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Resumo

Este trabalho aborda uma classe de desigualdades do tipo Trudinger-Moser em espacos
de Sobolev com peso em R%. Como aplicacao destas desigualdades e usando métodos
variacionais, estabeleceremos condigoes suficientes para a existéncia, multiplicidade e
nao-existéncia de solugbes para algumas classes de equagbes (e sistemas de equagoes)
de Schrédinger elipticas nao-lineares com potenciais radiais ilimitados, singulares na
origem ou decaindo a zero no infinito e envolvendo nao-linearidades com crescimento

critico exponencial do tipo Trudinger-Moser.

Palavras-chave: Desigualdade de Trudinger-Moser; Espacos de Sobolev com peso;
Equacao de Schrodinger nao-linear; Potenciais radiais ilimitados ou decaindo a zero;

Crescimento critico exponencial.
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Abstract

This work addresses a class of Trudinger-Moser type inequalities in weighted Sobolev
spaces in R?. As an application of these inequalities and by using variational methods,
we establish sufficient conditions for the existence, multiplicity and nonexistence of
solutions for some classes of nonlinear Schriodinger elliptic equations (and systems
of equations) with unbounded, singular or decaying radial potentials and involving

nonlinearities with exponential critical growth of Trudinger-Moser type.

Keywords: Trudinger-Moser inequality; Weighted Sobolev spaces; Nonlinear Schrédinger

equation; Unbounded or decaying radial potentials; Exponential critical growth.
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Notacao e Terminologia

e Em todas as integrais, com excessao daquelas de outros trabalhos, omitiremos o
simbolo dz e usaremos C, Cy, Cy, Csy, ... para denotar constantes positivas (pos-

sivelmente diferentes);

e C =C(a,fB,a,b,c,d,...) denota uma constante positiva dependente dos valores

a,B,a,b,c,d,...;
e B, denota a bola aberta de R? centrada na origem e raio 7;
e Bg\ B, denota o anel de raio interior r e raio exterior R;
e Para qualquer subconjunto A C R2, A¢ denota o complemento de A:;

e 0,(1) denota uma sequéncia de nimeros reais convergindo para 0 quando n —

—+00;

e f(s) =o(g(s)) quando s — 0 significa que Ll_% gg;

e a.e.:. Abreviacao em inglés de almost everywhere para designar em quase todo

ponto, ou seja, a menos de um conjunto de medida nula;
e (PS).: Sequéncia Palais-Smale no nivel ¢;

ou 0
o Vu= ( l u) denota o gradiente da funcao u : R? — R;

oz’ By
0? 0?
o Au= (9_1:1; a—yZ denota o Laplaciano de u;

e X' ¢é o dual topologico do espaco de Banach X;



(-,-) denota o par de dualidade entre X’ e X;

supp(u) denota o suporte de u;

C5°(R?) denota o conjunto de fungoes suaves com suporte compacto;
o0d(R?) = {u € C°(R?) : u ¢ radial};

D12

rad

(R?) denota o fecho de Cg5.,4(R?) sob a norma

1/2
IVull, = ( / |Vu|2) ;
RQ

Sejam V, @ : R? — R funcoes continuas e 1 < p < oo. Os conjuntos
LP(R% Q) = {u :R? = R :u é mens. e/2 Qz)|ulf < oo}
R
denota o espago de Lebesgues com peso (. Similarmente, definimos L?(R?; V);
Definimos o espaco vetorial
Hyoq

(R% V) = D!?

rad

(R?) N L*(R*% V),

o qual mostraremos ser um espaco de Hilbert quando munido do produto interno
(U, V)1 w2y = /RZ (VuVo + V(jz))ww), wu,v € HE,(R*V); (1)

Associado ao produto interno (1) temos a norma

1/2
I (/ |Vu\2+v<|xr>\u|2) D we HL RV (2)

Hl

1 J(R* V) sera denotado por E e sua norma (2) por || - ||.



Introducao

Este trabalho esta organizado em cinco capitulos.

No Capitulo 1 obtemos alguns resultados de imersao envolvendo espaco de
Sobolev com peso, bem como uma desigualdade do tipo Trudinger-Moser em tais es-
pacos que sera uma das principais ferramentas nas aplicagoes que se seguem nos demais
capitulos da Tese. Mais precisamente, considerando funcoes radiais V,Q : R? — R sa-

tisfazendo as seguintes hipoteses:

(V) VeC(0,00), V(r) > 0 e existe a > —2 tal que

lim inf m > 0.
r—+oco0 79

(Q) Q € C(0,00), Q(r) > 0 e existem b < (a —2)/2 e by > —2 tais que
Q(r) Q(r)

limsup —— < oo e limsup ——= < o0.
r—0 oo r—+00 r

Os principais resultados deste capitulo sao:

Lemma 0.0.1 Suponhamos que (V) — (Q) valem. Entio as imersoes E — LP(R?; Q)

sao compactas para todo 2 < p < o0.

Theorem 0.0.2 Suponhamos que (V)—(Q) valem. Entdo, para quaisqueru € E e a >
0, temos que Q(|z|)(e® —1) € L'(R?). Ademais, se o < o/ = min{4n, 47w (1+ by/2)},
entao existe C' = C(a, a,b,by) > 0 tal que

sup Q(lz]) (e —1) < C. (3)

uelE; ||lu| <1 JR2

Em seguida, motivados pelo trabalho de Lions em [37], obtemos o seguinte refi-

namento da desigualdade (3):



Corollary 0.0.3 Suponhamos que (V) — (Q) valem. Seja (v,) uma sequéncia em E
com ||v,|| =1 e suponhamos que v, — v fracamente em E com ||v|| < 1. Entao, para

cada 0 < B < o (1—|[v]|2)”", a menos de subsequéncia, vale

sup | Q(lz[)(e” — 1) < o0
neN JR2
Por fim, no intuito de explorarmos um pouco mais a desigualdade (3) no que
tange aos estudos da optimalidade da constante o’ e da existéncia de fungao extremal

para a mesma, necessitamos das seguintes condigdes adicionais sobre V (|z|) e Q(|x]|)

na origem:

~ Vv
(V) Existe ap > —2 tal que limsup (r)
r—0 740

< 00;

(Q) Q € C(0,00), Q(r) > 0 e existem b < (a —2)/2 e —2 < by < 0 tais que
Q(r) Q(r)

0 <liminf —— <limsup ——= < oo e limsup—
r=0 Y0 r—0  T70 r—s4o0 T

Desta forma, o tltimo resultado deste capitulo pode ser sumarizado como segue:

Theorem 0.0.4 Suponhamos que (V), (V) e (Q) valem. Entao,
Sa=sup | Qa)(e™ —1) < +oo (4)
uel; [lul|<1 JR?

se, e somente se, 0 < o < . Ademais, o supremo (4) € atingido desde que 0 < o < .

As demonstragoes dos Teoremas 0.0.2 e 0.0.4 seguem basicamente os mesmos
argumentos desenvolvidos por [16, 47| e contam com a ajuda da desigualdade classica de
Trudinger-Moser (veja [39, 52]) e de uma versao singular da mesma devida a Adimurthi-
Sandeep |[3].

No Capitulo 2 estudamos a existéncia e multiplicidade de solucoes fracas, bem
como a nao-existéncia de solugao classica para a seguinte classe de problemas elipticos

nao-lineares da forma
—Au+V(|lz])u = Q(Jz]) f(u) em R? (5)

onde os potenciais V, @ : R* — R sao fungoes radiais satisfazendo as condigoes (V) e
(@) do Capitulo 1 e a ndo-linearidade f(s) tem crescimento critico do tipo Trudinger-
Moser, ou seja, dizemos que f(s) tem crescimento critico do tipo exponencial em 400

se existe ag > 0 tal que



(S) O, Yo > Qp,

)
(o) [t o =

+ o0, Va < ap.

Similarmente definimos crescimento critico do tipo exponencial em —oo. Assumimos

também que f(s) é continua e satisfaz:
(f1) f(s) =o(s) quando s — 0;

(f2) existe 6 > 2 tal que
0<0F(s) = 9/ f)dt < sf(s), Vs#0;
0
(f3) existem constantes Ry, My > 0 tais que

0 < F(s) < M|f(s)|, VI|s| > Ro;

(f1) existem v > 2 e p > 0 tais que

F(s)> Y7, vseR.
v
Remark 0.0.5 O estudo do problema (5) € motivado por trabalhos recentes focados na
busca de solugoes do tipo ondas estaciondrias para a equacgao de Schrodinger nao-linear
(veja por exemplo [11, 29, 46, 50] e suas referéncias)
oY h?

i = — DAY+ W@ — Q)P (5,1) EREXR,

i.e., solugoes da forma (x,t) = exp(—iEt/h)u(x), onde E € R, p>1,i=+/—1,h é
a constante de Planck, m é um nimero positivo e W (x),Q(x) sao potenciais de valor

real.

Os principais resultados deste capitulo sao enunciados a seguir:

Theorem 0.0.6 Suponhamos que (V) — (Q) valem. Se f satisfaz (fuo,) — (f1), com

v—2)/2
aO(V_Q):|( / SV/Q

[

o'v
onde S, denota a melhor constante da imersao de Sobolev do Lemma 0.0.1, entdao o
problema (5) possui uma solugao fraca positiva u em E. Ademais, se vale a hipdtese

adicional (V'), entao existem constantes co, ¢y > 0 tais que

u(z) < coexp (—01\x|(a+2)/4) . VreR2%.



Nosso resultado de multiplicidade é referente ao problema
—Au+V(|z))u = AQ(|z]) f(u) em R? (6)
onde A é um parametro positivo, e estd enunciado como segue:

Theorem 0.0.7 Suponhamos que (V)—(Q) valem. Se f € impar e satisfaz (fo,)—(fa),
entao existe uma sequéncia crescente (M) C Ry com Ay — oo quando k — oo tal que,

para X\ > Ay, o problema (6) possui pelo menos k pares de solugées fracas em E.

As principais ferramentas utilizadas para se demonstrar os Teoremas 0.0.6 e 0.0.7
sao a desigualdade do tipo Trudinger-Moser estabelecida no Teorema 0.0.2 (bem como
seu refinamento; Coroléario 0.0.3) e o Teorema do Passo da Montanha em suas versoes
classica sem a condi¢do de Palais-Smale [46] e simétrica [23].

Com intuito de obtermos um resultado de nao-existéncia de solugoes para o pro-

blema (6), assumiremos a seguinte hipotese simultanea sobre V' e Q:

(VQ) lim Viz) e lim Q)

|z| =400 ‘:C|a |z|—+o0 ‘ilj'|b

>0, com a<—-2<b.

Ademais, como consequéncia das hipoteses (fa,) com a < ag, (f2) e (f1), segue-se que

existe Cp > 0 tal que, para qualquer p > v — 1,
f(s) > Cys?, paratodo s> 0. (7)

Com isso, obtemos o seguinte resultado de nao-existéncia para o problema (6):

Theorem 0.0.8 Suponhamos que (VQ) vale. Se f satisfaz (7), entdo o problema (6)

nao possui solucdo positiva de classe C* para X grande.

Remark 0.0.9 Observamos que na hipdtese (V Q) nao houve a necessidade de supor

que V' e Q) fossem funcgoes radiais. Isso ficard claro na demonstracao do Teorema 0.0.8.

No Capitulo 3 estudamos a existéncia e multiplicidade de solucoes fracas para

a seguinte classe de problemas elipticos nao-lineares e nao-homogéneos da forma
—Au+V(jz)u = Qz])f(u) + h(z) em R (8)

onde o potencial V' (|x|) satisfaz a hipotese (V') do Capitulo 1, Q(|x|) satisfaz a hipotese

mais restritiva (@), f(s) ainda apresenta crescimento critico do tipo Trudinger-Moser

e h € F' = E~! ¢ uma pequena pertubacao nao identicamente nula.



Remark 0.0.10 Nesse caso, o estudo do problema (8) é motivado pela busca de solugoes

do tipo ondas estaciondrias da sequinte classe de equacoes de Schrodinger nao-lineares:

oW

ihor = Ay — Q(z)[p[P~2p — e h(x), (z,t) € R* x R.

Os principais resultados deste capitulo sao enunciados como seguem:

Theorem 0.0.11 Suponhamos que (V) — (Q) valem. Se f satisfaz (fay) — (f2), entio
existe 61 > 0 tal que se 0 < ||h||g-1 < 1, o problema (8) possui uma solu¢ao fraca uy,

em F.

No intuito de estabelecermos um resultado de multiplicidade e observando que a

hipotese (V') implica que existem 79 > 0 e Cp > 0 tais que

V(|z]) < Colx|* para todo 0 < |z| < ro, 9)
necessitamos das seguintes condigoes adicionais sobre f(s):
(f3) Existem constantes Ry, My > 0 tais que

0 < F(s) < Molf(s)l, ¥ls| = Ro:

(f1) existe By > 0 tal que

4 62m(r0)
—————, se by=0;
limint 73 > 5,5 Coo 75
|s| =00 @08 bp+2 1
mm, se —2< b[) < O,
0
onde

) QCQTaoJrQ
m(r) = ————,
(CL() + 2)3

com 0 <7 <ryerydado em (9).

Desta forma, o resultado de multiplicidade pode ser enunciado como segue:

Theorem 0.0.12 Suponhamos que (V) — (Q) e (V) valem. Se f satisfaz (fa,) — (1),
entao existe 62 > 0 tal que se 0 < ||h||g-1 < d2, 0 problema (8) possui pelo menos duas

solugoes fracas em FE.

As demonstragoes dos Teoremas 0.0.11 e 0.0.12, assim como todo o capitulo,
seguem as mesmas ideias utilizadas no recente trabalho de Furtado-Medeiros-Severo [32],

valendo-se da desigualdade do tipo Trudinger-Moser estabelecida no Teorema 0.0.2 e

6



seu refinamento em conjunto com o Teorema do Passo da Montanha [12]| e o Principio
Variacional de Ekeland [54].

Nos capitulos subsequentes, nosso objeto de estudo serao sistemas do tipo varia-
cional, ou seja, sistemas de equagoes de Euler-Lagrange de algum funcional. No Capi-
tulo 4 estudamos a existéncia e multiplicidade de solugoes fracas para a seguinte classe
de sistemas elipticos do tipo gradiente (ou Lagrangeano)

—Au+V(|z))u = Q(|z|) f(u,v) em R? (10)
—Av+V(|z)o = Q(lz])g(u,v) em R?
onde os potenciais V,Q : R* — R sao funcoes radiais satisfazendo as condigoes (V) e
(Q) do Capitulo 1 e consideramos a situagao variacional que caracteriza o sistema (10)

como sendo do tipo gradiente, ou seja, supomos que

(f(u? U)ag(uv U)) = VF(U,’U)

para alguma fungao F : R? — R de classe C'. Denotando w = (u,v) € R? e visando
uma analogia com o caso escalar, podemos reescrever o sistema (10) na forma matricial

como segue
—Aw + V(|z))w = Q(lz])VF(w) em R
onde A = (A A) e Q(|z))VF(w) = (Q(|z|) f(w), Q(|z])g(w)). Consideramos nova-

mente o caso em que as nao-linearidades f and g apresentam crescimento critico do

tipo exponencial no sentido da desigualdade de Trudinger-Moser. Mais precisamente:
(Fy,) Existe ap > 0 tal que

0, Ya > ay,
i L )]
|w|—=+o00 60‘|w| |w|—+o0 ea‘w‘

+ o0, Va < ap.
Além disso, assumimos as seguintes condigoes:

(F1) f(w) = o(|w]) e g(w) = of|w|) quando [w] — 0;

(Fy) existe 0 > 2 tal que

0<0F(w) <w-VF(w), YweR*\{0};



(F3) existem constantes Ry, My > 0 tais que

0 < F(w) < My|VF(w)|, Y|w|> Ro;

(Fy) existem v > 2 e pu > 0 tais que

F(w) > =|w|’, Vw e R~

Os principais resultados deste capitulo sao enunciados a seguir:

Theorem 0.0.13 Suponhamos que (V) — (Q) valem. Se (F,,) — (Fy) sdo satisfeitas,

entao o sistema (10) possui uma solugao fraca nao-trivial wy em E x E desde que
(v—2)/2
2 -2
0> |: CYO(V/ ):| 511:/2
o'v

Nosso resultado de multiplicidade é referente ao problema
—Aw+ V(|z))w = AQ(|z|)VF(w) em R? (11)

onde A é um parametro positivo, e estd enunciado como segue:

Theorem 0.0.14 Suponhamos que (V) — (Q) valem. Se F' é impar e (F,,) — (Fy) sdo
satisfeitas, entao para qualquer k € N dado existe Ay, > 0 tal que o sistema (11) possui

pelo menos 2k pares de solugoes fracas nao-triviais em E X E desde que X\ > Ay.

As demonstragoes dos Teoremas 0.0.13 e 0.0.14 seguem as mesmas ideias de
seus analogos escalares no Capitulo 2, com uma pequena ressalva que a ferramenta
principal para se provar o Teorema 0.0.14, a saber, o Teorema do Passo da Mon-
tanha Simétrico, foi utilizado em sua forma mais geral, a qual pode ser encontrada
em [12, 13, 48].

Finalmente, no Capitulo 5 estudamos a existéncia de solugao fraca para a
seguinte classe de sistemas elipticos do tipo Hamiltoniano:

—Au+V(|z))u = Q(|z])g(v) em R 12)
—Av+V(|z[)v = Q(lz])f(u) em R?
onde as funcgoes V e () satisfazem as mesmas hipéteses do Capitulo 1 e as nao-

linearidades f and ¢ ainda apresentam crescimento critico do tipo exponencial no



sentido da desigualdade de Trudinger-Moser, porém nao necessariamente com a mesma
constante o para ambas, ou seja, existem o > [y > 0 tais que

lim = e lim = (13)
+ 00, VYa<a + 00, VYa< by

Além disso, assumiremos que f, g : R — [0, +00) sdo fungdes continuas satisfazendo:
(H1) f(s)=o0(s) e g(s) =o(s) quando s — 0;

(H,) existe 6 > 2 tal que para todo s > 0
0< OF(s) = 9/ FOdE < sf(s) e 0<0G(s) = 9/ g(t)dt < sg(s):
0 0
(H3) existem constantes sg, My > 0 tais que para todo s > sg

0< F(s) < Myf(s) e 0<G(s)< Myg(s);

(Hy4) existem constantes p > 2 e p > 0 tais que

F(s),G(s) > Hs”, Vs > 0.
p

Remark 0.0.15 (i) Sistemas do tipo Hamiltoniano possuem inimeras aplicagoes
em ciéncias e, em especial, na Biologia. Por exemplo, a QUIMIOTAXIA, movi-
mento dirigido que desenvolvem alguns seres vivos em resposta aos gradientes
quimicos presentes no seu ambiente, foi estudada por Keller-Segel [35] na década
de 70 usando um sistema de equagoes parabolicas cujos estados estaciondrios de-
vem satisfazer, sob certas hipoteses, a um sistema do tipo Hamiltoniano. Mais
tarde, Gierer-Meinhardt [33] estudaram o processo de Ativagao-Inibi¢ao de dois
componentes quimicos como um modelo de formagao de padrao e também re-
cairam num sistema do tipo Hamiltoniano. Para maiores detalhes sobre estes e
outros fenomenos naturais em que suas modelagens se dao por meio de sistemas

do tipo Hamiltoniano, indicamos os livros de Murray [40, 41].

(11) Torna-se natural pensarmos em considerar o funcional

I(u,v) = /RQ(VuVU + V(z)uv) — . Q(z)[F(u) + G(v)],

de modo que, formalmente, (12) € o sistema de equagoes de Euler-Lagrange as-
sociado ao funcional I. Nessa diregdo, a primeira grande dificuldade que surge no

estudo do sistema (12) e, em geral, no estudo de sistemas do tipo Hamiltoniano,

9



€ que o mesmo tem a caracteristica de ser FORTEMENTE INDEFINIDO, ou
seja, se o espaco onde o funcional I estiver definido for decomposto em soma

direta de dois subespagos de dimensao infinita, entao sua parte quadrdtica

/RQ(Vqu + V(z)uv)

serd coerciva num deles e anti-coerciva no outro. Para maiores detalhes, re-
comendamos [18]. Outras dificuldades que naturalmente surgem no estudo dos
problemas (5), (8) e dos sistemas (10), (12) sdo as jd esperadas, a saber, uma
possivel perda de compacidade por estarmos trabalhando em dominio ilimitado e

o crescimento critico das nao-linearidades envolvidas.

O principal resultado deste capitulo é o seguinte:

Theorem 0.0.16 Suponhamos que (V)—(Q) valem. Se f e g satisfazem (13) e (Hy)—
(Hy), com

(25,)"2,

(o + Bo)(p — 2)} (p—2)/2
pa/

entao o sistema (12) possui uma solugao fraca nao-trivial em E X E.

o

Visto que o funcional associado ao sistema (12) ¢ fortemente indefinido, nao
podemos utilizar as versoes cléssicas dos teoremas do Passo da Montanha e do Ponto
de Sela. Desta forma, a prova do Teorema 0.0.16 se dara por meio de um procedimento
de aproximacao devido a Galerkin [31] e seguiremos as mesmas ideias utilizadas por de
Figueiredo-Felmer [21], de Figueiredo-Miyagaki-Ruf [22] e de Figueiredo-do O-Ruf [20].

Com o intuito de nao ficarmos recorrendo & Introdugao e de tornar os capitulos
independentes, enunciaremos novamente, em cada capitulo, os resultados acima, bem

como as hipoteses sobre as funcoes em geral com mais detalhes.
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Chapter 1

Uma Desigualdade do Tipo
Trudinger-Moser em Espacos de

Sobolev com Peso

This chapter is devoted to establish some embedding results and a Trudinger-
Moser type inequality in weighted Sobolev spaces. We point out that part of this
chapter is contained in the published paper [6].

1.1 Introducao e Principais Resultados

We recall that if Q is a bounded domain in R?, the classical Trudinger-Moser
inequality (cf. [39, 52]) asserts that e®** € LY(Q) for all u € H(Q) and o > 0.

Moreover, there exists a constant C' = C'(2) > 0 such that

sup / dx < O, i o < 4, (1.1)
Q

u <1
I HH(%(Q)_

1/2
lallscoy = ( / erdX) .

Furthermore, (1.1) is sharp in the sense that if @ > 47 the supremum (1.1) is +00. Re-

where

lated inequalities for unbounded domains have been proposed by Cao [16] and Ruf [47]
(and by Tanaka [1], do O [29] and Li-Ruf [36] in general dimension). However in [1], [16]

and [29] they assumed the growth e®** with o < 4, i.e. with subcritical growth. See



also Adams [2]|. In [47], the author proved that there exists a constant d > 0 such that

for any domain 2 C R?,
sup /(647”‘2 —1)dx < d, (1.2)
Q

flulls<1

fulls = ([ 09+ 1)) "

Moreover, the inequality (1.2) is sharp in the sense that for any growth e’ with

where

a > 4 the supremum (1.2) is +oo. Furthermore, he proved that the supremum (1.2)
is attained whenever it is finite. On the other hand, Adimurthi-Sandeep [3] extended
the Trudinger-Moser inequality (1.1) for singular weights. More precisely, they proved
that if 2 is a bounded domain in R? containing the origin, u € Hj () and 3 € [0,2),
then

au? _ 1
sup / S dx < 400 & 0 < a < dn(1 - /2). (1.3)
lell 1 0y <1 /€2 ||

Throughout, we consider weight functions V' (|z|) and Q(|z|) satisfying the fol-

lowing assumptions:

(V) Ve C(0,00), V(r) > 0 and there exists a > —2 such that

lim inf Vir)

r—+oo ra

> 0.

(Q) Q € C(0,00), Q(r) > 0 and there exist b < (a — 2)/2 and by > —2 such that

lim sup QET) < oo and limsup Q(Z)
r—0 770 r——+o00 T

< Q.

Example 1.1.1 1) In [11], Ambrosetti, Felli and Malchiodi considered the poten-
tials V (|x|) and Q(|z|) satisfying

Ay As
<V <A d 0 < =
T SVUD < Ar and 0. QU <

for positive constants Ay, As, A3, with o € (0,2) and § > 0, which verify (V') and
(Q) for p > 1. Indeed, it just takes a = —a € (—2,0), by =0 and b = —f.

2) Singular potentials of the form
V(z)=lz|* and Qz) = |z|’
with 2(6 + 1) < a < 0. Indeed, it just takes a = o and b = by = [3.

12



With the aid of inequalities (1.1), (1.3) and inspired by similar arguments devel-
oped in [16, 47|, we establish in this work the following Trudinger-Moser type inequality

in the functional space E.

Theorem 1.1.2 Assume that (V) — (Q) hold. Then, for any uw € E and o > 0, we
have that Q(|z|)(e™” — 1) € L*(R?). Furthermore, if a < o/ = min{4r, 47(1 + be/2)},
then there exists C' = C'(a, a, b, by) > 0 such that

sup Qz]) (e —1) < C. (1.4)
ueB; [[uf|<1 JR2

Remark 1.1.3 Since the weight Q(|z|) can assume a singular behavior (see Exam-
ple 1.1.1) we refer the reader to [30] where the authors investigated the Trudinger-Moser
type inequality with a singular weight for any domain Q C R? containing the origin as
well as some applications. More precisely, they proved that if a > 0, § € [0,2) is such
that af4m + 5/2 < 1 and ||ul|r2) < M, then there exists a constant C = C(a, M) > 0
(independent of 1) such that

e —1
sup /dexg C(a, M)

||V“HL2(Q)§1

and the above inequality does not holds if a/4dw + /2 > 1. We also refer the reader

to [4] for a Trudinger-Moser type inequality with a singular weight in high dimensions.

The inequality (1.1) was improved by Lions in [37]. More precisely, he proved that
if (uy,) is a sequence of functions in Hj(Q) with ||Vuy,| 12y = 1 such that w, — u # 0

weakly in H}(Q), then for any 0 < p < 47 (1 - ||Vu|]%2(ﬂ)> we have

2
sup/ ePndx < o0.
neN JQ

With the purpose to control the Palais-Smale sequences in our applications we
establish the following improvement of the Trudinger-Moser inequality considering our

variational setting.

Corollary 1.1.4 Assume that (V) — (Q) hold. Let (v,) be in E with ||v,]] = 1 and
suppose that v, — v weakly in E with ||v|| < 1. Then, for each0 < 5 < o/ (1 — ||v]|?) ",

up to a subsequence, it holds

02
sup [ QQal)(e™ — 1) < oo
neN JR2
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1.2 Resultados Preliminares

In this section, we establish some embeddings from FE into the weighted Lebesgue
space LP(R?*; Q). We start by recalling a version of the Radial Lemma (see [50]) due
to Strauss [49]. Before lets to check that (E, | - ||) is a Banach space.

Proposition 1.2.1 E is a Banach space with respect to the norm given in (2).

Proof. First, it is standard to check that (E,|| - ||) is a linear space. Let (u,) be a
Cauchy sequence in E. Since the embedding £ — L*(R?; V) is continuous, (u,) is a
Cauchy sequence in L*(R?; V). Hence, there exists u € L*(R?; V) such that u, — v in
L*(R%* V) and so, up to a subsequence, u,(z) — u(x) a.e. on R% Analogously, since
E < D}2(R?), (uy) is a Cauchy sequence in D% (R?). Thus, there exists v € D% (R?)

such that u,, — v in D2

= (R?) and so, up to a subsequence, u,(z) — v(z) a.e. on R%

Consequently, u(z) = v(z) a.e. on R% Therefore, u,, - u € E'in E. m

Lemma 1.2.2 Assume that (V') holds. Then, there exists C' > 0 such that for all
u€ekFl,

[u(@)] < Clfull |z~ 7%, Ja] > 1. (1.5)
Proof. By a standard density argument, it suffices to prove (1.5) for u € Cg%,4(R?).
Let p = |z| and ¢ : [0, +00) — R be such that ¢(p) = u(|z|). Since a > —2, one has

d a a—+2 a a a
— [P T2 (p)] = —=p""20%(p) + 2012 0(p) (p) > 20T 20 (p) e (p).

dp 2
It follows from (V') that there exist Ry > 0 and C' > 0 such that
V(lz]) > Clz|* for |z]| > Ry.
Then for p > Ry, the Holder’s inequality implies that

2 / S| (5)] 1 (5)] s
p

/ T ()W) (8710 (s)|v/5) ds

p

([ weorsss) ([ stotorpsas)
<= ( /., |w2> : ( /, v<|xr>\u|2> :

| (9uP + Ve iup).

RQ

Pl % (p)

IN

I
)

IA
N

—_

<

S
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Thus, we conclude that
Ju(x)] < Cllull|[~“7%, W|a| > Ro,

which completes the proof. m
Next, we recall some basic embeddings (see Su-Wang-Willem [50]). Let A C R?

and define
H\y(A; V) ={u, :ueH,

rad

(R*V)}.

Lemma 1.2.3 Assume that (V) — (Q) hold and let 1 <p < oo. For any0 <r < R <
oo, with R > 1,

i) the embeddings H} ,(Br \ B,;V) — LP(Bgr\ B,; Q) are compacts;

it) the embedding H

rad

(Bg; V) < H'(Bg) is continuous.

In particular, as a consequence of i) we have that H! ,(Bg;V) is compactly immersed

rad

in LY(Bg) for all 1 < ¢ < co. We also need the following Hardy type inequality with
remainder terms (see Wang-Willem [53]).

Lemma 1.2.4 For allu € H}(B;)

1 1\7?
Vu22—/ x_2<ln—> ul?| .
[ 1vu 4&b| =)

From the previous lemmas we have:

Lemma 1.2.5 Assume that (V) —(Q) hold. Then the embeddings E — LP(R?; Q) are
compacts for all 2 < p < 0.

Proof. For the continuity of the embedding, it suffices to show that
o oo Jun (VP + VIl
=

uek (fRQ Q‘u|p)2/l)

Otherwise, there exists (u,) in E such that

/ Qlua/P =1 and lim / (IVun > + V]u, ) = 0. (1.6)
R2 n—o0 R2
By the hypotheses (V') — (Q), there exist Ry > 0 and Cy > 0 such that

Q(z]) < Colal® for |z > Ry,
V(|z|) > Colz|* for |z]| > Ry.

15



Now for R > Ry, by Lemma 1.2.2, we have

Qlunl? < Co / 2l ?
BS, BS

R

e / 2P a2
C

By

< Cllunll? [ a2 Vi

By

Since a > —2, b < (a —2)/2 < a and p > 2, we have that b—a — (p — 2)(a+2)/4 < 0.

Thus, we obtain

Qua|P < O Rb—a—(—2) Loz [t ||”
Bg

= CRVo(r-2 (1).

On the other hand, again by (Q) there exist 0 < rqg < Ry and Cjy > 0 such that

Q(|z]) < Colz|> for 0 < |z| < ro.

In what follows for 0 < r < min{rg, 1} and p > 2, we will estimate the integral

Qlunl’
By

(1.7)

(1.8)

For that, we choose § > 0 such that by — 9 > —2 and take a cut-off function ¢ €
C5°(B1),0 < ¢ < 1in By and ¢ = 1in By,. Invoking (1.8) and the Holder’s inequality

we get

<Co [ follunp
B
1 bo—9 1 d—bg
=Cy || 0 <ln —) |1, |2 700 |2|° <ln —) |, [P OO0
B, || ||

5—bg

2(p+bg—9)

s 1 d—bo o 1 -2 , 2
S C()T' ln_ ’$| ln— ’un¢’ ‘un‘ 2+4+bg—4
r Bl ‘:U| Bl

Since u,¢ € Hi(B;), Lemmas 1.2.3 and 1.2.4 imply that
1\ 5t
[ Qb <0 ()l
B, r
1 d—bo
=Cr’ (ln —) on(1).

r

16
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Now writing

/ Olunl? = / Olunl? + / Qlual + [ Qlunp,
R2 B, Br\B» B,

using (1.7), (1.9) and ) from Lemma 1.2.3 we get

lim / Qlu,|? =0,

n—oo R2
which is a contradiction with (1.6). This proves the continuity of the embedding. For
the compactness, let (u,) be a sequence in E be such that ||u,| < C. Without loss of

generality, we may assume that u, — 0. We need to prove that u,, — 0 in LP(R?; Q)

for all 2 < p < co. Asin (1.7), we get

ELI2 Huan S CRbfaf(p*Z)aTH'

Q\un |p < C RV (—2)

By

Since b —a — (p —2)(a+2)/4 < 0, given € > 0, for R > 0 sufficiently large we have

that
QlunlP < CR-==2%8 < 2 (1.10)
BS, 3
On the other hand, similarly to (1.9) we have
1 d—bo 1 d—bo c
Qlunlr < € (m —) P < O (m —) <5
B r r 3

for r > 0 small enough. Now, by ¢) from Lemma 1.2.3, u,, — 0 strongly in L?(Bg\ B,; Q)

for all 1 < p < oco. Thus, for n € N large enough
/ QlunlP < <. (1.12)
BR\B’V‘ 3
From (1.10), (1.11) and (1.12), we get

i ) = Jima [ Qlunl” =0,
and this finish the proof of lemma. m

Remark 1.2.6 Note that the above lemmas hold in fact for a > —2 and b < a.
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1.3 Provas dos Resultados Principais

Now we are ready to present the proof of the main results of this chapter.

Proof of Theorem 1.1.2. By hypothesis (@), there exist 0 < ry < Ry and Cy > 0

such that
Q(lz]) < Co|$|b for |z| > Ry,
(1.13)
Qa) < Cola™  for 0< || < o
Let R > 0 to be chosen latter. We write
Qe —1) = [ Q™ -1+ [ Q™ —1). (1.14)
R2 Br Be

We are going to estimate each integral in (1.14). For the integral on Bg, we have two
cases to consider:

Case 1: by > 0. From the second inequality in (1.13) and the continuity of Q(r), there
exists C' > 0 such that

Q™ —1) < C’/ e
Bgr Br
Let v € H}(Bg) defined by
(@) = u(r) = u(R),

for x € Bgr. Then by the Young’s inequality, for each ¢ > 0 given, there exists a

constant C, > 0 such that
u'(z) < (L+e)v*(x) + (1 + Co)u’(R).
Thus, by Lemma 1.2.2,
u(z) < (14 e)v?(z) + (14 C)CPRHD/2||y 2.
Then fixing R > max {1, Ry, [(1+ 05)02]2/(%2)}, we get
u'(2) < (1+e)v*(@) + [Jul”
Hence,

/ Qe — 1)< C / ol(+2p 4l
BR B BR

< Cellul? / e1H+e)? (1.15)
Bgr

18



Since v € Hy(Br), [[vllmi(a) = IVVllz2s) < [Jull < 1 and in this case o < 4, we
can take ¢ > 0 such that a(1 4+ ¢) < 4w. Then, from the classical Trudinger-Moser
inequality (1.1) we get

sup / e < ¢
Br

UGH(% (BR)3 HUHH(%(BR)SI

Thus, from (1.15), we obtain
s [ Qe ~1) < Cla)
u€E; ||lu||<1JBg
Case 2: —2 < by < 0. Since 0 < rg < Ry < R, we write

: Q™™ —1) = Q(e““2—1)+/ Q™ — 1)

Bro BR\B’I’O

SCO/ ’$‘boeau2+c/ 6au2
B BR\BT‘O

70

SCO/ ‘x’boeoaﬂ_i_c«/ eau27
Br Bgr

where we have used again the continuity of Q)(r) and the second inequality in (1.13).

By similar computations done above, we obtain

) eau2 ) 604(1—&—&)1)2
/ |z |Poe —/ - < eIl / — (1.16)
Br Br 17| Bn 17|

Since in this case a < 4w (1+by/2), we can take € > 0 such that a(1+¢) < 4n(1+by/2).

Thus, since v € Hy(Br), vl zap = IVllz2Bg) < llull < 1 and —by € (0,2), thanks
to (1.3)

ea(1+a)v2
sup / ——— < C(a, by).
Br

—bo
VeH}(Br); ol 4 (2 <1 ||

Using this in (1.16) we obtain

sup [ Jafren < Clat)
Br

ueE; |luf<1

Therefore, in both cases we have

sup /B Q™ — 1) < C(a, by). (1.17)

ueE; |luf<1

Next, we estimate the second integral in (1.14). It follows from the first inequality

in (1.13) and Monotone Convergence Theorem that for any u € E

e PP
A -0 <G [ e 0= [ P>
B B B, =

R R J:

o .

al .

< CQZT/C |x|bu23.
j=1 J° /Bg
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By using Lemma 1.2.2 we can estimate the last integral above as follows

/ 2P < (Cu)? / 2]
B¢ B¢

R R

— 2 (Clul)? [

27

< Gy s
where we have used that b < (a —2)/2, 5 > 1 and R > 1. Thus,
27TC’0 = (aC?| |u||
Q( ) S a— a 2 -b Z
BC (T j=1
2
(72 —b) R

for all u € F. Furthermore,
sup / Q™ —1) < C(a, a,b). (1.18)
u€E; |lul|<1 /B,
Therefore, from (1.17) and (1.18) we have that
sup / Q(ea“2 —1) < C(a,a,b,by)
u€E; ||lul|<1 JR2
and the theorem is finished. m
Using Theorem 1.1.2 and following the same steps as in the proof of [29, Lemma 2.6]
we present the
Proof of Corollary 1.1.4. Recall that if y, 2 and ¢ are positive numbers, the Young’s
inequality implies that

v =(y—2)°+22+2(y — 2)

LI\

1
<(A+eH)y—2)>+ (1 + 5—2) 22,
Hence, we can use the Young’s inequality again to get

5 Q(eﬁv% o 1) < /R2 (Ql/r1eﬁ(1+a2)(vn—v)2 ) Ql/rze,@(1+1/52)u2 _ Q _ Q)

1 T2
1

< — Q <6r1ﬂ(1+€2)(vn—v)2 . 1) + i/ Q (67‘26(1-‘,-1/62)112 . 1) ’
1 JRr2 Ty Jr2

where ry,r9 > 1 and 1/r; + 1/ry = 1. It follows from Theorem 1.1.2 that the last

integral above is finite and therefore it suffices to prove that

sup/ Q (e”ﬁ(lJ’sQ)(”"‘”)Q — 1) < 00.
]R2

neN
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Since v, — v and ||v,]| = 1, we conclude that

/

o .
1? < 5 = nh_}rgloﬁﬂvn -l < d.

lim ||v, —v|> =1~ v
n—oo
Consequently, for n € N large, there exist r; > 1 sufficiently close to 1, € > 0 small
enough and 0 < o < &' such that
2 2 /
rB(l+e%)||v, — || <a<d.

Hence, invoking the Theorem 1.1.2, we obtain C' > 0 independent of n such that

/ 0 <€r15<1+52>(vn—v>2 _ 1) _ / 0 (6r15(1+62)an—vH2((vn—v)/an—vH)2 _ 1) <c
R2 R2

and the corollary is proved. m

1.4 Constante Otima e Existéncia de Funcao Extremal

In this section we are going to explore further properties of our Trudinger-Moser
inequality (1.4) concerned with the sharpness and the existence of extremal function.
Throughout the section, we need the following additional hypotheses on V(|z|) and
Q(|z|) at the origin:

~ Vv
(V') There exists ag > —2 such that limsup (r)

r—0 a0

< 00;

(Q) Q € C(0,00), Q(r) > 0 and there exist b < (a —2)/2 and —2 < by < 0 such that
Q(r) Q(r) Q(r)

0 <liminf —— <limsup ——= < oo and limsup —;
r—0 o0 r—0 70 r—4o00 T

< 00.

Remark 1.4.1 1) Note that the singular potentials considered in the Example 1.1.1
satisfy (V) and (Q);

2) Notice that (V') implies that there exist 1o > 0 and Cy > 0 such that

V(lz]) < Colz|®, forall 0 < |z| <. (1.19)

The main result of this section is the following;:

Theorem 1.4.2 Assume that (V), (V) and (Q) hold. Then there holds

Se = sup Q|z])(e*™ = 1) < +o0 (1.20)

ue; [lull<1 Jr2

if and only if 0 < a < . Moreover, the supremum (1.20) is attained provided 0 <

a<do.
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In order to use similar arguments developed in [47] we need the following version
of the Radial Lemma for functions in L*(R?; V).

Lemma 1.4.3 Assume that (V) holds. If u € L*(R* V) is a radial non-increasing
function (i.e. 0 <u(x) <u(y) if |x| > |y|), then one has

[u(@)] < Cllullpzmeylz[ 772, Jz] > 1.

Proof. It follows from the hypothesis (V') that there exists Ry > 0 such that for some
Cy > 0,
V(|z|) > Colz|* for |z| > Ro.

Then for p > 0 such that p/2 > Ry, we have (setting p = |z|)

o
||u||%2(R2;V) > 27T/ V(s)u?(s)sds

/2
P

> ZWCouz(p)/ s*Tds

/2

— C«pa+2u2<p).
Thus we conclude that
lu(z)| < C'||uHLz(Rz;V)|x|_(“+2)/2 for |z| > Ry.

Hence, the lemma is proved. m

In order to prove the sharpness of (1.20), we recall the Moser’s function sequence

(see [39]): (

(logn)'/?, |z| < r/n,
— B 1 log f?'
(27r)1/2 (log n)1/2 )

r/n<lz|<r,

0, |z|>r,

\

with 0 < r <1y fixed and 7 given in (1.19). We have the following estimate for ||]\A4;L||
Lemma 1.4.4 Under the hypothesis (V),
I <1+ 20 (14 g, 1))
e logn e

where m(r) = 2Cor**2/(ag + 2)3.
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Proof. It is easy to compute

—~ 1 1
STEY S
R2 27 r/n<|z|<r |IE‘ IOg n

On the other hand, (1.19) and integration by parts give

IR

2
C <1og %)
< |z|* log n + = x|a0—| |
2m |z|<r/n 2m r/n<|z|<r 1Ogn

_ 20 (1N 2Ceet 1 oGy 1 (1)
 (ap+2)2 \n (ap +2)3logn  (ag+2)3logn \ n
2Cor* %2 /(ag + 2)?

L)

<G

and thus

||A7n||2=/ |w“4;|2+/ V(|2)) AP
R2 R2

<14 %(1 +on(1)).

Hence, the lemma is proved. m

Proof of Theorem 1.4.2. By hypothesis (@), there exist 0 < ry < Ry and Cy > 0
such that

Q(zl) < Colz”  for |z > Ry,

(1.21)
Q(|z]) < Co|z|P for 0 < |z| < .
Let R > 0 be large enough. We write
Q™ —1)= [ Q™ —=1)+ [ Q™ —1). (1.22)
R2 Br B

We are going to estimate each integral in (1.22). For the integral on Bg, we have two
cases to consider:

Case 1: by = 0. From the second inequality in (3.10) and the continuity of Q(r), there
exists C' > 0 such that

Qe —1) < C/ e

Br Br
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By the symmetrization theory we may assume that « in (1.20) is non-increasing. Let
u(r) —u(R), if 0<r<R;
0, if »r>R.

By Lemma 1.4.3,

u?(r) = v*(r) + 2v(r)u(R) + u*(R)

IN

v(r) + CvP () R ooy + 1+ CR™ 2 | ooy

= 02(r) [1+ CR™ D2 ulfagay) | +d(R).
Hence
1/2
u(r) < o(r) [1 + CR_(Q+2)/2||U||%2(R2;V)] +d*?(R) = w(r) + dY*(R).

By assumption

[ 9ol = [ 19 <1l
Br Br

and hence

1w
Bgr Bgr

= [+ CR P il | [ 1908
Br

< [+ CRTED 2 gy | 1= fulfaqea)

) 1/2|2
Vo [T+ CR™ 2l g

=1+ OR_(GH)/ZHUH%?(R?;V) - ||U||%2(R2;V) - CR%QH)QH“H%%R%V)

<1

Since
u?(r) < w?(r) + d(R),

we get

2

Q(ea"2 —-1) < C’/ e < C’ead/ e,
Br Br Br
Since w € H}(Bgr) and

[z () = [IVwll2(8s) < 1,

sup / Q(e"‘“2 —1) < 400,
u€E; ||lul|<1JBg
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by the classical Trudinger-Moser inequality (1.1).
Case 2: —2 < by < 0. It was done in the proof of Theorem 1.1.2 as well as the
estimative of the second integral in (1.22).

Next we will show that (1.20) does not hold if a« > «'. Setting M, (z,r) =
mﬁ( 7), then M, belongs to E with its support in B,(0) and ||M,|| = 1. From
Lemma 1.4.4, when |z| < r/n, we have

logn
T1+ 20 (1 4 0,(1))

M2(z) > 2i — (21)  logn — (27) " 'm(r) + on(1).
By hypothesis (@)7

Q(|lz]) > Colz|P for 0 < |z| < 7o.

Thus, for 0 < r < ry we have

[ o /WQ et _ 1)

> CO/ |l”b0 (ea[(Zﬂ)_llognf(Zw)—lm(r)Jron(D] . 1)
B

r/n

_ CO (ea[(27r)’1lognf(Qﬂ)’lm(r)Jron(l)] . 1> / |£I§"b0
B

r/n
1
n2+b0

_ C«na(27r) 1_(2+b0)60"(1) + On(l)

— rCyrtho <€a[(27r)’110gn—(27r)’1m(r)+on(l)] _ 1)
Thus if by = 0 (= o = 47), then

a>4r . al2r) 7t —-2>0
and we conclude that

lim Qe — 1) = +o0.

n—oo R2

Now, if =2 < by <0 (& o =4n(1 +by/2)), then
a>a =4r(1+by/2) =272+ by) . a(2m) ' > 2+ by . a2m) Tt = (2+by) >0
and consequently we also obtain

lim Qe alMy _ 1) = +o0,

n—oo R2

concluding the first part of theorem.
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For the last part of theorem, we consider 0 < o < «'. Let (u,) C E be a
maximizing sequence, with [|u,|| < 1. Then, up to subsequences, we can assume
that u,, — uo weakly in F and, by Lemma 1.2.5, u, — ug strongly in LP(R?; Q) for

2 < p < oco. Using the inequality
le” —eY| < |z —y|(e® +¢€Y), Vr,yeR, (1.23)

we estimate

Q(eau% . eau%)
R2

< a/ Qe |u? — u2| + a/ Qe d|u? — u?|. (1.24)
R2 R2
Writing
Qe — = [ Qe — i~ udl + [ QI ul
R R R?

and taking r; > 1 sufficiently close to 1 such that ria < o (it is possible because we
are assuming a < «’) and 5 > 2 such that 1/r; + 1/ry = 1, the Holder’s inequality

implies that

Qeaui

) 1/r1 1/ra
w2 —ud] < ( Qe — 1>) ( Ol —uaw)
R2 R2

1/2 1/2
(o) (L)

and likewise for the integral in (1.24) containing e, Thus, it follows from the first

RQ

part of theorem and Lemma 1.2.5 that
Sa+o0,(1)= [ Qe —1) = [ Qe — 1) + 0,(1).
R2 R2

Finally, since |Jug|| < 1, we see that ug is the required extremal function. This completes

the proof of the result. m

Remark 1.4.5 The mazximizer ug can be chosen unitary, i.e, ||ugl| = 1. Indeed, since

for instance if ||upl| < 1, then setting vo = uo/||uol|, we would have

Qe —1) > [ Q(e™ —1) = S,,
R? R?

which is a contradiction.
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Chapter 2

Sobre uma Classe de Equacoes de
Schrodinger Envolvendo Crescimento

Critico do Tipo Exponencial em R?

This chapter is concerned with the existence, multiplicity and nonexistence of

solutions for nonlinear elliptic equations of the form
—Au+V(z)u=Q(lz)f(u) in R (2.1)

when the nonlinear term f(s) is allowed to enjoy the exponential critical growth by
means of the Trudinger-Moser inequality and the radial potentials V' and ) may be
unbounded, singular or decaying to zero. We point out that part of this chapter is

contained in the published paper [5] and in the preprint [§].

2.1 Introducao e Principais Resultados

In the papers [50, 51|, Su-Wang-Willem studied the existence of solutions for the
problem
—Au+V(|z))u=Q(z)|uf?u in RN
lu(z)] — 0 as || — o0
with 2 < p <2*=2N/(N —2)for N >3,2<p<oofor N=2and V,Q € C(0,00)
are radial potentials which are singular at the origin or vanish super-quadratically at

infinity. It is natural to ask if this result is true, under a similar local condition on



V(|z|) and Q(|z]), when we consider nonlinearities with exponential critical growth in

dimension two. Explicitly, we assume the following hypotheses on V' (|z|) and Q(|z|):

(V) Ve C(0,00), V(r) > 0 and there exists a > —2 such that

lim inf Vi)

r—4oo 1@

> 0.

(Q) Q € C(0,00), Q(r) > 0 and there exist b < (a — 2)/2 and by > —2 such that

Q(r) Q(r)

rbo rb

< oo and limsup < 0.

r—-+00

lim sup
r—0

Here, we are interested in the case where the nonlinear term f(s) has maximal
growth on s which allows us to treat problem (2.1) variationally. Explicitly, in view
of the classical Trudinger-Moser inequality, we say that f(s) has ezponential critical
growth at +oo if there exists ag > 0 such that

(f) lim |f(s)|: 0, Yo > ay,

2
s—+oo XS

+ 00, Va < ayp.

We will assume that the nonlinearity f(s) is continuous and satisfies:

(f1) f(s) =o(s) as s — 0;

(f2) there exists # > 2 such that
0 <0F(s)= Q/OSf(t)dt <sf(s), Vs#0;
(f3) there exist constants Ry, My > 0 such that
0 < F(s) < Mo|f(s)], Vls| = Ro;

(f1) there exist v > 2 and p > 0 such that

F(s)>Ylsl”, vseR.
1%

We point out that the hypotheses (f,,) — (f1) has been used in many papers, see for
instance [16, 22].
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Example 2.1.1 Let v > 2 and pu > 0 be constants. A simple model of a function that
verifies our assumptions is

F(s) = pls|"2s + 2s¢” — 2s,

for s € R.

Clearly (fa,) is satisfied with oy = 1 and (f1) holds provided v > 2. In order to prove
that (f>) is satisfied, notice that

F(s) = H|s|” +e’ — 58— 1.
v
Thus
0 v s2 2 2
sf(s) —0F(s) = p 1—; |s]" + e (2" —0) —s°(2—0)+ 6
> e (25 —0) — $2(2—60) + 6
> 252 —0—252+0s>+ 60
=0s* >0,
for |s| > \/0/2 and 2 < § < v. If |s| < \/0/2, then
sf(s) —OF(s) > —0 — 25> 4+ 0s* + 0 = s%(6 — 2) > 0,
provided s # 0 and 6 > 2. For (f3), it is enough to notice that

F 1 v + 22 1
RN |1 e ik ek N}
lslsoo f(S)  |slsoo pu|s|P2s + 255" — 2s

Finally, since e5* > s>+ 1 for all s € R, it is easy to see that (f) is satisfied.
Denoting by S, > 0 the best constant of the Sobolev embedding E — L”(R?; Q)
(see Lemma 1.2.5), as an application of the Theorem 1.1.2 and using a minimax pro-

cedure, we have the following existence result for problem (2.1).
Theorem 2.1.2 (Existence) Assume that (V) —(Q) hold. If f satisfies (fa,) — (f1),

with 22
0> {O‘O(V/_ 2)} 5'5/27
o'V

then the problem (2.1) has a nontrivial positive weak solution u in E. Moreover, if in

addition (V') holds, then there exist constants cy,cy > 0 such that

u(z) < coexp (—ey|z| ) | Vo e R2 (2.2)
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Remark 2.1.3 The existence result above completes those of [50] in the sense that we

treat the exponential critical case.

The first difficulty in treating this class of Schrodinger equations (2.1) is the
possible lack of compactness due to the unboundedness of the domain. The second
difficulty is the critical growth. In both cases, it is not standard to verify that the
associated functional to the problem (2.1) satisfies the Palais-Smale condition at some
level ¢ € R.

Our multiplicity result is concerned with the problem
—Au+V(|z))u = AQ(|z]) f(u) in R (2.3)

where )\ is a positive parameter. It can be stated as follows.

Theorem 2.1.4 (Multiplicity) Assume that (V) —(Q) hold. If f is odd and satisfies
(fao)—(f1), then there exists an increasing sequence (\;) C Ry with Ay — 00 as k — oo
such that, for X\ > A, the problem (2.3) has at least k pairs of weak solutions in E.

2.2 Formulacao Variacional

We establish the necessary functional framework where solutions are naturally
studied by variational method. Let o > « given by (f,,) and ¢ > 1. We claim that it
follows from (f,,) and (f1), for any given € > 0, there exist constants by, by > 0 such
that

1F(s)| < els| +by|s| (™" — 1), VseR (2.4)

and

1F(s)| < 232 4 b|s[7(e® — 1), Vs eR. (2.5)
Indeed, from (f;), given € > 0 there exists d; > 0 such that
lf(s)] <els], VO <|s|<d. (2.6)

For a > ay, the condition (f,,) ensures that

lim f(s)

srtoo sl 1 (ea” — 1)

=0,
which implies that there exists d5 > d§; > 0 such that
1F(s)| < els|]i (™" = 1), V|s| > &. (2.7)
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In the case that s € [y, dy], we have (e27—1) < (e*"—1), that is, 1 < (e* —1)(e*’ —1)
for all s € [d1,d2]. On the other hand, since f(s) is bounded in [d7, ds], we have
|f(8>| S C; Vs € [51a 52]

= C'S‘qil‘SPiq, Vs € [51,52]

< C‘S‘qil, Vs € [(51,(52]

< C)s|I71 (€™ = 1)(e** — 1), Vs € [61,69)

= C|s|7 (™ —1), Vs € [6,d) (2.8)
Hence, from (2.6), (2.7) and (2.8) we get (2.4). Finally, from this and a direct integra-

tion we obtain (2.5). Therefore, the claim follows.

Given u € E we can use (2.5) with ¢ = 2 to obtain

<5 [ QP+t [ Qupe .
/ Qlul? < oo.

If we apply the inequality (1+¢)" > 1+¢" witht =e* — 1 > 0, we get

By Lemma 1.2.5,

(e —1)" < (e —1), (2.9)

for all » > 1,5 > 0. Now, let 71,79 > 1 be such that 1/r; + 1/ry = 1. The Holder’s
inequality and (2.9) imply that

) 1/r1 1/ra
Q|u|2(eau o 1) S ( Q|u|2r1) ( Q( roou? - )) < 00,
RQ RQ

where we have used Lemma 1.2.5 and Theorem 1.1.2 to conclude that the latter two

terms are finites. Therefore, the energy functional associated to problem (2.1) I : E —

R defined by
1
Iw) = gl - [ QF
R2
is well defined and I € C'(E,R) with derivative given by
I'(u)v = / (VuVo +Vuw) — | Qf(u)v, Vu,v € E.
R2 R?

Thus, since we are searching for weak solutions for problem (2.1), that is, functions

u € F such that
/ (VuVo +Vuw) — | Qf(u)v =
R2 ]R2
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for all v € E, we conclude that a weak solution of (2.1) is exactly a critical point of [
and reciprocally.
Next lemma describe the geometric structure of the functional I required by the

Mountain-Pass Theorem.

Lemma 2.2.1 Assume that (V') — (Q) hold. If (f.,) — (f2) are satisfied, then:
i) there exist T,p > 0 such that I(u) > 7 if ||ul]| = p;
it) there exists e, € E, with |le.|| > p, such that I(e,) < 0.

Proof. By using (2.5) with ¢ > 2, the Hélder’s inequality, Lemma 1.2.5 and Theo-

rem 1.1.2 we obtain

Sf/iQWP+®/iMM%&“—B
1/r 1/ro
<—WW+@(/QM“) ([ = -n)

< Sl + Clul,

whenever |lul| < M < (o//a)? and 7, > 1 is sufficiently close to 1. Consequently,

1 Ce ~
> (= - == 2 _ q

which implies 7). In order to verify ii) we note that from (fs), there exist constants
A, B > 0 such that
F(s) > Als|” ~

for all s € R. If we take a function ¢ € Cg5,,(R?) \ {0} and denote by G its support,
then for ¢ > 0

t?
I(t9) < S0l ~ 4t [ Qo+ 5 [ @
G G
which implies i) with e, = t,¢ and t, > 0 large. m

In view of Lemma 3.2.1 the minimax level

¢= Inf max I(g(t))

is positive, where
I'={g€C([0,1,E):9(0) =0 and I(g(1)) <O0}.
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Hence, by the Mountain-Pass Theorem without the Palais-Smale condition (see [12])

there exists a (PS). sequence (u,) in E, that is,

I(u,) = ¢ and [I'(u,) — 0. (2.10)

Lemma 2.2.2 The sequence (u,) above is bounded.

Proof. Notice that by (fs)

1) = g = (5= 5 ) Bl + [ Q [, = Flu)

1 1
> (= — = 2,
> (5-7) Il
Combining the last inequality with
1 !/
I(u,) — 5] (up)up < c+ 14 [Juy|
for large n € N, we conclude the proof of lemma. m

Lemma 2.2.3 For each p > 2, S, is attained for a non-negative function u, € E\{0}.

Proof. The proof is based on the direct method of the calculus of variations. Given

any p > 2 choose a sequence of functions (u,) € E such that
/ Qlu,’ =1 and lim (VU + Viua|*) = S,.
R2 n—oo R2
Thus, (u,) is bounded in E. Hence, up to subsequences, we can assume

u, = u, weaklyin FE,
u, — u, stronglyin LYR*Q) forall 2<q< oo,
u,(z) = uy(r) almost everywhere on R?.

In particular,

- lim/ Q|un|p:/ Qlu, 7.
n—oo R2 R2

lup|? < liminf | = 5.
n—oo

On the other hand,

Therefore,
Sp = llupl?,

which completes the proof of lemma. =

We obtain the following estimate for the minimax level c.
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Lemma 2.2.4 [f

/

«
then ¢ < .
2&0

Proof. Since the embeddings £ — LP(R?; Q) are compacts for 2 < p < oo, there

exists a function w € F such that S, is attained, that is,

S, = / (|Val* + Vi) and / Qlu|” = 1.
R2 R2
By the definition of ¢, one has

2
¢ < max {t—Sl, - QF(tﬁ)]
2 -

>0

and thus in view of (f;) we conclude that

12 _9 SZ/(V_Q) ’
=S, — il =2 <=
2 v 2u p2/v=2) 7 20

c < max
>0

Hence, the lemma is proved. m
In order to prove that the weak limit of a sequence is a weak solution of (2.1) we

will need the following convergence results.

Lemma 2.2.5 [22, Lemma 2.1] Let Q C R? be a bounded domain and h : R — R a

continuous function. Then, for any sequence (uy) in L'(Q) such that
u, = u in LYQ), h(u,) € L'(Q) and /QQ|h(un)un] <C,
up to a subsequence we have
h(u,) — h(u) in  LY(Q).

Lemma 2.2.6 There are a subsequence of (uy,), still denoted by (u,), and u € E such
that u, = u in E, u, — u in LP(R%Q), for all 2 < p < co, and

flun) = flu)  in Lj(R%Q),
F(u,) — F(u) in  L'R?% Q).

Proof. From Lemma 2.2.2, up to a subsequence, we assume that there exists u € F

such that u,, — u in E. Therefore, by Lemma 1.2.5, it follows that u,, — u in LP(R?; Q),

for all 2 < p < oo, and u,(z) — u(z) a.e. on R% By (2.10),
1
Sl = [ @F(u) =+ ou(1)
R2
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and
ol = || QFCun)un = 0u(1

as n — o0o. Since (u,,) C F is bounded, there exists C' > 0 such that

[aruisc ad [ ol <c
R2 R2

For the convergence in L .(R?; Q), recalling that H}

loc rad

(Bg; V) is compactly embedding
in LY(Bg) for all 1 < ¢ < oo, up to a subsequence, we can assume that u,, — u strongly

in L'(Bg). Moreover,

Qf(u,) € L'(Br), Qf(u) € L'(Bg) and Q[f (un)un| < C,

Br
n € N. Therefore, thanks to Lemma 2.2.5, the convergence follows. Next, we prove

the second convergence. From the first convergence, there exists g € L'(Bg) such that

Q|f(un)| < g a.e. in Br. By (f3),

QIF (un)| < Q sup |F(un)| + MoQyg

[—Ro,Ro]

a.e. in Bg. Thus, by Lebesgue Dominated Convergence Theorem
QF(u,) — QF(u) in L'(Bg),
for all R > 0. Now, we are going to estimate

QF(u,) and QF (u).
By By
Using (2.5) with ¢ = 2 we have
€ 2 2/ au?
BS, 2 Jps, B,
for a > agy. By the Holder’s inequality, Lemmas 1.2.5, 2.2.2, and similar calculations

to estimate the second integral in (1.14), we get

2 C

Q|un\2(em‘” -1) < —,

BC R&
R

& > 0. Hence, given 0 > 0, there exists R > 0 sufficiently large such that

Qlua (e —1) < § and Qlun|? < 6.
Bj, Bj,
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Thus, from (2.11)

QF (u,) <C§ and QF (u) < C9.

By By

Finally, since

QF(w) ~ | QF(w)

R2
Bpgr Bgr Bg By
we get
lim QF (u,) — | QF(u)| < C4.
n—o0 | Jp2 R2

Since ¢ is arbitrary, the result follows and the lemma is proved. m

2.2.1 Prova do Teorema de Existéncia

Once we intend to find positive solutions, without loss of generality, we will
assume that f(s) =0 for s < 0. Thus, (f2) holds for s > 0, (f3) holds for s > Ry and
(f1) holds for s > 0. Let us check the veracity of the reduction argument mentioned.

Set

- 0, s 0,
Fs) = fe) =
f(s),  f(s)>0.

Assume that ©v € E is a weak solution of

—Au+V(Jz)yu = Q(|z]) f (u). (2.12)

belongs to the functional space E and satisfies

/R2(W“|2 +V]u-[*) = /RQ Qf (wyu_ =0.

Hence, u_(z) = 0 for a.e. z € R? and thus u is a positive weak solution of (2.12). This

together with the condition (f2) imply that f(u) > 0. It follows that



Therefore, u is also a positive weak solution of problem (2.1).
Noticing that the above lemmas are valid also for this modified nonlinearity, we

are ready to prove our existence result.

Proof of Theorem 5.5.2. By (2.10),

Fun)o = [ (V00 Vo) = [ Qftun)o=ou(1), (2.13)

R2
for ¢ € C§%.,4(R?) fixed. Passing to the limit in (2.13), using that u, — u weakly in E

and Lemma 2.2.6 we obtain

/ (Vv + Vus) — [ Qf(u)s =0,
R2 R2

for all ¢ € C§%,4(R?). Thus, we conclude that u is a weak solution of (2.1). Next, we

prove that u is nontrivial. Arguing by contradiction, if v = 0, Lemma 2.2.6 implies

that
lim QF (u,) = 0.
n—oo R2
Since
1
we get

lim ||u,|[* = 2¢ > 0. (2.14)
n—oo

From this and Lemma 2.2.4, given € > 0, we have that

/
!
lunl* < — +e,
Qo
for n € N large. Thus, it is possible to choice ry > 1 sufficiently close to 1 and o > «

close to a such that ryalju,||* < 8 < . Hence, from Theorem 1.1.2,

Qe — 1y < / Q (erelialPn/hll® 1) < .
R2 R2

Thus, using this, (2.4) in combination with the Holder’s inequality and the compactness
of the embedding E — LP(R?; Q) for all 2 < p < oo, up to a subsequence, we conclude
that

lim [ Qf(un)u, = 0.

n—oo R2

Hence, since I’ (u,,)u, = 0,(1), we obtain that

lim ||unH2 =0,
n—oo
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which is a contradiction with (2.14). Therefore, u is a nontrivial positive weak solution
of problem (2.1). To finish, we are going to prove the exponential decay of u. Using

(V) and that a > (CL — 2)/27 we have
V(|z]) > Colz|2/2 for |z| > Ry.
Consider
¢(T> = exp <—C17”(a+2)/4) ,

with ¢; = v/8Cy/(a +2) > 0. Then, since a > —2, a straightforward computation

shows that for |z| > Ry,
C _
—A¢ +V(jal)o = la| 2. (2.15)

On the other hand, by (@), (fi1) and the decay to zero of w at infinity, there exists
E) > Ry > 0 sufficiently large such that for || > E)

Qlla)fw) < Llaluta) < Llafe u(a), (2.16)

where in the last inequality we used that b < (a — 2)/2. Then, combining (2.15) (with
co¢ instead of ¢, where ¢y is a positive constant such that v < co¢ on |z| = EO)

and (2.16), we get

~a- ) + (Vi) - el ) - a) <0 i ol > o

u—cop <0 on |:)3|:§6,

lim (u — cpp) = 0.

|z| =00
Therefore, by the maximum principle,

u(z) < cop(x) for |z| > Ro.

To complete the proof of estimate (2.2) for all x € R? it is sufficient to prove that
u € Lw(%). Initially, we will show that u € L>(B,) for all 0 < r < ry (recall that rg

was introduced at the beginning of the proof of Theorem 1.1.2). For this notice that
—Au=w in R?

in the weak sense, where



According to (2.4) with ¢ = 1, we obtain
lw| < eQlu| + b1Q(e™™ — 1) + V]ul. (2.17)

By using the Trudinger-Moser inequality (1.4), Lemma 1.2.5 and the condition on Q
at the origin, it follows that Qu,Q(ea“2 — 1) € LP(B,) for some p > 1. Now, by
similar computations used in the proof of [50, Theorem 2|, the hypothesis (17) and the
consequence of i) from Lemma 1.2.3, it follows that Vu € LP(B,). Hence, w € L?(B,)
for some p > 1. Thus, by elliptic regularity theory u € W2?(B,) and so u € C"(B,) for
some 7y € (0,1). In the annulus By \ By, it follows from the continuity of the potentials
V,Q and the consequence of i) from Lemma 1.2.3 that Qu,Vu € LP(Bg \ B,) for all
1 < p < oo. To estimate the second term on the right hand side of (2.17), it is enough
to use similar computations as in the proof of Case 1 of Theorem 1.1.2 to conclude
that Q(e® — 1) € LP(Bg \ By,) for all 1 < p < oo. Hence, w € LP(Bg \ By,) for all
1 < p < co. Thus, by elliptic regularity theory, u € C’M(m) for some v € (0,1)

and this completes the proof of theorem. m

2.3 Prova do Teorema de Multiplicidade

In a general context, let F = E; @ E5 be a real Banach space with dim(E;) =
k < +o0. Suppose that I is a C*(E,R) functional satisfying the following conditions:

(1) I(0) =0 and [ is even;
(Iy) there exist 7, p > 0 such that I(u) > 7 if ||u]| = p;
(I3) there exists S > 0 such that I satisfies the (PS). condition for all ¢ € (0,S);

(1) for any finite-dimensional subspace F' C E, there exists R = R(F) > 0 such that

I(u) <0, YueF\ B

Let {e1, ez, ...,ex} be a base of Fy. For each | > k, take e;11 & E; = span{ey, e, ..., e }.
Consider R; = Ri(E;) given by (I) and define the sets

Dl = BRZ N El,
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G ={g€C(D,E):gisoddand g(u) = u,Vu € 0Bg, N E}}
and
Fji{g(Dl\Y> cg€GLl>73Y e¥and y(Y) Sl—j},

where (Y') is the genus of the set Y € 3, with
Y={Y CE\{0}:Yisclosedin F and Y = -Y}.
Defining now for each j € N the following minimax levels

= dof s 1)

and the set K, = {u€ E:I'(u) =0 and [I(u) = c}, we employ the following abs-
tract result to prove the multiplicity in Theorem 2.1.4. See [23, Theorem 3.1 p.74].

Proposition 2.3.1 Under the conditions on I above, the following claims are true:
i) for each j >k, we have 0 <7 < ¢; < ¢jyq;
it) if j >k and ¢; < S, then ¢; is a critical value of I;
1) if j >k and ¢c; = cjp1 =cjpo = ... =cj =c < S, then y(K.) > 1+ 1.
In our case, we will consider E our original space in which we are working and £, the

trivial subspace of E. We see that the energy functional associated to problem (2.3)

1

B = 5l = [ @Ft). ek,

is well defined and I, € C'(E,R) with derivative given by
I (u)v = / (VuVo +Vuv) =X [ Qf(u)v, Yu,v e E.
R? R?

Hence, a weak solution u € E of (2.3) is exactly a critical point of I, and recipro-
cally. Furthermore, since f(0) = 0 and f is odd, I, satisfies (I;) and with similar
computations to prove ¢) in Lemma 3.2.1 we conclude that I, also verifies (I3).

To verify (I3) and (1) we consider the following lemma.

Lemma 2.3.2 Assume that (V') — (Q) hold. If f satisfies (fo) — (f1), we have:

i) the functional I satisfies the (PS). condition for all ¢ € (0,¢/2cy), that is, any
sequence (uy,) in E such that

I(uy) = ¢ and Ii(u,) —0 (2.18)

admits a convergent subsequence in E;
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i1) for any finite-dimensional subspace F C E, there exists R = R(ﬁ) > 0 such that

Iy(u) <0, YueF\ Bg.

Proof. Using (f>), a standard computation gives that (u,) is bounded in F and so, up

to a subsequence, u,, — u weakly in £. Now, as in the Lemma 2.2.6, the convergences

flun) = flu)  in L, (R%Q),
F(u,) — F(u) in L'R*Q).

(2.19)

hold. We claim that

Qf(u)u— | Qf(w)u as n — oo. (2.20)
R? R2

Indeed, since Cg5,4(R?) is dense in E, for all § > 0, there exists v € Cg%,,4(R?) such

that ||ju — v|| < 0. Observe that

[ QU = Fu

< +

o Qf (un)(u—v)

[ Qs )

e Gl ~ s

To estimate the first integral we use that |1} (u,)(u —v)| < &,|lu —v|| with £, — 0 and

we conclude that

[ Qf ) =)

< énflu =l + flunll[lu = v]| < Cllu =l < C4,

where we have used that (u,,) is bounded in E. Similarly, since the second limit in (2.18)

implies that I} (u)(u —v) = 0, we have

g Qf (up)(u—v)| < C6.

To estimate the last integral we use the first limit in 2.19 and conclude by the previous

inequalities that

Q[f (un) — f(u)]u| < 2C0.

RQ

lim
n—oo

Since 0 > 0 is arbitrary, the claim follows. Hence, passing to the limit when n — oo in

on(1) = It ) = /R (VuVus Vi) =5 [ Qffu)u

and using that u, — u weakly in F, (2.20) and (f3) we get
Ju? = [ @fwuz2r [ QF)
R2 R?
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which implies that
I\(u) > 0. (2.21)

We have two cases to consider:
Case 1: u = 0. This case is similar to the checking that the solution u obtained in the
Theorem 5.5.2 is nontrivial.

Case 2: u # 0. In this case, we define

Uy, U
——— and v=

vy = _
! HunH hmHun”

It follows that v, — v weakly in E, ||v,|| = 1 and |[v|] < 1. If ||v|| = 1, we conclude the
proof. If [|v|| < 1, we claim that there exist 71 > 1 sufficiently close to 1, a > aq close
to ag and 8 > 0 such that rial|u,]|* < 8 < /(1 — |[v||*)~! for n € N large. Indeed,

since
I(u,) = c+o0,(1)
and
F(u,) = F(u) in LI(RQ; Q)
we have that
1
— lim |Ju,||* =c+ )\/ QF (u). (2.22)
2 n—o0 R2
Setting

. (cH/RQ QF(u)> (1= [loll?) .

then by (2.22) and the definition of v, we obtain
A=c—I\(u).

Hence, coming back to (2.22) and using (2.21), we conclude that

1 lim [, |2 A c— I (u) < c _ o
— lim ||lu,|* = = < :
gy Jim, T [oE ~ 1= o2 = T= o2 ~ 2a0 (1 — o]

Consequently, for n € N large there exist r; > 1 sufficiently close to 1, a > ag close
to g and 8 > 0 such that riaf|u,||* < 8 < /(1 — |jv||*)™!, and the claim is proved.

Therefore, from Corollary 1.1.4,

Qe — 1)t < C. (2.23)
RQ
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Next, we claim that

lim g Qf (un)(uy, —u) = 0.

n—oo
Indeed, let r1, 79,73 > 1 be such that 1/ry +1/ro +1/r3 =1 and (¢ — 1)ry > 2. Thus,

by (2.4) and the Holder’s inequality we conclude that

1/2 1/2
_ > e
[ s -] <= ([ Qu?) ([ @)
1/r1 1/ro 1/r3
e ([t —0) ([ Qo) ([ Q)

Then, by Lemma 1.2.5 and (2.23) the claim follows. This convergence together with

the fact that I} (u,)(u, —u) = 0,(1) imply that
JunlP = [ (FunTu+ Vi) +0u(1)
R2

Since u,, — u weakly in E, we obtain u, — wu strongly in E. Therefore, i) is proved.

Given u € E < L"(R?;Q), from (f;) we get

1 U
< _ 2 = v
B < 5lal* =22 [l

1 2 :U’)\ v
= Sl = B2l o o

For any finite-dimensional subspace FC E, since all norms on F are equivalent, it

follows that there exists C' > 0 such that

1 2 /‘LA v
Iy(u) < Sl = £l

1 pA
. 2 _ v—2
= Jul (5 - Shal?),

for u € F. Choosing R > 0 such that

1 :U)\ v—2
5 — ER < 0,

we obtain

I(u) <0, VYueF\ Bg

The proof of the lemma is concluded. m
For each k € N, consider Ej, a finite-dimensional subspace with dim(Ey) = k. By

i1) from Lemma 2.3.2, there exists Ry > 0 such that
I,\(u) <0, VUGEk\BRk
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Thus, considering Dy, GG, and 'y above we define

A
© = inf sup I)(u).
KerkueK

C

Lemma 2.3.3 For each k € N, there exists 0 < M, < oo such that
cg < Mk)\2/(2*1/),
where v > 2 is given in (fy).

Proof. Since the identity map is in Gy, we will consider K = D; € I'y. By the

definition of the minimax level, we have

Kely, uek

1
cp = inf max I, (u) < max [—HUH2 - )x/ QF(U)} :
ueK |2 R2

Thus, by (f1)
1 HA 5 1 HA L
b < e [5l? =22 [ Q] = |Gl = E2 |

Now, since dim(K) < oo, there exists C' > 0 such that
1 pA 11\ /eNY"? L,
@ < |l - Sl = (5-7) (5) e

Therefore, setting
11\ /o\¥"?
e (139
2 v 7

and observing that v > 2 we obtain the desired result. m
Proof of Theorem 2.1.4. For each k£ € N, let M}, from the Lemma 2.3.3. Choosing
A such that

o' 2/0-2)
M, < — )\ 2.24
k 2050 k ( )

and combining ¢) from Proposition 2.3.1, Lemma 2.3.3 and (2.24) we conclude that,

for all A > A,

0< ci\ < cé\ <. < 02 < MY < Mk/\i/(z_y) < o = S.
%)

Furthermore, by ii), the levels ci\ < cg\ <...< cg are critical values of . Since I, is

even in F/, we can associate at least k pairs of critical points. Finally, we observe that

if ¢} = ¢}y, for some j =1,2,...,k —1, i) implies that V() = 2 and consequently

K,y is an infinite set. Therefore, in this case, the problem (2.3) has infinitely many
J

solutions in F. This completes the proof of Theorem 2.1.4. m
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2.4 Um Resultado de Nao-Existéncia

With the purpose to investigate new rages of a and b for the nonexistence of
solutions of problem (2.3), we shall need to assume the following simultaneous condition

on V and Q:

(VQ) lim V(x)<oo and  lim QL)

>0, with a< —-2<0b.
b
|z| =400 |{l§'|a |z| =400 |{l§'|

We quote that in this hypothesis we are not supposing that V' and @) are radial.
We remark that from ( f,,) with a < ay, conditions (f>) and (fy), for any p > v—1
there exists Cy > 0 such that

f(s) > CysP, forall s>0. (2.25)
Indeed, by (f,,) there exists sy > 1 such that, for any given p > 1,
f(s) > CysP, forall s> s.
On the other hand, (f2) and (f;) imply that, for any given p > v — 1,
f(8) > Cos ' > CysP, forall s € |0,s0].
Hence, for any p > v — 1,
f(s) > min{Cy, Cy}s? = Cys?, forall s> 0.

Our main result of this section is summarized in the following:

Theorem 2.4.1 (Nonexistence) Assume that (V Q) holds. If f satisfies (2.25), then
the problem (2.3) has no C? positive solutions for \ large.

Remark 2.4.2 In this way, the above ranges of a and b of existence and nonexistence

of solutions of (2.3) can be summarized in the figure 2.1 at the end of section.

The proof of Theorem 2.4.1 is based on an averaging process in which we reduce
the problem to an ordinary differential inequality in order to get a contradiction via
some elementary arguments. Before we need some technical lemmas. We denote the

spherical average @ of a function u € C(R?) by

1

u(r) = 9B, - u(zx)do,

where do is the standard volume element on 0B,. It is standard to verify that if

u € C%(R?) then the following holds:
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(17) %(Tﬂ’(r)) = rAu(r);
(i13) @’ (r) + %u’(r) = Au(r) (Darboux’s equation);

(iv) Au(r) = Au(r);
(v) @’ <wP, for allp > 1 (Jensen’s inequality).

Lemma 2.4.4 Assume that (VQ) holds. If u is a C? positive solution of (2.1), then
setting w(t) = r"™u(r) with m = (b+2)/(p—1), p > v —1 and t = logr, there exist

real numbers l; and ly such that w satisfies
w4+ hw' + (I — Vr*)w + w? <0, (2.26)

for t large.

Proof. By using the second limit in hypothesis (V@) together with (2.25), we can

choose \ sufficiently large such that « is a nontrivial positive solution of
Au—V(x)u+ |z|’u? <0 in R?\ Bg, (2.27)

with R > 0 large enough. From Lemma 2.4.3, we get

1
a"(r)+ ;ﬂ'(r) ~V(r)ya+r'a? <0, r>R. (2.28)

Setting w(t) = r™u(r) with m = (b+2)/(p — 1) and t = logr, we see that

r™a(r) + "t (r),

5.
I
3

w”(t) = m2r™u(r) +mr™ta (r) + (m o+ D)™t (r) + " 2a (r),

= —2m2*r™a(r) — 2mr™ 1 (r),

= m*r™u(r) — Vr™2a(r),

where [; = —2m and Iy = m?. Thus, by using (2.28), we get (2.26) for ¢ large. The
proof of lemma is finished. m

Proof of Theorem 2.4.1. We shall use similar arguments developed in [17]. Suppose
by contradiction that u is a C? nontrivial positive solution of problem (2.3). We have

three cases to consider:

Case 1: w'(T) < 0 for some T sufficiently large. We set B(r) = Iy — Vr?. By the first
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limit in hypothesis (V Q) with the condition a < —2, we have B +w?~! > 0 at infinity.
Then, integrating (2.26) over [7t] for T' large, we have

¢
w'(t) < e h Dy (T) — ellt/ (B + wP Hwe*ds < e 1D/ (T0).
T

Since [ < 0, integrating the above inequality over [T t], we obtain
1
0<w(t) <w(T)+ l—w’(T) (1- e_ll(t_T)) — —00 as t— 400,
1

which is a contradiction.

Case 2: w is non-decreasing and bounded at infinity. Then there exists ws, > 0 such
that w(t) — ws as t — 0o. Thus, there exists a real sequence (t,,) with lim,,_, t, = 00
such that w'(t,),w”(t,) — 0 as n — oo, which implies by passing to the inferior limit
in (2.26)

0 < wf, <m? +liminf w(t,)? < lim inf (B(et") + w(tn)p_l)w(tn» <0,

n—oo n—oo

which is a contradiction.
Case 3: w is non-decreasing and unbounded at infinity. Setting v(t) = e%tw(t), we
have

v"(t) + D(t)v <0, (2.29)
where D(t) = B(e') — 1?/4 + w(t)P~'. Multiplying both sides of (2.29) by sint¢ and
integrating by parts twice over [2kmw, (2k + 1)7| with integer k& > 0, we obtain

(2k+1)m
/ (D(#) — 1)o(t) sintdt < —v(2k7) — v(2k + 1)7) 0. (2.30)
2km
Since D(t) — oo as t — oo, we have in particular that D > 1 on [2km, (2k + 1)7]

for k > 0 sufficiently large, which contradicts inequality (2.30) and this completes the

proof of theorem. m
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Chapter 3

Sobre uma Classe de Equacoes de
Schrodinger Nao-homogéneas
Envolvendo Crescimento Critico do

Tipo Exponencial em R?

This chapter is concerned with the existence and multiplicity of solutions for

nonlinear elliptic equations of the form
—Au+V(|z))u=Q(|z]) f(u) + h(z) in R? (3.1)

where V' and @) are unbounded, singular or decaying radial potentials, the nonlinearity
f(s) has exponential critical growth and the nonhomogeneous term h belongs to the
dual of an appropriate functional space. By combining minimax methods and the
Trudinger-Moser inequality (1.4), we establish the existence and multiplicity of weak
solutions for this class of equations. We point out that part of this chapter is contained

in the preprint [9].

3.1 Introducao e Principais Resultados

Throughout this chapter, we assume the following hypotheses on V'(|z|) and
Q(|x]):



(V) Ve C(0,00), V(r) > 0 and there exists a > —2 such that

lim inf Vir)

r—+oco 1@

> 0.

(Q) Q € C(0,00), Q(r) > 0 and there exist b < (a —2)/2 and —2 < by < 0 such that

0 < liminf Q) < lim sup Qi) < oo and limsup Q)
r—0  rbo roo  rhO rostoo TP

< 00.

We will assume that the nonlinearity f(s) is continuous and satisfies:
(f1) f(s) = o(s) as s = 0;

(f2) there exists 6 > 2 such that
0<0F(s) = 0/ f)dt <sf(s), Vs#0.
0

Now, we are ready to state our first existence result.

Theorem 3.1.1 (Existence) Suppose that (V) —(Q) hold. If [ satisfies (fa,) — (f2),
then there exists 61 > 0 such that if 0 < ||h||g-1 < 61, the problem (3.1) has a weak
solution uy, in E.

In order to establish our next result, we make the following additional hypothesis

on the nonlinearity f(s):
(f3) There exist constants Ry, My > 0 such that
0 < F(s) < Mo|f(s)], Vls| = Ro;

(f1) there exists fy > 0 such that

4 eQm(ro)
—_— if by =0;
.. .5f(s) Coag 7“3 7 ’
| f >
minf Lo ==Y e 1

— 0, if —2<by <0
C()Oéo 7“80+27 0 ’

where

( ) QCoTaOJrZ

m(r) = ———=,
(CL() + 2)3

with 0 <7 < ry and ry given in (1.19).
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Remark 3.1.2 A simple model of a function that verifies our assumptions is
f(s) = s|s| + 2se” — 2s,
for s € R. Clearly (f,,) is satisfied with ag = 1 and (f1) holds since

tim £ _ iy <|s| +2¢% —2) ~0.

|s]| =0 S |s]—0

In order to prove that (fs) is satisfied, notice that
1 3 s? 2
F(s) = §|s| +e” —s" —1.
Thus

sf(s) — OF(s)

<1 - g) s + ¢ (25 —0) — s*(2— 0) + 0

2

et (25 —0) — s*(2—0) + 0
25> — 0 — 25> + 05> + 0
6s> >0,

AV V]

for|s| > \/0/2 and 2 < 0 < 3. If |s| < \/0/2, then
sf(s) —OF(s) > —0 — 25 4+ 0s* + 0 = s°(6 — 2) > 0,
provided s # 0 and 0 > 2. For (f3), it is enough to notice that

F(s) . HsP+e’—s*—1

sl=oo f(8)  |s|—oo s|s| + 2ses® — 2s

=0.

Finally, it is easy to see that

lim sf(s)e™ = +oo,
|s| =00

showing that (f4) holds.

Our multiplicity result can be stated as follows.

Theorem 3.1.3 (Multiplicity) Assume that (V) — (Q) and (V) hold. If f satisfies

(fao) — (fa), then there exists 9 > 0 such that if 0 < ||h||g-1+ < d2, the problem (3.1)
has at least two weak solutions in E.
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3.2 Prova do Teorema de Existéncia

We establish the necessary functional framework where solutions are naturally

studied by variational methods. Given u € F we can use (2.5) with ¢ = 2 to obtain

€ 2 2/ au?
RQQF(U)Sé/RQQM —i—bg/RQQM (e —1).

By Lemma 1.2.5,

Qlul?® < oo.
R2

Now, let 71,75 > 1 be such that 1/r; +1/ry = 1. The Hoélder’s inequality, Lemma 1.2.5
and Theorem 1.1.2 imply that

, 1/r1 ) 1/r2
| e —1>s( / @|u|2“) < Qe —1>) < oo,

where we have used the elementary inequality (e®* —1)" < (" —1), for all 7 > 1,5 > 0.

Therefore, the energy functional associated to problem (3.1) I : E — R defined by

1

1) = 5l = | QP = [ B

is well defined and I € C'(E,R) with derivative given by

I’(u)v:/W(Vqu%—Vuv)— RQQf(u)v—/thv, Yu,v € E.

Thus, since we are searching for weak solutions for problem (3.1), that is, functions

u € F such that

/ (VuVo +Vu) — | Qf(u)v — / hv =0,
R2 R2 R2

for all v € E, we conclude that a weak solution of (3.1) is exactly a critical point of [
and reciprocally.

Next lemma describe the geometric structure of the functional I required by the
Mountain-Pass Theorem. We will denote fRQ hu by the dual pairing (h,u), for any

u € k.

Lemma 3.2.1 Suppose that (V) — (Q) hold and f satisfies (fa,) — (f2). There ezists
81 > 0 such that, for each h € E~' with 0 < ||h||g-1 < 81, there hold:

i) there exist T, pp > 0 such that I(u) > 1, if ||u|| = pn. Furthermore, p, can be
chosen such that p, — 0 as ||h||g-1 — 0;
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i) there exists e, € E, with |len|| > pn, such that

Proof. By using (2.5) with ¢ > 2, the Holder’s inequality, Lemma 1.2.5 and Theo-

rem 1.1.2 we obtain

€ q(au?
[Qr@ <3 [ Qb [ Qe -

Ce 1/r ) 1/ro
<SP on ([ o) ([ e -n)
RQ RQ

Ce ~
< ol +

whenever |lul| < M < (o//a)? and 7, > 1 is sufficiently close to 1. Consequently,

1 Ce

> =—— 2_(C 4 — -1 .
102 (55 ) lal? = Gl = [l ]

Choosing € = 1/(2C), we get
1 =~ _
10 2 Jul (3l = Sl = e ).

Since ¢ > 2, we may choose p > 0 such that 1p — Cp?~! > 0. Thus, for [|hlz

sufficiently small there exists 0 < p, < (o//a)'/? such that
I{u) >0 if flull = pn
and
prn — 0 as |h|lg-1 — 0.

In order to verify i1) we note that from (f;) we get F(s) > Als|? — B, for all s € R. If
we take a function ¢ € Cg%,,4(R?) \ {0} and denote by G its support, then for ¢ > 0

t2
I —||8)* — At? +B -1 |-
(19) < SIoIE = A" [ Qior' + 8 [ @+ tltlle-lol

Hence, since 6 > 2 we conclude that I(t¢) — —oo as t — oo. Thus, if we set e, = t,¢

for t, > 0 large, then we conclude that

I(ey) < Inf  I(u).
(en) et (u)

Finally, it remains to show that

inf I(u) <O0.

u€By, (0)
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Since h € E’, by the Riesz Representation Theorem, there exists an unique function in

E, denoted by vy, such that
(o) = / (VuVu, + Vi),
R2

for w € E. Thus, we have that (h,v) = ||v,||* > 0, whenever h # 0. Since f(0) = 0, it
follows by continuity that there exists 7, > 0 such that

< I(tv) = tlonl? - / Qi) — () <0,

for all 0 < ¢t < n,. Hence the function ¢ +— I(tvy) is decreasing in (0,7). Since
I1(0) = 0, we must have I(tv,) < 0 for all 0 < ¢ <, and the result follows. m
Proof of Theorem 3.1.1.  Let p, be given by Lemma 3.2.1. Since p, — 0 as
|h||g-1 — 0, we can choose ||h||z—1 small enough in such way p, < (a'/ag)'/?. Let
I = infp, (o) < 0. By using the Ekeland’s Variational Principle [54] we obtain a
minimizing sequence (u,) in B,, (0) such that I(u,) — I and I'(u,) — 0. Observing
that
a/

lim inf [|Ju, ||* < pj < —,

we infer that for n € N large, there exist r; > 1 sufficiently close to 1 and a > « close

to ap such that ryallu,|* < p7 < . Thus, by Theorem 1.1.2, there exists C' > 0 such
that

Qe — 1) < / Q (erellPu/leall® 1) < ¢ (3.2)
R? — Jre B
Since (u,,) C F is bounded we may suppose that there exists u;, € E such that u, — u,

weakly in E. Next, we claim that

n—o0

lim Qf (upn)(uy — up) = 0.
RZ

Indeed, let r1, 79,73 > 1 be such that 1/r; +1/ry+1/r3 = 1 and (¢—1)r, > 2. By (2.4)

and the Hélder’s inequality we conclude that

1/2 1/2
_ 2 T
[ s - w) <= ([ @ur) ([ Q- u?)
1/7‘1 1/7’2 1/7‘3
e (et -vr) ([ Qi) ([ Qi)

Thus, by Lemma 1.2.5 and (3.2), the claim follows. This convergence together with

the fact that I'(u,)(u, — up) = 0,(1) imply that

ol = [ (T + Vi) + 00(1)
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Hence, since u,, — u, weakly in E, we obtain by passing the limit that
lim Juy[|* = Jlup*
n—oo

and then u,, — uy, strongly in E. Therefore, I(u;) = I < 0 and consequently uy, is a

nontrivial weak solution of problem (3.1). m

3.3 Prova do Teorema de Multiplicidade

The proof that we are going to present is based on the Mountain-Pass Theo-
rem [12]. Before we need to obtain a local compactness result and make a careful

estimate of the minimax level of the functional I. We state below these results.

Proposition 3.3.1 Suppose that (V) — (Q) hold. If f satisfies (fa,) — (f3), then the
functional I satisfies the (PS)q condition for any

/

0}
d<1
(un) + 200

provided 0 and uy, are the only critical points of 1.

Proposition 3.3.2 Assume that (V) — (Q) and (V) hold. Suppose f satisfies (fa,) —
(f2) and (f4) and let 6 > 0 and uy, € E be given by Theorem 3.1.1. Then there exists
0 < dy < &y such that, for all h € E' such that 0 < ||h||g-1 < &2, there exists v € E

with compact support such that

/

max I(tv) < I(up) + e’

(3.3)

Assuming the propositions above, which will be proved latter, we show how they can
be applied to prove our multiplicity result.

Proof of Theorem 3.1.3. Let J, be obtained in the Proposition 3.3.2. Arguing
by contradiction, we suppose that 0 < ||h||g-1 < J but the function I has no critical
points different from 0 and uj,. Now let v be obtained in the Proposition 3.3.1 and
denote by G C R? its support. Recalling that from (fy) we get F(s) > A|s|® — B for

all s € R, we have for t > 0

t2
) < Sl = 40 [ Qol’+ B [ Q.+ tlplls- ol
G G
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Since 6 > 2, we conclude that I(tv) — —oo as t — oo. Hence, there exists ¢y > 0
large enough such that I(tgv) < 0. This and ¢) from Lemma 3.2.1 show that [ has the

mountain-pass geometry, and therefore we can define the minimax level

= inf max I(y(t
em = inf max (v(2)),

where

I'={y:00,1] - E:~v(0)=0 and ~(1)=tov}.

The definition of ¢, and (3.3) imply that

/

< .
e < ntazaoxl(tv) < I(up) + San

By Proposition 3.3.1, the functional [ satisfies the Palais-Smale condition at the level
cy- Thus, it follows from the Mountain-Pass Theorem [12| that I possesses a critical
point uys € E with I(up) = ¢pr > 0. Thus since 1(0) = 0 and I(up) < 0, ups & {0, up},
which is a contradiction, since we are supposing that the only critical points of I are 0
and uy. Therefore, the proof of theorem is finished. m

Now we are ready to prove our compactness result.

Proof of Proposition 3.3.1. Let (u,) C E be a sequence such that

/

I'(up) =0 and  I(uy) — d < I(up) + —

2040 ‘
Notice that by (f2)

1 1

1) = g = (5= 5 ) Dol + [ Q 7t = Flu)

Combining the last inequality with

1
I(u,) — 5]’(un)un <d+ 14 ||u,

for large n € N, we conclude that (u,) is bounded in E. Thus, from Lemma 2.2.6 there
exists u € E such that, up to a subsequence, u,, — u weakly in £, u,, — u strongly in

LP(R%Q), for all 2 < p < oo, and

flun) = flu)  in Ly, (R%Q),
F(u,) — F(u) in LYR%Q).
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Moreover, the weak convergence of (u,,) also implies that (h,u,) — (h,u). We have
two possible cases to consider:
Case 1: uw = 0. In this case,

lim QF (u,) = 0.

n—oo R2

Since

1

) = 3l = [ @F(ua) = (h) = d-+ 0u(1),
R2
we get
/ /
lim [Jup|? = 2d < 21 (up) + = < .

Hence, we can arguing as in the proof of Theorem 3.1.1 to conclude that, up to a
subsequence, u, — 0 = u strongly in F.
Case 2: u = uy, # 0. In this case, we define

U, Up,

= and v=—7—.
] lim [[uy,|

Un
It follows that v, — v weakly in E, ||v,|| = 1 and |[v|] < 1. If ||v|| = 1, we conclude the
proof. If [|v|| < 1, we claim that there exist 71 > 1 sufficiently close to 1, a > aq close
to ag and 8 > 0 such that rial|u,]|* < 8 < /(1 — ||v||*)7* for n € N large. Indeed,

since I(u,) = d+ o0,(1),

1
5 lim ||u,|]? = d+/ QF (up) + (h, up). (3.4)
n—oo R2

Setting
A= <d—|— QF (up) + <h,Uh>) (1 - ||U||2) 5

R2
then by (3.4) and the definition of v, we obtain that

A:d—](uh)

Hence, coming back to (3.4), we conclude that

1 .. 2 A d—](Uh) o
§hmHunH:1_ 2 ] _ 2 20 (1 — 2}
noo [ v]] o] ap (1 — [Jv][?)

Consequently, for n € N large, there exist r; > 1 sufficiently close to 1, a > «ay close
to ag and 8 > 0 such that ralu,||* < 8 < /(1 — ||v||*)7!, and the claim is proved.

Therefore, from Corollary 1.1.4,
Qe — 1)t < C.
R2
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Next, by similar computations done above we have that

lim [ Qf(un)(un —up) = 0.

n—oo R2

This convergence together with the fact that I'(u,)(u, — un) = 0,(1) imply that
Janl? = [ (V¥ Vi) + 0n(1)
R2

Since u, — wu; weakly in E, we obtain u, — u;, = u strongly in £ and the proof of

proposition is finished. m

3.3.1 Prova da Proposicao 3.3.2

In order to prove Proposition 3.3.2, we recall the Moser’s function sequence in-

troduced in Chapter 1:

;

(logn)'/?, |z < r/n,

AT P e
" TR0 (logn) 2

r/n<lz|<r,

\ 0, |z|>r,

with 0 < r < rq fixed and ry given in (1.19).
Let M, (x,r) = m]\fzn(x, r). Then M, belongs to E with its support in B,(0)
and | M,|| = 1. From Lemma 1.4.4 we have

Lemma 3.3.3 Suppose that (V) — (Q) hold. If f satisfies (f2) and (f1), then there
extsts n € N such that

!/

max {g - QF(tMn)} < 2a

t>0 R2 g

(3.5)

Proof. Suppose by contradiction that for each n € N there exists a real sequence (t,,)

such that
t2 /
[ QR(tM,) >
2 R2 2060

Since F(s) > 0, for all s € R, we have




or equivalently
2= / Qo M, (1, M,). (3.7)
R2
By (fs), for all 0 < e < By, there exists R = R(e) > 0 such that for all |s| > R

sf(s) > (By — e)e™. (3.8)

By Lemma 1.4.4, when |z| < r/n, we have

1 1
Mfz(x) > o= m(T)Ogn
27 1+ m(l + On(l))
= (2m) " logn — (2m) " 'm(r) + 0, (1). (3.9)
Recall that by hypothesis (@),
Q(|z]) > Cylz| for 0 < |z| < 7. (3.10)

Thus, combining (3.8), (3.9) and (3.10) we get

2> (fy—e) / Qeroti?
|z|<r/n

Z (50 . €)C(]/ |x|b0€a0t%(27r)_1(lognfm(r)+on(1))
z[<r/n

> (8o — £)27Cy (T)bm o0t (2m) ™ (log n—m(r)+on(1)), (3.11)

n
This yields that (¢,) is bounded. Indeed, since logn —m(r)+o0,(1) > logn for n € N
sufficiently large, it follows from (3.11) that

1 a0t2
2 bo+2  logn
tn > (50 — 5)271'007” 0 W@ 2 S

= (Bo — 6)27T007"b°+2na02t% ~(bo+2)

for n € N sufficiently large. Then,

t2 > logt?

t2
> log [(By — €)2rCor®™?] + [% — (bo + 2)} logn
and consequently
1 by + 2
1> t—210g [(Bo — €)2mCor™™?] + [% - 0;_ } log n. (3.12)
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Thus, if ¢, — oo as n — oo, the right hand side of (3.12) goes to infinity when
n — oo, which leads a contradiction. Therefore, (t,) is bounded. Hence, passing to a
subsequence if necessary, we may use (3.6), (3.11) and the condition —2 < by < 0 to

conclude that

lim 2 = . (3.13)

Indeed, otherwise there exists some ¢ > 0 such that for n € N sufficiently large

Thus
otz (2m) 7t > of (2m) 7 + ag(27) 716

From this and (3.11),

1 o' (21) 1+ )1 o0g n—m(r)to
ti Z (/80 - 5)27T00Tb0+2W6< (2m) "t +ao(2m) 5)(1 Iy (r)4on (1))

> O @M~ =(bo+2) pao(2m) 16, (3.14)

Hence, it is easy to check that in any case, o/ = 47 or o = 47w(1 + by/2), the right
hand side of (3.14) tends to infinity when n — oo, which contradicts the boundedness
of (t,). Now we estimate 5y to get a contradiction. We have two cases to consider:
Case 1: by =0 (= o = 4r). It follows from (3.7) and (3.8) that

2> (By—c) [ QeoME 4 / Qb Mo f(taM,) — (B — £)27Cor®. (3.15)

|z|<r tnMn<R
Since M,, — 0 a.e. in R?, it follows from Lebesgue’s Dominated Convergence Theorem
that
lim Qt M, f(t,M,) = 0. (3.16)

n=o0 Sy Mn<R

Using (3.6), we obtain

Qeaot%Mg > / Q2€471’M,2z + // | Q€47rM,%' (317)
r/n<|z|<r

jal<r | <r/n

Now we are going to estimate each integral in (3.17). From (3.9) and (3.10),

/ Q€47TM2 > CO/ e47r[(27r)—1lognf(Qﬂ)_lm(T)JrOn(l)]
|z|<r/n

|z|<r/n
— Coe[Zloganm(r)+on(l)} / dx
|z|<r/n

_ 7_‘_007,2672m(r)+on(1)’
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and by definition of M,,,

— 2
/ Qe*™Mi > (O / o2 [(logn) =12 [ My | =" log(r/|])]
r/n<|z|<r

r/n<|z|<r

= 27TCO /7" teQW[(logn)—l/QHM‘;”—llog(r/t)]zdt

n

A~ (tog )2 i
— 27’[’007“2/ (log n)1/2||Mn||627rs —|| My ||(logn) sds
0

[[Min |~ (log m) /2 N N »
> 27 Cor? / (log n)/2|| M, ||~ 1Ml (o) /25 g
0

= 21Cor*(1 — 1/n),

where we have used the change of variable ¢t = re~IMall(ogm)'%s i the second equality.
Thus
lim inf Qe M > 1 Cor?(2 + 2, (3.18)
n—oo ‘$|§T‘

Hence passing to the limit in (3.15) and using (3.16) and (3.18), we get

4
> (Bo — €)mCyr2e ™),
Qo

Letting ¢ — 0 we conclude that

4 1
< - Qm(r)'
BO B C()Oé() 7’26

Since r > 0 is arbitrary, the last expression contradicts (fy).
Case 2: =2 < by < 0 (& o =4n(1+by/2)). By similar computations done in the last

case, we have

/ QGQ,M’QL Z WCOTbO+2 1 6—(2+b0)m(r)+on(1)
lz|<r/n

n—bo
and
/T e Qe Mi > 2xCort2(1 — 1/n).
Thus
lim inf - Qe 0tiMi > 97 Corbot?, (3.19)

Hence passing to the limit in
ty > (8o —¢) QectiMi / Qta M, f(t,M,)
|z|<r tnMnp<R

and using (3.16) and (3.19), we get

/

> (ﬁo - 5)27T00Tb0+2.

gl=
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Letting ¢ — 0 we conclude that

/
50< « 1 :b0+2 1

- 271'00060 rbo+2 C()Oéo rbo+2’

Since r > 0 is arbitrary, the last expression also contradicts (f;). Therefore, the proof
of lemma is finished. m

Now we are ready to finish this chapter by presenting the
Proof of Proposition 3.3.2. Let n € N be obtained in Lemma 3.3.3 and set v = M,,.
Since (h,v) < ||h||g-1, we can use (3.5) from Lemma 3.3.3 to obtain 0 < J, < d; such
that

/

max I(tv) < o’

whenever 0 < ||h]|g-1 < d2. By 4) from Lemma 3.2.1,
upb =0 as pp,—0

and

prn — 0 as |h|lg-1 — 0.

Thus, taking d5 small enough we obtain the desired result. m
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Chapter 4

Sobre uma Classe de Sistemas

Elipticos do Tipo Gradiente

This chapter is concerned with the existence and multiplicity of solutions for the

following class of elliptic systems

—Au+V(|z))u = Q(z|) f(u,v) in R? @)

v+ V(e = Qal)g(u,v) in R, |
when the nonlinearities f and g are allowed to enjoy the exponential critical growth
by means of the Trudinger-Moser inequality and the radial potentials V' and @) may be
unbounded, singular or decaying to zero. The approaches used here are based on the

Trudinger-Moser type inequality (Theorem 1.1.2) and a minimax theorem. We point

out that part of this chapter is contained in the published paper [5].

4.1 Introducao e Principais Resultados

We shall consider the variational situation in which

(f(u, ), 9(u,v)) = VF(u,v)

for some function F' : R? — R of class C!, where VF stands for the gradient of F in
the variables w = (u,v) € R?. Aiming an analogy with the scalar case, we rewrite (4.1)

in the matrix form as

—Aw+ V(jz))w = Q(|z|)VF(w) in R?



where we denote A = (A, A) and Q(|z|)VF(w) = (Q(|x]) f(w), Q(|z|)g(w)).
Since the Schrodinger equation plays the roles in many areas of mathematical-

physic, in recent years, much attention has been paid to the nonlinear the Schrédinger

system 5
0 = Ao WO - Qulg(ole, T e R -
2~ Ap W - Q). R

where ¢,1 : R? x R — C are Schrédinger wave functions, W, Q : R? — R are given
potentials and g : RT™ — R is a suitable function. In particular, solutions of system (4.1)
provide standing waves solutions of system (4.2). Systems of this type under various
hypotheses on the potentials and the nonlinearities have been investigated extensively,
see for example [14, 19, 24, 38, 42, 43, 44, 55| and references therein.

We make the following assumptions on the potentials V(|z|) and Q(|z|):

(V) Ve C(0,00), V(r) > 0 and there exists a > —2 such that

lim inf Vi)

r—+oco 1@

> 0.

(Q) Q € C(0,00), Q(r) > 0 and there exist b < (a — 2)/2 and by > —2 such that

lim sup QE}T) < oo and limsup Q(Z‘)
r—0 (A r——+oo T

< Q.

Let us introduce the precise assumptions under which our problem is studied.

(F,,) f and g have ag-exponential critical growth, i.e., there exists o > 0 such that

0, Ya > ay,
i L o))
|w|—+o0 ealwl |w|—+o00 ealwl

+ o0, Va < ap.
(F1) f(w) = o(w[) and g(w) = o(|w]) as Jw| — 0;
(Fy) there exists # > 2 such that
0<0F(w) <w-VF(w), YwecR*\{0};
(F3) there exist constants Ry, My > 0 such that
0 < F(w) < M| VF(w)|, Vw| > Ro;
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(Fy) there exist v > 2 and g > 0 such that

F(w) > H[w[”, Vw € R
v

We denote the product space Z = F x E endowed with the inner product

(wy,wy) 7z = / (Vuy Vug + Vugug) + / (Vo Vug + Vo),
R2 R2

where w; = (uy,v1) and wy = (ug, v2), to which corresponds the norm

1/2
[w]lz = (w,w)y?.

Recalling that S, > 0 is the best constant of the Sobolev embedding £ — L"(R? Q)

(see Lemma 1.2.5), we have the following existence result for system (4.1).

Theorem 4.1.1 (Existence) Suppose that (V) — (Q) hold. If (F,,) — (Fy) are satis-

fied, then the system (4.1) has a nontrivial weak solution wq in Z provided

(v-2)/2
2 2

SV/2
a'v v
where o = min{4m, 47 (1 + by/2)}.

Our multiplicity result is concerned with the problem

—Aw + V(|z))w = AQ(|z|)VF(w) in R? (4.3)

where )\ is a positive parameter. It can be stated as follows.

Theorem 4.1.2 (Multiplicity) Suppose that (V)—(Q) hold. If F is odd and (F,,)—
(Fy) are satisfied, then for any given k € N there exists A, > 0 such that the sys-

tem (4.3) has at least 2k pairs of nontrivial weak solutions in Z provided \ > Ay.

We finish by remarking that the main tool to prove Theorem 4.1.2, the Symmetric
Mountain-Pass Theorem due to Ambrosetti-Rabinowitz [12], it will be used in a more
common version in comparison to the one used to prove the analogous theorem in the

scalar case (Theorem 2.1.4), which leads us to a more direct conclusion of the result.
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4.2 Um Refinamento da Desigualdade (1.4) no Espago
Produto

In line with Lions [37] and in order to prove our multiplicity result; Theorem 4.1.2,
we establish an improvement of the Trudinger-Moser inequality on the space Z, con-
sidering our variational setting. Using Theorem 1.1.2 and following the same steps as

in the proof of Corollary 1.1.4 we have

Corollary 4.2.1 Suppose that (V) — (Q) hold. Let (wy,) be in Z with ||w,|z = 1
and suppose that w, — w weakly in Z with ||w||z < 1. Then, for each 0 < 8 <

% (1—|lw||2)~", up to a subsequence, it holds
sup | Q(la]) (e — 1) < 4o0.
neN JR2
Proof. Since w,, — w weakly in Z and ||w,||z = 1, we conclude that
/
li w—wly =1— 2 < —.
i, = wlfy = 1= ol < 55
Thus, for large n € N we have
26||w, —wl||% < .
Now choosing r; > 1 close to 1 and £ > 0 satisfying

2r1B(L + &%) wn — w7 <o,

the Young’s inequality and Theorem 1.1.2 imply that

/ Q <6r16(1+52)|wn7w|2 o 1)

R2

<1 / o (o=l (i) ) 4 L / o (Ersurdun—ui (f2547)"
-2 R2 2 R2

<C.

Moreover, since
Blwa]® < L+ %) |wy — w? + B(L+ 1/e?)|w]?,
it follows again by the Young’s inequality that

/RZ 0 (emwnP _ 1)

R <6r1ﬁ<1+62>|wn—wl2 - 1) + l/ Q (e”2ﬂ(1+1/€2)'wlz - 1) =G
RQ

™ JRr2 T2

for n € N large and ro = ry/(r; — 1). Therefore, the result is proved. m
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4.3 Formulacao Variacional
The natural functional associated with system (4.1) is

Iw) = 3ol = | QF(w

for w € Z. Under our assumptions we have that I is well defined and it is C* on Z.

Indeed, by (F}), for any € > 0, there exists § > 0 such that
[VF(w)] < efw|
always that |w| < 6. On the other hand, for a > ay, there exist Cy, C; > 0 such that
flw) < Co(e™™ —1) and  g(w) < Gy (e — 1),
for all |w| > ¢. Thus, for all w € R? we have

IVF(w)| < elw| + [f(w)] + [g(w)]
< elw| + C(e®™ —1). (4.4)

Hence, using (F5), (4.4) and the Holder’s inequality, we have

[ Qi)
2 C alw?
<c [ Qukc [ Qi -1

<o ([ aur+ [ awr) o ([ auwr)" ([ o )"

with ;s > 1 such that 1/r+1/s = 1. Considering Lemma 1.2.5 we have for r > 4 that

1/r
([ @ul) " =1+ gy < Clla + 21 < Cllulz < o
R2

Lr/2 R2: Q)

On the other hand, by the Young’s inequality and Theorem 1.1.2,

1 1
Q(esa\wP . 1) S 5 Q(GQSauz o 1) + 5 Q(GQSOJUQ . 1) < 00. (45)
R2 R2 R2

Hence, QF(w) € L'(R?), which implies that I is well defined, for a > . In the
following, we will show that I € C'(Z,R) with

I'w)z=(w,2)z — | Qz-VF(w),

R2
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for all z € Z. Thus, since we are searching for weak solutions for system (4.1), that is,

functions w € Z such that

(w2~ [ Qs VF(w) =0,

for all z € Z, we conclude that critical points of the functional I are precisely weak

solutions of system (4.1) and reciprocally. Setting
- [ Q)P
R2

od, F(w+tz) — F(w)
g(w)—lg% R2Q " :

by Géateaux’s derivative definition

Defining

by Mean Value Theorem, there exists 6;(x) € [w(x), w(x)+tz(x)] (or [w(z)+tz(x), w(z)]),

z € R?,

with € R?, such that
hi(z) = Q(|z])z - VF(6,(x)), = €R”

Thus, by (4.4) and the Hélder’s inequality

/RQ ] <& (/RQ Qle” + /RZ Q\H#) +C (/RZ Q|z\r)1/r (/R2 Q(eseloil® _ 1))1/8'

Considering Lemma 1.2.5 and Theorem 1.1.2, it follows that h; € L!'(R?). On the other
hand,
hm h = Qz - VF(w).

Hence, by Lebesgue’s Dominated Convergence Theorem

a—(I)w =lim [ h = Qz - VF(w).

32 =0 Jp2 R2
Now, since a0 )( w) € Z' for each w € Z, it remains to verify that

0P 0P
w, >w in Z=>—(w, > —
(wn) 0]

a(-)

to conclude the differentiability of ®. Since w,, = (u,,v,) — w = (u,v) in Z we have

(w) in Z'

u, — u and v,, — v in F. Hence, by Lemma 1.2.5
u, - u and v, —v in LP(R*Q),
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for all 2 < p < oo. Thus, up to a subsequence, wy,(z) = (u,(z),v,(x)) — w(zr) =
(u(x),v(z)) a.e. x € R%. Moreover, there exist hi, hy € L'(R?) such that |u,(z)| <
hi(z) and |v,(z)| < he(z) a.e. x € R% Thus, defining

Gu(w) = Q(lz])2(2) - VF(wu(w)), = €R?,

we conclude that G, (z) — G(z) = Q(|z|)z(z) - VF(w(x)), a.e. * € R?. In addition, by
similar computations done to verify that I was well-defined, we obtain that G, (z) €

L'(R?). Hence, again by Lebesgue’s Dominated Convergence Theorem

lim Gn(z)= [ G(z).

n—oo R2 R2
Therefore, for each z € Z, we get

0P 0P : /
E(wn) — —(w) in Z.

In the next lemma we check that the functional I satisfies the geometric conditions

of the Mountain-Pass Theorem.
Lemma 4.3.1 Suppose that (V) — (Q) hold. If (F,,) — (Fy) are satisfied, then:
i) there exist T,p > 0 such that I(w) > T whenever ||w||z = p;

it) there exists e, € Z, with |le.||z > p, such that I(e.) < 0.
Proof. As in the proof of (4.4), we have
IVF(w)| < elw| + Clw|? ' (2™ — 1) (4.6)

for all w € R? and ¢ > 1. Thus, using (F3), the Holder’s inequality and Lemma 1.2.5,

we have

[ arw)
2, 0 q(pelwl _ 4
<< [ QuP+c [ Qe -1

1/r 1/s
= (/R Qs |, QW) +C ( I Q|w|‘") ( [ Qe - 1))

1/s
< cefuly + ol ([ Qe 1)
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provided r» > 2,5 > 1 such that 1/r +1/s = 1. Now for ||w||z < M < (o//2a)'/?,

which implies that
2a|ul|* < 2aM? < o and 2aljv|? < 2aM? </,
and s sufficiently close to 1, it follows from (4.5) that
Q(ex’ —1) < C.
R2

Thus,
[ QIFw) < celll + ol

Hence,
1
1) 2 (5 - &) Il - Cilul?,
which implies 7), if ¢ > 2. In order to verify ii) we note that (F3) implies that
F(w) > (min F(z)) lw|® > 0, (4.7)

for all |w| > 1. Indeed, we shall make use of the polar coordinate representation.

w = (psin, peos ¢),
where p > 1 and —7 < ¢ < . Then,
F,(u,v) = sin ¢F, + cos ¢F,

o pEy(u,v) = psingF, + pcos oF,
=w - VF(w) > 0F(w),

by (F3) and consequently (4.7) follows by direct integration. Thus, for all w € Z with

compact support G' and |w| > 1, we have from (4.7) that

t2
fmwsgm@—cﬁé@mﬂ

for all t > 0, which yields I(tw) — —o0 as t — 400, provided 6 > 2. Setting e, = t,w
with ¢, > 0 large enough, the proof of lemma is finished. =
To prove that a Palais-Smale sequence converges to the weak solution of sys-

tem (4.1) we need to establish the following lemmas:
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Lemma 4.3.2 Suppose that (Fy) holds. Let (w,) be a sequence in Z such that
I(w,) = ¢ and I'(w,) — 0.

Then
Jwallz < C, / QF(w,) <C and / Qu, - VF(w,) < C.
R2 R2

Proof. Let (w,) be a sequence in Z such that I(w,) — ¢ and I'(w,) — 0. Thus, for

any 2 € Z,
Twn) = 3wl = | QF(wn) = e+ ou() (1.9

and
I'(wn)z = (wn, 2) 1 — / Qe VE(un) = 0,(1). (4.9)

Taking z = w, in (4.9) and using (F3) we have
1 !/
¢+ [[wnlz + 0n(1) = I(wn) — 51 (wn)wy

11 1
= (5-5) hlz+ [ @[ 9F) - P

Consequently, ||w,|z < C. From (4.8) and (4.9) we get
QF (w,) < C and Quw, - VF(w,) < C.
R2 R2
Therefore, the lemma is proved. m
We will also use the following convergence result:

Lemma 4.3.3 Suppose that (Fy) — (Fs) hold. If (w,) C Z is a Palais-Smale sequence

for I and wy is its weak limit then, up to a subsequence,
VF(w,) = VF(wy) in L. (R*R?

and
F(w,) — F(wy) in L'(R%Q).

Proof. Suppose that (w,) is a Palais-Smale sequence. According to Lemma 4.3.2,
wy, = (Up,v,) = wo = (ug,vp) weakly in Z, that is, u, — wug and v, — vy weakly

in £. Thus, recalling that H!

rad

(Bgr; V) < L9(Bgr) compactly for all 1 < ¢ < oo and
R > 0 (see the consequence of ii) from Lemma 1.2.3), up to a subsequence, we can

assume that u, — wug and v, — vg in L'(Bg). Hence, w, — wy in L'(Bg, R?) and
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wy(x) = wo(z) a.e. in R Since VF(w,) € L'(Bg,R?), the first convergence follows

from Lemma 2.2.5. Hence,
flwy) = f(wo) and  g(wn) — g(wo) in Lj.(R?).

Thus, there exist hy, hy € L'(Bgr) such that Q|f(w,)| < h; and Q|g(w,)| < hs a.e. in

Bgr. From (F3) we can conclude that

|[F(wn)| < sup  |[F(w,)| + Mo|VF(w,)|
[~ Ro,Ro]

a.e. in Bgi. Thus, by Lebesgue dominated convergence theorem
F(w,) = F(wy) in L'(Bg;Q).
On the other hand, by (4.6) with ¢ = 2
QF(wy) <e | Qluaf*+C [ Qluwy|(e™ " ~1), (4.10)
BS, B, B,

for @ > ap. From Lemma 1.2.5, the Holder’s inequality, ||w,|z < C and similar

computations to estimate the second integral in (1.14), we get

[ Qur<ce amd [ Qe 1< S

B, B, - RY

for some £ > 0. Hence, given 6 > 0, there exists R > 0 sufficiently large such that

Qlw,|* <6 and Q!wn|(e°‘|w”|2 —1) <o.
B B§,

Thus, from (4.10)

QF (w,) <C6 and QF (wg) < C6.

By By

Finally, since

QF(w) ~ [ QF(wo)

R2

< QF (wn) — QF (wy)

Br Br

+ | QF(wn)+ [ QF(w),

B, B,

we get

< .

lim
n—o0

QF(wn) = | QF(wo)

R2 R2

Since ¢ is arbitrary, the result follows and the lemma is proved. m
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In view of Lemma 4.3.1 the minimax level

¢ = inf max I(g(t))

is positive, where I' = {g € C'([0,1], Z) : g(0) =0 and I(g(1)) <0}. Hence, by the
Mountain-Pass Theorem without the Palais-Smale condition (see [12]) there exists a

(PS). sequence (w,) in Z, that is,

I(w,) = ¢ and I'(w,) — 0. (4.11)

Lemma 4.3.4 If

(v=2)/2
0> {ZO‘O(V/ - 2)} 55/27
o'V
/

«Q
then ¢ < .
4060

Proof. Since the embeddings F < LP(R?; Q) are compacts for all 2 < p < oo, there

exists a function @ € E such that
Sy=llall* and |al|L@eq) = 1.
Thus, considering w = (@, u), by the definition of ¢ and (F}), one has

21//2:“#/] v—9 Sl’:/(V_Q) o

< 2_ )| < 2_ =
c< I?Zag{ [Sl,t QF(tw)} < rgaox [S,,t oy <

R2 v 2 p?/( 4oy

Hence, the lemma is proved. m

4.4 Prova do Teorema de Existéncia

Proof of Theorem 4.1.1. It follows from Lemmas 4.3.2 and 4.3.3 that the Palais-
Smale sequence (w;,) is bounded and converges weakly to a weak solution of system (4.1)
denoted by wgy. To prove that wy is nontrivial we argue by contradiction. If wy = 0,

Lemma 4.3.3 implies that
lim QF (w,) =0.

n—oo R2

Thus, by (4.8)

lim ||w,||% = 2¢ > 0. (4.12)
n—oo

From this and Lemma 4.3.4, given € > 0, we have that

/

2
<
laly < 5

+e,
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for n € N large. Thus, it is possible to choice s > 1 sufficiently close to 1 and a > ay

close to a such that sal|w,||% < 8 < o'/2, which implies that
2sallu, || <268 <o’ and 2salv,|* <28 <o

Thus, using (4.5), (4.4) in combination with the Holder’s inequality and Lemma 1.2.5,

up to a subsequence, we conclude that

lim Quw,, - VF(w,) = 0.

n—o0 R2

Hence, by (4.9), we obtain that
lim |jw,||% =0,
n—oo

which is a contradiction with (4.12). Therefore, wy is a nontrivial weak solution of

system (4.1). m

4.5 Prova do Teorema de Multiplicidade

To prove our multiplicity result we shall use the following version of the Symmetric
Mountain-Pass Theorem (see [12, 13, 48]).

Theorem 4.5.1 Let X = X; @ X,, where X s a real Banach space and X1 is finite-
dimensional. Suppose that J is a C'(X,R) functional satisfying the following condi-

tions:
(J1) J(0) =0 and J is even;
(Jo) there exist T,p > 0 such that J(u) > 7 if ||ul]|x = p, u€ Xy

(J3) there exists a finite-dimensional subspace W C X with dim X; < dimW and
there exists S > 0 such that max,ew J(u) < S;
(Jy) J satisfies the (PS). condition for all c € (0,S).

Then J possesses at least dim W — dim X, pairs of nontrivial critical points.

Given k € N, we are going to apply this abstract result with X = Z, X; = {0},
J=1Iyand W =W x W with W = span{¢y, ..., ¥y}, where {¢;}5, C C5%,4(R?) is a
collection of smooth function with disjoint supports. We see that the energy functional

associated to system (4.3)

1

B = 5lul =2 [ QF(w), wez
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is well defined and I, € C''(Z,R) with derivative given by

L(w)z=(w,2)z — A | Qz-VF(w), Yw,z€ Z.

R2
Hence, a weak solution w € Z of system (4.3) is exactly a critical point of ). Further-
more, since [,(0) = 0 and F is odd, I satisfies (/;) and with similar computations to
prove i) in Lemma 4.3.1 we conclude that I also verifies (J2). In order to verify (J3)

and (J4) we consider the following lemma.
Lemma 4.5.2 Suppose that (V) — (Q) hold. If F satisfies (Fo) — (Fy), we have:
i) there exists S > 0 such that max,ew I\(w) < S;

i1) the functional Iy satisfies the (PS). condition for all ¢ € (0,S), that is, any

sequence (wy,) in Z such that
I(w,) = ¢ and I\(w,) —0 (4.13)

admits a convergent subsequence in Z.
Proof. By (F)),

max [ (w) = max %||w||22 - )\/]R2 QF(w)}

weWw weWw
(1 Lo pA P
< maps | lullty + 5ol = SRl gy — 5 Il

[1 75 1 UA
< - 2 l/V . - 2 7t Y, .
< max |l — 22l |+ max 3101~ “20l |

Now, once dimW < oo, the equivalence of the norms in this space gives a constant

C' > 0 such that

1 2 lu)\ v 1 2 ,u)\ v
s | Sl = £l | + max | S0l = 22 o] = 300

where

Cv—2 ()P
Mk(>\) - ” (;) )\2/(2—V).

Since 2/(2 — v) < 0 we have that lim,_, ., My(\) = 0, which implies that there exists
Ar > 0 such that Mi(\) < o /4ag = S for any A\ > Ay. Therefore, i) is proved. For ii),
by Lemma 4.3.2, (w,) is bounded in Z and so, up to a subsequence, w, — w weakly
in Z. We claim that
Qw-VF(w,) = | Qw-VF(w) as n— oo. (4.14)
R2 R2
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Indeed, since Cg5.,4(R?) is dense in E, for all § > 0, there exists v € Cf%.,4(R?,R?) such

that ||w — v||z < 0. Observing that

g Quw - [VF(w,) — VF(w)]‘ <

g Q(w —wv) - VF(w,)

oo / QIVF(w,) — VF(w)| +
supp(v)

[ @t vrw)

and using Cauchy-Schwarz and the fact that |1} (w,)(w —v)| < &,||lw —v|| with &, — 0,

we get

g Q(w —v) - VF(wy,)

< énflw = ol + [Jwnllw = v]| < Cllw —v]| < C9,

where we have used that (w,) is bounded in Z. Similarly, since the second limit

in (4.13) implies that I} (w)(w — v) = 0, we have

< C%.

. Q(w —wv) - VF(w,)

From Lemma 4.3.3

lim / QIVF(w,) — VF(w)| = 0.
supp(v)

n—oo
Thus,

lim
n—oo

Quw - [VF(wy,) — VF(w)]‘ < 2C6.

R2

Since ¢ > 0 is arbitrary, the claim follows. Hence, passing to the limit when n — oo in
on(1) = I (wn)tw = (twn, )z — A/ Qu - VF(w,)
R2

and using that w, — w weakly in Z, (4.14) and (F3) we get

]2 = A / Qu-VF(w)>2) [ QF(w).
RQ RQ

Hence

L\(w) > 0. (4.15)

Now, we have two cases to consider:
Case 1: w = 0. This case is similar to the checking that the solution w, obtained in
the Theorem 4.1.1 is nontrivial.

Case 2: w # 0. In this case, we define

Zy = W and ad
[wn|z
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It follows that z, — z weakly in Z, ||z,||z = 1 and ||z||z < 1. If ||z]|z = 1, we conclude

the proof. If ||z||z < 1, it follows from Lemma 4.3.3 and (4.13) that

1
~lim [wyz =c+ A | QF(w). (4.16)
2 n—oo R2

AiQ+§@Qmm)u—w%x

then by (4.16) and the definition of z, we obtain

Setting

A=c—I\(w).

Hence, coming back to (4.16) and using (4.15), we conclude that

1 lim fJu, |2 A c—I\(w) < c _ o
— lim [Jw,||3 = = < '
2nooo T2y 1= l2ly T 1=zl T deo (1 [I2]1%)

Consequently, for n € N large, there exist » > 1 sufficiently close to 1, @ > «ay close to

ag and > 0 such that

/

(04 _
raflulz < B < 5 (1= =l7)~
Therefore, from Corollary 4.2.1,
Qe —1)" < +o0. (4.17)

Next, we claim that

lim Q(w, —w) - VF(w,) = 0.

n—oo R2

Indeed, let r,s > 1 be such that 1/r + 1/s = 1. Invoking (4.4) and the Hoélder’s

inequality we conclude that

Q(w, —w) - VF(w,)

1/r 1/s
+O( Q(W“—n) ([ Qun-ur)
R2

Then, from Lemma 1.2.5 and (4.17), the claim follows. This convergence together with

the fact that I} (w,)(w, —w) = 0,(1) imply that
hm lwallZ = [lwlZ

and so w,, — w strongly in Z. The proof of the lemma is concluded. m
Proof of Theorem 4.1.2. Since I, verifies (J;) — (J4), the result follows directly

from Theorem 4.5.1. =
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Chapter 5

Sobre uma Classe de Sistemas

Elipticos do Tipo Hamiltoniano

This chapter is concerned with the existence of solution for the following class of

Hamiltonian elliptic systems

—Au+V(|z))u = Q(|z])g(v) in R? 51)

A0+ V(jel)o = Qe f(w) in B, |
when the nonlinearities f and g are allowed to enjoy the exponential critical growth
by means of the Trudinger-Moser inequality and the radial potentials V' and () may
be unbounded, singular or decaying to zero. The approach relies on an approximation

procedure and the Trudinger-Moser type inequality (Theorem 1.1.2). We point out
that part of this chapter is contained in the preprint [7].

5.1 Introducao e Principais Resultados

We make the following assumptions on the potentials V (|z|) and Q(|x|):

(V) Ve C(0,00), V(r) > 0 and there exists a > —2 such that
lim inf Vir)

r—400 r

> 0.

(Q) Q € C(0,00), Q(r) > 0 and there exist b < (a — 2)/2 and by > —2 such that

lim sup QET) < oo and limsup Q(: )
r—0 770 r——+o00 T

< Q.



We suppose that the nonlinearities f(s) and g(s) have maximal growth on s
which allows us to treat system (5.1) variationally. Explicitly, in view of the classical
Trudinger-Moser inequality, we say that f and g have exponential critical growth at
~+o00 if there exist ag > By > 0 such that

(s) 0, Ya > ay, (s) 0, Ya > By,

lim fa32 = and  lim gas2 = (5.2)
sTHee € + 00, VYa < a s e + o0, Ya < fp.

Throughout we will assume that f, g : R — [0, +00) are continuous functions satisfying:
(H1) f(s) =o(s) and g(s) = o(s) as s — 0;

(Hy) there exists # > 2 such that for all s >0
0 < OF(s) = 9/ FO)dt < sf(s) and 0 < 0G(s) = 9/ g(B)dt < sg(s):
0 0
(Hj3) there exist constants sg, My > 0 such that for all s > s

0< F(s) < Myf(s) and 0< G(s) < Myg(s);

(Hy4) there exist constants p > 2 and p > 0 such that

F(s),G(s) > Hsp, Vs > 0.
p

We recall that in Z = E x E we defined the norm of an element z = (u,v) € Z by
l2llz = (el + lol?) .
Denoting by S, > 0 the best constant of the Sobolev embedding
E — L"(R%Q),

see Lemma 1.2.5, we state our main result as follows

Theorem 5.1.1 (Existence) Suppose that (V) — (Q) hold. If f and g have exponen-
tial critical growth and (Hy) — (Hy) are satisfied, with

(o + Bo)(p — 2)} (p—2)/2

pa’ (2Sp)p/2’

|
then system (5.1) has a nontrivial positive weak solution in Z.
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Remark 5.1.2 (Subcritical case) We point out that if g(s) has exponential subcri-
tical growth, that is, if By = 0 in (5.2), f(s) has exponential subcritical (ag = 0 in (5.2))
or critical growth and (V)—(Q), (H1)—(H2) are satisfied, then using similar arguments
developed in [20, Theorem 1.1] we can prove that system (5.1) possesses a nontrivial

weak solution in E. This remark will be verified at the end of the chapter.

Remark 5.1.3 Our result complements the study made in [50] in the sense that, in this
chapter, we study a class of Hamiltonian systems involving exponential critical growth
and in [50] only the Sobolev subcritical growth and scalar problem was considered. We

refer the reader to [51] for a related result involving p-Laplace equation.

As it is well known in dimensions N > 3, the nonlinearities are required to have
polynomial growth at infinity, so that one can define associated functionals in Sobolev
spaces. Coming to dimension N = 2, much faster growth is allowed for the nonli-
nearity. In fact, the Trudinger-Moser inequalities in dimension two replace the Sobolev
embedding theorem used in N > 3. After the seminal work of Brezis-Nirenberg [15] on
elliptic problems involving critical growth, many advances have been done on this class
of problems. Recently, elliptic systems in dimensions N > 3 was treated for instance
in [21, 26, 34| and reference therein by using a variational approach. When N = 2
Hamiltonian systems in bounded domain Q C R? was studied by de Figueiredo et
al. [20] and in the whole space R? by de Souza [25], do O et al. [28] and Zhang-Liu [56].

To finish this section, we remark that there are at least three main difficulties in
our problem; the possible lack of the compactness of the Sobolev embedding since the
domain R? is unbounded, the critical growth of the nonlinearities and the fact that
the energy functional associated with system (5.1) is strongly indefinite, as explained
in Introduction, which has more complex geometry structure than functionals with

mountain-pass geometry.

5.2 Formulacao Variacional

Since we are interested in find positive solutions and f(0) = ¢(0) = 0, without
loss of generality, we will assume f(s) = g(s) = 0 for all s < 0. The natural functional

associated with system (5.1) is given by
I(u,v) = / (VuVo +Vuw) — [ Q[F(u) + G(v)],
R2 R2
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for (u,v) € Z. To ensures that [ is well-defined on Z, observes that for a« > ay > fy
given by (5.2) and ¢ > 1, it follows from (5.2) and (H,), for any given ¢ > 0, there

exist constants by, by > 0 such that

(), 9(s) <els| +bals|* " (e = 1), VseR (5.3)
and

F(s),G(s) < 352 Fbols|?(e®® — 1), VseR. (5.4)

Given u € E we can use (5.4) with ¢ = 2 to obtain

3 au?
QF(u) < 5/ Q|ul? +b2/ Qlul*(e™ —1).

R2 R2 R2

By Lemma 1.2.5,
/ Q|ul?® < oco.
R2

Now, let 11,75 > 1 be such that 1/r; +1/ry = 1. The Hoélder’s inequality, Lemma 1.2.5
and Theorem 1.1.2 imply that

, 1/m ) 1/r2
[ @l —1>s( / @ru\%) ( Qe —1>) < oo,

where we have used the elementary inequality (e®* —1)" < (e"* —1), for all r > 1,5 > 0.
Hence
QF (u) < oo
R2
and analogously given v € E we have fR2 QG (v) < co. Therefore, I is well-defined and

I € C'(Z,R) with

Iuo)(o.0) = [

RQ

[VuVY + VoVe + V(w4 vg)] — g QLf(u)d + g(v)i],

for all (¢,1) € Z. Thus, since we are searching for a weak solution for system (5.1),

that is, a function (u,v) € Z such that

[ I9uv6+ VeTo - Vi + 00 - [ Qi+ gl =0

for all (¢,v) € Z, a critical point of I turns out to be a weak solution of system (5.1)

and reciprocally.

Remark 5.2.1 In the proof of Theorem 5.1.1, we shall need a more precise estimate

for f(s) and g(s), namely, given € > 0, there exists a constant C. > 0 such that

f(s),g(s) < CeelotPtI s e R, (5.5)
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5.2.1 Geometria de Linking
If we define:
Zt={(u,u):ue E} and Z ={(u,—u):u€ E},
it is easy to check that Z = Z* & Z~, since
1 1
(u,v) = §(u+v,u—|—v)+§(u—v,v—u).

The next lemmas are essential to establish the geometry of the Linking Theorem of the

functional 1.

Lemma 5.2.2 Assume that (V) — (Q) hold. If f and g satisfy (5.2) and (Hy) — (H2),
then there exist p,o > 0 such that I(z) > o, for allz € S =0B,NZ*.

Proof. Invoking (5.4) with ¢ > 2, it follows from the Holder’s inequality, Lemma 1.2.5
and Theorem 1.1.2 that

€ 2 au?
R;mwm,W@GW>S§A;QW|+@A;QM%e )

Ce 1/r1 ) 1/rg
S 7HuH2 + b2 (/ Qlu‘qn) (/ Q(emau _ 1))
R2 R2

Ce
< Zlull + i,

whenever |[ul| < M < (a//a)Y? and ry > 1 is sufficiently close to 1. Consequently,

1 Ce

o) 2 (5= 5 ) ol - Callw ol

Since ¢ > 2, we can find p,0 > 0, p sufficiently small, such that I(u,u) > o for
||(w,u)||z = p. Therefore, the proof of lemma is finished. m

Let y € E be a fixed nonnegative function with ||y|| = 1 and
Qy={rlyy) +tw:weZ”, |uwlz<R and 0<r <R},

where Ry, R, are positive constants to be chosen later.
Lemma 5.2.3 Assume that (V)—(Q) hold. If (Hs) is satisfied, then there exist positive
constants Ry, Ry, which depend on y, such that 1(z) <0 for all z € 0Q),.

Proof. Since the boundary 0@, of @, lives in the space R(y,y) & Z~, it consists of
three parts (see Figure 5.1 at the end of the proof). For this reason, we have to estimate

the functional I on these parts as follows:
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(1) If z € 0Q, N Z~, then z = (u, —u) € Z~ and thus
1) = =1l - [ QPG+ G(-u) <0,
(it) If z = Ri(y,y) + (u, —u) € 0Q, with ||(u, —u)||z < Ry,
1) = Ryl = ol = [ QUF (R + )+ 6By — ),
It follows from assumption (Hs) that there exist constants A, B > 0 such that
F(s),G(s) > As” — Bs?, Vs >0. (5.6)
Indeed, from (Hs)
F(s),G(s) > s° (A' — %) > A?/se, Vs > s,
with s; > 0 large enough. On the other hand, by the continuity of F'(s) and G(s) there

exists @’ > 0 such that
F(s),G(s) >d', Vs € [s,s1],

which implies that

F(s),G(s) > 8—9 ! a—esg, Vs € [so, $1]-
R
Thus,
F(s),G(s) > mi A a s Vs>
) - 92 ) R? ) Z 20-

Then, since obviously F(s),G(s) > —C's? for all s < s, we obtain (5.6). Hence
I(2) < R - g QIE(Ruy +u) + (Ruy — u)] + C4 . Qy* + Cy g Qu*
< R - g QIE(Ruy +u) + &(Ruy — )] + Cylly[|* + CoRG
=Ri— | QB +u)+ &Ry —w) +Cs,

where we have used Lemma 1.2.5 and we introduced the real function

s, Vs >0,
§(s) =
0, Vs < 0.

Now, using the convexity of &, it follows that
I(z) SR —2 | Q&(Riy)+Cs=Ri — 2R | Qy’+Cs.
R2 R2
Finally taking Ry = R;(y) sufficiently large, we get I(z) < 0.
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(i13) If z =r(y,y) + (u, —u) € 0Q, with ||(u, —u)||z = Ry and 0 < r < Ry,
1) = Pl = [l = | QIF(ry + ) + Gilry = w)]
RQ
< RYlyl|* = llu]l®
1
=R} - 533.

Thus, I(z) <0 if V2R: < Ry. Therefore, the proof of lemma is finished. m

E

Z (i)

70 Z (ii)

Figure 5.1: ), and its boundary 0Q),

5.2.2 Condicao de Palais-Smale

In order to obtain the Palais-Smale condition we need the following technical

lemma due to [20] which we include the proof for completes.
Lemma 5.2.4 The following inequality holds

(e — 1)+ s(logs)/?,  forallt >0 and s > e'/4,
st < (5.7)

= 2 1
(e —1)4—582, for allt >0 and 0 < s < el/*,

Proof. Clearly, for s = 0 the inequality is obviously satisfied. For s > 0 given, let’s

consider the function ¢ : Rt — R given by

o(t) = st — (e —1).
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If t; denote the maximum point of ¢, then s = ZtSetg. Now, we have three cases to

consider:

Case 1: t;, > 1/2. In this case, s = 2t,e's > e%, which implies (logs)'/2 > ¢,. Thus
o(t) < sty — (e — 1) < st, < s(log s)"/2.
Case 2: 0 <t, <1/2 and s > e'/*. In this case,
sty <s/2 and s/2 < s(logs)Y? < s> el/4
which imply that
sty < s(logs)'/? < (e —1) +s(log )2 . o(t) < st,— (e —1) < s(logs)V/?, vt > 0.

Case 3: 0 < t, < 1/2 and s < e'/4. In fact, the second part of the inequality holds

always, since

1 1 1
ts < 5752 +o? < (e -1+ 582 < (e —1)+ 532.

N —

1
2
Therefore, the lemma is proved. m

Under the same conditions assumed in Lemma 5.2.2, we have the following
Proposition 5.2.5 Let ((un,v,)) be a (PS). sequence in Z, that is,

i) I(up,v,) = c+ 6,, where 6, — 0 as n — oo,

1) I (tn, v) (@, )| < enll(d,0)|| 2, for (6,4) € Z, where €, — 0 as n — oo.

Then ((un,vy)) is bounded in Z and

Qf (un)u, < C, Qg(vn)vy, < C,
R2 R2

QF (u,) < C, QG(v,) < C.
R2 R2
Proof. From i) and ii) (taking (¢,%) = (un,v,)), we have
o QLf (un)un — 2F (un)] + o Qlg(vn)vn — 2G(vy)] < 2¢ 4 20, + €p[(un, va)|[ 2. (5.8)

This together with the hypothesis (Hs) imply that

(60=2) | QIF(un) + Glon)] < 2 + 250+ enll(un, ) (5.9)

85



Thus, using (5.9) in (5.8) we get

[ QU+ g(0,)0,] < 9 (2e 426, + £l (um, 00) 1),

0 —2
Next taking (¢, ) = (vn,0) and (¢, ¢) = (0,u,,) in i) we have

Jonl? = el < | Qtun)on
R2

= zulluall < [ Qg(wnn
R2

Setting
Un:& and Vnzv_"’
[[vn|
we infer that
Jeall < [ QFtun)Vi e
RQ
and

ol < [ Qo(w)Us -+

Observing that from (5.2) and (H;) we have for a > ay
f(s) < Cre™’, Vs >0

and

()] < Caf(s)s

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

in {s € R:s>0and|f(s)]/C; < e/}, we shall use Lemma 5.2.4 to estimate the

integrals in (5.11) and (5.12). Choosing o < o’ and using the inequality (5.7), with

t:\/avn and Szf(un)/cla

and Theorem 1.1.2 we obtain

o [ Wy, <ocy [ e -1+ 01/
R2 Cl R2 {f(un)/01261/4}
i) Q=5 (un)]
2 {f(un)/C1<el/4} 012
< Cy+Cy / Qf (un)tn.
R2

This estimate together with (5.11) imply that
|vn|| < Cs 4 Cy /2 Qf (un)uy,.
R
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Repeating the same argument above we get

Junll < G5+ Cs | Qaton)on (5.16)
R2
Now joining the estimates (5.15) and (5.16) and using (5.10) we achieved

0
1Cun va)llz < 55— (26 + 200 + eal|(un, va) |2 + €n),

which implies that ||(u,,v,)||z < C. From this estimate, inequalities (5.9) and (5.10)
we obtain the other estimates in the statement of the proposition. m

To prove that a Palais-Smale sequence converges to a weak solution of the sys-

tem (5.1) we will use the following convergence result:

Lemma 5.2.6 Let ((un,v,)) C Z be a Palais-Smale sequence for I and (u,v) its weak

limit. Then, up to a subsequence,

flun) = f(u),  g(vn) = g(v) in L (R* Q)

and
F(u,) = F(u), G(v,) = Gv) in L'Y(R*Q).

Proof. Using Proposition 5.2.5 and recalling that H*

raa(Br; V) is compactly immersed

in LY(Bg) for all 1 < g < oo (see consequence of i) from Lemma 1.2.3), up to a

subsequence, we may assume that u,, — u strongly in L'(Bg). Moreover,

Qf(uy) € L'(Br), Qf(u) € L'(Bg) and Qf (un)un| < C,

Br

n € N. Therefore, from Lemma 2.2.5,

Qf (un) = Qf(u) in  L(Br),

for all R > 0. Analogously,

Qg(vn) = Qg(v) in  L'(Bg),

for all R > 0. Finally, by using (H3), it just follows the same steps used in Lemma 2.2.6

to prove the convergences in L'(R?). Therefore, the lemma is proved. m
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5.2.3 Estimativa do Nivel Minimax

Lemma 5.2.7 Suppose that (V') — (Q) hold. If (H,) is satisfied with

(a0 +Bo)(p =277 o
> Z9(){/ (2523) )
then .
sup 1< L,
Ry (tpup)®Z— 2(ag + o)

where u, € E'\ {0} is a nonnegative function such that S, is attained.

Proof. Since the embeddings £ < LP(R?; Q) are compacts for 2 < p < oo, there
exists a function u, € E such that S, is attained, that is, there exists a nonnegative
function u, € E \ {0} satisfying
Sy = / (IVu,|> + Vu?) and Qub = 1.
R2 R2

For each z = t(up, up) + (v, —v) with ¢ > 0 and v € E, we have
1) £ Byl = ol = [ @F(tu,+ )~ [ @G, - v)
R? R2
<t?S2 — [ Q[F(tu, + v) + G(tu, — v)].
R2
By using condition (Hy) and the elementary inequality

|s]P <|s+t]P +|s —t]P, Vs, teR,

we obtain
I(z) < 1252 — ! P> 0.
(Z) — P p RQ Qup iy
Consequently,
92/(p=2)y, _ 9p/(p—2) gr/(P=2) /
I(2) < max |25% -l | = b ? S —
120 . p P p¥ @2 2(ag + Bo)

which completes the proof of lemma. m

5.3 O Problema em Dimensao Finita

Since the functional I is strongly indefinite and defined in an infinite dimensional
space, no suitable linking theorem is available. We therefore approximate problem (5.1)

with a sequence of finite dimensional problems (a Galerkin approximation procedure).
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We claim that associated with the eigenvalues 0 < A\; < Ay < ... < \; = +00 of
(—A+V, E) there exists an orthonormal basis {¢1, ¢, ...} of corresponding eigenfunc-
tions in E. Indeed, for every h € L?*(R?; Q), by Riesz Representation Theorem, there

exists an unique w € E such that
~Aw+V(lz))w=h in R?

in the weak sense. Denote L = —A + V. Then the operator L has an inverse L'

Next, we check that L~ is continuous:
L7 )P = [lw]* = /}R2(|V7~U|2 +Vw?)
= <h7w>
< A2 @20 llwllr2 @20
< Cllhll 2@z wll.

Thus
IL~H(R)]] < C|R|L2e2iq)-

Moreover, using the fact that the embedding F — L*(R?; Q) is compact (see Lemma 1.2.5),
we conclude that the operator L : E — FE is compact. Therefore, from spectral theory

of symmetric compact operators on Hilbert spaces, the claim follows. We set

Zr—f = Span{(¢17 ¢1>’ Tt (an, ¢n)}a

Z; = Span{(¢17 _(bl)u ooy (¢n7 _¢n)}7
Y

Let y € E be a fixed nonnegative function with ||y|| = 1 and
Qny ={r(yy) tw:we Z,, Jwllz <Ry and 0<r <R},

where Ry and R, are given in Lemma 5.2.3. We recall that these constants depend on

y only. We use the following notation:
Hoy=R(y,y)®Z,, H,,=Ry,y)®Z, H,,=Ryy @Z,.
Furthermore, define the class of mappings

Loy =1{h e C(Qny, Hny) : h(2) =2 on 0Qy,,}
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and set

Cny = Inf max I(h(z)).

Cny 2€Qn,y

Using an intersection theorem (see Proposition 5.9 in [45]), we have
MQny) NS #0, Vh ey,

which in combination with Lemma 5.2.2 implies that ¢, , > o > 0. On the other hand,
an upper bound for the minimax level ¢, , can be obtained as follows. Since the identity
mapping Id : Q,, — H,, belongs to I, ,, we have for z = r(y,y) + (u, —u) € Qny
that

I(z) = r*yl* = llul® - /R QIF(ry +u) + G(ry — w)] < r*|ly|* < RY.

Therefore we have 0 < 0 < ¢,, < R?. We remark that the upper bound does not
depend on n, but it depends on y.

Let us denote by I,, , the functional I restricted to the finite dimensional subspace
H, ,. Thus, in view of Lemmas 5.2.2 and 5.2.3 we see that the geometry of a linking
theorem holds for the functional I,, . Therefore, applying the linking theorem for 7, ,
(see Theorem 5.3 in [45]), we obtain a Palais-Smale sequence, which is bounded in view
of Proposition 5.2.5. Finally, using the fact that H, , is a finite dimensional space, we
get the main result of this section.
Proposition 5.3.1 For each n € N and for each y € E, a fixed nonnegative function,
the functional I, has a critical point at level ¢, ,. More precisely, there exists z,, €

H, , such that
Lny(2ny) = Cay € [0, R]

I;L’y(zn’y) =0.

Furthermore, ||zyllz < C, where C' does not depend on n.

(5.17)

5.4 Prova do Teorema de Existéncia

In the proof of Theorem 5.1.1, we shall need of the following technical lemma:

Lemma 5.4.1 Assume that (V) —(Q) hold and (5.2) — (H,) is satisfied. Lety € E be
a fized nonnegative function and 2, = (U, vn) € Hy,, such that
Ly (Zny) = Cny € 0,0 /2(cg + Bo) — 0)

, (5.18)
In,y(znvy) = 07
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for some 6 > 0. In addition, suppose that
lunll, [Jvn]] > C >0, for alln € N

and
(U, vy) = (0,0) weakly in Z.

Then for any given € > 0 we have the following estimate

funl + el < 0a(1) +2 (1 + —>/ (s ) TS

oo + Bo oo + Bo
Proof. Taking (0, u,) as a test function in (5.18) we obtain
Jol? = [ Qatony (5.20)
Setting

, 1/2
u, = (—a —5) n
"t \2(a0+ o) e

and using the inequality (5.7) with

s=g(vn)/Vao+ o and t= \/ag+ Boln,

we obtain

o 1/2 .
(2(040—‘1‘50) a 5) [l = /RQ Qg(vn)u, < Q( —1)

1/2
+/ 0 g(vn) [log( g(vn) )]
{g(vn)/VaoFFezel/ty Vo + Bo Vao + Bo
2
U
o Qo)
{9(vn)/VaotBo<el/4}y Qo + Bo
To estimate the third integral in (5.21) we observe that by (H;), we have

(5.21)

[g(va)]* < Coy

in {s € R:s>0and g(s)/vay + fo < e/*} and so by Lemma 1.2.5 we have that
the third term tends to zero. In relation to the first integral, by using the elementary
inequality (1.23) with

x = (ag+ fo)u, and y=0

we estimate

Qe % — 1) < [ Qlan+ oo 1 1
RQ
Qg + BD)ﬂn(e (eo+Bo)ur, _ 1 +2)
R?

= (ap + Bo) Q( (@80T _ V72 4 2(ap + Bo) | Qu2
RQ
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By the Hélder’s inequality

1/r1 1/ra
Q(e(ao-&-ﬁo)ﬂ% _ l)ﬂi < ( Q(erl(ao+50)ﬂ% N 1)) (/ Qﬂirg) :
R?2 R2 R2

where 1/r1 4+ 1/ry = 1. Since

Oé/

I 1* = oot B 4,

it is possible to take r; > 1 sufficiently close to 1 such that 71 (c+05o)|[un||* < o'. Hence,
from Theorem 1.1.2 and Lemma 1.2.5 we conclude that the first integral in (5.21) also
tends to zero. Now using (5.5) and Lemma 5.2.6 we can estimate the second integral

in (5.21) as follows

g(v,) CLetootsorerz \ 112
/ Q- o (2 "
r2 Voo + Bo Vag + Bo
g(vn) C. 12 1/2
= R?Q\/Oéo*l-ﬂo {1og (\/0404-50)} a0+ fote)on

1/2
— ou(1) + (1 r = 50) [ Qoton,

and hence by (5.21), we get

o 1/2 - 1/2
(m - 5) lun|| < 0n(1) + <1 + po— 50) g Qg(vy)vy. (5.22)

Next taking (v,,0) as a test function in (5.18) we obtain

fonl? = [ Qo

/ 1/2
_ . a Up
oot (gt o)
2(v0 + fo) [[on

and repeating the same argument above we also obtain

o 1/2 . 1/2
(m = 5) vnll < 0,(1) + (1 T +50) 5 Qf (). (5.23)

From Lemma 5.2.6

Then, setting

lim QF (u,) = lim QG(v,) = 0. (5.24)

n—oo R2 n—o0 R2

Thus, we conclude from Lemma 5.2.7 that

/

/ (Vu,Vu, + Vu,v,) < o,(1) + 5 a
RQ

(o + Bo) =9
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which together with (5.25) implies that
a/
Qftuun+ [ Qoo <on)+2 (52 =)
R2 R2 2(
Hence, from (5.22) and (5.23) we obtain the desired estimate (5.19). Therefore, the
proof is finished. m

Proof of Theorem 5.1.1. By Lemma 5.2.7 there exists 6 > 0 such that

/

. < a
Cn =Cnup, = 57 5y
2(ao + fo)

where ¢, 4, is defined in Section 5.3. Next, applying the Proposition 5.3.1 we find a

_5’

bounded sequence z, = 2, = (Un,vn) € Hyy, such that

Imup (Un, Un) =Cp € [07 a//Q(aO + 50) - 5)7
I (un,v,) =0, (5.25)

n,up

(U, Uy) = (g, vo) wWeakly in Z.

Taking as test functions (0, ) and (¢, 0) in (5.25), where ¢ and v are arbitrary functions
in Cg%,4(R?), we get

/(VunV1/J—|—Vun1/1):/ Qg(v,), Y € gj;ad(R?) (5.26)
RQ RQ

and
/ (Vo V + Vuud) = / Qf (un)d, Vo € Cga(R2). (5.27)
R2 R2

Thus, taking the limit in (5.26) and (5.27), using Lemma 5.2.6 and the fact that
C5o.0a(R?) is dense in E, it follows that

[ (Vuove Vi) = [ Qo voe B (5.28)
R2 RQ

and
/ (Voo + Vi) = / Qf(uo)d, Vo€ E. (5.29)
]R2 Rz

Therefore, from (5.28) and (5.29) we conclude that (ug,vp) is a weak solution of sys-
tem (5.1). Finally, it only remains to prove that uo and vy are nontrivial. Assume by
contradiction that ug = 0. This and (5.29) imply that vg = 0. Now, if ||u,|| — 0 or
||lvn |l = 0, then since (u,), (v,) C E are bounded it follows from the Cauchy-Schwarz
inequality that

(tn, vn) i < [|unl[lJon] =0,

93



that is,

lim / (Vu,Vu, + Vu,v,) = 0.
n—oo R2

Hence, using this convergence together that ones in (5.24) in the first equation of (5.25)
we obtain that ¢, = 0, which is a contradiction. Then assume that ||u,||, [|v.|| > C > 0,

for all n € N. Thus, from (5.19) we have in particular that

5 2a/
v |I* < oot o — 40 + 0,(1) + o(e)
2a/ 0
Tat+ By 2

for e > 0 sufficiently small and n € N sufficiently large, where o(¢) — 0 as e — 0. It

follows that there exists a subsequence of (v,) (also denoted by (v,,)) such that

20/ )

ao+ LB 2

lvall* <
Thus using the Hélder’s inequality, Lemma 1.2.5 and Theorem 1.1.2, we get

lim [ Qg(vn)v, = 0.
R2

n—oo

This together with (5.22) provide

lim |ju,| =0,
n—oo

which is a contradiction. Consequently, we have a nontrivial critical point of I, and

thereby we conclude the proof of the Theorem 5.1.1. =

5.5 Sobre a Observagao 5.1.2 (Caso subcritico)

Let y € E be a nonnegative function fixed. Applying Proposition 5.3.1 there

exists a sequence z,, = (Upy, Un,y) € Hy,y such that [[(uyy, vy,)]|z < C and

Ly (Uny, Vny) = Cny € o, R%]a

I (g, Uny) = 0, (5.30)

n7y

(Uny, Uny) — (uo, vo) weakly in Z.
Arguing as in the critical case by (5.30), we obtain
/ (V¥ + Vugh) = / Qyly, Ve R (5.31)
R R

94



and
/ (VooVo + Vgep) = / Qf(up)p, Vo€ E. (5.32)
R2 R2

Therefore, from (5.31) and (5.32) we conclude that (ug,vo) is a weak solution of sys-
tem (5.1). Finally, it only remains to prove that uy and vy are nontrivial. Assume by
contradiction that ug = 0. This and (5.32) imply that vy = 0. Since g has subcritical

growth, we see that for all « > 0
g(s) < Cils| + Co(e®” —1), Vs eR.

For r,s > 1 such that 1/r + 1/s = 1, the Holder’s inequality implies that

1/2 1/2
2 2
[ Qutonyny <0 ([ Q) ([ @bl
1/r 1/s
+ Y (/R Qyun,yr) (/R Q(e¥Vnu — 1)) .

Choosing a > 0 and s > 1 sufficiently close to 1 such that sal|v,,||* < o/ and 1/r +

1/s =1, we conclude that

/ (|Vun,y|2 + V|Un,y|2) = / Qg(vn,y)un,y — O’
R2 R2

since Uy, y, vy y — 0 in LP(R?%; Q) for all 2 < p < oo. Consequently, u,, — 0 in E. This
implies that
/ (Vi y Vo, + Vu, yv,,) — 0. (5.33)
R2

Then by (5.30) and (5.33)

/ Qf (Uny)tn, — 0 and / Qg(Vny)Uny — 0.
RQ RQ

Using this limits and (Hs) it follows that
QF (up,y) - 0 and QG(v,y) — 0. (5.34)
R2 R2
Finally, using (5.33) and (5.34) we get ¢, , = 0, which is a contradiction. Consequently,
we have a nontrivial critical point of I, and thereby the claim in the Remark 5.1.2 is

verified.

95



Observacoes Finais

We finish this thesis with some discussions on further results which are contained

in the preprint [10].

(i) Inspired by similar arguments developed in [27], it is possible to establish a na-
tural generalization for our Trudinger-Moser inequality (1.4) in high dimensions

as can be stated as follows.

Theorem 5.5.1 Assume that (V) — (Q) hold. Then, for any u € W2 (R™; V)
and a > 0, we have that Q(|x|)®,(u) € L*(R™), where

n—2

By (s) = el N

§=0 '

Furthermore, if o < o/ = min{a,,, a,(1 4+ bo/n)} there exists C > 0 such that

sup Q([z])Po(u)dr < C,

1,n )
uEWwwl(]Rn’V)7 ||u||W1}£<Rn;V>§1 Rn

1/(n—1)

where o, = nw,”"; " and w,_1 is the (n— 1)-dimensional measure of the (n—1)-

sphere.

(ii) As an application of the previous theorem and using a minimax procedure we
can prove the existence of nontrivial solution for the following quasi-linear elliptic

problem:
—div(|[Vu"*Vu) + V(|z])|u"?u = Q(|z|) f(u) in R™ (n>2), (5.35)

when the nonlinear term f(s) is allowed to enjoy the exponential critical growth
and satisfies similar hypotheses assumed in the bi-dimensional problem. More
precisely, the nonlinearity f(s) is a continuous function with exponential critical

growth at +o00, i.e, there exists oy > 0 such that

o 0, Va > ag,
(fao) lim f(s)e_o‘|8| -
sTree + 00, VYa<a

and satisfies the following conditions:
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(f1) f(s)=o(|s]""!) as s — 0;

(f2) there exists § > n such that
0<0F(s) = 9/ f)dt <sf(s), Vs>0;
0
(f3) there exist constants Ry, My > 0 such that

0 < F(s) < Myf(s), Vs> Ro;

(f4) there exist p > n and p > 0 such that
Foygp
F(s) > =|s|’, Vs>0.
p

Under this conditions, the existence result for problem (5.35) can be stated as

follows.

Theorem 5.5.2 Suppose that (V) —(Q) and (fa,) — (f4) hold. Then there exists
po > 0 such that problem (5.35) has a nontrivial positive weak solution u €

WhR™ V) for all > .

rad
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