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bilidade em compor esta banca.

Aos amigos da Unidade Acadêmica de Ciências Exatas e da Natureza - UACEN do Centro de

Formação de Professores - CFP da UFCG, por toda valiosa ajuda e compreensão.
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Resumo

Este trabalho está dividido em três partes. Na primeira parte, estudamos hipersuperf́ıcies de cur-

vatura média ou escalar constante imersas em formas espacias Riemannianas ou Lorentzianas

satisfazendo uma desigualdade tipo Okumura adequada. Precisamente, obtemos estimativas

superiores e inferiores ótimas para a parte sem traço da segunda forma fundamental destas

hipersuperf́ıcies. Em particular, resultados de rigidez são provados. Na segunda parte, es-

tamos interessados em hipersuperf́ıcies Weingarten linear generalizadas imersas em produtos

warped Riemannianos ou Lorentzianos. Nesta parte, provamos interessantes estimativas de

altura bem como teoremas semi-espaço para estas hipersuperf́ıcies. Como aplicação destes resul-

tados, fornecemos informações sobre a topologia no infinito de tais hipersuperf́ıcies. Finalmente,

a terceira parte é dedicada ao estudo da estabilidade de hipersurpef́ıcies com f -curvatura média

zero imersas em produtos warped semi-Riemannianos weighted. Em particular, damos uma

condição suficiente para estas hipersuperf́ıcies serem estáveis com respeito ao seu operador de

Jacobi usual.

Palavras-chave: formas espaciais, hipersuperf́ıcies de curvatura média constante, hipersu-

perf́ıcies de curvatura escalar constante, desigualadade tipo Okumura, espaços produto warped,

hipersuperf́ıcies Weingarten linear generalizadas, estimativas de altura, teoremas semi-espaço,

produtos warped weighted, hipersuperf́ıcies with f -curvatura média zero, estabilidade.
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Abstract

This work is divided into three parts. In the first part, we study constant mean or scalar cur-

vature hypersurfaces immersed into Riemannian or Lorentzian space forms satisfying a suitable

Okumura type inequality. Precisely, we obtain sharp upper and lower estimates for the traceless

part of the second fundamental form of these hypersurfaces. In particular, rigidity results are

proved. In the second part, we are interested in generalized linear Weingarten hypersurfaces

immersed into Riemannian or Lorentzian warped products. In this part, we proved interesting

height estimates as well as half-space theorems for these hypersurfaces. As application of these

results, we provide informations regarding the topology at infinity of such hypersurfaces. Fi-

nally, the third part is dedicated to the study of the stability of hypersurfaces with zero f -mean

curvature immersed into weighted semi-Riemannian warped products. In particular, we give

a sufficient condition for these hypersurfaces be stable with respect to the its standard Jacobi

operator.

Keywords: space forms, constant mean curvature hypersurfaces, constant scalar curvature

hypersurfaces, Okumura type inequality, warped product spaces, generalized linear Weingarten

hypersurfaces, height estimates, half-space theorems, weighted warped products, zero f -mean

curvature hypersurfaces, stability.
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Introduction

This thesis is divided into three independent parts as follows:

Part I: Rigidity of hypersurfaces satisfying an Okumura

type inequality

The problem of characterizing hypersurfaces with constant mean or scalar curvature im-

mersed into Riemannian or Lorentzian space forms of constant sectional curvature constitutes

an important and fruitful topic in the theory of isometric immersions, which has being widely

approached by many authors.

Let us first describe about the Riemannian context. Regarding to the constant mean cur-

vature case, in 1966 Klotz and Osserman [83] proved that the totally umbilical spheres and

circular cylinders are the only complete surfaces immersed into the Euclidean space R
3 with

nonzero constant mean curvature and whose Gaussian curvature does not change of sign. In

seventies, Hoffman [76] obtained an extension of that result to the case of surfaces with constant

mean curvature in the 3-dimensional sphere S
3 and Tribuzy [114] showed the case of surfaces

with constant mean curvature in the 3-dimensional hyperbolic space H
3.

In higher dimensions, the first results in this direction are due to Simons [110], Lawson [87]

and Chern et al. [45], which can be grouped in the following way: if the squared norm of

the second fundamental form |A|2 of a compact minimal hypersurface Σn immersed into the

n-dimensional sphere Sn+1 satisfies |A|2 ≤ n, then either |A|2 = 0 and the hypersurface is totally

geodesic, or |A|2 = n and the hypersurface is a minimal Clifford torus. Afterwards, Alencar

and do Carmo [5] studied the case of compact hypersurfaces in the sphere with constant mean

curvature. Specifically, they introduced a tensor Φ, nowadays called the total umbilicity tensor,

and showed that if the squared norm of Φ is bounded from above by certain constant β(H,n),

then either the hypersurface is totally umbilical or the equality |Φ|2 = β(H,n) holds, where

β(H,n) depends only on the mean curvature H and the dimension n of the hypersurface. In the

last case, they characterized all hypersurfaces with this property. This extended the previous

results of [110], [87] and [45].

More recently, Aĺıas and Garćıa-Mart́ınez [14] used the weak Omori-Yau’s maximum principle

due to Pigola et al. [103,104] to study the behavior of the squared norm of the total umbilicity

tensor of a complete hypersurface with constant mean curvature immersed into a Riemannian

space form deriving a sharp estimate for the supremum of |Φ|2. In particular, they gave a
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generalization of the result due to Alencar and do Carmo.

Following the approach developed in [14], Meléndez [93] introduced an interesting and suit-

able Okumura type inequality on the total umbilicity tensor Φ and was able to prove a nice

generalization of the results of [14], in the sense that he characterized new isoparametric hyper-

surfaces of the Riemannian space forms. More precisely, denoting byM
n+1
c an (n+1)-dimensional

Riemannian space form of constant sectional curvature c ∈ {0, 1,−1}, he proved:

Theorem (Theorem 1.4 of [93]). Let Σn be a complete hypersurface immersed into a Riemannian

space form M
n+1
c , n ≥ 3, with constant mean curvature H such that H2 + c > 0. If its total

umbilicity tensor Φ satisfies

|tr(Φ3)| ≤ (n− 2p)√
np(n− p)

|Φ|3,

for some 1 ≤ p < n
2
, then

(i) either sup |Φ| = 0 and Σn is a totally umbilical hypersurface,

(ii) or

sup |Φ| ≥ β(H,n, p, c) =

√
n

2
√
p(n− p)

(√
n2H2 + 4p(n− p)c− (n− 2p)|H|

)
> 0.

Moreover, the equality sup |Φ| = β(H,n, p, c) holds and this supremum is attained at some

point of Σn if and only if

(a) c = 0 and Σn is a circular cylinder R
p × S

n−p(r) ⊂ R
n+1, with r > 0;

(b) c = 1 and Σn is either a minimal Clifford torus or a constant mean curvature torus

S
p(
√
1− r2)× S

n−p(r) ⊂ S
n+1, with 0 < r2 < n−p

n
;

(c) c = −1 and Σn is a hyperbolic cylinder H
p(−

√
1 + r2)× S

n−p(r) ⊂ H
n+1, with r > 0.

When we consider the case of hypersurfaces with constant scalar curvature in Riemannian

space forms, in lower dimension one has the classical results due to Hilbert [74] and Hartman

and Nirenberg [71]. The former says that the sphere is the only surface with constant Gaussian

curvature nonzero in the 3-dimensional Euclidean space R3, and the second asserts that a surface

with zero Gaussian curvature in R
3 must be a cylinder or a plane.

As for to the higher dimensional case, in 1977 Cheng and Yau [44] proved the following well

known rigidity result concerning compact constant scalar curvature hypersurfaces immersed into

a Riemannian space form which, in its original version, states:

Theorem (Theorem 2 of [44]). Let Σn be a compact hypersurface with nonnegative sectional

curvature immersed in a manifold with constant sectional curvature c. Suppose that the normal-

ized scalar curvature of Σn is constant and greater than or equal to c. Then Σn is either totally

umbilical, a (Riemannian) product of two totally umbilical constantly curved submanifolds or

possibly a flat manifold which is different from the above two types. The last case can happen

only if c = 0. (If the ambient manifold is the Euclidean space, the last two cases cannot occur

because of the compactness of Σn.)
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In the noncompact case, they extended the previous theorem when c = 0 by characterizing

such a hypersurface Σn as being a circular cylinder Rp × S
n−p. More precisely, they proved the

following:

Theorem (Theorem 4 of [44]). Let Σn be a complete noncompact hypersurface in the Euclidean

space with nonnegative curvature. Suppose that the scalar curvature of Σn is constant, then Σn

is a generalized cylinder R
p × S

n−p.

Their approach involves a careful study of a self-adjoint differential operator introduced by

them in [44], nowadays called Cheng-Yau’s operator. Actually, this operator has become one

of the most efficient tools to deal with issue of rigidity concerning constant scalar curvature

hypersurfaces in Riemannian space forms. Indeed, there exists a vast literature related to the

problem of establishing rigidity results in the same spirit of [44] under various hypothesis on

geometry of such hypersurfaces (see, for instance, [15,27,88,115,116] and the references therein).

One of the more recentle is due to Aĺıas et al. [15], where the authors obtained a suitable weak

maximum principle for the Cheng-Yau’s operator of a complete hypersurface with constant scalar

curvature immersed into a Riemannian space form and they applied it to estimate the squared

norm of the total umbilicity tensor of the hypersurface. In particular, they proved:

Theorem 1 (Theorems 1 and 2 of [15]). Let Σn be a complete hypersurface immersed into

a Riemannian space form M
n+1
c , n ≥ 3, with constant normalized scalar curvature satisfying

R ≥ 1, when c = 1, and R > 0, when c ∈ {0,−1}. Then

(i) either sup |Φ| = 0 and Σn is a totally umbilical hypersurface,

(ii) or

sup |Φ| ≥ α(R, n, c) = R

√
n(n− 1)

(n− 2)(nR− (n− 2)c)
.

Moreover, if R > 1 when c = 1, the equality sup |Φ| = α(R, n, c) holds and this supremum

is attained at some point of Σn if and only if

(a) c = 0 and Σn is a circular cylinder R
1 × S

n−1(r) ⊂ R
n+1;

(b) c = 1 and Σn is a Clifford torus S1(
√
1− r2)× S

n−1(r) ⊂ S
n+1;

(c) c = −1 and Σn is a hyperbolic cylinder H
1(
√
1− r2)× S

n−1(r) ⊂ H
n+1,

with r2 = n−2
nR

.

Let us now describe about the Lorentzian context, beginning by the case of constant mean

curvature hypersurfaces. Regarding to the Lorentz-Minkowski space R
n+1
1 one can truly say

that the first remarkable results in this branch were the rigidity theorems of Calabi [28] and

Cheng and Yau [43], who showed (the former for n ≤ 4, and the latter for general n) that

the only maximal, complete, noncompact, spacelike hypersurfaces of the Lorentz-Minkowski

space R
n+1
1 are the spacelike hyperplanes. However, in the case that the mean curvature is a

positive constant, Treibergs [113] surprising showed that there are many entire solutions of the
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corresponding constant mean curvature equation in R
n+1
1 , which he was able to classify by their

projective boundary values at infinity.

In 1977 Goddard [66] conjectured that every complete spacelike hypersurface with constant

mean curvature H in the de Sitter space Sn+1
1 must be totally umbilical. Although the conjecture

turned out to be false in its original statement, it motivated a great deal of work of several authors

trying to find a positive answer to the conjecture under appropriate additional hypotheses. The

first result in this direction was obtained by Ramanathan [105], who showed that a constant mean

curvature complete spacelike surface in S
3
1 satisfying H2 < 1 is totally umbilical. Moreover, by

assuming that H2 > 1 he showed that the Goddard’s conjecture is false by means of certain

non-totally umbilical spacelike surfaces previously studied by Dajczer and Nomizu in [51].

Simultaneous and independently, Akutagawa [2] proved that the Goddard’s conjecture is

true provided that H2 < 1 in the case n = 2, and when H2 < 4(n−1)
n2 if n > 2. He also

constructed complete spacelike rotation surfaces in S
3
1 with constant mean curvature satisfying

H2 > 1 and which are non-totally umbilical. Later on, Montiel [94] proved the conjecture for the

compact case and exhibited examples of complete spacelike hypersurfaces in S
n+1
1 with constant

mean curvature satisfying H2 ≥ 4(n−1)
n2 and being non-totally umbilical, the so called hyperbolic

cylinders, which are isometric to the Riemannian product Sn−1(
√
1 + r2)×H

1(r) ⊂ S
n+1
1 , where

r > 0, showing that the general conjecture is false.

A few years later, Montiel [95] was able to characterize these hyperbolic cylinders as been

the only complete non-totally umbilical spacelike hypersurfaces of Sn+1
1 having H = 2

√
n−1
n

and

such that sup |Φ| = n−2√
n

is attained at some point, where Φ stands for the total umbilicity

tensor of the hypersurface. Afterwards, Brasil et al. [25] generalized the Montiel’s result by

characterizing the hyperbolic cylinders of Sn+1
1 as been the only complete non-totally umbilical

spacelike hypersurfaces of constant mean curvature satisfying 2
√
n−1
n

≤ H < 1 and with

sup |Φ| =
√
n

2
√
(n− 1)

(
(n− 2)|H| −

√
n2H2 − 4(n− 1)

)

attained at some point. Among other results, they also characterized all complete spacelike

hypersurfaces of constant mean curvature with two distinct principal curvatures as been either

rotation hypersurfaces or Riemannian products of the type S
n−p(

√
1 + r2) × H

p(r), that is, of

an (n − p)-dimensional Euclidean sphere and a p-dimensional hyperbolic space, which are also

called hyperbolic cylinders.

In the case of constant scalar curvature hypersurfaces, an interesting result due to Cheng and

Ishikawa [40] states that the totally umbilical Euclidean sphere is the only compact spacelike

hypersurface in the de Sitter space having constant normalized scalar curvature R < 1, general-

izing a previuos result proved by Zheng [119] under the additional condition that the sectional

curvature of the hypersurface is nonnegative. On the other hand, Li [89] posed the question on

whether the only complete spacelike hypersurfaces with constant normalized scalar curvature R

satisfying n−2
n

≤ R ≤ 1 in the de Sitter space are totally umbilical ones. In [29] Camargo et

al., by extending a technique introduced by Cheng and Yau [44], answered this question posi-
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tively under the additional assumption that the mean curvature is bounded from above on such

hypersurfaces (see also [13, 23, 24, 26,78,90,109] for others results in this context).

This part of the thesis is devoted to generalize and improve some of the above cited notorious

results. To do this, our main assumption will be the Okumura type inequality introduced by

Melendéz [93] which, as we shall see, gives a natural generalization of the hypothesis contained

in aforementioned results. To be more precisely, in Chapter 2 we prove a result like in Theorem

1 with the advantage that we characterize new isoparametric hypersurfaces of the ambient space

(see Theorem 2.1.1). Later on, in Chapter 3 we improve Theorem 1.2 and Proposition 1.2 of [25]

(see Theorem 3.1.1). Moreover, we give a nice generalization of Theorems 1 and 2 of [82] (see

Theorem 3.1.2). Afterwards in Chapter 4 we also improve and generalize Theorem 1.1 of [29]

as well as others results contained in [46, 78, 109] (see Theorems 4.1.1 and 4.1.2). To close this

part, in Chapter 5 we study hypersurfaces with constant mean curvature immersed into locally

symmetric Riemannian manifolds. In particular, we obtain generalizations of various results

contained in [14, 93] (see Theorems 5.2.1 and 5.2.2).

Part II: Generalized linear Weingarten hypersurfaces in

warped products: height estimates and half-space theo-

rems

The last few decades have seen a steadily growing interest in the study of a priori estimates

of the height function of constant mean curvature compact graphs or, more generally, compact

hypersurfaces with boundary having some constant higher order mean curvature immersed into

semi-Riemannian pruduct spaces of the type R ×Mn or −R ×Mn, where Mn is an arbitrary

Riemannian manifold. This problem has gained special attention, being considered by several

authors probably motivated by the fact that these estimates turn out to be a very useful tool

in order to investigate existence and uniqueness results of complete hypersurfaces with constant

higher order mean curvature as well as to obtain information on the topology at infinity of such

hypersurfaces (in the Riemannian setting see, for instance, [3,11,42,61,72,77,85,86,107] and, in

the Lorentzian setting see, for instance, [47, 52, 92, 96]). Lately, height estimates has becoming

very useful even in the case of hypersurfaces immersed into semi-Riemannian warped product

spaces (see [64, 65]).

In the context of the Riemannian geometry, in 1969 the first height estimate of compact

graphs with positive constant mean curvature in the Euclidean space R
3 and boundary on a

plane was obtained by Heinz [72]. More specifically, denoting by H the mean curvature, Heinz

proved that the height of such a graph can rise at most 1
H
. In [85], Korevaar et al. obtained

a sharp bound of compact embedded hypersurfaces in the hyperbolic space H
n+1 with nonzero

constant mean curvature and boundary contained into a totally geodesic hyperplane. Next,

Rosenberg [107] gave height estimates of compact hypersurfaces with some constant higher order

mean curvature and with zero boundary values embedded either in the Euclidean space Rn+1 or
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in the hyperbolic space H
n+1, generalizing the previous estimates of [72] and [85].

Later on, Cheng and Rosenberg [42] were able to generalize these estimates for compact

graphs with some constant higher order mean curvature in the product manifold R×Mn, with

boundary contained into a slice {t0} ×Mn, for some t0 ∈ R. When the fiber Mn is compact,

as application of their height estimates, they used the Alexandrov’s reflection method in order

to obtain some informations on the topology at infinity of noncompact properly embedded

hypersurface having constant higher order mean curvature, proving that such a hypersurface

must have at least two ends or, equivalently, it cannot lie in a half-space.

Afterwards, Aĺıas and Dajczer [11] and Garćıa-Mart́ınez et al. [65] gave extensions of the

aforementioned results to the case of hypersurfaces immersed into the so called pseudo-hyperbolic

spaces, that is, following the terminology introduced by Tashiro [112], Riemannian warped prod-

ucts of the type R×et M
n or R×cosh t M

n. The former [11] focused in constant mean curvature

hypersurfaces and the later [65] considered hypersurfaces with some constant higher order mean

curvature. Moreover, in [65] was proved topological results for noncompact properly immersed

hypersurfaces of constant mean and higher order mean curvature of these pseudo-hyperbolic

spaces in the same spirit of [42], by assuming that the fiber Mn is compact.

Towards the Lorentzian context, the first result in this direction is due to López [92], who

proved that compact spacelike surfaces with constant mean curvature in the 3-dimensional

Lorentz-Minkowski spacetime R
3
1 with boundary on a plane can reach at most a height of |H|A

2π
,

where A is the area of the region of the surface above the plane containing its boundary. Later on,

Montiel [96] obtained height estimates of compact spacelike graphs in the steady state spacetime

and he applied them to prove some existence and uniqueness theorems for complete spacelike

hypersurfaces in the de Sitter spacetime with constant mean curvature H > 1 and prescribed

asymptotic future boundary. Also, de Lima studied height estimates and obtained a sharp es-

timate of compact spacelike hypersurfaces with some constant higher order mean curvature in

the Lorentz-Minkowski spacetime R
n+1
1 and with boundary contained into a spacelike hyper-

plane (see [52]), and after jointly with Colares they were able to generalize these estimates to

the case of compact spacelike hypersurfaces of positive constant higher order mean curvature in

Lorentzian product spacetime −R ×Mn, whose fiber has nonnegative sectional curvature, and

with boundary contained into a slice (see [47]).

More recently, Garćıa-Mart́ınez and Impera [64] extended the height estimates proved by

Colares and de Lima for spacelike hypersurfaces of constant higher order mean curvature in a

Lorentzian warped product −R ×ρ M
n, so called generalized Robertson-Walker (GRW) space-

times, with boundary contained into a slice. As application they obtained informations on the

topology at infinity of constant higher order mean curvature complete spacelike hypersurfaces

immersed into a spatially closed GRW spacetime. Moreover, using a version of the Omori-Yau’s

maximum principle for trace type differential operators, they also gave some half-space results

concerning complete spacelike hypersurfaces of constant higher order mean curvature immersed

into the non-spatially closed GRW spacetime.

In this part of the work, the main aim is to extend this investigation to a much more gen-
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eral class of hypersurfaces containing those that naturally appear when dealing with the case of

constant higher order mean curvature. More precisely, we consider hypersurfaces which satisfy

a natural condition on a linear relation involving the higher order mean curvatures. In partic-

ular, when this relation is constant the hypersurface is called a generalized linear Weingarten

hypersurface. Then we obtain estimates of the height function of compact generalized linear

Weingarten hypersurfaces in semi-Riemannian warped products spaces, without the assumption

of any higher order mean curvature to be constant. We point out that our results offer improve-

ments of those obtained in [11, 19, 42, 65, 77] when the ambient space is a Riemannian warped

product, and [47,52,64] when the ambient space is a Lorentzian warped product.

Furthermore, we are able to study the topology at infinity of complete noncompact general-

ized linear Weingarten hypersurfaces in semi-Riemannian warped products by proving half-space

theorems, generalizing some results obtained in [42,64,65,77].

Part III: On stability of hypersurfaces in weighted semi-

Riemannian warped products

Let (M
n+1

, 〈 , 〉) be an (n + 1)-dimensional oriented Riemannian or Lorentzian manifold

and let f : M
n+1 → R be a smooth function. The weighted manifold M

n+1

f associated with

M
n+1

and f is the triple (M
n+1

, 〈 , 〉, e−fdM), where dM denotes the standard volume element

of M
n+1

induced by the metric 〈 , 〉. We will refer to function f as the weight function of

the weighted manifold M
n+1

f . In this setting, for a weighted manifold M
n+1

f , an important and

natural tensor is the so called Bakry-Émery-Ricci tensor Ricf , which is a generalization of Ricci

tensor Ric of M
n+1

and is defined by

Ricf = Ric + Hessf,

where Hessf is the Hessian of f on M
n+1

. In particular, if f is constant Ricf is simply the

standard Ricci tensor Ric of M
n+1

.

Appearing naturally in the study of self-shrinkers, Ricci solitons, harmonic heat flows and

many other subjects in differential geometry, weighted manifolds are proved to be important

nontrivial generalizations of Riemannian manifolds and, nowadays, there are several geometric

investigations concerning them. For a brief overview of results in this scope, we refer the articles

of Morgan [98] and Wei and Wylie [117].

Let ψ : Σn → M
n+1

f be an isometrically immersed orientable Riemannian manifold into

M
n+1

f . Then Σn becomes automatically a weighted Riemannian manifold by weighted structure

induced from M
n+1

f . In this case and following Gromov [69], the weighted mean curvature, or

simply f -mean curvature, Hf of Σn is defined by

nHf = nH + ε〈∇f,N〉,

where H denotes the standard mean curvature of Σn with respect to its orientation, ε = 1 if
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M
n+1

is a Riemannian manifold, and ε = −1 if M
n+1

is a Lorentzian manifold. In particular,

when f is constant we have Hf = H and we recover the usual definition of mean curvature.

When the ambient space is Riemannian and the f -mean curvature Hf vanishes identically on

Σn we said that Σn is a f -minimal hypersurface. In the case in which the ambient space is

Lorentzian and the f -mean curvature Hf vanishes identically on Σn, it is called a f -maximal

hypersurface.

The research on the geometry of hypersurfaces having constant f -mean curvature and, in

particular, the investigations on the behavior of hypersurfaces with f -mean curvature vanishes

identically immersed into a weighted ambient space, constitutes a recent and fruitful topic into

the theory of isometric immersions. It has been already approached by many authors and we

may cite, for instance, the works [34, 36, 37,41,60, 73,75,80,91, 106,108].

As in the case of zero mean curvature hypersurfaces, it is well known that the condition of

Σn has zero f -mean curvature is equivalent to the fact that Σn is a critical point of the weighted

area functional,

volf (Σ) =

∫

Σ

e−fdΣ,

for every variation of Σn with compact support and fixed boundary. It is natural to wonder

whether these hypersurfaces has the property of to minimize (if the ambient space is Riemannian)

or maximize (if the ambient space is Lorentzian) the weighted area functional. Recently many

authors has been devoted to the study of this question (see, for instance, [34, 41, 60, 80] and

references therein).

In order to answer this question, it is very useful to know the second variation formula of

the weighted area functional. Let V be a normal compactly supported variation of Σn and take

ϕ ∈ C∞
0 (Σ) such that V = ϕN , where N determines the orientation of Σn. If the f -mean

curvature Hf of Σn vanishes identically, then it is well known that the second variation of the

weighted area functional is given by (in the Riemannian case see, for instance, [41], and in the

Lorentzian case see, for instance, [57])

d2

dt2
volf (Σ)|t=0 = −ε

∫

Σ

ϕLfϕdΣ,

where the weighted Jacobi operator Lf is defined by

Lf = ∆f + ε
(
|A|2 + Ricf (N,N)

)
.

Here ∆f = ∆− 〈∇f,∇·〉 is the f -Laplacian on Σf . Then we say that Σn is Lf -stable if it mini-

mizes (resp. maximizes) the weighted are functional in the Riemannian case (resp. Lorentzian

case), that is, d2

dt2
volf (Σ)|t=0 ≥ 0 (resp. ≤ 0).

This part of the thesis is dedicated to the study of the Lf -stability of zero f -mean curvature

hypersurfaces immersed into a weighted semi-Riemannian warped product space. Precisely, our

main results give a sufficient condition for these hypersurfaces to be Lf -stable. In particular, we

generalize recent results due to Aledo and Rubio [4] in Riemannian warped products.
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Part I

Rigidity of hypersurfaces satisfying an

Okumura type inequality
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Chapter 1

Preliminaries for Part I

In this chapter, for the sake of clarity we shall introduce several useful definitions and no-

tations that will appear throughout Part I of this thesis. For instance, the Riemannian and

Lorentzian space forms and some basic equations for hypersurfaces immersed into them as well

as two relevant Simons type formulas, the first for the Laplacian acting on the squared norm of

the second fundamental form, and the second for the Cheng-Yau’s operator acting on the mean

curvature of these hypersurfaces. Moreover we shall highlight our Okumura type hypothesis,

which must appear in all main results of this part of the thesis.

In this setting, we begin by establishing the notations which will appear in forthcomings

Chapters 2, 3 and 4. Let us denote by M
n+1
c the standard model of an (n + 1)-dimensional

Riemannian space form with constant sectional curvature c, with c ∈ {0, 1,−1}. Actually, Mn+1
c

denotes the Euclidean space R
n+1 when c = 0, endowed with the standard Riemannian metric

〈 , 〉 = dx21 + dx22 + . . .+ dx2n+1, (1.1)

the (n+ 1)-dimensional Euclidean sphere S
n+1,

S
n+1 = {p ∈ R

n+2 ; 〈p, p〉 = 1} ⊂ R
n+2,

endowed with the Riemannian metric induced from R
n+2 when c = 1, and the (n+1)-dimensional

hyperbolic space H
n+1,

H
n+1 = {p ∈ R

n+2
1 ; 〈p, p〉1 = −1, p1 ≥ 0} ⊂ R

n+2
1 ,

furnished with the Riemannian metric induced from R
n+2
1 when c = −1. Here, Rn+2

1 stands for

the (n+ 2)-dimensional Euclidean space R
n+2 endowed with the Lorentzian metric

〈 , 〉1 = −dx21 + dx22 + . . .+ dx2n+2. (1.2)

In the Lorentzian context, we will denote by L
n+1
c the standard model of an (n + 1)-

dimensional Lorentzian space form with constant sectional curvature c, with c ∈ {0, 1,−1}.
Then, L

n+1
c denotes the Lorentz-Minkowski space R

n+1
1 when c = 0, that is, the (n + 1)-
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dimensional Euclidean space R
n+1 endowed with the Lorentzian metric (1.2), the (n + 1)-

dimensional de Sitter space S
n+1
1 ,

S
n+1
1 = {p ∈ R

n+2
1 ; 〈p, p〉1 = 1} ⊂ R

n+2
1 ,

endowed with the Lorentzian metric induced from R
n+2
1 when c = 1, and the (n+1)-dimensional

anti-de Sitter space H
n+1
1 ,

H
n+1
1 = {p ∈ R

n+2
2 ; 〈p, p〉2 = −1} ⊂ R

n+2
2 ,

furnished with the Lorentzian metric induced from R
n+2
2 when c = −1. Here, Rn+2

2 stands for

the (n+ 2)-dimensional Euclidean space R
n+2 endowed with the semi-Riemannian metric

〈 , 〉2 = −dx21 − dx22 + dx23 + . . .+ dx2n+2. (1.3)

In order to simplify the notation, when c = ±1 we agree to denote by 〈 , 〉 without distinction,
the Riemannian metric in (1.1) on R

n+2, the Lorentzian metric in (1.2) on R
n+2
1 and the semi-

Riemannian metric in (1.3) on R
n+2
2 . We also agree to denote by 〈 , 〉 the corresponding

Riemannian metric induced on M
n+1
c →֒ R

n+2 ant the Lorentzian metric induced on L
n+1
c →֒

R
n+2.

Throughout this Part I, we will deal with oriented and connected hypersurfaces Σn isomet-

rically immersed into a Riemannian or Lorentzian space form (except in Chapter 5, where the

ambient space is a locally symmetric Riemmanian manifold). In the Lorentzian case, we will

always assume that Σn is a spacelike hypersurfaces by meaning that the induced metric on Σn

via the immersion is a Riemannian metric. In order to avoid confusion, in this chapter we shall

use the term Riemannian hypersurfaces to indicate both the case, hypersurfaces in M
n+1
c and

spacelike hypersurfaces in L
n+1
c .

With this in mind, let us review some basic facts and terminology about such a Riemannian

hypersurface Σn. Let ∇ be the Levi-Civita connection of Σn. As in [102], the curvature tensor

R of Σn is defined as

R(X, Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z

for every tangent vector fields X, Y, Z ∈ X(Σ), where [ , ] denotes the standard Lie bracket. Let

A : X(Σ) → X(Σ) be its second fundamental form with respect to a globally defined normal

unit vector field N , AX = ∇XN . Here, ∇ stands for the Levi-Civita connection of the ambient

space. It is well known that the curvature tensor of Σn can be described in terms of the second

fundamental form A by the Gauss equation as follows

R(X, Y )Z = c (〈X,Z〉Y − 〈Y, Z〉X) + ε (〈AX,Z〉AY − 〈AY,Z〉AX) (1.4)

for every X, Y, Z ∈ X(Σ), where ε = 1 when the ambient space is a Riemannian space form and

ε = −1 if the ambient space is a Lorentzian space form. Let us also denote by H the mean
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curvature function of Σn,

H =
1

n
tr(A).

In particular, the normalized scalar curvature R of Σn is given by

n(n− 1)R = n(n− 1)c+ ε
(
n2H2 − |A|2

)
, (1.5)

where we used the same criterion of (1.4) for the sign ε. The Codazzi equation is given by

(∇A)(X, Y ) = (∇A)(Y,X)

for all X, Y, Z ∈ X(Σ), where ∇A : X(Σ)×X(Σ) → X(Σ) denotes the covariant differential of A,

(∇A)(X, Y ) = (∇YA)X = ∇Y (AX)− A(∇YX).

For our purposes, it will be appropriate to deal with the so called traceless second fundamental

form Φ : X(Σ) → X(Σ) of the Riemannian hypersurface Σn, which is defined by

Φ = A−HI,

where I is the identity operator on X(Σ). From here it is not difficult to verify that Φ is a

traceless tensor, that is, tr(Φ) = 0 and that holds the following relation,

|Φ|2 = |A|2 − nH2. (1.6)

Moreover, |Φ| vanishes identically on Σn if and only if Σn is a totally umbilical hypersurface.

For this reason, Φ is also called the total umbilicity tensor of Σn. We also note that, by equation

(1.5), the following relation is trivially satisfied:

n(n− 1)R = n(n− 1)(c+ εH2)− ε|Φ|2. (1.7)

Proceeding with our preliminary, let us denote by P : X(Σ) → X(Σ) the first Newton

transformation of Σn, which is defined as the tensor P = nHI − A. It is easy to see that P is

a self-adjoint tensor which commutes with the second fundamental form and satisfies tr(P ) =

n(n− 1)H.

Associated to first Newton transformation P , one has the second order linear differential

operator L : C∞(Σ) → C∞(Σ) defined by

Lu = tr(P ◦ hess u), (1.8)

where hess u : X(Σ) → X(Σ) denotes the self-adjoint linear tensor metrically equivalent to the

Hessian of u, which is given by

hess u(X) = ∇X∇u
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for all X ∈ X(Σ). In particular, since the ambient space has constant sectional curvature, it was

proved by Rosenberg [107] (see also Caminha [30]) that

Lu = div(P∇u),

where div denotes the standard divergent operator on Σn. This implies that the operator L is

elliptic if and only if P is positive definite. The operator L is sometimes called the Cheng-Yau’s

operator because in the Riemannian setting it was introduced by Cheng and Yau in [44].

The proofs of our main results are based on two Simons type formulas, which has already

been used by several authors. To wit, for the Laplacian acting on the squared norm of the second

fundamental form |A|2 and for the Cheng-Yau’s operator acting on the mean curvature function

H. For the sake of completeness, we include here its derivation by following, for instance,

[19, 95, 99].

Proposition 1.0.1. Let Σn be a Riemannian hypersurface immersed into an (n+1)-dimensional

Riemannian or Lorentzian space form. Let us choice ε as in (1.4).

(i) The formula

1

2
∆|A|2 = |∇A|2 + ntr(A ◦ hess H) + εnHtrA3 − ε|A|4 + cn(|A|2 − nH2)

holds on Σn.

(ii) The formula

L(nH) =
εn(n− 1)

2
∆R + |∇A|2 − n2|∇H|2 + εnHtrA3 − ε|A|4 + nc(|A|2 − nH2)

holds on Σn.

Proof. To prove item (i), let us begin by observing that a standard tensor computation yields

1

2
∆|A|2 = |∇A|2 + 〈A,∆A〉, (1.9)

where ∆A : X(Σ) → X(Σ) is the rough Laplacian,

∆A(X) = tr(∇2A(X, ·, ·)) =
n∑

i=1

∇2A(X,Ei, Ei).

Here {E1, . . . , En} is a local orthonormal frame on Σn. We observe that, in our notation,

∇2A(X, Y, Z) = (∇Z∇A)(X, Y ) = ∇Z(∇A(X, Y ))− A(∇ZX, Y )− A(X,∇ZY ).

By Codazzi equation, ∇2A is symmetric in its two first variables,

∇2A(X, Y, Z) = ∇2A(Y,X, Z), X, Y, Z ∈ X(Σn).
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With respect to the symmetries of ∇2A in the other variables, it is not difficult to see that

∇2A(X, Y, Z) = ∇2A(X,Z, Y )−R(Z, Y )AX + A(R(Z, Y )X).

Thus, choosing the local orthonormal frame diagonalizing A and using the Gauss equation, it

follows from here that

∆A(X) =
n∑

i=1

(
∇2A(Ei, Ei, X)−R(Ei, X)AEi + A(R(Ei, X)Ei

)

= tr (∇X(∇A)) + εnHA2X − ε|A|2AX + ncAX − ncHX

= n∇X∇H + εnHA2X − ε|A|2AX + ncAX − ncHX,

where we have used the fact that the trace commutes with ∇X and, by Codazzi equation, that

tr(∇A) = n∇H. Therefore, the previous identity jointly with (1.9) allows us to obtain the

desired.

In case (ii), by equation (1.8), the operator L satisfies

L(nH) = nH∆(nH)− tr(A ◦ hess(nH))

=
1

2
∆(n2H2)− n2|∇H|2 − ntr(A ◦ hessH).

Then the Simons’ formula in (i) gives

L(nH) =
1

2
∆(n2H2)− 1

2
∆|A|2 − n2|∇H|2 + |∇A|2

+ εnHtrA3 − ε|A|4 + cn(|A|2 − nH2).

Finally, it follows from equation (1.5) that

L(nH) =
εn(n− 1)

2
∆R + |∇A|2 − n2|∇H|2 + εnHtrA3 − ε|A|4 + cn(|A|2 − nH2),

which concludes the proof of the proposition.

In order to prove our main results, we also recall the well known Okumura’s Lemma due to

Okumura in [100], which was completed with the equality case by Alencar and do Carmo in [5].

Lemma 1.0.2. Let κ1, . . . , κn, n ≥ 3, be real numbers such that
∑

i

κi = 0 and
∑

i

κ2i = β2,

where β ≥ 0. Then

− (n− 2)√
n(n− 1)

β3 ≤
∑

i

κ3i ≤
(n− 2)√
n(n− 1)

β3.

and the equality holds if and only if either at least n− 1 of the numbers κi are equal.

Next we quote an Okumura type result due to Meléndez [93] which is closely related to the

total umbilicity tensor (for more details, see Lemma 2.2 of [93]).
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Lemma 1.0.3. Let κ1, . . . , κn, n ≥ 3, be real numbers such that
∑

i

κi = 0 and
∑

i

κ2i = β2,

where β ≥ 0. Then, the equation

∑

i

κ3i =
(n− 2p)√
np(n− p)

β3

(
∑

i

κ3i = − (n− 2p)√
np(n− p)

β3

)
, 1 ≤ p ≤ n− 1,

holds if and only if p of the numbers κi are nonnegative (resp. nonpositive) and equal and the

rest n− p of the numbers κi are nonpositive (resp. nonegative) and equal.

Related to the previous two lemmas, Melendéz [93] introduced an interesting and suitable

hypothesis on the total umbilicity tensor of a hypersurface immersed into a Riemannian space

form. To be precise and slightly more general, let us consider a Riemanian hypersurface Σn

immersed into a Riemannian or Lorentzian space form and let Φ be its total umbilicity tensor.

We must point out that along this part of the thesis we will always assume in our main results

the following Okumura type inequality on Φ:

|tr(Φ3)| ≤ (n− 2p)√
np(n− p)

|Φ|3, (1.10)

for some 1 ≤ p < n
2
. It is worth pointing out that since Φ is traceless, by the classical Okumura’s

Lemma 1.0.2, inequality (1.10) is automatically true when p = 1. Furthermore, when 1 < p < n
2

we claim that to suppose that inequality (1.10) holds is weaker than to assume the geometric

condition of the hypersurface has two distinct principal curvatures with multiplicities p and n−p.
Indeed, in this latter case Φ also has two distinct eigenvalues, said µ and ν, with multiplicity

p and n − p, respectively. In particular, we get µ = −n−p
p
ν and |Φ|2 = pµ2 + (n − p)ν2, which

implies that

tr(Φ3) = pµ3 + (n− p)ν3 = ± (2p− n)√
np(n− p)

|Φ|3,

proving the claim.

On the other hand, Lemmas 1.0.2 and 1.0.3 say that if the equality in (1.10) holds then the

hypersurface must have at most two principal curvatures.

To close this chapter, we quote the following result, which can be found in Lemma 4.1 of [6]

or Lemma 2.5 of [31] in the Riemannian setting, and Lemma 2 of [32] in the Lorentzian setting.

Lemma 1.0.4. Let Σn be a Riemannian hypersurface immersed into an (n + 1)-dimensional

Riemannian or Lorentzian space form. Let us choose ε as in (1.4). If the constant normalized

scalar curvature satisfies ε(R− c) ≥ 0, then

|∇A|2 − n2|∇H|2 ≥ 0.
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Chapter 2

Constant scalar curvature hypersurfaces

in Riemannian space forms

In this chapter, we obtain a sharp lower bound for the supremum of the norm of the traceless

second fundamental form of complete hypersurfaces satisfying the Okumura type inequality

in (1.10) with constant scalar curvature immersed into a Riemannian space form M
n+1
c . The

sharpness is proved by showing that the standard products embedding M
p
c × S

n−p(r) →֒ M
n+1
c

realize this estimate for a well defined radius r. The results presented in this chapter make part

of [54].

2.1 Statement of the main result

In 1977, Cheng and Yau [44] proved the following well known rigidity result concerning

compact constant scalar curvature hypersurfaces immersed into a Riemannian space form which,

in its original version, states:

Theorem (Theorem 2 of [44]). Let Σn be a compact hypersurface with nonnegative sectional

curvature immersed in a manifold with constant sectional curvature c. Suppose that the normal-

ized scalar curvature of Σn is constant and greater than or equal to c. Then Σn is either totally

umbilical, a (Riemannian) product of two totally umbilical constantly curved submanifolds or

possibly a flat manifold which is different from the above two types. The last case can happen

only if c = 0. (If the ambient manifold is the Euclidean space, the last two cases cannot occur

because of the compactness of Σn.)

In the noncompact case, they extended the previous theorem when c = 0 by characterizing

such a hypersurface Σn as being a circular cylinder Rp × S
n−p. More precisely, they proved the

following:

Theorem (Theorem 4 of [44]). Let Σn be a complete noncompact hypersurface in the Euclidean

space with nonnegative sectional curvature. Suppose that the scalar curvature of Σn is constant,

then Σn is a generalized cylinder R
p × S

n−p.
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Their approach involves a careful study of the so called Cheng-Yau’s operator L defined in

(1.8). Actually, this operator has become one of the most efficient tools to deal with issue of

rigidity concerning constant scalar curvature hypersurfaces in Riemannian space forms. Indeed,

there exists a vast literature related to the problem of establishing rigidity results in the same

spirit of [44] under various hypothesis on the geometry of these hypersurfaces (see, for instance,

[15, 27, 88, 115,116] and the references therein).

In this context, Li [88] extended these results due to Cheng and Yau by assuming a bound-

edness on the squared norm of the second fundamental form of the hypersurface. More recently,

Aĺıas et al. [15] obtained a suitable weak maximum principle for the Cheng-Yau’s operator of a

complete hypersurface with constant scalar curvature immersed into a Riemannian space form,

and they applied it to estimate the squared norm of the traceless part of the second fundamental

form of the hypersurface. In particular, they proved:

Theorem (Theorems 1 and 2 of [15]). Let Σn be a complete hypersurface immersed into a

Riemannian space form M
n+1
c , n ≥ 3, with constant normalized scalar curvature satisfying R ≥

1, when c = 1, and R > 0, when c ∈ {0,−1}. Then

(i) either sup |Φ| = 0 and Σn is a totally umbilical hypersurface,

(ii) or

sup |Φ| ≥ α(R, n, c) = R

√
n(n− 1)

(n− 2)(nR− (n− 2)c)
.

Moreover, if R > 1 when c = 1, the equality sup |Φ| = α(R, n, c) holds and this supremum

is attained at some point of Σn if and only if

(a) c = 0 and Σn is a circular cylinder R
1 × S

n−1(r) ⊂ R
n+1;

(b) c = 1 and Σn is a Clifford torus S1(
√
1− r2)× S

n−1(r) ⊂ S
n+1;

(c) c = −1 and Σn is a hyperbolic cylinder H
1(
√
1− r2)× S

n−1(r) ⊂ H
n+1,

with r2 = n−2
nR

.

Here, by assuming the Okumura type inequality in (1.10) on the total umbilicity tensor Φ

(see Chapter 1 for definition of Φ), the purpose of this chapter is to prove the following rigidity

result, similar to some of the results above cited.

Theorem 2.1.1. Let Σn be a complete hypersurface immersed into a Riemannian space form

M
n+1
c , with constant normalized scalar curvature satisfying R ≥ 1, when c = 1, and R > 0, when

c ∈ {0,−1}. If its total umbilicity tensor Φ satisfies (1.10) for some 1 ≤ p < n
2
, then

(i) either sup |Φ| = 0 and Σn is a totally umbilical hypersurface,

(ii) or

sup |Φ| ≥ α(R, n, p, c) > 0,
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where α(R, n, p, c) is a positive constant depending only on R, n, p and c. Moreover, if

R > 1 when c = 1, the equality sup |Φ| = α(R, p, n, c) holds and this supremum is attained

at some point of Σn if and only if

(a) c = 0 and Σn is a circular cylinder R
p × S

n−p(r) ⊂ R
n+1, with r2 = (n−p)(n−p−1)

n(n−1)R
> 0;

(b) c = 1 and Σn is a Clifford torus Sp(
√
1− r2)× S

n−p(r) ⊂ S
n+1, with

r2 =
(n− 1)(nR+ (n− 2p))−

√
[n(n− 1)(R− 1) + 2p(n− p)]

2 − 4p(n− p)(p(n− p)− (n− 1))

2n(n− 1)R
;

(c) c = −1 and Σn is a hyperbolic cylinder H
p(
√
1− r2)× S

n−p(r) ⊂ H
n+1, with

r2 =
−(n− 1)(nR− (n− 2p)) +

√
[n(n− 1)(R+ 1)− 2p(n− p)]

2 − 4p(n− p)(p(n− p)− (n− 1))

2n(n− 1)R
.

Regarding Okumura type condition on the tensor Φ, we saw in Chapter 1 that it is auto-

matically true when p = 1. In this case, Theorem 2.1.1 has been obtained by Aĺıas et al. (see

Theorems 1 and 2 of [15]). In this context, the general case of Theorem 2.1.1 is a nice generali-

zation of the results of [15] in the sense that we characterize new isoparametric hypersurfaces of

the ambient space, namely, the product of space forms when p > 1.

Furthermore, when 1 < p < n
2
we proved in Chapter 1 that the hypothesis in (1.10) is weaker

than to assume the geometric condition of the hypersurface has two distinct principal curvatures

with multiplicities p and n − p. For this reason, Theorem 2.1.1 can be regarded as a sort of

improvement of the results contained in [38, 39, 79] concerning complete hypersurfaces having

two distinct principal curvatures with multiplicities greater than one.

2.2 Auxiliary results

In order to prove Theorem 2.1.1, we will need some auxiliary results. The first one is con-

cerning the ellipticity of the Cheng-Yau’s operator L as well as the validity of a generalized

version of the Omori-Yau’s maximum principle on a hypersurface Σn →֒ M
n+1
c for the operator

L, meaning that for any function u ∈ C2(Σ) with u∗ = sup u < +∞, there exists a sequence of

points {pj} ⊂ Σn satisfying

u(pj) > u∗ − 1

j
, |∇u(pj)| <

1

j
and Lu(pj) <

1

j
,

for every j ∈ N (for more details, see Appendix A, Lemma A.0.3). More precisely,

Lemma 2.2.1. Let Σn be a complete hypersurface immersed into a Riemannian space form

M
n+1
c , with constant normalized scalar curvature satisfying R > c (resp. R ≥ c). In the case

where R = c, assume in addition that the mean curvature function H does not change sign on

Σn. The following holds:

10



(i) The operator L is elliptic (resp. semi-elliptic) or, equivalently, P is positive definite (resp.

semi-definite), for an appropriate choice of the orientation of Σn;

(ii) If sup |Φ|2 < +∞, then the Omori-Yau’s maximum principle holds on Σn for the operator

L.

Proof. To prove item (i), let us reason as in the proof of Lemma 4.2 of [31]. When R > c the

Gauss equation and our assumption on the scalar curvature of Σn imply that the mean curvature

function H does not vanish on Σn. In particular, for an appropriate choice of the orientation of

Σn we can assume that H > 0. In the case R = c, we choose the orientation of Σn such that

H ≥ 0. Denoting by λ1, . . . , λn the principal curvatures of Σn we have that

µi = nH − λi

are the eigenvalues of the tensor P , i = 1, . . . , n. Then, by using equation (1.5), it is not difficult

to see that |λi| ≤ nH, which gives

0 ≤ µi ≤ 2nH, ∀ i = 1, . . . , n,

with the strict inequalities in the case R > c. Hence, writing µ− and µ+ to denote the minimum

and the maximum of the eigenvalues of P , respectively, we conclude that

µ− ≥ 0 and µ+ ≤ 2nH, (2.1)

occurring the strict inequalities in the case R > c. This proves item (i).

Let us prove item (ii). To do this, we claim that the sectional curvature KΣ of Σn is bounded

from below. Indeed, it follows from Gauss equation (1.4) that if {X, Y } is an orthonormal basis

for an arbitrary plane tangent to Σn, then

KΣ(X, Y ) = c+ 〈AX,X〉〈AY, Y 〉 − 〈AX, Y 〉2

≥ c− |AX||AY | − |AX|2

≥ c− 2|A|2, (2.2)

where the last inequality follows from the fact that

|AX|2 ≤ tr(A2)|X|2 = |A|2

for every unitary vector field X tangent to Σn. On the other hand, equation (1.5) yields

|Φ|2 = n− 1

n
|A|2 − (n− 1)(R− c).

As we are assuming that sup |Φ|2 < +∞, we get sup |A|2 < +∞. Thus, by (2.2), we prove the

claim.

11



Moreover, taking into account once more equation (1.5), we get

H2 =
1

n(n− 1)
|Φ|2 + (R− c). (2.3)

Then the mean curvature function H also satisfies supH2 < +∞. In particular, equation

(2.1) implies that sup tr(P ) < +∞. Therefore, Lemma A.0.3 guarantees that the Omori-Yau’s

maximum principles holds on Σn for the operator L.

Secondly, it will also be essential the following lower boundedness of the operator L acting

on the squared norm of the total umbilicity tensor Φ of a complete hypersurface immersed into

M
n+1
c having constant normalized scalar curvature.

Proposition 2.2.2. Let Σn be a complete hypersurface immersed into a Riemannian space form

M
n+1
c , with constant normalized scalar curvature satisfying R ≥ c. In the case where R = c,

assume in addition that the mean curvature function H does not change sign on Σn. If its total

umbilicity tensor Φ satisfies (1.10) for some 1 ≤ p < n
2
, then

1

2
L(|Φ|2) ≥ 1√

n(n− 1)
|Φ|2QR,n,p,c(|Φ|)

√
|Φ|2 + n(n− 1)(R− c),

where the function QR,n,p,c(x) is given by

QR,n,p,c(x) = −(n− 2)x2 − (n− 2p)

√
n− 1√
p(n− p)

x
√
x2 + n(n− 1)(R− c) + n(n− 1)R. (2.4)

Proof. As in the proof of Lemma 2.2.1, we can choose the orientation of Σn so that H ≥ 0,

occurring the strict inequality in the case R > c. Since the scalar curvature of Σn is constant,

we get from (2.3) that

n

2(n− 1)
L(|Φ|2) = 1

2
L(n2H2) = nHL(nH) + n2〈P∇H,∇H〉. (2.5)

By using Lemma 2.2.1 (i), we have that P is positive semi-definite. In particular, from (2.5) we

find
1

2(n− 1)
L(|Φ|2) ≥ HL(nH), (2.6)

which jointly with Lemma 1.0.1 (ii) give

1

2(n− 1)
L(|Φ|2) ≥ H(|∇A|2 − n2|∇H|2) + nH2tr(A3)−H|A|4 + ncH(|A|2 − nH2). (2.7)

But, since R ≥ c, by Lemma 1.0.4 we know that

|∇A|2 − n2|∇H|2 ≥ 0. (2.8)

Then, since we are choosing the orientation such that H ≥ 0, inequalities (2.7) and (2.8) imply

12



that
1

2(n− 1)
L(|Φ|2) ≥ nH2tr(A3)−H|A|4 + ncH(|A|2 − nH2). (2.9)

On the other hand, the squared norm of the total umbilicity tensor Φ is given by |Φ|2 =

|A|2 − nH2 and it is not difficult to see that

tr(A3) = tr(Φ3) + 3H|Φ|2 + nH3. (2.10)

Hence putting (2.10) into (2.9) we find

1

2(n− 1)
L(|Φ|2) ≥ −H|Φ|4 + nH2tr(Φ3) + nH(H2 + c)|Φ|2. (2.11)

Taking into account our assumption on Φ we obtain from (2.11) that

1

2(n− 1)
L(|Φ|2) ≥ H|Φ|2

(
−|Φ|2 − n(n− 2p)√

np(n− p)
H|Φ|+ n(H2 + c)

)
. (2.12)

Since H ≥ 0 we observe that by equation (1.5) the mean curvature can be written as

H =
1√

n(n− 1)

√
|Φ|2 + n(n− 1)(R− c). (2.13)

Therefore, substituting (2.13) into (2.12) we get the desired inequality.

2.3 Proof of Theorem 2.1.1

We begin by observing that if sup |Φ| = +∞, then the claim (ii) of Theorem 2.1.1 trivially

holds and there is nothing to prove.

So, let us assume, without loss of generality that sup |Φ| < +∞ and, as aforementioned, we

choose the orientation of Σn such that H ≥ 0. From Lemma 2.2.1 we deduce that the Omori-

Yau’s maximum principle holds on Σn for the operator L. In particular, by applying this result

to the function |Φ|2, we obtain a sequence {pj} in Σn satisfying

lim |Φ|(pj) = sup |Φ| and L(|Φ|2)(pj) <
1

j
,

which jointly with Proposition 2.2.2 gives

1

j
> L(|Φ|2)(pj) ≥

2√
n(n− 1)

|Φ|2(pj)QR,n,p,c(|Φ|(pj))
√

|Φ|2(pj) + n(n− 1)(R− c),

where the function QR,n,p,c(x) is given by (2.4). Taking the limit as j → +∞, we infer

(sup |Φ|)2QR,n,p,c(sup |Φ|)
√
(sup |Φ|)2 + n(n− 1)(R− c) ≤ 0.
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Since we are assuming that R ≥ 1, when c = 1, and R > 0, when c ∈ {0,−1}, it follows

that either sup |Φ| = 0, which means that |Φ| ≡ 0 and the hypersurface is totally umbilical, or

sup |Φ| > 0 and then QR,n,p,c(sup |Φ|) ≤ 0. In the latter case, we see that

QR,n,p,c(0) = n(n− 1)R > 0

and the function QR,n,p,c(x) is strictly decreasing for x ≥ 0. In particular, this implies that there

exists an unique positive real number α(R, n, p, c) > 0, depending only on R, n, p and c, such

that QR,n,p,c(α(R, n, p, c)) = 0. Hence, QR,n,p,c(sup |Φ|) ≤ 0 means that we must have

sup |Φ| ≥ α(R, n, p, c) > 0.

This concludes the proof of the first part of Theorem 2.1.1.

Now, let us assume that the equality sup |Φ| = α(R, n, p, c) holds. In particular, QR,n,p,c(|Φ|) ≥
0 on Σn and then Proposition 2.2.2 assures that |Φ|2 is a L-subharmonic function on Σn, that

is,

L(|Φ|2) ≥ 0 on Σn.

Furthermore, since R > 1 when c = 1, Lemma 2.2.1 (i) asserts that the operator L is elliptic.

Hence, if there exists a point on Σn such that the supremum sup |Φ| is attained, then |Φ|2 is a

L-subharmonic function on Σn which attains its supremum and, by the stronger maximum prin-

ciple, it must be constant, that is, |Φ| = α(R, n, p, c). Thus, it holds the equality in Proposition

2.2.2, namely,

1

2
L(|Φ|2) = 0 =

1√
n(n− 1)

|Φ|2QR,n,p,c(|Φ|)
√

|Φ|2 + n(n− 1)(R− c).

It follows from here that all the inequalities along the proof of Proposition 2.2.2 must be, in

fact, equalities. In particular, we obtain that equation (2.6) must be an equality, and this jointly

with the positiveness of the tensor P imply that the mean curvature function H is constant.

Moreover, it also occurs the equality in (2.9), that is,

|∇A|2 = n2|∇H|2 = 0.

Then, the principal curvatures of Σn must be constant and Σn is an isoparametric hypersurface.

Besides, expression (2.12) is also equality, which implies by Lemma 1.0.3 that Σn has exactly

two distinct constant principal curvatures with multiplicities p and n− p. Then, by the classical

results on isoparametric hypersurfaces of Riemannian space forms (see, for instance, Theorem 4

in [87]) we conclude that Σn must be one of the following standard products embeddings:

(a) R
p × S

n−p(r) ⊂ R
n+1 or Rn−p × S

p(r) ⊂ R
n+1, with r > 0, if c = 0;

(b) S
p(
√
1− r2)× S

n−p(r) ⊂ S
n+1, with 0 < r < 1, if c = 1;

(c) H
p(
√
1 + r2)× S

n−p(r) ⊂ H
n+1 or Hn−p(

√
1 + r2)× S

p(r) ⊂ H
n+1, with r > 0, if c = −1.
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Concerning the case of the Euclidean space R
n+1 (that is, c = 0), the positive constant

α(R, n, p, 0) > 0 is given explicitly by

α(R, n, p, 0) =

√
p(n− 1)R

n− p− 1
.

In this case, on the one hand the product Rp × S
n−p(r) ⊂ R

n+1, for a given radius r > 0, has

constant principal curvatures, for an appropriate choice of the orientation, given by

λ1 = . . . = λp = 0 and λp+1 = . . . = λn =
1

r
,

so that its constant mean curvature is H = n−p
nr

and

|Φ| =
√
p(n− p)

nr2
.

Hence, by equation (1.7), its constant scalar curvature is given by

R =
(n− p)(n− p− 1)

n(n− 1)r2
> 0.

Thus, we must have

|Φ| =
√
p(n− 1)R

n− p− 1
= α(R, n, p, 0)

and the equality holds. On the other hand, for a given radius r > 0, the product Rn−p×S
p(r) ⊂

R
n+1 has, for a suitable choice of the normal vector field, constant principal curvatures

λ1 = . . . = λn−p = 0 and λn−p+1 = . . . = λn =
1

r
,

constant mean curvature H = p
nr

and

|Φ| =
√
p(n− p)

nr2
,

so that, by using once more equation (1.7), its constant scalar curvature is

R =
p(p− 1)

n(n− 1)r2
.

In particular, if p = 1 we obtain R = 0, which cannot happen because of our assumption on R.

If p > 1, then we find

|Φ| =
√

(n− 1)(n− p)R

p− 1
> α(R, n, p, 0),

that is, the inequality is strict. This gives the characterization of the equality sup |Φ| =

α(R, n, p, 0) in the case c = 0.

15



Now, we consider the case of the Euclidean sphere S
n+1 (that is, c = 1). For a radius

0 < r < 1, the product S
p(
√
1− r2) × S

n−p(r) ⊂ S
n+1 has, for an appropriate choice of the of

the normal vector field, principal curvatures given by

λ1 = . . . = λp =
r√

1− r2
and λp+1 = . . . = λn = −

√
1− r2

r
.

Then, its constant mean curvature is

H =
nr2 − (n− p)

nr
√
1− r2

, (2.14)

and the norm of the total umbilicity tensor is

|Φ| =
√

p(n− p)

nr2(1− r2)
, (2.15)

where, by (2.14),

r2 =
nH2 + 2(n− p)± |H|

√
n2H2 + 4p(n− p)

2n(H2 + 1)

and we choose the sign + when r2 > n−p
n

and the sign − when r2 ≤ n−p
n
. From here, we can

write the norm of Φ in terms of the mean curvature as

|Φ| =
√
n

2
√
p(n− p)

(√
n2H2 + 4p(n− p)± (n− 2p)|H|

)
,

where we used the same criterion for the sign.

Let us also observe that, by equation (2.12), it is not difficult to see that when evaluated in

|Φ| the function QR,n,p,1(x) is given by

QR,n,p,1(|Φ|) = −(n− 1)PH,n,p,1(|Φ|),

where PH,n,p,1(x) is the polynomial

PH,n,p,1(x) = x2 +
n(n− 2p)H√
np(n− p)

x− n(H2 + 1). (2.16)

On the one hand, if r2 ≤ n−p
n
, we obtain PH,n,p,1(|Φ|) = 0, which means that QR,n,p,1(|Φ|) = 0

and, in this case, we must have |Φ| = α(R, n, p, 1) and the equality holds. On the other hand,

if r2 > n−p
n

then PH,n,p,1(|Φ|) > 0, which implies QR,n,p,1(|Φ|) < 0 and, in this case, |Φ| >
α(R, n, p, 1), that is, the inequality is strict.

Next, by using equations (1.7), (2.14) and (2.15), we get that the constant scalar curvature

of the product Sp(
√
1− r2)× S

n−p(r) ⊂ S
n+1 is given by

n(n− 1)(R− 1) =
n(n− 1)r4 − 2(n− 1)(n− p)r2 + (n− p)(n− p− 1)

r2(1− r2)
, (2.17)
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which implies R > 1 if and only if

r2 <
(n− 1)(n− p)−

√
p(n− 1)(n− p)

n(n− 1)
or r2 >

(n− 1)(n− p) +
√
p(n− 1)(n− p)

n(n− 1)
.

In particular, |Φ| = α(R, n, p, 1) and R > 1 if and only if

r2 <
(n− 1)(n− p)−

√
p(n− 1)(n− p)

n(n− 1)
. (2.18)

Finally, taking into account once more equation (2.17), we find

r2 =
(n− 1)(nR+ (n− 2p))±

√
[n(n− 1)(R− 1) + 2p(n− p)]

2 − 4p(n− p)(p(n− p)− (n− 1))

2n(n− 1)R
. (2.19)

In particular, if |Φ| = α(R, n, p, 1) and R > 1, we must have

r2 =
(n− 1)(nR+ (n− 2p))−

√
[n(n− 1)(R− 1) + 2p(n− p)]

2 − 4p(n− p)(p(n− p)− (n− 1))

2n(n− 1)R
,

otherwise, denoting by r2+ the value of r2 in (2.19) with sign +, we can show that

r2+ >
(n− 1)(n− p)−

√
p(n− 1)(n− p)

n(n− 1)
.

But this contradicts equation (2.18). This concludes the characterization of the equality sup |Φ| =
α(R, n, p, 1) in the case c = 1.

In the case of the hyperbolic space Hn+1 (that is, c = −1), for a given r > 0 we have that the

standard product embedding H
p(
√
1 + r2)× S

n−p(r) ⊂ H
n+1 has constant principal curvatures,

for a suitable choice of the orientation, given by

λ1 = . . . = λp =
r√

1 + r2
and λp+1 = . . . = λn =

√
1 + r2

r
.

Thus, its constant mean curvature H is given by

H =
nr2 + (n− p)

nr
√
1 + r2

, (2.20)

and we also have

|Φ| =
√

p(n− p)

nr2(1 + r2)
. (2.21)

In this case, H2 > 1 and with a straightforward computation one shows that

r2 =
2(n− p)− nH2 + |H|

√
n2H2 − 4p(n− p)

2n(H2 − 1)
,
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which implies that, in terms of the mean curvature, |Φ| is given by

|Φ| =
√
n

2
√
p(n− p)

(√
n2H2 − 4p(n− p)− (n− 2p)|H|

)
. (2.22)

As in the case of the Euclidean sphere, it is not difficult to see that

QR,n,p,−1(|Φ|) = −(n− 1)PH,n,p,−1(|Φ|),

where

PH,n,p,−1(x) = x2 +
n(n− 2p)H√
np(n− p)

x− n(H2 − 1). (2.23)

In particular, since |Φ| given by (2.22) is the unique positive root of polynomial PH,n,p,−1(x),

we obtain that QR,n,p,−1(|Φ|) = 0 and, in this case, we must have |Φ| = α(R, n, p,−1) and the

equality holds. Moreover, the constant scalar curvature of Hp(
√
1 + r2) × S

n−p(r) ⊂ H
n+1, as

given by (1.7), (2.20) and (2.21), is

R =
(n− 1)(n− 2p)r2 + (n− p)(n− p− 1)

n(n− 1)r2(1 + r2)
> 0,

which gives

r2 =
−(n− 1)(nR− (n− 2p)) +

√
[n(n− 1)(R+ 1)− 2p(n− p)]

2 − 4p(n− p)(p(n− p)− (n− 1))

2n(n− 1)R
.

On the other hand, the standard product embedding Hn−p(
√
1 + r2)×S

p(r) ⊂ H
n+1 has constant

principal curvatures, for a appropriate choice of the orientation, given by

λ1 = . . . = λn−p =
r√

1 + r2
and λn−p+1 = . . . = λn =

√
1 + r2

r
.

Then, its constant mean curvature is

H =
nr2 + p

nr
√
1 + r2

,

and, in this case, we have

|Φ| =
√

p(n− p)

nr2(1 + r2)
. (2.24)

Hence, its constant scalar curvature is

R =
p(p− 1)− (n− 1)(n− 2p)r2

n(n− 1)r2(1 + r2)
.

We note that R > 0 if and only if

r2 <
p(p− 1)

(n− 1)(n− 2p)
.
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In particular, p = 1 cannot be fulfilled. Now let us assume that p > 1 and R > 0. Then, by

equation (1.7), we obtain H2 > 1. In this case, we find

r2 =
2p− nH2 + |H|

√
n2H2 − 4p(n− p)

2n(H2 − 1)
,

which gives, by (2.24),

|Φ| =
√
n

2
√
p(n− p)

(√
n2H2 − 4p(n− p) + (n− 2p)|H|

)
.

Therefore, in this case, PH,n,p,−1(|Φ|) > 0 and we must have |Φ| > α(R, n, p,−1), that is, the

inequality is strict. This proves the characterization of the equality sup |Φ| = α(R, n, p,−1) in

the case c = −1 and finishes the proof of Theorem 2.1.1.
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Chapter 3

Constant mean curvature spacelike

hypersurfaces in Lorentzian space forms

In this chapter, we deal with complete constant mean curvature spacelike hypersurfaces

immersed into a Lorentzian space form and satisfying the Okumura type inequality introduced

in Chapter 1. In this setting, we obtain lower and upper estimates for the norm of the total

umbilicity tensor and we show that these estimates are sharp in the sense that the hyperbolic

cylinders realize them. The results of this chapter can be found in [48].

3.1 Statement of the main results

In 1977 Goddard [66] conjectured that every complete spacelike hypersurface with constant

mean curvature H in the de Sitter space Sn+1
1 must be totally umbilical. Although the conjecture

turned out to be false in its original statement, it motivated a great deal of work of several authors

trying to find a positive answer to the conjecture under appropriate additional hypotheses. The

first result in this direction was obtained by Ramanathan [105], who showed that a complete

constant mean curvature spacelike surface in S
3
1 satisfying H

2 < 1 is totally umbilical. Moreover,

if H2 > 1 he showed that the Goddard’s conjecture is false by means of certain non-totally

umbilical spacelike surfaces previously studied by Dajczer and Nomizu in [51].

Simultaneous and independently, Akutagawa [2] proved that the Goddard’s conjecture is true

when H2 < 1 in the case n = 2, and when H2 < 4(n−1)
n2 if n > 2. He also constructed complete

spacelike rotation surfaces in S
3
1 with constant mean curvature satisfying H2 > 1 and which are

non-totally umbilical. Later on, Montiel [94] proved the conjecture for the compact case and

exhibited examples of complete spacelike hypersurfaces in S
n+1
1 with constant mean curvature

satisfying H2 ≥ 4(n−1)
n2 and being non-totally umbilical, the so called hyperbolic cylinders, which

are isometric to the Riemannian product Sn−p(
√
1 + r2)×H

p(r) ⊂ S
n+1
1 , where r > 0, showing

that the general conjecture is false.

A few years later, Montiel [95] was able to characterize the hyperbolic cylinder Sn−1(
√
1 + r2)×

H
1(r) ⊂ S

n+1
1 as been the only complete non-totally umbilical spacelike hypersurfaces of Sn+1

1

having H = 2
√
n−1
n

and such that sup |Φ| = n−2√
n

is attained at some point (see Proposition 2 of
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[95]) where, as before, Φ stands for the total umbilicity tensor of the hypersurface. Afterwards,

Brasil et al. [25] generalized the Montiel’s result by characterizing hyperbolic cylinders of Sn+1
1

as been the only complete non-totally umbilical spacelike hypersurfaces of constant mean cur-

vature satisfying 2
√
n−1
n

≤ H < 1 and with sup |Φ| =
√
n

2
√
n−1

(
(n− 2)|H| −

√
n2H2 − 4(n− 1)

)

attained at some point. Among other results, they also characterized all complete spacelike

hypersurfaces of constant mean curvature with two distinct principal curvatures as been either

rotation hypersurfaces or Riemannian products of the type S
n−p(

√
1 + r2) × H

p(r), that is, of

an (n − p)-dimensional Euclidean sphere and a p-dimensional hyperbolic space, which are also

called hyperbolic cylinders.

By assuming the Okumura type inequality introduced in Chapter 1 on the total umbilicity

tensor Φ, the first purpose of this chapter is to prove the following result, improving some of the

above cited results.

Theorem 3.1.1. Let Σn be a complete spacelike hypersurface immersed into the de Sitter space

S
n+1
1 , with constant mean curvature H. If its total umbilicity tensor Φ satisfies (1.10) for some

1 ≤ p < n
2
, then

(i) either sup |Φ| = 0 and Σn is a totally umbilical hypersurface,

(ii) or H2 ≥ 4p(n−p)
n2 and

β(H,n, p, 1) ≤ sup |Φ| ≤ β̂(H,n, p, 1),

where

β̂(H,n, p, 1) =

√
n

2
√
p(n− p)

(
(n− 2p)|H|+

√
n2H2 − 4p(n− p)

)

and

β(H,n, p, 1) =

√
n

2
√
p(n− p)

(
(n− 2p)|H| −

√
n2H2 − 4p(n− p)

)
.

Moreover, if 4p(n−p)
n2 ≤ H2 < 1 then β(H,n, p, 1) > 0 and the equality sup |Φ| = β(H,n, p, 1)

holds and this supremum is attained at some point of Σn if and only if Σn is a hyperbolic

cylinder S
n−p(

√
1 + r2)×H

p(r) ⊂ S
n+1
1 , with

r =

√
nH2 − 2p+ |H|

√
n2H2 − 4p(n− p)

2n(1−H2)
≥

√
p√

n− 2p
.

Regarding Theorem 3.1.1 let us recall that the Okumura type condition in (1.10) holds

trivially when p = 1 because of Lemma 1.0.2. In this case, Theorem 3.1.1 has been obtained by

Brasil et al. [25] (see Theorem 1.2 and Proposition 1.1 there). On the other hand, we also recall

that when 1 < p < n
2
, then (1.10) is weaker than to assume that the spacelike hypersurface has

two distinct principal curvatures with multiplicities p and n− p. For this reason, Theorem 3.1.1

can be regarded as an improvement of Theorem 1.2 and Proposition 1.2 of [25].

Proceeding, we obtain other characterization result concerning complete spacelike hypersur-

faces satisfying the Okumura type condition in (1.10) and, now, immersed into any Lorentzian

space form L
n+1
c of constant sectional curvature c ∈ {0, 1,−1}. Specifically:
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Theorem 3.1.2. Let Σn be a complete spacelike hypersurface immersed into a Lorentzian space

form L
n+1
c , with constant mean curvature H. If its total umbilicity tensor Φ satisfies (1.10) for

some 1 ≤ p < n
2
, then

(i) either sup |Φ| = 0 and Σn is a totally umbilical hypersurface,

(ii) or

sup |Φ| ≤ β̂(H,n, p, c),

where

β̂(H,n, p, c) =

√
n

2
√
p(n− p)

(
(n− 2p)|H|+

√
n2H2 − 4pc(n− p)

)
.

Moreover, the equality |Φ| = β̂(H,n, p, c) holds if and only if

(a) c = 0 and Σn is a hyperbolic cylinder R
n−p ×H

p(r) ⊂ R
n+1
1 , with r = p

n|H| > 0,

(b) c = 1 and Σn is a hyperbolic cylinder S
n−p(

√
1 + r2) × H

p(r) ⊂ S
n+1
1 , with either

r = p√
n(n−2p)

if H2 = 1, or

p√
n(n− 2p)

< r =

√
nH2 − 2p+ |H|

√
n2H2 − 4p(n− p)

2n(1−H2)
≤

√
p√

n− 2p

when H2 < 1, or

r =

√
2p− nH2 + |H|

√
n2H2 − 4p(n− p)

2n(H2 − 1)
<

p√
n(n− 2p)

when H2 > 1.

(c) c = −1 and Σn is either a maximal hyperbolic cylinder H
n−p
(√

n−p√
p

)
× H

p
(√

n√
p

)
⊂

H
n+1
1 , or a hyperbolic cylinder H

n−p(
√
1− r2)×H

p(r) ⊂ H
n+1
1 , with

r =

√
nH2 + 2p− |H|

√
n2H2 + 4p(n− p)

2n(1 +H2)
≤

√
p√
n
.

By using relation (1.6) to rewrite Theorem 3.1.2 in terms of the second fundamental form of

the spacelike hypersurface, we see that in the case p = 1 our result becomes equivalent to The-

orems 1 and 2 in [82]. In this context, the general case of Theorem 3.1.2 is a nice generalization

of the results in [82] in the sense that we characterize new isoparametric hypersurfaces in L
n+1
c ,

namely, the hyperbolic cylinders when p > 1.

3.2 Auxiliary results

This section is devoted to quote two key lemmas which will be essential to prove Theo-

rems 3.1.1 and 3.1.2 in the next sections, namely: a sufficient condition to the validity of the
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Omori-Yau’s maximum principle on Σn for the Laplacian and a well known sufficient condi-

tion to the boundedness of the squared norm of the second fundamental form |A|2 of spacelike

hypersurfaces in Lorentzian space forms.

Lemma 3.2.1. Let Σn be a spacelike hypersurface immersed into a Lorentzian space form L
n+1
c ,

with constant mean curvature H. Then, the Omori-Yau’s maximum principle holds on Σn for

the Laplacian.

Proof. It follows from Gauss equation (1.4) that, taking a local orthonormal frame {E1, . . . , En}
tangent to Σn, the Ricci curvature Ric of Σn is given by

Ric(X,X) = c(n− 1)|X|2 − nH〈AX,X〉+ |AX|2, (3.1)

for all vector field X tangent to Σn. Since we can write

−nH〈AX,X〉+ |AX|2 =
∣∣∣∣AX − nH

2
X

∣∣∣∣
2

− n2H2

4
|X|2,

we get from (3.1) that

Ric(X,X) ≥
(
c(n− 1)− n2H2

4

)
|X|2,

for all vector field X tangent to Σn. In particular, since H is constant this implies that the Ricci

curvature of Σn is bounded from below, which assures by Lemma A.0.1 of Appendix A that the

Omori-Yau’s maximum principle holds on Σn for the Laplacian.

Our second lemma gives a sufficient condition that asserts the boundedness of the squared

norm of the second fundamental form |A|2 of spacelike hypersurfaces in Lorentzian space forms,

which follows from Theorem 1 in [82].

Lemma 3.2.2. Let Σn be a spacelike hypersurface immersed into a Lorentzian space form L
n+1
c ,

with constant mean curvature H satisfying H2 ≥ 4(n−1)
n2 when c = 1. Then, the squared norm of

the second fundamental form |A|2 is bounded from above.

3.3 Proof of Theorem 3.1.1

Since H is constant and taking into account equations (1.6) and (2.10), we deduce that the

Simons’ formula (see Proposition 1.0.1 (i)) can be rewritten in terms of the total umbilicity

tensor as follows
1

2
∆|Φ|2 = |∇Φ|2 + |Φ|4 − nHtr(Φ3)− n(H2 − 1)|Φ|2. (3.2)

Then our assumption (1.10) on the total umbilicity tensor yields

1

2
∆|Φ|2 ≥ |∇Φ|2 + |Φ|4 − n(n− 2p)√

np(n− p)
|H||Φ|3 − n(H2 − 1)|Φ|2

≥ |Φ|2PH,n,p,1(|Φ|), (3.3)
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where PH,n,p,1(x) is the polynomial given by

PH,n,p,1(x) = x2 − n(n− 2p)√
np(n− p)

|H|x− n(H2 − 1). (3.4)

On the one hand, if H2 < 4(n−1)
n2 , it follows by a well known result due to Akutagawa [2] that

Σn is totally umbilical. In this case, taking into account the classification of the totally umbilical

spacelike hypersurfaces by Montiel [94], we conclude that Σn must be isometric to an Euclidean

sphere.

On the other hand, if H2 ≥ 4(n−1)
n2 , it follows from Lemma 3.2.2 that |Φ|2 is bounded from

above, because H is constant. Besides, Lemma 3.2.1 says that the Omori-Yau’s maximum

principle holds on Σn. Therefore, from Lemma A.0.1, there is a sequence {pj} ⊂ Σn such that

lim |Φ|(pj) = sup |Φ| and ∆|Φ|2(pj) <
1

j
,

which jointly with (3.3) imply

1

j
>

1

2
∆|Φ|2(pj) ≥ |Φ|2(pj)PH,n,p,1(|Φ|(pj)).

Making j → +∞ we find

(sup |Φ|)2 PH,n,p,1(sup |Φ|) ≤ 0.

From this, we deduce that either sup |Φ| = 0 and Σn is a totally umbilical hypersurface, or

sup |Φ| > 0 and then PH,n,p,1(sup |Φ|) ≤ 0. In the latter case, when 4(n−1)
n2 ≤ H2 < 4p(n−p)

n2 the

polynomial PH,n,p,1(x) > 0 for every x ∈ R. Hence, it must necessarily be H2 ≥ 4p(n−p)
n2 . In

this case, the polynomial PH,n,p,1(x) has two roots, which in fact become a double root when

H2 = 4p(n−p)
n2 , given by

0 < β̂(H,n, p, 1) =

√
n

2
√
p(n− p)

(
(n− 2p)|H|+

√
n2H2 − 4p(n− p)

)

and

β(H,n, p, 1) =

√
n

2
√
p(n− p)

(
(n− 2p)|H| −

√
n2H2 − 4p(n− p)

)
.

Therefore, in this case PH,n,p,1(sup |Φ|) ≤ 0 means that

β(H,n, p, 1) ≤ sup |Φ| ≤ β̂(H,n, p, 1).

Proceeding, if 4p(n−p)
n2 ≤ H2 < 1, then it is not difficult to verify that β(H,n, p, 1) > 0. In

this case, if the equality sup |Φ| = β(H,n, p, 1) holds, we get that PH,n,p,1(|Φ|) ≥ 0 on Σn. This

together with (3.3) guarantee that |Φ|2 is a subharmonic function on Σn. Therefore, if there

exists a point in Σn at which this supremum is attained, by the strongly maximum principle,

|Φ| must be constant, namely, |Φ| = β(H,n, p, 1). Thus, (3.3) becomes trivially an equality. In
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particular, this implies that |∇A| = |∇Φ| = 0, that is, Σn is an isoparametric hypersurface.

Besides, (3.3) also assures that the equality in (1.10) holds, which gives, by Lemma 1.0.3, that

the hypersurface has exactly two distinct constant principal curvatures, with multiplicities p and

n− p. Then, by the classical results on isoparametric hypersurfaces of the de Sitter space S
n+1
1

(see, for instance, Theorem 5.1 in [1]) we conclude that Σn must be one of the two following

standard products embeddings:

S
n−p(

√
1 + r2)×H

p(r) ⊂ S
n+1
1 or S

p(
√
1 + r2)×H

n−p(r) ⊂ S
n+1
1 , with r > 0.

In the first case, Sn−p(
√
1 + r2)×H

p(r) has principal curvatures, for a suitable choice of the

normal vector field, given by

λ1 = . . . = λn−p =
r√

1 + r2
and λn−p+1 = . . . = λn =

√
1 + r2

r

and its constant mean curvature is

H =
nr2 + p

nr
√
1 + r2

. (3.5)

In this case, by equation (1.6),

|Φ| =
√

p(n− p)

nr2(1 + r2)
. (3.6)

We observe that H2 < 1 if and only if r2 > p2

n(n−2p)
. We also notice that H2 = 4p(n−p)

n2 when

r2 = p
n−2p

, while 4p(n−p)
n2 < H2 < 1 in other case. Further, for each value of H2 ∈

(
4p(n−p)

n2 , 1
)

there exist two values of r2 > p2

n(n−2p)
with the same constant mean curvature H2, which are

given by
p2

n(n− 2p)
< r2 =

nH2 − 2p−H
√
n2H2 − 4p(n− p)

2n(1−H2)
<

p

n− 2p
(3.7)

and
p

n− 2p
< r2 =

nH2 − 2p+H
√
n2H2 − 4p(n− p)

2n(1−H2)
. (3.8)

Then from equation (3.6) we find in the first case, by using (3.7),

|Φ| =
√
n

2
√
p(n− p)

(
(n− 2p)H +

√
n2H2 − 4p(n− p)

)
= β̂(H,n, p, 1) > β(H,n, p, 1), (3.9)

that is, the inequality is strict, while in the second case one has from (3.8)

|Φ| =
√
n

2
√
p(n− p)

(
(n− 2p)H −

√
n2H2 − 4p(n− p)

)
= β(H,n, p, 1)

and the equality holds. Besides, if r2 = p
n−2p

it is clear that the equality sup |Φ| = β(H,n, p, 1)

also happens. Hence, the equality sup |Φ| = β(H,n, p, 1) holds for r2 ≥ p
n−2p

.
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On the other hand, Sp(
√
1 + r2)×H

n−p(r) has constant principal curvatures given by

λ1 = . . . = λp =
r√

1 + r2
and λp+1 = . . . = λn =

√
1 + r2

r

for a suitable choice of the normal vector field, with constant mean curvature

H =
nr2 + (n− p)

nr
√
1 + r2

.

Then, H2 > 1 and in this case β(H,n, p, 1) < 0 always. In particular, sup |Φ| > β(H,n, p, 1)

and the equality never happens. This finishes the proof of Theorem 3.1.1.

3.4 Proof of Theorem 3.1.2

Reasoning as in the proof of Theorem 3.1.1, one has that the Omori-Yau’s maximum principle

holds on Σn because of Lemma 3.2.1 and, on the other hand, it is not difficult to see that the

Simons’ formula in (3.2), in this case, it becomes

1

2
∆|Φ|2 = |∇Φ|2 + |Φ|4 − nHtr(Φ3)− n(H2 − c)|Φ|2.

Then the Okumura type condition on Φ yields

1

2
∆|Φ|2 ≥ |∇Φ|2 + |Φ|4 − n(n− 2p)√

np(n− p)
|H||Φ|3 − n(H2 − c)|Φ|2

≥ |Φ|2PH,n,p,c(|Φ|), (3.10)

where PH,n,p,c(x) is the polynomial given by

PH,n,p,c(x) = x2 − n(n− 2p)√
np(n− p)

|H|x− n(H2 − c). (3.11)

When c = 1 the first part of Theorem 3.1.2 was proved in Theorem 3.1.1. Let us consider for the

moment the case c ∈ {0,−1}. Then H2 − c ≥ 0 and the polynomial PH,n,p,c(x) has an unique

nonnegative root given by

β̂(H,n, p, c) =

√
n

2
√
p(n− p)

(
(n− 2p)|H|+

√
n2H2 − 4pc(n− p)

)
.

By using once more Lemma 3.2.2 we get that |Φ|2 is bounded from above. Then, by applying

Lemma A.0.1 to the function |Φ|2 we know that there exists a sequence of points {qj} ⊂ Σn

satisfying

lim |Φ|(qj) = sup |Φ| and ∆|Φ|2(qj) <
1

j
.
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In particular, from (3.10) we obtain

(sup |Φ|)2 PH,n,p,c(sup |Φ|) ≤ 0,

which gives that either sup |Φ| = 0 and Σn is a totally umbilical hypersurface, or sup |Φ| > 0

and in this case must be PH,n,p,c(sup |Φ|) ≤ 0. In the latter case, when c = 0 it follows from

rigidity theorems of Calabi [28] and Cheng and Yau [43] that H 6= 0. Hence, for any value of

c ∈ {0,−1}, we have

0 < sup |Φ| ≤ β̂(H,n, p, c).

Going back to the general case, we assume that the equality |Φ| = β̂(H,n, p, c) holds. If

H = 0, which can occur only when c = −1, then by a result due to Ishihara [81] we know

that Σn is a maximal hyperbolic cylinder H
n−p
(√

n−p√
p

)
× H

p
(√

n√
p

)
⊂ H

n+1
1 , which satisfies

|Φ| = √
n = β̂(0, n, p,−1). If H 6= 0, then a similar reasoning to that presented in Theorem 3.1.1

shows that Σn is an isoparametric hypersurface having exactly two distinct constant principal

curvatures with multiplicities p and n−p. Again, we can apply a classical result on isoparametric

hypersurfaces of Lorentzian space forms (see Theorem 5.1 in [1]) to conclude that Σn must be

isometric to one of the following standard products embeddings:

(a) R
n−p ×H

p(r) ⊂ R
n+1
1 or Rp ×H

n−p(r) ⊂ R
n+1
1 , with r > 0, if c = 0;

(b) S
n−p(

√
1 + r2)×H

p(r) ⊂ S
n+1
1 or Sp(

√
1 + r2)×H

n−p(r) ⊂ S
n+1
1 , with r > 0, if c = 1;

(c) H
n−p(

√
1− r2)×H

p(r) ⊂ H
n+1
1 , with 0 < r < 1, if c = −1.

Concerning to the Lorentz-Minkowski space R
n+1
1 (that is, c = 0), for a given radius r > 0,

R
n−p × H

p(r) ⊂ R
n+1
1 has, for a suitable choice of the normal vector field, constant principal

curvatures given by

λ1 = . . . = λn−p = 0 and λn−p+1 = . . . = λn =
1

r
,

so that its constant mean curvature is H = p
nr
. In this case, we achieve

|Φ| =
√
p(n− p)√
nr2

=

√
n(n− p)√

p
|H| = β̂(H,n, p, 0)

and the equality holds. On the other hand, for a given radius r > 0 and a appropriate choice of

the orientation, Rp ×H
n−p(r) ⊂ R

n+1
1 has constant principal curvatures

λ1 = . . . = λp = 0 and λp+1 = . . . = λn =
1

r

and constant mean curvature H = n−p
nr

, which gives

|Φ| =
√
p(n− p)√
nr2

=

√
np√
n− p

|H| < β̂(H,n, p, 0),

27



that is, the inequality is strict, giving the characterization of the equality |Φ| = β̂(H,n, p, 0)

when c = 0.

As for the case of the de Sitter space Sn+1
1 (that is, c = 1), let us consider first the hyperbolic

cylinder Sn−p(
√
1 + r2)×H

p(r) ⊂ S
n+1
1 . As in Theorem 3.1.1, we infer that H2 ≤ 1 if and only

if r2 ≥ p2

n(n−2p)
and equality H2 = 1 holds when r2 = p

n(n−2p)
. Thus, by equations (3.7), (3.8) and

(3.9) we get that in the case H2 ≤ 1,

|Φ| =
√
n

2
√
p(n− p)

(
(n− 2p)|H|+

√
n2H2 − 4p(n− p)

)
= β̂(H,n, p, 1),

when
p2

n(n− 2p)
< r2 =

nH2 − 2p− |H|
√
n2H2 − 4p(n− p)

2n(1−H2)
≤ p

n− 2p

and the equality holds, while

|Φ| =
√
n

2
√
p(n− p)

(
(n− 2p)|H| −

√
n2H2 − 4p(n− p)

)
= β(H,n, p, 1) < β̂(H,n, p, 1)

when
p

n− 2p
< r2 =

nH2 − 2p+ |H|
√
n2H2 − 4p(n− p)

2n(1−H2)
,

that is, the inequality is strict. On the other hand, H2 > 1 if and only if r2 < p2

n(n−2p)
and, by

(3.5),

r2 =
2p− nH2 + |H|

√
n2H2 − 4p(n− p)

2n(H2 − 1)
.

So, in this case equation (3.6) yields

|Φ| =
√
n

2
√
p(n− p)

(
(n− 2p)|H|+

√
n2H2 − 4p(n− p)

)
= β̂(H,n, p, 1).

In particular, the equality |Φ| = β̂(H,n, p, 1) holds too.

In the case of the hyperbolic cylinder Sp(
√
1 + r2) × H

n−p(r) ⊂ S
n+1
1 with r > 0, which has

constant principal curvatures, for a suitable choice of the orientation,

λ1 = . . . = λp =
r√

1 + r2
and λp+1 = . . . = λn =

√
1 + r2

r
,

we deduce that its constant mean curvature is given by

H =
nr2 + (n− p)

nr
√
1 + r2

and

|Φ| =
√

p(n− p)

nr2(1 + r2)
. (3.12)
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We also observe that r2 is given by

0 < r2 =
2(n− p)− nH2 + |H|

√
n2H2 + 4p(n− p)

2n(H2 − 1)
.

Then, by (3.12),

|Φ| =
√
n

2
√
p(n− p)

(√
n2H2 + 4p(n− p)− (n− 2p)|H|

)
< β̂(H,n, p,−1).

This gives the characterization of the equality |Φ| = β̂(H,n, p, 1) when c = 1.

Finally, in the case of the anti-de Sitter space H
n+1
1 (that is, c = −1), for a given 0 < r < 1

we have that the standard product embedding H
n−p(

√
1− r2) × H

p(r) ⊂ H
n+1
1 has constant

principal curvatures

λ1 = . . . = λn−p =
r√

1− r2
and λn−p+1 = . . . = λn = −

√
1− r2

r
,

for a suitable choice of the normal vector field. Then, its constant mean curvature H is given by

H =
nr2 − p

nr
√
1− r2

, (3.13)

which implies

|Φ| =
√

p(n− p)

nr2(1− r2)
.

So, an easy computation using (3.13) shows that

r2 =
nH2 + 2p± |H|

√
n2H2 + 4p(n− p)

2n(1 +H2)
,

where we choose the sign + or − according to r2 > p
n
or r2 ≤ p

n
, respectively. Hence, we obtain

|Φ| =
√
n

2
√
p(n− p)

(
∓(n− 2p)|H|+

√
n2H2 − 4pc(n− p)

)
,

where we use the same criterion for the sign. Therefore, the equality |Φ| = β̂(H,n, p,−1) holds

when r2 ≤ p
n
, and must be |Φ| < β̂(H,n, p,−1) when r2 > p

n
. This proves the characterization

of the equality |Φ| = β̂(H,n, p,−1) when c = −1 and this concludes the proof of Theorem 3.1.2.
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Chapter 4

Constant scalar curvature spacelike

hypersurfaces in Lorentzian space forms

We provide sharp lower and upper bounds for the supremum of the norm of the total um-

bilicity tensor of complete spacelike hypersurfaces with constant scalar curvature immersed into

a Lorentzian space form satisfying the Okumura type inequality already studied in Chapters 2

and 3. In this chapter we present the results contained in [50].

4.1 Statement of the main results

The problem of characterizing hypersurfaces with constant scalar curvature of the de Sitter

space S
n+1
1 constitutes an important and fruitful topic in the theory of isometric immersions,

which has being widely approached by many authors. For instance, an interesting result due to

Cheng and Ishikawa [40] states that the totally umbilical Euclidean sphere is the only compact

spacelike hypersurface in the de Sitter space having constant normalized scalar curvature R < 1,

generalizing a previuos result proved by Zheng [119] under the additional condition that the

sectional curvatures of the hypersurface are nonnegative. On the other hand, Li [89] posed the

question on whether the only complete spacelike hypersurfaces with constant normalized scalar

curvature R satisfying n−2
n

≤ R ≤ 1 in the de Sitter space are totally umbilical ones. In [29]

Camargo et al., by extending a technique introduced by Cheng and Yau [44], gave a positive

answer to this question positively under the additional assumption that the mean curvature is

bounded from above on such hypersurfaces (see also [13, 23, 24, 26, 78, 90, 109] for others results

in this context).

In this chapter, by assuming the Okumura type inequality, already studied in Chapters 2

and 3, on the total umbilicity tensor Φ of complete spacelike hypersurfaces with constant scalar

curvature, our first purpose is to prove the following rigidity result, which yields a gap between

the totally umbilical hypersurfaces and hyperbolic cylinders of the de Sitter space S
n+1
1 and

improvement some of the aforementioned results.

Theorem 4.1.1. Let Σn be a complete spacelike hypersurface immersed into the de Sitter space

S
n+1
1 , with constant positive normalized scalar curvature satisfying R ≤ 1. If its total umbilicity
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tensor Φ satisfies (1.10) for some 1 ≤ p < n
2
, then

(i) either sup |Φ| = 0 and Σn is a totally umbilical hypersurface,

(ii) or R ≤ C(n, p, 1) and

sup |Φ| ≥ γ(R, n, p, 1) > 0,

where C(n, p, 1) ≤ 1 and γ(R, n, p, 1) are positive constants depending only on n and p,

and R, n and p, respectively. Moreover, the equality sup |Φ| = γ(R, n, p, 1) holds and this

supremum is attained at some point of Σn if and only if

(a) p = 1 and Σn is a hyperbolic cylinder Sn−1(
√
1 + r2)×H

1(r) ⊂ S
n+1
1 with r2 = n−2−nR

nR
;

(b) 1 < p < n
2
and Σn is a hyperbolic cylinder S

n−p(
√
1 + r2)×H

p(r) ⊂ S
n+1
1 , with

r2 ≥ p(p− 1) +
√
p(n− p)(n− p− 1)(p− 1)

(n− 1)(n− 2p)
.

Again, it is worth pointing out that the Okumura type condition in (1.10) on the tensor Φ

is always true when p = 1. Moreover, in this case the constant C(n, 1, 1) is given explicitly by

C(n, 1, 1) = n−2
n
, as we shall see. In particular, Theorem 4.1.1 gives a meaningful improvement

of Theorem 1.1 in [29]. In addtion, still in relation to the case p = 1, our Theorem 4.1.1 is an

improvement of a recent result obtained by Aĺıas et al. [13]. In this context, the general case

of Theorem 4.1.1 becomes a nice generalization of the results aforementioned in the sense that

new isoparametric hypersurfaces of the de Sitter space are characterized, namely, the hyperbolic

cylinders Sn−p(
√
1 + r2)×H

p(r) ⊂ S
n+1
1 when p > 1.

Furthermore, let us recall once more that when 1 < p < n
2
the assumption in (1.10) is

weaker than to assume the geometric condition of the hypersurface has two distinct principal

curvatures with multiplicities p and n − p. For this reason, Theorem 4.1.1 can be regarded as

an improvement of results contained in [78,109] concerning complete spacelike hypersurfaces in

the de Sitter space having two distinct principal curvatures with multiplicities greater than one.

Proceeding, we obtain a sharp upper bound for the norm of the total umbilicity tensor of

complete spacelike hypersurfaces satisfying the Okumura type condition in (1.10), which gives

another characterization result provided that this bound is reached. Here, the hypersurfaces are

immersed into any Lorentzian space form L
n+1
c of constant sectional curvature c ∈ {0, 1,−1}.

Theorem 4.1.2. Let Σn be a complete spacelike hypersurface immersed into a Lorentzian space

form L
n+1
c , with constant normalized scalar curvature R satisfying R ≤ c. If its total umbilicity

tensor Φ satisfies (1.10) for some 1 < p < n
2
and |Φ| is bounded from above, then

(i) either sup |Φ| = 0 and Σn is a totally umbilical hypersurface,

(ii) or

0 < sup |Φ| ≤ γ̂(R, n, p, c),

where γ̂(R, n, p, c) is a positive constant depending only on R, n, p and c. Moreover, if

R < −1 when c = −1, the equality |Φ| = γ̂(R, n, p, c) holds if and only if
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(a) c = 0 and Σn is a hyperbolic cylinder R
n−p ×H

p(r) ⊂ R
n+1
1 , with r = − p(p−1)

n(n−1)R
> 0;

(b) c = 1 and Σn is a hyperbolic cylinder S
n−p(

√
1 + r2)×H

p(r) ⊂ S
n+1
1 , with

r2 ≤ p(p− 1) +
√
p(n− p)(n− p− 1)(p− 1)

(n− 1)(n− 2p)
;

(c) c = −1 and Σn is a hyperbolic cylinder H
n−p(

√
1− r2)×H

p(r) ⊂ H
n+1
1 , with

r2 =
(n− 1)(nR+ (n− 2p)) +

√
[n(n− 1)(R+ 1)− 2p(n− p)]

2 − 4p(n− p)(p(n− p)− (n− 1))

2n(n− 1)R
.

We observe that our Theorem 4.1.2 gives a sort of improvent of the main result in [46] when

c = −1, that is, the ambient space is the anti-de Sitter space H
n+1
1 .

4.2 Auxiliary results

The main tools to prove Theorems 4.1.1 and 4.1.2 are results concerning the ellipticity of the

Cheng-Yau’s operator L and the validity of the Omori-Yau’s maximum principle on a complete

spacelike hypersurface Σn →֒ L
n+1
c for the operator L as well as a lower boundedness for the

operator L acting on the squared norm of the total umbilicity tensor Φ. The proofs of these

results are analogous to the proofs of Lemma 2.2.1 and Proposition 2.2.2 given in Chapter 2 in

the Riemannian setting. For the sake of completeness, we include here the derivation of them.

So, we begin by proving the following:

Lemma 4.2.1. Let Σn be a complete spacelike hypersurface immersed into a Lorentzian space

form L
n+1
c , with constant normalized scalar curvature satisfying R < c (resp. R ≤ c). In the

case where R = c, assume in addition that the mean curvature function H does not change sign

on Σn. The following holds:

(i) The operator L is elliptic (resp. semi-elliptic) or, equivalently, P is positive definite (resp.

semi-definite), for an appropriate choice of the orientation of Σn;

(ii) If sup |Φ|2 < +∞, then the Omori-Yau’s maximum principle holds on Σn for the operator

L.

Proof. We follow the ideas contained in the proof of Lemma 6 of [32]. One has by equation (1.5)

that the mean curvature function H does not change sign on Σn. In particular, if R < c then

for an appropriate choice of the orientation of Σn we can assume that H > 0. In the case R = c,

we choose the orientation of Σn so that H ≥ 0. Let λ1, . . . , λn be the principal curvatures of Σn.

Then the eigenvalues of tensor P are given by

µi = nH − λi, i = 1, . . . , n.
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Taking into account equation (1.5) one shows that |λi| ≤ nH, which gives

0 ≤ µi ≤ 2nH, ∀ i = 1, . . . , n,

with the strict inequalities in the case R < c. If µ− and µ+ stand for the minimum and the

maximum of the eigenvalues of P , respectively, we infer that

µ− ≥ 0 and µ+ ≤ 2nH, (4.1)

occurring the strict inequalities in the case R < c. In particular, item (i) is proved.

As for to item (ii), we state that the sectional curvature KΣ of Σn is bounded from below.

Indeed, Gauss equation (1.4) yields

KΣ(X, Y ) = c− 〈AX,X〉〈AY, Y 〉+ 〈AX, Y 〉2

≥ c− |AX||AY |
≥ c− |A|2,

where {X, Y } is an orthonormal basis for an arbitrary plane tangent to Σn. Besides, the relation

in (1.5) implies

|Φ|2 = n− 1

n
|A|2 − (n− 1)(c−R).

In particular, must be sup |A|2 < +∞ proving the claim.

To conclude, it suffices to observe that equation (1.7) gives

H2 =
1

n(n− 1)
|Φ|2 + (c−R), (4.2)

so that the mean curvature function H also satisfies supH2 < +∞. In particular, equation

(4.1) implies that sup tr(P ) < +∞. Therefore, Lemma A.0.3 of Appendix A guarantees that the

Omori-Yau’s maximum principles holds on Σn for the operator L.

Next we prove a lower boundedness for the operator L acting on the squared norm of the

total umbilicity tensor Φ.

Proposition 4.2.2. Let Σn be a complete spacelike hypersurface immersed into a Lorentzian

space form L
n+1
c , with constant normalized scalar curvature satisfying R ≤ c. In the case where

R = c, assume in addition that the mean curvature function H does not change sign on Σn. If

its total umbilicity tensor Φ satisfies (1.10) for some 1 ≤ p < n
2
, then

1

2
L(|Φ|2) ≥ 1√

n(n− 1)
|Φ|2QR,n,p,c(|Φ|)

√
|Φ|2 + n(n− 1)(c−R),
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where the function QR,n,p,c(x) is given by

QR,n,p,c(x) = (n− 2)x2 − (n− 2p)

√
n− 1√
p(n− p)

x
√
x2 + n(n− 1)(c−R) + n(n− 1)R. (4.3)

Proof. Let us choose the orientation of Σn such that H ≥ 0, occurring the strict inequality in

the case R < c. Since Σn has constant scalar curvature, we may use (4.2) to obtain

n

2(n− 1)
L(|Φ|2) = 1

2
L(n2H2) = nHL(nH) + n2〈P∇H,∇H〉.

Then Lemma 4.2.1 guarantees that the operator P is positive semi-definite. In particular, the

previous equality gives
1

2(n− 1)
L(|Φ|2) ≥ HL(nH). (4.4)

It follows from Simons’ formula (see Lemma 1.0.1 (ii)) that

1

2(n− 1)
L(|Φ|2) ≥ H(|∇A|2 − n2|∇H|2) +H|A|4 − nH2tr(A3) + ncH(|A|2 − nH2). (4.5)

Since R ≤ c, Lemma 1.0.4 implies that

|∇A|2 − n2|∇H|2 ≥ 0. (4.6)

Taking into account that H ≥ 0, from inequalities (4.5) and (4.6) we deduce that

1

2(n− 1)
L(|Φ|2) ≥ H|A|4 − nH2tr(A3) + ncH(|A|2 − nH2). (4.7)

We also observe that the following relation

tr(A3) = tr(Φ3) + 3H|Φ|2 + nH3 (4.8)

happens trivially. Then taking into account equation (1.6) and putting (4.8) into (4.7) we find

1

2(n− 1)
L(|Φ|2) ≥ H|Φ|4 − nH2tr(Φ3)− nH(H2 − c)|Φ|2. (4.9)

Hence the Okumura type condition on Φ jointly with (4.9) give

1

2(n− 1)
L(|Φ|2) ≥ H|Φ|2

(
|Φ|2 − n(n− 2p)√

np(n− p)
H|Φ| − n(H2 − c)

)
. (4.10)

Moreover, equation (1.7) allows us to rewrite the mean curvature as

H =
1√

n(n− 1)

√
|Φ|2 + n(n− 1)(c−R). (4.11)
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Therefore, by substituting (4.11) into (4.10) we get the desired inequality.

4.3 Proof of Theorem 4.1.1

For the sake of clarity, we prove Theorem 4.1.1 in two steps, namely: proof of the inequalities

and characterization of the equality.

4.3.1 First part: proof of the inequalities

If sup |Φ| = +∞ then inequality (ii) of Theorem 4.1.1 holds automatically and there is

nothing to prove.

Then let us assume that sup |Φ| < +∞ and choose the orientation of Σn so that H ≥ 0. It

follows that Lemma 4.2.1 applies here and using it, we have that the Omori-Yau’s maximum

principle holds on Σn for the Cheng-Yau’s operator L. By applying this to the function |Φ|2, we
obtain a sequence of points {pj} ⊂ Σn such that

lim |Φ|(pj) = sup |Φ| and L(|Φ|2)(pj) <
1

j
.

From here and by Proposition 4.2.2 we deduce

1

j
> L(|Φ|2)(pj) ≥

2√
n(n− 1)

|Φ|2(pj)QR,n,p,1(|Φ|(pj))
√
|Φ|2(pj) + n(n− 1)(1−R),

where the function QR,n,p,1(x) is given by (4.3). Passing the limit as j → +∞, we get

(sup |Φ|)2 QR,n,p,1(sup |Φ|)
√

(sup |Φ|)2 + n(n− 1)(1−R) ≤ 0.

Taking into account that R ≤ 1 it follows that either sup |Φ| = 0, meaning that the hypersurface

is totally umbilical, or sup |Φ| > 0 which means that must be

QR,n,p,1(sup |Φ|) ≤ 0.

In this latter case, we must have R < 1.

Let us consider first the case p = 1. Then the function QR,n,1,1(x) is strictly decreasing

for every x ∈ R and QR,n,1,1(x) → n(n−1)
2

(nR − (n − 2)) when x → +∞. Hence, in this case,

QR,n,1,1(sup |Φ|) ≤ 0 means that R < n−2
n

=: C(n, 1, 1) necessarily. In this latter case, since

QR,n,1,1(0) = n(n − 1)R > 0, there exists an unique positive real number γ(R, n, 1, 1) > 0

depends only on R and n, such that QR,n,1,1(γ(R, n, 1, 1)) = 0. In particular, it must be

sup |Φ| ≥ γ(R, n, 1, 1) > 0.
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As for to the case 1 < p < n
2
we set, for each t ∈ (−∞, 1), the family of functions

Qt,n,p,1(x) = Q̃t,n,p,1(x) + n(n− 1)t (4.12)

where the functions Q̃t,n,p,1(x) are given by

Q̃t,n,p,1(x) = (n− 2)x2 − (n− 2p)

√
n− 1√
p(n− p)

x
√
x2 + n(n− 1)(1− t).

Then one verifies that the functions Q̃t,n,p,1(x) are coercive for every t ∈ (−∞, 1) and, in particu-

lar, the infimum inf Q̃t,n,p,1 must be attained. Let η(t, n, p, 1) ∈ R be a real number such that

Q̃t,n,p,1(η(t, n, p, 1)) = inf Q̃t,n,p,1. We also note that for each t ∈ (−∞, 1), the function Q̃t,n,p,1(x)

is decreasing on (−∞, 0] and its derivative Q̃′
t,n,p,1(x) < 0 for every x ≥ 0 small enough because

t < 1. Thus the infimum inf Q̃t,n,p,1 < 0 for every t ∈ (−∞, 1). Since Q̃t,n,p,1(x) has an

unique positive critical point, we obtain that η(t, n, p, 1) > 0 is unique too. Hence Q̃t,n,p,1(x)

is decreasing on (−∞, η(t, n, p, 1)] and increasing on [η(t, n, p, 1),+∞). Besides we have that

inf Q̃t,n,p,1 decreases as t decreases, which implies that the set X = {t ∈ (0, 1) ; infQt,n,p,1(x) ≤
0} 6= ∅. So we can define C(n, p, 1) = supX.

By the discussion above, it follows that in this case QR,n,p,1(sup |Φ|) ≤ 0 means that must

be R ≤ C(n, p, 1). Therefore since QR,n,p,1(0) = n(n − 1)R > 0, we obtain that the function

QR,n,p,1(x) vanishes only in two positive real numbers, 0 < γ(R, n, p, 1) ≤ γ̂(R, n, p, 1), which in

fact become equals when R = C(n, p, 1), depending only on R, n and p. In particular, it follows

that also must be

0 < γ(R, n, p, 1) ≤ sup |Φ| ≤ γ̂(R, n, p, 1). (4.13)

This concludes the proof of the first part of Theorem 4.1.1.

Remark 4.3.1. Let us observe that for every t ≤ C(n, p, 1) the function Qt,n,p,1(x) defined in

(4.12) vanishes only in two real numbers, γ(t, n, p, 1) ≤ γ̂(t, n, p, 1), and γ̂(t, n, p, 1) > 0 always.

Moreover, given t1 < t2 < 1 it is not difficult to see that the relation Qt1,n,p,1(x) < Qt2,n,p,1(x)

holds for every x ≥ 0. In particular, if t1 < t2 ≤ C(n, p, 1) then

γ̂(t1, n, p, 1) > γ̂(t2, n, p, 1),

that is, γ̂(t, n, p, 1) decrease as t increase, and if 0 < t1 we also have

γ(t1, n, p, 1) < γ(t2, n, p, 1),

that is, γ(t, n, p, 1) increase as t increase.

4.3.2 Second part: characterization of the equality

Let us prove the characterization of the equality in Theorem 4.1.1. To this end, let us assume

that sup |Φ| = γ(R, n, p, 1). In particular, QR,n,p,1(|Φ|) ≥ 0 on Σn and then Proposition 4.2.2
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yields

L(|Φ|2) ≥ 0 on Σn,

that is, |Φ|2 is a L-subharmonic function on Σn. Furthermore, since R < 1, Lemma 4.2.1 says

that the operator L is elliptic. Hence, if there exists a point on Σn such that this supremum is

attained, by the stronger maximum principle, |Φ| must be constant, that is, |Φ| = γ(R, n, p, 1).

Thus, the inequality in Proposition 4.2.2 becomes an equality,

1

2
L(|Φ|2) = 0 =

1√
n(n− 1)

|Φ|2QR,n,p,1(|Φ|)
√
|Φ|2 + n(n− 1)(c−R).

Hence, all the inequalities along the proof of Proposition 4.2.2 must be, in fact, equalities. In

particular, we obtain that equation (4.4) must be an equality, which jointly with the positiveness

of the operator P imply that the mean curvature H is constant. Moreover, (4.7) is an equality,

|∇A|2 = n2|∇H|2 = 0.

Then, the principal curvatures of Σn must be constant and Σn is an isoparametric hypersurface.

Besides, equation (4.10) is an equality too, which implies by Lemma 1.0.3 that Σn has exactly

two distinct constant principal curvatures with multiplicities p and n−p. Hence, by the classical

results on isoparametric hypersurfaces of the de Sitter space S
n+1
1 (see, for instance, Theorem

5.1 in [1]), we conclude that Σn must be one of the two following standard products embeddings:

S
n−p(

√
1 + r2)×H

p(r) ⊂ S
n+1
1 or S

p(
√
1 + r2)×H

n−p(r) ⊂ S
n+1
1 , with r > 0.

When p = 1 was proved by Aĺıas et al. [13] that γ(R, n, 1, 1) = R
√

n(n−1)
(n−2)(n−2−nR)

and

the equality sup |Φ| = γ(R, n, 1, 1) holds if and only if Σn is isometric to the hyperbolic cylin-

der S
n−1(

√
1 + r2) × H

1(r), with r2 = n−2−nR
nR

. This gives the characterization of the equality

sup |Φ| = γ(R, n, 1, 1) in the case p = 1.

So let us assume that 1 < p < n
2
. In the first case, Sn−p(

√
1 + r2) × H

p(r) ⊂ S
n+1
1 has

principal curvatures, for a suitable choice of the normal vector field, given by

λ1 = . . . = λn−p =
r√

1 + r2
and λn−p+1 = . . . = λn =

√
1 + r2

r

and its constant mean curvature is

H =
nr2 + p

nr
√
1 + r2

.

As in the proof of Theorem 3.1.1, we observe that H2 ≤ 1 if and only if r2 ≥ p2

n(n−2p)
. In this

case, the equality H2 = 1 holds when r2 = p2

n(n−2p)
, and H2 = 4p(n−p)

n2 when r2 = p
n−2p

, while

4p(n−p)
n2 < H2 < 1 in other case. Moreover, for each value of H2 ∈

(
4p(n−p)

n2 , 1
)
there exist two
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values of r2 > p2

n(n−2p)
with the same constant mean curvature H2, which are given by

p2

n(n− 2p)
< r2 =

nH2 − 2p−H
√
n2H2 − 4p(n− p)

2n(1−H2)
<

p

n− 2p
(4.14)

and
p

n− 2p
< r2 =

nH2 − 2p+H
√
n2H2 − 4p(n− p)

2n(1−H2)
. (4.15)

On the other hand, H2 > 1 if and only if r2 < p2

n(n−2p)
and, in this case,

r2 =
2p− nH2 +H

√
n2H2 − 4p(n− p)

2n(H2 − 1)
. (4.16)

Next, the norm of the total umbilicity tensor is

|Φ| =
√

p(n− p)

nr2(1 + r2)
. (4.17)

Hence by using equation (1.7), we get that Sn−p(
√
1 + r2)×H

p(r) has constant scalar curvature

given by

n(n− 1)(R− 1) =
−n(n− 1)r4 − 2p(n− 1)r2 − p(p− 1)

r2(1 + r2)
,

which gives that R < 1 always happens. Moreover, we find

R(r) =
(n− 1)(n− 2p)r2 − p(p− 1)

n(n− 1)r2(1 + r2)
,

which implies R > 0 if and only if r2 > p(p−1)
(n−1)(n−2p)

. Besides, setting t1 := (n−2p)2

p(n−1)(n−p)
< 1 it is

not difficult to show that the following holds:

(i) R = t1 if and only if either r2 = p2

n(n−2p)
or r2 = (n−p)(p−1)

n−2p
;

(ii) R < t1 if and only if either r2 < p2

n(n−2p)
or r2 > (n−p)(p−1)

n−2p
;

(iii) R > t1 if and only if p2

n(n−2p)
< r2 < (n−p)(p−1)

n−2p
.

Moreover, we see that the scalar curvature R(r) attains its maximum for

r2max =
p(p− 1) +

√
p(n− p)(n− p− 1)(p− 1)

(n− 1)(n− 2p)
,

so that R(r) is increasing for 0 < r2 ≤ r2max and decreasing for r2max ≤ r2 < +∞. Let us also

observe that, by equation (4.10), when evaluated in |Φ| the function QR,n,p,1(x) is given by

QR,n,p,1(|Φ|) = (n− 1)PH,n,p,1(|Φ|),
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where PH,n,p,1(x) is the polynomial given in (3.4),

PH,n,p,1(x) = x2 − n(n− 2p)H√
np(n− p)

x− n(H2 − 1).

In case (i), R = t1, if r
2 = p2

n(n−2p)
then H2 = 1 and, by equation (4.17), we infer that

|Φ| =
√
n√

p(n− p)
(n− 2p) =: x1.

Hence PH,n,p,1(|Φ|) = 0, which means that Qt1,n,p,1(|Φ|) = 0. Since Q′
t1,n,p,1

(x1) > 0 we obtain

that x1 =
√
n√

p(n−p)
(n−2p) = γ̂(t1, n, p, 1) is the biggest positive root of Qt1,n,p,1(x). In particular,

we have |Φ| = γ̂(t1, n, p, 1) > γ(t1, n, p, 1) and the inequality is strict. On the other hand, if

r2 = (n−p)(p−1)
n−2p

then

r2 >
p

n− 2p

and must be H2 < 1. In particular, r2 is also given by (4.15) and, by (4.17), |Φ| can be write in

terms of H as

|Φ| =
√
n

2
√
p(n− p)

(
(n− 2p)H −

√
n2H2 − 4p(n− p)

)
.

Hence PH,n,p,1(|Φ|) = 0 and one has Qt1,n,p,1(|Φ|) = 0 too. Since in this case |Φ| < x1 =

γ̂(t1, n, p, 1), must be |Φ| = γ(t1, n, p, 1) and the equality holds.

As to case (ii), R < t1, on the one hand if r2 < p2

n(n−2p)
then H2 > 1 and r2 is given by (4.16).

Thus, equation (4.17) yields

|Φ| =
√
n

2
√
p(n− p)

(
(n− 2p)H +

√
n2H2 − 4p(n− p)

)

and one can check that PH,n,p,1(|Φ|) = 0. In particular, QR,n,p,1(|Φ|) = 0 and again must be

either |Φ| = γ(R, n, p, 1) or |Φ| = γ̂(R, n, p, 1). Since |Φ| > x1 = γ̂(t1, n, p, 1) and, by Remark

4.3.1,

γ(R, n, p, 1) < γ(t1, n, p, 1) < γ̂(t1, n, p, 1),

we obtain |Φ| = γ̂(R, n, p, 1) and the inequality is strict. On the other hand, if r2 > (n−p)(p−1)
n−2p

>
p

n−2p
then, as in case (i), we get that

|Φ| =
√
n

2
√
p(n− p)

(
(n− 2p)H −

√
n2H2 − 4p(n− p)

)

is a positive root of PH,n,p,1(x). It follows that either |Φ| = γ(R, n, p, 1) or |Φ| = γ̂(R, n, p, 1). In

this case, since |Φ| < x1 = γ̂(t1, n, p, 1) and taking into account once more Remark 4.3.1,

γ(R, n, p, 1) < γ(t1, n, p, 1) < γ̂(t1, n, p, 1) < γ̂(R, n, p, 1),

one has |Φ| = γ(R, n, p, 1) and the equality holds.
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For case (iii), R > t1, let us observe first that an easy computation gives

p2

n(n− 2p)
< r2max <

p

n− 2p
<

(n− p)(p− 1)

n− 2p
.

When r2 = p
n−2p

, it follows that H2 = 4p(n−p)
n2 , |Φ| = n−2p√

n
=: x0 is the only root of PH,n,p,1(x)

and

R =
(n− 2p)2

n(n− 1)
=: t0.

Then, we must have either |Φ| = γ(t0, n, p, 1) or |Φ| = γ̂(t0, n, p, 1). But, since in this case

Q′
t0,n,p,1

(x0) < 0, we get that x0 is the smallest positive root of Qt0,n,p,1(x). Hence |Φ| =

γ(t0, n, p, 1) and the equality holds.

Let us now consider the case p
n−2p

< r2 < (n−p)(p−1)
n−2p

. Then H2 < 1, r2 is given by (4.15) and

|Φ| =
√
n

2
√
p(n− p)

(
(n− 2p)H −

√
n2H2 − 4p(n− p)

)

is a positive root of PH,n,p,1(x), which means that either |Φ| = γ(R, n, p, 1) or |Φ| = γ̂(R, n, p, 1).

Since in this case R decrease as r2 increase, we have R < t0. In particular,

γ(R, n, p, 1) < γ(t0, n, p, 1) = x0 < γ̂(R, n, p, 1).

Moreover, since in this case |Φ| < x0, we get |Φ| = γ(R, n, p, 1) and the equality holds.

Let us assume by last that p2

n(n−2p)
< r2 < p

n−2p
. Hence, H2 < 1, r2 is given by (4.14) and

|Φ| =
√
n

2
√
p(n− p)

(
(n− 2p)H +

√
n2H2 − 4p(n− p)

)

is a positive root of PH,n,p,1(x), which gives again that either |Φ| = γ(R, n, p, 1) or |Φ| =

γ̂(R, n, p, 1). Let us suppose for a moment that

|Φ|(rmax) = γ(R(rmax), n, p, 1).

Then, for r2max < r2 < p
n−2p

we have:

• H decrease in r, which implies that |Φ| decrease in r;

• R decrease in r, which implies that γ̂(R, n, p, 1) increase in r.

In particular,

|Φ|(r) < |Φ|(rmax) = γ(R(rmax), n, p, 1) ≤ γ̂(R(rmax), n, p, 1) < γ̂(R(r), n, p, 1).

It follows that |Φ| = γ(R, n, p, 1) for r2max < r2 < p
n−2p

. On the other hand, for p2

n(n−2p)
< r2 <

r2max we find:

• H decrease in r, which implies that |Φ| decrease in r;
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• R increase in r, which implies that γ(R, n, p, 1) increase in r.

In particular,

|Φ|(r) > |Φ|(rmax) = γ(R(rmax), n, p, 1) > γ(R(r), n, p, 1).

Hence, if p2

n(n−2p)
< r2 < r2max must be |Φ| = γ̂(R, n, p, 1).

A similar reasoning shows that if

|Φ|(rmax) = γ̂(R(rmax), n, p, 1),

then |Φ| = γ(R, n, p, 1) for r2max < r2 < p
n−2p

and |Φ| = γ̂(R, n, p, 1) for p2

n(n−2p)
< r2 < r2max. In

any case, we get

|Φ| = γ(R, n, p, 1), when r2max < r2 <
p

n− 2p
,

and the equality holds, and

|Φ| = γ̂(R, n, p, 1), when
p2

n(n− 2p)
< r2 < r2max,

and the inequality is strict. Finally, by continuity we conclude

|Φ|(rmax) = γ(R(rmax), n, p, 1) = γ̂(R(rmax), n, p, 1)

and the equality holds too for r2 = r2max.

In the second case, the hyperbolic cylinder S
p(
√
1 + r2) × H

n−p(r) ⊂ S
n+1
1 has constant

principal curvatures given by

λ1 = . . . = λp =
r√

1 + r2
and λp+1 = . . . = λn =

√
1 + r2

r
,

for a suitable choice of the normal vector field, constant mean curvature

H =
nr2 + (n− p)

nr
√
1 + r2

(4.18)

and the norm of its total umbilicity tensor is

|Φ| =
√

p(n− p)

nr2(1 + r2)
. (4.19)

Hence by using equation (1.7), we get that its constant scalar curvature is given by

R = −(n− 1)(n− 2p)r2 + (n− p)(n− p− 1)

n(n− 1)r2(1 + r2)
, (4.20)

so that R < 0. Therefore, Sp(
√
1 + r2)×H

n−p(r) does not satisfy our hypothesis. This finishes

the characterizing of the equality sup |Φ| = γ(R, n, p, 1) when 1 < p < n
2
, proving Theorem 4.1.1.
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4.4 Proof of Theorem 4.1.2

First of all, as in the proof of Theorem 4.1.1, on the one hand one has that the Omori-Yau’s

maximum principle holds on Σn for the Cheng-Yau’s operator L because of Lemma 4.2.1 and,

on the other hand, by applying it to the function |Φ|2, it yields

(sup |Φ|)2 QR,n,p,c(sup |Φ|)
√

(sup |Φ|)2 + n(n− 1)(c−R) ≤ 0,

where the function QR,n,p,c(x) is given by (4.3). Then either sup |Φ| = 0 and Σn is a totally

umbilical hypersurface, or sup |Φ| > 0 and in this case must be QR,n,p,c(sup |Φ|) ≤ 0. In the

latter case, since p > 1 we have that QR,n,p,c(x) is a coercive function. When c = 1 the first part

of Theorem 4.1.2 follows of the proof of Theorem 4.1.1 (see equation (4.13)) and Remark 4.3.1.

Indeed, in this case must be R ≤ C(R, n, 1) and follows from Remark 4.3.1 that QR,n,p,1(x) has

a positive root γ̂(R, n, p, 1) > 0. Then, by equation (4.13), we must have

0 < sup |Φ| ≤ γ̂(R, n, p, 1).

So let us consider for the moment the case c ∈ {0,−1}. Then, when c = 0 must be R < 0, and

thus QR,n,p,0(0) = n(n−1)R < 0 and Q′
R,n,p,0(x) < 0 for every x ≥ 0 small enough. When c = −1

we have QR,n,p,−1(0) = n(n−1)R < 0 and Q′
R,n,p,−1(x) < 0 for every x ≥ 0 small enough. Hence,

as in the case c = 1, there exists an unique positive real number γ̂(R, n, p, c) > 0, depending

only on R, n, p and c, such that QR,n,p,c(γ̂(R, n, p, c)) = 0. Hence, QR,n,p,c(sup |Φ|) ≤ 0 yields

0 < sup |Φ| ≤ γ̂(R, n, p, c),

proving the desired inequality.

Coming back to the general case, let us assume that the equality |Φ| = γ̂(R, n, p, c) holds.

In particular, QR,n,p,c(|Φ|) = 0 on Σn and then Proposition 4.2.2 assures that |Φ|2 is a L-

subharmonic function on Σn. Thus, the analogue of Theorem 4.1.1 applies to show that Σn is

an isoparametric hypersurface having exactly two distinct constant principal curvatures with

multiplicities p and n− p. Hence a classical result on isoparametric hypersurfaces of Lorentzian

space forms (see Theorem 5.1 in [1]) says that Σn must be isometric to one of the following

standard products embeddings:

(a) R
n−p ×H

p(r) ⊂ R
n+1
1 or Rp ×H

n−p(r) ⊂ R
n+1
1 , with r > 0, if c = 0;

(b) S
n−p(

√
1 + r2)×H

p(r) ⊂ S
n+1
1 or Sp(

√
1 + r2)×H

n−p(r) ⊂ S
n+1
1 , with r > 0, if c = 1;

(c) H
n−p(

√
1− r2)×H

p(r) ⊂ H
n+1
1 , with 0 < r < 1, if c = −1.

In the case of the Lorentz-Minkowski space R
n+1
1 (that is, c = 0), the positive constant

γ̂(R, n, p, 0) > 0 is given explicitly by

γ̂(R, n, p, 0) =

√

−(n− 1)(n− p)R

p− 1
.
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In this case, on the one hand the product Rn−p ×H
p(r) ⊂ R

n+1
1 , for a given radius r > 0 and an

appropriate choose of the orientation, has constant principal curvatures given by

λ1 = . . . = λn−p = 0 and λn−p+1 = . . . = λn =
1

r
,

so that its constant mean curvature H = p
nr

and the norm of Φ is

|Φ| =
√
p(n− p)

nr2
.

Hence, by equation (1.7), its constant scalar curvature is given by

R = − p(p− 1)

n(n− 1)r2
< 0.

Thus, we must have

|Φ| =
√

−p(n− 1)(n− p)R

p− 1
= γ̂(R, n, p, 0)

and the equality holds. On the other hand, for a given radius r > 0, the product Rp×H
n−p(r) ⊂

R
n+1
1 has constant principal curvatures, for an suitable choose of the orientation,

λ1 = . . . = λp = 0 and λp+1 = . . . = λn =
1

r
,

constant mean curvature H = n−p
nr

and

|Φ| =
√
p(n− p)

nr2
.

Then, by using once more equation (1.7), its constant scalar curvature is

R = −(n− p)(n− p− 1)

n(n− 1)r2
< 0,

which gives

|Φ| =
√

−p(n− 1)R

n− p− 1
< γ̂(R, n, p, 0),

that is, the inequality is strict. This proves the characterization of the equality |Φ| = γ̂(R, n, p, 0)

in the case c = 0.

As for the case of the de Sitter space Sn+1
1 (that is, c = 1), let us consider first the hyperbolic

cylinder embedding S
n−p(

√
1 + r2) × H

p(r) ⊂ S
n+1
1 . As showed in the proof of Theorem 4.1.1

(ii), the equality |Φ| = γ̂(R, n, p, 1) holds if and only if r2 ≤ r2max.

For the hyperbolic cylinder Sp(
√
1 + r2)×H

n−p(r) ⊂ S
n+1
1 , with r > 0, it follows from (4.20)
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that R < 0 always. Moreover, by equation (4.18) we obtain that H2 > 1 and

r2 =
2(n− p)− nH2 + |H|

√
n2H2 − 4p(n− p)

2n(H2 − 1)
.

Hence, from (4.19) we can write |Φ| in terms of the mean curvature H as

|Φ| =
√
n

2
√
p(n− p)

(√
n2H2 − 4p(n− p)− (n− 2p)|H|

)
.

Then, in this case we see that PH,n,p,1(|Φ|) < 0, which also impliesQR,n,p,1(|Φ|) < 0. In particular,

|Φ| < γ̂(R, n, p, 1) and the inequality is strict. This concludes the characterization of the equality

|Φ| = γ̂(R, n, p, 1) in the case c = 1.

By last, we consider the case of the anti-de Sitter space H
n+1
1 (that is, c = −1). Then, for a

given 0 < r < 1, we have that the standard product embedding H
n−p(

√
1− r2)×H

p(r) ⊂ H
n+1
1

has constant principal curvatures

λ1 = . . . = λn−p =
r√

1− r2
and λn−p+1 = . . . = λn = −

√
1− r2

r
,

for an appropriate choose of the normal vector field. Then, its constant mean curvature H is

given by

H =
nr2 − p

nr
√
1− r2

, (4.21)

which gives

|Φ| =
√

p(n− p)

nr2(1− r2)
. (4.22)

So, an easy computation using (4.21) shows that

r2 =
nH2 + 2p± |H|

√
n2H2 + 4p(n− p)

2n(1 +H2)
,

where we choose the sign + or − according to r2 ≥ p
n
or r2 ≤ p

n
, respectively. Hence, we obtain

that |Φ| is, in terms of H, given by

|Φ| =
√
n

2
√
p(n− p)

(√
n2H2 − 4pc(n− p)∓ (n− 2p)|H|

)
,

where we use the same criterion for the sign. Let us also observe that, as in the case of the de

Sitter space, the following relation holds

QR,n,p,−1(|Φ|) = (n− 1)PH,n,p,−1(|Φ|),
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where PH,n,p,−1(x) is the polynomial obtained taking c = −1 in (3.11), that is,

PH,n,p,−1(x) = x2 − n(n− 2p)H√
np(n− p)

x− n(H2 + 1).

On the one hand, if r2 > p
n
then PH,n,p,−1(|Φ|) < 0, which implies QR,n,p,−1(|Φ|) < 0 and one

has |Φ| < γ̂(R, n, p,−1), that is, the inequality is strict. On the other hand, if r2 ≤ p
n
, we

obtain PH,n,p,−1(|Φ|) = 0, which means that QR,n,p,−1(|Φ|) = 0 and, in this case, we must have

|Φ| = γ̂(R, n, p,−1) and the equality holds.

Next, by using equation (4.21) and (4.22), we get that the constant scalar curvature of the

product Hn−p(
√
1− r2)×H

p(r) ⊂ H
n+1
1 is given by

n(n− 1)(R + 1) =
−n(n− 1)r4 + 2p(n− 1)r2 + p(p− 1)

r2(1− r2)
, (4.23)

which implies R < −1 if and only if

r2 <
p(n− 1)−

√
p(n− 1)(n− p)

n(n− 1)
or r2 >

p(n− 1) +
√
p(n− 1)(n− p)

n(n− 1)
.

In particular, |Φ| = γ̂(R, n, p,−1) and R < −1 if and only if

r2 <
p(n− 1)−

√
p(n− 1)(n− p)

n(n− 1)
. (4.24)

Finally, taking into account equation (4.23) we find

r2 =
(n− 1)(nR+ (n− 2p))±

√
[n(n− 1)(R+ 1)− 2p(n− p)]

2 − 4p(n− p)(p(n− p)− (n− 1))

2n(n− 1)R
. (4.25)

In particular, if |Φ| = γ̂(R, n, p, 1) and R < −1, we must have

r2 =
(n− 1)(nR+ (n− 2p)) +

√
[n(n− 1)(R+ 1)− 2p(n− p)]

2 − 4p(n− p)(p(n− p)− (n− 1))

2n(n− 1)R
,

otherwise, denoting by r2− the value of r2 in (4.25) with sign −, we can show that

r2− >
p(n− 1)−

√
p(n− 1)(n− p)

n(n− 1)
,

which gives a contradiction because of equation (4.24). This finishes the characterization of the

equality |Φ| = γ̂(R, n, p,−1) in the case c = −1 and also proves Theorem 4.1.2.
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Chapter 5

Further results for hypersurfaces with

constant mean curvature in locally

symmetric Riemannian manifolds

We obtain a sharp estimate to the scalar curvature of stochastically complete hypersurfaces

immersed with constant mean curvature into a locally symmetric Riemannian space obeying

standard curvature constraints (which includes, in particular, a Riemannian space with constant

sectional curvature). For this, we suppose that these hypersurfaces satisfy the Okumura type

inequality introduced in Chapter 1. Our approach is based on the equivalence between stochastic

completeness and the validity of the weak version of the Omori-Yau’s generalized maximum

principle. The results of this chapter can be found in [53].

5.1 Preliminaries: moving frame, a general Simons’ for-

mula and locally symmetric spaces

In this section we begin by introducing quickly some notions in Riemmanian geometry using

the moving frame formalism which, in this situation, it is more appropriate to deal with an

orientable and connected hypersurface Σn isometrically immersed into an arbitrary (n + 1)-

dimensional Riemannian manifold M
n+1

.

To do that, let us choose a local orthonormal frame {e1, . . . , en+1} onMn+1
with dual coframe

{ω1, . . . , ωn+1} such that, at each point of Σn, e1, . . . , en are tangent to Σn and en+1 is normal

to Σn. We will use the following convention for the indices:

1 ≤ A,B,C, . . . ≤ n+ 1 and 1 ≤ i, j, k, . . . ≤ n.

In this setting, RABCD, RAC and R denote respectively the Riemannian curvature tensor, the
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Ricci tensor and the scalar curvature of the Riemannian manifold M
n+1

. So, we have

RAC =
∑

B

RABCB and R =
∑

A

RAA.

Now, restricting all the tensor to Σn, we see that ωn+1 = 0 on Σn. Hence, 0 = dωn+1 =

−∑i ωn+1i ∧ ωi and as it is well known we get

ωn+1i =
∑

j

hijωj, hij = hji.

This gives the second fundamental form of Σn, A =
∑

i,j hijωiωjen+1 and its squared norm

|A|2 =∑i,j h
2
ij. Furthermore, the mean curvature H of Σn is defined by H = 1

n

∑
i hii.

On the other hand, it follows from Gauss equation that the Ricci curvature and the scalar

curvature of Σn are given, respectively, by

Rij =
∑

k

Rikjk + nHhij −
∑

k

hikhkj and R =
∑

i

Rii, (5.1)

where Rijkl are the components of the Riemannian curvature tensor of Σn. So, by (5.1), we

obtain

R =
∑

i,j

Rijij + n2H2 − |A|2. (5.2)

We also remember that the squared norm of the covariant differential of the second fundamental

form A is given by

|∇A|2 =
∑

i,j,k

h2ijk, (5.3)

where hijk denote the first covariant derivatives of hij.

Taking a local orthonormal frame {e1, . . . , en} on Σn such that hij = λiδij, the following

Simons type formula is well known (see, for instance, equation (2.10) of [67]):

1

2
∆|A|2 = |∇A|2 +

∑

i

λi(nH)ii + nH
∑

i

λ3i − |A|4

−
∑

i,j,k

hij(R(n+1)ijk;k +R(n+1)kik;j) +
∑

i

R(n+1)i(n+1)i

(
nHλi − |A|2

)
(5.4)

+
∑

i,j

(λi − λj)
2Rijij.

Proceeding as in [12, 67], we will assume that there exist constants c1 and c2 such that the

sectional curvature K of the ambient space M
n+1

satisfies the following two constraints

K(η, v) =
c1
n
, (5.5)
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for vectors η ∈ T⊥Σ and v ∈ TΣ, and

K(u, v) ≥ c2, (5.6)

for vectors u, v ∈ TΣ.

From now on, we will consider M
n+1

being a locally symmetric Riemannian manifold, which

means that all the covariant derivative components RABCD;E of its curvature tensor vanish

identically.

Remark 5.1.1 (Remark 3.1 of [12]). When the ambient manifold M
n+1

has constant sectional

curvature c, then it is locally symmetric and the curvature conditions (5.5) and (5.6) are satisfied

for every hypersurface Σn immersed intoM
n+1

, with c1/n = c2 = c. Therefore, in some sense our

assumptions are a natural generalization of the case in which the ambient space has constant

sectional curvature. Moreover, when the ambient manifold is a Riemannian product of two

Riemannian manifolds of constant sectional curvature, say M = M1(κ1) × M2(κ2), then M

is locally symmetric and, if κ1 = 0 and κ2 ≥ 0, then every hypersurface of type Σ = Σ1 ×
M2(κ2), where Σ1 is an orientable and connected hypersurface immersed into M1(κ1), satisfies

the curvature constraints (5.5) and (5.6) with c1 = c2 = 0 (for more details, see Remark 3.1 of

[12]).

Supposing that M
n+1

satisfies condition (5.5) and denoting by RAB the components of its

Ricci tensor, we have that its scalar curvature R is such that

R =
n+1∑

A=1

RAA =
n∑

i,j=1

Rijij + 2
n∑

i=1

R(n+1)i(n+1)i =
n∑

i,j=1

Rijij + 2c1. (5.7)

Since the scalar curvature of a locally symmetric Riemannian manifold is constant, from (5.7)

we see that
∑

i,j Rijij is a constant naturally attached to M
n+1

. So, for sake of simplicity, in

the course of this section we will denote the constant 1
n(n−1)

∑
i,j Rijij by R and, assuming that

M
n+1

also satisfies condition (5.6), the parameter c will stand for the quantity 2c2 −
c1
n
.

The traceless second fundamental form, in this case and in local coordinates, is given by

Φij = hij −Hδij, which gives the tensor

Φ =
∑

i,j

Φijωi ⊗ ωj.

Then we have |Φ|2 =
∑

i,j Φ
2
ij is the squared norm of Φ and it is not difficult to see that, by

(5.2), we get

|Φ|2 = n(n− 1)
(
H2 +R

)
−R. (5.8)
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5.2 Main result

This section is devoted to obtain a sharp estimate for the infimum of the scalar curvature

of a stochastically complete hypersurface immersed with constant mean curvature into a locally

symmetric Riemannian manifold. We recall that the stochastic completeness of the Riemannian

manifold Σn is equivalent to the validity of the weak Omori-Yau maximum principle on Σn (for

more details, see Appendix A, Lemma A.0.2). So, we ready to state and prove our main result.

Theorem 5.2.1. Let Σn be a stochastically complete hypersurface immersed into a locally sym-

metric Riemannian manifold M
n+1

satisfying curvature conditions (5.5) and (5.6). Suppose that

Σn has constant mean curvature H with H2+ c > 0, where c = 2c2− c1/n. If its total umbilicity

tensor Φ satisfies (1.10) for some 1 ≤ p ≤ n
2
, then

(i) either inf R = n(n− 1)(H2 +R) and Σn is a totally umbilical hypersurface,

(ii) or

(a) inf R ≤ n(n− 2)H2 + n(n− 1)R− nc, if p = n
2
,

(b) and if p < n
2
,

inf R ≤ n(n− 2p)

2p(n− p)

(
2p(n− p)cn,p + ndn,pH

2 + |H|
√
n2H2 + 4p(n− p)c

)
,

where the constants cn,p and dn,p are given by

cn,p =
R− c1 − 2nc2
n(n− 2p)

and dn,p =
2np− 2p2 − n

n− 2p
.

Moreover, if the equality holds and this infimum is attained at some point of Σn, then Σn is an

isoparametric hypersurface with (in the case c > 0, assume in addition that H 6= 0) two distinct

principal curvatures of multiplicities p and n− p.

It follows from (5.8) that inf R = n(n − 1)(H2 +R) − sup |Φ|2. Hence, Theorem 5.2.1 can

be rewritten equivalently in terms of the total umbilicity tensor as follows.

Theorem 5.2.2. Let Σn be a stochastically complete hypersurface immersed into a locally sym-

metric Riemannian manifold M
n+1

satisfying curvature conditions (5.5) and (5.6). Suppose Σn

has constant mean curvature H such that H2+c > 0, where c = 2c2−c1/n. If its total umbilicity

tensor Φ satisfies (1.10) for some 1 ≤ p ≤ n
2
, then

(i) either sup |Φ| = 0 and Σn is a totally umbilical hypersurface,

(ii) or

sup |Φ| ≥ η(H,n, p, c) =

√
n

2
√
p(n− p)

(√
n2H2 + 4p(n− p)c− (n− 2p)|H|

)
> 0.
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Moreover, if the equality holds and this supremum is attained at some point of Σn, then Σn is an

isoparametric hypersurface with (in the case c > 0, assume in addition that H 6= 0) two distinct

principal curvatures of multiplicities p and n− p.

Proof. Firstly, taking a local orthonormal frame field {e1, . . . , en} on Σn such that

hij = λiδij and Φij = κiδij,

we can check that

∑

i

κi = 0,
∑

i

κ2i = |Φ|2 and
∑

i

λ3i =
∑

i

κ3i + 3H|Φ|2 + nH3.

Now, since M
n+1

is locally symmetric and Σn has constant mean curvature, it follows from (5.4)

that

1

2
∆|Φ|2 =

1

2
∆|A|2

= |∇A|2 + nH
∑

i

λ3i − |A|4 +
∑

i

R(n+1)i(n+1)i

(
nHλi − |A|2

)

+
∑

i,j

(λi − λj)
2Rijij. (5.9)

From curvature conditions (5.5) and (5.6), we get

∑

i

R(n+1)i(n+1)i(nHλi − |A|2) = c1(nH
2 − |A|2) = −c1|Φ|2 (5.10)

and

∑

i,j

Rijij(λi − λj)
2 ≥ c2

∑

i,j

(λi − λj)
2 (5.11)

= 2nc2(|A|2 − nH2) = 2nc2|Φ|2.

Moreover, it follows from our hypothesis (1.10) that

nH
∑

i

λ3i − |A|4 = n2H4 + 3nH2|Φ|2 + nH
∑

i

κ3i −
(
|Φ|2 + nH2

)2

≥ n2H4 + 3nH2|Φ|2 − n|H|
∣∣∣∣∣
∑

i

κ3i

∣∣∣∣∣− |Φ|4 − 2nH2|Φ|2 − n2H4

≥ −|Φ|4 − n(n− 2p)√
np(n− p)

|H||Φ|3 + nH2|Φ|2. (5.12)
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Hence, since c = 2c2 − c1/n, inserting (5.10), (5.11) and (5.12) into (5.9) we obtain that

1

2
∆|Φ|2 ≥ |∇A|2 − |Φ|4 − n(n− 2p)√

np(n− p)
|H||Φ|3 + n(H2 + c)|Φ|2

≥ −|Φ|2P (H,n, p, c)(|Φ|), (5.13)

where PH,n,p,c(x) is the polynomial given as in equations (2.16) and (2.23),

PH,n,p,c(x) = x2 +
n(n− 2p)√
np(n− p)

|H|x− n(H2 + c).

We observe that, since H2 + c > 0, the polynomial PH,n,p,c(x) has an unique positive root given

by

η(H,n, p, c) =

√
n

2
√
p(n− p)

(√
n2H2 + 4p(n− p)c− (n− 2p)|H|

)
.

If sup |Φ| = +∞, then (ii) holds trivially and there is nothing to prove. If sup |Φ| < +∞,

then we can apply Lemma A.0.2 to the function |Φ|2 to assures that there exists a sequence of

points {pj} ⊂ Σn such that

lim |Φ|(pj) = sup |Φ| and lim sup∆|Φ|2(pj) ≤ 0,

which jointly with (5.13) implies

(sup |Φ|)2PH,n,p,c(sup |Φ|) ≥ 0.

It follows from here that either sup |Φ| = 0, which means that |Φ| vanishes identically and the

hypersurface is totally umbilical, or sup |Φ| > 0 and then PH,n,p,c(sup |Φ|) ≥ 0. In the latter

case, it must be sup |Φ| ≥ η(H,n, p, c), which gives the inequality in (ii).

Moreover, let us now assume that the equality sup |Φ| = η(H,n, p, c) holds. In this case,

PH,n,p,c(|Φ|) ≤ 0 on Σn, which jointly with (5.13) implies that the function |Φ|2 is subharmonic

on Σn. Therefore, if this supremum is attained at some point of Σn, it follows from stronger

maximum principle that |Φ| = η(H,n, p, c) is constant. Thus, (5.13) becomes trivially an equal-

ity,
1

2
∆|Φ|2 = 0 = −|Φ|2PH,n,p,c(|Φ|).

From here we obtain that |∇A|2 = 0 and, consequently, from (5.3) we conclude that Σn is

isoparametric hypersurface. Finally, using once more equality (5.13) we also obtain the equality

in Lemma 1.0.3, which implies that the hypersurface has exactly two distinct principal curvatures

of multiplicities p and n− p. This finishes the proof from theorem.

It is worth pointing out that when M
n+1

is a space form, then the constants R and cn,1

in Theorem 5.2.1 agree with its sectional curvature. In this setting, Theorems 5.2.1 and 5.2.2

generalize Theorems 3 and 5 of [14] when p = 1, and Theorems 1.2 and 1.4 of [93] when 1 < p ≤ n
2
,

for the context of hypersurfaces immersed with constant mean curvature into a locally symmetric
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spaces.

In the particular case where Σn is complete, we obtain from Theorem 5.2.1 (or Theorem

5.2.2) the following consequence.

Corollary 5.2.3. Let Σn be a complete hypersurface immersed into a locally symmetric Rie-

mannian manifold M
n+1

satisfying curvature conditions (5.5) and (5.6). Suppose that Σn has

constant mean curvature H with H2 + c > 0, where c = 2c2 − c1/n. If its total umbilicity tensor

Φ satisfies (1.10) for some 1 ≤ p ≤ n
2
, then

(i) either inf R = n(n− 1)(H2 +R) and Σn is a totally umbilical hypersurface,

(ii) or

(a) inf R ≤ n(n− 2)H2 + n(n− 1)R− nc, if p = n
2
,

(b) and if p < n
2
,

inf R ≤ n(n− 2p)

2p(n− p)

(
2p(n− p)cn,p + ndn,pH

2 + |H|
√
n2H2 + 4p(n− p)c

)
,

where the constants cn,p and dn,p are given by

cn,p =
R− c1 − 2nc2
n(n− 2p)

and dn,p =
2np− 2p2 − n

n− 2p
.

Moreover, if the equality holds and this infimum is attained at some point of Σn, then Σn is an

isoparametric hypersurface with (in the case c > 0, assume in addition that H 6= 0) two distinct

principal curvatures of multiplicities p and n− p.

As mentioned before, we can rewritten Corollary 5.2.3 equivalently in terms of the total

umbilicity tensor as follows.

Corollary 5.2.4. Let Σn be a complete hypersurface immersed into a locally symmetric Rie-

mannian manifold M
n+1

satisfying curvature conditions (5.5) and (5.6). Suppose that Σn has

constant mean curvature H with H2 + c > 0, where c = 2c2 − c1/n. If its total umbilicity tensor

Φ satisfies (1.10) for some 1 ≤ p ≤ n
2
, then

(i) either sup |Φ| = 0 and Σn is a totally umbilical hypersurface,

(ii) or

sup |Φ| ≥ η(H,n, p, c) =

√
n

2
√
p(n− p)

(√
n2H2 + 4p(n− p)c− (n− 2p)|H|

)
> 0.

Moreover, if the equality holds and this supremum is attained at some point of Σn, then Σn is an

isoparametric hypersurface with (in the case c > 0, assume in addition that H 6= 0) two distinct

principal curvatures of multiplicities p and n− p.
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Proof. We note that when sup |Φ| = +∞ the result is clearly true. So, we can suppose that

sup |Φ| < +∞. In this case, since Σn has constant mean curvature, we have that sup |A|2 < +∞.

Hence, from equation (5.1) and our hypothesis on sectional curvature of M
n+1

, we get

Rii ≥ (n− 1)c2 − nH sup |A| − sup |A|2 > −∞,

that is, the Ricci curvature of Σn is bounded from below. In particular, Σn is stochastically

complete and the result follows from Theorem 5.2.2.

Another consequence of Theorem 5.2.1 is the following result for complete parabolic hyper-

surfaces in locally symmetric spaces.

Corollary 5.2.5. Let Σn be a complete parabolic hypersurface immersed into a locally symmetric

Riemannian manifold M
n+1

satisfying curvature conditions (5.5) and (5.6). Suppose that Σn

has constant mean curvature H with H2 + c > 0, where c = 2c2 − c1/n. If its total umbilicity

tensor Φ satisfies (1.10) for some 1 ≤ p ≤ n
2
, then

(i) either inf R = n(n− 1)(H2 +R) and Σn is a totally umbilical hypersurface,

(ii) or

(a) inf R ≤ n(n− 2)H2 + n(n− 1)R− nc, if p = n
2
,

(b) and if p < n
2
,

inf R ≤ n(n− 2p)

2p(n− p)

(
2p(n− p)cn,p + ndn,pH

2 + |H|
√
n2H2 + 4p(n− p)c

)
,

where the constants cn,p and dn,p are given by

cn,p =
R− c1 − 2nc2
n(n− 2p)

and dn,p =
2np− 2p2 − n

n− 2p
.

Moreover, if the equality holds, then Σn is an isoparametric hypersurface with (in the case c > 0,

assume in addition that H 6= 0) two distinct principal curvatures of multiplicities p and n− p.

Equivalently, we can prove the following:

Corollary 5.2.6. Let Σn be a complete parabolic hypersurface immersed into a locally symmetric

Riemannian manifold M
n+1

satisfying curvature conditions (5.5) and (5.6). Suppose that Σn

has constant mean curvature H with H2 + c > 0, where c = 2c2 − c1/n. If its total umbilicity

tensor Φ satisfies (1.10) for some 1 ≤ p ≤ n
2
, then

(i) either sup |Φ| = 0 and Σn is a totally umbilical hypersurface,

(ii) or

sup |Φ| ≥ η(H,n, p, c) =

√
n

2
√
p(n− p)

(√
n2H2 + 4p(n− p)c− (n− 2p)|H|

)
> 0.
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Moreover, if the equality holds, then Σn is an isoparametric hypersurface with (in the case c > 0,

assume in addition that H 6= 0) two distinct principal curvatures of multiplicities p and n− p.

Proof. Firstly, we recall that every parabolic Riemannain manifold is stochastically complete.

Then, by the first part of Theorem 5.2.2 we obtain that either sup |Φ| = 0 and Σn is totally

umbilical hypersurface, or sup |Φ| ≥ η(H,n, p, c). Moreover, if the equality sup |Φ| = η(H,n, p, c)

holds, then as in the proof of Theorem 5.2.2 we have PH,n,p,c(|Φ|) ≤ 0 and |Φ|2 is a subharmonic

function on Σn which is bounded from above. Since Σn is parabolic, it must be constant |Φ| =
η(H,n, p, c). Therefore, at this point we can reason in a similar way to the proof of Theorem

5.2.2.
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Part II

Generalized linear Weingarten

hypersurfaces in warped products:

height estimates and half-space

theorems
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Chapter 6

Preliminaries for Part II

In this chapter we shall briefly introduce some basic facts and notations that will appear

along Part II of this thesis, namely: the semi-Riemannian warped product spaces, some rela-

tions between curvatures tensors, the higher order mean curvatures, some formulas involving

the linearized operators of the higher order mean curvatures acting in certain support func-

tions defined on hypersurfaces immersed into such warped products, the notion of generalized

Weingarten linear hypersurfaces, among others.

To start, throughout this part of the thesis we will always consider Mn a connected n-

dimensional Riemannian manifold, I ⊂ R an open interval in R and ρ : I → R a positive smooth

function on I. Let us denote by M
n+1

= εI ×ρ M
n the product manifold I ×Mn endowed with

the semi-Riemannian metric

〈 , 〉 = επ∗
I (dt

2) + (ρ ◦ πI)2π∗
M(〈 , 〉M), (6.1)

where ε = ±1, πI and πM denote the canonical projections from I × Mn onto each factor,

〈 , 〉M is the Riemannian metric on Mn and I is endowed with the metric εdt2. The semi-

Riemannian manifold M
n+1

is called the semi-Riemannian warped product space with base I,

fiber Mn and warping function ρ. In particular, ∂t is an unitary vector field globally defined on

M
n+1

= εI ×ρ M
n, which determines on M

n+1
a codimension one foliation by totally umbilical

slices {t} ×M . Besides, we have that 〈∂t, ∂t〉 = ε.

On the one hand, when ε = 1 equation (6.1) gives a Riemannian metric on M
n+1

and the

corresponding Riemannian manifold will be denoted byM
n+1

= I×ρM
n and called a Riemannian

warped product.

On the other hand, if ε = −1 then (6.1) is a Lorentzian metric on M
n+1

. In this case,

the corresponding Lorentzian manifold will be denoted by M
n+1

= −I ×ρ M
n and called a

Lorentzian warped product. When Mn has constant sectional curvature, the warped product

M
n+1

= −I×ρM
n has been known in the mathematical literature as a Robertson-Walker (RW)

spacetime, an allusion to the fact that, for n = 3, it is an exact solution of the Einstein’s field

equations (see Chapter 12 of [102]). After [20], the warped product M
n+1

= −I ×ρ M
n has

usually been referred to as a generalized Robertson-Walker (GRW) spacetime, and we will stick

to this usage along this part.
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Given a semi-Riemannian warped product M
n+1

= εI ×ρ M
n, let us denote by R and RM

the curvatures tensors of the ambient space M
n+1

and of the fiber Mn, respectively. Here, we

are following [102] for our definition of the curvature tensor ofM
n+1

, namely, if U, V,W ∈ X(M)

then

R(U, V )W = ∇[X,Y ]Z − [∇X ,∇Y ]Z,

where ∇ stands for the Levi-Civita connection of M
n+1

and [ , ] denotes the standard Lie

bracket. In what follows we collect some important relations, which are well known and can be

found in [102].

Lemma 6.0.1 (Lemma 7.35 and Proposition 7.42 of [102]). Let εI×ρM
n be a semi-Riemannian

warped product. Let f : I → R be a smooth function on I and U, V,W ∈ X(M). We have:

(a) ∇(f ◦ πI) = εf ′∂t. In particular and for the sake of simplicity we will write f to indicate

f ◦ πI and ∇f to indicate ∇(f ◦ πI);

(b) R(U, ∂t)∂t =
ρ′′

ρ
U ;

(c) R(∂t, ∂t)U = R(U, V )∂t = 0;

(d) R(∂t, U)V =
〈U, V 〉
ρ

ερ′′∂t;

(e) R(U, V )W = RM(U, V )W − ε(ρ′)2

ρ2
(〈U,W 〉V − 〈V,W 〉U).

As main consequence of the previous lemma, we shall prove a very useful relationship between

the curvatures tensors R and RM as well as the derivatives of the warping function ρ of a semi-

Riemannian warped product εI×ρM
n , which are not easily available in details in the literature.

This is the subject of the next lemma whose proof is a technical computation that for the sake

of completeness we include it here. So, we have.

Lemma 6.0.2. Let M
n+1

= εI ×ρ M
n be a semi-Riemannian warped product. For every

U, V,W ∈ X(M), the following relation holds:

R(U, V )W = RM(U∗, V ∗)W ∗ − ε[(log ρ)′]2 (〈U,W 〉V − 〈V,W 〉U)
− (log ρ)′′〈W,∂t〉 (〈U, ∂t〉V − 〈V, ∂t〉U)
− (log ρ)′′ (〈U,W 〉〈V, ∂t〉 − 〈V,W 〉〈U, ∂t〉) ∂t,

where we are writing U∗ = U − ε〈U, ∂t〉∂t to denote the orthogonal projection of U onto TM .

Proof. To prove this lemma we will use as main tool Lemma 6.0.1. So, by using the C∞-linearity
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of the tensor R we get

R(U, V )W = R(U∗, V )W + ε〈U, ∂t〉R(∂t, V )W

= R(U∗, V ∗)W + ε〈V, ∂t〉R(U∗, ∂t)W

+ ε〈U, ∂t〉R(∂t, V ∗)W + 〈U, ∂t〉〈V, ∂t〉R(∂t, ∂t)W
= R(U∗, V ∗)W ∗ + ε〈W,∂t〉R(U∗, V ∗)∂t + ε〈V, ∂t〉R(U∗, ∂t)W

∗

+ 〈V, ∂t〉〈W,∂t〉R(U∗, ∂t)∂t + ε〈U, ∂t〉R(∂t, V ∗)W ∗

+ 〈U, ∂t〉〈W,∂t〉R(∂t, V ∗)∂t + 〈U, ∂t〉〈V, ∂t〉R(∂t, ∂t)W.

From Lemma 6.0.1 (c) we have R(U∗, V ∗)∂t = R(∂t, ∂t)W = 0, and the previous equation

becomes

R(U, V )W = R(U∗, V ∗)W ∗ + ε〈V, ∂t〉R(U∗, ∂t)W
∗

+ 〈V, ∂t〉〈W, ∂t〉R(U∗, ∂t)∂t + ε〈U, ∂t〉R(∂t, V ∗)W ∗

+ 〈U, ∂t〉〈W,∂t〉R(∂t, V ∗)∂t,

which can be rewritten as

R(U, V )W = R(U∗, V ∗)W ∗ − ε〈V, ∂t〉R(∂t, U∗)W ∗

+ 〈V, ∂t〉〈W,∂t〉R(U∗, ∂t)∂t + ε〈U, ∂t〉R(∂t, V ∗)W ∗ (6.2)

− 〈U, ∂t〉〈W,∂t〉R(V ∗, ∂t)∂t,

where we use the symmetries of the curvature tensor R.

Let us computation each term of the right side of (6.2). To the first, Lemma 6.0.1 (e) implies

that

R(U∗, V ∗)W ∗ = RM(U∗, V ∗)W ∗ − 〈∇ρ,∇ρ〉
ρ2

(〈U∗,W ∗〉V ∗ − 〈V ∗,W ∗〉U∗)

= RM(U∗, V ∗)W ∗ − ε(ρ′)2

ρ2
(〈U∗,W ∗〉V ∗ − 〈V ∗,W ∗〉U∗) . (6.3)

We observe that

〈U∗,W ∗〉 = 〈U,W 〉 − ε〈U, ∂t〉〈W,∂t〉
〈V ∗,W ∗〉 = 〈V,W 〉 − ε〈V, ∂t〉〈W,∂t〉,

which gives

〈U∗,W ∗〉V ∗ = 〈U,W 〉V − ε〈U,W 〉〈V, ∂t〉∂t − ε〈U, ∂t〉〈W,∂t〉V + 〈U, ∂t〉〈V, ∂t〉〈W,∂t〉
〈V ∗,W ∗〉U∗ = 〈V,W 〉U − ε〈V,W 〉〈U, ∂t〉∂t − ε〈V, ∂t〉〈W,∂t〉U + 〈U, ∂t〉〈V, ∂t〉〈W,∂t〉.
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Hence, we find

〈U∗,W ∗〉V ∗ − 〈V ∗,W ∗〉U∗ = 〈U,W 〉V − 〈V,W 〉U
+ ε (〈V,W 〉〈U, ∂t〉 − 〈U,W 〉〈V, ∂t〉) ∂t
− ε〈W,∂t〉 (〈U, ∂t〉V − 〈V, ∂t〉U) .

Putting this into (6.3) yields

R(U∗, V ∗)W ∗ = RM(U∗, V ∗)W ∗ − ε(ρ′)2

ρ2
(〈U,W 〉V − 〈V,W 〉U)

− (ρ′)2

ρ2
(〈V,W 〉〈U, ∂t〉 − 〈U,W 〉〈V, ∂t〉) ∂t (6.4)

+
(ρ′)2

ρ2
〈W,∂t〉 (〈U, ∂t〉V − 〈V, ∂t〉U) .

Next, by applying Lemma 6.0.1 (d) we see that

R(∂t, U
∗)W ∗ =

〈U∗,W ∗〉
ρ

∇∂t∇ρ

=

(〈U,W 〉 − ε〈U, ∂t〉〈W,∂t〉
ρ

)
ερ′′∂t

=
ερ′′

ρ
〈U,W 〉∂t −

ρ′′

ρ
〈U, ∂t〉〈W,∂t〉∂t. (6.5)

The analogous applies to

R(∂t, V
∗)W ∗ =

ερ′′

ρ
〈V,W 〉∂t −

ρ′′

ρ
〈V, ∂t〉〈W, ∂t〉∂t. (6.6)

We continue by using once more Lemma 6.0.1 (b) to obtain that

R(U∗, ∂t)∂t =
ρ′′

ρ
U∗ =

ρ′′

ρ
U − ε

ρ′′

ρ
〈U, ∂t〉∂t (6.7)

and

R(V ∗, ∂t)∂t =
ρ′′

ρ
V ∗ =

ρ′′

ρ
V − ε

ρ′′

ρ
〈V, ∂t〉∂t (6.8)
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Then, inserting (6.4), (6.5), (6.6), (6.7) and (6.8) into equation (6.2) we get that

R(U, V )W = RM(U∗, V ∗)W ∗ − ε(ρ′)2

ρ2
(〈U,W 〉V − 〈V,W 〉U)

− (ρ′)2

ρ2
(〈V,W 〉〈U, ∂t〉 − 〈U,W 〉〈V, ∂t〉) ∂t

+
(ρ′)2

ρ2
〈W,∂t〉 (〈U, ∂t〉V − 〈V, ∂t〉U)

− ρ′′

ρ
〈U,W 〉〈V, ∂t〉∂t +

ρ′′

ρ
〈V,W 〉∂t

+
ρ′′

ρ
〈V, ∂t〉〈W,∂t〉U − ρ′′

ρ
〈U, ∂t〉〈W,∂t〉V

= RM(U∗, V ∗)W ∗ − ε[(log ρ)′]2 (〈U,W 〉V − 〈V,W 〉U)

−
(
ρ′′

ρ
− (ρ′)2

ρ2

)
〈W,∂t〉 (〈U, ∂t〉V − 〈V, ∂t〉U)

−
(
ρ′′

ρ
− (ρ′)2

ρ2

)
(〈U,W 〉〈V, ∂t〉 − 〈V,W 〉〈U, ∂t〉) ∂t.

Finally, we conclude that

R(U, V )W = RM(U∗, V ∗)W ∗ − ε[(log ρ)′]2 (〈U,W 〉V − 〈V,W 〉U)
− (log ρ)′′〈W, ∂t〉 (〈U, ∂t〉V − 〈V, ∂t〉U)
− (log ρ)′′ (〈U,W 〉〈V, ∂t〉 − 〈V,W 〉〈U, ∂t〉) ∂t

as desired.

Throughout this Part II we will deal with (connected) hypersurfaces ψ : Σn → M
n+1

im-

mersed into the semi-Riemannian warped productM
n+1

= εI×ρM
n. In the case thatM

n+1
is a

Riemannian manifold, we will assume that Σn is a two-sided hypersurface, which means that its

normal bundle is trivial, that is, there exists an unitary normal vector field N globally defined on

Σn. Otherwise, if M
n+1

is a Lorentzian manifold, Σn is assumed to be a spacelike hypersurface,

meaning that the induced metric on Σn via the immersion ψ is a Riemannian metric. In the

latter case, since ∂t is a timelike vector field globally defined on M
n+1

, there exists an unique

unitary timelike normal vector field (also denoted by) N globally defined on Σn which is either

in the same time-orientation of ∂t, so that 〈N, ∂t〉 ≤ −1, or in the opposite time-orientation of

∂t, that is, 〈N, ∂t〉 ≥ 1. In this case, we will refer to the normal vector field N as been the

future-pointing Gauss map of Σn when N is in the same time-orientation of ∂t. Its opposite

will be refered as been the past-pointing Gauss map of Σn. As usual, in both the cases we also

denote by 〈 , 〉 the metric of Σn induced via ψ. Sometimes we will refer to Σn as a Riemannian

hypersurface to mean that Σn is either a two-sided hypersurface or a spacelike hypersurface. We

also observe that 〈N,N〉 = ε.

Let us denote by A : X(Σ) → X(Σ) the second fundamental form (or shape operator) of

the Riemannian hypersurface Σn in M
n+1

= εI ×ρ M
n with respect to N , which is given by
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AX = −∇XN , where as already mentioned above ∇ stands for the Levi-Civita connection of

M
n+1

. It is well known that the curvature tensor R of the hypersurface Σn can be described

in terms of the second fundamental form A and of the curvature tensor R of the ambient space

M
n+1

by the Gauss equation as follows

R(X, Y )Z = (R(X, Y )Z)⊤ + ε (〈AX,Z〉AY − 〈AY,Z〉AX) (6.9)

for every tangent vector fields X, Y, Z ∈ X(Σ), where ( )⊤ denotes the tangential component of

a vector field in X(M) along Σn.

Associated with the second fundamental form A there are n algebraic invariants, which are

the elementary symmetric functions Sr of its principal curvatures κ1, . . . , κn, given by

S0 = 1 and Sr = Sr(κ1, . . . , κn) =
∑

i1<...<ir

κi1 · · ·κir , 1 ≤ r ≤ n.

For each 0 ≤ r ≤ n, we define the r-mean curvature Hr of the hypersurface Σn by

(
n

r

)
Hr = εrSr(κ1, . . . , κn).

In particular, when r = 1,

H1 = ε
1

n

∑

i

κi = ε
1

n
tr(A) = H

is just the mean curvature of Σn, which is the main extrinsic curvature of the hypersurface.

When r = 2, H2 defines a geometric quantity which is related to the (intrinsic) scalar curvature

S of the hypersurface. For instance, when the ambient space has constant sectional curvature c,

it follows from Gauss equation that S = n(n−1)(c+εH2). In general, it also follows from Gauss

equation that when r is odd Hr is extrinsic (and its sign depends on the chosen orientation),

while when r is even Hr is an intrinsic geometric quantity. Moreover, we also observe that the

characteristic polynomial of A can be written in terms of the Hr as

det(xI − A) =
n∑

j=0

(
n

j

)
(−ε)jHjx

n−j. (6.10)

It is usual to refer to the r-mean curvatures as the higher order mean curvatures of the hyper-

surface.

Regarding the higher order mean curvatures, it is a classical fact that it satisfy a very useful

set of inequalities, usually alluded as Newton’s inequalities. For future reference, we collect them

here. A proof can be found in [70] (see Theorems 51 and 52) jointly with Proposition 3.2 of [42]

(see also Proposition 2.3 of [30]).

Lemma 6.0.3. Let ψ : Σn →M
n+1

be an orientable Riemannian hypersurface immersed into a

semi-Riemannian warped product M
n+1

= εI ×ρ M
n. Suppose that there exists an elliptic point

in Σn. If Hr+1 is positive on Σn, we have that the same holds for Hk, k = 1, · · · , r. Moreover,
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(a) HkHk+2 ≤ H2
k+1 for every k = 1, · · · , r;

(b) H1 ≥ H
1/2
2 ≥ . . . ≥ H

1/r
r ,

and the equality holds only at umbilical points.

Here, by an elliptic point in a Riemannian hypersurface Σn we mean a point p0 ∈ Σn where

all principal curvatures κi(p0) are positive, when M
n+1

is a Riemannian manifold, and negative,

when M
n+1

is a Lorentzian manifold, with respect to an appropriate choice of the orientation N

of Σn.

For each 0 ≤ r ≤ n, one defines the r-th Newton transformation Pr : X(Σ) → X(Σ) of the

hypersurface Σn by setting P0 = I (the identity tensor) and, for 1 ≤ r ≤ n, via the recurrence

relation

Pr =

(
n

r

)
HrI − εAPr−1.

Equivalently,

Pr =
r∑

j=0

(
n

j

)
(−ε)r−jHjA

r−j,

so that the Cayley-Hamilton’s Theorem and (6.10) give Pn = 0. We also observe that when r

is even, the definition of Pr does not depend on the chosen of the unitary normal vector field

N , but when r is odd there is a change of sign in the definition of Pr according to choose of the

orientation. Moreover, it is easy to see that each Pr is a self-adjoint operator which commutes

with the second fundamental form A, that is, if a local orthonormal frame on Σn diagonalizes A,

then it also diagonalizes each Pr. More specifically, if {E1, . . . , En} is a local orthonormal frame

with A(Ei) = κiEi, then (see, for instance, Lemma 2.1 of [22])

Pr(Ei) = µi,rEi,

where

µi,r =
∑

i1<···<ir,ij 6=i

κi1 · · ·κir

are the eigenvalues of Pr, i = 1, . . . , n. It follows from here that for each 0 ≤ r ≤ n− 1, we have

(see, for instance, Lemma 2.1 of [22])

tr(Pr) = crHr, with cr := (n− r)

(
n

r

)
= (r + 1)

(
n

r + 1

)
. (6.11)

Let ∇ be the Levi-Civita connection of the hypersurface Σn. Associated to each Newton

transformation Pr, one has the second order linear differential operator Lr : C
∞(Σ) → C∞(Σ),

for r = 0, 1, . . . , n− 1, defined by

Lru = tr(Pr ◦ hess u),

where hess u : X(Σ) → X(Σ) denotes the self-adjoint linear tensor metrically equivalent to the
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Hessian of u, Hess u, which are given by

hess u(X) = ∇X∇u and Hess u(X, Y ) = 〈hess u(X), Y 〉,

respectively, for all X, Y ∈ X(Σ). In particular, L0 = ∆ is the Laplacian of Σn, which is

always an elliptic operator in the divergence form. More generally, denoting by div the standard

divergent operator on Σn, we have for a given local orthonormal frame {E1, . . . , En} on Σn that

div(Pr∇u) =
n∑

i=1

〈(∇Ei
Pr)(∇u), Ei〉+

n∑

i=1

〈Pr(∇Ei
∇u), Ei〉

= 〈divPr,∇u〉+ Lru, (6.12)

where the divergence of Pr on Σn is given by

divPr = tr(∇Pr) =
n∑

i=1

(∇Ei
Pr)(Ei).

In particular, when the ambient space has constant sectional curvature equation (6.12), reduces

to Lru = div(Pr∇u), because div(Pr) = 0 (see [107] for more details). Moreover, we get from

equation (6.12) that the operator Lr is elliptic if and only if Pr is positive definite.

For our purpose, it will be useful to have some geometric conditions which guarantee the

ellipticity of the operators Lr when r ≥ 1. For r = 1, the next lemma assures the ellipticity of

L1 (see Lemma 3.10 of [59] and Lemma 3.2 of [7]).

Lemma 6.0.4. Let ψ : Σn →M
n+1

be an orientable Riemannian hypersurface immersed into a

semi-Riemannian warped product M
n+1

= εI ×ρ M
n. If H2 > 0 on Σ, then the operator L1 is

elliptic or, equivalently, P1 is positive definite (for an appropriate choice of the orientation N).

When r ≥ 2, the following lemma give us sufficient conditions to assert the ellipticity of Lr.

The proof is given in Proposition 3.2 of [22] (see also Proposition 3.2 of [42]).

Lemma 6.0.5. Let ψ : Σn →M
n+1

be an orientable Riemannian hypersurface immersed into a

semi-Riemannian warped product M
n+1

= εI ×ρ M
n with Hr+1 > 0 on Σn, for some 2 ≤ r ≤

n−1. If there exists an elliptic point in Σn, with respect an appropriate choice of the orientation

N , then for all 1 ≤ k ≤ r the operator Lk is elliptic or, equivalently, Pk is positive definite (for

an appropriate choice of the orientation N , if k is odd).

Remark 6.0.6. As showed in Proposition 3.2 of [42], in the Riemannian case Theorem 6.0.5

still holds with the weaker assumption that there is a point p ∈ Σn such that all the principal

curvatures at p are nonnegative.

We continue our preliminaries by considering two particular functions naturally attached to

the hypersurface ψ : Σn → εI ×ρ M
n, namely, the (vertical) height function

h := πR ◦ ψ : Σn → R
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and the angle function

Θ := 〈N, ∂t〉 : Σn → R.

With a simple computation we can show that the gradient of projection πI on εI×ρM
n is given

by

∇πI = ∂t.

In particular, the gradient of the height function h on Σn is

∇h = ∂⊤t = ∂t − ε〈N, ∂t〉N = ∂t − εΘN,

so that

|∇h|2 = ε(1−Θ2).

Besides, the angle function also satisfies |Θ| ≤ 1 when the ambient space is Riemannian and

|Θ| ≥ 1 if the ambient space is Lorentzian.

Next, we recall some formulas concerning height and angle functions, which were obtained

by Aĺıas et al. [17] in the Riemannian case, whereas in the Lorentzian case were given by Aĺıas

and Colares [8], and will be essential for the proofs of the main results of this part of the thesis

(for more details see Proposition 6 and Lemma 27 of [17] and Lemma 4.1 and Corollary 8.5 of

[8]).

Proposition 6.0.7. Let ψ : Σn → M
n+1

be an orientable Riemannian hypersurface immersed

into a semi-Riemannian warped product M
n+1

= εI ×ρ M
n. For every r = 0, . . . , n − 1, the

following formulas hold:

(a) The height function h satisfies

Hess h(X, Y ) = ε(log ρ)′(h)(〈X, Y 〉 − ε〈∇h,X〉〈∇h, Y 〉) + Θ〈AX, Y 〉

and

Lrh = ε(log ρ)′(h) (crHr − ε〈Pr∇h,∇h〉) + εcrΘHr+1,

where cr := (n− r)
(
n
r

)
= (r + 1)

(
n

r+1

)
.

(b) Let σ(t) be a primitive of ρ(t). Then

Lrσ(h) = εcr (ρ
′(h)Hr + ρ(h)ΘHr+1)
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(c) Set Θ̃ := ρ(h)Θ. Then,

LrΘ̃ = −εcrρ(h)
r + 1

〈∇Hr+1,∇h〉 − εcrρ
′(h)Hr+1

− ε
crρ(h)Θ

r + 1
(nH1Hr+1 − (n− r − 1)Hr+2)

− ε
Θ̃

ρ2(h)

n∑

i=1

µi,rKM(N∗, E∗
i )|N∗ ∧ E∗

i |2

− Θ̃(log ρ)′′(h)
(
cr|∇h|2Hr − 〈Pr∇h,∇h〉

)
,

where {E1, . . . , En} is an orthonormal frame on Σn diagonalizing A, KM denotes the sec-

tional curvature of the fiber Mn, µi,r stands for the eigenvalues of Pr, for every vector field

X ∈ X(M), X∗ is the orthogonal projection on TM and

|X∗ ∧ Y ∗|2 = |X∗|2|Y ∗|2 − 〈X∗, Y ∗〉2.

We conclude this chapter by introducing a wide class of Riemannian hypersurfaces, the so

called generalized linear Weingarten hypersurfaces. Let ψ : Σn → M
n+1

be a Riemannian

hypersurface immersed into a semi-Riemannian warped product M
n+1

= εI ×ρ M
n. We say

that Σn is (r, s)-linear Weingarten, for some 0 ≤ r ≤ s ≤ n − 1, if there exist nonnegative real

numbers br, . . . , bs (at least one of them nonzero) such that the following linear relation holds

on Σn:
s∑

k=r

bkHk+1 = d ∈ R. (6.13)

Thus, naturally attached to a (r, s)-linear Weingarten Riemannian hypersurface we have the

constant d given by (6.13). We note that the (r, r)-linear Weingarten Riemannian hypersurfaces

are exactly the Riemannian hypersurfaces having d = Hr+1 constant. In particular, this class

of hypersurfaces is more general than those having some constant higher order mean curvature.

On the other hand, if the ambient space has zero sectional curvature and taking into account

that in this case S = εH2, where S stands for the normalized scalar curvature of Σn, we observe

that the (0, 1)-linear Weingarten Riemannian hypersurfaces are called simply linear Weingarten

hypersurfaces. Throughout this Part II, we will always denote by d the constant given by relation

(6.13).
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Chapter 7

The Riemannian case

In this chapter we give height estimates and study the topology at infinity (in form of half-

space theorems) of (r, s)-linear Weingarten two-sided hypersurfaces immersed into a Riemannian

warped product of the type R×ρ M
n. Here we present results of [55, 56].

7.1 Height estimates

The main intention of this section is to provide height estimates of compact (r, s)-linear

Weingarten hypersurfaces immersed into Riemannian warped product spaces of the type R ×ρ

Mn. Moreover, some particular cases are also studied. To wit, when the ambient space is a

pseudo-hyperbolic space, that is, ρ(t) = et or ρ(t) = cosh t, and the case of standard products

R×Mn, that is, when the warping function is constant.

The starting point is to prove that under suitable assumption on a (not necessarily constant)

linear combination involving some of the higher order mean curvatures, any compact two-sided

hypersurface immersed into a Riemannian warped product R×ρ M
n with non-empty boundary

contained into a slice {t0}×Mn, for some t0 ∈ R, must lie entirely in one of the two regions of the

ambient space bounded by the slice. We point out that this was proved in [65] (see Proposition

3.3 of [65]) considering only one of the higher order mean curvatures being constant. For that

reason and for the sake of completeness we give here a proof of this fact.

In order to do this we recall an interesting tangency principle due to Fontenele and Silva

[63]. Let Σ1 and Σ2 be a two hypersurfaces in an arbitrary Riemannian manifold N
n+1

that are

tangent at a common point p0, that is, that satisfy Tp0Σ1 = Tp0Σ2. Fix a normal vector η0 at

p0 and locally parametrize both hypersurfaces in a neighborhood U of zero in Tp0Σ1 = Tp0Σ2 by

means of the exponential map of N
n+1

as follows:

ϕi(x) = expp0(x+ δi(x)η0), i = 1, 2,

where δi : U → R are well-determined functions satisfying δi(0) = 0. Following [63], we say

that Σ1 remains above Σ2 in a neighborhood of p0 with respect to η0 if δ1(x) ≥ δ2(x) in a

neighborhood of zero. This is equivalent to requiring that the geodesics of the ambient space

66



N
n+1

normal to the hypersurface expp0(U) in a neighborhood of p0 in the orientation determined

by η0 intercept Σ2 before Σ1. So, with this preliminaries we can state the following result (for

more details, see Theorem 1.1 of [63]).

Lemma 7.1.1. Let Σ1 and Σ2 be hypersurfaces as above such that Σ1 remains above Σ2 in

a neighborhood of p0 with respect to η0. Assume that, for some 0 ≤ r ≤ n − 1, we have

HΣ1

r+1(x) ≤ HΣ2

r+1(x) in a neighborhood of zero in Tp0Σ1 = Tp0Σ2 and, if r ≥ 1, the principal

curvature vector κΣ2(0) =
(
κΣ2

1 (0), . . . , κΣ2

n (0)
)
of Σ2 at zero belongs to connected component

in R
n+1, Γr+1, of the set {Sr+1 > 0} containing (1, . . . , 1). Then, Σ1 and Σ2 coincide in a

neighborhood of p0.

Remark 7.1.2. We note that in the case in whichHΣ2

r+1 is positive, the assumption κΣ2(0) ∈ Γr+1

holds trivially.

So, as aforementioned our first result is the following, which generalizes Proposition 3.3 of

[65].

Proposition 7.1.3. Let ψ : Σn → R ×ρ M
n be a compact two-sided hypersurface with positive

(s + 1)-mean curvature, for some 0 ≤ s ≤ n − 1, and boundary ∂Σ contained into the slice

{t0} ×Mn for some t0 ∈ R. The following holds:

(a) If ρ′ does not change sign on (−∞, t0] and, for some 0 ≤ r ≤ s, we have

s∑

k=r

bkHk+1 ≥
s∑

k=r

bk sup
(−∞,t0]

[(log ρ)′]k+1

for certain nonnegative constants bk and, when s ≥ 2, there exists an elliptic point in Σn,

then h ≥ t0;

(b) If ρ′ > 0 on [t0,+∞) and, for some 0 ≤ r ≤ s, we have

s∑

k=r

bkHk+1 ≤
s∑

k=r

bk inf
[t0,+∞)

[(log ρ)′]k+1

for certain nonnegative constants bk and, when s ≥ 2, there exists an elliptic point in Σn,

then h ≤ t0.

Proof. To prove (a) we begin by stating that there exists i0 ∈ {r, . . . , s} satisfying

Hi0+1(p) ≥ sup
(−∞,t0]

[(log ρ)′]i0+1, ∀p ∈ Σn. (7.1)

It is clear that we can suppose r < s and, by Lemma 6.0.3, we have that Hk+1 is positive

for every k = r, . . . , s. Since ρ′ does not change sign on (−∞, t0], we have two possibilities:

either ρ′ ≥ 0 on (−∞, t0] or ρ
′ ≤ 0 on (−∞, t0]. In the first case, we will prove the claim by

contradiction, that is, let us assume that (7.1) is false. So, we can choose a point p ∈ Σn such
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that Hr+1(p)
1/(r+1) < sup

(−∞,t0]

(log ρ)′. On the other hand, from our hypothesis, must there exists

r < i ≤ s such that Hi+1(p)
1/(i+1) > sup

(−∞,t0]

(log ρ)′, which gives Hr+1(p)
1/(r+1) < Hi+1(p)

1/(i+1)

leading to a contradiction because of Lemma 6.0.3. Consequently i0 = r meets the desired. In

the latter case, the claim follows because at least one of the numbers r + 1, . . . , s+ 1 is odd.

To close the part (a), we argue once more by contradiction. So, let us assume that h ≥ t0 is

false. Then, there is an interior point p1 ∈ Σn such that

minh = h(p1) = t1 < t0.

Setting Σ1 = {t1} ×Mn and Σ2 = Σn, we see that Σ1 and Σ2 are tangent at the common point

p1 and that Σ1 remains above Σ2 in a neighborhood of p1 with respect to −∂t. Moreover, the

claim above yields

HΣ2

i0+1 = Hi0+1 ≥ sup
(−∞,t0]

[(log ρ)′]i0+1 ≥ (log ρ)′(t1)
i0+1 = HΣ1

i0+1.

Hence, we can apply the tangency principle (see Theorem 7.1.1) to conclude that h is constant

equal to t1 in a neighborhood of p1. Therefore, the set {h = t1} is open and closed in Σn and

by using that Σn is connected we get a contradiction.

Now we prove part (b). As above, one shows that Hs+1(p) ≤ inf
[t0,+∞)

[(log ρ)′]s+1 for every

p ∈ Σn. Assuming again by contradiction that h ≤ t0 is false, must there exists an interior point

p2 ∈ Σn satisfying

maxh = h(p2) = t2 > t0.

Taking Σ1 = Σn and Σ2 = {t2} ×Mn, we obtain that Σ1 and Σ2 are tangent at the common

point p2, Σ1 remains above Σ2 in a neighborhood of p2 with respect to −∂t and

HΣ1

s+1 = Hs+1 ≤ inf
[t0,+∞)

[(log ρ)′]s+1 ≤ [(log ρ)′(t2)]
s+1 = HΣ2

s+1.

Since ρ′ > 0, it follows that p2 is an elliptic point of Σ2. From now on, reasoning as in the part

(a) we arrive to a contradiction.

Remark 7.1.4. In the special case r = s, it is easy to see that we do not need to assume in

Proposition 7.1.3 (a) that ρ′ has a sign.

In our next results, we focus our attention on Riemannian warped product spaces of the type

R×ρ M
n satisfying the convergence condition

KM ≥ sup{(ρ′)2 − ρρ′′}, (7.2)

where KM stands for the sectional curvature of the fiber Mn. Warped products satisfying this

convergence condition has been studied, for instance, in [17, 65]. In the case in which this

condition is assumed on the Ricci curvature instead sectional curvature, it is also well known

(see, for instance, [9, 11, 97]).
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Now we are ready to state and prove our first main result. More precisely, we will establish

an estimate for the height function h of compact (r, s)-linear Weingarten two-sided hypersurfaces

in Riemannian warped product spaces of the type R ×ρ M
n. Before, let us recall that we will

always denote by d the constant given in equation (6.13).

Theorem 7.1.5. Let R ×ρ M
n be a Riemannian warped product satisfying the convergence

condition in (7.2) and with non-decreasing warping function. Let ψ : Σn → R ×ρ M
n be a

compact (r, s)-linear Weingarten two-sided hypersurface with positive (s + 1)-mean curvature,

for some 0 ≤ s ≤ n− 1, boundary ∂Σn contained into the slice {t0}×Mn, for some t0 ∈ R, and

d ≥ ∑s
k=r bk sup

(−∞,t0]

[(log ρ)′]k+1. Suppose that H1 ≥ max |Hr+1|1/(r+1) and, if s ≥ 2, there exists

an elliptic point in Σn. If the angle function Θ does not change sign on Σn, then

Σn ⊂
[
t0, t0 +

ρ(maxh)

ρ(t0)minH1

]
×Mn.

Proof. We may assume without loss of generality that Σn is not a slice, otherwise there is nothing

to prove. From Proposition 7.1.3 we have h ≥ t0. In particular, we can choose an interior point

p0 in Σn such that the height function reaches its maximum. By Proposition 6.0.7 we get, at p0,

that

0 ≥ ∆h(p0) = n(log ρ)′(h(p0)) + nΘ(p0)H1(p0) ≥ nΘ(p0)H1(p0).

Since, by Lemma 6.0.3, the mean curvature is positive, we obtain that Θ(p0) ≤ 0 and Θ is a

nonpositive function.

Let us consider on Σn the smooth function ϕ = cσ(h)+Θ̃, where c ∈ R is a positive constant

to be chosen in an appropriate way, σ(t) is a primitive of the warping function ρ(t) and Θ̃ = ρΘ.

Then Proposition 6.0.7 yields

Lkϕ = −ckρ(h)
k + 1

〈∇Hk+1,∇h〉+ ckρ
′(h) (cHk −Hk+1)

− ρ(h)Θ

(
n

k + 1

)
(nH1Hk+1 − (n− k − 1)Hk+2 − (k + 1)cHk+1) (7.3)

− Θ̃

ρ2(h)

n∑

i=1

µi,kKM(N∗, E∗
i )|N∗ ∧ E∗

i |2

− Θ̃(log ρ)′′(h)
(
ck|∇h|2Hk − 〈Pk∇h,∇h〉

)
,

where {E1, . . . , En} is an orthonormal frame on Σn diagonalizing A with PkEi = µi,kEi, for every

i = 1, . . . , n and k = r, . . . , s, X∗ denotes the orthogonal projection on TM and the constants

ck are defined in (6.11).

Since Hs+1 is positive and Σn has an elliptic point, from Lemma 6.0.3, we get that

H1Hk+1 −Hk+2 ≥ H1Hk+1 −H2
k+1H

−1
k =

Hk+1

Hk

(H1Hk −Hk+1) .
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By using once more Lemma 6.0.3 it follows that

H1Hk+1 −Hk+2 ≥
Hk+1

Hk

(
H1Hk −H

(k+1)/k
k

)
= Hk+1(H1 −H

1/k
k ) ≥ 0.

Then the previous inequality gives

nH1Hk+1 − (n− k − 1)Hk+2 − (k + 1)cHk+1 = (k + 1)Hk+1(H1 − c)

+ (n− k − 1)(H1Hk+1 −Hk+2)

≥ (k + 1)Hk+1(H1 − c) ≥ 0, (7.4)

provided that c := minH1. In particular, for this choose of c, it follows from our hypothesis on

H1 and Lemma 6.0.3 that

cHk −Hk+1 ≥ H
1/(k+1)
k+1 (Hk −H

k/(k+1)
k+1 ) ≥ 0. (7.5)

On the other hand, by our assumptions we can apply Lemma 6.0.5 (or Lemma 6.0.4 if

s = 1) for to guarantee the ellipticity of the operators Lk for every k = r, . . . , s or, equivalently,

Pk is positive definite. In particular, its eigenvalues µi,k are all positive on Σn, and from the

convergence condition in (7.2) we have

µi,kKM(N∗, E∗
i )|N∗ ∧ E∗

i |2 ≥ µi,kC|N∗ ∧ E∗
i |2, (7.6)

for every i = 1, . . . , n and k = r, . . . , s, where we are writing C = sup{(ρ′)2 − ρρ′′}. With a

straightforward computation, one shows that

|N∗ ∧ E∗
i |2 = |∇h|2 − 〈Ei,∇h〉2,

which jointly with (7.6) imply

n∑

i=1

µi,kKM(N∗, E∗
i )|N∗ ∧ E∗

i |2 ≥ C

(
tr(Pk)|∇h|2 −

n∑

i=1

µi,k〈Ei,∇h〉2
)

= C
(
tr(Pk)|∇h|2 − 〈Pk∇h,∇h〉

)
,

Then, since tr(Pk) = ckHk and C/ρ2(h) + (log ρ)′′(h) ≥ 0, we conclude that

1

ρ2(h)

n∑

i=1

µi,kKM(N∗, E∗
i )|N∗ ∧ E∗

i |2 + (log ρ)′′(h)
(
ck|∇h|2Hk − 〈Pk∇h,∇h〉

)
≥ 0, (7.7)

where the last inequality follows from the fact that Pk is positive definite. Hence, by using (7.4),

(7.5) and (7.7), and taking into account that Θ ≤ 0 and the warping function is non-decreasing,

we infer from (7.3) that

Lkϕ ≥ −ckρ(h)
k + 1

〈∇Hk+1,∇h〉. (7.8)
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Next, let us introduce the second order linear differential operator L : C∞(Σ) → C∞(Σ)

defined by

L =
s∑

k=r

(k + 1)c−1
k bkLk

= tr (P ◦ hess) , (7.9)

where the tensor P : X(Σ) → X(Σ) is given by

P =
s∑

k=r

(k + 1)c−1
k bkPk. (7.10)

Since (k + 1)c−1
k bk > 0 for every k = r, . . . , s and each operator Lk is elliptic (equivalently,

each Pk is positive definite) we see that the tensor P is positive definite and, consequently, the

operator L is elliptic too. So, equation (7.8) and the fact that Σn is (r, s)-linear Weingarten

imply that

Lϕ ≥ 0.

Since Σn is compact, we can apply the weak maximum principle for the elliptic operator L and,

taking into account that Θ is a nonpositive function, we find

cσ(h)− ρ(h) ≤ ϕ ≤ max
∂Σ

ϕ = cσ(t0) + ρ(t0)max
∂Σ

Θ ≤ cσ(t0), (7.11)

which implies

c(σ(h)− σ(t0)) ≤ ρ(h) ≤ ρ(maxh). (7.12)

By using once more that ρ is non-decreasing and σ is increasing, it is not difficult to see that for

any t ≥ t0 it holds

σ(t)− σ(t0) ≥ ρ(t0)(t− t0).

Since the height function satisfies h ≥ t0, from (7.12) and previous inequality we get

cρ(t0)(h− t0) ≤ ρ(maxh).

Therefore, we conclude that

h ≤ t0 +
ρ(maxh)

ρ(t0)minH1

.

This finishes the proof of the theorem.

It is worth pointing out that when r = s, that is, the hypersurface has constant positive

(s + 1)-mean curvature Hs+1, our assumption H1 ≥ max |Hs+1|1/(s+1) in Theorem 7.1.5 holds

trivially because of Lemma 6.0.3. In particular, we have:

Corollary 7.1.6. Let R ×ρ M
n be a Riemannian warped product satisfying the convergence

condition in (7.2) and with non-decreasing warping function. Let ψ : Σn → R×ρM
n be a compact
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two-sided hypersurface with constant positive (s + 1)-mean curvature, for some 0 ≤ s ≤ n − 1,

boundary ∂Σn contained into the slice {t0}×Mn, for some t0 ∈ R, and Hs+1 ≥ sup
(−∞,t0]

[(log ρ)′]s+1.

Suppose that there exists an elliptic point in Σn. If the angle function Θ does not change sign

on Σn, then

Σn ⊂
[
t0, t0 +

ρ(maxh)

ρ(t0)minH1

]
×Mn.

When the warping function ρ is either exponential or hyperbolic cosine function, following

the terminology introduced by Tashiro [112], the corresponding warped product R ×et M
n or

R ×cosh t M
n has been referred to as a pseudo-hyperbolic space. The Tashiro’s terminology is

due to the fact that with suitable choices of the fiber Mn we obtain warped products which are

isometric to the hyperbolic space. For more details about these spaces and others topics related

see, for instance, [10, 11, 65, 97].

In the special case in which the warping function is given by ρ(t) = et, we are able to

improve the estimate of Theorem 7.1.5 so that it does not depend on the height function h of

the hypersurface Σn. More specifically, we get the following result.

Theorem 7.1.7. Let R×etM
n be a pseudo-hyperbolic space whose fiber has nonnegative sectional

curvature. Let ψ : Σn → R×et M
n be a compact (r, s)-linear Weingarten two-sided hypersurface

with positive (s+ 1)-mean curvature, for some 0 ≤ s ≤ n− 1, boundary ∂Σn contained into the

slice {t0}×Mn, for some t0 ∈ R, and d >
∑s

k=r bk. Suppose that H1 ≥ max |Hr+1|1/(r+1) and, if

s ≥ 2, there exists an elliptic point in Σn. If the angle function Θ does not change sign on Σn,

then

Σn ⊂
[
t0, t0 + log

(
minH1

minH1 − 1

)]
×Mn.

Proof. From Proposition 7.1.3 it is clear that minH1 > 1 and the height function satisfies h ≥ t0.

We also note that in this case the function ϕ in Theorem 7.1.5 is given by ϕ = eh(c+Θ), where

c = minH1 and Θ must be a nonpositive function. So, by equation (7.11), it follows that

eh(minH1 − 1) ≤ et0 minH1

proving the result.

In the particular situation of hypersurfaces having constant (s + 1)-mean curvature Hs+1,

Theorem 7.1.7 improves the estimate obtained by Garćıa-Mart́ınez et al. in Theorem 3.10 of

[65]. Indeed, there the authors proved that, in this case, the height function satisfies

t0 ≤ h ≤ t0 + log

(
H

1/(s+1)
s+1

H
1/(s+1)
s+1 − 1

)

On the other hand, since the function f(x) = x
x−1

is decreasing on (1,+∞), it is easy to see that

the inequality

log

(
minH1

minH1 − 1

)
≤ log

(
H

1/(s+1)
s+1

H
1/(s+1)
s+1 − 1

)
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holds for every s = 0, . . . , n− 1, which gives the claim.

Next, we also consider the case when the warping function is given by ρ(t) = cosh t. As in

the previous theorem, we can improve the estimate of Theorem 7.1.5 as follows.

Theorem 7.1.8. Let R×cosh tM
n be a pseudo-hyperbolic space whose fiber has sectional curvature

satisfying KM ≥ −1. Let ψ : Σn → R×cosh tM
n be a compact (r, s)-linear Weingarten two-sided

hypersurface with positive (s + 1)-mean curvature, for some 0 ≤ s ≤ n − 1, boundary ∂Σn

contained into the slice {0}×Mn and d >
∑s

k=r bk. Suppose that H1 ≥ max |Hr+1|1/(r+1) and, if

s ≥ 2, there exists an elliptic point in Σn. If the angle function Θ does not change sign on Σn,

then

Σn ⊂
[
0, tanh−1

(
1

minH1

)]
×Mn.

Proof. By applying Proposition 7.1.3 we see that h ≥ 0. Moreover, in this case, the smooth

function ϕ defined in Theorem 7.1.5 is given by ϕ = c sinhh + Θcoshh, where c = minH1 and

the angle function Θ is taken nonpositive. Since sinh t ≥ 0 for every t ≥ 0, reasoning as in the

proof of Theorem 7.1.5 we arrive to equation (7.11), which implies that

c sinhh− coshh ≤ c sinh 0 = 0.

Therefore the previous inequality yields

h ≤ tanh−1

(
1

minH1

)

and the theorem follows.

We observe that in the case in which some higher order mean curvature is constant, Theorem

7.1.8 improves the estimate given in Theorem 3.11 of [65]. Indeed, Theorem 3.11 of [65] says

that, in this situation,

0 ≤ h ≤ tanh−1

(
1

H
1/(s+1)
s+1

)
.

But, it is clear that

tanh−1

(
1

minH1

)
≤ tanh−1

(
1

H
1/(s+1)
s+1

)

is true for every s = 0, . . . , n− 1, as stated.

We continue by treating the simplest case in which the warping function is constant. In this

case, Theorem 7.1.5 becomes the following result, where we do not need to assume the existence

of an elliptic point on the hypersurface.

Theorem 7.1.9. Let R×Mn be a product space whose fiber has nonnegative sectional curvature

KM . Let ψ : Σn → R ×Mn be a compact (r, s)-linear Weingarten two-sided hypersurface with

(s + 1)-mean curvature Hs+1 6= 0 on Σn, for some 0 ≤ s ≤ n− 1, and boundary ∂Σn contained

into the slice {t0} ×Mn for some t0 ∈ R. Suppose that the angle function Θ does not change

sign on Σn. Then,
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(a) Either maxh 6= t0 and

Σn ⊂
[
t0, t0 +

1

minH1

]
×Mn,

(b) or minh 6= t0 and

Σn ⊂
[
t0 −

1

minH1

, t0

]
×Mn.

Proof. First of all it is clear from our hypothesis on the (s + 1)-mean curvature that either

maxh 6= t0 or minh 6= t0. So, we begin by assuming that maxh 6= t0 and let us choose an

interior point p0 of Σn such that the height function reaches its maximum and the orientation

so that Θ ≤ 0. Then, from Proposition 6.0.7 we get

0 ≥ Hess h(p0)(v, v) = Θ(p0)〈Av, v〉(p0), ∀v ∈ Tp0Σ,

that is, at p0 all the principal curvatures are nonnegative. Since we are assume that Hs+1 6= 0 on

Σn, we must have Hs+1 > 0 on Σn. In particular, we can apply Lemma 6.0.5 (or Lemma 6.0.4

if s = 1; see also Remark 6.0.6) to guarantee the ellipticity of the operator Lk and that Hk+1 is

positive for every k = 0, . . . , s. So, for instance, we have

Lsh = csΘHs+1 ≤ 0

and, consequently, by the weak maximum principle, we obtain that h ≥ t0 on Σn. Hence, by

applying Theorem 7.1.5, part (a) follows.

In the case minh 6= t0, we choose an interior point q0 of Σn satisfying minh = h(q0) and the

orientation so that Θ ≥ 0. Then,

0 ≤ Hess h(q0)(v, v) = Θ(q0)〈Av, v〉(q0), ∀v ∈ Tq0Σ,

that is, at q0 all the principal curvatures must be nonnegative. So, reasoning as previous case

we see that each operator Lk is elliptic and Hk+1 is positive for every k = 0, . . . , s. Besides must

be h ≤ t0 on Σn.

Moreover, keeping the notation of Theorem 7.1.5, it follows that ϕ = ch + Θ satisfies, by

equations (7.3), (7.4) and our assumption on KM ,

Lkϕ ≤ − ck
k + 1

〈∇Hk+1,∇h〉,

which implies that Lϕ ≤ 0, where the operator L is given by (7.9). Therefore, by weak maximum

principle, we conclude that

ϕ ≥ min
∂Σ

ϕ ≥ ct0,

that is,

h ≥ t0 −
1

minH1

.

This finishes the proof of the theorem.
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Remark 7.1.10. We note that the estimate given in Theorem 7.1.9 is sharp in the sense that

it is reached by the hemisphere Σ+ = {x ∈ S
n ; x1 ≥ 0} of the standard sphere S

n in R
n+1.

Indeed, it follows easily that Σ+ is a totally umbilical hypersurface (in fact, it is a vertical graph)

with H1 = 1, boundary {0} × S
n−1 ⊂ {0} × R

n and has the maximum height 1.

It is worth pointing out that for hypersurface having constant (s+ 1)-mean curvature Hs+1,

Theorem 7.1.9 improves the estimate obtained by Cheng and Rosenberg in Theorem 4.1(i) of

[42]. Indeed, in [42] the authors showed that

t0 ≤ h ≤ t0 +
1

H
1/(s+1)
s+1

.

Here it is easy to see that the inequality

1

minH1

≤ 1

H
1/(s+1)
s+1

holds for every s = 0, . . . , n− 1. Moreover, this result is also an extension of Theorem 3.5 in [11]

(case α = 0) and Proposition 1 in [77] (case τ = 0).

Proceeding, we are able to relax the assumption on sectional curvature KM of the fiber Mn

letting it be bounded from below by a negative constant. For this, we will assume that the mean

curvature satisfies a certain condition, which holds automatically when the sectional curvature

of the fiber is nonnegative. In what follows, we continue denoting by c = minH1. So, we get the

following result.

Theorem 7.1.11. Let R×Mn be a product space whose fiber has sectional curvature satisfying

KM ≥ −α, for some positive constant α ∈ R. Let ψ : Σn → R × Mn be a compact (r, s)-

linear Weingarten two-sided hypersurface with (s+1)-mean curvature Hs+1 6= 0 on Σn, for some

0 ≤ s ≤ n− 1, and boundary ∂Σn contained into the slice {t0} ×Mn for some t0 ∈ R. Suppose

that the angle function Θ does not change sign on Σn and c(r + 1)minHk+1 > α(s+ 1)maxHk

for every k = r . . . , s. Then,

(a) Either maxh 6= t0 and

Σn ⊂
[
t0, t0 +

(r + 1)d

(r + 1)dc− (s+ 1)αβ

]
×Mn,

where d is given by (6.13) and β =
∑s

k=r bk maxHk.

(b) or minh 6= t0 and

Σn ⊂
[
t0 −

(r + 1)d

(r + 1)dc− (s+ 1)αβ
, t0

]
×Mn,

where d is given by (6.13) and β =
∑s

k=r bk maxHk.

Proof. In what follows, we keep the notations established in Theorem 7.1.5. Let us suppose

maxh 6= t0 first. Then, as in Theorem 7.1.9, taking the angle function Θ nonpositive, it is easy
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to see that, for every k = 0, . . . , s, the operator Lk is elliptic and the (k + 1)-mean curvature

Hk+1 is positive, and h ≥ t0. Moreover, by equations (7.3) and (7.4) we get that the function ϕ

defined in Theorem 7.1.5 satisfies (note that in this case ϕ = ch+Θ)

Lkϕ ≥ − ck
k + 1

〈∇Hk+1,∇h〉 −Θ
n∑

i=1

µi,kKM(N∗, E∗
i )|N∗ ∧ E∗

i |2. (7.13)

Since the eigenvalues µi,k are all positive on Σn and using our assumption on KM we have

µi,kKM(N∗ ∧ E∗
i )|N∗ ∧ E∗

i |2 ≥ −µi,kα|N∗ ∧ E∗
i |2 ≥ −µi,kα, (7.14)

for every i = 1, . . . , n and k = r, . . . , s, because |N∗ ∧ E∗
i |2 = |∇h|2 − 〈Ei,∇h〉2 ≤ 1. Then,

equation (7.14) yields

n∑

i=1

µi,kKM(N∗ ∧ E∗
i )|N∗ ∧ E∗

i |2 ≥ −αtr(Pk) = −αckHk ≥ −αck maxHk.

From here and (7.13) we get

Lϕ ≥
s∑

k=r

(k + 1)αΘbk maxHk ≥ (s+ 1)αβΘ, (7.15)

where β =
∑s

k=r bk maxHk. On the other hand, by using Proposition 6.0.7 we see that

Lh =
s∑

k=r

(k + 1)c−1
k bkLkh =

s∑

k=r

(k + 1)ΘbkHk+1 ≤ (r + 1)dΘ. (7.16)

So, let us consider on Σn the smooth function given by

ϕ̃ = ϕ− (s+ 1)αβ

(r + 1)d
h =

(r + 1)dc− (s+ 1)αβ

(r + 1)d
h+Θ.

Then, from equations (7.15) and (7.16) we obtain

Lϕ̃ = Lϕ− (s+ 1)αβ

(r + 1)d
Lh ≥ (s+ 1)αβΘ− (s+ 1)αβΘ = 0.

Hence, we can apply once more the weak maximum principle to conclude that

ϕ̃ ≤ max
∂Σ

ϕ̃ ≤ (r + 1)dc− (s+ 1)αβ

(r + 1)d
t0,

that is,
(r + 1)dc− (s+ 1)αβ

(r + 1)d
(h− t0) ≤ 1. (7.17)

76



Now, from our assumption on c we get

(r + 1)dc− (s+ 1)αβ = (r + 1)c
s∑

k=r

bkHk+1 − (s+ 1)α
s∑

k=r

bk maxHk

=
s∑

k=r

bk ((r + 1)cHk+1 − (s+ 1)αmaxHk) > 0.

Therefore, from equation (7.17), we arrive to

h ≤ t0 +
(r + 1)d

(r + 1)dc− (s+ 1)αβ

as desired.

Finally, the case minh 6= t0 it follows in analogues way and this finishes the proof of the

theorem.

In the case of hypersurfaces with constant (s+ 1)-mean curvature Hs+1, our assumption on

c in Theorem 7.1.11 becomes cHs+1 > αmaxHs. In particular, it is weaker than assumption

(7.77) of Theorem 7.19 in [19],

H
(s+2)/(s+1)
s+1 > αmaxHs,

because, in this case, c ≥ H
1/(s+1)
s+1 by Lemma 6.0.3. Moreover, the constant (r+1)d

(r+1)dc−(s+1)αβ
is

just given by Hs+1

cHs+1−αmaxHs
. Furthermore

Hs+1

cHs+1 − αmaxHs

≤ Hs+1

H
(s+2)/(s+1)
s+1 − αmaxHs

.

In this setting, our estimate improves that given in Theorem 7.19 of [19] for the case in which

these hypersurfaces are compacts.

7.2 Half-space theorems and topology at infinity

The aim of this section is to obtain information on the topology at infinity, in the form of

half-space theorems, regarding complete two-sided hypersurfaces in Riemannian warped product

spaces of the type R ×ρ M
n. We point out that the results presented here do not assume that

the hypersurface has some constant higher order mean curvature. As we shall see, this gives

generalizations of results contained in [42,65, 77].

In the first part of this section, we consider the case in which the fiber Mn is compact. Then

as consequence of the height estimates proved in the previous section, we get various half-space

theorems. In the next step we analyze hypersurfaces in Riemannian warped products whose

fiber is not necessarily compact and, in the same spirit of the first part, now using a generalized

version of the Omori-Yau’s maximum principle for trace type differential operators, we prove

new half-space theorems which seem to be interesting in its own.

Let us begin with the following definition.
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Definition 7.2.1. We say that a two-sided hypersurface in a Riemannian warped product space

R ×ρ M
n lies in an upper or lower half-space if it is, respectively, contained into a region of

R×Mn of the form

[a,+∞)×Mn or (−∞, a]×Mn,

for some real number a ∈ R.

Our first half-space theorem is regarding more general case of a Riemannian warped product

arbitrary, which follows as an application of Proposition 7.1.3.

Theorem 7.2.2. Let R ×ρ M
n be a Riemannian warped product whose fiber is compact. Let

ψ : Σn → R ×ρ M
n be a noncompact two-sided properly immersed hypersurface with positive

(s+ 1)-mean curvature, for some 0 ≤ s ≤ n− 1. The following holds:

(a) If ρ′ does not change sign on R and, for some 0 ≤ r ≤ s, we have

s∑

k=r

bkHk+1 ≥
s∑

k=r

bk sup[(log ρ)
′]k+1

for certain nonnegative constants bk and, if s ≥ 2, there exists an elliptic point in Σn, then

Σn cannot lie in an upper half-space. In particular, Σn must have at least one bottom end.

(b) If ρ′ > 0 on R and, for some 0 ≤ r ≤ s, we have

s∑

k=r

bkHk+1 ≤
s∑

k=r

bk inf[(log ρ)
′]k+1

for certain nonnegative constants bk and, if s ≥ 2, there exists an elliptic point in Σn, then

Σn cannot lie in a lower half-space. In particular, Σn must have at least one top end.

Proof. We prove first part (a). Let us assume by contradiction that Σn lies in an upper half-

space, that is, Σn ⊂ [a,+∞) ×Mn, for some a ∈ R. For any number t0 > a let Σt0 be the

hypersurface

Σt0 = {(t, p) ∈ Σn ; t ≤ t0}.

Then Σt0 is a compact two-sided hypersurface with boundary contained into the slice {t0}×M ,

because Mn is compact and the immersion is proper. Moreover, the following inequality holds:

s∑

k=r

bkHk+1 ≥
s∑

k=r

bk sup[(log ρ)
′]k+1 ≥

s∑

k=r

bk sup
(−∞,t0]

[(log ρ)′]k+1.

Hence, by Proposition 7.1.3 we conclude that the height function of Σt0 satisfies h ≥ t0, leading

to a contradiction since t0 is arbitrary.

Let us consider part (b). We reason again by contradiction assuming that Σn is contained

into a lower half-space of the form (−∞, a]×Mn, for some a ∈ R. We set

Σt0 = {(t, p) ∈ Σn ; t ≥ t0},
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where t0 < a is arbitrary. It follows that Σt0 is a compact two-sided hypersurface with boundary

contained into the slice {t0} ×M . Besides it is also true that

s∑

k=r

bkHk+1 ≤
s∑

k=r

bk inf[(log ρ)
′]k+1 ≤

s∑

k=r

bk inf
[t0,+∞)

[(log ρ)′]k+1.

By using once more Proposition 7.1.3 we get h ≤ t0 characterizing a contradiction. This proof

the theorem.

When we consider a pseudo-hyperbolic space of the type R×et M
n, using Theorem 7.1.7 we

can get a stronger result than Theorem 7.2.2 as follows, which gives a generalization of Theorem

4.3 of [65].

Theorem 7.2.3. Let R ×et M
n be a pseudo-hyperbolic space whose fiber is compact and has

nonnegative sectional curvature. Let ψ : Σn → R ×et M
n be a noncompact (r, s)-linear Wein-

garten two-sided properly immersed hypersurface with positive (s+ 1)-mean curvature, for some

0 ≤ s ≤ n− 1, and d >
∑s

k=r bk. Suppose that H1 ≥ sup |Hr+1|1/(r+1) and, if s ≥ 2, there exists

an elliptic point in Σn. If the angle function Θ does not change sign on Σn, then Σn cannot lie

in a half-space. In particular, Σn must have at least one bottom and one top end.

Proof. It is immediate from Theorem 7.2.2 that Σn cannot lie in an upper half-space. On the

other hand, if Σn ⊂ (−∞, a]×Mn, for some a ∈ R, then as above let us consider for any t0 < a

the hypersurface

Σt0 = {(t, p) ∈ Σn ; t ≥ t0}.

Thus Σt0 satisfies the assumptions of Theorem 7.1.7, which implies that

a− t0 ≤ log

(
minΣt0

H1

minΣt0
H1 − 1

)
. (7.18)

Moreover, taking into account the assumption on d and H1, we must have infH1 > 1. Hence,

equation (7.18) yields

a− t0 ≤ log

(
minΣt0

H1

minΣt0
H1 − 1

)
≤ log

(
infH1

infH1 − 1

)
.

Letting t0 small enough we reached a contradiction.

In the case of a pseudo-hyperbolic space of the type R×cosh tM
n, reasoning as in Proposition

7.1.3 we obtain the following generalization of Theorem 4.5 of [65].

Theorem 7.2.4. Let R ×cosh t M
n be a pseudo-hyperbolic space whose fiber is compact. Let

ψ : Σn → R×cosh t M
n be a noncompact two-sided properly immersed hypersurface with positive

(s + 1)-mean curvature, for some 0 ≤ s ≤ n − 1. Suppose that for some 0 ≤ r ≤ s we have
∑s

k=r bkHk+1 ≥
∑s

k=r bk, for certain nonnegative constants bk. If s ≥ 2, assume that there exists

an elliptic point in Σn. Then, Σn cannot lie in an upper half-space. In particular, Σn must have

at least one bottom end.
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Proof. We argue once more by contradiction, that is, let us assume that Σn is contained into an

upper half-space [a,+∞)×Mn, for some a ∈ R. As in the proof of Proposition 7.1.3 we can get

Hr+1 ≥ 1. Given t0 > a, we set the hypersurface

Σt0 = {(t, p) ∈ Σn ; t ≤ t0}.

It is clear that Σt0 is a compact two-sided hypersurface with boundary ∂Σt0 ⊂ {t0} × Mn.

Furthermore,

sup
(−∞,t0]

(tanh t)r+1 ≤ 1 ≤ Hr+1.

Therefore, by Proposition 7.1.3 (see also Remark 7.1.4) we conclude that h ≥ t0, which gives a

contradiction.

Next, we prove half-space theorems regarding two-sided hypersurfaces immersed into stan-

dard product space R×Mn. Its prove follows from Theorem 7.1.9.

Theorem 7.2.5. Let R ×Mn be a product space whose fiber is compact and has nonnegative

sectional curvature. Let ψ : Σn → R ×Mn be a noncompact (r, s)-linear Weingarten two-sided

properly immersed hypersurface with bounded away from zero (s+ 1)-mean curvature, for some

0 ≤ s ≤ n− 1, and such that its angle function Θ does not change sign. Then, Σn cannot lie in

a half-space. In particular, Σn must have at least one bottom and one top end.

Proof. Let us assume by contradiction that Σn lies in an upper half-space, that is, Σn ⊂ [a,+∞)×
Mn, for some a ∈ R. As in the proof of Theorem 7.2.2, we denote by Σt0 the hypersurface

Σt0 = {(t, p) ∈ Σn ; t ≤ t0},

where t0 > a is arbitrary. Then, Σt0 is a compact (r, s)-linear Weingarten two-sided hypersurface

with boundary contained into the slice {t0} ×M and minh 6= t0. Hence, by Theorem 7.1.9 we

must have Hs+1 > 0 on Σt0 and Σt0 ⊂ [t0 − 1
c(t0)

, t0]×Mn, where c(t0) = minΣt0
H1 > 0, that is,

t0 − a ≤ 1

c(t0)
.

Because Hs+1 is bounded away from zero we get infHs+1 > 0, which implies infH1 > 0. Thus

t0 − a ≤ 1

c(t0)
≤ 1

infH1

.

Then choosing t0 large enough we reached a contradiction.

Finally, if Σn is contained in a lower half-space, we may apply the some argument above to

arrive at a contradiction.

Similarly, we can reason as in Theorem 7.2.5 to obtain as consequence of Theorem 7.1.11 the

following result, where we keep the notation c = minH1.
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Theorem 7.2.6. Let R×Mn be a product space whose fiber is compact with sectional curvature

satisfying KM ≥ −α, for some positive constant α ∈ R. Let ψ : Σn → R×Mn be a noncompact

(r, s)-linear Weingarten two-sided properly immersed hypersurface with bounded away from zero

(s + 1)-mean curvature, for some 0 ≤ s ≤ n − 1, and such that its angle function Θ does not

change sign. Suppose that c(r+1)minHk+1 > α(s+1)maxHk for every k = r . . . , s. Then, Σn

cannot lie in a half-space. In particular, Σn must have at least one bottom and one top end.

We observe that our results generalize those obtained by Cheng and Rosenberg [42] and

Hoffman et al. [77] for the case in which the mean curvature or some higher order mean curvature

is constant.

In order to treat the case in which the fiber is not compact, we will make use of a generalized

version of the Omori-Yau’s maximum principle for trace type differential operators proved in

[19] (for more details, see Appendix A, Lemma A.0.3). Let us recall that, given a Riemannian

manifold Σn and a semi-elliptic operator L = tr(P ◦ hess), where P : X(Σ) → X(Σ) is a positive

semi-definite symmetric tensor, we say that the Omori-Yau’s maximum principle holds on Σn

for the operator L if, for any function u ∈ C2(Σ) with u∗ = sup u < +∞, there exists a sequence

of points {pj} ⊂ Σn satisfying

u(pj) > u∗ − 1

j
, |∇u(pj)| <

1

j
and Lu(pj) <

1

j

for every j ∈ N. Equivalently, for any smooth function u ∈ C2(Σ) with u∗ = inf u > −∞ there

exists a sequence of points {pj} ⊂ Σn satisfying

u(pj) < u∗ +
1

j
, |∇u(pj)| <

1

j
and Lu(pj) > −1

j

for every j ∈ N.

Now we are ready to state and prove our next half-space theorem.

Theorem 7.2.7. Let R ×ρ M
n be a Riemannian warped product satisfying the convergence

condition in (7.2) and with non-decreasing warping function. Let ψ : Σn → R ×ρ M
n be a

complete noncompact (r, s)-linear Weingarten two-sided hypersurface with positive (s+ 1)-mean

curvature, for some 1 ≤ r ≤ s ≤ n−1, and d >
∑s

k=r bk sup[(log ρ)
′]k+1. Suppose that sup ρ′′(h)

ρ(h)
<

+∞ and, if s ≥ 2, there exists an elliptic point in Σn. Assume further that sup |Hr| < +∞ and

the second fundamental form satisfies |A| ≤ G(ro), where G ∈ C1([0,+∞)) is such that

G(0) > 0, G′(t) ≥ 0 and
1

G(t)
/∈ L1(+∞)

and ro is the distance function from a reference point in Σn. Then, either supΘ > 0 or Σn

cannot lie in an upper half-space.

Proof. We begin by stating that the sectional curvature KΣ of Σ satisfies the assumption (A.1)

of Lemma A.0.3. Indeed, denoting by K the sectional curvature of the ambient space, it follows
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from Gauss equation (6.9) that if {X, Y } is an orthonormal basis for an arbitrary plane tangent

to Σn, then

KΣ(X, Y ) = K(X, Y ) + 〈AX,X〉〈AY, Y 〉 − 〈AX, Y 〉2

≥ K(X, Y )− |AX||AY | − |AX|2

≥ K(X, Y )− 2|A|2, (7.19)

where the last inequality follows from the fact that

|AX|2 ≤ tr(A2)|X|2 = |A|2

for every unitary vector X tangent to Σn. On the other hand, Lemma 6.0.2 gives

R(U, V )W = RM(U∗, V ∗)W ∗ − [(log ρ)′]2(〈U,W 〉V − 〈V,W 〉U)
− (log ρ)′′〈W,∂t〉(〈U, ∂t〉V − 〈V, ∂t〉U)
− (log ρ)′′(〈U,W 〉〈V, ∂t〉 − 〈V,W 〉〈U, ∂t〉)∂t,

for every vector U, V,W tangent to R×ρ M
n, where U∗ denotes the orthogonal projection of U

on TM . In particular, for the base {X, Y } we get

K(X, Y ) = 〈R(X, Y )X, Y 〉
=

1

ρ2(h)
KM(X∗, Y ∗)|X∗ ∧ Y ∗|2 − (log ρ)′(h)2

− (log ρ)′′(h)(〈X, ∂t〉2 + 〈Y, ∂t〉2).

By using the convergence condition in (7.2) and taking into account that |X∗ ∧ Y ∗|2 = 1 −
〈X, ∂t〉2 − 〈Y, ∂t〉2 we obtain

K(X, Y ) ≥ −(log ρ)′′(h)− (log ρ)′(h)2 = −ρ
′′(h)

ρ(h)
.

Hence, since the second fundamental form satisfies |A| ≤ G(ro), we infer from equation (7.19)

that

KΣ ≥ − sup
ρ′′(h)

ρ(h)
− 2G2(ro), (7.20)

which concludes the claim.

From now on, we assume that the angle function Θ is nonpositive and argue by contradiction,

that is, we suppose that Σn lies in an upper half-space. Equivalently, the height function of Σn

satisfies h∗ = inf h > −∞.

Following [17], for each k = r, . . . , s, let L+
k : C∞(Σ) → C∞(Σ) be the second order linear
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differential operator given by

L+
k =

k∑

i=0

(−1)i
ck
ci
(log ρ)′(h)k−iΘiLi

= tr(P+
k ◦ hess), (7.21)

where P+
k : X(Σ) → X(Σ) is defined by

P+
k =

k∑

i=0

(−1)i
ck
ci
(log ρ)′(h)k−iΘiPi. (7.22)

In particular, as showed in Section 6 of [17], we have the following equality

L+
k σ(h) = ckρ(h)

(
(log ρ)′(h)k+1 + (−1)kΘk+1Hk+1

)
, (7.23)

where σ(t) denotes a primitive of the warping function. We also note that, by Lemma 6.0.5

and since the angle function was supposed to be nonpositive, it follows that P+
k is a positive

semi-definite symmetric tensor for every k = r, . . . , s. Besides, since d > bk[sup(log ρ)
′]k+1 for

every k = r, . . . , s, and equation (6.11) assures that tr(Pi) = ciHi, by Lemma 6.0.3 we get

tr(P+
k ) ≤ ck

k∑

i=0

(
d

bk

)(k−i)/(k+1)

H i/r
r ,

which implies that sup tr(P+
k ) < +∞ for every k = r, . . . , s, because of the assumption on Hr.

Now we set the following second order linear differential operator L+ : C∞(Σ) → C∞(Σ) by

L+ =
s∑

k=r

bkc
−1
k L+

k = tr(P+ ◦ hess),

where P+ : X(Σ) → X(Σ) is given by

P+ =
s∑

k=r

bkc
−1
k P+

k .

Then P+ is a positive semi-definite symmetric tensor with sup tr(P+) < ∞. In particular,

L+ is a semi-elliptic operator. So, we are ready to apply Lemma A.0.3 to guarantee that the

Omori-Yau’s maximum principle holds on Σn for the operator L+.

Besides it is clear that σ(t) satisfies σ(h) ≥ σ(h∗) > −∞. Hence there exists a sequence of

points {pj} ⊂ Σn with the following properties

lim σ(h)(pj) = σ(h∗), |∇σ(h)(pj)| = ρ(h(pj))|∇h(pj)| <
1

j
and L+σ(h)(pj) > −1

j
.
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In particular, equation (7.23) yields

−1

j
< L+σ(h)(pj) =

s∑

k=r

ρ(h(pj))(bk(log ρ)
′(h(pj))

k+1 + (−1)kΘ(pj)
k+1bkHk+1(pj)).

Letting j → +∞ we must have Θ(pj) → −1, because |∇h|2 = 1−Θ2, which gives

d ≤
s∑

k=r

bk(log ρ)
′(h∗)

k+1 ≤
s∑

k=r

bk sup[(log ρ)
′]k+1,

leading to a contradiction. This finishes the proof of the theorem.

Let us observe that the proof of Theorem 7.2.7 remains true with the stronger assumption

that KΣ is bounded from below by a constant, which implies the validity of the Omori-Yau’s

maximum principle. For instance, if we assume that sup ρ′′(h)
ρ(h)

< +∞, reasoning as in the proof

of Theorem 7.2.7, we see that KΣ is bounded from below since sup |A|2 < +∞. On the other

hand, the hypothesis on Hr in Theorem 7.2.7, sup |Hr| < ∞, can be replaced by supH1 < ∞,

because of Lemma 6.0.3. In this case, taking into account the relation

|A|2 = n2H2
1 − n(n− 1)H2,

it follows that the condition sup |A|2 < +∞ is equivalent to supH1 < +∞. This proves the

following result:

Corollary 7.2.8. Let R ×ρ M
n be a Riemannian warped product satisfying the convergence

condition in (7.2) and with non-decreasing warping function. Let ψ : Σn → R ×ρ M
n be a

complete noncompact (r, s)-linear Weingarten two-sided hypersurface with positive (s+ 1)-mean

curvature, for some 0 ≤ r ≤ s ≤ n−1, and d >
∑s

k=r bk sup[(log ρ)
′]k+1. Suppose that sup |H1| <

+∞, sup ρ′′(h)
ρ(h)

< +∞ and, if s ≥ 2, there exists an elliptic point in Σn. Then, either supΘ > 0

or Σn cannot lie in an upper half-space.

In the case of hypersurfaces having constant mean curvature the assumption that the warping

function is non-decreasing can be dropped as follows.

Corollary 7.2.9. Let R ×ρ M
n be a Riemannian warped product satisfying the convergence

condition in (7.2). Let ψ : Σn → R ×ρ M
n be a complete noncompact two-sided hypersurface

with constant mean curvature satisfying H1 > sup(log ρ)′. Suppose that infH2 > −∞ and

sup ρ′′(h)
ρ(h)

< +∞. Then Σn cannot lie in an upper half-space.

Proof. Let us reason by contradiction that Σn lies in an upper half-space, that is, inf h = h∗ >

−∞. As in the proof of Theorem 7.2.7 and by remark above, we might see that the Omori-Yau’s

maximum principle holds on Σn for the Laplacian. Then there is a sequence of points {pj} ⊂ Σn

satisfying

limh(pj) = h∗, |∇h(pj)| <
1

j
and ∆h(pj) > −1

j
.
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By applying Proposition 6.0.7 we find

−1

j
< ∆h(pj) = (log ρ)′(h(pj))

(
n− |∇h(pj)|2

)
+ nΘ(pj)H1

Since the angle function is bounded, taking limits here and choosing the orientation so that

H1 > 0, we conclude that

H1 ≤ sup(log ρ)′,

which gives a contradiction.

For instance, when the warping function is ρ(t) = et we get.

Corollary 7.2.10. Let R×et M
n be a pseudo-hyperbolic space whose fiber has nonnegative sec-

tional curvature. Let ψ : Σn → R×et M
n be a complete noncompact two-sided hypersurface with

constant mean curvature satisfying H1 > 1. Suppose that infH2 > −∞. Then Σn cannot lie in

an upper half-space.

More generally, for hypersurfaces having some constant higher order mean curvature we get

the following result:

Corollary 7.2.11. Let R ×ρ M
n be a Riemannian warped product satisfying the convergence

condition in (7.2) and with non-decreasing warping function. Let ψ : Σn → R ×ρ M
n be a

complete noncompact two-sided hypersurface with constant (s + 1)-mean curvature satisfying

Hs+1 > sup[(log ρ)′]s+1 for some 1 ≤ s ≤ n − 1. Suppose that sup |H1| < +∞, sup ρ′′(h)
ρ(h)

< +∞
and, if s ≥ 2, there exists an elliptic point in Σn. Then, either supΘ > 0 or Σn cannot lie in an

upper half-space.

In particular, in the pseudo-hyperbolic space R×et M
n we obtain:

Corollary 7.2.12. Let R×et M
n be a pseudo-hyperbolic space whose fiber has nonnegative sec-

tional curvature. Let ψ : Σn → R×et M
n be a complete noncompact two-sided hypersurface with

constant (s + 1)-mean curvature satisfying Hs+1 > 1, for some 1 ≤ s ≤ n − 1. Suppose that

sup |H1| < +∞ and, if s ≥ 2, there exists an elliptic point in Σn. Then, either supΘ > 0 or Σn

cannot lie in an upper half-space.

We proceed by proving the version of Theorem 7.2.7 in the case in which the warping function

is non-increasing.

Theorem 7.2.13. Let R ×ρ M
n be a Riemannian warped product satisfying the convergence

condition in (7.2) and with non-increasing warping function. Let ψ : Σn → R×ρM
n be a complete

noncompact (r, s)-linear Weingarten two-sided hypersurface with positive (s+1)-mean curvature,

for some 1 ≤ r ≤ s ≤ n − 1, and d >
∑s

k=r bk sup[−(log ρ)′]k+1. Suppose that sup ρ′′(h)
ρ(h)

< +∞
and, if s ≥ 2, there exists an elliptic point in Σn. Assume further that sup |Hr| < +∞ and the

second fundamental form satisfies |A| ≤ G(ro), where G ∈ C1([0,+∞)) is such that

G(0) > 0, G′(t) ≥ 0 and
1

G(t)
/∈ L1(+∞)
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and ro is the distance function from a reference point in Σn. Then, either inf Θ < 0 or Σn cannot

lie in a lower half-space.

Proof. Again, we reason by contradiction as follows: we suppose that Θ is a nonnegative function

and Σn lies in a lower half-space, that is, the height function of Σn satisfies h∗ = suph < +∞.

We consider, for each k = r, . . . , s, the second order linear differential operator L−
k : C∞(Σ) →

C∞(Σ) defined as

L−
k =

k∑

i=0

(−1)k−i ck
ci
(log ρ)′(h)k−iΘiLi

= tr
(
P−

k ◦ hess
)
, (7.24)

where P−
k : X(Σ) → X(Σ) is the positive semi-definite symmetric tensor given by

P−
k =

k∑

i=0

(−1)k−i ck
ci
(log ρ)′(h)k−iΘiPi. (7.25)

As in Theorem 7.2.7, the sectional curvature KΣ of Σn satisfies condition (7.20) and tr(P−
k ) <

+∞. Hence, by Lemma A.0.3 the Omori-Yau’s maximum principle holds on Σn for the semi-

elliptic second order linear differential operator L− : C∞(Σ) → C∞(Σ) given by

L− =
s∑

k=r

bkc
−1
k L−

k = tr(P− ◦ hess),

where P− : X(Σ) → X(Σ), defined as

P− =
s∑

k=r

bkc
−1
k P−

k ,

is a positive semi-definite symmetric tensor and satisfies tr(P−) < +∞.

Now let σ(t) be a primitive of the warping function, which must satisfies σ(h) ≤ σ(h∗). Then

there exists a sequence of points {qj} ⊂ Σn with the following properties:

lim σ(h)(qj) = σ(h∗), |∇σ(h)(qj)| <
1

j
and L−σ(h)(qj) <

1

j
.

Taking into account that L−
k = (−1)kL+

k , where L+
k is defined in the proof of Theorem 7.2.7,

jointly with (7.23), we find

1

j
> L−σ(h)(qj) =

s∑

k=r

ρ(h(qj))
(
−bk[−(log ρ)′(h(qj))]

k+1 +Θ(qj)
k+1bkHk+1(qj)

)
.
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Therefore, making j → ∞ we see that Θ(qj) → 1 implying that

d ≤
s∑

k=r

bk sup[−(log ρ)′]k+1.

This characterizes a contradiction and proves the result.

As in Theorem 7.2.7, Theorem 7.2.13 remains true if we replace the conditions |A| ≤ G(r0)

and sup |Hr| < ∞ by the stronger condition on the mean curvature H1, namely: supH1 < ∞.

More precisely,

Corollary 7.2.14. Let R ×ρ M
n be a Riemannian warped product satisfying the convergence

condition in (7.2) and with non-increasing warping function. Let ψ : Σn → R ×ρ M
n be a

complete noncompact (r, s)-linear Weingarten two-sided hypersurface with positive (s+ 1)-mean

curvature, for some 1 ≤ r ≤ s ≤ n − 1, and d >
∑s

k=r bk sup[−(log ρ)′]k+1. Suppose that

sup |H1| < ∞, sup ρ′′(h)
ρ(h)

< +∞ and, if s ≥ 2, there exists an elliptic point in Σn. Then, either

inf Θ < 0 or Σn cannot lie in a lower half-space.

As other immediate consequence we get the following result for hypersurfaces with con-

stant mean curvature, where the assumption that the warping function is non-increasing can be

dropped.

Corollary 7.2.15. Let R ×ρ M
n be a Riemannian warped product satisfying the convergence

condition in (7.2). Let ψ : Σn → R ×ρ M
n be a complete noncompact two-sided hypersurface

with constant mean curvature satisfying H1 > sup−(log ρ)′. Suppose that infH2 > −∞ and

sup ρ′′(h)
ρ(h)

< +∞. Then Σn cannot lie in a lower half-space.

In the case of hypersurfaces having some constant higher order mean curvature Theorem

7.2.13 becomes:

Corollary 7.2.16. Let R ×ρ M
n be a Riemannian warped product satisfying the convergence

condition in (7.2) and with non-increasing warping function. Let ψ : Σn → R ×ρ M
n be a

complete noncompact two-sided hypersurface with constant (s + 1)-mean curvature satisfying

Hs+1 > sup[−(log ρ)′]s+1, for some 1 ≤ r ≤ n−1. Suppose that sup |H1| < +∞, sup ρ′′(h)
ρ(h)

< +∞
and, if s ≥ 2, there exists an elliptic point in Σn. Then, either inf Θ < 0 or Σn cannot lie in a

lower half-space.

Finally, we close this section by stating the following result in the case of product spaces

R×Mn, which is a consequence of Theorems 7.2.7 and 7.2.13. It is worth pointing out that in

this case our conclusion is stronger than that one of Theorems 7.2.7 and 7.2.13.

Theorem 7.2.17. Let R×Mn be a product space whose fiber has sectional curvature satisfying

KM ≥ −α, for some positive constant α ∈ R. Let ψ : Σn → R×Mn be a complete noncompact

(r, s)-linear Weingarten two-sided hypersurface with positive (s + 1)-mean curvature, for some

1 ≤ r ≤ s ≤ n−1. Suppose that sup |Hr| < +∞ and, if s ≥ 2, there exists an elliptic point in Σn.
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Assume further that the second fundamental form satisfies |A| ≤ G(ro), where G ∈ C1([0,+∞))

is such that

G(0) > 0, G′(t) ≥ 0 and
1

G(t)
/∈ L1(+∞)

and ro is the distance function from a reference point in Σn. The following holds:

(a) Either supΘ > 0 or Σn cannot lie in an upper half-space;

(b) Either inf Θ < 0 or Σn cannot lie in a lower half-space.

In particular, when the hypersurface has constant mean curvature or some higher order mean

curvature, Theorem 7.2.17 enables us to draw the following conclusion:

Corollary 7.2.18. Let R×Mn be a product space whose fiber has sectional curvature satisfying

KM ≥ −α, for some positive constant α ∈ R. Let ψ : Σn → R×Mn be a complete noncompact

two-sided hypersurface with positive constant mean curvature and such that infH2 > −∞. The

following holds.

(a) Either supΘ > 0 or Σn cannot lie in an upper half-space;

(b) Either inf Θ < 0 or Σn cannot lie in a lower half-space.

In other words we have:

(a’) There is no complete noncompact two-sided hypersurface having positive constant mean

curvature, infH2 > −∞, angle function nonpositive and contained into an upper half-

space;

(b’) There is no complete noncompact two-sided hypersurface having positive constant mean

curvature, infH2 > −∞, angle function nonnegative and contained into a lower half-space.

Corollary 7.2.19. Let R×Mn be a product space whose fiber has sectional curvature satisfying

KM ≥ −α, for some positive constant α ∈ R. Let ψ : Σn → R×Mn be a complete noncompact

two-sided hypersurface with positive constant (s + 1)-mean curvature, for some 1 ≤ s ≤ n − 1.

Suppose that sup |H1| < +∞ and, if s ≥ 2, there exists an elliptic point in Σn. The following

holds.

(a) Either supΘ > 0 or Σn cannot lie in an upper half-space;

(b) Either inf Θ < 0 or Σn cannot lie in a lower half-space.

In other words we have:

(a’) There is no complete noncompact two-sided hypersurface having Hs+1 > 0, an elliptic point,

with sup |H1| < +∞, angle function nonpositive and contained into an upper half-space;

(b’) There is no complete noncompact two-sided hypersurface having Hs+1 > 0, an elliptic point,

with sup |H1| < +∞, angle function nonnegative and contained into a lower half-space.

88



Finally we collect (a) and (b) in the previous corollaries in order to obtain the following

result.

Corollary 7.2.20. Let R×Mn be a product space whose fiber has sectional curvature satisfying

KM ≥ −α, for some positive constant α ∈ R. Let ψ : Σn → R×Mn be a complete noncompact

two-sided hypersurface with positive constant (s+1)-mean curvature, for some 0 ≤ s ≤ n−1. In

addition, if s = 0 assume that infH2 > −∞. Suppose further that sup |H1| < +∞ and, if s ≥ 2,

there exists an elliptic point in Σn. Then, either Θ does not vanish identically or Σn cannot lie

in a half-space.
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Chapter 8

The Lorentzian case

This chapter is dedicated to provide height estimates and half-space theorems of generalized

linear Weingarten spacelike hypersurfaces in generalized Robertson-Walker (GRW, for short)

spacetimes −R×ρM
n, which also enable us to obtain information about the topology at infinity

of these hypersurfaces. In this chapter we include the results of [21, 49].

8.1 Height estimates

The goal of this section is to give height estimates of compact generalized linear Weingarten

spacelike hypersurfaces immersed into a GRW spacetime −R×ρM
n. To do this, in general way,

we follows the techniques used in the Riemannian setting in Section 7.1. However, as we shall

see, in this case our estimates are considerably different of those obtained in the Riemannian

case. For this and for the sake of completeness, we would like to present the proofs of our results

in details.

In this setting, we start by establishing that, under a suitable assumption on a linear com-

bination involving some of the higher order mean curvatures (not necessarily constant), any

compact spacelike hypersurface immersed into a GRW spacetime −R ×ρ M
n with non-empty

boundary contained into a slice must lie entirely in one of the two regions of the spacetime

bounded by the slice. We point out that, when the warping function is increasing and the Gauss

map N is future-pointing, this was proved in [64] (see Proposition 14 of [64]) considering only

one of the higher order mean curvatures. We also observe that in [64] the authors considered

the case in which the warping function is decreasing. However, such situation do not have any

application in your results. Here we also consider the case in which the warping function is de-

creasing jointly with the assumption that the Gauss map N is past-pointing and we are able to

obtain new estimates for the height function of these hypersurfaces (see Theorem 8.1.5 below).

For that reason we give here a proof of it.

Proposition 8.1.1. Let ψ : Σn → −R×ρ M
n be a compact spacelike hypersurface with positive

(s + 1)-mean curvature, for some 0 ≤ s ≤ n − 1, and boundary ∂Σ contained into the slice

{t0} ×Mn for some t0 ∈ R. The following holds:
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(a) If ρ′(h) > 0 and, for some 0 ≤ r ≤ s, we have

s∑

k=r

bkHk+1 ≥
s∑

k=r

bk sup[(log ρ)
′]k+1

for certain nonnegative constants bk and, when s ≥ 2, there exists an elliptic point in Σn

with respect the future-pointing Gauss map, then h ≤ t0;

(b) If ρ′(h) < 0 and, for some 0 ≤ r ≤ s, we have

s∑

k=r

bkHk+1 ≥
s∑

k=r

bk sup[−(log ρ)′]k+1

for certain nonnegative constants bk and, when s ≥ 2, there exists an elliptic point in Σn

with respect the past-pointing Gauss map, then h ≥ t0.

Proof. Let us prove part (a). As in the proof of Proposition 7.1.3 we can show that

H
1/(r+1)
r+1 (p) ≥ sup(log ρ)′, ∀p ∈ Σn.

Indeed, if r = s there is nothing to prove. Otherwise, assuming by contradiction that there

is a point p ∈ Σn such that Hr+1(p)
1/(r+1) < sup(log ρ)′, it follows from our hypothesis that

must there exists r < i ≤ s with Hi+1(p)
1/(i+1) > sup(log ρ)′, which gives Hr+1(p)

1/(r+1) <

Hi+1(p)
1/(i+1) leading to a contradiction.

From now on, we follow the ideas of Proposition 14 of [64]. Let L+
r : C∞(Σ) → C∞(Σ) be

the operator defined in (7.21),

L+
r =

r∑

i=0

(−1)i
cr
ci
(log ρ)′(h)r−iΘiLi

= tr
(
P+

r ◦ hess
)
,

where the tensor P+
r : X(Σ) → X(Σ) is given by equation (7.22),

P+
r =

r∑

i=0

(−1)i
cr
ci
(log ρ)′(h)r−iΘiPi.

Taking into account that in this case the angle function satisfies Θ ≤ −1 jointly with Lemmas

6.0.4 and 6.0.5, we infer that L+
r is an elliptic operator. Besides, equation (3.4) of [16] yields

L+
r σ(h) = crρ(h)

(
−[(log ρ)′(h)]r+1 + (−Θ)r+1Hr+1

)
, (8.1)

where σ(t) is a primitive of the warping function ρ(t). Hence, by claim proved above we have

L+
r σ(h) ≥ crρ(h)Hr+1

(
−1 + (−Θ)r+1

)
≥ 0.
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Then, by the weak maximum principle, σ(h) must attain its maximum on ∂Σ, in others words,

σ(h) ≤ σ(t0). Since σ is an increasing function, this implies that h ≤ t0, which proves part (a).

Now we prove part (b). To this end, we observe that the analogous applies here to obtain that

H
1/(r+1)
r+1 (p) ≥ − sup(log ρ)′, ∀p ∈ Σn. Next, let us consider the second order linear differential

operator defined in (7.24),

L−
r =

r∑

i=0

(−1)r−i cr
ci
(log ρ)′(h)r−iΘiLi

= tr
(
P−

r ◦ hess
)
,

where the tensor P−
r : X(Σ) → X(Σ) is defined as in (7.25),

P−
r =

r∑

i=0

(−1)r−i cr
ci
(log ρ)′(h)r−iΘiPi.

Since ρ′ < 0, Θ ≥ 1 and the operator Li is elliptic for every i = 0, . . . , r, then L−
r must be

elliptic too. Moreover, as already observed, we have that L−
r = (−1)rL+

r . So, by using once

more equation (3.4) of [16] we find

L−
r σ(h) = crρ(h)

(
[−(log ρ)′(h)]r+1 −Θr+1Hr+1

)
. (8.2)

It follows from here that

L−
r σ(h) ≤ crρ(h)Hr+1

(
1−Θr+1

)
≤ 0.

Finally, using again the weak maximum principle, we conclude that h ≥ t0, as desired.

Remark 8.1.2. Regarding the condition on Σn of having an elliptic point when either the

warping function is increasing and the Gauss map is future-pointing or the warping function is

decreasing and the Gauss map is past-pointing in Proposition 8.1.1, it is a natural condition.

For instance, Aĺıas and Colares [8] proved that if the GRW spacetime is spatially closed, that is,

the Riemannian fact is compact, then any compact spacelike hypersurface immersed into such

a spacetime admit an elliptic point in these conditions on the warping function and the Gauss

map N of the hypersurface (see Lemma 5.3 of [8]). In this context, this assumption seems very

natural.

Following the terminology introduced in [8], we recall that a GRW spacetime −I ×ρ M
n

satisfies the strong null convergence condition (strong NCC, for short) if the sectional curvature

KM of the fiber Mn satisfies

KM ≥ sup{ρρ′′ − (ρ′)2}.

Having this in mind, we are ready to state and prove our next result regarding estimate of the

height function of compact (r, s)-linear Weingarten spacelike hypersurfaces in a GRW spacetime.
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Theorem 8.1.3. Let −R×ρM
n be a GRW spacetime satisfying the strong NCC and with increas-

ing warping function. Let ψ : Σn → −R×ρM
n be a compact (r, s)-linear Weingarten spacelike hy-

persurface with positive (s+1)-mean curvature, boundary ∂Σn contained into the slice {t0}×Mn,

for some t0 ∈ R, and d ≥ ∑s
k=r bk sup[(log ρ)

′]k+1. Suppose that H1 ≥ sup |Hr+1|1/(r+1) and, if

s ≥ 2, there exists an elliptic point in Σn with respect the future-pointing Gauss map. Then,

Σn ⊂ [t0 − α, t0]×Mn,

where

α =

ρ(t0)
ρ(minh)

max∂Σ(−Θ)− 1

minH1

.

Proof. We closely follow the proof of Theorem 7.1.5. Let us consider on Σn the smooth function

ϕ = cσ(h) + Θ̃, where c ∈ R is a positive constant to be chosen in an appropriate way, σ(t) is a

primitive of ρ(t) and Θ̃ = ρΘ. By Proposition 6.0.7 we have

Lkϕ =
ckρ(h)

k + 1
〈∇Hk+1,∇h〉+ ckρ

′(h) (Hk+1 − cHk)

+ ρ(h)Θ

(
n

k + 1

)
(nH1Hk+1 − (n− k − 1)Hk+2 − (k + 1)cHk+1) (8.3)

+
Θ̃

ρ2(h)

n∑

i=1

µi,kKM(N∗, E∗
i )|N∗ ∧ E∗

i |2

− Θ̃(log ρ)′′(h)
(
ck|∇h|2Hk − 〈Pk∇h,∇h〉

)
,

where PkEi = µi,kEi, for every i = 1, . . . , n and k = r, . . . , s.

Since Hs+1 is positive and Σn has an elliptic point, Lemma 6.0.3 gives H1Hk+1 ≥ Hk+2, which

implies

nH1Hk+1 − (n− k − 1)Hk+2 − (k + 1)cHk+1 = (k + 1)Hk+1(H1 − c)

+ (n− k − 1)(H1Hk+1 −Hk+2)

≥ (k + 1)Hk+1(H1 − c) ≥ 0, (8.4)

provided that c := minH1. In particular, with this choose of c, it follows from our hypothesis

on H1 and Lemma 6.0.3 that

Hk+1 − cHk ≤ H
1/(k+1)
k+1 (H

k/(k+1)
k+1 −Hk) ≤ 0. (8.5)

On the other hand, by our assumptions we can apply Lemma 6.0.5 (or Lemma 6.0.4 if s = 1)

to obtain the ellipticity of the operator Lk for every k = r, . . . , s , in others words, Pk is positive

definite. In particular, its eigenvalues µi,k are all positive on Σn, and from the strong NCC we

get

µi,kKM(N∗, E∗
i )|N∗ ∧ E∗

i |2 ≥ µi,kC|N∗ ∧ E∗
i |2, (8.6)

for every i = 1, . . . , n and k = r, . . . , s, where we are writing C = sup{ρρ′′ − (ρ′)2}. With a
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straightforward computation we find

|N∗ ∧ E∗
i |2 = |N∗|2|E∗

i |2 − 〈N∗, E∗
i 〉2 = |∇h|2 − 〈Ei,∇h〉2,

which jointly with (8.6) imply

n∑

i=1

µi,kKM(N∗, E∗
i )|N∗ ∧ E∗

i |2 ≥ C

(
tr(Pk)|∇h|2 −

n∑

i=1

µi,k〈Ei,∇h〉2
)

= C
(
tr(Pk)|∇h|2 − 〈Pk∇h,∇h〉

)
.

Then, since tr(Pk) = ckHk and C/ρ2(h)− (log ρ)′′(h) ≥ 0, we obtain that

1

ρ2(h)

n∑

i=1

µi,kKM(N∗, E∗
i )|N∗ ∧ E∗

i |2 − (log ρ)′′(h)
(
ck|∇h|2Hk − 〈Pk∇h,∇h〉

)
≥ 0, (8.7)

where the last inequality follows from the fact that Pk is positive definite. Hence putting (8.4),

(8.5) and (8.7) into (8.3) and taking into account that the warping function is increasing and

Θ < 0, we infer that

Lkϕ ≤ ckρ(h)

k + 1
〈∇Hk+1,∇h〉. (8.8)

Proceeding, let us consider the operator L : C∞(Σ) → C∞(Σ) defined in equation (7.9),

L =
s∑

k=r

(k + 1)c−1
k bkLk

= tr (P ◦ hess) ,

where the tensor P : X(Σ) → X(Σ) is given by equation (7.10),

P =
s∑

k=r

(k + 1)c−1
k bkPk.

As in the proof of Theorem 7.1.5, we have that L is an elliptic operator, because (k+1)c−1
k bk > 0

and each operator Lk is elliptic, for every k = r, . . . , s. It follows from here jointly with equation

(8.8) and the fact that Σn is (r, s)-linear Weingarten that Lϕ ≤ 0, that is,

L(−ϕ) ≥ 0.

We observe that, by compactness of Σn, the weak maximum principle applies to the elliptic

operator L. Then we must have

−cσ(h)− ρ(h)Θ ≤ max
∂Σ

(−ϕ) = −cσ(t0) + ρ(t0)max
∂Σ

(−Θ),

which implies

c(σ(h)− σ(t0)) ≥ ρ(h)− ρ(t0)max
∂Σ

(−Θ). (8.9)
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By using once more that ρ and σ are increasing functions, is not difficult to see that, for any

t ≤ t0, the following holds:

σ(t0)− σ(t) ≥ ρ(t)(t0 − t).

Since Proposition 8.1.1 says that h ≤ t0, we can apply equation (8.9) to get

cρ(h)(h− t0) ≥ ρ(h)− ρ(t0)max
∂Σ

(−Θ).

Therefore, we conclude that

c(h− t0) ≥ 1− ρ(t0)

ρ(h)
max
∂Σ

(−Θ),

that is,

h ≥ t0 −
ρ(t0)

ρ(minh)
max∂Σ(−Θ)− 1

minH1

.

This finishes the proof of the theorem.

As in the Riemannian case, it turns out that for hypersurfaces with constant (s + 1)-mean

curvature Hs+1 our assumption H1 ≥ sup |Hs+1|1/(s+1) in Theorem 8.1.3 holds trivially because

of Lemma 6.0.3. Moreover, we observe that in this case Theorem 8.1.3 improves the estimate

obtained by Garćıa-Mart́ınez and Impera in Theorem 16 of [64], which states that the hight

function satisfies

t0 −
ρ(t0)

ρ(minh)
max∂Σ(−Θ)− 1

H
1/(s+1)
s+1

≤ h ≤ t0.

Since the inequality

ρ(t0)
ρ(minh)

max∂Σ(−Θ)− 1

minH1

≤
ρ(t0)

ρ(minh)
max∂Σ(−Θ)− 1

H
1/(s+1)
s+1

holds for every s = 0, . . . , n− 1, we get the improvement desired.

We also observe that Theorem 8.1.3 does not contemplate the case in which the warping

function is constant. However, a similar argument to that given by Colares and de Lima in [47]

allows us to obtain the next result, which improves Theorem 3.3 of [47] for the case of standard

Lorentzian product spaces of the type −R×Mn.

Theorem 8.1.4. Let −R ×Mn be a Lorentzian product whose fiber has nonnegative sectional

curvature. Let ψ : Σn → −R×Mn be a compact (r, s)-linear Weingarten spacelike hypersurface

with positive (s + 1)-mean curvature and boundary ∂Σn contained into the slice {t0} × Mn.

Suppose that, if s ≥ 2, there exists an elliptic point in Σn with respect the future-pointing Gauss

map. Then,

Σn ⊂ [t0 − α, t0]×Mn,

where

α =
max∂Σ(−Θ)− 1

minH1

.

95



Proof. The proof follows as in Theorem 7.1.9. We begin by observing that, in this case, we also

can apply Lemma 6.0.5 (or Lemma 6.0.4 if s = 1) for to assures the ellipticity of the operators

Lk for every k = r, . . . , s. Proposition 6.0.7 yields, for instance, Lrh = −crHr+1Θ ≥ 0, which

gives h ≤ t0 on Σn.

As before, let ϕ = ch + Θ be the smooth function on Σn where c = minH1. By using once

more Proposition 6.0.7 we have

Lkϕ =
ck

k + 1
〈∇Hk+1,∇h〉

+ Θ

(
n

k + 1

)
(nH1Hk+1 − (n− k − 1)Hk+2 − (k + 1)cHk+1)

+ Θ
n∑

i=1

µi,kKM(N∗, E∗
i )|N∗ ∧ E∗

i |2,

where PkEi = µi,kEi, for every i = 1, . . . , n and k = r, . . . , s. Then one has

Lkϕ ≤ ck
k + 1

〈∇Hk+1,∇h〉.

Hence, reasoning as in the proof of Theorem 8.1.3 we see that −ϕ ≤ max∂Σ(−ϕ), that is,

−ch+ 1 ≤ −ct0 +max
∂Σ

(−Θ),

which finishes the proof of the theorem.

As aforementioned, we also consider the case in which the warping function is decreasing and

the Gauss map is past-pointing, keeping positive (s+ 1)-mean curvature. This is the subject of

the our next theorem.

Theorem 8.1.5. Let −R ×ρ M
n be a GRW spacetime satisfying the strong NCC and with

decreasing warping function. Let ψ : Σn → −R ×ρ M
n be a compact (r, s)-linear Weingarten

spacelike hypersurface with positive (s + 1)-mean curvature, boundary ∂Σn contained into the

slice {t0} × Mn, for some t0 ∈ R, and d ≥ ∑s
k=r bk sup[−(log ρ)′]k+1. Suppose that H1 ≥

sup |Hr+1|1/(r+1) and, if s ≥ 2, there exists an elliptic point in Σn with respect the past-pointing

Gauss map. Then,

Σn ⊂ [t0, t0 + β]×Mn,

where

β =

ρ(t0)
ρ(maxh)

max∂Σ(Θ)− 1

minH1

.

Proof. For the sake of simplicity, here we keep the notation of Theorem 8.1.3. Since ρ′ < 0 and

Θ ≥ 1, it follows from (8.4), (8.5), (8.7) and (8.3) that

Lkϕ ≥ ckρ(h)

k + 1
〈∇Hk+1,∇h〉,
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which gives

Lϕ ≥ 0.

By the weak maximum principle we get

cσ(h) + ρ(h)Θ ≤ max
∂Σ

ϕ = cσ(t0) + ρ(t0)max
∂Σ

Θ,

that is,

c(σ(h)− σ(t0)) ≤ ρ(t0)max
∂Σ

Θ− ρ(h). (8.10)

Besides, it is easy to see that for every t ≥ t0 the inequality

σ(t)− σ(t0) ≥ ρ(t)(t− t0) (8.11)

holds. Since Proposition 8.1.1 gives h ≥ t0, we must have from equations (8.10) and (8.11) that

cρ(h)(h− t0) ≤ ρ(t0)max
∂Σ

Θ− ρ(h).

Therefore,

c(h− t0) ≤
ρ(t0)

ρ(h)
max
∂Σ

Θ− 1

and the result follows.

Reasoning as in Theorem 8.1.4 we get the following result:

Theorem 8.1.6. Let −R ×Mn be a Lorentzian product whose fiber has nonnegative sectional

curvature. Let ψ : Σn → −R×Mn be a compact (r, s)-linear Weingarten spacelike hypersurface

with positive (s + 1)-mean curvature and boundary ∂Σn contained into the slice {t0} × Mn.

Suppose that, if s ≥ 2, there exists an elliptic point in Σn with respect the past-pointing Gauss

map. Then,

Σn ⊂ [t0, t0 + β]×Mn,

where

β =
max∂Σ(Θ)− 1

minH1

.

To conclude this section let us consider as ambient space the Lorentz-Minkowski spacetime

L
n+1
1 . For convenience, we will adopt as model for the Lorentz-Minkowski spacetime the product

manifold −R× R
n endowed with the Lorentzian metric

〈 , 〉 = −π∗
R
(dt2) + π∗

Rn(dx2),

where π∗
R
and π∗

Rn denote the canonical projections from R×R
n on each factor, dx2 = dx21+ · · ·+

dx2n is the canonical Riemannian metric on the n-dimensional Euclidean space Rn and −R stands

for the line R furnished with the metric −dt2. We also note that the Gauss map N ∈ X⊥(Σ) of

a spacelike hypersurface Σn immersed into the Lorentz-Minkowski spacetime can be regarded as
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a map N : Σn → H
n, where H

n denotes the n-dimensional hyperbolic space, that is,

H
n = {p ∈ L

n+1 ; 〈p, p〉 = −1, p1 ≥ 0}.

In this setting, the image N(Σ) will be called the hyperbolic image of Σn. Furthermore, given a

geodesic ball B(a, ̺) ⊂ H
n centered at a point a ∈ H

n and radius ̺ > 0, it is well known that

B(a, ̺) is characterized as

B(a, ̺) = {p ∈ H
n ; − cosh ̺ ≤ 〈p, a〉 ≤ −1}.

In particular, if the hyperbolic image of Σ is contained into some geodesic ball B(a, ̺), then

1 ≤ |〈N, a〉| ≤ cosh ̺.

Hence if Σn is compact (necessarily with nonempty boundary; see, for instance, Section 2 of [18])

one has

max
∂Σ

|Θ| ≤ cosh ̺,

where ̺ is the radius of a geodesic ball of center ∂t := e1 = (1, 0, . . . , 0). With this prelim-

inaries, we are ready to prove the following result, where the assumption of the hypersurface

has an elliptic point is replaced by a condition of boundedness on the hyperbolic image of the

hypersurface.

Theorem 8.1.7. Let ψ : Σn → L
n+1 be a compact (r, s)-linear Weingarten spacelike hypersurface

immersed into the Lorentz-Minkowski space such that Hs+1 has strict sign on it and whose

boundary ∂Σ is contained into the hyperplane {0}×R
n. If the hyperbolic image of Σn is contained

into a geodesic ball of center e1 ∈ H
n and radius ̺ > 0, then the height function h of Σn satisfies

the following estimate

|h| ≤ cosh ̺− 1

minH1

. (8.12)

Moreover, estimate (8.12) is sharp in the sense that it is reached by the hyperbolic cap

Σλ =
{
x ∈ L

n+1; 〈x, x〉 = −λ2, λ ≤ x1 ≤
√
1 + λ2

}
, (8.13)

where λ is the positive constant given by λ = (cosh ̺− 1)−1/2.

Proof. From Lemma 1 of [18], our assumption that the boundary of Σn is contained into the

hyperplane {0}×R
n implies that (after an appropriate choice of orientation on Σn) there exists

an elliptic point in Σn. Hence the height estimate in (8.12) follows of Theorems 8.1.4 and 8.1.6.

Finally, it is not difficult to verify that the hyperbolic cap Σλ defined in (8.13) is a spacelike

hypersurface of the Lorentz-Minkowski spacetime which has constant (s + 1)-mean curvature

given by

Hs+1 =
1

λrs+1
> 0,

for every 0 ≤ s ≤ n − 1 (if we choose the Gauss map N in the same time-orientation of e1, for
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the case in which s is even). Moreover, the hyperbolic image of Σλ is contained in the geodesic

ball of center e1 ∈ H
n+1 and radius

̺ = cosh−1

√
1 +

1

λ2
.

Thus, the height function of Σλ is given by

h =
cosh ̺− 1

minΣλ
H1

,

showing that the estimate in (8.12) is sharp.

We point out that for a spacelike hypersurface with constant (s + 1)-mean curvature Hs+1,

Theorem 8.1.7 improves the estimate obtained by de Lima in Theorem 4.2 of [52]. Indeed, the

de Lima’s result says that

|h| ≤ cosh ̺− 1

H
1/(s+1)
s+1

.

On the other hand, it follows from Lemma 6.0.3 that

cosh ̺− 1

minH1

≤ cosh ̺− 1

H
1/(s+1)
s+1

for every s = 0, . . . , n− 1, that is, (8.12) is a best estimate.

8.2 Half-space theorems and topology at infinity

The purpose of this section is to recover some of the half-space theorems given in Section

7.2 for the case of complete spacelike hypersurfaces immersed into a GRW spacetime −R×Mn.

Following [64], our approach is based on the generalized version of the Omori-Yau’s maximum

principle for trace type differential operators given by Lemma A.0.3.

It is worth pointing out that our results give an improvement of those obtained by Garćıa-

Mart́ınez and Impera [64] for hypersurfaces having some constant higher order mean curvature in

a GRW spacetime with warping function non-decreasing (see Theorem 8.2.2 below). Moreover,

we are able to consider the case in which the warping function is non-increasing (see Theorem

8.2.5 below).

Before, let us recall the following definition, which in the Lorentzian setting was first intro-

duced in [64]. We say that a spacelike hypersurface in a GRW spacetime −R ×ρ M
n lies in an

upper or lower half-space if it is, respectively, contained into a region of −R×ρ M
n of the form

[a,+∞)×Mn or (−∞, a]×Mn,

for some real number a ∈ R.

We also recall that a GRW spacetime −R ×ρ M
n is said spatially closed if its fiber Mn is
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compact. In this setting, as an application of Proposition 8.1.1 we get the following result, which

is a generalization of Theorem 26 in [64] for the case in which the warping function is increasing

and the Gauss map is future-pointing. In particular, information on the topology at infinity of

these hypersurfaces are given.

Theorem 8.2.1. Let −R×ρM
n be a spatially closed GRW spacetime and let ψ : Σn → −R×ρM

n

be a properly immersed complete spacelike hypersurface with positive (s+1)-mean curvature, for

some 0 ≤ s ≤ n− 1. The following holds:

(a) If ρ′(h) > 0 and, for some 0 ≤ r ≤ s, we have

s∑

k=r

bkHk+1 ≥
s∑

k=r

bk sup[(log ρ)
′]k+1

for certain nonnegative constants bk and, when s ≥ 2, there exists an elliptic point in Σn

with respect the future-pointing Gauss map, then Σn cannot lie in a lower half-space. In

particular, Σn must have at least one top end.

(b) If ρ′(h) < 0 and, for some 0 ≤ r ≤ s, we have

s∑

k=r

bkHk+1 ≥
s∑

k=r

bk sup[−(log ρ)′]k+1

for certain nonnegative constants bk and, when s ≥ 2, there exists an elliptic point in Σn

with respect the past-pointing Gauss map, then Σn cannot lie in an upper half-space. In

particular, Σn must have at least one bottom end;

Proof. Since the proof is analogues to the Riemannian case, it is sufficient to prove, for instance,

item (b). For this, let us assume by contradiction that Σn lies in an upper half-space, that is,

Σn ⊂ [a,+∞)×Mn

for some a ∈ R. For any number t0 > a, we denote by Σt0 the hypersurface

Σt0 = {(t, p) ∈ Σn ; t ≤ t0}.

Then, Σt0 is a compact spacelike hypersurface with boundary contained into the slice {t0}×M ,

becauseMn is compact and the immersion is proper. Therefore, by Proposition 8.1.1 we get h ≥
t0 characterizing a contradiction since t0 is arbitrary. This finishes the proof of the theorem.

From now on, the aim is to study the case in which the fiber is not necessarily compact. More

precisely, following ideas already presented in the Riemannian setting, given a GRW spacetime

−R×Mn we are interest in to prove half-space theorems for noncompact generalized Weingarten

spacelike hypersurfaces immersed in these ambient spaces. The first one is the following:
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Theorem 8.2.2. Let −R×ρM
n be a GRW spacetime satisfying the strong NCC and with non-

decreasing warping function. Let ψ : Σn → −R ×ρ M
n be a complete noncompact (r, s)-linear

Weingarten spacelike hypersurface with positive (s + 1)-mean curvature, for some 1 ≤ r ≤ s ≤
n − 1, and d >

∑s
k=r bk sup[(log ρ)

′]k+1. Suppose that inf ρ′′(h)
ρ(h)

> −∞ and, if s ≥ 2, there

exists an elliptic point in Σn with respect the future-pointing Gauss map. Assume further that

sup |Hr| < +∞ and the second fundamental form satisfies |A| ≤ G(ro), where G ∈ C1([0,+∞))

is such that

G(0) > 0, G′(t) ≥ 0 and
1

G(t)
/∈ L1(+∞)

and ro is the distance function from a reference point in Σn. Then Σn cannot lie in a lower

half-space.

Proof. As in the proof of Theorem 7.2.7, we states that in this case the assumptions of Lemma

A.0.3 of Appendix A also holds. Indeed, we note that by Lemma 6.0.2

R(U, V )W = RM(U∗, V ∗)W ∗ + [(log ρ)′]2(〈U,W 〉V − 〈V,W 〉U)
− (log ρ)′′〈W,∂t〉(〈U, ∂t〉V − 〈V, ∂t〉U)
− (log ρ)′′(〈U,W 〉〈V, ∂t〉 − 〈V,W 〉〈U, ∂t〉)∂t,

for every U, V,W tangent to −R ×ρ M
n. In particular, for an orthonormal base {X, Y } of an

arbitrary plane tangent to Σn we get

K(X, Y ) =
1

ρ2(h)
KM(X∗, Y ∗)|X∗ ∧ Y ∗|2 + (log ρ)′(h)2

− (log ρ)′′(h)(〈X,∇h〉2 + 〈Y,∇h〉2).

By the strong NCC and the fact that |X∗ ∧ Y ∗|2 = 1 + 〈X,∇h〉2 + 〈Y,∇h〉2 we find

K(X, Y ) ≥ (log ρ)′′(h) + (log ρ)′(h)2

=
ρ′′(h)

ρ(h)
.

On the other hand, by using the Gauss equation (6.9) and the previous inequality, we infer

that the sectional curvature KΣ of Σn satisfies

KΣ = K(X, Y )− 〈AX,X〉〈AY, Y 〉+ 〈AX, Y 〉2

≥ ρ′′(h)

ρ(h)
− |AX||AY |

≥ ρ′′(h)

ρ(h)
− |A|2.

Hence, the assumption on the warping function and the second fundamental form imply that

KΣ satisfies (A.1) of Lemma A.0.3 of Appendix A, proving the claim.

From now on, we argue by contradiction. Let us suppose that Σn lies in a lower half-space.

101



In others words, the height function of Σn satisfies h∗ = suph < +∞.

Let Lk : C∞(Σ) → C∞(Σ) be the second order linear differential operator, for each k =

r, . . . , s, given by

Lk =
1

(−Θ)k

k∑

i=0

(−1)i
ck
ci
(log ρ)′(h)k−iΘiLi

= tr(Pk ◦ hess), (8.14)

where the tensor Pk : X(Σ) → X(Σ) is defined by

Pk =
1

(−Θ)k

k∑

i=0

(−1)i
ck
ci
(log ρ)′(h)k−iΘiPi.

We note that

Lk =
1

(−Θ)k
L+

k and Pk =
1

(−Θ)k
P+

k ,

where L+
k and P+

k are given by equations (7.21) and (7.22), respectively. Besides, taking in

mind our assumption we have that Lk is a semi-elliptic operator or, equivalently, Pk is a positive

semi-definite tensor. Moreover, since d > bk sup[(log ρ)
′]k+1 for every k = r, . . . , s, it follows from

Lemma 6.0.3 that

tr(Pk) ≤ ck
(−Θ)k

k∑

i=0

(−Θ)i
(
d

bk

)(k−i)/(k+1)

H i/r
r

≤ ck

k∑

i=0

(
d

bk

)(k−i)/(k+1)

H i/r
r ,

which implies that sup tr(Pk) < +∞.

We set the second order linear differential operator L : C∞(Σ) → C∞(Σ) by

L =
s∑

k=r

bkc
−1
k L+

k = tr(P ◦ hess), (8.15)

where the tensor P : X(Σ) → X(Σ) is given by

P =
s∑

k=r

bkc
−1
k P+

k .

Then P is a positive semi-definite symmetric tensor with sup tr(P) < ∞. In particular, L is

an semi-elliptic operator. It follows from here jointly with the claim proved above that Lemma

A.0.3 applies in this case, that is, the Omori-Yau’s maximum principle holds on Σn for the

operator L.

Since σ(h) ≤ σ(h∗) < +∞, we can to assure the existence of a sequence of points {pj} ⊂ Σn
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with the following properties:

lim σ(h)(pj) = σ(h∗), |∇σ(h)(pj)| = ρ(h)(pj)|∇h(pj)| <
1

j
and Lσ(h)(pj) <

1

j
.

Hence equation (8.1) yields

1

j
>

s∑

k=r

ρ(h(pj))

(−Θ(pj))k
bk
(
−[(log ρ)′(h(pj))]

k+1 + (−Θ(pj))
k+1Hk+1(pj)

)
.

By relation |∇h|2 = Θ2− 1, making j → +∞ we get d ≤∑s
k=r bk sup[(log ρ)

′]k+1, characterizing

a contradiction.

Let us recall the following remark already mentioned in a similar way after Theorem 7.2.7.

From the equality

|A|2 = n2H2
1 − n(n− 1)H2

it follows that under the assumption infH2 > −∞ the condition sup |A|2 < +∞ is equivalent

to sup |H1| < +∞. More generally, if there exists an elliptic point for an appropriate choice of

the Gauss map and Hs+1 does not change sign on Σn for some s = 2, . . . , n− 1, then by Lemma

6.0.3 the condition sup |A|2 < +∞ is equivalent to supH1 < +∞. Moreover, if inf ρ′′(h)
ρ(h)

> −∞,

reasoning as in the proof of Theorem 8.2.2 we get that, under assumption sup |H1| < +∞, the

sectional curvature of hypersurface is bounded from below. In particular, the following result

holds.

Corollary 8.2.3. Let −R×ρM
n be a GRW spacetime satisfying the strong NCC and with non-

decreasing warping function. Let ψ : Σn → −R ×ρ M
n be a complete (r, s)-linear Weingarten

spacelike hypersurface with positive (s + 1)-mean curvature, for some 0 ≤ r ≤ s ≤ n − 1, and

d >
∑s

k=r bk sup[(log ρ)
′]k+1. Suppose that sup |H1| < +∞, inf ρ′′(h)

ρ(h)
> −∞ and, if s ≥ 2, there

exists an elliptic point in Σn with respect the future-pointing Gauss map. Then, Σn cannot lie

in a lower half-space.

We note that, if Σn is a (s, s)-linear Weingarten hypersurface in Corollary 8.2.3, that is, if

Σn has constant (s+ 1)-mean curvature, we recover Theorem 35 (i) of [64]:

Corollary 8.2.4 (Theorem 35 (i) of [64]). Let −R ×ρ M
n be a GRW spacetime satisfying the

strong NCC and with non-decreasing warping function. Let ψ : Σn → −R×ρ M
n be a complete

spacelike hypersurface with constant (s+ 1)-mean curvature satisfying H
1/(s+1)
s+1 > sup(log ρ)′ for

some 0 ≤ s ≤ n− 1. Suppose that sup |H1| < +∞, inf ρ′′(h)
ρ(h)

> −∞ and, if s ≥ 2, there exists an

elliptic point in Σn with respect the future-pointing Gauss map. Then, Σn cannot lie in a lower

half-space.

We observe that as showed in Theorem 32 of [64], when the hypersurface has constant mean

curvature we do not need to assume that ρ′ does not change sign in Corollary 8.2.4.

Finally, we close this section by proving the version of the previous theorem for the case in

which the warping function is non-increasing.

103



Theorem 8.2.5. Let −R×ρM
n be a GRW spacetime satisfying the strong NCC and with non-

increasing warping function. Let ψ : Σn → −R ×ρ M
n be a complete (r, s)-linear Weingarten

spacelike hypersurface with positive (s + 1)-mean curvature, for some 1 ≤ r ≤ s ≤ n − 1, and

d >
∑s

k=r bk sup[−(log ρ)′]k+1. Suppose that inf ρ′′(h)
ρ(h)

> −∞ and, if s ≥ 2, there exists an elliptic

point in Σn with respect the past-pointing Gauss map. Assume further that sup |Hr| < +∞ and

the second fundamental form satisfies |A| ≤ G(ro), where G ∈ C1([0,+∞)) is such that

G(0) > 0, G′(t) ≥ 0 and
1

G(t)
/∈ L1(+∞)

and ro is the distance function from a reference point in Σn. Then Σn cannot lie in an upper

half-space.

Proof. Let us assume by contradiction that Σn lies in an upper half-space, that is, the height

function of Σn satisfies h∗ = inf h > −∞. For each k = r, . . . , s, let Lk the operator given in

(8.14). We observer that it can be rewrite as

Lk =
1

Θk

k∑

i=0

(−1)k−i ck
ci
(log ρ)′(h)k−iΘiLi =

1

Θk
L−

k ,

where L−
k is defined in (7.24). Hence, in this case, Lk is also a semi-elliptic operator. In particular,

L defined in (8.15) is a semi-elliptic operator too. Furthermore, as in the previous theorem the

Omori-Yau’s maximum principle holds on Σn for the semi-elliptic operator L.

Since σ(h) ≥ σ(h∗), there exists a sequence of points {qj} ⊂ Σn satisfying

lim σ(h)(qj) = σ(h∗), |∇σ(h)(qj)| <
1

j
and Lσ(h)(qj) > −1

j
,

which jointly with (8.2) implies that

−1

j
<

s∑

k=r

ρ(h(qj))

Θ(qj)k
bk
(
[−(log ρ)′(h(qj))]

k+1 −Θ(qj)
k+1Hk+1(qj)

)
.

Therefore, letting j → ∞ we get

d ≤
s∑

k=r

bk sup[−(log ρ)′]k+1

giving a contradiction. This proves the result.

In particular, we get.

Corollary 8.2.6. Let −R×ρM
n be a GRW spacetime satisfying the strong NCC and with non-

increasing warping function. Let ψ : Σn → −R ×ρ M
n be a complete (r, s)-linear Weingarten

spacelike hypersurface with positive (s + 1)-mean curvature, for some 0 ≤ r ≤ s ≤ n − 1, and

d >
∑s

k=r bk sup[−(log ρ)′]k+1. Suppose that sup |H1| < +∞, inf ρ′′(h)
ρ(h)

> −∞ and, if s ≥ 2, there
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exists an elliptic point in Σn with respect the past-pointing Gauss map. Then, Σn cannot lie in

an upper half-space.

As an immediate consequence we obtain the following result for hypersurfaces with some

constant higher order mean curvature.

Corollary 8.2.7. Let −R×ρM
n be a GRW spacetime satisfying the strong NCC and with non-

increasing warping function. Let ψ : Σn → −R×ρM
n be a complete spacelike hypersurface with

constant (s + 1)-mean curvature satisfying H
1/(s+1)
s+1 > sup[−(log ρ)′], for some 0 ≤ s ≤ n − 1.

Suppose that sup |H1| < +∞, inf ρ′′(h)
ρ(h)

> −∞ and, if s ≥ 2, there exists an elliptic point in Σn

with respect the past-pointing Gauss map. Then, Σn cannot lie in an upper half-space.
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Part III

On stability of hypersurfaces in

weighted semi-Riemannian warped

products
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Chapter 9

Preliminaries for Part III

Let (M
n+1

, 〈 , 〉) be an (n + 1)-dimensional oriented Riemannian or Lorentzian manifold

and let f : M
n+1 → R be a smooth function. The weighted manifold M

n+1

f associated with

M
n+1

and f is the triple (M
n+1

, 〈 , 〉, e−fdM), where dM denotes the standard volume element

of M
n+1

induced by the metric 〈 , 〉. We will refer to function f as the weight function of

the weighted manifold M
n+1

f . In this setting, for a weighted manifold M
n+1

f , an important and

natural tensor is the so called Bakry-Émery-Ricci tensor Ricf , which is a generalization of Ricci

tensor Ric of M
n+1

which is defined by

Ricf = Ric + Hessf,

where Hessf is the Hessian of f on M
n+1

. In particular, if f is constant Ricf is simply the

standard Ricci tensor Ric of M
n+1

.

Appearing naturally in the study of self-shrinkers, Ricci solitons, harmonic heat flows and

many other subjects in differential geometry, weighted manifolds are proved to be important

nontrivial generalizations of Riemannian manifolds and, nowadays, there are several geometric

investigations concerning them. For a brief overview of results in this scope, we refer the articles

of Morgan [98] and Wei and Wylie [117].

Let ψ : Σn → M
n+1

f be an isometrically immersed orientable Riemannian manifold into

M
n+1

f . Then Σn becomes automatically a weighted Riemannian manifold by weighted structure

induced from M
n+1

f . In this case and following Gromov [69], the weighted mean curvature, or

simply f -mean curvature, Hf of Σn is defined by

nHf = nH + ε〈∇f,N〉,

where H denotes the standard mean curvature of Σn with respect to its orientation, ε = 1 if

M
n+1

is a Riemannian manifold, and ε = −1 if M
n+1

is a Lorentzian manifold. In particular,

when f is constant we have Hf = H and we recover the usual definition of mean curvature.

When the ambient space is Riemannian and the f -mean curvature Hf vanishes identically on

Σn we said that Σn is a f -minimal hypersurface. In the case in which the ambient space is

Lorentzian and the f -mean curvature Hf vanishes identically on Σn, it is called a f -maximal

107



hypersurface. In both the case, its mean curvature H satisfies

nH = −ε〈∇f,N〉. (9.1)

The research on the geometry of hypersurfaces having constant f -mean curvature and, in

particular, the investigations on the behavior of hypersurfaces with f -mean curvature vanishes

identically immersed into a weighted ambient space, constitutes a recent and fruitful topic into

the theory of isometric immersions. It has been already approached by many authors and we

may cite, for instance, the works [34, 36, 37,41,60, 73,75,80,91, 106,108].

As in the case of zero mean curvature hypersurfaces, it is well known that the condition of

Σn has zero f -mean curvature is equivalent to the fact that Σn is a critical point of the weighted

area functional,

volf (Σ) =

∫

Σ

e−fdΣ,

for every variation of Σn with compact support and fixed boundary. It is natural to wonder

whether these hypersurfaces has the property of to minimize (if the ambient space is Riemannian)

or maximize (if the ambient space is Lorentzian) the weighted area functional. Recently many

authors has been devoted to the study of this question (see, for instance, [34, 41, 60, 80] and

references therein).

In order to answer this question, it is very useful to know the second variation formula of

the weighted area functional. To this end, let us recall that the f -divergence operator on Σn is

defined by

divf (X) = efdiv(e−fX), (9.2)

where X is a tangent vector field on Σn and div denotes the standard divergence operator of Σn.

From (9.2) we can define the f -Laplacian of Σn by

∆fu = divf (∇u) = ∆u− 〈∇f,∇u〉, (9.3)

where u is a smooth function on Σn, ∆ denotes the Laplacian induced of div and ∇ stands for

the Levi-Civita connection of Σn induced from Levi-Civita connection ∇ from ambient space

M
n+1

f .

Now let V be a normal compactly supported variation of Σn and take ϕ ∈ C∞
0 (Σ) such that

V = ϕN , where N determines the orientation of Σn. If the f -mean curvature Hf of Σn vanishes

identically, then it is well known that the second variation of the weighted area functional is

given by (in the Riemannian case see, for instance, [41], and in the Lorentzian case see, for

instance, [57])
d2

dt2
volf (Σ)|t=0 = −ε

∫

Σ

ϕLfϕdΣ, (9.4)

where the weighted Jacobi operator Lf is defined by

Lf = ∆f + ε
(
|A|2 + Ricf (N,N)

)
.
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Then we say that Σn is Lf -stable if it minimizes (resp. maximizes) the weighted are functional

in the Riemannian case (resp. Lorentzian case), that is, d2

dt2
volf (Σ)|t=0 ≥ 0 (resp. ≤ 0).

This part of the thesis is dedicated to the study of the Lf -stability of zero f -mean curvature

hypersurfaces immersed into a weighted semi-Riemannian warped product space. In this setting

and for the sake of simplicity, we will adopt all notations and definitions already introduced in

Chapter 6 regarding warped product spaces.
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Chapter 10

The Riemannian case

In this chapter we give sufficient conditions to guarantee Lf -stability of f -minimal hyper-

surfaces immersed into a weighted Riemannian warped product space, where Lf stands for the

weighted Jacobi operator. The results presented herein make part of [58].

10.1 Lf-Stability of f-minimal hypersurfaces in weighted

Riemannian warped products

Let M
n+1

f = (I ×ρ M
n)f be a weighted Riemannian warped product and let ψ : Σn →M

n+1

f

be a f -minimal two-sided hypersurface. Then equation (9.4) says that the second variation

formula of weighted area functional is given by

d2

dt2
volf (Σ)|t=0 = −

∫

Σ

ϕLfϕdΣ, (10.1)

where V = ϕN is a normal compactly supported variation of Σn and the weighted Jacobi

operator Lf is defined by

Lf = ∆f + |A|2 + Ricf (N,N). (10.2)

In particular, (10.1) depends only on ϕ ∈ C∞
0 (Σ). In this setting, let us emphasize the following

definition introduced in previous chapter:

Definition 10.1.1. Let Σn be a hypersurface as above. We say that Σn is Lf -stable if, for any

compactly supported smooth function ϕ ∈ C∞
0 (Σ), it holds that

d2

dt2
volf (Σ)|t=0 = −

∫

Σ

ϕLfϕe
−fdΣ ≥ 0.

In order to proof our main theorem of this section, we will need use the following auxiliary

result, which gives a sufficient condition for a f -minimal hypersurfaces be Lf -stable.

Lemma 10.1.2. Let ψ : Σn → M
n+1

f be a f-minimal two-sided hypersurface immersed into a

weighted Riemannian warped product M
n+1

f = (I ×ρ M
n)f . If there exists a positive smooth

function u ∈ C∞(Σ) such that Lfu ≤ 0, then Σn is Lf -stable.
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Proof. Assume that there exists such a function u and take ϕ ∈ C∞
0 (Σ). Then, we can choose

η ∈ C∞
0 (Σ) satisfying ϕ = ηu. Hence, from (10.2) we have

∫

Σ

ϕLfϕe
−fdΣ =

∫

Σ

ηuLf (ηu)e
−fdΣ

=

∫

Σ

[
η2uLfu+ ηu2∆η + 2ηu〈∇u,∇η〉 − ηu2〈∇η,∇f〉

]
e−fdΣ

≤
∫

Σ

[
ηu2∆η + 2ηu〈∇u,∇η〉 − ηu2〈∇η,∇f〉

]
e−fdΣ

=

∫

Σ

[
ηu2∆η +

1

2
〈∇u2,∇η2〉 − ηu2〈∇η,∇f〉

]
e−fdΣ. (10.3)

On the other hand, we can see that

div(u2∇η2) = 〈∇u2,∇η2〉+ u2∆η2 = 〈∇u2,∇η2〉+ 2ηu2∆η + 2u2|∇η|2.

Therefore, from the weighted version of divergence theorem (see Lemma 2.2 of [34]), we get from

last equation together with (10.3) that

∫

Σ

ϕLfϕe
−fdΣ ≤

∫

Σ

[
1

2
div(u2∇η2)− ηu2〈∇η,∇f〉 − u2|∇η|2

]
e−fdΣ

=

∫

Σ

[
1

2
divf (u

2∇η2)− u2|∇η|2
]
e−fdΣ

≤ −
∫

Σ

u2|∇η|2e−fdΣ ≤ 0

This shows that Σn is Lf -stable, as desired.

Remark 10.1.3. It is worth to observe that the converse of Lemma 10.1.2 is also true and can

be found in Lemma 2.1 of [60] (see also Proposition 3 of [80]).

Proceeding, it follows from a splitting theorem due to Fang et al. (see Theorem 1.1 of

[62]) that if a weighted Riemannian warped product M
n+1

f = (I ×ρ M
n)f with bounded weight

function f is such that Ricf is nonnegative, then f must be constant along I. Motivated by

this fact, in our main result we will consider weighted Riemannian warped product M
n+1

f whose

weight function f does not depend on the parameter t ∈ I, that is, 〈∇f, ∂t〉 = 0 and, for the

sake of simplicity, we will denote such a manifold by M
n+1

f = I ×ρ M
n
f .

Now we are ready to state main theorem.

Theorem 10.1.4. Let ψ : Σn → M
n+1

f be a f-minimal two-sided hypersurface immersed into a

weighted Riemannian warped product M
n+1

f = I ×ρ M
n
f . Setting Θ̃ = ρΘ we have

Lf Θ̃ = −nρ
′′

ρ
Θ̃. (10.4)

Moreover, the following holds:
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(a) If the angle function Θ has strict sign and the warping function satisfies ρ′′ ≥ 0 on Σn,

then Σn is Lf -stable;

(b) If Σn is compact, the angle function Θ has strict sign and the warping function satisfies

ρ′′ ≤ 0 on Σn, then Σn is Lf -stable if and only if ρ′′ = 0 on Σn;

(c) If Σn is compact, Θ does not vanish identically and ρ′′ < 0 on Σn, then Σn cannot be

Lf -stable.

Proof. To prove the first part, we observe that by applying Proposition 6.0.7 in this case we get

(see also, for instance, Proposition 2.1 of [33])

∆Θ̃ = −nρ∂⊤t (H)− nρ′H − nN(ρ′)− (|A|2 + Ric(N,N))Θ̃. (10.5)

Besides, since ρ∂t is a conformal vector field on M
n+1

f , then ∇Θ̃ = −ρA(∂⊤t ). Hence from (9.1)

jointly with our restrictions on the weight function and Hessian’s definition, with a straightfor-

ward computation, we obtain

n∂⊤t (H) = −∂⊤t 〈∇f,N〉
= −〈∇∂t∇f,N〉+Θ〈∇N∇f,N〉+ 〈∇f, A(∂⊤t )〉 (10.6)

= −Hessf(N, ∂t) + ΘHessf(N,N)− ρ−1〈∇f,∇Θ̃〉.

On the other hand, it is not difficult to verify that

Hessf(N, ∂t) = −ρ−1ρ′〈∇f,N〉 = nρ−1ρ′H. (10.7)

Hence, equations (10.5), (10.6) and (10.7) yield

∆Θ̃ = 〈∇f,∇Θ̃〉 − nN(ρ′)− (|A|2 + Ricf (N,N))Θ̃.

Thus, from (9.3) we obtain that

∆f Θ̃ = ∆Θ̃− 〈∇f,∇Θ̃〉
= −nN(ρ′)− (|A|2 + Ricf (N,N))Θ̃,

which implies that equation (10.4) holds.

To prove (a), we observe that since the angle function has strict sign, for an appropriated

choose of N , we can suppose that Θ is a positive function. Therefore, since the warping function

satisfies ρ′′ ≥ 0 on Σn, it follows from Lemma 10.1.2 that Σn is Lf -stable.

Now, let us prove (b). Again, we can suppose that Θ is a positive function. By using that

Σn is Lf -stable, we infer

0 ≤ −
∫

Σ

Θ̃Lf Θ̃e
−fdΣ =

∫

Σ

n
ρ′′

ρ
Θ̃2e−fdΣ ≤ 0,
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which gives immediately that ρ′′ = 0 on Σn. The converse follows.

Finally, item (c) follows of the fact that in this case

−
∫

Σ

Θ̃Lf Θ̃e
−fdΣ =

∫

Σ

n
ρ′′

ρ
Θ̃2e−fdΣ < 0,

that is, Σn is not Lf -stable.

To close this chapter, it is worth point out that Theorem 10.1.4 gives a generalization of

Theorems 3, 13 and 14 due to Aledo and Rubio [4].
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Chapter 11

The Lorentzian case

This chapter is dedicated to the study of the Lf -stability of f -maximal spacelike hypersurfaces

immersed into a weighted GRW spacetime. In particular, the main result gives a sufficient

condition for these hypersurfaces be Lf -stable. In this chapter we present the results of the

paper [57].

11.1 Lf-Stability of f-maximal hypersurfaces in weighted

Lorentzian warped products

Let M
n+1

f = (−I ×ρ M
n)f be a weighted GRW spacetime and let ψ : Σn → M

n+1

f be a

f -maximal spacelike hypersurface. Let V = ϕN be a normal compactly supported variation of

Σn. Equation (9.4) yields
d2

dt2
volf (Σ)|t=0 =

∫

Σ

ϕLfϕdΣ,

where the weighted Jacobi operator Lf , in this case, is given by

Lf = ∆f −
(
|A|2 + Ricf (N,N)

)
. (11.1)

Hence, the second variation of Σn depends only on ϕ ∈ C∞
0 (Σ). As in the previous chapter, this

motivates the following definition:

Definition 11.1.1. Let Σnbe a hypersurface as above. We say that Σn is Lf -stable if, for any

compactly supported smooth function ϕ ∈ C∞
0 (Σ), it holds that

d2

dt2
volf (Σ)|t=0 =

∫

Σ

ϕLfϕe
−fdΣ ≤ 0.

Reasoning in analogous way to Lemma 10.1.2 it is not difficult to obtain a version for the

Lorentzian case. For the sake of completeness, we include the proof of this fact here.

Lemma 11.1.2. Let ψ : Σn → M
n+1

f be a f -maximal spacelike hypersurface immersed into

a weighted GRW spacetime M
n+1

f = −I ×ρ M
n
f . If there exists a positive smooth function

u ∈ C∞(Σ) such that Lfu ≤ 0, then Σn is Lf -stable.
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Proof. Let u be such a function and take ϕ ∈ C∞
0 (Σ). Then, we can choose η ∈ C∞

0 (Σ) satisfying

ϕ = ηu. Hence, from (11.1) we have

∫

Σ

ϕLfϕe
−fdΣ =

∫

Σ

ηuLf (ηu)e
−fdΣ

≤
∫

Σ

[
ηu2∆η + 2ηu〈∇u,∇η〉 − ηu2〈∇η,∇f〉

]
e−fdΣ

=

∫

Σ

[
ηu2∆η +

1

2
〈∇u2,∇η2〉 − ηu2〈∇η,∇f〉

]
e−fdΣ. (11.2)

On the other hand, it is not difficult to verify that

Div(u2∇η2) = 〈∇u2,∇η2〉+ u2∆η2 = 〈∇u2,∇η2〉+ 2ηu2∆η + 2u2|∇η|2. (11.3)

Hence, using once more the weighted version of divergence theorem jointly with (11.2) and (11.3)

we achieve

∫

Σ

ϕLfϕe
−fdΣ ≤

∫

Σ

[
1

2
Div(u2∇η2)− ηu2〈∇η,∇f〉 − u2|∇η|2

]
e−fdΣ

=

∫

Σ

[
1

2
Divf (u

2∇η2)− u2|∇η|2
]
e−fdΣ

≤ −
∫

Σ

u2|∇η|2e−fdΣ ≤ 0.

Therefore Σn is Lf -stable. So the proof is completed.

LetM
n+1

= −I×ρM
n be a GRW spacetime and f :M

n+1 → R a smooth function onM
n+1

.

It follows from a splitting theorem due to Case (see Theorem 1.2 of [35]) that if weight function

f is bounded and Ricf (T, T ) ≥ 0 for all timelike vector fields T ∈ X(Σ), then f must be constant

along I. Motivated by this result, here we will consider weighted GRW spacetimes M
n+1

f whose

weight function f does not depend on the parameter t ∈ I, that is, 〈∇f, ∂t〉 = 0 and, for sake of

simplicity, we will denote them by M
n+1

f = −I×ρM
n
f . In what follows, we taken the orientation

N in the same time-orientation of ∂t, that is, Θ = 〈N, ∂t〉 ≤ −1.

Theorem 11.1.3. Let ψ : Σn → M
n+1

f be a f -maximal spacelike hypersurface immersed into a

weighted GRW spacetime M
n+1

f = −I ×ρ M
n
f . Setting Θ̃ = ρΘ we have

Lf Θ̃ = n
ρ′′

ρ
Θ̃. (11.4)

Moreover, the following holds:

(a) If ρ′′ ≤ 0 on Σn, then Σn is Lf -stable.

(b) If Σn is compact and ρ′′ ≥ 0 on Σn, then Σn is Lf -stable if and only if ρ′′ = 0 on Σn.

(c) If Σn is compact and ρ′′ > 0 on Σn, then Σn cannot be Lf -stable.
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Proof. Let us prove equation (11.4) first. By applying Proposition 6.0.7 one has (see also, for

instance, Proposition 2.1 of [33])

∆Θ̃ = nρ∂⊤t (H) + nρ′H − nN(p′) + (|A|2 + Ric(N,N))Θ̃. (11.5)

On the other hand, as in the proof of Theorem 10.1.4 we have

n∂⊤t (H) = Hessf(N, ∂t) + ΘHessf(N,N) + ρ−1〈∇f,∇Θ̃〉 (11.6)

and

Hessf(N, ∂t) = −ρ−1ρ′〈∇f,N〉 = −nρ−1ρ′H. (11.7)

Then equations (11.5), (11.6) and (11.7) imply that

∆Θ̃ = 〈∇f,∇Θ̃〉 − nN(ρ′) + (|A|2 + Ricf (N,N))Θ̃.

Thus, from (9.3) we get that

∆f Θ̃ = ∆Θ̃− 〈∇f,∇Θ̃〉
= −nN(ρ′) + (|A|2 + Ricf (N,N))Θ̃.

Hence equation (11.4) holds.

To prove item (a), it suffices to notice that, by equation (11.4), we have Lf (−Θ̃) ≥ 0 and,

since Θ is taken negative, Lemma 11.1.2 assures that Σn is Lf -stable.

Now, let us deal of item (b). In this case, we have that C∞
0 (Σ) = C∞(Σ). So, if Σn is

Lf -stable, we obtain

0 ≥
∫

Σ

Θ̃Lf Θ̃e
−fdΣ =

∫

Σ

n
ρ′′

ρ
Θ̃2e−fdΣ ≥ 0,

that is, ρ′′ = 0 on Σn. The reciprocal statement follows from item (a).

Finally, we prove item (c). To do so, we use the definition of Lf -stability to infer

∫

Σ

Θ̃Lf Θ̃e
−fdΣ =

∫

Σ

n
ρ′′

ρ
Θ̃2e−fdΣ > 0.

Therefore, Σn cannot be Lf -stable, which finishes the proof.
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Appendix A

A brief comment about the generalized

Omori-Yau’s maximum principle

In this appendix, we recall briefly a generalized version of the Omori-Yau’s maximum prin-

ciple for trace type differential operators proved in [19] as well as the well known Omori-Yau’s

maximum principle for the Laplacian operator. Let Σn be a Riemannian manifold and let

L = tr(P ◦ hess) be a semi-elliptic operator, where P : X(Σ) → X(Σ) is a positive semi-definite

symmetric tensor. Following the terminology introduced by Pigola et al. [104], we say that the

Omori-Yau maximum’s principle holds on Σn for the operator L if, for any function u ∈ C2(Σ)

with u∗ = sup u < +∞, there exists a sequence of points {pj} ⊂ Σn satisfying

u(pj) > u∗ − 1

j
, |∇u(pj)| <

1

j
and Lu(pj) <

1

j

for every j ∈ N.

In this sense, the classical result given by Omori and Yau in [101,118] states that the Omori-

Yau’s maximum principle holds for the Laplacian on every complete Riemannian manifold with

Ricci curvature bounded from below, that is:

Lemma A.0.1. Let Σn be a complete Riemannian manifold whose Ricci curvature is bounded

from below and u ∈ C2(Σ) satisfying u∗ < +∞. Then, there exists a sequence of points {pj} ⊂ Σn

such that

u(pj) > u∗ − 1

j
, |∇u(pj)| <

1

j
and ∆u(pj) <

1

j
.

On the other hand, as observed also by Pigola et al. [104], the validity of Omori-Yau’s

maximum principle on Σn does not depend on curvatures bounds as much as one would expect.

For instance, the Omori-Yau’s maximum principle holds on every Riemannian manifolds which

is properly immersed into a Riemannian space form with controlled mean curvature (see [104],

Example 1.14). In particular, it holds for every constant mean curvature hypersurface properly

immersed into a Riemannian space form.

More generally, and following again the terminology introduced in [104], the weak Omori-

Yau’s maximum principle is said to hold on a (not necessarily complete) n-dimensional Rieman-

nian manifold Σn if, for any smooth function u ∈ C2(Σ) with u∗ < +∞ there exists a sequence

118



of points {pj} ⊂ Σn with the properties

u(pj) > u∗ − 1

j
and ∆u(pj) <

1

j
.

As proved by Pigola et al. [103, 104], the fact that the weak Omori-Yau’s maximum principle

holds on Σn is equivalent to the stochastic completeness of the manifold, that is:

Lemma A.0.2. A Riemannian manifold Σn is stochastically complete if and only if for every

u ∈ C2(Σ) satisfying u∗ < +∞, there exists a sequence of points {pj} ⊂ Σn such that

u(pj) > u∗ − 1

j
and ∆u(pj) <

1

j
.

In particular, the weak Omori-Yau’s maximum principle holds on every parabolic Riemannian

manifold (see Corollary 6.4 of [68]).

In the more general setting, we quote a suitable version of the Omori-Yau’s maximum prin-

ciple for trace type differential operators on a complete noncompact Riemannian manifold (see

Theorem 6.13 of [19]).

Lemma A.0.3. Let Σn be a complete noncompact Riemannian manifold; let o ∈ Σn be a refer-

ence point and denote by ro the Riemannian distance function from o. Assume that the sectional

curvature of Σn satisfies

KΣ ≥ −G2(ro), (A.1)

with G ∈ C1([0,+∞)) is such that

G(0) > 0, G′(t) ≥ 0 and
1

G(t)
/∈ L1(+∞). (A.2)

Let P be a positive semi-definite symmetric tensor on Σn. If sup tr(P) < +∞, then the Omori-

Yau’s maximum principle holds on Σn for the semi-elliptic operator L = tr(P ◦ hess).

In particular, Lemma A.0.3 remains true if we replace the condition in (A.1) by the stronger

condition of Σn having sectional curvature bounded from below by a constant.

Remark A.0.4. As it is well known, examples of functions G satisfying condition (A.2) in

Lemma A.0.3 are given by (see, for instance [19, 104])

G(t) = t

N∏

j=1

logj(t), t≫ 1,

where logj stands for the j-th iterated logarithm.

Recently, many authors has been studied new forms of the Omori-Yau’s maximum principle in

order to extend the investigation to a much more general class of differential operators containing

the Laplacian operator. We refer to the interested reader the comprehensive book [19] for a

complete background about this topic.
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