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ABSTRACT
Intel SGX has been the subject of numerous research and devel-
opment projects. Moreover, this technology has been considered
a robust option to secure the data being processed in cloud en-
vironments. Despite this, configuring SGX-based applications in
complex and dynamic scenarios such as microservice architectures
is still a challenge. The process of configuring such applications
must guarantee the trustworthiness of the services, and must be
simple and efficient. We then propose a solution for configuring and
provisioning secrets to SGX-based applications made with help of
the Intel SGX SDK. We present a simple solution that can be easily
validated and hardened. Also, the solution is pluggable and can be
extended to fit specific requirements or leverage other tools (e.g.,
for data persistence). In addition to describing our proposal, we also
provide an evaluation that shows low overhead to the initialization
and configuration time of SGX microservices deployed on Kuber-
netes. This work contributes to the state-of-the-art of research on
using trusted execution environments in cloud computing.

KEYWORDS
security, microservices, configuration, Intel SGX

1 INTRODUCTION
The microservices architecture pattern has gained importance in
the software industry and it has been adopted in a huge number of
new projects. Using this pattern, an application is split in a set of
microservices, each one concerned in a single aspect or task. The
growing adoption of this architecture model is supported by the
rise of technologies to manage containers and its communications,
like Kubernetes and Docker Swarm.

To secure the data being processed by microservices Intel SGX
has been considered as a robust option [9], but there are still chal-
lenges when it comes to how to configure and deliver confidential
data to these applications. In spite of Intel SGX providing secu-
rity to the data being processed, providing initial configuration to
SGX-enabled microservices built with Intel SGX Software Devel-
opment Kit (SDK) is not a trivial task. Remotely attesting these
services is the most common and secure way to deliver secrets and
configuration after the startup [6, 10].

When considering configuring and delivering secrets to a single
application in the cloud, the process is straightforward, however,
this is not a realistic case. In a cloud scenario, commonly we have a
huge number of components running at the same time, working to-
gether to achieve a goal. So a more realistic scenario is to have more
than one SGX application running, stopping, starting, restarting,
scaling horizontally, scaling vertically, within a dynamic workflow.
This dynamic feature of cloud computing makes the configuration

a difficult process, once every single service that starts up must be
attested before receives sensitive information.

The process of configuration must guarantee the trustworthiness
of the services, but also must be simple and efficient, without adding
extra time to the startup process and minimizing the cost of the
currently extremely scarce protected memory.

In this paper, we present Squad: a Secure, Simple Storage Service
for cloud-based microservices built with the Intel SGX SDK. Squad
enables microservices administrators to provide initial configu-
ration and secrets to services running within Intel SGX enabled
platforms. The Squad could be instantiated once and is capable to
store configuration for an entire microservices ecosystem, attesting
multiple services concurrently and providing configuration.

Besides been a multi-tenant service, Squad enables three types
of authentication: For early development stages, certificates could
be used for controlling the access. For pre-release applications, the
secrets can be provisioned only to applications signed by a specific
developer. Finally, for production applications, the secrets will be
delivered only to a specific version of the application, as attested
by Squad with help of Intel SGX, blocking adulteration even by the
original developer himself.

This paper is organized as follows: in Section 2 we present a
background, explaining TLS protocol, Intel SGX, and Kubernetes. In
Section 3 we introduce the related works. An application example
that motivates our research is presented in Section 4. Section 5 de-
scribes the threat model considered in our work. Next, the proposed
solution is presented in Section 6. We then evaluate our solution in
Section 7 and discussion results in Section 8. Finally, we finished
this paper with Section 9, presenting the conclusions.

2 BACKGROUND
In this section, we provide background information on concepts
and technologies to aid the understanding of the context of our
work.

2.1 Transport Layer Security
Transport Layer Security (TLS) is a network protocol designed to
provide security to communications over computer networks. The
first version of the TLS protocol was defined in RFC 2246 [5] but the
TLS is constantly evolving. This protocol is the industry standard
for securing connections over networks and provides:

(1) Confidentiality: because the data transmitted in a TLS chan-
nel is encrypted with a symmetric shared key, derived during
the connection handshake.

(2) Integrity: because each message is checked using a message
authentication code (MAC) to prevent data loss or amalicious
alteration during the transmission.
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(3) Authentication: the communicating parties can be authenti-
cated using asymmetric cryptography.

2.2 Kubernetes
Kubernetes is an extensible open-source platform for managing
containerized workloads and services [1]. It can orchestrate com-
puting, networking, and storage infrastructure on behalf of user
workloads. These features make Kubernetes suitable to be used as
a microservices platform. Also, Kubernetes is widely supported.
Among the Kubernetes supporters we can highlight Google (Kuber-
netes was open-sourced by Google in 2014), Amazon Web Services,
Microsoft Azure and the OpenStack cloud platform. It provides a
declarative application programming interface (API).

Kubernetes presents a certain number of abstractions that repre-
sents the state of the systems. In this paper, an important abstrac-
tion of Kubernetes to understand is the Pod. A Kubernetes Pod is
the basic execution unit of a Kubernetes application, representing
processes running on the clusters [2].

2.3 Intel SGX
In this Section, we present a resume about what is Intel SGX and
some important features of this technology that our proposal relies
on. Most of the information here is taken from Intel SGX developer
zone and its documentation and complemented by works from the
research community.

Intel Software Guard Extensions (SGX) is a new set of instruc-
tions and changes in memory access mechanisms added to Intel Ar-
chitecture, that is available on recent off-the-shelf processors based
on the Skylake microarchitecture or newer. It is a hardware-based
technology that allows an application to instantiate a protected
area in the application address space. In this paper, we will refer
to that protected area as an enclave. The access to memory pages
inside enclaves is protected by the SGX-enabled processor [6, 11].

All of the enclaves instantiated within an Intel SGX enabled
machine resides into a protected memory area, called Processor
Reserved Memory (PRM), which is allocated by the BIOS at boot
time. When a processor executes enclave code, it begins to run in
enclave mode. This mode changes the memory access process. The
CPU memory protection blocks access to the PRM from all external
agents, referencing such address to a non-existent memory physical
address. Before allowing access to PRM, the hardware checks if
the process is running in enclave mode, also if the memory page
belongs to the enclave in execution and verifies the correctness of
the virtual address.

2.3.1 Programming Model. According to Silva [13], an Intel SGX
application is divided into two parts: the unprotected area, that
works like a common C/C++ application, and a protected area with
one or more enclaves. It’s important to note that each enclave has
its memory regions isolated from the other enclaves.

The unprotected part of the application runs within the machine
main memory. This part is an interface between the enclaves and
other applications. It also could be used to process non-sensitive
data.

The protected part is composed of one or more enclaves and
must be used to process sensitive data. This part should, ideally,
manage only the sensitive data, as the operations inside enclaves

have the additional cost of the cryptographic processes over the
protected memory pages. Another important characteristic is the
fact that code running in protected part is not able to make system
calls.

2.3.2 Remote Attestation. Anati et al. [6] defines attestation as to
the process of demonstrating that a piece of software has been
properly instantiated on the platform. As a part of Intel SGX, archi-
tecture is the ability to perform remote attestation, allowing thirty
party software to gain confidence that an enclave has been properly
instantiated in an SGX enabled machine.

The Intel SGX architecture establishes two measurements that
can identify an enclave: the enclave identity (1) and the sealing
identity (2).

(1) The Enclave Identity, also named MRENCLAVE, which
is an SHA-256 digest of an internal log that records all the
activity while the enclave is built: the relative position of the
memory pages in the enclave, security flags associated with
these pages as well as the contents of the pages such as code,
data, stack, and heap, make up the log.

(2) The sealing identity includes Sealing Authority, a product
ID and a version number. Typically the Sealing Authority is
the enclave builder. The enclave builder signs an RSA enclave
certificate (SIGSTRUCT) that contains the expected value of
the Enclave Identity (MRENCLAVE), and the public key to
verify the signature. The SGX hardware verifies the signature
and, if the check pass, a hash of the public key of the Sealing
Authority is stored. The value stored is MRSIGNER.

When a challenger software wants to gain confidence that an
attester is running without modifications and in a proper SGX
enabled platform, it can remotely attest this application and check
the measurements obtained with the expected reference values.

The Intel SGX SDK provides some tools that enable the creation
of a structure called QUOTE. The QUOTE keeps information about
the enclave identities and about the platform which the enclave is
running. The Intel also provides the Intel Attestation Service (IAS):
a service that can verify the QUOTE authenticity using a group
signature scheme [6].

The remote attestation process, as used in this work, follows the
protocol established by Intel in its developer guide reference. The
communication involves three agents: the challenger, the attester
and the IAS. The last one uses a mutual transport layer security
as an authentication mechanism. In other words, both IAS and
the challenger must present a valid X.509 certificate in order to
stablish a communication channel. The simplified message flow 1

is as follows:
• Message 0: the challenger sends its public key to the at-
tester, indicating the intent to start a new attestation process.
This public key will be used by the attester to create a con-
text for a Diffie-Hellman key exchange (DHKE), that will
occur during the remote attestation.

• Message 1: after receive the message 0, the attester sends
its public key to the challenger.

1Detailed flow, with code examples, is available at https://software.intel.com/en-
us/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-
end-example.
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Figure 1: Remote attestationflow.High-level figure based on
the remote attestation end to end example provided by Intel.

• Message 2: at this point, the challenger is able to derive a
symmetric shared key (SMK) using the DHKE algorithm. The
message 2 is generated containing the challenger’s public
key, a signature of the concatanation of both public keys
(challenger and attester), and a message authentication code
(MAC) generated with the shared key.

• Message 3: The attester checks the message 2 and creates
a QUOTE with help of the Quoting Enclave. The QUOTE
goes within the message 3 and a MAC is also generated with
the SMK.

• QUOTE Checking: the challenger verifies the MAC and
sends the QUOTE to IAS. The IAS verifies the QUOTE sig-
nature and structure then answering with the Attestation
Verification Report (AVR). If the AVR status is "OK", the
challenger can trust in the content of the QUOTE and then
compare against the reference value (MRENCLAVE or MR-
SIGNER).

• Message 4: this message is a confirmation that the attesta-
tion process was completed successfully. Within the confir-
mation, the challenger can send secrets to the attester.

2.3.3 Sealing. When an enclave is instantiated, Intel SGX ensures
integrity and confidentiality to the data being processed, if the data
is always within the boundaries of the enclave. However, when the
enclave exits, any data within the enclave will be lost. If the data
should be used in future executions of the same enclave or other
versions this enclave, enclaves should have a method to persist the
data for future use.

To achieve the goal of persisting data to future use, in the seminal
paper describing the attestation and sealing [6], Anati et al. explains
that Intel SGX SDK provides access to persistent Sealing Keys that
the developer can use to encrypt and protect the integrity of data
saved to machine storage. Protection against replay attacks is also
possible using monotonic counters.

There are two policies to the access for the sealing keys. They
based in the two identities explained in the Section 2.3.2:

(1) Sealing to the Enclave Identity - Used when only the
same enclave code, with the same MRENCLAVE, must be
able to retrieve the data. It means that not even the new

version of the application that sealed the data can retrieve
the data successfully.

(2) Sealing to the Sealing Identity - Used when the goal is to
be able to transfer data to other enclaves or new versions of
the same enclave. In opposite to the first policy, this policy
uses the MRSIGNER to sealing the data. Thus, the data is
accessible to any enclave that has been signed by the same
developer.

2.3.4 Protected file system library. The protected file system library
is a new feature added to Intel SGX in version 1.7. This library can
be used to operate over files like in the regular C file API. The files
are encrypted and saved to disk during a write operation. Then,
during the read operation, the file is decrypted and verified for con-
fidentiality and integrity. To encrypt a file, the user should provide
a file encryption key. This encryption key could be provisioned
after the enclave startup to share a file with various enclaves.

2.4 Life Cycle of an Intel SGX Application
Also, according to Silva [13], Intel SGX based applications should be
instantiated without sensitive data in memory. Some configurations,
such as cryptography keys, are critical and should not be in the
code. Moreover, secrets and configurations cannot be delivered to
an enclave over a network without checking its integrity and the
platform which it is running on. Thus, we can describe the generic
life cycle of an SGX application as follows:

(1) Enclave initialization - The insecure part of the application
is responsible for creating the enclave. In the initialization
process, the MRENCLAVE is built.

(2) Attestation - An attestation is needed for other applications
to gain trust in the enclave. The result of the attestation pro-
cess a secure communication channel between the enclave
and the challenger.

(3) Configuration provisioning - the application receives its con-
figuration and sensitive data through the secure communi-
cation channel established during the attestation process.

(4) Software evolution - Eventually, any software could need
some update. The configuration should be provided to the
new version.

3 RELATEDWORK
There are some works focused on running Linux applications on
Intel SGX enclaves. Among these works we can highlight:

• SGX-LKL,which is a library OS designed to run unmodified
Linux binaries inside SGX enclaves [4] SGX-LKL is an open-
source project2.

• Graphene-SGX is a port of Graphene library OS [14] pre-
sented by Tsai et al. [15]. Graphene-SGX was open-source
in June 20163.

• Open Enclave SDK, according to its documentation4, is an
SDK for building enclave applications in C and C++, open-
sourced by Microsoft. These enclaves, for now, are Intel SGX

2Available at https://github.com/lsds/sgx-lkl
3Available at https://github.com/oscarlab/graphene
4Available at https://github.com/microsoft/openenclave
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enclaves (like explained in Section 2.3), but the documenta-
tion cites that other options of trusted execution environ-
ments (ARM Trustzone [12]) will be added to the SDK.

• SCONE is a platform that facilitates always encrypted exe-
cution providing secure containers on top of an untrusted
OS [7]. SCONE enables users to run applications inside SGX
enclaves without code modifications, transparently to devel-
opers and service operators. Fetzer also published work on
building critical applications using microservices [9] with
the help of the SCONE environment.

Most of the tools above focus on running legacy applications, but
migrating complete applications to run inside enclaves can bring
complications, as these applications were not intended to runwithin
enclaves. At the very least, porting all the application to an enclave
uses additional protected memory. The last one, SCONE, has a built-
in system to attest and configuring applications running inside the
secure containers. To achieve this goal, the SCONE environment has
a dedicated component: the SCONE Configuration and Attestation
Service (CAS). The CAS is responsible to attest applications running
on secure containers and deliver secrets. In opposition to other
solutions to run applications securely, SCONE is not an open-source
solution. Moreover, the process to run the applications inside SGX
enclaves is transparent and not controlled by the developer. In other
words, the developer does not have control about the partitioning of
the application in both untrusted and trusted parties (as explained
in Section 2.3.1). This lack of control could result in more code inside
an enclave than the necessary, increasing the overhead associated
with the computation inside enclaves.

4 APPLICATION EXAMPLE
Let us consider a scenario where a data provider generates sensitive
location data for various applications interested in consuming these
data (e.g., for marketing purposes). Each consumer application has
different rights over the data, with different levels of anonymization.
Some may have access to the detailed location data, with ZIP codes,
street names and so on. Some may have access to the location with
low precision, for example, with a precision of a half mile. And
some may have access to very low precision, for example, able to
determine only the cities that a person have visited. Let us suppose
that the data is disseminated via a distributed streaming platform
like the Apache Kafka 5. The applications that consume this data
run on a Kubernetes platform.

Each consumer application has its own secure application run-
ning on an SGX enabled environment to process the data received.
The vendor must deliver the location data to each consumer with-
out revealing the encryption key used to encrypt the data on the
vendor’s databases.

In such a scenario, the data provider must check the compliance
of the consumer’s applications regarding the usage of the data.
Furthermore, the applications need to get information on how to
retrieve the data (e.g., address of the message bus, encryption keys).
Of course, these data have to be protected while in transit. One
approach is to encrypt the data in the source and then re-encrypt
before handling to each consumer so that there is not a single
key shared by all applications. Using a single key shared by all
5Information about Apache Kafka is available at https://kafka.apache.org/.

applications represents a potential security issue. In possession of
the key that encrypts the source, an attack can be facilitated.

Considering this example, each consumer’s application must re-
ceive a different initial configuration to read the data and know the
right encryption key to retrieve data from that location. In addition,
the data provider needs to attest each SGX enclave deployed in the
cluster to be a consumer application.

However, providing the initial configuration to applications
based on Intel SGX is difficult. According to Anati et al. [6] and
Knauth et al. [10], the remote attestation process is the best op-
tion to assess the endpoint’s trustworthiness. Moreover, message 4,
described in Section 2.3.2, can deliver secrets to enclaves securely.

Looking for other options to load configuration after the enclave
initialization, we can cite sealing and protected file system. If a
developer decides to use the sealing functionalities of the SGX SDK,
it means that the own application has to previously seal and store
the configuration which is infeasible for a scenario with Kubernetes,
for instance. In the case of using the protected file system library,
the application must have a behavior similar to that of using the
sealing option in addition to initially need a key for the encryption
of the files.

Therefore, using remote attestation is the most viable choice
to provide initial configuration. However, creating an application
that attests other applications and provisions them the secrets is a
tedious, repetitive work that is prone to failures (e.g., bugs in the
application could compromise security). We then propose Squad:
secure, simple, storage service.

The Squad can be instantiated once per application owner and
is able to provision secrets and initial configuration to multiple
applications. Because of its simplicity, it is easily validated and
hardened, and therefore can be reused to increase the security of
the early bootstrap steps of applications based on Intel SGX.

5 THREAT MODEL
The attack surface for this scenario considers that an attacker can
gain privileged access to the machines where the Kubernetes pods
are running, trying to compromise the configuration that the SGX
applications will receive. It can be done reading the disks associated
with these pods or even analyzing themainmemory of the processes
in execution. Our solution must deal with these threats, avoiding
unauthorized from reading the sensitive configuration.

We also consider that an attacker can intercept the messages
exchanged between the configuration keeper and either the op-
erator of the cluster or the SGX applications being configured.
Nevertheless, we assume that an attacker cannot break state of the
art cryptography, used in symmetric and asymmetric encryption
schemes.

We assume that the implementation of our approaches, as well
of Intel SDKs and processors, are free of bugs. We nevertheless,
do not assume that the operating system or hypervisors, which
compose most of the code in the software stack, are free of bugs.

Our proposal was designed to run in an adversarial (i.e., un-
trusted) environment, considering that even the owner of the in-
frastructure where the Kubernetes is running may be interested in
compromising the applications integrity or the data confidentiality.
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6 SQUAD
In this section, we describe Squad, its architecture and plugins,
as well as the communication flow between the services and the
applications that request initial configuration and secrets.

The Squad is an SGX-enabled configuration and storage service.
It offers a simple and extensible interface which can easily provide
configuration for other SGX enabled applications running in a
cloud environment. For instance, the SGX-based applications in a
Kubernetes cluster can easily get configured at initialization time.
The Squad will attest and provide the secrets automatically to every
Kubernetes Pod that reaches the Running state. The Squad itself
can be deployed with the help of Kubernetes.

The remote attestation process was implemented to attest vari-
ous applications at the same time. Each application being attested
keeps its attestation context (four bytes that uniquely identify an
attester) and send it in every message. In this way, Squad can handle
the attestation process with various replicas of the same application
into a Pod.

6.1 Architecture
Squad architecture and implementation are quite simple. And all
of the messages that leave the enclave are protected by secure
communication channels. This simplicity helps to maintain the
ease of update and the small attack surface.

Figure 2: Squad Architecture.

As shown in Figure 2, Squad has the following components:
(1) The HTTPS service, which is responsible to expose an

HTTP interface over the standard Transport Layer Security
protocol to client applications. This component is built on top
of a version of the mbedTLS library [3] ported to Intel SGX
enclaves, ensuring that every TLS connection is terminated
inside the trusted part of Squad 6.

6This component has been development jointly with part of the Zero Touch Provision
(ZTP) project team (Fábio Fernando de Oliveira Silva, Ionésio Lima da Costa Júnior,

(2) The Squad core handles the requests, processes these re-
quests and uses the plugins to obtain a proper response for
each request. This component is also responsible for the
initial setup of the plugins.

(3) The auth plugins are the pieces of software responsible
for the attestation of the clients, ensuring the authenticity
and the access level of these clients. A plugin should receive
information about the connected clients and decide on how
the Squad core should respond to the requests. This decision
is made based on the rules loaded to the storage at the ini-
tial configuration time. The default Squad’s auth plugin is
described in Section 6.3.

(4) the storage plugins are the pieces of software responsible
for the storage of the data used by the auth plugins and
the storage of the secrets that will be provisioned. These
plugins basically provide an interface between Squad and
another entity specialized on storage. By delegating this
responsibility, Squad gains simplicity and can take advantage
of well-accepted solutions. The default plugin that comes
with Squad is also described in section 6.3.

(5) The insecure portion is the piece of software that runs
outside enclaves. As in any Intel SGX based application,
Squad also has an insecure portion. But the only concern of
this part of Squad is to forward encrypted, opaque messages,
thanks to the TLS connection terminated inside the enclaves.

6.2 Communication Flow
In this section, we will describe how is the communication flow
during the configuration of applications in a Kubernetes cluster
with Squad. The flow described here considers the default imple-
mentation of the authentication and authorization plugin. More
about that plugin in the Section 6.3.1.

Figure 3 depicts Squad in the context of a Kubernetes cluster
among other applications to be configured (App A in focus). Just
one instance of Squad is needed to configure the other enclaves in
the cluster.

Figure 3: Communication flow.

We divided the communication flow into five steps. Two steps
are needed before Squad becomes ready to deliver configuration
and secrets to the rest of the cluster. After the two initial steps, three
steps of communication with the applications are needed to have

Ricardo Araujo Santos, Rodolfo Andrade Marinho Silva), at Laboratório de Sistemas
Distribuídos
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the configuration provisioned to the applications. The directions of
the arrows in the figure indicate the direction of HTTPS requests
performed. The first two steps are the following:

• (1) Initial attestation.With the Squad property deployed
and already running, the operator can use a Python helper
application (squad-cli-helper, executing in a trusted ma-
chine) to attest Squad. This attestation ensures that Squad is
running as expected.

• (2) Loading of the configuration. The previous step cre-
ated a secure communication channel, resulting a cryptog-
raphy key shared in the attestation process. This process is
explained in Section 2.3.2. Actually, this step is equivalent to
the message 4 shown in Figure 1.

After these steps Squad is ready to feed other applications based
on the configuration set loaded. The steps 3, 4 and 5 are requests
that the App A and the other applications perform to Squad in
order to retrieve the desired configuration/secrets.

• (3) Challenge request. After the deployment phase, the
App A sends a POST HTTPS request to Squad, indicating
which secrets it wants to receive. As a response to that re-
quest, Squad answers with message 0 of the SGX attestation
process, sending its public key.

• (4) Context initialization. The App A will send its public
key to Squad (message 1). With this public key, Squad will
create a context to keep the data about the attestation that
is in progress. The Squad response to this request with the
attestation message 2.

• (5) QUOTEverification and secret’s deliveryAfter check
the message 2, the attester will generate a QUOTE structure
and it will send a new request with this QUOTE as the pay-
load. In possession of the QUOTE, Squad will make all the
checks needed and respond with the secrets pertaining to
the App A.

6.3 Plugins
As described in the section about its architecture, the Squad can be
easily extended with plugins. This feature makes the Squad suitable
for various deployment scenarios. The architecture, as previously
described, makes it easy to add new functionality to the software
and customize the way the software performs authentication, au-
thorization, and storage.

For the experiments of this paper, we have implemented two
plugins. The first one is an implementation of an authentication and
authorization plugin that can remotely attest Intel SGX enclaves,
and then decide if they should have access to some secret. The
second one is an implementation of a storage plugin capable of
interacting with an SQLite database and store the secrets that Squad
is working on.

6.3.1 Auth Plugin. The default authentication (and authorization)
plugin enables three types of access-levels. For early development
stages, certificates could be used for controlling the access. These
certificated could be provisioned using regular tools such as Ku-
bernetes Secrets. For prerelease applications, the secrets can be
provisioned only to applications signed by a specific developer.
Finally, for production applications, the secrets will only be handed

to the specific version of the running application as attested by
Intel SGX, blocking adulteration of the applications even by the
original developer himself.

For the applications in early development stages, the auth plugin
is able to verify the certificate, checking for some known certifica-
tion authority (CA). The plugin also can be used with self-signed
certificates, favoring the development process.

For prerelease applications, the plugin leverages sealing iden-
tity features, explained in the item 2 of Section 2.3.2, to identify an
application and the different versions while that application is not
stable yet.

Ultimately, the thirty access-level provided is used to production-
ready applications. Using the properties of the enclave identity,
also explained in Section 2.3.2, the plugin is able to verify the iden-
tity and integrity of the application’s enclave, and then decides
when secrets are delivered.

6.3.2 Storage Plugin. The Squad comes with a built-in storage
plugin that can communicate with an SQLite database directly
from its trusted part. The storage plugin encrypts the data before
sending it to the database files and the cryptographic key used in
this process can be obtained with help of Intel SGX SDK in two
ways: using the sealing identity or the enclave identity. The
first way allows the data to be used by different versions of Squad
(e.g. two versions with different auth plugins). The second way will
allow only a specific version of Squad to use the data. This plugin
was developed porting the SQLite C library to be loaded inside
SGX enclaves. The SQlite was chosen for being lightweight adding
almost no overhead to Squad.

7 EVALUATION
In this section, we present a set of experiments we considered to
understand how much time a secure application needs to start
up and configure itself in a microservices scenario considering
Kubernetes as the container orchestrator.

The experiments were designed to compare our proposal with an
approach using SCONE (discussed in the related work, Section 3),
and another approach using a traditional application, not using Intel
SGX, which retrieves configuration from environment variables
without additional security mechanisms.

7.1 Experiments Setup
To set up the experiments we used two virtual machines. The first
one is a virtual machine provisioned by an OpenStack cloud7. The
virtual machine is equipped with two virtual CPUs, 4 GB RAM,
20 GB of storage and 8 MB of memory dedicated to run SGX en-
claves. The second one is a virtual machine with almost the same
specification, but without protected memory available.

We deployed the components to run the experiments as follows:
in the machine with protected memory available, we deployed
a Kubernetes cluster to run the configuration provider (Squad or
SCONECAS) and a sample application written to these experiments.
The other machine has the scripts that manage the cluster and loads
the set of configuration into the configuration keeper.

7Documentation about OpenStack is available at https://www.openstack.org/
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Figure 4: Time needed to retrieve a secret from Squad and SCONE CAS.

In addition, in the machine without protected memory, we de-
ployed an application we named checkpoint. This checkpoint is re-
sponsible only to receive a request from the applications deployed
into the cluster, saving time when this event occurs.

7.2 Scenarios, Metrics, and Parameters
To evaluate the approach used by Squad in relation to other ap-
proaches, we planned an experiment where we have a simple appli-
cation to be deployed with the help of Kubernetes. The application
is as simple as possible and has the following lifecycle:

(1) The application starts;
(2) Retrieve the initial configuration from the configuration

provider;
(3) With the secret in hand, the application performs an HTTPS

GET request to the checkpoint ensuring that the process of
loading the initial configuration finished and some commu-
nication was made.

To understand the cost of using Squad in the Kubernetes deploy-
ment, we consider three scenarios:

(1) Scenario with Squad as the secure configuration provider;
(2) Scenariowith SCONECAS as the secure configuration provider;
(3) Scenario without a secure configuration provider. The con-

figuration is provisioned via environment variables without
additional security mechanisms.

We have decided to measure the time needed for the application
to get configured with each configuration provider. The metric was
obtained as the time elapsed from the execution of the Kubernetes’s
deployment command (kubectl apply) to the moment in which
the application request arrives in the checkpoint. We also measure
the time elapsed from the triggering of the configuration provider
until one secret is successfully loaded into it. For both scenarios, we
have executed 30 cycles of deployment, to obtain a reliable sample.

7.3 Results
According to the achieved results, seen in Figure 4, the configu-
ration process in scenario where an application retrieves secrets

from Squad takes more time than the scenarios with SCONE and
without security mechanisms. The insecure application takes 2.53
seconds (on average) to complete the deployment, including the
configuration process, until the request to the checkpoint is made.
The secure application takes 4.14 seconds, on average, when get-
ting configuration from SCONE CAS and 5.99 seconds, on average,
when getting configuration from Squad.

In Figure 5 we can see a comparison between the time needed
to deploy and load the configuration into Squad and SCONE. The
time needed by Squad to get ready to deliver configuration is, on
average, 8.39 seconds. This time is almost double of the needed by
SCONE CAS: 4.37 seconds.

Figure 5: Initialization time.

The higher values for Squad and SDK applications in the experi-
ments were expected because as an application based on the SGX
SDK depends on the SGX Platform SoftWare (PSW). In Linux, the
PSW is implemented as a service, and this service must be running
in order to SGX applications to run on a particular machine. Thus,
the Pod in which the application or Squad are running on has to
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load the PSW before loading the application, introducing additional
delay.

8 DISCUSSION
According to the measured results described in the previous section,
the solution proposed to configure Intel SGX SDK applications
running in a microservices architecture presents a low overhead to
the startup of the services provisioned by Kubernetes.

With the help of Squad, other SGX enabled applications can be
easily deployed and configured into Kubernetes. The only additional
work is to store the secrets and the authenticated and authorization
rules into Squad through the first attestation process, used to gain
confidence that Squad is running property.

In spite of the fact of solutions like the SCONE platform mak-
ing easy to run applications on SGX machines and orchestrators
like Docker Swarm and Kubernetes, these platforms take from the
developer the control over the applications (which parts will run
inside enclaves, as explained earlier in Section 2.3.1) and are propri-
etary solutions. Our solution can be used directly with applications
built with the Intel SGX SDK, in which the developer has complete
control over the decision about how the application runs.

Our proposed configuration process does not depends on envi-
ronment variables or command line arguments as with the SCONE
environment. In this way, the size of the data shared is not limited
either by the size of an environment variable or a command line
argument. In addition, specific needs of various challenges can be
achieved using the extensible aspect of Squad, what is difficult with
proprietary solutions.

The Squad also deals with the threats mentioned in Section 5. It is
robust against the owner of the infrastructure where the Kubernetes
runs thanks to Intel SGX technology. The sensitive configuration
and secrets are always being processed inside an SGX enclave, in-
heriting all security properties. Moreover, all the communication
with other applications and with the squad-cli-helper is made
over the TLS protocol, ensuring integrity and confidentiality to
the data passing by. Finally, Squad is also attestable. It means that
someone using Squad is protected even against the Squad develop-
ers, once any adulteration in the expected code will reflect in the
Squad’s MRENCLAVE.

9 CONCLUSION
Intel SGX has been considered a robust option to build secure
applications that process sensitive data. Despite this, there is a
lack of solutions to provide initial configuration to enclaves built
with the Intel SGX SDK. We then proposed Squad: a secure, simple
storage service for SGX-based microservices.

The squad is capable of attesting other SGX applications and
provide configuration and secrets over TLS. It can be easily deployed
with the help of Kubernetes and in 8.39 seconds, on average, it is
ready to attest and deliver secrets to a cluster.

The default authentication plugin that comes with Squad takes
advantage of the two identities provided by the Intel SGX archi-
tecture and can use the enclave identity or the sealing identity to
decide when authorizing the access for some configuration. An-
other important feature of Squad comes with the default storage
plugin. Our solution only maintains in the enclave memory a few

pieces of information: the data being processed, the context needed
to make the TLS handshakes, and the contexts to the attestation
processes. The rest of the data is stored in the encrypted database.
In addition, one instance of Squad is needed per cluster and it
has fault tolerance following a checkpoint-based rollback-restart
approach [8]. If a Squad instance stops for any reason, the new
instance can retrieve all the data stored.

In a summary, Squad is intended to be a lightweight and easy-
to-use solution to the attestation and secret provisioning of secure
application built with Intel SGX SDK, being specially useful when
multiple applications are needed, such as in a microservice envi-
ronment.
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