
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

WESLEY MATTEUS ARAÚJO DOS SANTOS

UNDERSTANDING THE TESTING CULTURE OF MACHINE

LEARNING PROJECTS ON GITHUB

CAMPINA GRANDE - PB

2023

WESLEY MATTEUS ARAÚJO DOS SANTOS

UNDERSTANDING THE TESTING CULTURE OF MACHINE

LEARNING PROJECTS ON GITHUB

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

Orientador: Professor Dr. Everton Leandro Galdino Alves.

CAMPINA GRANDE - PB

2023

WESLEY MATTEUS ARAÚJO DOS SANTOS

UNDERSTANDING THE TESTING CULTURE OF MACHINE

LEARNING PROJECTS ON GITHUB

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

BANCA EXAMINADORA:

Professor Dr. Everton Leandro Galdino Alves

Orientador – UASC/CEEI/UFCG

Professor Dr. Carlos Wilson Dantas de Almeida

Examinador – UASC/CEEI/UFCG

Professor Tiago Lima Massoni

Professor da Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 14 de fevereiro de 2023.

CAMPINA GRANDE - PB

RESUMO

Nos últimos anos, o uso de aprendizado de máquina aumentou em diversas indústrias, mostrando

seu notável potencial para resolver tanto problemas antigos como emergentes em uma escala nunca

antes vista. No entanto, apesar dos esforços na produção de modelos novos e melhorados, bem

como metodologias de treinamento mais confiáveis, pouco se sabe sobre como esses softwares estão

sendo testados. Neste trabalho, investigamos a adoção de bibliotecas Python para, ou relacionadas, a

testes automatizados em mais de 290 repositórios de aprendizado de máquina no Github. Nós

também comparamos repositórios que usam e não usam essas ferramentas, em termos de métricas

de qualidade, e estudamos sua cobertura de código. Como resultado, 28 bibliotecas usadas para fins

de suporte a testes foram identificadas e 65,19% de todos os projetos adotaram pelo menos uma

delas. Nós também encontramos que projetos de aprendizagem por reforço e de análise/visualização

de dados têm as maiores adoções de testes automatizados, e que unittest, pytest e doctest são as

bibliotecas mais utilizadas em nosso corpus. Além disso, descobrimos que metade dos projetos que

usam pelo menos uma biblioteca de testes, tem menos code smells (48,28% em mediana) e, em

média, eles têm menos vulnerabilidades (71,42%).

Understanding the testing culture of machine learning projects
on Github

Wesley Santos∗

wesley.santos@ccc.ufcg.edu.br
Federal University of Campina Grande

Campina Grande, Paraíba

Everton Alves
everton@computacao.ufcg.edu.br

Federal University of Campina Grande
Campina Grande, Paraíba

ABSTRACT

In the last few years, the use of machine learning has spiked in sev-

eral industries, showing its remarkable potential for solving both

old and emergent problems on a scale never seen before. However,

despite the eforts on producing new and improved models, as well

as more reliable training methodologies, little is known about how

these softwares are being tested. In this paper, we investigate the

adoption of Python libraries for or related to automated testing

on more than 290 machine learning repositories on Github. We

also compare repositories that do and do not use those tools, in

terms of quality metrics, and study their code coverage. As a result,

28 libraries used for testing support purposes were identiied and

65.19% of all projects adopted at least one of them. We also found

that reinforcement learning and data analysis/visualization projects

have the highest adoptions of automated testing, and that unittest,

pytest and doctest are the most used libraries in our corpus. Fur-

thermore, we found that half of the projects that use at least one

testing library, have less code smells (48.28% in median) and, on

average, they have less vulnerabilities (71.42%).

ACM Reference Format:

Wesley Santos and Everton Alves. 2023. Understanding the testing culture

of machine learning projects on Github. In Proceedings of ACM Conference

(Conference’17). ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION

In the last few years, the usage of machine learning has spiked in

several industries, showing remarkable potential in solving both

old and emergent problems. Of which, some widespread examples

include self-driving cars [2], sales analysis [4], medical diagnosis

[9], biometric recognition [11], and improved decision-making [10].

At the same time, these successful solutions were accompanied by

the development of new tools, frameworks, and applications. Many

of them have their source code available on platforms like Github
1.

Nonetheless, despite its success, as machine learning and arti-

icial intelligence take bigger roles and responsibilities, concerns

1https://github.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

about their trustworthiness are enforced [12]. Models and their

infrastructure are expected to be thoroughly evaluated and checked

for correctness, eiciency, and fairness. And while the process of

testing machine learning models is still at early stages, due to the

fact that several problems arise from their non-deterministic and

data-driven nature (e.g. the Oracle Problem [3]), it has seen growing

interest lately.

However, the current research eforts on testing these systems

do not seem to account for how their implementations and support

modules are being evaluated in practice. That leads to a lack of

understanding of what practices for testing and quality assurance

are predominant in this context. Moreover, we lack information

associated with these practices. For example, it is unclear if projects

with diferent testing proiles (e.g. that do and do not employ au-

tomated tests) present markedly diferent code statistics, such as

number of bugs, smells, and vulnerabilities, as well as, if those is-

sues present diferent degrees of severity. All of these problems

together amount to a shortage of actionable information that could

guide future research and the development of new testing tools

and/or algorithms.

In this paper, we perform an initial empirical study over test

adoption on Python machine learning projects. We work only with

Python projects since it is used by more than 70% of ML develop-

ers and data scientists [1], and previous works suggest that the

literature on Python machine learning projects is scarce [6]. In

our study, we collected more than 290 projects divided in 8 cate-

gories. Then, we identiied the libraries being used for automated

testing purposes. Afterwards, we compare the ones that use some

form of testing with the ones that do not use it in terms of bugs,

smells, among others normalized statistics. Finally, we analyze the

code coverage of all the repositories that report it, amounting to 80

projects.

As a result, we found that reinforcement learning and data anal-

ysis/visualization projects are the ones that most adopt testing

support libraries, ranging from 90.91% to 83.33%, respectively. We

also identiied that 28 libraries are being used for testing purposes.

And from those, unittest, pytest and doctest are the ones primarily

used. Furthermore, we found that half of the projects in our sample,

that use at least one of the packages, have less code smells (48.28%

in median) and, on average, they have less vulnerabilities (71.42%),

normalizing by lines of code (LOC). And that the number of major

bugs by LOC in some categories, such as computer vision, can be

up to 98% less in projects that use some form of testing. At last,

we established that 27.3% of projects publicly report their code

coverage of 86.38%, on average.

The remainder of this paper is as follows. In section 2 we explore

the methodology used to collect and process our corpus of projects.

Conference’17, July 2017, Washington, DC, USA Santos and Alves.

In section 3 we discuss the analyzes that we made over all the

statistics about test adoption. Afterwards, we show the limitations

and threats to validity of our research in section 4. In section 5 we

presented the related works. And, at last, we conclude and suggest

future works in section 6.

2 MATERIALS AND METHODS

In this section, we irst present the research questions that guide the

study. Then, we explore the method to collect, process and analyze

all the projects’ used data.

2.1 Research Questions

Our goal with this work is to understand the testing culture in

machine learning projects. We want to quantify how much of these

projects use automated testing, which tools they use, and we want

to determine if the existence of tests make a diference in code

quality metrics, such as number of bugs and code smells.

RQ1 Do Python machine learning (PML) projects apply automated

testing?

Software testing is an essential activitywhen trying to reduce

the number of potential problems in code and it gives de-

velopers more conidence about how the software performs.

Thereby, this question aims to understand the frequency

in which machine learning projects are tested in practice.

For that, we focus on the projects’ source code and we do

not diferentiate the levels of the tests being employed (e.g.

integration, unit, system, etc).

RQ2 Which automated support tools are used for PML projects ?

We also aim to investigate which libraries are being used for

testing these projects, showing possible preferences and com-

monalities between them. As well as, potentially revealing

test types that are more used than others.

RQ3 How do projects that do not use automated testing tools com-

pare to the ones that use regarding code quality ?

Software testing generally is said to produce more reliable

and higher quality code, so we are going to investigate the

efect of test existence in terms of code quality metrics, such

as number of smells, technical debt, bugs and their sever-

ity. This question aims to understand how diferent testing

project proiles compare to each other, more speciically the

ones that do and do not use automated testing packages.

RQ4 Are PML projects well tested ?

The goal of this research question is to assess how well the

tests are exercising the code. For that, we are going to use

code coverage. Lower values might indicate the need to write

tests that explore more of these softwares, inding potential

problems faster.

2.2 Data Collection

In our study, we collected the projects to compose our corpus from

a well-known and actively maintained list of machine learning

repositories on Github 2. More speciically, we target the section

dedicated for python projects. To fetch those projects, we used

the Github API 3. All scripts and additional analysis are available

online 4. Our study followed a methodology comprised of four steps:

Project Filtering, Automated support mechanisms, Code quality

statistics, and Code coverage analysis

2.2.1 Project filtering. Originally, there were 344 project entries

divided into 8 categories: i) computer vision, related to tasks of

image apprehension, processing, analysis, and/or understanding; ii)

data analysis/visualization, related to visualization and processing

of data; iii) general-purpose machine learning, composed of applica-

tions, frameworks, or libraries that do not fall in a speciic category;

iv) kaggle 5 competitions source code, a platform for practicing and

competing on several machine learning scenarios; v) natural lan-

guage processing (NLP), related to processing of natural languages;

vi) miscellaneous scripts, smaller scripts and codebases simpler in

nature; vii) neural networks, projects that implement or use models

loosely inspired on the biological brain; and viii) reinforcement

learning, related to projects that apply learning by reinforcement

models to solve problems.

However, some of the entries did not point to the repository link.

Therefore, the irst step was to write a script to collect them. After

that, we manually veriied the results and removed entries pointing

to the same project. As our focus is Python code, we decided to ilter

out all multi-language projects with less than 20% of the source code

written in Python. We also avoid python notebook repositories, as

some of the project analysis tools that we use in our study could

not analyze them. That process resulted in the inal amount of 293

projects.

2.2.2 Automated support mechanisms. We are interested in iden-

tifying the tools used for, or related to, automated testing on our

corpus. With that in mind, considering as diferent projects use

multiple strategies to require packages and some of the libraries are

built-in (e.g. unittest and doctest), we built a script that processes

each repository. For that, we searched all ilenames containing łtestž

and looked for imports in each of their lines. At last, we collected

the description of every possible tool identiied on the PyPI website
6 (repository of software for the Python programming language)

and manually iltered the ones related to the testing pipeline.

2.2.3 Code quality statistics. To compare projects that use and do

not use automated testing packages. We used the Sonarqube tool 7,

an automatic software that runs static analysis over the projects

and reports several metrics 8, such as number of bugs, deined as a

mistake that can lead to error or unexpected behavior in runtime;

2Machine learning project list: https://github.com/josephmisiti/awesome-machine-
learning
3Github REST API: https://docs.github.com/en/rest
4Paper scripts: https://github.com/Wesley-M/tcc
5https://www.kaggle.com/
6https://pypi.org/
7https://www.sonarsource.com/products/sonarqube/
8Sonarqube metrics and their deinitions: https://docs.sonarqube.org/latest/user-
guide/metric-deinitions/

Understanding the testing culture of machine learning projects on Github Conference’17, July 2017, Washington, DC, USA

Table 1: Amount of projects by coverage tracking service

(CTS)

CTS # of projects that adopt the CTS %

codecov 49 16.72 %

coveralls 23 7.85 %

codeclimate 2 0.68 %

self-hosted 1 0.34 %

code smells, issues that make the code confusing and diicult to

maintain; technical debt, measures the efort to solve all the code

smells; reliability remediation efort, a measure of efort to solve

all the bugs; duplicated lines density, the percentage of duplicated

lines; number of vulnerabilities, a point in the code that’s open to

attack; and cognitive complexity, a measure that tries to capture

how intuitive a unit of code is.

We also consider bug severity when comparing them. According

to the Sonarqube’s team 9, blocker bugs have a high probability

to impact the behavior of the application in production; critical

bugs either have a low probability of impacting the application

behavior in production or it represents a security law; major bugs

are laws that can highly impact the developer’s productivity; and

minor bugs can slightly impact the developer’s productivity.

With respect to sonarqube’s measure process, both smells, bugs

and vulnerabilities rely on a database of rules to be recognized. Each

of those rules have an estimated time (in minutes) for them to be

solved by developers. The sum of those times, in case of smells, gives

the technical debt and, in case of bugs, the reliability remediation

efort. The duplicated lines density, as the name suggests, is the

ratio of duplicated lines by the total number of lines. Finally, we

normalize statistics such as the number of bugs, to have a fair

comparison regardless of project size.

2.2.4 Code coverage analysis. Several analysis tools can measure

code coverage. However, coniguring and running those tools in

each project is error prone and time consuming. Therefore, we opted

for collecting the coverage information that is publicly available in

the repositories README.md iles, amounting to 80 projects. We

found several services that provide these README.md iles with

coverage badges, such as Codecov 10, Coveralls 11, Code Climate 12

and self-hosted. From 293 projects on our corpus, 49 (16.72%) report

Codecov badges, 23 (7.85%) Coveralls, 2 (0.68%) Code Climate and

1 (0.34%) was self-hosted. This distribution can be seen on table 1.

3 RESULTS

In this section, we explore the results of our investigation. First,

we analyze the adoption of automated testing by machine learning

category. Then, we show the libraries that we identiied as used

for testing purposes, and compare projects that use at least one

of those tools with the ones that do not. Finally, we analyze how

much code is covered by these tests on the projects that publish it.

9Sonarqube issue deinitions: https://docs.sonarqube.org/latest/user-guide/issues/
10https://about.codecov.io/
11https://coveralls.io/
12https://codeclimate.com/

Table 2: % of projects that adopt test support packages

Category Proportion %

Reinforcement Learning 10/11 90.91%

Data Analysis 40/48 83.33%

General Purpose 91/121 75.21%

Natural Language Processing 27/38 71.05%

Computer Vision 11/24 45.83%

Miscellaneous Scripts 9/21 42.86%

Neural Networks 3/8 37.5%

Kaggle Competition 0/22 0%

Overall 191/293 65.19%

3.1 Do Python machine learning (PML) projects
apply automated testing ?

Table 2 shows the proportions and percentages of machine learn-

ing projects that apply some kind of automated tests by category.

A project is considered to adopt automated tests if it imports at

least one library related to testing in the source code. We found

that 65.19% of all projects adopt some kind of testing mechanism.

Moreover, only one project from Reinforcement Learning did not

adopt any of the identiied libraries, reaching a percentage of 90.91%,

while kaggle’s competition code shows no adoption of tests. Mis-

cellaneous scripts and neural networks also display low rates of

adoption, below 50%.

For the kaggle case, we believe that, as it is a competitive envi-

ronment and the projects’ goals are mainly short-term, the authors

might drive more eforts to other code aspects (e.g. model accu-

racy, recall, etc) than testing. We also speculate that miscellaneous

scripts sufer from related causes, as they are composed of smaller

code bases. Regarding the high test adoption on Reinforcement

Learning (90.91%), after manual investigation, we found that the

majority of those repositories are popular libraries being used to

power other projects. In those cases, an efective test suite often can

help developers to better trust that the library is stable and reliable.

3.2 Which automated support tools are used for
PML projects ?

After processing all the test iles from our corpus, we identiied 28

libraries related to automated testing. The next step was to collect

each library usage frequency and ascertain the ones most used in

diferent contexts, which we can see in Figure 1. As a result, we

found that some general-purpose libraries, such as unittest, built-in

on the language, as well as pytest, the most popular external library

in our sample, are widely used. Nose is also one the most utilized,

however it is an extension for unittest that is deprecated and does

not receive new updates.

Meanwhile, libraries with more speciic goals have lower adop-

tion rates. There are several applications for these tools, but some ex-

amples include behaviormocking (e.g. requests_mock, pytest_mock,

fakeredis, mongomock, etc), property-based testing (e.g. hypothe-

sis), or even executable comments that can serve as documentation

(e.g. doctest, examples).

A possible reason for the high prevalence and wide usage of

unittest, pytest and doctest might be that Python developers are

Conference’17, July 2017, Washington, DC, USA Santos and Alves.

Table 3: Percentage increase in normalized mean of bugs for projects that do not apply tests and apply them, respectively

Category BLOCKER MAJOR MINOR CRITICAL

Computer Vision Ininite** -98.03% Ininite** Undeined*

Data Analysis 42.36% 248.3% 95.64% Ininite**

General-Purpose 11.03% -65.47% -73.15% Ininite**

Kaggle Ininite** Ininite** Undeined* Undeined*

Miscellaneous Scripts 198.31% 2870.7% -52.83% Undeined*

NLP 114.05% -68.62% -49.88% Ininite**

Neural Networks Undeined* Ininite** -92.88% Undeined*

Reinforcement Learning Ininite** 122.04% -94.2% Ininite**
* There is no combination of category and bug severity present in the data.
** This combination does not exist in the projects without tests.

Figure 1: Amount of automated test support libraries by cat-

egory.

more prone to apply unit tests on their machine learning projects,

however unittest and pytest can potentially be used for integration

tests as well. We can also see that in 5th place, there is the łhypothe-

sisž library, which suggests that property-based testing is relatively

popular, mostly in data analysis and general-purpose projects.

3.3 How do projects that do not use automated
testing tools compare to the ones that use
regarding code quality ?

Table 4 shows code statistics for both project testing proiles (projects

that have tests and those who do not). Moreover, each analysis is

broken down into minimum, mean, median and maximum values.

A percentage increase of each and every statistic between projects

that employ and do not employ test libraries is also shown on the

table. Accordingly, we found that projects that do not use any test

support library have fewer lines of code and cognitive complexity,

with a percentage increase of over 1000% in complexity between

them, on average.

In terms of bugs, even normalized by lines of code, we found

more of those issues on projects that use tests (7.01% on average).

Complementing that inding, Table 3 shows the percentage increase

between the means of normalized number of bugs for projects that

do not employ and employ tests, respectively. That can be expressed

mathematically as:

• ���,� : Percentage increase between m and n

• � � : Number of projects for category j

• ���� : Number of lines of code on project i

• ��������, �,� : Number of bugs on project i, of category j and

severity k

• ����������� �,� : Normalized mean number of bugs for

category j and severity k

• �������ℎ������������ �,� : ����������� �,� for projects

with tests

• �������ℎ��������������� �,� :����������� �,� for projects

without tests

���,� = (� − �)/�

����������� �,� =

∑� �

�=1

��������, �,�

����
� �

So each cell value can be deined as:

�� (�������ℎ������������ �,� , �������ℎ��������������� �,�)

Positive values mean that there are more bugs per LOC, on

average, in projects that adopt tests, and vice versa. Undeined

values mean that there is no combination of project category and

bug severity in both testing proiles. And ininite means that there

Understanding the testing culture of machine learning projects on Github Conference’17, July 2017, Washington, DC, USA

Table 4: Sonarqube code statistics from projects with and without automated test support packages

Characteristic Without automated tests

(N = 102)

With automated tests

(N = 191)

Percentage Increase

Lines of code (LOC)

Min 26.0000000 51.0000000 96.15%

Mean 8923.2772277 56567.9057592 533.94%

Median 1509.0000000 13193.0000000 774.29%

Max 549774.0000000 2235379.0000000 306.6%

Cognitive Complexity (CC)

Min 2.0000000 2.0000000 0%

Mean 722.1980198 8250.2356021 1042.38%

Median 280.0000000 1620.0000000 478.57%

Max 9237.0000000 413988.0000000 4381.84%

Duplicated lines (%)

Min 0.0000000 0.0000000 Undeined*

Mean 7.3871287 5.9094241 -20%

Median 1.8000000 2.7000000 50%

Max 76.5000000 69.7000000 -8.89%

Bugs (normalized by LOC)

Min 0.0000000 0.0000000 Undeined*

Mean 0.0005430 0.0005825 7.27%

Median 0.0000000 0.0002870 Undeined*

Max 0.0089410 0.0073380 -17.93%

Reliability Remediation Efort in minutes (normalized by LOC)

Min 0.0000000 0.0000000 Undeined*

Mean 0.0038931 0.0036804 -5.46%

Median 0.0000000 0.0016364 Undeined*

Max 0.0443076 0.0575428 29.87%

Smells (normalized by LOC)

Min 0.0000000 0.0003950 Undeined*

Mean 0.0554352 0.0296518 -46.51%

Median 0.0400000 0.0206864 -48.28%

Max 0.2343173 0.1540606 -34.25%

Technical Debt in minutes (normalized by LOC)

Min 0.0000000 0.0028881 Undeined*

Mean 0.3128514 0.1785655 -42.92%

Median 0.2560511 0.1403209 -45.2%

Max 1.1162362 0.9351202 -16.23%

Vulnerabilities (normalized by LOC)

Min 0.0000000 0.0000000 Undeined*

Mean 0.0000353 0.0000101 -71.42%

Median 0.0000000 0.0000000 Undeined*

Max 0.0019881 0.0007346 -63.05%
* The diference can not be determined, given one of the values is 0.

are no bugs on the projects that do not apply tests, while there is

at least one on the ones that apply.

In terms of blocker bugs, for all categories, we noticed that, on

average, projects that adopt tests presented more of those bugs per

LOC. We speculate that might happen because the projects that do

not adopt tests are so much smaller than their counterparts, that it

is harder to introduce serious unnoticed bugs. Regarding critical

bugs, on our corpus there was not any combination in which the

two means were bigger than 0, so all values were either undeined

or ininite. Major bugs give mixed results, of which test adoption is

preferable in computer vision (-98.03%), NLP (-68.62%) and general

purpose (-65.47%) projects. Lastly, minor bugs appear to show more

in projects without test adoption on almost all categories, except

computer vision and data analysis.

Conference’17, July 2017, Washington, DC, USA Santos and Alves.

Meanwhile, there is substantially less code smells on projects

with tests, 48.28% on average. Which also happens with vulnerabili-

ties and technical debt, 71.42% and 42.92%, respectively, on average.

These indings could mean that machine learning code that is tested

is easier to maintain and it is more secure than their non tested

counterparts.

3.4 Are PML projects well tested ?

Table 5 shows that 80 projects (27.3% of all projects) publish test

coverage on their README.md ile, displaying 86.38%, on aver-

age. We also found that miscellaneous scripts, computer vision and

general-purpose machine learning projects show, on average, the

most code coverage, ranging from 94% and 91.67% to 89.35%, re-

spectively. While neural networks present the least mean coverage

overall (68%).

A possible reason for the high coverage of miscellaneous scripts

is the small number of projects that actually report it, with just 1

(4.76%) project reporting its statistics. Meanwhile, general purpose

projects have one of the largest adoptions of coverage reporting

(33.06%) and one of the highest mean coverages (89.35%). We spec-

ulate that a reason for the low rate of coverage on neural networks

might be attributed to the diiculty of testing their learning algo-

rithms. In general, the test coverage is relatively high (86.38%), but

only a small proportion of projects publish these statistics (27.3%).

4 LIMITATIONS

There are some threats to the validity of the results of our study,

we made some concessions to enable the use of automated analysis.

For the purpose of our research, we used only the section destined

for python projects on the curated list of machine learning projects

on Github that we referenced before. It could be argued that more

languages should be considered, however, due to time constraints

and complex requirements, we opted to focus on only one language.

Moreover, Python is one of the most used programming languages

by data scientists and ML developers.

Our initial corpus had 344 entries, however several of them

contained problems, a few of them were duplicated and there were

multi-language projects where Python played a minor role, which

could add bias into our analysis. As well as python notebooks,

which could not be analyzed by some of our tools. To mitigate those

problems, we iltered out projects with less than 20% of Python

code and the interactive notebooks as well. There were also entries

that pointed to projects outside Github, so we built scripts to scrape

the likely main repositories and manually veriied the results.

For collecting all the libraries related to testing, we built scripts

to heuristically search for imports, isolate possible library names,

and check their descriptions and summaries on PyPI for mentions of

łtestž. This could result in libraries that are not necessarily related

to testing. So we also manually validated all the libraries, by reading

their summaries. Besides that, one characteristic of our corpus is

that there are considerably diferent proportions of projects by

category, and some of them had only a few repositories, which can

also bias the result.

Lastly, we only collected code coverage reported by the reposito-

ries on their README.md ile, due to the wide range of strategies

that the authors use to publish them, such as Codecov13, Cover-

alls14, Code Climate15. And even when a project apparently uses

one of those solutions, the integration could be outdated or they

could have used more than one of them in the past. To manually

retrieve and validate the coverage of all projects would be poten-

tially hard; and it could take too much time to collect a satisfactory

sample. We are aware that it can bias the results to only consider

reported values. But we believe that is an acceptable compromise

for an initial analysis of a variety of projects.

5 RELATED WORKS

In this section we explore related works that deal with machine

learning testing and open source project mining for software testing

practices.

Zhang et al [12] conducted a comprehensive survey in 138 papers

on machine learning testing research. They also deined machine

learning testing, analyzed and reported research topic distribution,

datasets, and trends on ML testing. As a result, they found that

the majority of research is made on supervised machine learning

(over 110 papers), and mostly focus on robustness and correctness,

meanwhile only a small proportion deal with test interpretability,

privacy, or eiciency. The authors also identiied challenges, open

problems, and promising research. While this paper focuses on

machine learning testing and its challenges, our study is centered

over how machine learning projects are being tested in practice, by

mining and extracting test data over open source repositories.

Silva et al [5] investigate the adoption of testing on open source

ecosystems, taking into account several programming languages

and automated support mechanisms. After performing an empirical

study over 184 popular Github repositories, they found that Go, PHP

and Javascript are the ones that most adopt tests; and listed testing

libraries, tools and frameworks most adopted for each language

ecosystem. A test coverage analysis was also performed on 571 open

source projects, from which Python was found to have, on average,

80.84% of code coverage. In comparison, our results show an average

of 86.34% for python machine learning projects that publish their

coverages on README.md iles. The authors also reported a test

adoption rate of 37.5% for Python, however we obtained a value of

65.19%. This might be due to their dependency recognition method

ignoring built-in mechanisms, which we circumvent by processing

each import statement on all test iles.

Kochhar et al [8] performed a study on 627 Android open-source

projects. They investigated, among other topics, the presence of test

cases and measured code coverage. They also surveyed developers

who have hosted their apps on Github to collect testing practices,

where they question about tools that are used. As a result, they

found automated tests at 14% of the projects. They also explored

line and block code coverage on 41 projects with existing tests, and

displayed challenges faced by developers while testing. Moreover,

JUnit was established as the most adopted testing framework. And

the mean line and block coverage were found to be 16.03% and

17.22%, respectively. In comparison, we deal with Python machine

13https://about.codecov.io/
14https://coveralls.io/
15https://codeclimate.com/

Understanding the testing culture of machine learning projects on Github Conference’17, July 2017, Washington, DC, USA

Table 5: Project coverage by category

Category # of projects that publish coverage % Mean coverage (%)

Miscellaneous Scripts 1/21 4.76 % 94 %

Computer Vision 3/24 12.5 % 91.67 %

General-Purpose 40/121 33.06 % 89.35 %

Data Analysis 19/48 39.58 % 85.26 %

Natural Language Processing 9/38 23.68 % 83 %

Reinforcement Learning 2/11 18.18 % 81 %

Neural Networks 1/8 12.5 % 68 %

Overall 80/293 27.3 % 86.38 %

learning projects, where we found a much higher coverage, on

average, of 86.38%.

At last, Kochhar et al [7] studies more than 20000 open source

projects on Github. They explore topics such as correlation of tests

and project metrics (e.g. bugs, project size, development team size,

number of bug reports), and number of test cases by programming

language. As a result, they found that 61.5% have at least one test

case, and that C++, C and PHP have a higher number, on average, of

test cases per project. They also established that Python has a mean

of 41 test cases by project. Compared to our study, they allow for a

wider project corpus, while we instead focus on machine learning

projects written in Python, and explore which tools are used in

source code. In our context, we also found an overall test adoption

of 65.19%.

6 CONCLUSION

The use of machine learning in the last few years saw a spike in sev-

eral industries. From that follows the importance of better testing

those softwares. To try and guarantee more reliability, trustworthi-

ness and fairness. However, we lack actionable data on how these

applications are being tested to this day. That includes knowing test

adoption statistics, which can give insights about the software test-

ing maturity in this area, and what tools are being used, informing

researchers and developers of what libraries to look for.

In this paper, we make four main contributions. Firstly, we show

the test adoption for over 290 python machine learning projects

divided in 8 categories. Counting the repositories that import at

least one library related to testing. Secondly, we report 28 tools

for testing purposes that we collected from our corpus, and their

frequency usages per category, making clear which ones are more

popular and their relative use. Thirdly, we compare projects with

diferent testing proiles (e.g. that employ tests versus the ones that

do not), in terms of code quality, to highlight the importance of

software testing. And inally, we explore the code coverage of all

the projects that publicly report them in the README.md ile.

Our results show that 65.19% of the 293 projects adopt at least

one testing support library. We established that unittest, pytest

and doctest are the ones most often used, in this order. In addition,

projects that adopt at least one automated testing support tool have

less code smells (48.28% in median) and, on average, they have

less vulnerabilities (71.42%). Major bugs can also be up to 98% less

prevalent on these softwares, on average, in the case of computer

vision. We also found an overall mean of 86.38% of test coverage

and expanded those indings by category.

In our study we worked with an uneven distribution of projects

per category and only collected coverage from the repositories

README.md ile. In the future, we could collect a more balanced

sample and try to run coverage tools directly on the projects. Other

opportunities would be to collect statistics on the test cases, such

as their number, study which types of tests are being performed,

explore the sonarqube’s issue contents and the social aspect of

those projects on Github (e.g. contributors and contribution guides).

Lastly, other programming languages could be considered, to give

a better picture of machine learning testing practices.

REFERENCES
[1] 2021. Developer Nation Pulse Report. https://www.developernation.net/

developer-reports/dn21
[2] Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo,

Vinicius B Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thiago M
Paixao, Filipe Mutz, et al. 2021. Self-driving cars: A survey. Expert Systems with
Applications 165 (2021), 113816.

[3] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2014.
The oracle problem in software testing: A survey. IEEE transactions on software
engineering 41, 5 (2014), 507ś525.

[4] Sunitha Cheriyan, Shaniba Ibrahim, Saju Mohanan, and Susan Treesa. 2018. Intel-
ligent sales prediction using machine learning techniques. In 2018 International
Conference on Computing, Electronics & Communications Engineering (iCCECE).
IEEE, 53ś58.

[5] Rômulo Martins da Silva, Cafer Cruz, Heleno de S. Campos, Leonardo GP Murta,
and Vânia de Oliveira Neves. 2019. What is the adoption level of automated
support for testing in open-source ecosystems?. In Proceedings of the IV Brazilian
Symposium on Systematic and Automated Software Testing. 80ś89.

[6] Danielle Gonzalez, Thomas Zimmermann, and Nachiappan Nagappan. 2020. The
state of the ml-universe: 10 years of artiicial intelligence & machine learning
software development on github. In Proceedings of the 17th International conference
on mining software repositories. 431ś442.

[7] Pavneet Singh Kochhar, Tegawendé F Bissyandé, David Lo, and Lingxiao Jiang.
2013. An empirical study of adoption of software testing in open source projects.
In 2013 13th International Conference on Quality Software. IEEE, 103ś112.

[8] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan, Thomas Zim-
mermann, and David Lo. 2015. Understanding the test automation culture of
app developers. In 2015 IEEE 8th International Conference on Software Testing,
Veriication and Validation (ICST). IEEE, 1ś10.

[9] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso
Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram
Van Ginneken, and Clara I Sánchez. 2017. A survey on deep learning in medical
image analysis. Medical image analysis 42 (2017), 60ś88.

[10] Yuri Nieto, Vicente Gacía-Díaz, Carlos Montenegro, Claudio Camilo González,
and Rubén González Crespo. 2019. Usage of machine learning for strategic
decision making at higher educational institutions. IEEE Access 7 (2019), 75007ś
75017.

[11] Nicolas Ortiz, Ruben Dario Hernández, Robinson Jimenez, Mauricio Mauledeoux,
and Oscar Avilés. 2018. Survey of biometric pattern recognition via machine
learning techniques. Contemporary Engineering Sciences 11, 34 (2018), 1677ś1694.

[12] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering 48, 1
(2020), 1ś36.

