
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

MARCELLA MEDEIROS SIQUEIRA COUTINHO DE ALMEIDA

A CASE STUDY OF PROACTIVE AUTO-SCALING FOR AN

ECOMMERCE WORKLOAD

CAMPINA GRANDE - PB

2022

MARCELLA MEDEIROS SIQUEIRA COUTINHO DE ALMEIDA

A CASE STUDY OF PROACTIVE AUTO-SCALING FOR AN

ECOMMERCE WORKLOAD

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharela em
Ciência da Computação.

Orientador: Thiago Emmanuel Pereira da Cunha Silva

CAMPINA GRANDE - PB

2022

MARCELLA MEDEIROS SIQUEIRA COUTINHO DE ALMEIDA

A CASE STUDY OF PROACTIVE AUTO-SCALING FOR AN

ECOMMERCE WORKLOAD

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

BANCA EXAMINADORA:

Thiago Emmanuel Pereira da Cunha Silva
Orientador – UASC/CEEI/UFCG

Pedro Sergio Nicolletti

Examinador – UASC/CEEI/UFCG

Francisco Vilar Brasileiro

Professor da Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 02 de Setembro de 2022.

CAMPINA GRANDE - PB

RESUMO

Preliminary data obtained from a partnership between the Federal University of Campina Grande

and an ecommerce company indicates that some applications have issues when dealing with variable

demand. This happens because a delay in scaling resources leads to performance degradation and, in

literature, is a matter usually treated by improving the auto-scaling. To better understand the current

state-of-the-art on this subject, we re-evaluate an auto-scaling algorithm proposed in the literature,

in the context of ecommerce, using a long-term real workload. Experimental results show that our

proactive approach is able to achieve an accuracy of up to 94 percent and led the auto-scaling to a

better performance than the reactive approach currently used by the ecommerce company.

A case study of proactive auto-scaling for an ecommerce
workload

Marcella Medeiros Siqueira
Coutinho de Almeida

marcella.almeida@ccc.ufcg.edu.br
Federal University of Campina

Grande
Campina Grande, Paraíba, Brazil

Thiago Emmanuel Pereira
temmanuel@computacao.ufcg.edu.br

Federal University of Campina
Grande

Campina Grande, Paraíba, Brazil

Fabio Morais
fabio@computacao.ufcg.edu.br
Federal University of Campina

Grande
Campina Grande, Paraíba, Brazil

ABSTRACT

Preliminary data obtained from a partnership between the Fed-

eral University of Campina Grande and an ecommerce company

indicates that some applications have issues when dealing with

variable demand. This happens because a delay in scaling resources

leads to performance degradation and, in literature, is a matter

usually treated by improving the auto-scaling. To better under-

stand the current state-of-the-art on this subject, we re-evaluate an

auto-scaling algorithm proposed in the literature, in the context of

ecommerce, using a long-term real workload. Experimental results

show that our proactive approach is able to achieve an accuracy of

up to 94 percent and led the auto-scaling to a better performance

than the reactive approach currently used by the ecommerce com-

pany.

KEYWORDS

Cloud computing, auto-scaling, workload prediction, ARIMA

1 INTRODUCTION

Cloud computing refers to a model in which conigurable com-

puting resources (e.g., networks, servers, storage, applications, and

services) are outsourced on an on-demand pay-per-use basis [12].

Thus, the computing resources could be rapidly provisioned and

released with minimal management efort or service provider in-

teraction, providing an elastic infrastructure [17]. The auto-scaling

techniques use this elasticity to automatically adjust resources

based on the application demand running in the cloud infrastruc-

ture.

Speciically, auto-scaling can be deined as the process of dynam-

ically adapting the resources assigned to the elastic applications,

depending on the input workload, without the intervention of a

human manager [16, 18, 19]. In Amazon Web Services (AWS), this

feature allows users to automatically launch or terminate virtual

instances using its EC2 service based on predeined policies, sched-

ules, and regular health status checks [22].

There are two ways of scaling any application: vertical scaling

and horizontal scaling. The irst one works on increasing (scale-up)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than UFCG
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from marcella.almeida@ccc.ufcg.edu.br.

© 2022 Universidade Federal de Campina Grande.

and decreasing (scale-down) the number of computing resources

assigned to each application instance, while the latter scales by

increasing (scale-out) and decreasing (scale-in) the number of ap-

plication instances [24].

As for the classiication of auto-scalers, when grouped by their

anticipation capabilities [16], it can be divided into two classes:

reactive and proactive. In reactive, the user has to specify thresholds

for workload metrics, meaning that scaling only occurs after such

thresholds are exceeded. In proactive, an application takes early

scaling decisions based on estimates of future demand [25].

Both strategies have trade-ofs to take into account. While the

reactive strategy is simple and intuitive [22] (as consequence is

broadly utilized in commercial cloud providers [16]), the time taken

by the auto-scaler to react and allocate resources could be too

long to avoid performance degradation. On the other hand, the

drawback of a proactive technique is that its reliability depends on

the accuracy of the predicted values [25].

The literature has shown a variety of approaches, evaluations,

and comparisons between these two models and their own subcate-

gories [16]. To the best of our knowledge, none of them has come to

a conclusion about which one is better in terms of performance for

ecommerce companies. In order to provide a better understanding

of this matter, our goal is to evaluate the reactive approach already

used by an ecommerce company compared to a proactive approach

using the same conigurations, simulating both auto-scaling behav-

iors with a real collected workload. For that, we implemented a

time-series analysis technique, Autoregressive Integrated Moving

Average.

Results show that our implemented model achieves an accuracy

of 94% and deviates very little from the actual data, less than 7%.

Even though a good prediction does not necessarily mean the model

would make good allocation decisions, our performance results

were pretty optimistic when using our forecast model in the auto-

scaling simulation, since they were highly better than the ones from

the reactive approach.

The rest of this work is structured as follows: Section 2 presents

previous works on evaluating auto-scaling techniques, Section 3

exposes our prediction model, its implementation, and metrics for

analysis, and Section 4 discusses our experimental results. Finally,

Section 5 discloses our conclusions and possible future work.

Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação, UFCG) Almeida, Pereira and Morais

2 RELATED WORK

Auto-scaling and its techniques have been studied in many past

works. Lorido-Botran et al. proposed a classiication of these tech-

niques into ive main categories: static threshold-based rules, con-

trol theory, reinforcement learning, queuing theory, and time series

analysis, using this classiication for a literature review of previous

proposals for auto-scaling [16]. More recently, Radhika and Sadasi-

vam also conducted a comprehensive study on existing auto-scaling

techniques, comparing newer proactive and reactive auto-scaling

strategies but discussing possible research solutions for hybrid envi-

ronments, too [22]. Both these studies do not evaluate the suggested

approaches.

On the other hand, Ilyushkin et al. presented a detailed compara-

tive study of general state-of-the-art auto-scaling policies, this time

conducting various experiments and comparing their performance

in pairwise and group comparisons [12]. Their work includes no

predictive auto-scaling policies in their experiments and discus-

sions, only reactive and hybrid techniques.

As for studies comparing proactive auto-scaling approaches,

Wang et al. proposed a predictive technique as a better alternative

to the reactive one already used by Amazon EKS, with experiments

using real-world workloads [26]. Still, they deal only with vertical

auto-scaling and a workload with a duration of one day. Islam et

al. [14] explored two predictive algorithms related to time-series

analysis, incorporating sliding window to the training and predic-

tion stages. Their benchmark is 135 minutes, ending with the same

issue as Wang et al. [26] of using a short trace.

Although Gao et al. used an extensive trace from Google Cluster

Trace and evaluated diferent approaches of proactive auto-scaling

(e.g., statistical, machine learning, and deep learning approaches),

they did not deepen how ARIMAwas implemented as the statistical

approach [9]. Calheiros et al. implemented and compared ARIMA-

based prediction to a trace of one week of an actual workload, but

the workload of an ecommerce company was not included in their

analysis [6].

Considering the current state-of-art, most auto-scaling tech-

niques have been evaluated using traces typically short spanning

a few minutes, hours, or days [21], and none of these evaluations

were made testing a workload of ecommerce directly. With the

crescent use of cloud computing and auto-scaling strategies for im-

provement, our work difers from the previous articles mentioned

as it aims at analyzing which approach has a better performance

for ecommerce traic, conducting experiments with two weeks of

data from an ecommerce company workload.

3 METHODOLOGY

The main goal of our work is to evaluate a proactive auto-scaling

strategy compared to the reactive approach already used by an

ecommerce company. To do so, we explored several existing pre-

dictive techniques through a bibliographical review, searching for

which algorithm would it better with the trace and metrics used

by the ecommerce company from where the data were collected.

We considered proactive models utilizing horizontal scaling and

CPU load as the metric.

To better describe our methodology, the remainder of this section

is divided as follows: Section 3.1 describes our dataset and how the

data were collected. Sections 3.2 and 3.3 explains the reactive and

the proactive strategies evaluated in this work, respectively, while

Sections 3.4 and 3.5 detail how we implemented and simulated the

auto-scaling behavior with our chosen techniques. Finally, Section

3.6 deines each metric used for our evaluation, of both prediction

and performance.

3.1 Data collected

Our data were obtained from an application of the ecommerce

company inwhich its current team believes that the application uses

more virtual machines than needed at some moments of the day.

We saw in this an opportunity to evaluate the impact of changing

from a reactive auto-scaling strategy to a proactive one in case of

signiicant infrastructure consumption. The data was collected in

February 2022 from AWS Cloud Watch, with a trace of two weeks,

from February 1st to 17th. The dataset we are working with has

three important variables:

• timestamp: the moment of each observation, with a data

grain of 60 seconds;

• instance_type: the type of the instance, used to calculate

the number of vCPUs;

• utilization: the CPU utilization in that given moment.

This means that each minute we have new data to consider in our

forecast, leaving us with historical data of more than 10 thousand

observations to process before predicting. As for łinstance_typež,

the application we are analyzing uses Amazon EC2 instance types

with four vCPUS available each [1], and its auto-scaling conigura-

tions will be discussed in the following section.

3.2 Reactive strategy

Widely studied in the past, reactive auto-scaling is usually based

on threshold-based rules techniques and tends to deal with some

intrinsic problems such as using cooldown times (also called inertia

or calm) or dynamic thresholds [23]. The idea behind using the

cooldown period is to prevent the auto-scaling from launching or

terminating additional instances before the efects of previous activ-

ities are visible. The strategy of cooldown is not used for scheduled,

periodic scaling actions or, in our case, predictive scaling.

In this study, we evaluate simple scaling, i.e., the current reactive

strategy used by our chosen application. On Amazon EC2, this

policy allows the user to create CloudWatch alarms for the scaling

policies and specify the high and low thresholds for these alarms.

A CloudWatch alarm is a feature that sends notiications when the

chosen metrics fall outside of the levels (high or low thresholds)

conigured by the user. The main issue with simple scaling is, as

mentioned before, the presence of cooldown periods: it must wait

for the scaling activity or health check replacement to complete

and the cooldown period to end before responding to additional

alarms [4].

In our application, the simple scaling policy was conigured as

follows:

• Due to coniability matters, the exact capacity numbers will

be omitted. So, it’s important to know the min and max

capacities were of x and 7.5x instances, respectively;

• The evaluation period was 5 min;

• The cooldown period was 6 min;

A case study of proactive auto-scaling for an ecommerce workload Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação, UFCG)

• The scaling rules were based on CPU utilization. The lower

threshold was 25%, and the upper one was 50%. According

to the rules:

– when CPU utilization was lower than 25%, a number of y

instances were removed;

– when CPU utilization was higher than 50%, a number of

4y instances were added;

3.3 Proactive strategy

As it is hard to dynamically identify and adjust optimal threshold

values to maximize the utilization of the provisioned infrastructure,

proactive auto-scaling tries to ofer the solution to some of these

challenges [13]. For our evaluation of one of the proposed solutions

in the literature, we decided to take a better look at how a statistical

approach would perform in comparison to a reactive one, without

the higher complexity that a machine learning or deep learning

technique would ofer. Reviewing Calheiros et al. work, we no-

ticed that their studied algorithm, ARIMA, would it our mentioned

parameters of horizontal scaling and CPU load, so we decided to

reproduce this approach [6].

Autoregressive Integrated Moving Average, i.e., ARIMA is a

model utilized for time series prediction in diferent ields such as

inance and economics [5]. It predicts a given time series based

on its past values, which łautoregressivež stands for, and the goal

is to reach stationary data that is not subject to seasonality [3].

According to Hyndman and Athanasopoulos [10]:

If we combine diferencing with autoregression and

a moving average model, we obtain a non-seasonal

ARIMA model. ARIMA is an acronym for AutoRe-

gressive Integrated Moving Average (in this context,

łintegrationž is the reverse of diferencing). The full

model can be written as

�′� = �+�1�
′
�−1+· · ·+���

′
�−� +�1��−1+· · ·+����−�+��

where �′� is the diferenced series (it may have

been diferenced more than once). The łpredictorsž

on the right hand side include both lagged values of

�� and lagged errors. We call this an �����(�,�, �)

model, where

� = order of the autoregressive part;

� = degree of irst diferencing involved;

� = order of the moving average part.

For our implementation of the ARIMA model, we used the

auto.arima() function in R. This function uses a variation of the

Hyndman-Khandakar algorithm [11], which combines unit root

tests, minimization of the AICc (Second-order Akaike Information

Criterion), and MLE (Maximum Likelihood Estimation) to obtain

an ARIMA model. This function is used to evaluate the model and

estimate a coniguration of the ARIMA parameters.

3.4 Algorithm implementation

We used the R package forecast for the prediction, passing our

collected historical data as a parameter in the auto.arima() function.

In the context of this work, the historical data to be passed in

our function means the observed number of CPU utilization in a

determined timestamp, in our case, every 60 seconds, multiplied

by the number of vCPUs available for each instance type, divided

by 100. This calculation gives us the CPU demand in that given

moment, and the function returns the predicted CPU demand in

the horizon we settled as a parameter.

In this scenario, the horizon is based on the application start-up

time, i.e., the time the application takes to initialize a VM. We need

to predict with such an advance that by the time the application

needs to add or remove instances, our algorithm has already decided

on the correct action considering the time it would take for the

start-up. The application chosen has a start-up time of between 9

and 12 minutes, so we opted for the worst-case scenario and settled

our horizon to 12.

Another decision for our function was to incorporate the slid-

ing window technique, meaning that it will consider new input

values throughout the loop and leave older ones behind when pre-

dicting. The input � is a vector of resource usage samples over �

consecutive time intervals, and the predicted output,�, is � intervals

ahead of this input window [7, 14]. This left us with the following

implementation:

Algorithm 1 Prediction model with ARIMA

1: � is a list with size N (� ∈ N) representing CPU demand, in d

should be the ��ℎ CPU demand in list (� ∈ Q+);

2: � [�, �] is a sub sequence of CPU demand, � [�, �] =

{�� , ��+1, ..., � �−1, � � };

3: ����� and ��� are variables that deine the range of the sliding

window (�����, ��� ∈ N);

4: ������������� (�, �) is a function that tries to predict the next

� elements of list �, returns the last element � (� ∈ N, � ∈ Q+,

∃�, �� [�, �] = �);

5: for each � ∈ [�������_�����, � ����_�����] do

6: ���������� ← ������������� (� [�����, ���], ℎ������);

7: if i + horizon <= N then

8: saves the last predicted value of ���������� in a new list

M;

9: end if

10: end for

3.5 Auto-scaling simulation

To compare proactive and reactive auto-scaling techniques’ per-

formances, we need to simulate how each would behave with its

respective policy conigurations. For that, we used an open-source

auto-scaling simulator, developed by the Laboratory of Distributed

Systems [2], which already provides the simple scaling policy, and

implemented our proactive scaling approach based on the function

shown in the previous section.

This auto-scaling simulator receives a timestamp (the current

time of the observation), the instance type, and the CPU utilization

as input, returning the number of cores to be added or removed

on the next observation based on the chosen policy coniguration.

The coniguration for the proactive technique had a target value

instead of upper and lower bounds like simple scaling, and it was

calculated as an approximated value between 25% and 50% (the

Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação, UFCG) Almeida, Pereira and Morais

current coniguration on our application), being settled as 35%. It

should be noted that this policy does not use cooldown periods

when scaling.

Our model then had to predict the CPU demand for 12 minutes

ahead and, to reach the target of 35% in that future observation,

it should decide to add or remove cores. It receives a training ile

of historical data and a prediction ile so it gets new values as the

sliding window goes by in the prediction. For our experiment, we’ve

run with a week of data in our training ile (from February 1st to

8th) and another week of data in our prediction ile (from February

9th to 17th), analyzing the results with the chosen metrics reported

in the next section.

3.6 Evaluation metrics

To evaluate our prediction’s accuracy, we chose diferent statis-

tical metrics: �2 Prediction Accuracy, Mean Absolute Error (MAE),

and Mean Absolute Percentage Error (MAPE)[8, 15]. These three

metrics were selected because they are known for measuring accu-

racy in forecast models, showing diferent perspectives of how the

prediction approximates the real data.

Since a high accuracy of the forecast does not necessarily imply

a good performance of our auto-scaling, we also need a metric to

evaluate the results of our simulation. The performance evaluation

for both strategies was made with the Auto-scaling Demand Index

(ADI) metric [20], used for analyzing and comparing system utiliza-

tion. All these mentioned metrics will be described in the following

subsections.

3.6.1 �2 Prediction Accuracy. The �2 Prediction Accuracy mea-

sures how the prediction model approximates the real data points,

with its value being within the range from 0 to 1, which means that

the �2 prediction accuracy of 1 indicates a perfect it of the itted

model [14]. The formula for this metric is:

�2 = 1 −

∑�
�=1 (�̂� − ��)

2

∑�
�=1 (�̂� − �̄)

(1)

Where �̂ =
1
�

∑�
�=1 �� , �� is the actual output, �̂� is the predicted

output, and � is the number of observations.

3.6.2 Mean Absolute Error (MAE). The Mean Absolute Error is a

standard measure of forecast error in time series analysis and is the

mean of the absolute diference between a target value and model

prediction, i.e., the mean of all absolute errors. To reach this value,

the formula is:

��� =

1

�

�︁

�=1

| �̂� − �� | (2)

Where � is the number of errors and | �̂� − �� | the absolute

errors. This calculation tells us an average of how big of an error it

is expected from our prediction.

3.6.3 Mean Absolute Percentage Error (MAPE). The metric Mean

Absolute Percentage Error measures the accuracy of a forecast

model as a percentage and is given by the following formula:

��� =

1

�

�︁

�=1

| �̂� − �� |

��
(3)

Where � is the number of itted points, �� is the actual value, and

�̂� is the forecast value. The lower the MAPE value, the better the

prediction accuracy.

3.6.4 Auto-scaling Demand Index (ADI). Auto-scaling Demand In-

dex is a performance metric for evaluating auto-scaling strategies.

This metric is deined by the sum of all distances computed be-

tween each utilization level reported by the system and the target

utilization interval, with upper and lower bounds [20]. The closer

the result gets to zero, the better the auto-scaling performance, and

it’s calculated as follows:

� =

︁

� ∈�

�� (4)

where

�� =





� − �� , if �� ≤ �,

0, if � < �� < � ,

�� −� , otherwise.

U and L are the values for the upper and lower bounds settled on

the application coniguration. Ut is the percentage of infrastructure

utilization at a time-step T, and the following calculation gives it:

�� =
��

��

Where �� is the number of resources demanded by the appli-

cation (e.g., number of cores) and�� is the number of allocated

resources (e.g., the sum of cores of the VMs running the application).

Even though our proactive auto-scaling policy works with a

single target, we calculated its ADI setting L and U values the same

as the simple scaling coniguration, 25% and 50%, respectively, since

our goal is to have a system utilization between these thresholds

and compare it with the performance of our reactive strategy.

4 RESULTS

In our proactive approach, the auto-scaling simulator decides to

add and remove resources based on the cores’ demand predicted

by ARIMA. To ensure it will make suitable decisions, we irst need

to check the accuracy of our model before analyzing our auto-

scaling strategy results, so we evaluated the prediction accuracy

using three of the metrics mentioned in the previous section, i.e.,

�2 Prediction Accuracy, Mean Absolute Error (MAE), and Mean

Absolute Percentage Error (MAPE).

Table 1: Results of eachmetric for our predictionmodel. They

show a high accuracy since it deviates very little from the

original values.

�2 MAE MAPE (%)

0.94 2.50 6.82

Figure 1 compares the collected data on cores’ demand and the

prediction made. We can see very similar behavior, except for a few

demand peaks in the actual data that our model could not predict.

This similarity is supported by the numbers of MAE and MAPE,

2.50 and 6.82%, respectively, meaning our forecast deviates less than

A case study of proactive auto-scaling for an ecommerce workload Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação, UFCG)

Figure 1: Actual cores’ demand and predicted demand

throughout February 9th and 17th. The similar behavior be-

tween them indicates a high accuracy of the forecast model,

deviating an average of only 2,50 cores from the actual de-

mand.

10% from the actual demand and is very close to reality. The �2

Prediction Accuracy had a result of 0.94 out of 1.0, which indicates

our model is a good it for explaining 94% of the itted data in the

regression model. All these results are presented in Table 1.

Figure 2: Allocated cores when using proactive and reactive

strategies. The presence of cooldown periods in the reactive

approach led it to amore conservative behavior when allocat-

ing cores and a variation of 30.19% compared to a variation

of 35.41% from the proactive one.

We then run our auto-scaling simulator for both proactive and

reactive strategies, noticing a higher variation in the decision to

allocate cores when running the proactive technique and a conser-

vative behavior from the reactive technique, as shown in Figure

2. The coeicient of variation for proactive was 35.41%, while for

Figure 3: Adding and removing decisions from proactive and

reactive strategies. The proactive approach takes way more

decisions of both adding and removing cores, while the re-

active one allocates way lower resources and spends long

periods of time without making any decisions.

Figure 4: System utilizationwhen running proactive and reac-

tive strategies. With the proactive technique, the utilization

tends to stay more between the upper and lower bounds, il-

lustrated in the plot as the dashed red lines.

reactive was 30.19%. This variation is also seen in Figure 3, where

it shows the variable Decision, which indicates how many cores

the algorithm decided to add or remove in each observation.

For the evaluation of each approach’s performance, we used

the Auto-scaling Demand Index (ADI). This metric is calculated

by taking values of system utilization and the settled thresholds,

shown in Figure 4. When calculating ADI, the proactive strategy

got a result of 1782.97, while the reactive strategy got 7014.97. The

goal is to get the result as close to zero as possible, considering it is

the sum of the diferences between the thresholds and the observed

Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação, UFCG) Almeida, Pereira and Morais

system utilization. This means our proactive approach reached a

way better value than the reactive approach.

A conservative behavior such as in simple scaling may have led

to a degradation of the performance, considering the time it takes to

decide on adding or removing instances, as seen in Figure 3, where

the reactive auto-scaling has extended periods of the variable Deci-

sion as zero. The anticipation of scaling up and down resources, and

taking into account the start-up time for each VM in the application,

could have been decisive in the divergence of performance results

for proactive and reactive auto-scaling techniques.

5 CONCLUSION

In this work, we aimed to evaluate the performance of a proactive

strategy compared to the performance of an already used reactive

strategy by an ecommerce company. Based on our metrics, ARIMA

appeared to be a good method to be considered for predictive tech-

nique implementation. An accuracy of 94% was an optimistic irst

step in our experiments, especially considering that it was a fore-

cast of more than 10 thousand observations ahead, with a horizon

of 12 minutes for each prediction.

Our auto-scaling simulation also showed a promising perspective

when running proactive policy conigurations. It was not guaran-

teed that a great forecast model would lead to great decisions of

adding and removing instances, while also meeting our deined

thresholds, but the results indicated, in fact, much better perfor-

mance in reducing system utilization levels compared to the reactive

approach.

It should be noted, however, that this current work does not con-

sider if a performance improvement would lead to a cost reduction

for the ecommerce company since it did not analyze purchase plans

and prices of VMs. For future studies, we plan to implement and

evaluate other proactive approaches, incorporating a bigger trace

of the same company workload and considering capacity planning

in our analysis.

ACKNOWLEDGMENTS

This work wouldn’t be possible without the help and support of

many people. An acknowledgment isn’t enough to my professors,

Thiago Emmanuel and Fábio, who were the best mentors a student

could ask for Ð all their patience and guidance were essential to
inishing this work. To Ítallo and Fireman, who also helped me
through this whole process. To each of my friends, who rooted for
this achievement with me as if it were theirs.

To my parents, Helda and Marcelo. They taught me the impor-
tance and the power of education in life, but the most important
lesson I got from them is how love and comprehension give you
the strength to pursue your dreams. I am pursuing mine thanks to
them.

To my grandfather, José Walter, who always wished to see his
granddaughter graduating. I hope he can see it somehow.

REFERENCES
[1] [n. d.]. Amazon EC2 Instance Types - Amazon Web Services. https://aws.amazon.

com/pt/ec2/instance-types/. Accessed: 2022-08-04.
[2] [n. d.]. Auto-Scaling Simulator. https://github.com/ufcg-lsd/autoscaling-

analyser/. Accessed: 2022-08-02.
[3] [n. d.]. Introduction to ARIMA: nonseasonal models. https://people.duke.edu/

~rnau/411arim.htm. Accessed: 2022-08-02.

[4] [n. d.]. Step and simple scaling policies for Amazon EC2Auto Scaling. https://docs.
aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html. Ac-
cessed: 2022-08-04.

[5] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015.
Time series analysis: forecasting and control. John Wiley & Sons.

[6] Rodrigo N Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar Buyya. 2014.
Workload prediction using ARIMA model and its impact on cloud applications’
QoS. IEEE transactions on cloud computing 3, 4 (2014), 449ś458.

[7] Thomas G Dietterich. 2002. Machine learning for sequential data: A review. In
Joint IAPR international workshops on statistical techniques in pattern recognition
(SPR) and structural and syntactic pattern recognition (SSPR). Springer, 15ś30.

[8] Brian S Everitt and Anders Skrondal. 2010. The Cambridge dictionary of statistics.
(2010).

[9] Jiechao Gao, Haoyu Wang, and Haiying Shen. 2020. Machine learning based
workload prediction in cloud computing. In 2020 29th international conference on
computer communications and networks (ICCCN). IEEE, 1ś9.

[10] Rob J Hyndman and George Athanasopoulos. 2018. Forecasting: principles and
practice. OTexts.

[11] Rob J Hyndman and Yeasmin Khandakar. 2008. Automatic time series forecasting:
the forecast package for R. Journal of statistical software 27 (2008), 1ś22.

[12] Alexey Ilyushkin, Ahmed Ali-Eldin, Nikolas Herbst, André Bauer, Alessandro V
Papadopoulos, Dick Epema, and Alexandru Iosup. 2018. An experimental per-
formance evaluation of autoscalers for complex worklows. ACM Transactions
on Modeling and Performance Evaluation of Computing Systems (ToMPECS) 3, 2
(2018), 1ś32.

[13] Waheed Iqbal, Abdelkarim Erradi, and Arif Mahmood. 2018. Dynamic workload
patterns prediction for proactive auto-scaling of web applications. Journal of
Network and Computer Applications 124 (2018), 94ś107.

[14] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. 2012. Empirical predic-
tion models for adaptive resource provisioning in the cloud. Future Generation
Computer Systems 28, 1 (2012), 155ś162.

[15] Samuel Kotz, Narayanaswamy Balakrishnan, Campbell B Read, and Brani Vi-
dakovic. 2005. Encyclopedia of Statistical Sciences, Volume 1. John Wiley &
Sons.

[16] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. 2014. A review of
auto-scaling techniques for elastic applications in cloud environments. Journal
of grid computing 12, 4 (2014), 559ś592.

[17] Peter Mell, Tim Grance, et al. 2011. The NIST deinition of cloud computing.
(2011).

[18] Fábio Jorge Almeida Morais et al. 2017. Provisionamento automático de recursos
como um serviço de IaaS. (2017).

[19] Fabio Jorge Almeida Morais, Francisco Vilar Brasileiro, Raquel Vigolvino Lopes,
Ricardo Araújo Santos, Wade Satterield, and Leandro Rosa. 2013. Autolex:
Service agnostic auto-scaling framework for iaas deployment models. In 2013
13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing.
IEEE, 42ś49.

[20] Marco AS Netto, Carlos Cardonha, Renato LF Cunha, and Marcos D Assunçao.
2014. Evaluating auto-scaling strategies for cloud computing environments. In
2014 IEEE 22nd International Symposium on Modelling, Analysis & Simulation of
Computer and Telecommunication Systems. IEEE, 187ś196.

[21] Alessandro Vittorio Papadopoulos, Ahmed Ali-Eldin, Karl-Erik Årzén, Johan
Tordsson, and Erik Elmroth. 2016. PEAS: A performance evaluation framework
for auto-scaling strategies in cloud applications. ACM Transactions on Modeling
and Performance Evaluation of Computing Systems (TOMPECS) 1, 4 (2016), 1ś31.

[22] EG Radhika and G Sudha Sadasivam. 2021. A review on prediction based autoscal-
ing techniques for heterogeneous applications in cloud environment. Materials
Today: Proceedings 45 (2021), 2793ś2800.

[23] Víctor Rampérez, Javier Soriano, David Lizcano, and Juan A Lara. 2021. Flas: A
combination of proactive and reactive auto-scaling architecture for distributed
services. Future Generation Computer Systems 118 (2021), 56ś72.

[24] Fabiana Rossi, Matteo Nardelli, and Valeria Cardellini. 2019. Horizontal and
vertical scaling of container-based applications using reinforcement learning.
In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE,
329ś338.

[25] RS Sharifdeen, DTSPMunasinghe, HS Bhathiya, UKJU Bandara, and HMNDilum
Bandara. 2016. Adaptive workload prediction for proactive auto scaling in PaaS
systems. In 2016 2nd International Conference on Cloud Computing Technologies
and Applications (CloudTech). IEEE, 22ś29.

[26] Thomas Wang, Simone Ferlin, and Marco Chiesa. 2021. Predicting CPU usage
for proactive autoscaling. In Proceedings of the 1st Workshop on Machine Learning
and Systems. 31ś38.

