS HDD for data;
(4) Ceph client.

• BeeFS:
(1) Queen-bee server;
(2) Honeycomb server - for replication;
(3) A honeybee - client; and a honeycomb server for

primary storage.

On all configurations, Ceph monitor and BeeFS queen-
bee run on the OpenStack infrastructure node; both Ceph
client and BeeFS honeybee run on the compute node. This
specifically means that the actual client of Ceph and the
BeeFS is the hypervisor (i.e., QEMU) running on the compute
node. VMs were requested to launch on OpenStack by a user

machine, one at a time, with a provided user-data script4.
VMs ran on the compute node through QEMU, and it used
the designated back-end to store the virtual disks (block
device). All VMs were launched using a Ubuntu 16.04 server
image previously deployed to Glance, the image service.

When a VM was ready, it sent a TCP package to the user
machine who requested the VM, indicating:

• VM finished booting
• VM downloaded and installed packages to run the
benchmark

• VM will begin to run the benchmark

We are then able to measure the total boot time to launch
a VM (i.e., time from launch request, through VM booting,
to TCP package receipt). When a VM finishes its workload,
it will send another package to the user machine indicating:

• VM finished the benchmark execution
• VM is ready to be deleted

Similarly to start time, we can measure the total delete
time of a VM (i.e., time from delete request, through VM
resource deallocation, to TCP package receipt).

As part of the workload, VMs will run the FIO [1] bench-
mark, as it is a known and widely used benchmark for file
system performance and cloud-based workloads [2]. The FIO
benchmark suite can be installed with:

sudo apt update
sudo apt install fio

FIO will perform a workload of random writes of 1 Gib
(~1074 MB) with the default block size of 4 KiB (4096 bytes),
using the sync ioengine (basic write I/O manipulating file
descriptors). Full fio configuration and parameters are the
followings:

fio --name=benchmark --size=1G --filename=file
--ioengine=sync --randrepeat=0 --direct=1
--invalidate=1 --verify=0 --verify_fatal=0
--rw=randwrite --blocksize=4k --output output.txt

We created a flavor on the OpenStack that represents the
VM hardware configuration. Flavors "define the compute,
memory, and storage capacity of VMs. To put it simply, a

4According to OpenStack documentation, the user data is "a blob of data
that the user can specify when they launch a VM. The VM can access this
data through the metadata service or config drive. Commonly used to pass
a shell script that the VM runs on boot".

Assessing the use of the BeeFS distributed file system on the performance of OpenStack

flavor is an available hardware configuration for a server. It
defines the size of a virtual server that can be launched" [11].
The flavor has 2 vCPUs, 1 GB RAM, and 5 GB of disk storage.

8 RESULTS AND DISCUSSION
For the performance evaluation of Nova we focused on mea-
suring the followings:

• VM boot time
• VM delete time
• FIO runtime (in milliseconds)
• FIO average latency (in microseconds)
• FIO average bandwidth usage (in KB per second)

All the experiments ran separately, which means the en-
vironment changed before executing each one of the four
possible scenarios. We collected 40 samples on each scenario,
and in each sample we measured and registered the afore-
mentioned metrics. We employed a percentile bootstrap of
10000 samples with replacement, with an alpha of 5% (α =
0.05 which implies on a confidence level of 95%), to obtain
the median-unbiased as estimator.

Figure 6: Boot time median (s)

We found that Nova performance is considerably affected
when using BeeFS. For instance, VM boot time on BeeFS
optimized scenario is compared to Ceph on both scenarios
(Figure 6), in which Ceph needs to pre-allocate the entire
VM disk (i.e., 5 GB) across the RADOS cluster before run-
ning the VM on the compute node [19]. This means that a
COW (copy-on-write) approach for image initialisation is
performing as bad as an RAW disk image initialisation, when
COW initialisation should perform so much better. On the
other hand, deletion time does not seem to be a performance
bottleneck for Nova neither using BeeFS or Ceph (Figure 7),
as resource deallocation is pretty much the same for Nova

Figure 7: Delete time median (s)

on all scenarios (i.e., stop the VM, delete network resources
and delete virtual disk) and it only costs around 2.3 seconds
on all scenarios.

Figure 8: Runtime median (msec)

Regarding FIO benchmarking, Nova performs, in average,
almost 5 times faster with Ceph on both scenarios com-
pared to baseline and optimized scenarios of BeeFS (Figures
8 and 9). It is clear that latency and runtime are extremely
related: one can simply read runtime as the latency sum of
all operations (e.g., open, write) performed during the bench-
mark. We found that BeeFS is causing write bottlenecks on
Nova, as one single write operation requested by a client po-
tentially turns out on 3 more operations on data servers (i.e.,
seek pointer position and open file, write, close the file), ac-
cording to BeeFS implementation. Nova benefits from Ceph
RBD, as Ceph uses a default writeback cache on the client
[17] and QEMU communicates with RBD to only manipulate

Kaio Kassiano Moura Oliveira

objects/chunks of 4 MB in size. This can represent data in-
consistency, but QEMU RBD driver implementation is aware
of this behavior and, along with the host (i.e. compute node)
kernel, they periodically execute barriers and flushes to send
data to Ceph OSDs.

Figure 9: Average latency median (usec)

Considering the aforementioned behavior before, the out-
perform of Nova using Ceph against Nova using BeeFS is
even more clear when we observe the average bandwidth
used throughout the benchmark. With Ceph, Nova is able to
write around to 25000 KB/s against only an average of 5000
KB/s when using BeeFS (Figure 10).

Figure 10: Average bandwidth median (KB/s)

However, we found out that Ceph performance is affected
on the optimized scenario (i.e., using two OSDs, and repli-
cating all data within both of them). This happens because
when a Ceph pool is configured to use replicas, a client (i.e.,

Nova QEMU) only receives ACK of operations (i.e. write)
when Ceph reproduces the same requested operation on
all replicas [17]. This could lead to unwanted performance
degradation if a Ceph pool is configured for replication with
multiple OSDs, which could be addressed with a proper PG
(Placement Group) configuration or even through the usage
of erasure coding instead of replication.

9 CONCLUSION
This work examined the possibility to use the BeeFS dis-
tributed file system as back-end of OpenStack Nova virtual
machine manager. Although would be desirable, it was not
known that BeeFS could not outperform Ceph when serving
as storage back-end for Nova, as Ceph RBD is de facto the
best storage solution available on the market. Ceph easily
increases Nova performance, through the usage of client
cache and a consolidated data placement. However, it is not
fair to compare BeeFS and Ceph RBD directly, as they are
different solutions built for different purposes, and with dif-
ferent architectures each. For instance, QEMU is aware of
how Ceph works, and it has a proper RBD driver optimized
for communication with RADOS, when QEMU is not even
aware of BeeFS existence.
In future, we would like to develop new functionalities

and a proper QEMU driver focused for communication with
BeeFS. Also, we want to present more deep analysis (i.e., at
lower levels) and performance comparison with other stor-
age back-ends commonly used in OpenStack (e.g., NFS, LVM).
Furthermore, image and volume (i.e., Cinder and Glance) ser-
vice could also be used with BeeFS as the back-end, which
would enable BeeFS as a feasible storage solution for Open-
Stack clouds.

REFERENCES
[1] Jens Axboe. 2017. fio - Flexible I/O tester. Retrieved June 16, 2019

from https://fio.readthedocs.io/en/latest/fio_doc.html
[2] binary lane. 2019. How to benchmark disk I/O. Retrieved June

16, 2019 from https://support.binarylane.com.au/support/solutions/
articles/1000055889-how-to-benchmark-disk-i-o

[3] Ceph blog. 2018. Ceph User Survey 2018 results. Retrieved June
16, 2019 from https://ceph.com/ceph-blog/ceph-user-survey-2018-
results/

[4] CEPH. 2019. Ceph storage. Retrieved June 16, 2019 from https:
//ceph.com/ceph-storage/

[5] Christian, Josh Brunner, Brunner, and Durgin Durgin. 2011. QEMU
Block driver for RADOS (Ceph). Retrieved June 16, 2019 from https:
//github.com/qemu/qemu/blob/master/block/rbd.c

[6] Giacinto Donvito, Giovanni Marzulli, and Domenico Diacono. 2014.
Testing of several distributed file-systems (HDFS, Ceph and GlusterFS)
for supporting the HEP experiments analysis. Journal of Physics:
Conference Series 513, 4 (jun 2014), 042014. https://doi.org/10.1088/
1742-6596/513/4/042014

[7] DZone. 2016. OpenStack: Core Components. Retrieved June 16, 2019
from https://dzone.com/articles/openstack-core-components

https://fio.readthedocs.io/en/latest/fio_doc.html
https://support.binarylane.com.au/support/solutions/articles/1000055889-how-to-benchmark-disk-i-o
https://support.binarylane.com.au/support/solutions/articles/1000055889-how-to-benchmark-disk-i-o
https://ceph.com/ceph-blog/ceph-user-survey-2018-results/
https://ceph.com/ceph-blog/ceph-user-survey-2018-results/
https://ceph.com/ceph-storage/
https://ceph.com/ceph-storage/
https://github.com/qemu/qemu/blob/master/block/rbd.c
https://github.com/qemu/qemu/blob/master/block/rbd.c
https://doi.org/10.1088/1742-6596/513/4/042014
https://doi.org/10.1088/1742-6596/513/4/042014
https://dzone.com/articles/openstack-core-components

Assessing the use of the BeeFS distributed file system on the performance of OpenStack

[8] OpenStack Foundation. 2010. What is OpenStack? Retrieved June
15, 2019 from https://www.openstack.org/software/project-navigator/
openstack-components#openstack-services

[9] OpenStack Foundation. 2012. HypervisorSupportMatrix - Open-
Stack. Retrieved June 16, 2019 from https://wiki.openstack.org/
wiki/HypervisorSupportMatrix

[10] OpenStack Foundation. 2018. OpenStack Docs: Introduction: A Bit
of OpenStack History. Retrieved June 16, 2019 from https://docs.
openstack.org/project-team-guide/introduction.html

[11] OpenStack Foundation. 2019. OpenStack Docs: Flavors. Retrieved June
16, 2019 from https://docs.openstack.org/nova/rocky/user/flavors.html

[12] OpenStack Foundation. 2019. OpenStack Docs: OpenStack-Ansible
Documentation. Retrieved June 10, 2019 from https://docs.openstack.
org/openstack-ansible/rocky/

[13] FUSE. 2008. Fuse: Filesystem in userspace. Retrieved June 16, 2019
from http://fuse.sourceforge.net

[14] Johari Johanes, Khalid Joseph, Mohammad, Mydin Fairus, Mohd, and
Mimos Berhad Nizam, NazaruddinWijee. 2014. Comparison of Various
Virtual Machine Disk Images Performance on GlusterFS and Ceph
Rados Block Devices. (2014).

[15] The Register. 2010. NASA and Rackspace open source cloud fluffer.
Retrieved June 16, 2019 from https://www.theregister.co.uk/2010/07/
19/nasa_rackspace_openstack/

[16] Inktank Storage. 2014. Hard Disk and File System Recommendations.
Retrieved June 16, 2019 from http://docs.ceph.com/docs/jewel/rados/

configuration/filesystem-recommendations
[17] Inktank Storage. 2014. librbd Cache Settings. Retrieved June 16, 2019

from http://docs.ceph.com/docs/jewel/rbd/rbd-config-ref/
[18] Inktank Storage. 2014. QEMU and Block Devices. Retrieved June 16,

2019 from http://docs.ceph.com/docs/jewel/rbd/qemu-rbd/
[19] Inktank Storage. 2014. RBD - Manage Rados Block Device (RBD)

images. Retrieved June 16, 2019 from http://docs.ceph.com/docs/
jewel/man/8/rbd/#striping

[20] Emmanuel Thiago, Jonhnny Pereira, Silva Alexandro Weslley, Fran-
cisco Soares, and Francisco Brasileiro. 2019. Beefs: A cheaper and
naturally scalable distributed file system for corporate environments.
(06 2019).

[21] Sage Weil. 2017. New in Luminous: BlueStore. Retrieved June 16,
2019 from https://ceph.com/community/new-luminous-blueStore/

[22] Sage A. Weil. 2007. Ceph: Reliable, Scalable, and High-Performance
Distributed Storage. Ph.D. Dissertation. University of California, Santa
Cruz, CA.

[23] Guido Winkelmann. 2013. Limitations of Ceph. Retrieved June 16,
2019 from http://lists.ceph.com/pipermail/ceph-users-ceph.com/2013-
August/003942.html

[24] Maksym Yehorov. 2016. What are the advantages of using ceph?
Retrieved June 12, 2019 from https://www.quora.com/What-are-the-
advantages-of-using-ceph

https://www.openstack.org/software/project-navigator/openstack-components#openstack-services
https://www.openstack.org/software/project-navigator/openstack-components#openstack-services
https://wiki.openstack.org/wiki/HypervisorSupportMatrix
https://wiki.openstack.org/wiki/HypervisorSupportMatrix
https://docs.openstack.org/project-team-guide/introduction.html
https://docs.openstack.org/project-team-guide/introduction.html
https://docs.openstack.org/nova/rocky/user/flavors.html
https://docs.openstack.org/openstack-ansible/rocky/
https://docs.openstack.org/openstack-ansible/rocky/
http://fuse.sourceforge.net
https://www.theregister.co.uk/2010/07/19/nasa_rackspace_openstack/
https://www.theregister.co.uk/2010/07/19/nasa_rackspace_openstack/
http://docs.ceph.com/docs/jewel/rados/configuration/filesystem-recommendations
http://docs.ceph.com/docs/jewel/rados/configuration/filesystem-recommendations
http://docs.ceph.com/docs/jewel/rbd/rbd-config-ref/
http://docs.ceph.com/docs/jewel/rbd/qemu-rbd/
http://docs.ceph.com/docs/jewel/man/8/rbd/#striping
http://docs.ceph.com/docs/jewel/man/8/rbd/#striping
https://ceph.com/community/new-luminous-blueStore/
http://lists.ceph.com/pipermail/ceph-users-ceph.com/2013-August/003942.html
http://lists.ceph.com/pipermail/ceph-users-ceph.com/2013-August/003942.html
https://www.quora.com/What-are-the-advantages-of-using-ceph
https://www.quora.com/What-are-the-advantages-of-using-ceph

	ddcac87d39e50e68eaf2a68e5725dd205edbbf0694b22ab93bd734f3d8cf289a.pdf
	Assessing the use of the BeeFS distributed file system on the performance of OpenStack
	Abstract
	1 Acknowledgements
	2 Introduction
	3 Related Work
	4 OpenStack in a nutshell
	Common OpenStack services and projects

	5 Distributed Storage on OpenStack
	6 The BeeFS file system
	Architecture overview

	7 Methodology
	System configuration and setup
	Experiment design

	8 Results and discussion
	9 Conclusion
	References

