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Abstract

Given the need for low-cost ground truth in the laboratory with comparable performance

to the commercially available motion capture systems, this study proposes off-the-shelf

hardware and open-source software for a motion capture system. In the proposed scheme,

cameras track passive markers based on their infrared reflection. Four V2 NoIR Raspberry

cameras were applied with the goal of subcentimeter accuracy at 100 Hz. Algorithms for

clock synchronization, quick contour extraction, and intrinsic camera calibration are ad-

dressed. Construction issues of non-uniform lighting or noisy reflections are also discussed.

As a result of this study, a correction of the OpenCV extrinsics calibration library, a cal-

ibration toolbox for the generic lens model, and an innovative ordering algorithm for the

markers were proposed. The system’s performance achieved subcentimeter precision com-

pared to industrial arm encoder data. Three drone flights are also included as examples.

The code is already public, and further study will be in charge of fine-tuning the available

configuration for multiple vehicles.

Keywords: indoor positioning system, visual odometry, optical tracking, motion capture,

asynchronous, heterogeneous, RealSense, Raspberry Pi, infrared, extrinsics calibration, in-

trinsics calibration, subcentimetre accuracy.
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Resumo

Dada a necessidade de um rastreio de trajetória de baixo custo com desempenho comparável

ao sistema de captura de movimento disponível comercialmente, este estudo propõe um

conjunto de hardware de prateleira e softwares de código aberto para um sistema de captura

de movimento. No esquema proposto, as câmeras rastreiam marcadores passivos a partir

de sua reflexão à irradiação infravermelha. Quatro câmeras V2 NoIR Raspberry foram

aplicadas para atingir precisão de subcentímetro em 100 Hz. Algoritmos para sincronização

de relógio, extração rápida de contorno e calibração intrínseca da câmera são abordados em

plataformas embarcadas. Questões de construção de iluminação não uniforme ou reflexos

ruidosos também são discutidas. Como resultado deste estudo, foi proposta uma correção

da biblioteca de calibração de lentes extrínsecas OpenCV, um algoritmo de calibração para

o modelo genérico de lentes e um algoritmo inovador de ordenação para os marcadores. O

desempenho do sistema alcançou uma precisão de subcentímetro em comparação com os

dados do codificador de um braço industrial. Três vôos com drones também estão incluídos

como exemplos. O código é público, e um estudo mais aprofundado será encarregado de

afinar a configuração disponível para vários veículos.

Keywords: sistema de posicionamento interno, odometria visual, rastreamento óptico,

captura de movimento, assíncrono, heterogêneo, RealSense, Raspberry Pi, infravermelho,

calibração extrínseca, calibração intrínseca, precisão subcentimétrica.
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Chapter 1

Introduction

In this chapter, the requirement for a self-made motion capture system in the laboratory

will be contextualised. Then, the objectives of this master thesis will be enumerated and

further justified. The following section will go through the chapter structure and contents.

1.1 Motivation

There has been an increasing interest in robotics in academic and production line appli-

cations as the 4.0 industry thrives. Yet, due to weak, noisy or non-reliable GPS signals in

indoor scenarios—such as shop floors or laboratories—to accurately detect a mobile robot’s

location is a complex task, directly affecting vehicles’ control and path tracking algorithms.

Localisation solutions are thus highly investigated and optimised.

Indoor positioning systems (IPS) may be built using either embedded sensors on the

tracked vehicle or instrumentation of the environment. The most appropriate IPS technique

is, however, highly dependent on the tracking system’s purpose, the range and precision of

the embedded sensors, and the infrastructure available at the workplace. For instance, when

millimetre precision is required, it’s unsuitable to apply conventional embedded Inertial

Measurement Unit (IMU), since it predicts location through integration and is therefore

prone to cumulative error[1]. WLAN and Bluetooth Low Energy (BLE) fingerprinting are

no exception, with a maximum accuracy of 50 cm[2].

When centimetre precision is required, one must consider whether it is possible to modify



Chapter 1. Introduction 16

the vehicle’s hardware and install a better-suited sensor. For instance, Light Detection and

Ranging (LIDAR) sensors are more reliable than IMUs[3], particularly when their data is

fused[4] using Kalman Filter (KF). This approach is however limited to terrestrial vehicles[5]

because LIDARs can only collect two-dimensional locations. These sensors also weigh more

than 150g, which is significant compared to vehicles like drones that weigh less than 100g.

Lighter sensors, such as ultra-wideband sensor (UWB) radars[6–10] or even RFID and

NFC tags[11], are preferable for ensuring widespread localisation solutions. Nonetheless,

these passive tags require the label to move continuously around the reader for measurement,

making them unsuitable for particular tasks, such as pick and place, where the vehicle must

remain stationary. The scalability to larger scenarios may also be a concern, given the

difficulty in determining the best mix of beacons or broadcast settings[12].

When using an off-the-shelf closed platform, a vision-based IPS is thus a more practi-

cal choice. Simultaneous localisation and mapping (SLAM) solutions[13–15] that reconstruct

3D maps of indoor scenes are suitable for vehicles with onboard cameras. However, this

technique is limited to circumstances in which distinct feature points are visible between

frames[16] and is therefore inappropriate for indoor scenes with minimal roughness and sur-

faces devoid of trackable features[17, 18].

In spite of this restriction, synthetic trackable features may be added to the scene objects

under controllable settings and enable motion capture systems (MCS) as a positioning

technique. In this approach, artificial markers—such as infrared LEDs[19, 20] or reflective

tags[21]—are attached to the vehicle and detected by cameras in a paired arrangement. The

position of the markers in 3D space may then be recreated using matching and triangulation

algorithms[22]. The calibration of this system is rigid, but it allows the user to relocate the

cameras to the ideal capturing configuration to observe the scene. Commercial MCS, such

as OptiTrack[23] and VICON[24–26], achieve millimetre accuracy, but are yet expensive (5 to

160 thousand dollars), since they require the purchase of an entire package (e.g. cameras,

calibration wand, active or passive markers, lenses, rendering software, external hardware

trigger) incompatible with any open-source device.

Accordingly, efforts are being made to develop robust optical tracking using commer-

cially available off-the-shelf hardware[27, 28]. This work focuses on the mock-up of an MCS

using heterogeneous and asynchronous off-the-shelf capture platforms in computationally
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restricted settings. We also employ a networked trigger system to guarantee no cable ar-

rangement limitations. A prototype is constructed with store-bought hardware, and the

calibration, image segmentation, and performance are validated. This setup will be avail-

able at the laboratory for further vehicle control and navigation algorithms experiments.

1.2 Objective

The primary purpose of this master thesis is to propose the hardware and software bun-

dle for an optical IPS. Although it appears straightforward at first glance, the concatenation

of solutions (e.g. synchronised shutter timing, contour extraction, picture segmentation, and

camera calibration) is a technological problem that comes from different combinations of al-

gorithm settings and setup circumstances (e.g. illumination, reflective surface construction).

In addition, given the scarcity of practical information in the open technical literature, this

study describes how to avoid trial loops in order to obtain a calibration setup with subcen-

timetre precision. The following research will be responsible for fine-tuning the proposed

system to the dynamic rate of various robots and increasing the tracking for numerous

vehicles.

1.2.1 Specific objectives

To attain effectiveness and robustness, the suggested methodology seeks to:

• Elect appropriate camera’s models and suitable framework for image processing and

camera’s intrinsic calibration;

• Examine the limits of triangulation algorithms and how to improve camera’s extrinsic

parameters calibration;

• Investigate the suitability and implementation of centralised and decentralised archi-

tectures for the proposed system;

• Implement global software trigger to compose a network-activated visual IPS;

• Test multiple artificial marker sizes and layouts to identify the relation between accu-

rateness in 3D reconstruction and the cameras’ disposition, focal length and resolution;
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• Validate and assess the system’s performance by computing the distance error of a

test trajectory to a ground truth.

1.3 Structure

This document is structured in the following sections: chapter 2 describes a bibliog-

raphy review of MCS constraints and mathematical foundations, chapter 3 presents the

methodology of the planned experiments, and chapter 4 describes experimental results and

discussions. Lastly, chapter 5 resumes the conclusion of this project.



Chapter 2

Literature review

The literature review is described in this chapter. The limits and assumptions of motion

capture systems are outlined first. Following that, the workflow’s notation and mathematical

concepts are given.

2.1 Constraints of optical tracking systems

Unlike MCS for film production, where the markers reconstruction may be offline, IPS

must follow the dynamic rates of the vehicle’s control loop. Mehling[27] defines the main

constraints of a visual IPS as latency, jitter, accuracy, frame rate, range and illumination.

Latency

The time between capture and transfer to the feedback loop is determined by the con-

troller’s ability to forecast the vehicle’s pose. The route tracking of the robots will be

hampered if the delay is too significant. To compensate for long latencies, OptiTrack sys-

tems predict the future position of the markers (that for the Flex 3 camera is 10ms). In

asynchronous systems, the latency varies between cameras, as depicted in Figure 2.1.

Jitter

Jitter is the noise in tracking data that occurs when all objects in a scene remain still,

as depicted in Figure 2.2. The camera’s exposure and white balance gains, and the scene
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Figure 2.1: Time diagram from the capture trigger to the reconstruction of the 3D pose
in a synchronous (a) and asynchronous (b) motion caption system.

(a) Synchronous capture system

(b) Assynchronous capture system

Source: Prepared by the author.

lighting must remain consistent to minimise this disturbance. Fixing the exposure that

provides the most stable 3D reconstruction is the key to achieving minimal jitter. For the

OptiTrack system, Teather, Pavlovych and Stuerzlinger[29] reported a 0.3 mm jitter to an

optical mouse tracker.

Accuracy

The application’s purpose mainly determines the accuracy required of an MCS. For

example, subject pose authenticity is not as crucial as during rescue efforts in underground

chambers. According to the most recent survey of non-commercial infrared-based IPS[30],

the best-achieved accuracy was about 1 cm. The lowest-cost OptiTrack system (four Flex

3 cameras) reports an accuracy of 0.5 mm for a 14 mm marker on a 9 m⇥9 m capture area

using six cameras. An example of accuracy in the 3D reconstruction of a circular marker is

depicted in Figure 2.2.
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Figure 2.2: Illustration of accuracy and jitter for an still circular marker.

Source: Prepared by the author.

Frame rate

The update rate of the subject’s position must be compatible with the vehicle’s maximum

velocity. For instance, Flex 3 captures 100 frames per second (FPS) with 640⇥480 pixels

and MJPEG format. When accuracy is more important than update frequency, however,

the trade-off for high-resolution images leads FPS ratio to decay to roughly 30Hz[31]. The

frame rate is constrained by the data processing time and communication bandwidth.

Range

The size of the interaction volume also relies on the purpose of the application. However,

it is also dependent on the focal length of the infrared (IR) emitters, the field of view

(FOV) of the cameras, and the reach of the communication protocol between triggered

platforms. The range should be sufficient without impacting the camera distribution, the

size or arrangement of the markers, or the system’s accuracy. For instance, the Flex 3

camera can detect passive markers up to 6 metres away.

Illumination

The ability to add a new sensor to the vehicle determines whether to use passive or active

IR markers. Given the goal of developing a generic MCS, this study treats the vehicle as a

closed platform and chooses passive reflecting tags to designate the rigid body. As a result,
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IR emitters must light the scene, and the correct balance between the number of emitters

and camera positioning must be found to eliminate jitter. It is also a good idea to utilise

IR-pass filters to avoid outliers. The Flex 3, for example, is outfitted with a 26 LED 850

nm IR ring light with an 800 nm long-pass filter.

2.2 Assumptions

You et al.[9] assumes following conditions for a project of a MCS:

Assumption 1: Without loss of generality, the 1st camera is regarded as the reference

camera.

Assumption 2: At least two cameras share a common overlap, because a marker can only

be reconstructed when it is visible from a pair of cameras.

Assumption 3: The empirically established cameras’ number and placement satisfy the

visibility demands. However, the optimal position remains to be searched in the future.

Assumption 4: The markers layout must be asymmetric, and the centre of the markers

must also be as close as possible to the centre of gravity (COG) of the vehicle.

Assumption 5: The camera intrinsics parameters (i.e. distortion coefficients, focal length

and principal point) remain unaltered during calibration.

2.3 Notation and definitions

Basic notions of perspective and multi-view geometry are essential to comprehend the

triangulation process. Similar to Deng et al.[28], Rm⇥n as a real matrix with m lines and n

columns, and Rn as a real n-dimensional column-vector. Note AT and A�1 as the transpose

and inverse matrix of A. The symbol x̃ indicates the homogeneous coordinate of x by adding

a scalar as the last element; i.e. expanding one dimension, so dim(x̃) = dim(x) + 1[22].

Uppercase vectors X are in 3D-space, whilst lowercase x are on a 2D plane. The cross

product a⇥ b is noted as [a]⇥b, for a1⇥3 skew-symmetric.
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Consider the coordinate systems illustrated in Figure 2.3: the earth fixed coordinate

system (EFCS), the body coordinate system (BCS) of the mobile vehicle, and each cameras

coordinate system (CCS). The main goal of the calibration is to determine the transfor-

mation between each CCS and the EFCS. Then, with the image data from each CCS, it’s

possible to estimate the pose between the markers attached to the robot’s body and the

ECFC. These markers’ position concerning the BCS origin is known.

To calibrate, the system consisting of M 2 Z+ cameras captures three markers (A,B,C)

fixed on a stick, as in Figure 2.4. Each markers’ 3D pose is written as Xk
j = [Xk

j , Y
k
j , Z

k
j ]

T ,

for j the image frame index and k = A,B or C. The projection of these markers in the jth

frame on the image plane of the ith camera is denoted x
k,i
j = [xk,i

j , yk,ij ]T . Note on Figure 2.3

that the origin oci of each camera is located over the camera’s optical centre whilst the ocizci

axis is aligned with its optical axis.

2.3.1 Notions on perspective geometry

A camera is usually modelled by the pinhole camera model[32], for which the relationship

between a 3D point X̃ and its image projection x̃ is given by:

x̃ =

2
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(2.1)

where K is the camera intrinsics matrix, (α, β) represents the focal length in pixels in the

horizontal and vertical direction, (u0, v0) is the principal point coordinate, and γ is the skew

factor. The projection of X to x is depicted in Figure 2.5. To dislocate x̃ from the CCS to

the EFCS, Equation 2.1 is rewritten to:

λx̃ = K[R | t]X̃ ) x̃ = PX̃ (2.2)

where (R3⇥3, t3) is the extrinsic parameters, i.e. the rotation and translation of the CCS

to the EFCS, λ a scale factor, and P 3⇥4 is the projection matrix. For actual non-pinhole

lenses, the assumption of linearity between the world point, optical centre and image point
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Figure 2.3: Illustration of the EFCS, BCS and CFF coordinate system.

Source: Adapted from Deng et al.[28].
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Figure 2.4: Calibration 1D wand prototype for three markers.

Source: Prepared by the author.

Figure 2.5: Projection of the side of a box to an image plane.

Source: Prepared by the author.
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does not hold. The correction for this lens distortion (see Figure 2.6) is to adopt a distortion

factor L(r) = (1+k1r
2+k2r

4+k3r
6)/(1+k4r

2+k5r
4+k6r

6), for r the radial distance from

the centre of radial distortion (xc, yc)
T and (xd, yd) the distorted coordinates:

8

>

<

>

:

x = xc + L(r)(xd � xc)

y = yc + L(r)(yd � yc)

(2.3)

Figure 2.6: The image of a square capture with lens distortion (left) and correct to a linear
model (right).

Source: Adapted from Hartley and Zisserman[22].

The intrinsic parameters must also count for sensor-to-lens misalignment. The following

equation maps an image point into its corresponding 3D vector trough an affine transfor-

mation, as displayed in Figure 2.7:

x̃ =

2

4

c d

e 1

3

5

2

4

xsensor

ysensor

3

5+

2

4

xcs

ycs

3

5 = λ

2
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6
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4

xsensor

ysensor

f(ρ)

3

7

7

7

5

= PX̃ (2.4)

where (c, d, e) compose the stretch matrix[33], which is represented as the polynomial trans-

formation f(ρ) = aoρ+ a2ρ
2 + ...+ anρ

n[34], for ρ the radial distance from the centre of the

sensor (xcs, ycs)
T and (xsensor, ysensor)

T the corresponding image point on the sensor plane.

The unknown intrinsic and distortion parameters are calibrated by an analytical solution

followed by an non-linear least squares minimisation. Further details about this procedure

can be found in Zhang[32] and Bouguet[35].

In this work, however, the generic camera model proposed by Kannala and Brandt[36] is

used. In this model, the lens is a spherical dome parallel to the image plane, as shown in
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Figure 2.7: Sensor plane in metric coordinates (left) and camera image plane expressed
in pixel coordinates (right) when tangential distortion is non negligible.

Source: Adapted from Zhang[32].

Figure 2.8. The 2D coordinate of a pixel in the image can be found as:

x̃ =

2

6

6

6

4

α 0 u0

0 β v0

0 0 1

3

7

7

7

5

x̃d (2.5)

The mapping of the incoming rays to the distorted image coordinates x̃d is:

x̃d = r(θ)ur(ϕ) (2.6)

for r(θ) = θ+ k1θ
3 + k2θ

5 + k3θ
5 + k4θ

9 and ur(ϕ) the unit vector in the direction of r(θ).

The odd powers are dropped without loss of generality, and the coefficients ki are such

that r(θ) is monotonically increasing on the interval [0, θmax], for θmax the FOV. The calibra-

tion of ki involves planar homography estimation and external parameters decomposition,

which will be shown in the following section. Further details about this procedure can be

found in Kannala and Brandt[36] and Deng et al.[21]. The tangential distortion was ignored.

Without redoing the capture of the calibration board, the intrinsic matrix may be re-

computed to a new resolution. If the entire picture is resized, the focal length must only be

rescaled to the ratio between the new and the old image. However, if the image is cropped,

the principal point must be recentered. The order of these steps must be respected while

both rescaling and cropping. For example, if the original picture was redimensioned from

a previous height Hp to H, and then cropped U pixels in the horizontal direction and V
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Figure 2.8: Generic camera model considering a spherical lens distant f millimetres from
the projected image plane. The image of X is x whereas it would be x

0

by a pinhole camera.

Source: Adapted from Kannala and Brandt[36].

pixels in the vertical direction on both sides of the image, the new principal point (u0n , v0n)

would be:
8

>

<

>

:

u0n = H
Hp

u0 � 0.5U

v0n = H
Hp

v0 � 0.5V

(2.7)

2.3.2 Notions on epipolar geometry

Suppose a point X in a 3D-space is imaged in two views: x and x
0

for the first and

second cameras. As shown in Figure 2.9, the centre of the cameras C and C
0

are coplanar

at π and thus are also the rays projected from X to x and x
0

. The epipoles e and e
0

are

the intersection of the line joining C and C
0

with the respective image planes. The epipolar

line l
0

is the image of the ray from X to x back-projected on the second image plane.

For a point x̃ in one image, there is a corresponding epipolar line l
0

in the other image

plane, on which any matching point x̃
0

must lie. Hence, there is a 2D homography H
π

mapping such that x̃
0

= H
π
x̃ and [x̃

0

]T · l
0

= 0, for · the inner product. Given that both ẽ
0

and x̃
0

pass through l
0

:

l
0

= [ẽ
0

]⇥x̃
0

= [e
0

]⇥Hπ
x̃ = F x̃ (2.8)

for F 3⇥3 = [ẽ
0

]⇥Hπ
the fundamental matrix.
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Figure 2.9: Epipolar multi-view geometry relation between two cameras’ image plane.

Source: Adapted from Hartley and Zisserman[22].

The correspondence between x̃
0

and x̃ is:

[x̃
0

]T · l
0

= [x̃
0

]TF x̃ = 0 (2.9)

Recalling that the last element of x and x
0

is unitary, Equation 2.9 can be rewritten as

Af = 0, where f 9 is a vector made up of the entries of F in row-major order and AN⇥9,

a matrix with rank 8. N is the number of point matches. Therefore, the solution for F is

unique up to scale and can be found by linear methods (i.e. generator of the right null-space

of A). In the case of noisy data, the rank of A maybe 9, and thus F is a least-squares

solution (i.e. singular vector corresponding to the smallest singular value of A)[22].

It is worth noting that F has only seven independent values (i.e. degrees of freedom,

DOF). When counting the unique equations from A, there are eight DOF, but one is

subtracted from the restriction detF = 0. Another way of computing F DOF is to sum

two DOF for the epipole e, two DOF for the epipole e
0

, and three DOF for the homography

H
π

which maps a line through e to a line through e
0 [22].

Due to an projection ambiguity, one may not recover R and t from the fundamental

matrix. Suppose that F corresponds to two different pairs (P ,P
0

) and (P̂ , P̂
0

), with

P̂ = PH and P̂
0

= P
0

H , for H4⇥4 a projective 3D transformation. Note that λx
0

=

P
0

X = (P
0

H)(H�1X) = P̂
0

X̂, for λ a scalar. Therefore, if x and x
0

are the matched

points to the cameras (P ,P
0

) corresponding to a 3D point X, they are also matched points

between the pair (P̂ , P̂
0

) to the point X̂. The solution of Equation 2.9 is not unique.
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The fundamental matrix can also be written as a function of the projection matrices

P = K[I3⇥3 |03] and P
0

= K
0

[R | t]. Admit P+ =
⇥

K�1 | (03)T
⇤T

as the pseudo-inverse of

P , thus H
π
= P

0

P+. The epipole ẽ
0

is written as ẽ
0

= P
0

C̃, where C̃ = [0, 0, 0, 1]T is the

1st camera position in the EFCS. Hence, Equation 2.8 can be revised to:

l
0

= [ẽ
0

]⇥Hπ
x̃ = [P

0

C̃]⇥P
0

P+x̃ = [K
0

t]⇥K
0

RK�1x̃ (2.10)

Hartley and Zisserman[22] defines that [Mp]⇥M = M�T [p]⇥, where M a non-singular

invertible matrix and p, a skew-symmetric matrix. Comparing Equation 2.10 to Equa-

tion 2.8, one can infer that:

F = [K
0

t]⇥K
0

RK�1 = K
0
�T [t]⇥RK�1 = K

0
�TEK�1 (2.11)

where E3⇥3 = [t]⇥R = K
0TFK is the essential matrix. Likewise to the fundamental

matrix, the E has rank 2. Nevertheless, matrix E has only five DOF. It would initially be

7 DOF as the fundamental matrix, but one DOF is subtracted for each normalisation by

the intrinsic matrix K and K
0

.

Since both t and R have three DOF, there is an overall scale ambiguity λ. One can,

however, retrieve P
0

from E using singular value decomposition (SVD)[21, 22]. Given an

square matrix M , SVD can be used to factor M = UDV T , where U and V are orthogonal

matrices and D is a diagonal matrix with non-negative values. This decomposition is done

in a way that the columns of V represent the singular values of M in descending order[22].

It is simple to decompose E as [t]⇥R = SR, for S a skew symmetric matrix. Hartley

and Zisserman[22] defines that the skew symmetric matrix S may be written as:

S = Udiag(1, 1, 0)WUT (2.12)

for U and W orthogonal matrices, and diag(1, 1, 0)W an skew symmetric matrix. So let

E = Udiag(1, 1, 0)(WUTR), or E = UDV T . Due to the unitary elements in the diagonal

of D, this is an SVD of two equal singular values. Therefore, the solution of the SVD is not

unique and given by:
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E = Udiag(R2⇥2, 1)diag(1, 1, 0)(R2⇥2, 1)V T (2.13)

for any 2⇥2 rotation matrix R[22]. There are thus four possible solutions for P
0

= [R | t][22]:

P
0

=
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>

>

>

>

>

>

>

>
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>

>

>

>

>

>

>

>

:
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(2.14)

where U | is the last column of U . The correct result is chosen testing if X is reconstructed

in front of both cameras (Z > 0). This check is not performed by the OpenCV library and

must consequently be manually implemented. The equations λx = PX and λ
0

x̃
0

= P
0

X̃

can be combined to into a form AX̃ = b by a cross product:

x̃⇥ PX̃ =

2

6

6

6

4

xp3T � p1T

yp3T � p2T

xp2T � yp1T

3

7

7

7

5

X̃ (2.15)

for piT the ith row of P . These equations are linear in X, but only two are linearly

independent. Hence, for two views, Equation 2.15 is written as:
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X̃ = AX̃ = 0 (2.16)

for A 2 RN⇥4. One may reconstruct AX = b using linear least-squares:

X = (ATA)�1ATb (2.17)

As N > rank(A) = 3, the solution is not unique, and ATA is not invertible. Thus,

the usual choice is to minimise the Euclidian norm, i.e. the smallest singular value of A.
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X is the triangulation result (or 3D reconstruction) of the 2D points x and x
0

.The scale

ambiguity t̂ = λt is solved from the known distances between the markers on the wand:

λ =
1

3N

N
X

j=1

"

LAC

kXA
j �XC

j k
+

LAB

kXA
j �XB

j k
+

LBC

kXB
j �XC

j k

#

(2.18)

for kak the 2-norm of the vector a.

2.4 Final considerations

This chapter described the constraints and assumptions of optical IPS and the math-

ematical basis under the 3D reconstruction of a 2D marker. The next chapter must thus

clarify how these assumptions were assured and the elements used to design the testbed.



Chapter 3

The proposed indoor positioning system

The hardware and architecture of each experimental phase of the system are discussed

in this chapter.

3.1 Hardware design

The system’s physical architecture comprises five principal components: target subjects,

onboard reflective markers, scenario constraints, cameras and arena workspace. Each of

these components will be discussed below.

3.1.1 Monitored mobile vehicle

A Tello DJI and the Parrot Mambo quadrotor are defined as our monitored mobile

vehicles for this work. These drones are commercially available and have support within

Matlab and python, allowing future studies to feedback on the estimated pose to the

onboard controller. Taking the bumpers into account, both drones are around 18 cm broad.

A test wand is constructed similar to where the markers would be attached to the drone,

as shown in Figure 3.1. The alignment of the markers is used to minimise reprojection

errors, whilst the fourth sphere enables orientation estimation. For extrinsics calibration,

one may use only the aligned markers similar to the wand illustrated in Figure 2.4. It should

be mentioned that the markers may be configured in any way wanted; this was only the

decision of our work.
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Figure 3.1: Picture of the Tello DJI (a), Parrot Mambo (b) and the four maker wand (c).

(a) Tello DJI — 80g, 18 cm ⇥
18 cm

(b) Parrot Mambo — 60g,

18 cm ⇥ 18cm

(c) Test wand — 15 cm ⇥
15 cm

Source: Prepared by the author.

3.1.2 Reflective markers

The markers are built by sticking reflective car wrapping paper on polystyrene spheres.

Considering the drones’ width and height, the chosen markers have a 20 mm diameter.

However, we coated spheres of multiple diameters (Figure 3.2b) to discuss the marker’s

visibility and reconstruction accuracy in various resolutions, which will be presented in

chapter 4. A larger 50 cm wand was constructed for these experiments (Figure 3.2a).

Figure 3.2: Picture of the 50 cm wand (a) and the markers used to test the MCS (b).

(a) Larger three marker 1D wand (b) Multiple size markers.

Source: Prepared by the author.

3.1.3 Scene settings

After capture, sequential filters segment the markers from the image background. To

prevent continuous threshold adjustments, the illumination must be constant. Therefore,

all light sources should be artificial, and the camera’s FPS should be slower than the utility
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frequency (60Hz) if no IR low or band-pass filter is used. The camera’s auto exposure and

white balance settings must also be disabled since they affect the intensity of the image and

shift the timing to a dynamic rate.

Another practical tip is to wear darker clothing and painting the wand matte black

when calibrating since this creates greater contrast between the markers background. The

windows were also blocked and blackout curtains were added to guarantee no outer IR

light leakage. The floor was covered with a rubber mat to avoid breaking the drones upon

collision. Pictures of inside and outside the arena are shown in Figure 3.3.

Figure 3.3: Images from both inside (a) and outside (b) the arena. The shelves are 2.6
meters above the ground and house the Raspberry Pi, cooler, and camera. Curtains were
installed to block IR light and shield laboratory users from fast-moving vehicles. Opaque
paper was also used to cover the windows to prevent IR light from entering the arena.

(a) Inside the arena. (b) Outside the arena.

Source: Prepared by the author.

3.1.4 Cameras and arena setup

The camera arrangement divided the arena design into three phases. In the initial phase,

two RealSense cameras were used. These cameras already offer intrinsic fabric calibration

(pinhole model in Equation 2.1), simplifying the workflow to only extrinsic calibration (as

in Equation 2.14). They cost, however, over $300 since they also include an stereo pair and

an inbuilt laser aside from the RGB camera.

In the second phase, two Raspberry NoIR V1 cameras were employed. These cameras

cost $15 each and have a broader range of low-level access settings than the high-end Re-

alSense cameras. Nevertheless, they have a sharpness issue when operating at over 40FPS.

This issue is not present at the second version (V2) of the same camera.
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The final of the setup runs over four Raspberry NoIR V2 cameras. Following, each phase

will be thoroughly discussed.

Phase 1

In the first phase, the system was composed two RealSense D415 cameras. Since these

cameras contain embedded intrinsic calibration (pinhole model in Equation 2.1) and syn-

chronous software triggers, the output image is already rectified and simultaneous between

all devices. They are also equipped with one RGB and two IR sensors, besides an IR beam

to lighten the scene. Nevertheless, this laser has a projection pattern (see Figure 3.4) that

challenges the segmentation of the markers. Hence, the internal beam is switched off, and

830nm IR reflectors are aligned with each camera’s optical axis (see Figure 3.5).

Figure 3.4: Picture of the Real Sense D415 laser projection pattern.

Source: Prepared by the author.

Figure 3.5: Picture of RealSense camera aligned with an IR emitter (a,b) and the Rasp-
berry V1 camera attached to an IR pass-filter (c).

(a) RealSense setup side-view (b) RealSense setup front-view (c) Raspberry V1 camera

Source: Prepared by the author.
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All RealSense cameras were configured with identical factory K matrices. Because of

the minimal 0.25V jitter necessary to avoid frame drops, one camera must be powered

externally through an USB hub. Note that a RealSense camera is costly and underused as a

monocular night vision camera. In this work, they are employed solely to test the extrinsic

calibration (Equation 2.14) before considering off-the-shelf, low-cost cameras susceptible to

inaccurate intrinsic calibration using Equation 2.5 and Equation 2.6.

The capture area was inspired by the OptiTrack Flex 3 four-camera MCS, arranged for

a 2-meter diameter arena. The cameras were arranged in the scene as shown in Figure 3.6.

A 3m 2.0 USB cable was used to connect each camera to the central processing unit and

the cameras, for which the maximum update rate is 30 FPS for a 640⇥480 pixels resolution.

A faster FPS or greater resolution would only be achieved with 3.0 USB active cables. All

cameras are positioned at 1.5 meter high from the ground.

Figure 3.6: Scene layout for a circular 2-meter diameter arena similar to the OptiTrack
MCS. The cameras are equally spaced and positioned over a 6-meter diameter circumference.

Source: Prepared by the author.

Phase 2

The system was tested in a second phase with Raspberry Pi V1 NoIR cameras with 60-

degree FOV lenses. They were place in the same setup as the phase 1 at 1.5 meter high, like

depicted in Figure 3.6. A flat cable connects each camera to a Raspberry, then connected

to the server via Ethernet. They ran at 40 FPS for a 640⇥ 480 pixels resolution.

In contrast to RealSense, V1 cameras require intrinsic calibration (using the generic
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model in Equation 2.5 and Equation 2.6) and handling of asynchronous capture. They also

do not offer IR-pass filters, which should be externally placed in front of the lenses. An

easy way to construct an IR-pass filter is to use floppy disks, but HWB780 glass filter was

used instead. Two 850nm IR LEDs are placed next to the camera module, as illustrated in

Figure 3.5. The photoresistor was covered to ensure constant and maximum lightning.

The NoIR cameras have a discrete set of modes (FPS, resolution, FOV and aspect ratio

sets) to output the data from the GPU. According to the raspicam documentation[37], any

frame rate above 30FPS initiates binning, a procedure that combines a window of pixels.

This technique reduces resolution and lowers latency to output the final image. At 40

FPS, the binning is 2⇥2 (horizontal and vertical), whereas, at 90FPS, the binning is 4x4.

Because the resolution downscale at 90FPS impacts the sharpness of the marker boundaries

(see Figure 3.7), the camera was upgraded to the V2 version in the third phase.

Figure 3.7: Border quality comparison of V1 Raspberry camera binning modes using a
Koren 2003 lens test chart band 3 (a,b,c) and the constructed markers (c,d,e). The differ-
ence in border sharpness between modes 1 (10FPS) and 4 (10FPS) is not visible (40FPS).
However, while utilising mode 7 binning for 90 FPS, notice the border erosion. The blob
contour’s ability to estimate the centroid is hampered by this indefiniteness.

(a) No binning, mode 1 (b) 2⇥2 binning, mode 4 (c) 4⇥4 binning, mode 7

(d) No binning, mode 1 (e) 2⇥2 binning, mode 4 (f) 4⇥4 binning, mode 7

Source: Prepared by the author.

Phase 3

The third phase expanded the system to four Raspberry V2 NoIR. Each one was placed

over shelves at 2.6 meters from the ground to expand the height of the working space. This

setup now depends on the walls’ configuration, which is depicted in Figure 3.8.

According to the Raspberry documentation, the Sony IMX219 sensor captures until 90

FPS with a 2⇥2 binning. However, preliminary tests showed that a Raspberry 3b+ could
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Figure 3.8: Scene layout for a circular arena using shelves as support for the capture
station. Similar to the OptiTrack Flex 3 arena, the cameras are positioned 4.24 m apart on
the same wall. Cameras are 60 cm further away on opposite walls. The working space is a
square with a side length of 3.5 meters.

Source: Prepared by the author.

operate at 100 FPS, while a Raspberry 4 could operate at 150 FPS, both for a resolution of

640⇥480 pixels using YUV/bitmap. For this test, a sequence of 1000 images with a reference

period of 0.01 ms was collected at mode seven, and the mean PTS was 0.00997 ms. Following

testing revealed that the obtained frame rate is always faster than the reference frame rate

until 100 FPS (see Figure 3.9). The problem now is accomplishing the same pace of 100

FPS on image processing when running in a constrained processing environment.

The resolution may also be increased to 720p (equivalent to mode six) without loosing

quality. In this resolution, the Raspberry 3b+ achieved 60 FPS, and the Raspberry 4, 85

FPS, as shown in Figure 3.10. The cameras’ intrinsic matrix must be recalculated when

the resolution is changed due to the FOV update, as described in chapter 2. There is a

shrinking of the FOV in mode six (see Figure 3.11) in relation to mode 5, and thus the

maximum flight height must be restricted.

Unlike the V1 module, the NoIR V2 cameras do not offer pins to power the infrared

reflectors. So a circuit was developed to trigger an IR LED ring via the GPIO pins of the

Raspberry (see Figure 3.12 and Figure 3.13). Our ring was a leftover from a surveillance

camera, and the LDR was removed to avoid needing to cover it. It must be aligned with the

camera axis, as shown in Figure 3.14. Note that the black ribbon internally placed in the
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Figure 3.9: Time difference between frames in mode 7 and 480p resolution for a V2 camera
at various FPS ratios. The maximum attainable frame rate is 100 FPS. The camera begins
to lose frames at 110 FPS, as seen by the oscillation in (f).

(a) 40 FPS (b) 60 FPS (c) 80 FPS

(d) 90 FPS (e) 100 FPS (f) 110 FPS

Source: Prepared by the author.

Figure 3.10: Time difference between frames in mode 6 and 720p resolution for a V2
camera at varying frame rate. The highest achievable FPS is 60 FPS. Disregarding outliers,
the period between frames for 80 FPS oscillates at 16 ms (60 FPS).

(a) 40 FPS (b) 60 FPS (c) 80 FPS

Source: Prepared by the author.

ring is to avoid light leakage. The LEDs turn on only during capture to avoid overheating.

Furthermore, due to the high FPS, the temperature of the Raspberry approaches 80�C,

triggering frequency capping and resulting in frame loss. So a cooler was installed on the

setup station to keep the processor temperature stable at 35�C, as depicted in Figure 3.14.
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Figure 3.11: Exemplifications of Raspberry capture modes utilising a V2 camera and
Koren 2003 lens test chart. It should be noted that the FOV of the sensor varies across
modes. Modes 2 and 4 record the whole sensor, with the latter having a 2x2 binning in
comparison to the first. Modes 6 and 7 are the fast capture modes, with 15 percent and 45
percent ratios from the original sensor resolution, respectively, and both having 2x2 binning.
Mode 1 is the natural default mode and takes up just 25% of the original sensor area. Mode
5 is a cropped variant of mode 4 with a 16:9 aspect ratio.

(a) 480p, mode 2 (b) 480p, mode 4 (c) 480p, mode 7

(d) 720p, mode 1 (e) 720p, mode 5 (f) 720p, mode 6

Source: Prepared by the author.

Figure 3.12: Circuit diagram and picture of the IR LED ring. In this example, four lines
of five LEDs were driven by a p-channel FET, activated by the NPN transistor when the
LDR is open. The ring used has 36 IR 830nm LEDs summing 3W.

(a) Circuit of the LED ring (b) Dimensions of the LED ring

Source: Prepared by the author.
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Figure 3.13: Circuit diagram that drives the IR LED ring. The GPIO pins of the Rasp-
berry Pi are used to apply 5V to the photodiode, which activates the transistor and shuts
the NMOS MOSFET. The load (in this case, the LED ring) is then directly polarised.

Source: Prepared by the author.

Figure 3.14: Montage of the camera box and the cooler. In(a), the camera NoIR V2 was
put within a box 8 cm⇥8 cm⇥5 cm, alongside the driving circuit. A low-pass filter was
placed on the camera lens and wrapped with insulating tape to prevent leakage. The box
was also mounted on the top of a gimbal to facilitate movement and positioning. In (b), a
PC cooler was put over the Raspberry to avoid heating. The flat cable was used to pull the
cables connected to the GPIO pins away from the ventilator.

(a) Front of the camera box. (b) Setup of the cooler and Raspberry.

Source: Prepared by the author.

3.2 Software design

The system logic may be divided into two steps: the communications protocol between

the capture stations and the server, and how to rebuild the marker’s 3D poses.

3.2.1 Communications protocol

In the first and second phases, image processing is done offline. Therefore, all pictures

are captured before the image processing is executed on the server. In the third phase,

however, the system is functional real time. As a result, the photos must be processed
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and delivered to the server as quick as the cameras’ frame rate. This condition requires

distributed image processing, and thus alters the protocol between the cameras and the

central server.

The communication between the capture stations in each phase and the server will be

discussed next. Only later in this chapter will we look at how the server processes the data.

Phase 1

In the first phase, all RealSense cameras are connected to one Raspberry Pi 4, which

polls synchronous images using Intel pyrealsense
[38] python wrapper cross-compiled to

Debian OS on ARM architecture. When frames are dropped, both streams are blocked,

and the flow waits for the subsequent available images. The images are then transferred

to a Desktop, where OpenCV and Numpy are applied for image processing. Because the

processing is done offline, using a USB stick to transfer the pictures has no effect. The

connection scheme between the cameras and the central PC is shown in Figure 3.15.

Figure 3.15: Scheme of the connection between the RealSense and the Desktop for phase
1 experiments. Each camera is connected to a Raspberry Pi, which stores the photos to
disk. The dataset is then transmitted to the desktop via USB stick.

Source: Prepared by the author.

Phase 2

In the phase 2, two Raspberry 4 are configured as a server-client pair. They are both

connected to the server via Ethernet. When the client Raspberry connects to the server,

the master Raspberry sends a UDP package with the start timestamp and recording length.
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Even though the cameras are configured to achieve the same FPS, there is no guarantee

that the images are taken simultaneously (see Figure 2.1). As a result, corresponding image

points from different views may not represent the same point in space. The images are

then artificially synced, and a match is considered if the timestamps deviate by less than

0.5/FPS. This avoids self-designed trigger platforms (like OptiTrack eSync).

To trigger the cameras as close in time as possible, the Raspberries clocks were synced

through a PTP[39] (Precision Time Protocol) using ptpd
[40]. In this protocol, a master

periodically broadcasts the current time to the other slave clocks, which are adjusted to

compensate for the network transit. To ensure that the PTP worked adequately, the Rasp-

berries’ default NTP[41] server was disabled. The difference between the PTP and NTP

clock synchronisation protocols is how they account for network latency, as illustrated in

Figure 3.17 and Figure 3.16. The connection between the Raspberries and the Desktop is

depicted in Figure 3.18. The Desktop was used as the grandmaster and Raspberries, as

slaves. In the event of a master clock jitter or loss, a redundant Raspberry is available.

Figure 3.16: Scheme of clock synchronisation using NTP. A round-trip delay must be
computed to adjust the slave clock. First, the slave request a delayed package to the
master, which arrives at 21 t.u. local master time. The master then answers with a package
containing receiving and sending timestamps (21 and 23 t.u.) to the slave. We now have
the delay between sending and receiving the message in the master (2 t.u.) and the slave (4
t.u.). Following, the offset of the slave clock from the master clock is computed as half the
difference between these delays (1 t.u.) since they count for a round trip. The slave then
adjusts its timestamp to the sum of the reply timestamp of the master and the single path
delay (25 t.u.). Note that this protocol only works for networks with a symmetrical delay
between the slave and the master.

Source: Prepared by the author.
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Figure 3.17: Scheme of clock synchronisation using PTP. To adjust the slave clock account-
ing for network latency, two round-trip delays must be computed. The master broadcasts
a sync message at 21 t.u., which is received at 2 t.u. local slave time. A follow-up message
is sent containing the previous timestamp (21 t.u.) from the master, which is received at 4
t.u. local slave time. The slave then computes the difference between the slave and master
timestamps and adds this offset to its present timestamp. Following this, the slaves send
a delay request to the master. The master answers with a package comprising when the
delay request was received (28 t.u. master local time). The slave can now determine the
network delay by subtracting the time it sent the delay request (26 t.u.) from when the
master received it (28 t.u.), resulting in a 2 t.u. offset. The slave then adjusts its clocks
by the offset and is now in sync with the master. Note that the master will periodically
perform the pool to maintain accuracy.

Source: Adapted from Perle Systems[39].

The captured JPEG images are then streamed through a TCP port to the Desktop,

alongside a CSV file containing the timestamps. This CSV is transmitted from each Rasp-

berry to the Desktop when the final image is captured. It should be noted that phase 2

is done offline, so getting the timestamp after the capture is not an issue. These times-

tamps were equal to the CPU timestamp when the image was saved informed through the

python library time. The piCamera[37] python wrapper was applied, as other wrappers (e.g.

imutils, opencv) do not provide frame rate input.
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Figure 3.18: Scheme of the connection between the Raspberries and the Desktop for phase
2 experiments. Both capture Raspberries and the redundant Raspberry are connected to
the Desktop through a PTP server. The TCP image stream port is opened after the trigger
timestamp has been reached on the Raspberries with the cameras. This timestamp and the
recording duration are transferred between Raspberries in a master-slave configuration.

Source: Prepared by the author.

Phase 3

In the third phase, all Raspberries function as clients, while the Desktop acts as the

server, broadcasting the trigger/recording time. Image processing was decentralised and

performed on each Raspberry Pi, which have limited memory and processing capability.

How image processing is done will be covered later in this chapter. Finally, the centroids

coordinates of the candidate markers are delivered to the server over UDP. The connection

scheme between the Raspberries and the PC in phase 3 is shown in Figure 3.19.

In phase 3, the low-level raspicam code inside userland module was changed[42] and

recompiled to alternate the buffer between the image arrays and the presentation timestamp

(PTS), which is the timestamp of the trigger exported from the camera chipset. This PTS
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Figure 3.19: Scheme of the connection between the Raspberries and the Desktop for phase 3 experiments. The activation
sequence follows the order (a), (b), (c), (d).

(a) Both Raspberries transmit a random message to the server, which

records the IP and open port of the Raspberries.

(b) When the maximum supported camera number is reached, the

server sends the trigger timestamp and recording length to the clients.

(c) Raspberries then enter standby mode until the trigger timestamp

is reached, at which point they begin the capture procedure.

(d) Only the centroids coordinates and presentation timestamps are

supplied to the server once the images have been analysed on board.

Source: Prepared by the author.
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generated by the camera sensor contains a variable number of leading null bytes for the

image sizes 960⇥540 and 1280⇥960 pixels. As a solution, an inline character was added

after the PTS value and the entire line was scanned. Then the final 10 bytes were checked

as the PTS value, ignoring the leading zeros.

With the PTS being the exact timestamp of the image capture, cameras may now run at

various frame rate and be later interpolated to a standard time vector. This technique, in

conjunction with the clock synchronisation approach, allows any Linux platform (e.g., Or-

ange Pi, Jetson Nano) to be employed on the proposed system. The final architecture is thus

heterogeneous, asynchronous, distributed, and not limited to real-time kernels. Undoubt-

edly, more research is needed to explore the limit of the difference between the cameras’

FPS and the virtual dataset and the implications of this discrepancy on the triangulated

vehicles’ pose. At least half of the vehicle’s control loop was attempted to be accomplished

via interpolation, which was done over a standard time vector of 100 FPS.

In this work, interpolation was performed on ten samples using a cubic spline[43], as

depicted in Figure 3.20. Thus, a warm-up of ten valid images is necessary. Because inter-

polation is executed on each marker’s 2D location, the correct association of the markers

between images from the same camera must be assured. The suggested ordering approach

and the validity concept will be studied further in this chapter.

Note that the segmentation and ordering procedure is carried out online. The solution’s

scalability is an advantage since several cameras may be employed as long as the bandwidth

is within the LAN’s range. Table 3.1 shows a summary of each phase flow.

3.2.2 3D reconstruction workflow

Firstly, the intrinsic parameters must be calibrated. The matrices K and K
0

are

achieved using the procedure described in chapter 2, matching 2D coordinates of crossing

points on the chessboard to the actual 3D square pattern length. The intrinsic calibration

was searched using the generic camera model in Equation 2.5 through Matlab and double-

proofed with OpenCV. The code[45] was adapted from Deng et al.[21] radial model, who created

the calibration toolbox using the model of Kannala and Brandt[36] but employing chessboard

instead of circular patterns. The initial guess of the intrinsic parameters was corrected to
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Figure 3.20: Diagram of the interpolation flow to virtually synchronise the capture stations. As previously declared, there is no
assurance that the cameras trigger simultaneously, nor if the FPS period is constant. For instance, see the purple graphic below
for the X position, in pixels, of marker A in the first camera. Generally, for each marker’s X (or Y) position in each camera, we
capture subsequent 10 sample windows. Each 10-sample window is interpolated using a cubic spline to a standard time vector of
100 FPS, as illustrated in red. Note that the captured positions of the markers are now equally spaced in time. We then have
an equally spaced virtual dataset with equal timestamps for all cameras. This is the proposed solution for the heterogeneity and
asynchrony of the system.

Source: Prepared by the author.
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Table 3.1: Comparison the phases hardware and testbed architecture.

Phase 1 Phase 2 Phase 3

Camera hardware RealSense D415 OmniVision OV4647 Sony IMX219

Camera set Homogeneous Homogeneous
Heterogeneous

(Model 3, 3B+ and 4)

Auto exposure and

white balance shutoff
Available

Available

(after modification[44])

Available

(after modification[44][42])

Image output Rectified Distorted Distorted

Image dimensions 640⇥480 pixels 640⇥480 pixels Multiple

Frame rate 30 FPS 40 FPS Multiple

External IR-pass filter No Yes Yes

Trigger type
Synchronous and

centralised
Asynchronous and

distributed
Asynchronous and

centralised

Image processing Centralised Centralised Decentralised

Source: Prepared by the author.

use the nominal values of the focal distance in pixels instead of the pixel/millimetre conver-

sion factor. The chessboard used in the intrinsic calibration has 11⇥12 squares with 30 mm

length. The calibration pattern was close to the image’s boundaries, and the board angle

and rotation varied throughout the images used in the calibration.

Afterwards, the extrinsic calibration is split as marker detection, ordering, computation

of the essential matrix, decomposition into rotation and translation and scale estimation.

The last three steps are already described in chapter 2, and the others will be described next.

After full calibration, the pose X of the monitored vehicle during a mission is triangulated

based on Equation 2.17 for the computed values of x, x
0

, λ and P
0

.

After calibrating, the user can test the system using the same approach of pose re-

construction. The calibration and test flows are depicted in Figure 3.21 and Figure 3.22,

respectively. The difference between these flows is the extrinsic and intrinsic calibration.

Marker detection

The marker detection is to identify and extract the subpixel location of the markers.

This segmentation varies between centralised and decentralised for the offline (phase 1 and

2) and online phases (phase 3), respectively.

In phase 1, a picture of the empty arena was captured and then subtracted from each
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Figure 3.21: Illustration of the calibration flow. As input, checkerboard pictures, markers
images, and the known distance between markers are supplied. The flow generates the
intrisics parameters, 3D camera postures, and the scale between the point cloud and the
actual world for use in the test flow.

Source: Prepared by the author.

Figure 3.22: Illustration of the test flow. As input, intrinsics/extrinsics parameters,
markers images, and the scale between the point cloud and the actual world are supplied.
The flow generates the markers 3D pose in relation to the 1st camera.

Source: Prepared by the author.
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subsequent image. The outcome is a picture that only includes the objects not previously in

the scene, namely the calibration wand, the markers, and the person caring for the wand. In

phase 2, the original picture is sent to the threshold filter since contrast control is available

and the backdrop remains dark compared to the marker’s brightness.

The area of the markers was then identified using a threshold filter with a cut intensity

of 127, as shown in Figure 3.23. Firstly, the far most upper-left (xUL, yUL) and lower-right

(xLR, yLR) non-null pixels are determined. Secondly, a bounding box with a margin of 5

pixels is stamped around these points and used to mask the original image.

Figure 3.23: Workflow of marker segmentation from the original image (a) to subtraction
the static background (b), passing through 127 cut threshold filter (c), and masking with a
bounding box (d) using RealSense cameras.

(a) Original image (b) Subtraction of clean plate

(c) Threshold filter (d) Bounding box on the difference image

Source: Prepared by the author.



Chapter 3. The proposed indoor positioning system 53

The masked picture is then inverted and transformed to binary using a set of threshold

filters. The step between the threshold filters, the maximum and minimum thresholds are all

adjustable parameters. The connected components from every binary image are extracted

and stored. As close centres correspond to the same blob, these components from several

images are grouped by their coordinate centre. The groups are then filtered by convexity

and area. To calculate the marker centre with subpixel precision, the image moment Mpq

was employed:

Mpq =
X

u

X

v

upvqI(u, v) (3.1)

for p, q 2 [0, 1] and I(u, v) the intensity of image point (u, v) on the masked image. The

centre is computed as:
8

>

<

>

:

x̂ = M10 /M00

ŷ = M01 /M00

(3.2)

After obtaining (x̂, ŷ) of all blobs, if more than N blobs are found, the N largest are

elected as valid markers. For the calibration and test flows, N = 3 and N = 4, respectively.

The markers are considered collinear if all centroids are less than 1 pixel away from the

line fit estimated by the least-squares method. Moreover, the image is discarded if there are

no three collinear blobs, if less than N blobs are detected, or if the collinear blobs’ radiuses

is higher than the distance between them (e.g. obstruction). Note that, in phases 2 and

3, the coordinates of the markers must be undistorted before verifying collinearity. The

pseudocode for the final marker segmentation algorithm is depicted in Algorithm 1.

In phase 3, the image is processed onboard the Raspberry, a constrained computing

environment. So, instead of masking, the image is cropped to reduce the bytes the blob

detector inspects. The number of filters of the blob detector was also reduced. Then all

coordinates of the visible centroids are sent to the server, along with the image’s PTS.

Two python instances run on the Raspberry Pi simultaneously (see Figure 3.24). When

the trigger timestamp is reached, the YUV stream is opened, and the pictures are stored as

bitmaps with their PTS as the filename in the RAM shared memory folder. The image is

then sent to the processing coroutine, which transmits the coordinates of the centroids, the

PTS, and the superior left coordinates of the cut mask to the server. The use of a coroutine



Chapter 3. The proposed indoor positioning system 54

Algorithm 1 Marker segmentation and centroid extraction

I  captured image matrix with size M ⇥N
T  high threshold value
maxT,minT, s maximum, minimum and step of the set of threshold filters
for i in range(M) and j in range(N) do

if I[i, j] > H then
save coordinate to a list L

end if
end for
C1, C2 minimum and maximum coordinates in L
for i in range(M) and j in range(N) do

if [i, j] > C1 and [i, j] < C2 then
add I[i, j] to a new image array i

end if
end for
i image after cut mask with size m⇥ n
t = minT
while t < maxT do

for i in range(m) and j in range(n) do
if i[i, j] > t then

add [i, j] to a list K
end if

end for
for u, v in K do
Mpq =

P

u

P

v u
pvqI(u, v)

end for
[x̂, ŷ] = [M10 /M00,M01 /M00]
out list of x̂, ŷ if present in previous threshold filter
t+ = s

end while
N  minimum number of markers required
if size(out)> N and all coordinates then

return out
end if

instead of threaded or multi-processing code allows for asynchronous execution, which has

no effect on the FPS. There is no verbose to prevent frame loss.

Marker ordering

After segmentation, the points must be correctly matched between simultaneous images

of each camera. The ordering process also differs between the offline and real-time flows, as

the camera’s height in these setups changes.
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Figure 3.24: Schematic of Raspberry flow. One python instance is in charge of waiting for
the timestamp trigger, as well as opening and storing the picture stream to the RAM shared
memory folder. In the background, separate python instance is checking to see whether there
are any new photos in the shared memory folder. If yes, the photos are analyzed, and the
markers’ centroids are provided to the server along with the PTS.

Source: Prepared by the author.

For the first and second phases, the wand was moved at a pendulum movement around

a 1-meter radius semicircle. Therefore, the blobs on the first image of each camera stream

can be ordered by rising x or y, depending on which axis they were further apart. The same

order is applied to the other N � 1 views, considering the known disposition of cameras.

For instance, the order must be inverted between views if the cameras face each other.

The markers in the following images were then arranged by their closeness to the blobs

in the latest image. Invalid images have no visible collinear markers or are asynchronous

to the other camera. If more than ten consecutive photos are invalid, the next image is

considered the first in the sequence.

Ordering problems may arise in frame rates lower than 40 FPS and fast-moving markers.

As illustrated in Figure 3.25, if the wand moves in the opposite direction of the markers

ascending ordering, comparing to the last image blobs may result in an incorrect association.

So our system assures whether the centre blob is labelled as “1” or if they are arranged in

the same ascending/descending order like the last picture. If not, the image is marked as

the first in the valid sequence.
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Figure 3.25: Example of erroneous ordering when utilising the proximity method. In both cases 1 and 2, the wand is travelling
in the opposite direction of the markers’ ascending sequence. The output ordering will be incorrect if the nearest blob to the
previous "0" marker is in the center (case 1) or on the opposite end of the wand (case 2).

Source: Prepared by the author.
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In the third phase, the server stores each received package, but only if at least three

separate blobs are visible and collinear. Similarly to the first and second phases, the server

organises the following images’ markers based on their closeness to the previous image’s

markers. When the markers from subsequent images from the same camera stream are

correctly related, the 2D location of each marker is then interpolated over 100 FPS.

The cameras were also placed 2.6 meters above the ground, the maximum distance

allowed by the laboratory ceiling. This height increases working area coverage taking into

account the narrowing of the FOV when utilising rapid camera settings. Nevertheless, as

shown in Figure 3.26, the blobs can no longer be associated by x or y ascending order. The

calibration and test flow employ distinct strategies to solve this problem.

In the calibration flow, the markers’ 3D location is not required in real-time. As a

result, the 2D coordinates from different cameras are matched only after the capture. To

correctly order the markers, it is checked if the distance between the three markers follows

the proportion 2:1 (similar to the wand depicted in Figure 3.2a). If yes, the order 0-1-2

is associated to the markers A-B-C (see Figure 2.4) and backtracked per proximity to the

markers of the first valid picture of the sequence (see Figure 3.27). The time intervals

when the sequence of the markers is known were then crossed between the pair cameras.

The markers in these crossing periods were finally interpolated at 100 FPS and used to

generate the fundamental matrix. The pseudocode for the marker ordering algorithm during

calibration is depicted in Algorithm 2.

In the test flow, the fundamental matrix is already known. So epipolar lines can be used

to relate the markers on the first valid images in each camera’s stream[27]. The epipolar line

coefficients for a pair of cameras are computed such as in Equation 2.8. Note that l = F T x̃
0

is used to compute line l on the first camera plane.

Then, the distance between each epipolar line and the markers in every possible permu-

tation is computed. In Figure 3.28, three epipolar lines in the right camera were plotted,

connected to each of the left image markers. Then, in the right picture, the distances be-

tween these epipolar lines and the markers in all possible combinations were added. The

combination with the least sum was chosen as the proper relationship between each cameras’

markers. The mean frequency achieved for this ordering loop was 200 Hz. The pseudocode

for the marker ordering algorithm during testing is depicted in Algorithm 3.
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Figure 3.26: Picture of the wand at 1.1 meter from the ground plane and parallel to the floor by the left (a) and right (b)
cameras, which are 2.6m from the ground. Note that, due to the perspective, the markers can not be matched between cameras
using the father left, right, up or down pixels. Since the spheres’ arrangement on the wand is known, the markers can be associated
via the distance between the centroids. The pedestal and arena floor were visible in these images because they were recorded with
maximum analog and digital gain.

(a) Left camera (b) Right camera

Source: Prepared by the author.
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Figure 3.27: Example of markers ordering correction when using the forth-back in time
approach. The blobs are ordered arbitrarily in the first image (a), with the blob “1” always
serving as the central marker. The markers in the subsequent images are then arranged
by proximity until the wand achieves a configuration that validates the placement of the
blobs A-B-C (2:1 proportional distance between the extremities markers) as depicted in (b).
Finally, the blobs “0” and “2” of the stored dataset are flipped until the first valid image of
the stream is reached. (c). This sequence is maintained for the subsequent images using
the proximity approach.

(a) First image of the valid

time interval with the orig-

inal marker sequence.

(b) Image in which the marker or-

der is confirmed. Note that the nu-

merical order was inverted.

(c) Correction of the order

of the markers in the first

image.

Source: Prepared by the author.

Figure 3.28: Picture of the epipolar lines between two camera images. The markers and
the corresponding lines can be linked by colour between the views (a) and (b). The lines in
(b) were projected from the markers in (a) of the same colour, and vice versa.. The wand
was placed on the ground, and the markers were arranged according to their closeness to
the epipolar lines. Note that the cyan and magenta markers are on collinear epipolar lines.
This uncertainty was resolved by ordering these markers per ascending x coordinate.

(a) Left camera (b) Right camera

Source: Prepared by the author.
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Algorithm 2 Centroid ordering in calibration

K, d intrinsics matrix and distortion coeficients
inv = 0 number of invalid images
k = False known markers order
for each captured image do
ts timestamp of the capture image
N  image number sent by the capture station
C  list of distorted centroids coordinates
U  list of undistorted centroids coordinates using K and d
if N > lastN + 1 then
inv+ = N � lastN

end if
if U are collinear and different coordinates then

if N > 0 then
compare U to last image’s U and order markers per proximity

end if
else

wait for next image
end if
if k = False and ratio of coordinates in U is 1:2 and inv < 10 then
k = True
reorder A-B-C to 0-1-2 in all previous images

end if
lastN = n
inv = 0

end for
interpolate the ordered marker using cubic spline
out list of ordered and interpolated markers
return out

There is some ambiguity when two or more markers in the left image project almost

collinear epipolar lines on the right image and vice-versa. However, because of the rigid

construction of the wand, these markers can be linked per increasing x in this case. To save

time, this comparison analysis is executed only with ambiguous markers. Like calibration,

the subsequent images are ordered by proximity to the preceding image’s centroids. If more

than ten invalid packages are received, the valid interval is reset.

Camera pose estimation

After the fundamental matrix, the essential matrix is computed by Equation 2.11, each

camera projection matrix P is estimated and the scale λ is found. As ||t|| = 1, this
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Algorithm 3 Centroid ordering in testing

K, d intrinsics matrix and distortion coeficients
inv = 0 number of invalid images
for each captured image do
ts timestamp of the capture image
N  image number sent by the capture station
C  list of distorted centroids coordinates
U  list of undistorted centroids coordinates using K and d
if N > lastN + 1 then
inv+ = N � lastN

end if
if U are collinear and different coordinates then

if N > 0 then
compare U to last image’s U and order markers per proximity

end if
else

wait for next image
end if
if N > 10 and inv < 10 then

interpolate last 10 available ordered markers
if any other camera has already submited markers in the window timeframe then

compute and order markers epipolar lines
triangulate 3D markers’ position

end if
end if
lastN = n
inv = 0

end for

scale must represent the Euclidean distance between the cameras while also accounting

for compensations for focal length calibration errors. The 3D position of each tag is then

triangulated in scale, and in phase 3, the images whose reconstructed distance LAC is

1% larger than the actual distance are eliminated as outliers[32]. Finally, the fundamental

and essential matrices are recalculated using the inline markers, and the final rotation

and translation between cameras are obtained. Using matrix multiplication, these relative

poses may be turned absolute (i.e. regarding the 1st camera). A bundle adjustment is

recommended to enhance extrinsics calibration when employing a large number of cameras.

The ground plane must now be rotated to the XZ plane, and the world’s origin must be

translated to precisely below the 1st camera and coplanar to the XZ plane (see Figure 3.29).

To capture a valid dataset, the triangular wand was placed on the ground with three spheres
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over the triangle vertices. As long as the wand remains still, any image from each stream

may be used to triangulate the 3D position of the markers without interpolating. Because

the fundamental matrix is known, the epipolar lines were employed to relate the markers

between the cameras.

The equation of the plane that goes across the three rebuilt 3D markers was defined as

ax+ by + cz + d = 0, for (a, c) 2 Q+. Firstly, the vector v = [a, b, c]T was translated to the

same origin as the vector k = [0, 1, 0]T orthogonal to the plane XZ. Therefore, the equation

of the new translated plane by the vector tP = [0,+d/b, 0]T is ax + by + cz = 0. Secondly,

the rotation angle θ and the rotation axis u were then computed as:

u =
h

u1 u2 u3

iT

=
v ⇥ k

|v ⇥ k|
, θ = arccos

✓

v · k

|v|

◆

(3.3)

The rotating matrix QP (θ,u) is then computed as:

u =

2

6

6

6

4

cos θ + u2
1(1� cos θ) u1u2(1� cos θ)� u3 sin θ u1u3(1� cos θ) + u2 sin θ]

u1u2(1� cos θ) + u3 sin θ cos θ + u2
2(1� cos θ) u2u3(1� cos θ)� u1 sin θ]

u1u3(1� cos θ)� u2 sin θ u2u3(1� cos θ) + u1 sin θ cos θ + u2
3(1� cos θ)

3

7

7

7

5

This translation and rotation procedure is performed not just with the plane but also

with each camera pose and the point cloud of the 3D markers. As last, the system is

translated so that it has the origin is directly below the 1st camera.

3.3 Final considerations

This chapter initially described the calibration wand, scenarios setup and reflective mark-

ers used in the proposed IPS. We then defined the architecture and hardware used in three

experimental phases: the first phase with RealSense cameras, where only extrinsics calibra-

tion was done with centralised image processing; a second phase with Raspberry V1 NoIR

cameras, with centralised image processing while with both intrinsic and extrinsics calibra-

tion; and a final phase with Raspberry V2 NoIR cameras, accompanied by intrinsic and

extrinsics calibration and decentralised image processing. The final proposed system is het-

erogeneous and asynchronous since we employ different Raspberry Pi as capture platforms.
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Figure 3.29: Reconstructed 3D camera poses and point cloud from a pair of cameras dataset using a triangle wand on the ground
plane. In (a), the origin of the coordinate system is equivalent to the first camera’s axes, with the Z axis piercing the picture plane.
In contrast, in (b), the wand’s plane and the cameras’ 1 and 2 axes have been adjusted to match the XZ ground plane. Take note
that the system’s origin is now exactly below camera 1.

(a) Before ground plane calibration (b) After ground plane calibration

Source: Prepared by the author.
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The PTP protocol and an interpolated database were used to virtually synchronise each

Raspberry’s different FPS and trigger response. Following, the threshold filters, centroid

search techniques and tracking issues caused by fast-moving markers were addressed, lead-

ing to the development of an innovative and generic sorting system. During calibration, the

order of the markers is validated when the wand’s physical disposition in space is known.

In contrast, the ordering was found in real-time (about 200 Hz) during testing using an

epipolar line comparison technique. The next chapter will present the experiments’ results

and discussion for each phase.



Chapter 4

Experimental results and discussion

This chapter will discuss the results obtained through all three phases experiments. In

the first phase, a RealSense camera is used, while in the second and third phases, Raspberry

cameras are used. During stages 1 and 2, processing is centralised and the architecture is

homogeneous; however, in phase 3, the system is heterogeneous and processing is distributed.

4.1 Phase one experiments

The RealSense setup was used to test different sizes of markers, batons and reconstruc-

tion flow. The auto exposure, auto white balance, and laser projection were disabled. The

exposure was decreased by half (from 30ms to 15 ms), increasing the gain three times (from

30 to 90). Each configuration was separately sent to each camera during the warm-up pe-

riod before capturing. One may also upload these configurations through a JSON file. The

calibration parameters used in the pinhole model (Equation 2.1) are depicted in Table 4.1.

The results achieved from the different marker sizes and baton width are shown in Ta-

ble 4.2. Note that the cameras were repositioned; thus, the measured real distance between

cameras differs between datasets. The results were double-checked with the Matlab image

processing toolbox and are equal up to four decimal cases. All cameras were positioned

around 1.5m above the ground and perpendicular to the floor plane, as depicted in Fig-

ure 3.6. Each operation step shown in Table 4.2 may be evaluated independently.

Larger spheres reflect more light and are brighter than the background. Therefore, the
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Table 4.1: Intrinsic calibration parameters used in the three experimental phases. For phase 1, the RealSenses were calibrated
using the Intel SDK and a pinhole model like Equation 2.1. In the second and third phases, the generic camera model[36] was
employed such as in Equation 2.5. Note the difference in image resolution.

Camera type Resolution (pixel2) Camera ID α (pixel) β (pixel) u0 (pixel) v0 (pixel) k1 k2 k3 k4

RealSense 640⇥ 480
Camera 1 626.744 626.744 307.936 242.777

-
Camera 2 626.744 626.744 307.936 242.777

V1 NoIR 640⇥ 480
Camera 1 816.188 814.325 318.382 250.263 -0.292 0.199 0.387 -6.514

Camera 2 684.117 683.027 313.435 262.314 -0.202 0.657 -1.644 0.418

V2 NoIR 960⇥ 640

Camera 1 720.313 719.521 481.014 360.991 0.396 0.634 -2.417 2.111

Camera 2 768.113 767.935 472.596 350.978 0.369 1.501 -7.941 11.917

Camera 3 728.237 729.419 459.854 351.59 0.276 2.095 -9.980 14.192

Camera 4 750.149 748.903 492.144 350.213 0.401 1.160 -7.103 11.415

Source: Prepared by the author.
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Table 4.2: Results for the calibration in phases 1, 2 and 3 between cameras 1 and 2.

Phase 1 Phase 2 Phase 3

Operation Parameter Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9

Setup config.

Marker size 55 mm 35 mm 25 mm 20 mm 15 mm 10 mm 20 mm 20 mm 20 mm

Wand width 50 cm 50 cm 15 cm 15 cm 15 cm 15 cm 15 cm 15 cm 15 cm

Total images 999 900 999 1000

Not visible

4156 5395 3923

Segmentation
Bounding box

threshold
150 150 127 100 127 127 127

Marker detection

Min. threshold 0 0 0 0 0 0 0

Max. threshold 150 150 200 200 200 151 151

Threshold step 1 1 1 1 1 50 50

Min. convexity 0.9 0.9 0.95 0.95 1 - -

Min. distance
between blobs

10 pixels 0 pixel 0 pixel 0 pixel 0 pixel 0 pixel 0 pixel

Min. blob area 10 pixels2 5 pixels2 2 pixels2 2 pixels2 2 pixels2 2 pixels2 2 pixels2

Min. blob
repeatability

10 20 20 20 20 3 3

Results

LAC 48 cm 48 cm 15.7 cm 15.7 cm 15.7 cm 15.7 cm 15.7 cm

kXA
j �XC

j k mean 48.0388 cm 47.9940 cm 15.6587 cm 15.7188 cm 15.7099 cm 15.6591 cm 15.6429 cm

kXA
j �XC

j k sdt. dev. 0.2720 cm 0.2282 cm 0.1825 cm 0.2658 cm 0.1296 cm 0.0771 cm 0.1746 cm

LBC 29 cm 29 cm 10.3 cm 10.3 cm 10.3 cm 10.3 cm 10.3 cm

kXB
j �XC

j k mean 29.1605 cm 28.9773 cm 10.1771 cm 10.351 cm 10.3333 cm 10.0905 cm 10.0190 cm

kXB
j �XC

j k sdt. dev. 0.1709 cm 0.1629 cm 0.1228 cm 0.1484 cm 0.0672 cm 0.0713 cm 0.1357 cm

LAB 19 cm 19 cm 5.4 cm 5.4 cm 5.4 cm 5.4 cm 5.4 cm

kXB
j �XA

j k mean 18.8824 cm 19.0187 cm 5.4831 cm 5.3728 cm 5.3807 cm 5.5761 cm 5.6249 cm

kXB
j �XA

j k sdt. dev. 0.1234 cm 0.0868 cm 0.0713 cm 0.1294 cm 0.0689 cm 0.0563 cm 0.0770 cm

Real distance
between cameras

270 cm 424 cm 425 cm 423 cm 425 cm 428 cm 428 cm

Computed λ 282.62 cm 419.88 cm 426.08 cm 419.30 cm 426.05 cm 400.10 cm 403.06 cm

Discarded images 3 1 1 17 0 2947⇤ 1446⇤

⇤Pictures dropped during the fundamental matrix refining

Source: Prepared by the author.
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threshold for creating the bounding box may increase when the size of the markers expands.

Note that different markers require distinct configurations of the marker detector.

The image passed to the marker detector described in chapter 3 is inverted (markers are

black, and the background is white). Hence, the minimum threshold (Tm) for segmenting

the blob is zero (pure black), and the maximum (TM) is inverse to the size of the markers. To

be considered a blob, the marker must be present in at least k images from all (TM �Tm) /s

filters, for s the step between filters. When the sphere’s diameter increases, the makers are

darker, and the background is whiter, enabling lower threshold values to identify the tag.

In this work, convexity is defined as the ratio of the blob and the convex hull area. The

smaller the diameter, the more alike a circle the marker is. Hence, larger markers must

be filtered through lower convexity values than smaller ones. For the 55mm marker, the

minimum distance between blobs was increased to avoid double identification.

Observing the computed λ and the actual distance between cameras, it is clear that

the smaller markers provide more accurate results than the larger diameters. The wider

the diameter, the broader the area for selecting the incorrect centroid. So it is harder to

estimate the sphere’s centre with subpixel precision. This error then propagates to the F

matrix estimation and the scale of the 3D reconstruction.

Comparing the standard deviations of the reconstructed distance between markers, the

optimal marker size for the triangulation is the 25mm maker. However, the UAV structure

supports 20mm spheres at maximum due to the rotating blades vibrations. The 15mm and

10mm markers are too small to be detected with the 30ms exposure.

4.2 Phase two experiments

Phase two was initially configured at the RealSense layout, as depicted in Figure 3.6.

Similarly to phase one, the camera auto white balance and exposure was disabled.

While Deng et al.[21] reports an reprojection error of 0.05 pixel, we achieved a minimum

of 0.4 pixels in the intrinsic parameters calibration. This under-performance is due to the

quality of the image difference, shown in Figure 4.1. The blur on the pattern introduces

noise to the results. This blur could be improved using a lens with a narrower shutter, yet

the cost of the camera would rise. Note that the focus was set to the chessboard pattern,
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50 cm away from the camera. This focus length must not change to when capturing the

datasets. The final calibration parameters used in the generic model (Equation 2.5) are

depicted in Table 4.1. The summary of the results is shown in Table 4.2.

Figure 4.1: Comparison of 1600% zoom in Deng et al.[21] (a) and the collected dataset (b).

(a) Deng et al.[21] (b) Our dataset.

Source: Prepared by the author.

Compare the dataset 7 with the fourth dataset of Table 4.2, and the accuracy is greater

than the RealSense setup for the same markers. This finding may be explained by the

OmniVision sensor’s greater sensitivity to light as compared to the RealSense sensor. As a

result, a better contour of the blob is captured and a more accurate centroid is found.

4.3 Phase three experiments

In phase three, the setup was initially tested using two V2 cameras linked to two Rasp-

berries 4 8GB. In a second step, two more cameras were connected to a Raspberry 3b+ and

a Raspberry 3. The chosen resolution was 960⇥640 pixels comprising the full sensor extent.

The cameras were placed such as in in Figure 3.8.

In the calibration of the intrinsic parameters for the V2 cameras, a low reprojection error

of 0.35 pixels was achieved. However, the V2 camera has a broad depth of view that focuses

on everything more than one meter away from the camera. As a result, the calibration

pattern must be held away from the camera and cannot cover the entire sensor in a single

shot. It is thus not expected for λ to equal the distance between the cameras since this scale

compensates for the error in the focal distance calibration. A bigger calibration pattern may

be preferred to attain a better outcome. The final calibration parameters used in the generic

model (Equation 2.5) are depicted in Table 4.1.

The IR led rings used in phase three have a range of 4 meters, which is 1 meter longer

than the IR reflectors attached to the V1 cameras. So the blobs are brighter, and sensor
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output contrast may be increased to 100% without gathering noise (such as clothes or wand

pieces). Because the Raspberry Pi has limited computing power, the circularity filter was

disabled to save time.

Unlike the first and second phases, the invalid images in phase three account for those

eliminated as outliers for the fundamental matrix refinement. In dataset 8, for example,

the entire capture length was 90 seconds at 40 frames per second for two cameras, yielding

3600 pictures per camera. Specific motions, however, obscured the display of all the blobs,

and only 2717 and 2596 packages with at least one blob were received from each Raspberry.

Following that, due to temporal mismatches or non-collinear centroids, 166 and 351 photos

from camera 1 and 2 streams were removed, respectively. Then, at 100 frames per second,

5395 valid interpolation images were generated. Finally, 2947 images were dismissed because

their reconstructed 3D markers A and C were more than 1.57 cm apart (or 1% of the actual

distance of 15.7 cm, see Figure 4.2). The remaining 2448 images were used to recalculate

the fundamental matrix, as stated in Table 4.2. It is worth noting that there was no need

to boost the FPS or switch to a lower FOV because a 100Hz interpolated database was

discovered, which is half the frequency of the integrated drone controller.

Following that, the ground plane was calibrated. Figure 4.3 depicts the camera’s poses

after calibration. It is worth noting that the new ground plane equals y = 0, and the first

camera is at (0,�h, 0), where h is the camera’s height above the floor.

The system was then tested using a drone. The Tello DJI can fly steadily with all four

markers and one for counterbalancing. However, this drone calculates its height by sending

an infrared pulse to the ground, causing the cameras to see its reflection. When the drone

is flying, applying the high threshold filter to remove this noise is simple since the markers

are brighter than the IR reflection of the ground. Nonetheless, when the drone is near 30

cm of the ground, the marker detector recognises the reflection as a marker and the track

of the drone’s pose is lost. Because this study does not attempt to address this issue, these

pictures are discarded.

The reconstructed position of the drone’s central marker during a 60-second test flight

with a square 0.5m width and an 80 cm height is shown in Figure 4.4. The X and Z axes

in this plot were also adjusted to the front and right of the drone using the two frontal

markers, as depicted in Figure 3.1a and Figure 3.1b. It should be noted that the origin of
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Figure 4.2: Error between the reconstructed positions of the collinear markers and the actual distance between the spheres in
dataset 8. Before the fundamental matrix refinement (a), the markers in 5395 pictures were triangulated with a maximum error
to the actual distance of 2.5 cm. Inaccurate centroid estimates produce these errors as a result of non-uniform lighting. After
removing the outliers (b), only 2448 images remain, all of which had AC markers within 0.5 cm of the actual distance. The offset
between the AB and BC mean values demonstrates that the real value utilised is inaccurate.

(a) Before fundamental matrix refining (b) After fundamental matrix refining

Source: Prepared by the author.
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Figure 4.3: Reconstructed 3D camera poses and point cloud during extrinsic calibration, ground plane calibration, and testing
in dataset 8. The first camera in the pair (left) is the source of the world coordinate system in the extrinsics calibration (a).
Following ground plane calibration (b), the wand’s plane equals XZ, and the first camera is located at (0,�h, 0), with h being the
camera’s height above the floor. The system is now ready to capture a drone’s movement, as seen in (c) a square 0.5m wide and
80 cm tall.

(a) After extrinsic calibration (b) After ground calibration (c) Flight capture

Source: Prepared by the author.
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the coordinates is the location of the drone’s central marker in the first triangulated image.

Observing Figure 4.4, the measured altitude reaches about 80 cm, and the mean value

of the drone’s plane around the Y-axis is 88�. Since the embedded estimator’s inherent

inaccuracy is unknown and the DJI SDK does not provide access to the drones’ states, it

is unclear if the drone has attained the target height (80 cm) and yaw (90�). Furthermore,

because the IR reflection from the rubber surface is brighter than the markers, the sight of

the drone near the ground is lost. Nonetheless, the peaks of the angles θ and ψ correspond

to the ramps on the X and Z axes, as the drone revolves around the rotor axis to perform

curves. In Figure 4.5, the take-off and landing locations differ, and the square sides are

larger than 50 cm probably because of the cumulative IMU error that feeds the estimator.

The system was then tested with all four cameras in the second step. As indicated

by Olague and Mohr[19], calibration was performed in pairs with sequential cameras (i.e.

cameras 1 and 2, 2 and 3, and so on) since the best results are obtained when the picture

planes are 90 degrees apart. In this configuration, the arena is rectangular, with two pairs

separated by 4.24m and the other two separated by 4.82m. After the fundamental matrix

refinement, the final calibration errors for the three-camera pairs are presented in Figure 4.6.

The numerical values obtained between cameras 1 and 2 are displayed in Table 4.2 as dataset

9. Compared to dataset 8, where identical cameras are used, the inverse relationship between

the number of pictures used to calibrate and the standard deviation is clear.

The point clouds from the second and third camera pairs must now be rotated and

translated to fit the global coordinate system of the 1st camera. Therefore, the position of

camera k in reference to the 1st camera is:

xk = Π
k
j=1

2

4

RT
j �RT

j t

03⇥1 1

3

5xj�1 (4.1)

for Rk and tk achieved by the essential matrix decomposition. Remember that x0 = (0, 0, 0).

The point cloud produced by each pair can be transformed similarly (see Figure 4.7).

The system was tested again with a flight of 0.5m square width and 80cm height. This

time, the drone started at the right square’s edge. The reconstructed position of the drone’s

central marker during a 30-second test flight is shown in Figure 4.8. Firstly, it is worth

noting a noise in the estimation caused by switching between distant camera pairs, as we
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Figure 4.4: Drone pose during a 60-second Tello flight using dataset 8 calibration. (a) and (b) depict the position and attitude
of the central marker, respectively.

(a) Position of the drone in flight

(b) Orientation of the drone in flight

Source: Prepared by the author.
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Figure 4.5: Drone trajectory upper and lateral map during a 60-second Tello flight using
dataset 8 calibration.

Source: Prepared by the author.

swap between the pairs that send the package the quickest for a given timestamp. The

smoother the transition, the closer the pairings swapped were (e.g. between pair 1-2 and

2-3 in comparison to pair 1-2 and 3-4). Systematic errors in the intrinsic calibration might

explain the disparity between the pairings (e.g. focal distance or scale). However, the data

inaccuracy might be reduced via sensor fusion or a prediction filter before being sent back

to the drone’s controller. Note that the drone can be monitored even close to the ground

because the lighting is uniform throughout the arena.

In Figure 4.9, it is also possible to verify the low altitude, which may have resulted from

an inconsistent reflection of the IR laser. An erroneous reading might be the case, given the

drone’s instability immediately after takeoff (see the upper trajectory map) and that the

drone reaches 1-meter altitude before backing down (see the side trajectory map). On the

other sides of the square, the drone stabilises at about 60 cm in height.

A third test was then performed using the Amatrol Pegasus II robotic arm to ensure that

the optical tracking system’s readings were correct. A three-arc trajectory was designed,

with one joint moving at a time. The data was then used as ground truth to evaluate the

performance of the optical tracking system. The drone was fastened to the claw 2.5 cm away

from the tip. This distance was eventually added to the ground truth data as a horizontal

radial offset. As depicted in Figure 4.10, to prevent introducing noisy reflections into the

optical system, all metallic parts of the arm were covered. The Parrot Mambo was used in

this experiment since its body is thinner and than the Tello DJI.
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Figure 4.6: Error between the reconstructed positions of the collinear markers and the actual distance between the spheres in
dataset 9. All errors are less than 0.5 cm after outlier removal. The discrepancy between the AB and BC mean values reveals that
the actual value is still incorrect. The Y-axis was displayed in time units to emphasize the overlapping intervals where the wand
is visible to both cameras in the pair.

(a) Cameras 1 and 2 (b) Cameras 2 and 3 (c) Cameras 3 and 4

Source: Prepared by the author.
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Figure 4.7: Reconstructed 3D camera poses and point cloud during extrinsic calibration, ground plane calibration, and testing
in dataset 9. The extrinsics calibration results, ground plane calibration and the captured square flight test in the 3D map are
shown in (a), (b) and (c).

(a) After extrinsic calibration (b) After ground calibration (c) Test dataset

Source: Prepared by the author.
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Figure 4.8: Drone pose during a 30-second Tello flight using dataset 9 calibration. (a) and (b) depict the position and attitude
of the central marker, respectively.

(a) Position of the drone in flight

(b) Orientation of the drone in flight

Source: Prepared by the author.
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Figure 4.9: Drone trajectory upper and lateral map during a 30-second Tello flight using
dataset 9 calibration.

Source: Prepared by the author.

Figure 4.10: Picture of the Parrot Mambo attached to the Amatrol Pegasus II claw.

(a) Upper view (b) Side view

Source: Prepared by the author.

The trajectory arcs were π/2 to 0 in the XZ plane, 0 to π in the XZ plane, and π to 5π/9

in the XY plane. Because of the fabric restricting the motors’ rotation, the last arc was

terminated before π/2. Both trajectories reconstructed from the Pegasus encoder and the

optical tracking system are illustrated in Figure 4.11. When comparing the two trajectories,

the divergence is only noticeable when the camera switches between distant pairs.

The numerical error between the optical tracking and the ground truth trajectories are

shown in Figure 4.12. Each Pegasus arch was translated in time to match the capture of
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Figure 4.11: Arm and drone upper and lateral trajectory map during a 40-second test
using dataset 9 calibration.

Source: Prepared by the author.

the optical tracking system since the timestamp of its journey was not available. Observing

Figure 4.12, it is pertinent to mention that the errors between the two trajectories are

within 1 cm in both the X and Y planes and the errors in the Z plane above this limit

match when the camera pair switches between 1-2 and 3-4. Hence, subcentimeter accuracy

can be assumed if later research use filtering procedures to smooth these curves. The average

error was 0.003 cm, 0.074 cm and 0.019 cm for the X, Y and Z axes. Likewise, the standard

deviation of the error was 0.513 cm, 0.120 cm and 0.491 cm for the X, Y and Z axes,

respectively. It is feasible to say that the Tello DJI flew a trajectory very similar to those

shown in Figure 4.5 and Figure 4.9 in the prior testing examples.

Finally, as the Matlab SDK gives access to the drone’s state space, an end test was

performed using the Parrot Mambo. Unfortunately, this non-commercial controller is non-

stable while performing a square trajectory, owing to unsatisfactory lateral position estima-

tion and inadequate controller tuning. Therefore, the flight consisted of a takeoff, a hover,

and a landing with no lateral movement.

Figure 4.13 depicts the reconstructed poses of the drone’s central marker using optical

tracking and data collected from the estimator after the flight. Both plots are aligned to

associate the X and Z axes to the right and front of the drone, respectively. The Mambo

computes displacement in the X and Z axes using an optical flow sensor, while altitude is

estimated using a barometer and an ultrasonic sensor fusion. When the two trajectories
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Figure 4.12: Drone and arm pose during a 40-second test trajectory. (a) and (b) depict the position and error of optical tracking
system and the Pegasus encoder.

(a) Position of the drone in flight

(b) Error between the two trajectories

Source: Prepared by the author.
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in Figure 4.13 and the point clouds in Figure 4.14 are compared, it is clear that the data

in the X and Z axes feedbacked to the controller are incorrect. However, the altitude is

consistent across both time series. Previous research[25] has demonstrated similar difference

when utilising commercial optical tracking devices.

Figure 4.13: Optitrack and Mambo estimator upper and lateral trajectory map during a
flight test using dataset 9 calibration.

(a) Optitrack trajectory

(b) Mambo estimator trajectory

Source: Prepared by the author.

4.4 Final considerations

In this chapter, we presented the results of the 3D reconstruction for a pair of RealSense

cameras. Afterwards, we acquired comparable findings with two Raspberry NoIR cameras,

completing the intrinsic and extrinsic calibration loop. The test flow was only finished
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Figure 4.14: Optitrack and Mambo estimator point clouds during a flight test using
dataset 9 calibration.

Source: Prepared by the author.

in the third phase, when it was implemented online between the main Desktop and the

Raspberries via a server-client protocol. During this phase, we conducted two test flights

using the Tello DJI, one for one camera and one for four cameras. Finally, we performed a

movement using an industrial arm and compared the performance to the output of the visual

tracking system, which was validated to subcentrimetre. In the next chapter, a summary

of the findings of this work will be presented.



Chapter 5

Conclusions & future work

The theoretical basis of optical tracking systems was explored in earlier chapters. This

study resulted in the development of a hardware and software bundle for an motion capture

system that can be easily implemented using off-the-shelf cameras and Linux embedded sys-

tems. In the final architecture, photos are received with acceptable quality (960⇥640 pixels)

and processed in real-time at 100 FPS. The markers attached to the mobile vehicle are then

segmented effectively in a limited computational environment, and a new ordering technique

general to any movement sequence was developed. Side problems like clock synchronisation,

lens model fit and markers’ size were also addressed. The system was ultimately tested on a

ground truth trajectory, and the maximum latency was ten milliseconds, while the accuracy

was less than one centimetre when disregarding noise. Overall, the proposed asynchronous

and heterogeneous system achieved comparable performance to the commercially available

OptiTrack Flex 3, yet using network triggered capture stations.

It is worth noting that this work emphasises the technical challenges of establishing

a permanently visible marking across an ample working space. So good practices such as

light insulation, cooling, and highly optimised code structures are suggested throughout this

report to reduce future efforts to adapt the platform either to alternative tracking subjects

or to other hardware that may be available.

The suggested system’s restriction is the accuracy of centroid estimation, which is

strongly dependent on homogeneous lighting, a condition hardly achieved using low-range

LED rings. A wider intrinsic calibration pattern or depth of vision adjustment should also
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be made to lessen the disparity between the point clouds from several camera pairs and ap-

proximate the scale of the translation vector to the real distance between the cameras. Due

to time constraints, these concerns could not be resolved, although the following suggestions

may be pursued in future work.

Marker reconstruction refinement

To enhance the number of threshold filters in the blob detector, hardware-level pro-

cessing might be employed. Instead of using hard thresholds, gradient filters can also be

used identify the contour. These changes are intended to improve centroid estimation and

fundamental matrix computing, affecting extrinsics and ground plane calibration perfor-

mance. On the assumption that the intrinsic calibration has been addressed, it would also

reduce the difference between the point clouds from the various camera pairs. Constructing

a brighter IR LED with a broader range might help eliminate any noise caused by poor

marker lighting.

Prediction of future poses

The noise removal must be done in order to achieve smoother pose tracking using the

optical tracking system. Predicting future positions of the observed vehicles is a good

solution that also reduces latency, as applied by the OptiTrack Flex 3 system.

Treating marker obstruction

The number of cameras can be increased to ensure consistent monitoring of the markers.

Another option is to associate images with less than the number of markers in the arena.

An outer loop in the ordering algorithm will be required to detect which markers are present

in each image and triangulate with the corresponding camera pair.

Multiple vehicles tracking

The presented system tracks the absolute position of only one vehicle. Further develop-

ment would be using clusterisation techniques to identify multiple vehicles in the working
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space. Since the rotation and translation to a single-vehicle reference image have already

been accomplished, one can replicate this effort across the number of robots. This improve-

ment would allow for relative vehicle positioning and the assessment of formation techniques.

It should be noted that changing the validity constraints of the photos, which considers only

frames with exactly four visible blobs valid, would be required.
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