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Resumo

A Resolução de Entidade com Garantias de Privacidade (REGP) pretende integrar dados

privados/sensı́veis de várias fontes de dados mantidas por diferentes partes. A REGP

tem por objetivo identificar registros (por exemplo, pessoas ou objetos) que representam

a mesma entidade do mundo real em fontes de dados privados mantidas por diferentes

custodiantes. Devido a leis e regulamentos recentes (por exemplo, Regulamento Geral de

Proteção de Dados), as abordagens PPRL são cada vez mais exigidas em áreas de aplicação

do mundo real, como saúde, análise de crédito, avaliação de polı́ticas públicas e segurança

nacional.Em cenários práticos, o processo PPRL precisa lidar com problemas de eficiência,

eficácia (qualidade de ligação) e privacidade. Por exemplo, o processo de PPRL precisa

ser executado sobre grandes fontes de dados (por exemplo, um banco de dados contendo

informações pessoais de programas governamentais de distribuição de renda e assistência),

com uma classificação precisa das entidades e, ao mesmo tempo, proteger a privacidade de

a informação. Nesse contexto, este trabalho propõe melhorias no processo PPRL com o

intuito de mitigar alguns dos gargalos do REGP. Particularmente, este trabalho apresenta três

grandes contribuições para o processo REGP: i) um protocolo que permite a auditabilidade

da computação realizada durante o REGP, ii) uma metodologia não supervisionada que

aproveita o conhecimento de conjuntos de dados públicos para treinar classificador baseado

em Machine Learning para o REGP, e iii) uma nova representação para os dados PPRL

codificados/anonimizados que permitem o uso de novas redes neuro e classificadores de

aprendizado profundo no contexto do PPRL. As presentes contribuições aprimoram várias

partes do processo PPRL, visando torná-lo mais facilmente utilizado em aplicações do

mundo real. Com a contribuição apresentada na tese, esperamos facilitar diversas aplicações

do mundo real (por exemplo, estudos médicos, epidemiológicos e populacionais) e reduzir

os esforços legais/burocráticos para acessar e processar os dados, tornando a execução

dessas aplicações mais simples para empresas e governos.

Palavras-chave: Segurança e Privacidade, Resolução de Entidades, Integração de Dados
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Abstract

Privacy-Preserving Record Linkage (PPRL) intends to integrate private/sensitive data from

several data sources held by different parties. It aims to identify records (e.g., persons or

objects) representing the same real-world entity over private data sources held by different

custodians. Due to recent laws and regulations (e.g., General Data Protection Regulation),

PPRL approaches are increasingly demanded in real-world application areas, such as health

care, credit analysis, public policy evaluation, and national security. In pratical scenarios,

the PPRL process needs to deal with efficiency, efficacy (linkage quality), and privacy

problems. For instance, the PPRL process needs to be executed over large data sources

(e.g., a database containing personal information of governmental income distribution

and assistance programs), with an accurate linkage of the entities, and, at the same time,

protect the privacy of the information. In this context, this work proposes improvements to

the PPRL process intending to mitigate some of the PPRL bottlenecks. Particularly, this

work presents three major contributions to the PPRL process: i) a protocol that enables

auditability of the computation performed during PPRL, ii) an unsupervised methodology

that leverages the knowledge of public datasets to train Machine Learning-based classifier

(a Transfer Learning methodology) for the PPRL, and iii) a novel representation for the

encoded/anonymized PPRL data that enable the use of novel Neuro Networks and Deep

Learning classifiers in the PPRL context. The present contributions improve several parts of

the PPRL process, intending to make it more easily used in real-world applications. With the

contribution presented in the thesis, we expect to facilitate several real-world applications

(e.g., medical, epidemiologic, and populational studies) and reduce the legal/bureaucratic

efforts to access and process the data, making these applications’ execution more straight-

forward for companies and governments.

Keywords: Privacy-Preserving Entity Resolution, Data Privacy, Machine Learning,

Blockchain, Transfer Learning
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Chapter 1

Introduction

In recent times, companies and government significantly increased the amount of the col-

lected data. Much of this data is about personal information, such as shopping transactions,

browsing history, telecommunication records, financial information, or electronic health

records. This data has been employed in data mining and analytic techniques that can pro-

vide relevant information for several areas of knowledge. For instance, personal data can i)

be employed to perform crime and fraud detection [176], ii) lead to better patient outcomes

or to detect a disease outbreak in the health sector [63], iii) be of vital importance to national

security [97] or be a competitive edge to a commercial enterprise[10].

Data mining and analysis often require information from multiple data sources to be

integrated in order to enable precise and useful analysis [10]. However, to execute data in-

tegration, first, we have to identify and aggregate records that relate to the same entity (e.g.,

people, restaurants, publications, products, among others) from one or more data sources

[28]. This process is known as Record Linkage1 (RL), Data Matching (DM), or Entity Res-

olution2 (ER) [28; 10]. Although the process receives several names in the literature, in this

work, we will adopt RL.

A recurring problem that Record Linkage faces is the absence of attributes capable of

uniquely identifying entities, which refer to the same entity, in the different data sources.

1Record linkage is the term widely used by statisticians, epidemiologists, and social researchers (e.g.,

economists and anthropologist) to describe the process of merging records from one data source with another

that describe the same entity.
2In the computer science context, the terms Data Matching and Entity Resolution are also employed to

name the RL process.
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The absence of a unique identifier, such as an ID, makes the use of simple comparison oper-

ations (e.g. SQL joins) impossible, making the linkage to be carried out with sophisticated

comparisons involving a set of common attributes to all entities in the different data sources.

Such a set of attributes is called quasi-identifiers (QIDs) [30].

Currenttly, Record Linkage not only faces computational and operational challenges in-

trinsic to the comparison and classification methods, but it also has to address privacy preser-

vation challenges due to recent laws and regulations such as European General Data Protec-

tion Regulation (GDPR), Brazilian General Data Protection Law (LGPD) and the US HIPAA

Privacy Rule. In this context, Privacy-Preserving Record Linkage (PPRL) emerges, aiming

to identify matching entities across private data sources, ensuring that the data’s privacy and

confidentiality are preserved throughout the linkage process.

The use of PPRL has gained special attention during the COVID-19 pandemic. The de-

mand for applications that assist in public health decision-making increases. As an example,

we have an application that estimates the infection rate, vaccination population, and so on.

An important problem for these applications is the existence of duplicate entities that can

negatively influence the interpretation of data analysis. This problem was noticed by world-

wide health authorities - i.e., US3, UK4, and BR5 - when they noticed double-counting covid

cases problem. Duplicated COVID cases may occur for different reasons. For instance, we

might face this problem when patients leave at state borders and perform tests in two differ-

ent states, leading the state’s health authorities to count the same patient twice. The result

of duplicated COVID cases can be problematic and lead health authorities to make wrong

decisions, e.g., open or close the local economy at the wrong moment.

Another example of PPRL usage is in the Financial Fraud, Law Enforcement, and

Counter-Terrorism applications [176]. These applications need to deal with multiple sen-

sitive databases to identify criminals. As listed in the work of Chen et al. [23] in the

aforementioned context at least 13 different sensitive databases need to linking prior to the

execution of data mining and machine learning algorithms. In the following, we presented

the list of databases listed in the Chen et al. work: i) telemarketing call lists, ii) direct mail

mailing lists, iii) airline reservations or travel records, iv) frequent flyer/hotel stay program

3https://www.nytimes.com/coronavirus-tests-cdc/
4https://www.telegraph.co.uk/thousands-coronavirus-tests-have-double-counted-officials/
5https://www.jornaldaparaiba.com.br/duplicidade-em-casos-registrados-de-covid-19/
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membership information or activity, v) magazine subscription records, vi) information about

purchases made at retailers or over the Internet, vii) telephone calling logs or records, viii)

credit or debit card numbers, ix) mortgage or car payment information, x) bank account

numbers or balance information, xi) records of birth certificates, xii) marriage licenses and

divorce decrees, and xiii) utility bill payment information.

Notice that the number of databases to be linked in this context is significant. Besides

the privacy of the database records, the PPRL techniques need to address problems related to

the volume of information (a.k.a., very large databases), standardization methods for foreign

names and addresses, and the quality of the linkage [30]. For example, suppose the PPRL

wrongly classifies an individual, identifying an innocent person as a criminal (false matches).

In that case, the consequence could be catastrophic to the innocent person that was wrongly

identified as a criminal. Furthermore, these databases are constantly modified, making the

same entity be represented by different records [23]. For instance, a person could marry and

change her/his name, making it hard to the linkage process due to the modification of the

record (information) across the time (a.k.a., Temporal Record Linkage [143]).

As previously presented, PPRL needs to address privacy-related issues. Thus, to ensure

the entities’ privacy during the process, data source owners (also called PPRL parties or data

custodians) need to compare and classify the entities without seeing (in full) the other PPRL

parties’ data. In this sense, data source owners agree to reveal only selected information

about matched records among them or to an external party, such as a researcher. Therefore,

PPRL operates over an anonymized (or encrypted) representation based on a fraction of

the original data, hampering the linkage process by adding complexity in every step of the

process. In summary, we can define the PPRL process as:

Definition 1 (Privacy-preserving record linkage). Assume that n data sources D1, · · · , Dn

are owned by |P | PPRL parties P1, · · · , Pn, respectively. The PPRL parties wish to employ

the anonymized QID of the entities ê to identify which of their entities ê[1,i] ∈ D1, ê[2,j] ∈
D1, · · · , ê[m,k] ∈ Dm match according to a decision model Ξ(ê[1,j], · · · , ê[m,k]) that classifies

record pairs into one of following two classes: M of matches or U of nonmatches.

The basic idea of PPRL is to execute the linkage process in anonymized data (by per-

turbating the original data with the use of encryption, hash functions, and noise additions),
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ensuring that the privacy and confidentiality of the data are preserved during the linkage pro-

cess. PPRL reveals only a limited amount of information. For instance, a party only knows

which of its own records exist in the other party’s data source or the number of duplicated

entities presented in the datasets used as input to the PPRL process [179]. The steps of the

PPRL are illustrated in Figure 1.1.

Figure 1.1: Traditional PPRL workflow.

In the Handshake step, besides agreeing on data anonymization parameters (e.g., cryp-

tography keys and Bloom filters length), the parties explicitly agree on the attributes (at-

tribute pairing) that will be used to match/link the records during the following steps [128].

An important objective of the Handshake is the attribute pairing. Considering that it is not

always possible to obtain a common attribute capable of identifying the same entity in mul-

tiple databases, for example, the SSN, PPRL uses a set of entity attributes named as quasi-

identifiers (QIDs) to perform the necessary comparisons and identify the entities that have a

high similarity with entities available at the other participants’ datasets.

The Data pre-processing step converts the original data into a standard format, previously

agreed between the parties. In the Data anonymization step, the original is anonymized

data, using techniques such as the Bloom Filter (detailed in Section 2.1.4), according to the

parameters defined during the Handshake step.

The aforementioned steps (Handshake, Data pre-processing and Data anonymization)

are conducted by the PPRL parties. Notice that in Figure 1.1 all steps after Data anonymiza-

tion are depicted in a different color. It means that they can be conducted by a third-party or

by the PPRL parties; therefore, the usage of anonymized data is mandatory.

The Blocking (or indexing) step intends to reduce the number of comparisons needed to

be conducted in the following step by pruning of pairs of records that unlikely correspond to

matches. For instance, the first letter of a patient’s name (blocking key) can be used to group



5

patient records into a block of candidate pairs. The Comparison step applies similarity (or

comparison) functions to the anonymized data in order to calculate the similarity between

candidate pairs.

The Classification step receives the candidate pairs (together with their similarity values)

from the Comparison step and classifies each of them into similar (match) or dissimilar

(non-match). Finally, in the Evaluation step, the efficiency (e.g., execution time, memory

consumption, and CPU usage), effectiveness (measured by quality metrics such as Precision,

Recall, and F-measure), and privacy of the PPRL process (measured by disclosure risk and

information gain) is assessed.

A PPRL solution needs to address three issues (or characteristics): efficiency (or scala-

bility), privacy, and linkage quality. In the following, we outline these PPRL characteristics.

1. Efficiency: assume that two data sources to be linked, D1 and D2, contain x = |D1|
and y = |D2| entities. In order to compare every entity in both data sources, we have

to perform x × y comparisons. Therefore, by nature, the naı̈ve linkage process has a

quadratic complexity [136], presenting a low efficiency. This problem gets hampered

by using big data sources (i.e., data sources with millions or billions of entities) and

complex anonymization techniques employed by PPRL. Indexing techniques can be

used to overcome this problem [28], as will be presented further in Chapter 2. In

summary, PPRL solutions need to be prepared to perform linkage in large data sources;

2. Privacy: considering that organizations need to link sensitive information (e.g., med-

ical or credit records) across multiple data sources (D), the PPRL process needs to

protect the information’s privacy. In order to fulfill privacy-preserving requirements,

PPRL solutions employ sophisticated anonymization techniques (e.g., homomorphic

encryption and Bloom Filter) to preserve the privacy of the entities at a linkage quality

level and an extra computational cost. However, the use of the anonymization tech-

niques do not guarantee information privacy; as demonstrated in Chapter 2, several

privacy attacks are able to break the privacy of anonymized data. Therefore, the use

of privacy-preserving protocols along with anonymization techniques is required to

ensure privacy during the PPRL process;

3. Linkage Quality: in general, real-world data sources are ’dirty’ [28], which means
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they contain errors, typos, variations and values that could be missing. For instance,

the name ’Anna Estella’ could be entered as ’Ane Stela’ by a hospital employee, mak-

ing it hard to link patient data across different data sources. Therefore, the exact com-

parison of QID values is not sufficient to achieve accurate linkage results. Thus, to

improve the linkage quality, the use of approximate comparison techniques6, as well

as accurate classification techniques, are needed to achieve accurate linkage quality in

record linkage applications. These quality problems are exacerbated due to the privacy

requirements, i.e., anonymized QIDS. Thus, every PPRL process needs to address the

linkage quality issues.

For a PPRL solution to be used in real-world applications, it should address all three

characteristics. Furthermore, the solution needs to provide a comprised among privacy, ef-

ficiency, and quality according to the needs of the PPRL parties’ requirements. There have

been many different approaches proposed for PPRL [171; 178; 179]. However, some ap-

proaches attempt to address the problem of PPRL fall short in providing a reliable solution,

either because they do not provide sufficient privacy capabilities or because they are not able

to provide high linkage quality.

1.1 Limitations of Privacy-Preserving Record Linkage

As previously introduced, PPRL needs to address three issues. However, it is worthwhile

to mention that Efficiency, Quality, and Privacy are conflicting. In other words, if a PPRL

solution prioritizes one of these three characteristics, the other two will suffer.

For instance, if we employ a complex anonymization technique, such as Homomorphic

Encryption (HE)7 [129], we prioritize privacy at an efficiency and quality cost. In other

words, by employing this encryption, we add an extra computational cost in every compari-

6Approximate comparison techniques return the degree of similarity among two entities, a number between

0 and 1, where 0 means dissimilarity and one total similarity. For instance, if we employ an approximate

comparison technique over the ’Anna’ and ’Ane’ example, it will return a value of .75, indicating that the

names are 75% similar, while the exact comparison will indicate that ’Anna’ and ’Ane’ are not similar.
7Homomorphic encryption is an encryption technique that enables arithmetic operations (addition, subtrac-

tion, and multiplication operations) over encrypted data. Homomorphic encryption, explained in Chapter 2,

can be viewed as an extension of either symmetric-key or public-key cryptography.
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son due to the HE operations. Furthermore, we force the linkage process to be carried based

only on exact comparisons due to encryption limitations (presented in Chapter 2) [176].

Therefore, the exact comparisons have an impact on the linkage quality because the QID’s

values need to be the same for a pair of entities to be considered a match; for example, the

entities’ ana’ and ’Ana’ are classified as ”no match” by exact comparisons techniques.

While PPRL techniques help overcome the privacy-preserving linkage of sensitivity data,

they present their own problems. Recent surveys [30; 171; 176; 178; 182] indicate that the

main challenges for the extensive use of PPRL are related to the linkage quality, efficiency

and privacy issues. In the following, we outline some of the high-level challenges of the

PPRL that are marked as open issues by the literature:

• New adversarial models: as will be explained in Chapter 2, the parties PPRL need

to make assumptions about the behavior of the other parties, and this assumption is

named as adversarial models. The currently used adversarial models require that the

PPRL parties fully trust other parties [30]. However, this adversarial model is not

realistic for real-world applications, mainly because it is hard to find PPRL parties that

will not try to learn from the exchange information. Therefore, the need for a more

realistic adversarial model is an open issue to the PPRL community;

• Anonymization techniques: many of the anonymization techniques used in the PPRL

process currently lack evidence that verifies whether these techniques cannot be at-

tacked by an adversary, such as phonetic encoding and generalization techniques [176].

On the other hand, those techniques based on secure multiparty computation and en-

cryption, while probably secure, are currently less scalable to link large data sources.

Thus, in order to improve the linkage, novel anonymization techniques are required

that are more secure than current approaches while still efficient and accurate, allow-

ing the approximate comparisons of the QIDs values [30];

• PPRL classification: most PPRL solutions employ a simple classifier. In order to

classify the entity pairs, the PPRL parties define a threshold and compare it against

the value that represents the similarity calculated for an entity pair. However, the

threshold value definition is a complex task that requires expert operators to ”guess”

the appropriate value. For instance, if the threshold value is too high (e.g., 0.9 or 1),
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PPRL will miss true match entities. On the other hand, if this value is too low, PPRL

will likely classify false positive matches. Therefore, novel classification techniques

are required in order to help the PPRL operators to classify the entities correctly.

Unless progress is made along with these issues mentioned above, it will not be easy to

employ PPRL in real-world data. Next, we present the aims of this thesis.

1.2 Aim of Research

Based on the challenges summarized in Section 1.1, this thesis intends to address the PPRL

process’s bottlenecks that represent limitations to its extensive use of PPRL. Given the cur-

rent demands for improvement to the PPRL process, this work’s main goal covers improving

privacy and the linkage quality of PPRL. The privacy improvements will be concentrated

on the anonymization and comparison steps using a novel anonymization technique and au-

ditable data comparison protocols, respectively. The linkage quality improvements are fo-

cused on automatic (Machine Learning-based) classifiers to PPRL. Each contribution will be

employed to tackle a different bottleneck, detailed in the specific goals section.

1.2.1 Specific goals

Considering the proposed main goal and the fact that the privacy and quality of linkage issues

are the most limiting PPRL characteristics to widespread use of real-world applications, this

work has the following specific goals:

1. Improve the privacy-preserving capabilities of the Bloom Filter anonymization tech-

nique;

2. Propose a novel adversary model that reduces the need of thrust by PPRL parties;

3. Propose a machine learning-based classifier to mitigate the threshold selection during

the PPRL Classification step;

4. Propose a novel encoded/anonymized record pair representation that enables the use

of novel ML-based classifiers (e.g., deep learning-based classifiers) to improve the

linkage of the PPRL process;
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1.3 Research Relevance

Data privacy or information privacy has recently gained relevance for individuals, govern-

mental institutions, and corporations. The relevance of data privacy is reflected by the num-

ber of laws and regulations presented by different countries worldwide [30]. Due to this

regulation, organizations cannot share their data without addressing the privacy of the indi-

viduals [176; 178]. In this context, the PPRL process aims to improve the input quality to

data applications, such as data mining and analytics.

Identifying duplicated entities across private data sources has an important outcome for

any data application. For instance, in the decision-making context, the low quality of the

data negatively influences the analyses’ interpretation based on these data and, consequently,

compromises the decisions. For example, a production chain planning process involving the

purchase and stock of raw materials, production, and storage of products. It will most likely

be hampered if decisions are made based on reports that do not include duplicated materials

stored in a different warehouse.

The previous example was made considering non-private data. Now imagine the conse-

quence of duplicated records in health application. For instance, the existence of duplicated

patient records may lead to the wrong conclusion in an investigation if a specific medication

is efficient against a disease. In summary, PPRL is an important step to analyze, mine, and

process private data sources.

PPRL can be employed in different scenarios besides medical and health applications. As

an example, we have anti-terrorist, organized crime, and national security applications. For

instance, consider an investigation against the money laundry and corruption investigation.

Such investigation needs to use and manage various national databases, from many differ-

ent sources, including law enforcement agencies, financial institutions, travel history, phone

records, and so on [28; 30]. It is obvious that this database is highly sensitive and therefore

need to be protected [177]. Thus, the PPRL may facilitate linking the information without all

data being given to a criminal investigation unit. In other words, only linked information of

suspicious individuals is available to the investigation, reducing privacy and confidentiality

breaches [30].
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Another important field for PPRL is the Census applications compiled by a national

official statistics office, such as the US Census Bureau, the Australian Bureau of Statistics

(ABS), the Office for National Statistics (ONS) in the UK, or Instituto Brasileiro de

Geografia e Estatı́stica (IBGE) in Brazil. Census data are used for different purposes, and

as the most relevant purpose, we can list population estimates, projections for health care

and educational planning, and the destination of federal investments. A central task for

all statistics offices is to identify duplicated records in Census data to avoid populational

double counting and, therefore, avoid incorrect federal investments. However, due to the

regulations, privacy concerns arise to the Census databases. These concerns require PPRL

techniques that can process a voluminous dataset while preserving the confidentiality of the

collected Census data [30].

The need for PPRL solutions is reflected by the wide demand to link real-world private

databases. Several countries with different privacy frameworks and legislation are linking

some of their sensitive databases. In Brazil, sensitive databases are linking to investigate the

consequences of cash welfare and housing programs for Brazil’s most poor population con-

cerning their health outcomes [140]. In Germany, information about newborns are linking

sensitive to measure the quality of their medical systems. Switzerland, Canada, and Australia

standardized their anonymization techniques and created a federal institution to coordinate

the linkage of private and sensitive information [30].

Recently laws and regulations (such as the Brazilian LGPD8, European Union GDPR9,

and USA HIPAA10) intend to enhance individuals’ control and rights over their sensitive

information, enforcing the institutions (governments or private companies) to protect and

preserve the privacy of individuals and entities. Moreover, these laws make the right to

privacy a basic human right [20]. Therefore, privacy violations are beyond data protection

laws and can be characterized as a violation of human rights. Consequently, the penalty for

a violation of privacy is severe. In this context, the PPRL task is essential to perform data

integration in light of existing privacy laws.

A field that can leverage the PPRL techniques is the Federated Data Linkage application.

8https://www.planalto.gov.br/ccivil03/ato2015− 2018/2018/lei/l13709.htm
9https://gdpr-info.eu/

10https://www.hhs.gov/hipaa/index.html
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Federated Data Linkage is a data integration task that intends to link data of multiple insti-

tutions (e.g., a hospital) that integrates a large network/federation (e.g., all federal hospitals

of a country) [74]. In the Federated Data Linkage context, laws (e.g., GDPR and LGPD)

and regulations (e.g., HIPAA) require that the privacy of the individuals are preserved dur-

ing the task execution [15]. For example, during the 2019 pandemic, the German university

hospitals [141] made available for researchers a database with information regarding the

diagnostic and therapeutic approaches for COVID-19. This database was built over the in-

formation available only in isolated silos (comprising all 36 German university hospitals)

and inaccessible to external researchers by using a Federated Data Linkage solution (the

CODEX11 project). Therefore, PPRL techniques could link records (e.g., patient records),

preserving the privacy of the individual in the Federated Data Linkage applications.

The present work relevance is related to the proposal of methods that attempt to ex-

tend the use of PPRL techniques by eliminating bottlenecks. Specifically, this work intends

to enhance the linkage quality and propose novel privacy assumptions. The contributions

presented in this work can be incorporated into the existing PPRL process and/or can be

employed in future researches.

1.4 Research Contributions

In order to illustrate our contributions to the PPRL process, we plotted Figure 1.2. It depicts

the PPRL steps, further detailed in Chapter 1, highlighting the steps directly impacted by our

contributions. Notice that the figure illustrates a general workflow for two dataset owners.

We would like to state that our contribution can be applied in different scenarios, including

multi-party PPRL, as explained in the following chapters. For a better understanding, we

illustrated our contributions with two dataset owners.

Notice that we propose a contribution to the Anonymization step. This step is crit-

ical to the entire PPRL process, impacting the privacy, quality, and efficiency of the

PPRL. The majority of the PPRL processes consider the Bloom Filter (BF) anonymiza-

tion technique, further detailed in Section 2.1.4. BF is able to produce an accurate sim-

ilarity distance between two entities’. However, recent studies [180; 32; 143; 181; 31;

11https://www.netzwerk-universitaetsmedizin.de/projekte/codex
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Figure 1.2: Our contributions within the PPRL process.

182] demonstrate that if an attacker has access to a complete database anonymized with

this technique, he/she can re-identify the entities, breaking the privacy of the information.

Thus, in this context, we propose the Splitting Bloom Filter (SBF), detailed in Chapter

4. SBF aims to enable an iterative comparison of the entities’ similarity by breaking the

entities’ anonymized representation in splits regarding the BF privacy enhance technique. In

other words, SBF modifies the anonymization step’s output to enable the auditability in the

PPRL comparison step, our second contribution.

In the Comparison step lays our second contribution. A major deficiency in the PPRL

context is that the PPRL party needs to consider an unrealistic adversary model. The majority

of the PPRL solutions assume an honest-but-curious (HBC) adversary model. This adversary

model assumes that all PPRL parties will follow a pre-agreed protocol and will not try to re-

identify the anonymized information exchanged during the PPRL. Therefore, having such

trust in the PPRL context is unrealistic.

To address the issue mentioned above, we propose the Auditable Blockchain-Based

PPRL (ABEL) to provide auditability during the comparison step, eliminating the need to

trust the other PPRL parties fully. Moreover, ABEL enables the auditability of the entity’s

similarity computation using Blockchain technology, with on-chain and off-chain compu-

tations. It is worthwhile to mention that the Blockchain stores all processed data on-chain

to provide a transparent and temper evident computation. However, this Blockchain char-

acteristic, in a PPRL context, poses a threat to entities’ privacy. The usage of off-chain

computation by the parties is a fundamental aspect to preserve the privacy of entities during

the PPRL execution. A detailed explanation of the ABEL is presented in Chapter 4.

Our third contribution is placed in the Classification step of the PPRL. Due to privacy
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limitations, the classification step i) can not be performed or assisted by humans (oracle), and

ii) there is no available label data, making it hard to train Machine Learning (ML) classifiers.

The majority of the PPRL processes utilize a simple threshold (guessed by a specialist) to

define whether an entity pair is a match, or not. It is worthwhile to remark that PPRL is used

in law enforcement and medical applications, and an erroneous classification of the PPRL

could have a serious outcome to a person. For instance, an innocent man could be flagged as

a criminal, or a physician could prescribe the wrong treatment to a patient.

In this context, we propose the Auto-Tuned Unsupervised Classification approach (AT-

UC) to provide PPRL with better classifiers; eliminating the need for a specialist to guess a

threshold and improve the linkage quality. AT-UC utilizes a Transfer Learning technique to

employ non-private datasets for training and modifying a classifier to be executed in a private

dataset to tackle the absence of labeled data. Moreover, AT-UC also has to define a proper

feature space, select a related dataset, and modify the classifier. AT-UC is presented in detail

in Chapter 5.

In the PPRL context, most of the automatic classifiers employ statistical learning tech-

niques (e.g., Support Vector Machine and Logistic Classifiers) [33; 41; 30]. Moreover, these

classifiers often employ the similarity measures of the records as input (features). Further-

more, standard similarity measures often do not manage well the heterogeneity of the un-

derlying input data. This requires experts to design and configure such measures manually

[105]. Therefore, due to the limitation of the similarity measures employed in PPRL [30;

105], the classifier task of delineating a suitable separation region (e.g., hyperplane or line)

between matching and non-matching records gets more challenging.

Our fourth contribution seeks to mitigate the problem of the similarity measures influence

over the classifiers employed in PPRL. Our contribution, presented in Chapter 6, employs

Deep Learning Classifiers (DLC) to identify patterns that indicate whether an anonymized

record pair is a match or not. We also propose a novel representation of the encoded record

pair based on a dynamical system representation of the data (Recurrence Plot, detailed in

Section 2.8). It is worth noting that the DLC could improve the linkage quality, mitigating

the problems of miss classification presented in PPRL.

In summary, this thesis intends to improve the PPRL process in terms of privacy and

linkage quality. Moreover, the contributions introduced in this thesis can be employed to
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solve problems beyond the PPRL scope. For example, the contribution can be employed to:

i) create a Federated Data Linkage solution to integrate multiple sensitive databases (e.g.,

patient records), providing a tool for epidemiological studies in a country, and ii) adequate

data integration tasks to privacy laws (e.g., Brazilian LGPD). The box below summarizes

our contributions.

PPRL Open Problems Addressed by our Research

1. Anonymization Technique improvement

Splitting Bloom Filter (Chapter 4)

Addressed Problem:

• The existing Bloom Filter techniques fail to preserve

the privacy of the entities when an attacker has access

to the anonymized dataset.

Contributions:

A technique that enables the approximated compari-

son using small parts of the original Bloom Filter;

Reduce the risk of entities reidentification by an at-

tacker during the Comparison step of PPRL;

An improvement to the Bloom Filter anonymization

techniques compatible with most used BF hardening

techniques.
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2. Novel adversary model

Auditable Blockchain-Based PPRL (Chapter 4)

Addressed Problem:

• Most of the existing solutions require that the PPRL

parties follow a pre-agreed protocol and, therefore, will

trust entirely that all the computations are computed

correctly (considering an HBC adversary model).

Contributions:

An approach that reduces the level of trust needed

to execute the PPRL process;

A high-level protocol to audit the computation per-

formed during the PPRL process;

A proof-of-concept implementation of the protocol

using Blockchain technology.

3. ML-based classifier

Auto-Tuned Unsupervised Classification (Chapter 5)

Addressed Problem:

• The majority of PPRL solutions consider a simple

threshold to classify the entity pairs. Moreover, the

threshold value is defined manually (guessed) by

a specialist. Furthermore, the entire linkage depends

on this threshold value definition, and an improper

threshold value could compromise the quality of

the linkage process.

Contributions:

An unified feature space to PPRL applications;

A methodology to select a related training dataset in

a privacy-preserving context;

A novel semi-automatic unsupervised Classification

technique to the PPRL process;

Novel implementation of classical similarity metrics

to the Bloom Filter.
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4. Deep Learning-based classifier

Deep Learning Classifiers (Chapter 6)

Addressed Problem:
• The use of similarity measures as features to PPRL

classifiers could result in low linkage quality [105].

Contributions:

A novel representation for encoded records pairs;

A classifier able to identify matching records using data

patterns instead of predefined similarity measurements;

Novel Deep Learning architectures for PPRL.

We would like to state that a comprehensive experimental evaluation of our contributions

was executed, considering the linkage quality and privacy using multiple real-world and syn-

thetic datasets. We also compare our contributions against several state-of-the-art techniques

considering different PPRL scenarios.

1.5 Research Methodology

In order to execute the research, we employ the following research methodology. Based on

the work of Kothari [94], we conducted the study in nine steps illustrated in Figure 1.3.

Figure 1.3: Research methodology.

For each contribution, we executed the same methodology. First, we start with a prelimi-

nary study. In this step, a basic understanding of the research is gathered by broadly studying

the literature, which helped recognize different research problems in the PPRL context. In
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the second step, we define the research problem under the previously investigated context.

With the research problem defined, we conduct a literature review to understand it better. The

knowledge gathered in this step is employed to i) clarify the research problem; ii) propose

the solutions; iii) implement prototypes; and iv) present an experimental design.

Once we define the research problem, we propose new approaches to address it in the De-

sign Solution step. When this solution is mature, we start the Theoretical Evaluation step; in

this step, we analyze the proposed solution regarding privacy, linkage quality, and efficiency.

Notice that the Research problem, Solution Design and Theoretical Evaluation steps are

linked to the Literature Review step in order to allow iteration and adjustment in these steps.

In the sixth step, Prototype, the proposed solution is implemented, providing a proof-of-

concept solution. In the next step of the process, we propose the setup of experiments to

evaluate the proof-of-concept solution. In this setup, we select proper data sources, evalua-

tion metrics, parameters, and state-of-the-art techniques for comparisons. Finally, the exper-

imental results are evaluated concerning efficiency, linkage quality, and privacy to validate

the theoretical analysis.

1.6 Document Outline

This thesis is structured as follows. The following chapter provides the background about

overall PPRL, Machine Learning, and other concepts related to our research. In Chapter 3,

we present a review of the literature on existing PPRL approaches. Chapters 4, 5, and 6

present the Auditable PPRL approach, and the PPRL Unsupervised Classification step, and

the Deep Learning Classification step, respectively. Finally, Chapter 7 introduces our final

arguments and conclusions.



Chapter 2

Background

This chapter introduces the core concepts underlying the topics discussed in this thesis. We

introduce the concepts of data anonymization, Privacy-Preserving Record Linkage (PPRL),

PPRL Privacy Attacks, Differential Privacy, Blockchain technology, Recurrence in dynami-

cal system, Transfer Learning, and Deep Learning.

2.1 Data Anonymization

This section provides a brief description of the techniques for encoding and comparing sen-

sitive information based on different dimensions ranging from privacy and technical to prac-

tical aspects.

2.1.1 How Anonymization Protects Data Privacy

Individuals have privacy rights (ensured by laws and regulations) regarding who can know

or share information their sensitive information. Therefore, in order to protect the sensitive

data of individuals, data privacy techniques are employed.

Data privacy refers to the ethical, legal, and technical issues of gathering, manipulat-

ing, and sharing data in which identifiable information about individuals is included

in the dataset. [61]

Data privacy

18
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In the data privacy domain, a range of techniques intends to remove or mask sensitive

information from the dataset. These techniques are named data anonymization.

Data Anonymization is a type of information sanitization - that is, the removal of sensitive

information - for privacy protection. It is a procedure to modify a dataset such that the

individuals it reflects are anonymous. Typically, this means removing personally identifiable

information from datasets so that the identities of individuals in the dataset are anonymous.

Data anonymization is the process of protecting private or sensitive information by

suppressing, masking, or encrypting identifiers that connect an individual to data.

In other words, data anonymization is a process of modifying a dataset such that the

data can not be used to identify an individual. For example, it is possible to remove the

names, social security numbers, and addresses through a data anonymization process

that retains the data but keeps the source anonymous. [11]

Data anonymization

In summary, data anonymization alters the sensitive information of the individuals in

such a way that it can no longer be related back to a given individual. Section 2.4 presents

several attacks designed to re-identify the anonymization technique. Some of these attacks

are focused on the anonymization technique (e.g., cryptoanalysis [125] and frequency-based

attacks [177]). However, other attacks [182] employ non-sensitive data to re-identify the

data. For example, using the US census data, a group of researchers could uniquely re-

identify 87.1% of the individuals stored in the dataset using only the birth date, gender, and

zip code [160].

To preserve the privacy of individuals against attacks over non-sensitive information data

de-identification techniques are employed. Data de-identification is a form of dynamic data

masking that refers to breaking the link between data and the individual with whom the

data is initially associated [49; 193]. Essentially, data de-identification removes or trans-

forms records or personal identifiers to make them statistically de-identified. In other words,

data de-identification makes it hard for an attacker to identify an individual from a dataset.

On the other hand, data anonymization intends to protect the sensitive data of a record.

Data de-identification can be separated into two groups of solutions: Generalizing (e.g., k-

anonymization and l-diversity ) and Randomizing (e.g., differential privacy and randomized
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response).

Data de-identification and anonymization are at different ends of a whole spectrum of

data privacy techniques. In this thesis, we work with data anonymization in the context

of PPRL. Therefore in the following sections, we provide details of the most used data

anonymization techniques in the PPRL process.

2.1.2 Hashing and Encryption Techniques

Hashing is a well-known technique that maps values of arbitrary sizes, such as textual data,

to fixed-sized values such as integer numbers that are in a specific range. In other words, a

hash function converts its input values into hash values or hash codes. In the PPRL context,

one-way hash functions [37] have been used to i) convert a string value into a hash-code (i.e.,

’ana’ into ’c3ea4f07ff0’); and ii) perform similarity computation over the hashed value.

Algorithms such as Message Digest (e.g., MD5) and Secure Hash Algorithms (e.g., SHA-

1 and SHA-256) are the most widely known and used hash algorithms in the PPRL con-

text [176]. However, it is important to remark that, by employing these algorithms as the

anonymization method, the PPRL process can only perform exact matching. For example,

if we hash the words ’ana’ and ’Ana’, the result is two distinct hash values, 5BA571 and

FA561C, respectively. Furthermore, hashing-based anonymization techniques are suscepti-

ble to privacy attacks [30; 32; 181], e.g., Frequency and Dictionary attacks. This topic is

better detailed in Section 2.4.

Unlike the hashing-based encoding techniques, encryption techniques allow sensitive

data to be encrypted by one party and sent to a linkage unit to be compared in an encrypted

form (ciphertext) to generate a result that is also encrypted. This encryption technique is

named as Homomorphic Encryption.

Homomorphic Encryption [138] is a family of cryptographic functions that uses two

keys: one to encrypt the data and the other to decrypt it. Theses functions enable algebraic

operations such as private sum (⊕) and private product (⊗) in encrypted numerical data. In

this work, Partially Homomorphic Cryptography (PHC) will be considered. This function

allows the private sum of encrypted data and the product of encrypted data by plain constants.

Let Ek be a PHC function that encrypts the data, then Ek has the following properties:
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Ek(x⊕ y) = Ek(x)⊕ Ek(y)

Ek(x)⊗ c = Ek(x× c)
(2.1)

, where c is an unencrypted constant.

PHC functions allow the similarity between non-textual data to be calculated using spe-

cialized functions while maintaining the privacy of the data and the comparison result [138;

129]. For example, to compare two dates (A = 01/01/1994 and B = 01/01/1944), we can

encode A and B using PHC and compute the difference of these dates in a secure manner, as

shown in Figure 2.1.

Figure 2.1: To compare the dates, first A an B are encrypted using a common key. The

encrypted values are subtracted, generating a third value (C). The result of these operations

(50 years) is only known by using a decrypt key.

In summary, Hashing and Encryption Techniques enable exact comparison over textual

data at the quality and computational cost due to the encryption and hashing tasks. In turn,

Homomorphic Encryption is able to perform arithmetic operations over encrypt numerical

data, and therefore perform approximated similarity computation on such data. It is worth-

while to mention that both techniques are susceptible to privacy attacks when employed in

a large dataset [177] (presented in Chapter 3). Therefore, its usage in the PPRL context

requires further investigation.

2.1.3 Phonetic encoding

A phonetic encoding tenchnique groups values (words) together that have a similar pro-

nunciation. It was originally designed to tolerate typographical variations during a string

comparison [176; 28; 30]. The Phonetic encoding algorithm converts the words into a code

according to predefined linguistic rules. For instance, using a phonetic encoding algorithm,
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both ”Ana” and ”Anna” return the same code ”A163” while ”Ane” yields ”A150”. It hap-

pens because the phonetic representation of the words is the same. In the PPRL context,

phonetic encoding has been used to provide additional privacy to the comparison step [176;

143].

In the indexing step of PPRL, phonetic encoding could reduce the number of record

pairs that need to be compared by grouping entities with similar phonetic representations.

The phonetic encoding usage in the indexing step could increase the scalability while also

supporting approximate matching of those values with the same phonetic encoding. How-

ever, phonetic encoding can reduce linkage quality because false matches are generated when

records with attribute values that are different but generate the same phonetic encoding are

classified as matches [177] — for instance, the words ’Ana’ and ’Anna’.

Regarding the usage of phonetic encoding technique in the PPRL context, several works

[171; 178; 190; 179; 157; 176; 30] point out that significant privacy leakage may occur

with the phonetic encoding approach due to the frequency distribution of encrypted phonetic

encodings.

2.1.4 Bloom Filters

A BF consists of a vector of l-bits (filter length), with all bits set to ‘0’, initially. The

BF can be formalized as [b0, · · · , bl], where bm represents the bit of position m. To in-

sert a set of elements (S = {s1, · · · , sn}) in a BF, k independent hash functions1, H(x) =

{h1(x), · · · , hk(x)}, are employed to map the elements si ∈ S to the l-bits vector. Further-

more, the output of H(x) indicates the bits (b) that need to be set to ‘1’ in the BF.

The quality of the anonymization depends on the BF parametrization, number of hash

functions (k) and filter length (l) [170]. For a given number of elements (n) to be inserted into

the BF, the probability of a specific bit still ‘0’ is p = e−
k×n

l . We can choose a k to minimize

the probability of two different elements being mapped to the same bit position (f ) by setting

p = 0.5 [17]. In other words, the probability of a bit in the BF still 0 (or flipped to 1) should

be 0.5 to reduce the false-positive rate. For PPRL, this is relevant because the bit patterns and

their frequencies in a set of BF can be exploited by frequency [116] and cryptonalysis [181]

1A hash function is an algorithm that takes messages and maps them to a value of a certain length, called a

hash value or hash.
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attacks. Such attacks exploit the fact that BFs that are almost empty can provide information

about rare elements. As a result, the re-identification of the entities is facilitated [172].

Figure 2.2 illustrates the insertion of the names ANA and ANE into the BFs a and b,

respectively. First, each name is transformed into bigrams; then, each bigram is mapped by

a hash function into a BF position. Finally, the positions are changed to ‘1’ in the BF.

Figure 2.2: Inserting the names ANA and ANE into 8-bits Bloom filters (l=8 and k=2).

The BF technique also enables the similarity calculation of two filters (a and b) through

token distance functions, such as Jaccard = |a∩b|
|a∪b|

, where |a ∩ b| is the number of positions

with the value 1 that coincide in both filters; and |a ∪ b| represents the number of positions

with the value 1 in the union of the filters a and b. Regarding the example illustrated in

Figure 2.2, the Jaccard similarity between filter a (representing the name ANA) and filter b

(ANE) is equal to 4
6
= 0.66.

In summary, the BF is relatively easy to understand and implement compared to other

more complex techniques. Also, the computation over the BF bit-vectors is efficient and

provides a good enough accuracy of the calculated similarity. Therefore, given these advan-

tages, the BF is considered the anonymization method of choice for PPRL.

2.1.5 Differential Privacy

Differential Privacy (DP) is a privacy preservation technique that addresses the paradox of

learning nothing about an individual while learning meaningful information about a specific

population [45]. For instance, the DP can be used to reveal relevant medical information
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regarding the treatment outcome (e.g., COVID-19 vaccination) over a specific population

(e.g., diabetic patients) without revealing the identity of the individuals.

Unlike the privacy-preserving methods presented earlier, DP’s basic idea is to introduce

noise (by modifying) to the original dataset or queries’ on a dataset. The concept of differen-

tial privacy technique based on the probability model was first introduced by C. Dwork [44].

Moreover, DP does not require prior knowledge of adversaries. Differential privacy aims to

ensure that any query or database modification output result should not reveal enough infor-

mation about any individual that leads to its identification. In the following, we present the

formal definition of Differential Privacy.

Definition 2 (Differential Privacy). Let M be a randomized computation mechanism. M pro-

vides ϵ-differential privacy if for any datasets D and D’ with symmetric difference DδD′ = 1,

in a set of possible outcomes S ⊆ range(M), such as:

Pr[M(D) ∈ S] ≤ Pr[M(D′ ∈ S)]× eϵ (2.2)

In other words, M is ϵ-differentially private iff. D and D′ differ in one element for any

set S of all possible outputs of M. The parameter ϵ (also named as privacy budget) controls

M’s privacy level. For instance, lower values of ϵ mean more robust privacy guarantees,

indicating that any individual in the database will introduce a small change on M. Section

2.7.2 shows the usage of DP mechanisms in the Deep Learning training context to protect

individuals’ privacy.

2.2 Difference between Privacy and Security Protocols

As presented in the previous sections, privacy is not just a technical task of controlling some

assets; privacy is a fundamental human right. Therefore, data privacy issues are discussed

in many different research communities, often in different terms or with the same terms

denoting different concepts [4; 21; 159]. Thus, this section clarifies the difference between

Data Privacy-Preserving and Security Protocols.

In summary, security protocols enable secure communication over insecure channels by

employing cryptographic primitives. On the other hand, privacy protocols intend to preserve
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the privacy of individuals. Moreover, privacy protocols can use secure channels, depending

on the task [21]. In this context, security protocols can be broken without breaking the

underlying cryptography, and some privacy protocols can be broken without breaking the

underlying security.

In the PPRL context, the boundaries between privacy and security are not clear [21].

Moreover, the data anonymization step can be perceived as a security measure to preserve the

privacy of the records. However, there are PPRL anonymization techniques that do not rely

only on cryptographic primitives. For example, several techniques, such as Bloom and Flip

[153], employ Differential Privacy techniques (a data privacy tool) to preserve the privacy

of individuals. Making it hard to establish whether the PPRL data anonymization step is a

security or privacy tool.

Knowing that the boundaries between privacy and security in the PPRL are blurred, we

use the term security to refer to establishing a secure communication channel or environment.

In contrast, the term privacy refers to any task, technique, and tool employed to ensure

the privacy of the data. In addition, other researchers suggest that the boundaries between

privacy and security protocols and privacy attacks present a new challenge for security and

privacy protocol analysis [21].

2.3 Privacy Preserving Record Linkage

In this section, we present details about the PPRL process. In the following, we present

concepts of adversary models, roles, and evaluations employed in the PPRL context.

2.3.1 PPRL Adversary Models

In the context of cryptography and information security, an adversary (or opponent) is a

malicious participant who tries to make the use of cryptographic systems unfeasible by com-

prising the privacy and integrity of data protected by security and encryption systems [54].

The literature also classify the adversaries in different models from a malicious to an honest

adversary model [6; 77; 120]. In the PPRL context, we highlight three adversary models

presented as follows [177]:
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1. Honest-but-curious (HBC): assumes that the participants will follow the protocol cor-

rectly but will try to obtain additional information from the data received during the

execution of PPRL. This model does not prevent participants from conspiring with

each other (collusion) in order to discover confidential information from other partici-

pants [179];

2. Malicious: participants behave arbitrarily in relation to the protocol, and may not

follow it, send random values, or even cancel the protocol at any time. Few studies

have been carried out in PPRL using this adversary model due to the difficulty of

predicting how a malicious adversary can bypass the protocol [179];

3. Covert and accountable computing: tries to ensure, with high probability, that the

participants who follow the protocol will be able to detect the malicious actions of the

participants who do not follow the protocol [77; 120; 179]. Created to overcome the

limitations of HBC, which can only be used in scenarios where all participants trust

each other.

According to recent literature review works [30; 177; 178], the majority of approaches

considers the HBC model, a few approaches consider malicious adversary models, and there

is no approach the consider the Covert adversary model.

2.3.2 PPRL Roles and Number of Parties

The PPRL process can be classified according to the number and the roles of participants.

The literature lists two distinct roles within a PPRL process: i) the PPRL parties; and the

Linkage Unit (LU). The PPRL parties (database owner or custodian) are the providers of the

databases to be linked [177]. Depending on the PPRL approach, the database custodian may

or may not participate in the comparison step. A LU is a special party that participates in

the PPRL process such that it may or may not be external to the dataset custodian [30]. In

general, a LU is a party that other PPRL participants trust and acts as a trusted third party to

conduct the Comparison and Classification steps [30; 177].

Considering that we have two dataset custodians that wants to execute a linkage over

their private data, we could employ two protocols. These protocols are classified according



2.3 Privacy Preserving Record Linkage 27

to the existence of a LU. Those that use a LU named as three-party protocol and those that

do not use a LU two-party protocol [135].

The three-party protocol generally employs the LU as a trusted third party to carry out

the steps of the PPRL. Figure 2.3 illustrates the three-party protocol. The PPRL starts after

the initial parameter exchange (step 1). Next, data is pre-processed and anonymized by the

participants in order to be sent to the LU (step 2). Finally, the LU performs the remaining

steps of PPRL (Comparison and Classification). In the end, the LU sends to the participants

only the identifiers (id) of the entities that are present in all databases [177].

Figure 2.3: PPRL three-party protocol.

Although these protocols are more efficient due to centralized processing of records, the

LU may collude with other PPRL parties to reidentify the entities of another custodian’s

dataset. Also, sending all encoded datasets to the LU can potentially increase the risk of

privacy attacks because the LU can use this information to reidentify a sensitive plain-text

value of a database. We explain privacy attacks in Section 2.4.

In turn, protocols that do not use a LU (two-party protocols) carry out all the stages of

PPRL on the dataset custodian themselves. Figure 2.4 illustrates this protocol. As in the

previous protocol, the initial parameters are exchanged; then, data is anonymized and sent to

the other participants (steps 1 and 2). After the distribution of anonymized data among the

PPRL parties, the remaining steps of PPRL are performed by each dataset custodian. In step

3, each participant informs the others which of their entities were classified as similar [177].

By sharing anonymized data with the other participant, this protocol needs to use more

sophisticated and, therefore, more complex anonymization and Comparison techniques in

order to ensure that data privacy is preserved during the execution of PPRL [80].

The two-party or three-party protocols are applied when PPRL is conducted with two
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Figure 2.4: PPRL tow-party protocol.

datasets. However, sometimes multiple, more than two, datasets are provided as input to

the PPRL process. In this scenario, we employ the multi-party protocol and the multi-party

protocols with an LU protocol. The multi-party protocol is analogous to the two-party pro-

tocol,i.e., the PPRL is conducted without a LU. In turn, the multi-party protocols with an LU

protocol use the LU to perform some steps of PPRL, similar to the three-party protocol [177;

30; 80].

2.3.3 PPRL Evaluation Measures

The final step of PPRL is to measure the performance of the linkage. In PPRL, perfor-

mance is measured by evaluating the efficiency, effectiveness (quality), and privacy of the

techniques used. In the following, we present a brief explanation of the aforementioned

evaluation measures.

Effectiveness (Quality) Evaluation

Three well-known quality measures (Precision, Recall, and F-measure) from Information

Retrieval are employed to evaluate a PPRL process’s effectiveness. These measures are

defined as Precision = |Γe∩Γr|
|Γr|

, Recall = |Γe∩Γr|
|Γe|

, and F −measure = 2×Precision×Recall
Precision+Recall

,

where Γe represents the set of all existing duplicated entities between the data sources (true

matches), and Γr is the set of entities identified as duplicate by an approach. Intuitively, low

precision indicates that false correspondences were made, while low recall implies that the

approach missed true matches. In turn, F-measure (F1) is the harmonic mean between recall

and precision.
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Efficiency (Scalability) Evaluation

Efficiency measures the scalability of a PPRL process. Efficiency can be measured using

metrics based on the computational environment or the number of candidate record pairs

generated by a PPRL approach. Next, we present some of the efficiency metrics:

1. Runtime and Memory Usage: this measure is based on the execution time and the

amount of memory employed to conduct the PPRL process. It can include the time

and memory required for the different steps of the PPRL process, e.g., pre-processing,

Indexing, Comparison, and Classification;

2. Communication Usage: usually, PPRL employs protocols, and every protocol has a

communication cost to exchange the messages. Therefore, it is important to measure

how much information is exchanged between the parties. The communication usage is

measured as the number of messages and their sizes (in bytes). Also, the total number

of messages transmitted among the parties or the average number of messages sent;

3. Reduction Ratio (RR): a scalability measure commonly used in PPRL which provides

information about the size of the comparison space generated by a blocking technique.

RR requires two metrics: the number of candidate record pairs generated by blocking;

and the number of all possible record pairs that can be generated across the databases.

Privacy Evaluation

Privacy is a fundamental aspect of any PPRL solution. Several standard information the-

ory measures such as entropy, Information Gain (IG), and Relative Information Gain (RIG)

have been used in PPRL to assess the privacy of reidentifing a record in a database [42;

81]. However, Vatsalan et al. [173], demonstrated that the aforementioned methods fail to

quantify the privacy of the PPRL process.

In this sense, an adequate evaluation method to a PPRL process is the simulation

paradigm. The paradigm assesses the approach through the messages (information) ex-

changed by the parties and LU during a simulated PPRL execution. The simulation must

be executed according to the guidelines proposed by Lindell et al. [103]: the messages

granted in the simulation must be the same as an adversary would have access to use in a
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real attack. The simulation fails if an adversary learns anything different from the expected

output.

2.4 PPRL Privacy Attacks

As previously stated, PPRL parties must share their entities among each other or with a

Linkage Unit. In order to preserve the privacy of the shared entities, the parties employ

anonymization techniques to prevent the reidentification of the shared entities. However, the

usage of anonymization techniques has limitations, and an opponent can use the anonymized

entities (i.e., data) to break the confidentiality and privacy of the shared entities. Therefore,

approaches, techniques, protocols, and data used in PPRL are vulnerable to the five types of

attacks described as follows [179; 182]: collusion, frequency, dictionary, composition, and

cryptanalysis.

The collusion attack occurs when two or more participants team up to discover infor-

mation about other participants’ data. For example, suppose the PPRL (using a three-party

protocol) is performed in a scenario where the participants are malicious. In that case, a ma-

licious participant could collude with the Linkage Unit in order to violate the confidentiality

of the data of the other participants [177].

The frequency attack consists of observing the frequency at which a given value occurs

in an anonymized dataset and comparing it with the frequency at which this value occurs in a

known dataset [177]. For example, in a database of patients diagnosed with breast cancer, the

name Maria is expected to appear more frequently than the others, since Maria is the most

common name for women in Brazil [69]. Thus, by observing the frequency of anonymized

data in a database, an opponent can break the confidentiality and privacy (reidentify) of the

original data.

In a dictionary attack, an opponent anonymizes a list (dictionary) of words (values) us-

ing various anonymization techniques. Then, the dictionary values are compared against the

target anonymized data in order to reidentify the entities [179]. For example, the dictionary

attack on a database of AIDS patients can be performed as follows: an opponent knowing

the technique used to anonymize the data, and knowing that an attribute represents the estate

of residence of the patients, can easily build a dictionary, with only 27 values (Brazil), and
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identify the state (of the federation) of AIDS patients.

In a composition attack, auxiliary information (external information) is used to break the

confidentiality and privacy of anonymized data [60]. Part of the rationale for the composition

attacks is described by Sweeney [161] who, using only three attributes (postal code - 5 digits,

gender, and date of birth), was able to reidentify almost 90% of the US population (216 out

of 248 million individuals).

Finally, cryptanalysis attacks use the combination of multiple attacks to obtain in-

formation about the key or algorithm used to anonymize the data. For instance, BF

can be vulnerable to this type of attack depending on the anonymization parameters and

the volume of data used. As a result, the participants exchange information/parame-

ters about the length (number of bits) and algorithms used in the Bloom Filters [99;

125]. In Chapter 3, we provide a summary of the current attacks and limitations of the

BF.

2.5 Blockchain

Blockchain, also called distributed ledger, is essentially an append-only DataBase Manage-

ment System (DBMS) maintained by a set of nodes that do not fully trust each other [50;

122]. In other words, Blockchain is a technology that maintains the states and the historical

transactions, using a peer-to-peer network, without any central node to enforce compliance

of the rules. Blockchain provides immutable storage (temper evidence guarantee) of trans-

actions in a chain of blocks, by storing data (records) in blocks that are linked using cryptog-

raphy tools, i.e., the previous block hash, the transaction owner signature, and the identifier

(id) of the machine (miner) that executed the transaction. Figure 2.5 provides a high-level

illustration of the Blockchain internal elements.

For each block of the Blockchain, Figure 2.5 presents a brief illustration of the most rel-

evant data structures of the technology. Notice that each block contains the indication (hash)

of the previous block to maintain the order of the data and transactions. A critical element

is the nonce, a considerable large random number (32 to 4,096 bits). The nonce represents

a cryptographic puzzle that needs to be solved by a Blockchain node (a.k.a., miner). Then,

with this puzzle resolved, the miner can append the block to the chain in a process named as
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Figure 2.5: Blockchain data structures.

mining. For instance, Bitcoin miners need to guess a valid nonce as they perform multiple

attempts to calculate a block hash that meets certain requirements (i.e., a prime number with

more than 64 bits that starts with a certain number of zeros).

Another important element is the timestamp; this element is used to provide proof of

computing (or existence) to the block data. For instance, this element can be used to track

public records, such as Educational Degrees2.

The data is stored in a public database (a.k.a, distributed ledger) by the transactions (tx).

Notice that one block can execute multiple transactions. It is worthwhile to mention that data

and metadata (e.g., the miner how executed the transaction) are stored in a database - a.k.a,

distributed ledger.

For a record (block) to be effectively stored in the distributed ledger, the record needs to

be replicated in every node of the Blockchain. In order to guarantee the consistency of the

ledger, a party sends the record within a transaction with a cryptographic puzzle to be mined

by the Blockchain nodes. After the first miner solves the cryptographic puzzle (embedded

with the transaction), the other nodes will verify the transaction execution and store it in its

local ledger [185]. In other words, every node in the network verifies all transactions, repli-

cating the data and the computation in all nodes of the network. Therefore, all inputs and

outputs of the transaction are publicly available from every Blockchain network member.

Regarding the verification of the block, in Figure 2.5, we have an element that represents

one of the most important verification tool of the technology, the Hash Tree. The Hash Tree

is a modified Merkle Tree [71] that uses specials hash functions to sign the data stored on

2http://www.ufpb.br/primeiros-diplomas-digitais-da-ufpb/
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the chain. Figure 2.6 presents a simplified version of the Hash Tree mechanism.

H Hash func on 
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Hash Tree
Block  
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Figure 2.6: Hash Tree example.

The Hash Tree hash uses encryption and hash functions to digital sign every peace of data

stored on the chain. Notice that the block 1 Hash Tree uses multiple hashes for each data and

nonce of the block data. Moreover, it uses the Hash Tree of the previous block to compute the

final hash of the block. Consequently, the uses of Hash Tree and digital signatures make it

hard for an attacker to modify the data stored on the Blockchain. It is worthwhile to mention

that the chance for an attacker to successfully execute a malicious modification of the data

decreases as the block number increases (longer chains). The multiply signatures and hashes

justify such difficulty.

Considering the access (publicity) to the transaction data in the Blockchain, we can clas-

sify the Blockchain into two environments: i) public (or permissionless) Blockchains, where

anyone can join the network (e.g., Ethereum and Bitcoin); and ii) private (or permissioned)

Blockchains, where there is an access control to manage who can join the network (e.g., Hy-

perledger, Ethereum, and Microsoft Blockchain Confidential Consortium Framework) [168].

In both scenarios, public and private Blockchains, it is expected that some of the nodes

present a malicious (Byzantine) behavior. In other words, some nodes will collude to change

the transactions stored in the distributed ledger or try to prevent an honest party from storing

its transaction in the distributed ledger. For instance, if a set of malicious nodes claims that

a legitimate transaction performed wrong computations, this transaction will not be stored

in the distributed ledger [168]. To prevent this, the Blockchain employs the consensus

mechanism.

The most common consensus mechanism employed in public Blockchains is the Proof-



2.6 Transfer Learning 34

of-Work (PoW). In this mechanism, only a miner which has successfully solved a compu-

tationally laborious puzzle can append data to the Blockchain. The PoW is very effective

in preventing the misbehave of a malicious party. However, it has a high computational

cost - imposing a delay in the transaction execution [5]. In private Blockchains, we remark

the usage of Proof-of-Authority (PoA) in order to add a block to the chain. This mech-

anism invokes the nodes to vote if the block can be appended to the Blockchain. If the

nodes reach a consensus about the block, it will be added permanently to the Blockchain;

otherwise, the block will be rejected. Thus, to employ the PoA, every node needs to be

identified and authenticated.

The PoA is faster than PoW since reaching a consensus is simpler and faster than solv-

ing a cryptographic puzzle. However, PoA can be employed in a scenario where the parties

have some level of trust in others, in contrast to PoW, where the parties do not need to

trust others [92].

One interesting aspect of the Blockchain is the fact that we can upload applications writ-

ten in a Turing complete programming language to be executed by the nodes. This appli-

cation, also known as Smart contracts, allows trustworthy code execution in an untrusted

environment. In other words, Smart contracts allow the nodes of a Blockchain to perform

computation (or transactions) without a trusty-third party.

A smart contract can be executed when a transaction is performed in the Blockchain net-

work. This can be compared to a stored procedure invoked by a transaction in a DBMS. It

is worthwhile to mention that the smart contract execution inherits all characteristics pro-

vided by the Blockchain distributed ledger: immutable (temper evident), public available

(auditable) and verified by all nodes (trustable computation) [168].

2.6 Transfer Learning

Data mining and Machine Learning (ML) techniques have been widely and successfully used

in many real-world applications where information (training data) can be extracted in order

to predict upcoming results [110]. Traditional ML is characterized by training and testing

data having the same input feature space and the same data distribution. In specific scenarios,

obtaining training data that match the feature space and predicted data distribution character-
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istics of the test data can be difficult and expensive [134]. Furthermore, in privacy-preserving

applications, such as PPRL, obtaining any labeled data can be considered an impossible task.

To tackle the aforementioned problem, Transfer Learning (TL) is used to create or im-

prove a learner (i.e., a classifier) from one domain by transferring information to a related

domain. To provide a real-world example that employs TL concepts, consider two people

who want to learn how to play the Cello. One person has extensive music knowledge and

plays the violin for more than two decades, and the other person has no experience and never

had played any instrument. The person who knows how to play the violin will probably learn

how to play the Cello faster than the other person. This is expected because the violin player

transfers the previous knowledge to the task of playing the Cello [186].

A transfer learning process is illustrated in Figure 2.7. The process on the left corre-

sponds to a traditional machine learning process. The transfer learning process is repre-

sented on the bottom and right of the figure. As we can see, transfer learning makes use of

the knowledge produced by another learning system (named as source). This figure shows a

key concept of transfer learning: it mitigates the lack of training data problem by a learning

system with more knowledge gained from a source learning system.

Figure 2.7: Transfer Learning workflow.



2.6 Transfer Learning 36

In summary, TL deals with how ML systems can quickly be adapted to new situations

and tasks [192]. It gives ML systems the ability to leverage auxiliary data and/or models to

help solve target problems even when no labeled data is available in the target domain. In

the following, we formalize the concept of Transfer Learning.

2.6.1 Definition of Transfer Learning

In order to present the definition of the TL, first, we have to present the concept of ”do-

main” and ”task”. A domain D consists of two components: a feature space X and a

marginal probability distribution P (X), where each input instance x ∈ X . In general, if

two domains are different, then they may have different feature spaces or different marginal

probability distributions.

Given a specific domain, D = {X,P (X)}, a task T consists of two components: a

label space Y and a function Ξ(·), formalized as T = {Y,Ξ(·)}. The function Ξ() is a

predictive function that can be used to make predictions on unseen instances x ∈ X . From

a probabilistic viewpoint, Ξ(x) can be written as P (Y |X). In the following, we present the

definition of Transfer Learning.

Definition 3 (Transfer Learning). Given a source domain Ds and a learning task Ts, a target

domain Dt and a target learning task Tt, transfer learning aims to help improve the learning

of the target predictive function Ξt(·) for the target domain using the knowledge in Ds and

Ts, where Ds ̸= Dt or Ts ̸= Tt.

2.6.2 A Categorization of Transfer Learning Techniques

Considering the TL definition, we could classify it according to several aspects. In cases

where Xs ̸= Xt, it is defined as heterogeneous transfer learning; in other words, the

feature spaces are different in both domains. In turn, when the source and target domains

share the same feature space, Xs = Xt, it is named as homogeneous transfer learning.

In Table 2.1, we compile the relationship between traditional machine learning and sev-

eral TL settings. Based on different scenarios between the source and target domains and

tasks, it is possible to categorize TL under three classes: i) inductive transfer learning; ii)

transductive transfer learning; and iii) unsupervised transfer learning.
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Table 2.1: Summary of TL techniques, from [132]

Learning Settings Source and Target Domains Source and Target Tasks

Traditional Machine Learning the same the same

Transfer Learning

Inductive Transfer Learning the same different but related

Unsupervised Transfer Learning different but related different but related

Transductive Transfer Learning different but related the same

Notice that the traditional machine learning approaches consider Ds = Dt and Ts = Tt,

while TL considers several other configurations. In the inductive transfer learning setting,

the source and target tasks are different, even when the source and target domains are the

same. In this case, some labeled data in the target domain is required to induce an objective

predictive model ft(·) for use in the target domain.

In the Transductive transfer learning setting, the source and target domains are differ-

ent while the tasks are the same. In this situation, no labeled data is available in the target

domain, while many labeled data in the source domain are available. Finally, unsupervised

transfer learning is similar to inductive transfer learning, with a focus on solving unsuper-

vised learning tasks, such as clustering, classification, dimensionality reduction, and density

estimation.

Another important aspect of TL is which part of knowledge can be transferred across

domains or tasks. The form of transfer the knowledge is categorized into four general transfer

categories [131]. Figure 2.8 illustrates that transfer learning makes use of not only the data

in the target task domain as input to the learning algorithm but also any of the learning

processes in the source domain, including the training data, models, and features.

The first transfer category is named as instance-based transfer learning, also called Do-

main Adaptation, which assumes that certain parts of the source domain’s data can be reused

for learning in the target domain. In this case, instances from the source domain need to

be reweighted to correct the marginal distribution differences. These reweighted instances

are then directly used in the target domain for training (examples in Huang [196] and Yang

[192]). These reweighting algorithms work best when the conditional distribution is the

same in both domains [192].

The second category is the feature-representation transfer learning [132]. This category
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Figure 2.8: Knowledge to be transferred.

intends to learn a ”good” feature representation for the target domain. The knowledge uti-

lized to transfer across domains is encoded into the learned feature representation. With the

new feature representation, the performance of the target task is expected to improve signifi-

cantly. This TL approach is used in a widespread scenario. However, heterogeneous transfer

learning benefits in most of this form of TL due to the difference between the domains [132].

The third category intends to transfer knowledge through shared parameters, distribu-

tions of the hyper-parameters of the models, or by creating multiple source learner models

and optimally combining (ensemble) the models. This form is known as parameter-based

transfer learning [192].

Finally, the last category is the relational transfer [196], which deals with learning for

relational domains. The assumption of this form is that some relationships among source

and target domains are similar by employing statistical relational learning techniques [132;

106; 186].

2.6.3 Data Relatedness

In instance-based Transfer Learning, the relatedness of the source to the target domain data is

crucial to the learning task, in our case, to the classification of the entity pairs. For instance,
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using the example of the musicians, the sheet music (score) for a guitar is much more related

to the electric guitar than an oboe score. In the music context, there are methods to measure

how similar a score is. This section presents how to measure the relatedness of two datasets

(such as the music scores).

In some contexts, such as the PPRL one, it is not usual to have abundant labeled

data (training data) from a source domain. However, to train a classifier that performs

well on a target domain with a different distribution and no labeled training data is not

straightforward. It depends on a series of aspects, e.g., if the training instances from the

source are representative to the target domain task. To determine if a classifier trained

from the source domain can perform well on the target domain, Ben-David et al. [14;

13] bound the classifier’s target error in terms of its source error and the divergence be-

tween the two domains. Moreover, they employ a classifier-induced divergence measure that

can be estimated from finite, unlabeled samples from the domains.

Before presenting the work of Ben-David et al. [14; 13], it is necessary to formalize some

concepts and assumptions employed by the authors. Consider a domain, D = (X,P (X)),

where x ∈ X has a specific label y ∈ Y defined by a perfect label function f . Thus, using

these concepts, it is possible to map the error, a.k.a. risk, (ϵs) of a source domain comparing

the hypotheses prediction (h) against the actual label (f ), ϵs(h, f) = ∃x Xs
[|h(x)− f(x)|].

The solution proposes a symmetric hypotheses space H∆H of finite VC dimensions

where the set of hypotheses is defined by g ∈ H∆H ⇐⇒ h(x) ⊕ h′(x). In other words,

every hypothesis g ∈ H∆H is the set of disagreements between two hypothesis.

Consider this symmetric hypothesis space. It is possible to use H∆H-divergence to

bound the error of two hypotheses and, consequently, measure the divergence between a

source and target domain. The divergence is measured by considering the error of the do-

mains, and it is defined by Equation 2.3:

dH∆H(Ds, Dt) =
1

2
d̂H∆H(Us, Ut) +

√

2dlog(2m′) + log( 2
σ
)

m′
+ λ (2.3)

where Us, Ut are unlabeled samples of size m’ each, from Ds and Dt, respectively. For any

σ ∈ (0, 1), with probability at least 1 − σ (over the choice of the samples). The term d̂H∆H

is the empirical H∆H-divergence.
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The d̂H∆H can be computed by finding a classifier that attempts to separate one domain

from the other. The basic intuition is to label the instances from Us (i.e., with 0) and Ut

(i.e., with 1), indicating the origin of each instance. Afterwards, a classifier is trained to

discriminate between source and target instances. The d̂H∆H is computed from Equation 2.4.

d̂H∆H = 2



1− min
h∈H∆H





1

m

∑

x:h(x)=0

I[x ∈ Us] +
1

m

∑

x:h(x)=1

I[x ∈ Ut]







 (2.4)

where I[x ∈ U ] is the binary indicator variable which is 1 when x ∈ U .

In summary, domains with smaller divergence values have a higher chance of training a

classifier in a source domain, and this classifier performs well on a target domain. In this

thesis, we present an approach that directly exploits this idea in Chapter 5.

2.7 Deep Learning

Neural networks (NN) have been employed with outstanding results in several contexts,

including as classifiers for RL tasks [46; 121; 184]. NN are composed of a series of parame-

terized functions, also named layers. In these layers, a set of transformations and non-linear

functions are employed to perform classification/prediction (output) tasks over an input. Sig-

moid and rectified linear units (ReLUs) are examples of functions employed to perform non-

linear operations over the inputs [64]. In summary, NN are composed of a set of layers (with

multiple functions) in which we can use a known input (labeled data) to train the layers of

the network, set the parameters of the functions, and perform classification or prediction of

a finite set o input/output example [72].

Neural Networks employ a loss function (L) to define the NN parameters. Moreover, L

represents the penalty for wrongly fitting the training data over the task performed by the

NN. In other words, L is employed to define the increment/decrement of the NN layer’s

parameters.

The NN’s training process consists of finding a loss (θ) that results in a as small as pos-

sible loss value. The average of the loss (L(θ)) over the training instance [x1, · · · , xn] is

defined by L(θ) = 1
n

∑

L(θ, xj). It is worth mentioning that several loss functions exist
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- e.g., Mean Squared Error (MSE) and Cross-Entropy (CE) - and, therefore, the loss func-

tion must be carefully chosen considering the input/output data, NN architecture, and task

performed by the NN [72].

In general, the loss function L is non-convex, and challenging to find its minimum value

(minimize). Therefore, optimizers such as Adaptive moment estimation (Adam) or Stochas-

tic Gradient Descent (SGD) algorithms are required. Both of the aforementioned algorithms

compute a mini-batch and use the loss function to update the layer’s parameters at each step

[72; 86]. For instance, SGD forms a batch B considering the training instances and calcu-

lates gB = 1
|B|

∑

bi∈B
∇θL(θ, bi) as the gradient of the loss. Then, θ is updated towards the

local minimum (gradient direction).

This section presents the basic concepts of NN and the methods and tools employed to

train NN. In the following sections, we detail the architecture of a widely used NN for pattern

matching, and a privacy-preserving training method for NN.

2.7.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) have been successfully employed in a wide range of

applications, especially in applications that aim to recognize features or patterns in signals.

For instance, medical applications (i.e., detection of heart diseases over electrocardiograms

[87]), and computer vision application (e.g., face recognition [64]).

The CNNs’ basic idea is to extract features from the input signal (i.e., image) in convo-

lutional layers. Unlike traditional approaches, in Deep Convolutional Networks (DCNN),

features are automatically discovered, starting with low-level features up to high-level ones.

In traditional machine perception, the features are manually configured. To illustrate how

CNN works, consider the face recognition example depicted in Figure 2.9.

The layers of a CNN can be arranged so that low-level features are extracted in the first

layers of a network, and later on the network, these low-level features are combined to form

higher-level features. For instance, in Figure 2.9, the first layers will extract the face’s edges,

colors, and shapes (low-level features) of the input (raw data) [73]. Afterward, the low-

level features will be combined into mid-level features, such as eyes and noses. Finally, the

mid-level features will be combined to distinguish the faces of different persons.

In order to extract features and perform classification task, the CNNs’ comprises two
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Figure 2.9: Example of CNN for face recognition - source: Tomodan et. al. [166].

types of layers: convolution and pooling layers. Convolution layers highlight patterns in the

CNN input (i.e., an image), whereas pooling layers downsample the output of convolutional

layers to select more representative elements of the operations. It is important to mention that

at the end of CNN, there is a fully connected neuro network (Dense Network) to perform the

classification or recognition task [73; 64].

Convolution layers are composed of multiple convolution filters, where each filter deter-

mines whether a particular local feature/partner is present in the input [73]. The convolution

filter adds each element of the layer input (a matrix) to its local neighbors, weighted by a

kernel in a series of matrix multiplication operations. The convolution filter is defined by

Equation 2.5.

conv(Xm×n, Ym×n) =
m−1
∑

i=0

m−1
∑

i=0

x(m−i,n−j)y(i+1,1+j) (2.5)

where X and Y are matrices of m× n, such that x(m,n) ∈ X and y(m,n) ∈ Y . Notice that

the convolution operation can be performed over matrices of different dimensions.

For instance, assume that the input of a convolutional layer is a 4 × 3 matrix, such that

I =
∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

∣

∣

∣
and the convolutional will be performed considering a 2 × 2 kernel, such

that K =
∣

∣

α β
γ δ

∣

∣. The resulting convolution will be:
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conv(I,K) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11α + a12β + a21 + a22δa12α + a13β + a22 + a23δ

a21α + a22β + a31 + a32δa22α + a23β + a32 + a33δ

a31α + a32β + a41 + a42δa32α + a33β + a42 + a43δ

∣

∣

∣

∣

∣

∣

∣

∣

∣

1×3

Convolution layers use several filters to detect a variety of different-patterns (e.g., ori-

ented edges and shapes) in the input. Moreover, filters are employed for a specific classifi-

cation task. Finally, it is worth mentioning that CNNs typically apply the ReLU activation

function to the convolved input [72].

The second particular layer, the pooling layer, provides a way to summarize a large input

into a smaller summary input. There are several ways of performing pooling, e.g., average

pooling and max pooling. The pooling operation summarizes each non-overlapping input

value in blocks of the dimensions of the kernel. Moreover, the max polling employs the

maximum value in the block, while the average pooling uses the average value in the block.

For instance, the function MaxPool(I,K2×2) represents the max polling operation, and K

represents a kernel with 2× 2 dimension. The output of MaxPool is illustrated below:

MaxPool
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2.7.2 Differential Privacy Optimizer

As previously mentioned, NN and other ML techniques usually employ representative

(large) datasets that could contain sensitive/private information. In a privacy-preserving

context, such as the PPRL one, the models should not expose private information in

the training datasets. Moreover, a malicious adversary could use the internal representa-

tions of deep neural networks to reveal details of some instances of the training data [1;

102]. For example, Fredrikson et al. proposed a model-inversion attack that retrieves images

from a facial recognition system [59]. In order to preserver the privacy of the training data,

several techniques for private learning were developed [1; 156; 102].

Abadi et al. [1] propose an approach which controls the influence of the training data

during the training process, particularly Abadi et al. modify the SGD to consider privacy

during the computations. Moreover, Abadi et al. [1] incorporated Differential Privacy in
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the SGD. Algorithm 1 outlines the modified SGD for training a model with parameters θ by

minimizing the empirical loss function L(θ).

Algorithm 1: Differentially private SGD - adpated form : Abadi et. al. [1].

input : training data [x1, · · · , xn], loss function
(

L(θ) = 1
n

∑

L(θ, xj)
)

, learning rate

(ηt), noise scale (α), group size (GS), gradient norm clip (C)

output: θT and compute the overall privacy cost (ϵ, δ) using a privacy accounting method.

1 θ0 ← initialize(random)

2 for t ∈ [T ] do

3 // random sample with sampling probability GS
N

4 GSt ← sample(GS)

5 // compute the gradient

6 for xi ∈ GSt do

7 gt(xi)← ∇θL(θ, xi)

8 end

9 ḡt(xi)← clipGradient(gt(xi),C)

10 g̃t(xi)← addNoise(ḡt(xi),GS,α,C)

11 // descent

12 θt+1 ← θt − ηtg̃t

13 end

At each step of the algorithm, the gradient (∇θL(θ, xi)) for a random subset of examples

(line 4). The norm of each gradient is clipped (line 9), and noise is added (line 10) to

preserver the privacy, and move towards the opposite direction of the noisy gradient - ḡt(xi),

line 12. Notice that there are two new methods in the SGD, norm clipping (line 9) and noise

addition (line 10). Figure 2.10, illustrates the impact of the methods over the gradient.

In the first stage (a), the gradient is calculated as usual in the SGD - line 7 of the Al-

gorithm 1. In stage b, a threshold is employed to perform the norm clipping. The clipping

operation ensures that if ||g||2 ≤ C, then g is preserved, whereas if ||g||2 > C, it gets scaled

to the norm C. In stage c, a noise (α) is added to the clipped gradient (ḡt(xi)), resulting a

a final gradient (g̃t(xi)) close to the original.

As mentioned, the method described in this section ensures Differential Privacy guaran-
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Figure 2.10: Graphical illustration of Algorithm 1.

tees for the training data. The privacy budget ϵ is defined by the following theorem.

Theorem 1. There exist constants c1 and c2 so that given the sampling probability (qGS
N

)

and the number of steps T , for any α ≥ c1q
2T , Algorithm 1 is (ϵ, δ)-differentially private for

any δ > 0 iff. α is chosen by the following equation:

α ≥ c2
q
√

T log(1/δ)

ϵ

Moreover, considering a Gaussian noise, the equation above can be simplified to α =√
2log 1.25

δ

ϵ
. For further details, consult the Abadi et al. work [1]. Finally, to illustrate the

aforementioned method’s privacy guarantee assumes a training dataset with N instances,

witch GS = 0.01N , α = 4, δ = 10−5, and T= 10,000 will result in a ϵ ≈ 1.26.

2.8 Recurrence in dynamical system

Dynamical systems theory is used to describe the behavior of complex dynamical systems,

such as complex meteorological cycles (e.g., El/Niño), the seasonal effects of changes in

the earth’s movements on its climate over time (named Milankovic cycles), electronic cir-

cuit behavior as well as systems that arise in medical and economic context [112]. These

systems derive mostly from non-linear systems polluted by noise, defying scientists to pro-

vide meaningful analyzes of these systems. An important task in understanding dynamical

systems is the discovery of the recurrences of system states, e.g., the periodicity of meteo-

rological events. Recurrence Plot (RP) is a tool that can be used to investigate recurrences

in a dynamical system [47].
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To illustrate how the Recurrence Plot is employed, we provide a didactic example de-

picted in Figure 2.11. In Figure 2.11a, we have two dynamical systems, each one represented

by the trajectories of two drivers in the same 2-dimensional space. It is worth mentioning

that Recurrence Plot is usually used to map particles (instead of drivers) and considers a

d-dimensional space, such as d ≫ 2.

Figure 2.11: Graphical example of RP.

Figure 2.11b depicts the trajectories over the regions of the city, the map grid. To plot

Figure 2.11c, we consider the drivers’ trajectory, time, and speed to plot RP. The RP (es-

pecially the CRP detailed in the following) looks for those times when the state of the first

system recurs to one of the other systems. In other words, Figure 2.11c depicts the regions

the drivers were in simultaneously.

To provide an example of the actual usage of RP, in Figure 2.12a, we depicted the CRP

of trajectories of two coupled Rössler systems (particles), represented by the black and grey

lines corresponding to the first and second particle.

Notice that the corresponding CRP (Figure 2.12b) presents lines that are diagonally ori-

ented. These lines represent segments on both trajectories, which run parallel for some time.

The frequency and length of these lines are related to a certain similarity between the dynam-

ics of both systems. Moreover, in Chapter 6 we will represent Bloom Filters (the encoded

data of PPRL) as dynamical systems and use the similarity of the lines (patterns) to distin-

guish matching for non-matching Bloom Filters pairs. In the following, we presented the

fundamentals of RP.

The concept behind the RP is to represent the time when states xi recur in the system.

Notice that the original purpose of the RP was to provide a tool that can provide insights

into high-dimensional dynamical systems within the Physics context [47]. In summary, RP
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Figure 2.12: CRP of phase space trajectory of the Lorenz system - source: Marwan et. al.

[112]

enables the analysis of a m-dimensional space through a two-dimensional representation of

its recurrences [112]. Such recurrence of a state at time i at a different time j is pictured

within a two-dimensional squared matrix R. Equation 2.6 formalizes the RP.

Rm,ε
i,j = Θ(ε− ||xi − xj||), i, j = 1, · · · , N (2.6)

where ε is threshold distance, Θ(·) the Heaviside function3, || · || norm (L1,L2 or L∞) and

m represents the m-dimensional neighbourhood of size.

It is important to remark that RPs can operate on noisy data [164; 163; 150] and still

reveal system characteristics. For instance, by analyzing the patterns of an RP, it is possible to

determine whether a system is stationary or not, which parts of the system are deterministic,

identify the periodic event patterns, and so on [112].

In order to study the correlations (also named synchronization) between two dynamical

systems, several bivariate recurrence techniques were proposed. The Cross Recurrence Plot

(CRP) is a bivariate recurrence technique that was proposed to investigate (simultaneously)

two different dynamical system evolution, allowing the study of dependencies between two

different systems [195; 111]. In other words, the CRP observes the states of both systems,

3The Heaviside function is commonly used in control theory and signal processing to represent a signal that

switches on at a specified time [112]
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and if the state recurs in both, the CRP will capture it. Suppose we have two dynamical

systems, each one represented by xi and yi in the same d-dimensional space. We find the

corresponding cross recurrence matrix by computing the pairwise mutual distances between

the vectors of the two systems. Equation 2.7 represent the CRP calculation:

CRx,y
i,j (ε) = Θ(ε− ||xi − yj||), i, j = 1, · · · , N (2.7)

In Section 6.1.1, we use RP as a novel feature representation of PPRL encoded data to

highlight patterns that could indicate whether or not an encoded record pair is a match or not.

2.9 Summary

In this chapter, we have provided the background on the concepts, principles, and tech-

niques which lay the foundation for the contributions in this thesis. We covered aspects of

anonymization techniques, PPRL, TL, and Deep Learning. We will use these concepts in

the later chapters of this thesis.



Chapter 3

Related Work

A study of related work in the Privacy-Preserving Record Linkage aspects, tackled by each

of our contributions, is reviewed in this chapter. As previously presented, we have three

contributions to the PPRL process, one contribution in anonymization, comparison, and

classification steps. Thus, due to the broad spectrum of our contributions, this chapter is

divided into three sections.

We proposed an extension of the BF (called SBF) that intends to increase the privacy of

the similarity computations of PPRL, detailed in Chapter 4. In order to provide a context to

SBF, Section 3.1 presents improvements and limitations of the most used anonymization

technique, the BF.

In order to provide an overview of the current progress in the privacy and adversary

models in PPRL, in Section 3.2, we briefly summarize the recent literature related to Privacy-

preserving protocols and auditable computation in the PPRL context. Furthermore, this sec-

tion intends to elucidate the context of our second contribution (presented in Chapter 4) that

intends to allow the usage of a novel adversary model (the covert adversary) by enabling the

auditability of computation performed during PPRL execution.

Finally, to provide the context for the novel automatic classification step (detailed in

Chapter 4) and the deep learning-based classifier (detailed in Chapters 5 and 6), we summa-

rize in Section 3.3 techniques and strategies for automatic classification in the PPRL context.

49
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3.1 Privacy aspects of Data Anonymization in PPRL

In this section, we briefly summarize recent literature related to BF that can improve the

privacy guarantees or works that demonstrate how to reidentify anonymized data.

3.1.1 Bloom Filter Hardening Techniques

The Bloom Filter technique has been used in several real-world PPRL applications [79; 83;

89; 143; 144; 145; 171; 174; 178]. However, privacy concerns remain due to the susceptibil-

ity of BF to cryptanalysis attacks. In order to make BF more resilient to these attacks, recent

researches propose hardening techniques to address privacy concerns.

The intuition behind most hardening techniques is to modify BF bit patterns to reduce

the information required by attacks while still allowing accurate approximate similarity cal-

culations. It is worthwhile to mention that the hardening technique applied on BF may lead

to a reduction in linkage quality [30; 182]. In the following, we describe a set of recently

proposed hardening techniques to reduce BF vulnerabilities.

The first group of hardening techniques modifies the BF bit pattern (i.e., the 0 and 1 inside

the filter) irrespective of its actual content, such as the Balanced Bloom Filter (BBF) [152]

and Xor-folding Bloom Filter (XBF) [154] techniques. The BBF relies on the choice of the

parameters in order to achieve a uniform distribution of elements in the filters and, conse-

quently, maximizes privacy [152]. To prevent bit pattern attacks, XBF folds (in half) the bit

array and employs the XOR logical operator in each half of the filter in order to assemble a

new filter [154].The second group of hardening techniques intends to systematically modify

a BF according to the distributions of its 0 and 1 bits, such as random noise, Bloom-and-FlIp

(BLIP), and Markov chaining techniques [153].

The random noises technique [151] is the most straightforward way to add noise by ran-

domly flip bit positions (from 0 to 1 or from 1 to 0) in each BF. In turn, BLIP [153] applies

the concept of randomized responses in order to flip the values of bits positions and, conse-

quently, reduce the probability of entity re-identification during the PPRL process. Markov

chaining technique [155] intends to prevent frequency-based attacks on BF by adding extra

q-grams into a BF, based on their co-occurrences with the QID values.
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3.1.2 Bloom Filter Attacks

The majority of the attack methods on the BF technique in the context of PPRL are based

on the fact that plain-text values that frequently occurs in the dataset will generate a BF with

the same frequency as the plain-text values. This attack is named as frequent bit pattern

attack [30; 99; 98; 32; 182]. In this context, the work of Christen et al. [32; 182] shows that,

to reidentify the entities, an adversary needs to generate the bit pattern using the possible

values of the attributes. For instance, to reidentify the encoded name of a patient thread for

a specific pathology, an attacker could generate the bit pattern attack using a list containing

the most common names in a social network.

Recent works [143; 181] propose a novel cryptoanalysis attack, a pattern mining-based

cryptoanalysis attack. The major advantage of this attack method over the frequent bit pat-

terns attacks is that it neither requires frequent BF nor frequent plaintext values. For instance,

the work of Vidanage et al. [181] applies maximal frequent itemset mining [37] (using a lan-

guage model) on a BF database to identify sets of frequently co-occurring bit positions that

correspond to encoded frequent sub-string values. Frequent pattern mining is a data mining

technique commonly used for market basket analysis to, for example, identify which shop-

ping items are commonly purchased together by customers [28]. In other words, the work of

Vidanage et al. [181] uses the frequencies of individual q-grams as they occur across many

values in the QIDs encoded into BF.

The last attack is the Graph-based cryptoanalysis attack. This attack uses the q-grams

encoded into one single BF or the similarities calculated between BF pairs [30] to build a

graph and employs the generated graph to reidentify the anonymized data.

3.1.3 Comparison Among BF Hardening Techniques

In the previous sections, we presented work attacks and improvements to BF. Table 3.1

displays a comparison between our contribution, the Splitting Bloom Filter (SBF), to the

aforementioned BF hardening techniques.
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Table 3.1: Comparison between BF hardening techniques and SBF.

Compatible with other

BF techniques

Iterative

comparisons

Balanced Bloom Filter (BBF) [152] no no

Xor-Folding Bloom Filter (XBF) [154] no no

Bloom-and-FlIp (Blip) [153] no no

Markov chaining technique [155] no no

Splitting Bloom Filter (Chapter 4) yes yes

In order to compare SBF against related work, we highlight two aspects: i) whether

the technique can be combined with other hardening techniques, or not; and ii) whether the

entity pair similarity can be iteratively computed, or not. The last aspect, entity pair similarity

iterative computation, can be used to perform the similarity calculation iteratively using small

chunks (splits) of the original BF. In other words, SBF can be employed in a protocol that

filters records pairs that probably will not be classified as a match. By filtering record pairs

that will not be matched, SBF can reduce the amount of information, and minimize the

chance of success in privacy attacks.

Notice that SBF can reduce the risk of reidentification for most of the attacks, be in-

tegrated with several BF hardening techniques, and enable the iterative computation of the

similarity. It is worthwhile to remark that the related works does not reduce the reiden-

tification risk toward all of families of attacks. Moreover, the compared work can not be

combined and iteratively compute the similarity of entity’ pairs.

3.2 Privacy-preserving protocols and auditable computa-

tion in PPRL

Within the Security and Cryptographic community, several Security Multiparty Computa-

tions (SMC) protocols have been proposed considering different adversary models. The

SMC is a subfield of cryptography that aims to create methods for parties to jointly com-

pute a function over their inputs while keeping those inputs private [104]. An example of
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such protocol is the Garbled Circuits [12], a method to encrypt a computation that reveals

only the computation output considering a malicious adversary model. The term ”circuit”

is because garbled circuits work by modeling the encrypted computation, i.e., the similarity

between two BFs, as a circuit and then performing cryptographic operations in each gate

(AND, OR, NOT) in the circuit.

Considering the limitations of the HBC and Malicious security models, Aumann and

Lindell [7] introduces the notion of covert adversaries. The author presents a cryptographic

protocol that enables honest parties to detect the misbehavior of an adversary with high

probability - this protocol applies Homomorphic Encryption (HE) to detect an adversary

misbehave. However, it is important to remark that the Garbled Circuits [12] and the work

Aumann and Lindell [7] were designed to perform one-time private computation. There-

fore, these protocols are not adequate to the PPRL context that usually performs millions or

billions of private computations during a typical linkage process.

In the PPRL context, Vatsalan and Christen’s [170] presented a two-party protocol that

eliminates the need for a third party by iteratively revealing selected bits in the BFs between

two parties. However, this work is unable to audit the comparison performed during PPRL.

Thus, we acknowledge as a research opportunity the proposition of a HBC security model

in the context of PPRL.

In a subsequent work, Vatsalan and Christen [172] proposed a protocol to identify match-

ing sets of entities (records) held by multiple parties that have a similarity above a certain

threshold, under the semi-honest adversary model. The protocol divides and distributes the

BF chunks amongst the parties. To calculate the entities’ overall similarity, the parties em-

ploy the BF chunks in a SMC. However, their work considers an HBC model and does not

explore neither the relationship between the individual similarity of the chunks nor the enti-

ties’ overall similarity, resulting in low efficiency and poor linkage quality.

Hybrid PPRL protocols that combine differential privacy techniques with SMC tech-

niques have been proposed to reduce the computational cost of PPRL [66; 70]. However,

such protocols need to disclose all entities stored in their data sources amongst the par-

ties compromising the privacy capabilities of the anonymization. To mitigate this issue,

Rao et al. [146] propose a framework under a HBC security model that employs a trust-

third party to coordinate the record matching between the parties. The parties send to the
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trust-third party synopses (with Differential Privacy guarantees) of the data. Based on the re-

ceived synopses, the trusty-third party matches the entities with a distance beyond a threshold

specified by the parties. Notice that the works [66; 70; 146] consider an HBC and trusty-

third party, which is a hindrance to the wide usage of PPRL in real-world applications [30;

177].

Finally, we present a technology that could eliminates the need for a trusty-third party,

the Blockchain. The Blockchain technology has gained much attention in the data manage-

ment community due to the trust achieved in not fully trusted computation environments.

Tuan et al. [168] survey the state-of-the-art of Blockchain technologies. They propose a

benchmarking framework for understanding the performance of private Blockchains consid-

ering data processing workloads. Nathan et al. [122] design and implement a decentralized

replicated relational database with Blockchain properties, named as Blockchain Relational

Database. The previously mentioned works confirm the need for privacy-preserving data

processing in a Blockchain context.

Table 3.2 presents a comparison between our work and the related works mentioned

above. The works are classified into four aspects: i) if the work can be employed in the

PPRL context; ii) the adversary model; iii) if the work reduces the level of trust needed to

execute the task; and iv) if the computations can be audited.

Table 3.2: Comparison between Privacy-preserving techniques/protocols and the ABEL.

Is a PPRL solution? Adversary model Reduced level of trust Auditability

Garbled Circuits [12] no Malicious no no

Aumann and Lindell [7] no Covert no yes

Nathan et al. [122] no Malicious yes yes

Vatsalan and Christen’s [170; 172] yes HBC no no

Rao et al. [146] yes HBC no no

ABEL (Chapter 4) yes Covert yes yes

Notice that several works consider covert [7] and malicious [12] adversary models, and

one of the presented works can be used to audit the computations [122]). However, the

related works, compatible with the PPRL, solely consider the HBC adversary model. Fur-

thermore, the works (compatible with the PPRL) are unable to audit or reduce the level of

trust needed to execute the process. It is worthwhile to mention that, to the best of our knowl-
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edge, besides the ABEL (presented in Chapter 4 ), there is no other technique or protocol that

is able to audit the computation and consider a covert adversary model in the PPRL context.

3.3 Machine Learning usage in PPRL

Record Linkage (RL) researchers started to explore the usage of techniques originated in

machine learning, data mining, artificial intelligence, information retrieval, and database

research to improve the classification of linkage process [33; 41]. Many of these approaches

are based on supervised learning techniques [2; 8; 26; 65; 67; 105] and assume that training

data is available - i.e., record pairs with labels indicating whether they are a match or not.

However, such datasets with labels are often not available in real-world applications or have

to be prepared manually (considering a traditional RL context). Furthermore, in the PPRL

context, it is not possible to manually label these datasets due to the privacy constraints

imposed by the PPRL.

In the RL context, Deep Learning has been explored in several stages of RL, from the

Blocking step [75] to the Classification step of the process [46; 91; 105]. Regarding the Deep

Learning-based Classifier, it has been surveyed [121; 41], and categorized into three groups

according to the nature of its input: i) structured data instances, ii) textual data instances, and

iii) dirty data instances. According to Mudgal et al. [121], Deep Learning-based Classifiers

do not outperform current classifiers (e.g., SVM and Logistic Classifiers) on RL tasks over

structured data. However, Deep Learning classifiers can significantly outperform the existing

classification techniques on RL tasks over textual and dirty data. [41; 121].

It is important to mention that, to our best knowledge, Deep Learning techniques have

not been employed in the PPRL context. In Chapter 6, we present a Deep Learning-based

Classifier for PPRL that, instead of employing standard similarity measures (e.g., Jaccard

and Dice), leverages the bit patterns encoded to identify matching entities.

In Chapter 2, we presented the usage of ML techniques in the RL context. However, few

of the works and techniques discussed are suitable to be used in the PPRL context due to the

absence of labeled instances to train a classifier. Still, the work of Christen [25] proposes

an unsupervised two-step approach to train a classifier in a traditional RL context, without

labeled instances. In the first step, training examples are selected from the compared record
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pairs. Records with the highest and lowest similarity values are labeled as duplicated and

not duplicated, respectively. In the second step, the training examples are used to train a

SVM classifier. In a subsequent work, Christen [27] uses a Nearest-Neighbour algorithm to

iteratively add unclassified record pairs to the training sets.

The use of ML in the PPRL context is closely related to Privacy-Preserving Machine

Learning (PPML). PPML techniques intend to protect the privacy of the data (training and

testing data), model, and prediction [3]. Thus, our work and PPML share one goal in com-

mon, the protection of data privacy. The works [22; 16; 162] use encryption techniques, i.e.,

homomorphic encryption, to protect the privacy of data. The works of Rajkumar et al. [142]

and Mivule et al. [118] uses the concept of differential privacy to provide privacy-preserving

capabilities to their approaches. The work of Miyajima et al. [119] uses security protocols, a

security multi-party computation (SMC) protocol, to train a classifier in a federated learning

context. It is worthwhile to mention that all the presented PPML works [22; 16; 162; 142;

119] still need labeled data, which is unavailable within the PPRL context.

In a scenario where labeled data includes sensitive information, such as medical and bio-

metric labels (e.g., labels holding information about the diseases), Kim et al. [85] propose

a privacy-preserving domain adaptation technique to protect the privacy of the labeled in-

stances from the source domain. The work leverages a pre-trained model from the source

domain and updates the target model in a self-learning manner. It is worthwhile to remark

that the work of Kim et al. has the primary goal of protecting the privacy of the labels in the

source dataset and has unrestricted access to the information in the target domain. There-

fore, the work [85] is not usable to the PPRL context.

Transfer Learning (TL) is another technique that has been explored in recent years in the

RL context. The work of Thirumuruganathan et al. [165] considers a traditional RL scenario

to propose the usage of TL. The authors propose TL usage along with Distributed Repre-

sentation for Words (called word embeddings). Distributed Representation for Words [117;

139], recently introduced to deep learning, are learned from the data such that semantically

related words have embeddings that are often close to each other. Typically, these approaches

map each word in a dictionary into a high dimensional vector (e.g., 300 dimensions [165])

where the geometric relation between the vectors of two words – such as vector difference

or cosine similarity – encodes a semantic relationship between them.
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Several Transfer Learning techniques [133; 158] try to identify a common feature space

that minimizes the distribution difference between the source and target domains. For

instance, Sun et al. [158] minimizes domain shift by aligning the second-order statis-

tics of source and target distributions without requiring any target labels. Notice that the

work [158] does not need the target dataset to be labeled. However, the works [133;

158] are highly dependent on normally distributed data [88], which is not the case for most

RL applications.

Kirielle et al. [88] propose a TL method for RL over structured data. The work assumes

homogeneous domains with the same feature space (same attribute types and similarity func-

tions). In other words, it employs the similarities of the entities’ attributes (e.g., names and

addresses) from one domain to train a classifier to be employed in another domain that shares

the exact attributes. It is worthwhile to mention that the comparison in PPRL is usually per-

formed over the complete record, harming the linkage quality in a PPRL context.

Negahban et al. [124] use TL in order to scale up RL to multiple data sources. The

approach’s idea is to adaptively share the structure learned about one scoring problem with

all other scoring problems sharing a common data source. It is worthwhile to mention that

both works (Thirumuruganathan et al. [165] and Negahban et al. [124]) are related to our

contribution presented in Chapter 5. However, to the best of our knowledge, in Chapter 5,

we present the first approach that proposes TL usage in a PPRL context.

Several linkage processes employ automatic (ML-based) techniques to identify matching

entities. However, few of them are compatible with PPRL. Table 3.3 presents a comparison

between ML-based classifiers and our approaches, AT-UC and DLC.

Table 3.3: Machine Learning usage in PPRL.

Privacy-Guarantees Classifier Labeled Instances

Christen [25; 27] no unsupervised no

PPML [22; 16; 162; 142; 119] yes supervised/semisupervised yes

Thirumuruganathan et al. [165] no unsupervised no

Sun et al. [158] no semisupervised no

Kirielle et al. [88] no semisupervised no

AT-UC (Chapter 5) yes unsupervised no

DLC (Chapter 6) yes semisupervised no
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Notice that the majority of works do not provide privacy-preserving guarantees. It is

worthwhile to mention that PPML, which provides privacy guarantees, requires labeled data.

As mentioned early in this section, labeled data is usually unavailable in the PPRL context.

In turn, the AT-UC and DLC can provide ML-based classifiers without labeled data to the

PPRL process. Furthermore, DLC refers to a novel method to compare and classify entity

pairs that do not rely on standard similarity measures, addressing the bias introduced by the

standard similarity measures [95; 105].



Chapter 4

PPRL Comparison Step Auditability

According to recent PPRL surveys [176; 34; 136; 171; 30], most of the state-of-the-art PPRL

techniques assume an Honest But Curious (HBC) security model during the matching pro-

cess. This model considers that the parties will follow a pre-agreed protocol, but will attempt

to learn all possible information from legitimately received messages [171]. In contrast to the

HBC model, we have the malicious security model, which assumes that the parties will not

follow the pre-agreed protocol by refusing to participate, performing arbitrary computation

in the input data, or aborting the protocol at any time [34].

The HBC model requires the parties to fully trust each other, which is not realistic for

real-world applications [171; 176], and the malicious model is computationally expensive,

due to the anonymization techniques (i.e., homomorphic encryption) and communication

cost [176]. The need for new security models that enable an auditability of the similarity

computations (i.e., models that lie in between the HBC and the malicious models) is reported

as an open problem [34; 136; 171; 176; 181].

In this context, we introduce a novel security protocol that enables the auditability of the

computations, also named as covert adversaries model [7], performed during a PPRL pro-

cess. In other words, the proposed protocol allows the parties to detect, with high probability,

the misbehave of a malicious party during the entities’ similarity computation. To implement

the protocol, we employ a decentralized environment where untrusted (or semi-trusted) par-

ties perform the computations required by the PPRL.

As the decentralized computing environment, we use (public and private) Blockchain net-

works in order to provide auditability to PPRL. The Blockchain technology aims to provide

59
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shared data access and computation for parties that do not trust each other [50]. The com-

putations and the data sharing are possible due to an immutable cryptographically append-

only log, which is replicated and managed in a decentralized environment composed by

untrusted parties [122].

Blockchain platforms are being used by applications of different domains [39; 40; 50;

122], including government, healthcare, and IoT. In such applications, the Blockchain is

treated as a shared database or data processing platform which is employed when the partic-

ipants do not trust each other. For this reason, we use the Blockchain (Smart Contract) as

a Semi-Trusted Third Party (STTP) in PPRL.

However, the Blockchain does not provide a mechanism to preserve the privacy of the

entities during the PPRL process. In fact, Blockchain reduces the privacy of the PPRL by

replicating the entire data amongst the untrusted parties. To overcome this limitation, we

also propose an improvement for the most prevalent anonymization technique used in PPRL

applications: Bloom Filter [152]. Such improvement, named Splitting Bloom Filter (SBF),

offers a lower risk of privacy leakage and, additionally, reduces the possibility of collusion

between malicious parties. Thus in the following sections, we present;

• The Splitting Bloom Filter (SBF) that increases the privacy guarantees of the en-

tity comparisons performed in PPRL, by reducing the amount of information shared

amongst the PPRL parties;

• A novel privacy-preserving protocol that considers a covert security model, which lies

between the HBC and Malicious models;

• A Proof-of-Concept implementation of our privacy-preserving protocol using the

Blockchain technology;

• Theoretical and empirical evaluations using real-world data to assess the efficacy, effi-

ciency, and privacy capabilities of our contributions.

4.1 Problem Formalization

In order to improve the privacy capabilities of the PPRL problem, we assume that multi-

ple parties and an STTP engage in a PPRL process that considers an accountable security
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model (covert adversaries).

Problem Statement 1 (Decentralized execution of the decision model). Given multiple par-

ticipants (|P | ≥ 2) with their respective anonymized data sources (D̂), and a Semi-Trusted

Third-Party (STTP) implemented as a Blockchain Smart Contract (Transaction), how to dis-

tribute the decision model execution among the parties and the STTP? Eq. (4.1) formalizes

the decentralized execution model (Ξ̂).

Ξ̂ = (Ξ1(ê1, · · · , êp) ∪ · · · ∪ Ξp(ê1, · · · , êp)) ∪ Ξsttp(ê1, · · · , êp) (4.1)

where Ξj and Ξsttp represent the output of the decision model generated by a party p and

STTP, respectively.

Since we consider an accountable security model, our approach needs to audit all com-

putations performed by the decision model (Ξ), regardless of who executed them (the parties

or STTP).

Problem Statement 2 (Auditability of the decision model). Given the decision model ex-

ecution Ξ, with p participants, the audit function (audit(Ξ̂)) should detect when the parties

or the STTP tries to deviate from the protocol by sending (or computing) wrong similarity

values of the entities. This misbehavior is detected by comparing the decision model output

of each participant. Eq. 4.2 formalizes the audit function.

audit(Ξ̂) =











FP ⇐⇒ ∃(Ξp,Ξp+1,Ξsttp) ∈ Ξ̂ , Ξp ≈ Ξp+1 ≈ Ξsttp

MB ⇐⇒ ∃(Ξp,Ξp+1,Ξsttp) ∈ Ξ̂ , Ξp ̸≈ Ξp+1 ̸≈ Ξsttp

(4.2)

where MB means that a party has misbehaved (i.e., did not follow the protocol) and FP

means that all parties followed the protocol.

Knowing that a Blockchain stores all information in an unalterable and public readable

database (Ψ), we also have to address the following problem.

Problem Statement 3 (Privacy-preserving guarantees of the decision model). Given an

anonymized entity (ê ∈ ⟨ê1, · · · , êp⟩), how to maximize the privacy capability (i.e., avoid

the reidentification of entities) during the excution of the decision model in a Blockchain

environment?
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Given the aforementioned problems, the goals of this chapter can be summarized as:

Given: {D1, · · · , D|P |},Ξ,Ψ

Find: M ∈ Ξ(D1, · · · , D|P |)

Uncover: The Misbehave

Preserving the privacy of: ê ∈ Di∀i ∈ {1 · · · |P |}

A summary of the notation employed in this work is presented in Appendix A.1.

4.2 Splitting Bloom Filter

As presented in Chapters 2 and 3, Bloom Filters may fail to preserve the privacy of the data

in two cases. The first one occurs when an adversary has a list of possible values assumed

by the entities [32; 116; 125; 181]. The second case happens when an adversary is able

to access several anonymized entities and execute a pattern mining attack [32; 181]. Both

vulnerabilities may endanger the privacy of the entities employed in PPRL. Considering

that the entities involved in PPRL belong to a unique domain (e.g., patients with the same

pathology), the participants may have a list of possible values assumed by the entities. This

facilitates cryptoanalysis attacks as reported in [125; 151]. Also, in order to perform the

comparison step of PPRL, the parties need to share their entire anonymized entities, which

favors a sophisticated cryptoanalysis attack (e.g., pattern mining attack) [32; 181].

In order to mitigate the majority of the attacks to the BF and enable auditable privacy-

preserving protocols to PPRL, we explore a novel aspect of the BF, named as Splitting Bloom

Filter (SBF). SBF’s basic idea is to perform iterative similarity computation using only a

small piece (split) of the original BF (instead of the entire BF) to reduce the amount of

information shared during the comparison step of PPRL. In other words, the SBF intends to

split the original BF in s splits [ϕ0, · · · , ϕs−1], where each split will have a fraction of the

original BF length. The SBF is formalized as follows.

Definition 4 (Splitting Bloom Filter). The SBF approach divides the l-bits of a BF into

s splits ϕ. Considering that the BF (e) = ê, we can express the anonymized entity as
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ê = [b0, · · · , bl]. The SBF can be formalized as:

SBF (ê, s) = [ϕ0, · · · , ϕs−1], such that ϕi = [bj, · · · , bj+( l

s
−1)] and j = i × l

s
, ∀(i)|0 ≤

i ≤ s− 1.

Based on the SBF, the similarity computation between two different entities, e.g.

Jaccard(ê1, ê2), can be executed independently by the parties. The similarity computation1

using the Jaccard function is detailed in the Eq. (4.3):

Jaccard SBF (ê1, ê2, s) =
1

s

s
∑

i=0

|ϕi
1

⋂

ϕi
2|

|ϕi
1

⋃

ϕi
2|

(4.3)

, where s is the number of splits. Also, ϕi
1 and ϕi

2 are the i-th splits from SBF (ê1, s) and

SBF (ê2, s), respectively.

The distributed similarity computation characteristic of the BF has been exploited in

previous works [172; 175] to enable secure multi-party computation (SMC) in the PPRL

context. However, in this work, we assume that the SBF splits (ϕ) can be employed to

verify the computation performed by a PPRL participant, reducing the information available

to execute attacks by malicious parties. Moreover, in Section 4.4, we demonstrate how

SBF allows the identification of malicious participants that eventually did not follow the

agreed protocol and consequently enables an auditable security model in the PPRL context.

Finally, the splits also reduce the amount of shared information during the linkage process,

maximizing privacy capabilities of PPRL.

In order to estimate the mean similarity between the BF splits, we use the following

assumptions: i) the SBF does not change the probability of the elements being flipped to

’1’; ii) the SBF does not alter the false positive rate; and iii) an ideal BF (p = 0.5) has a

near-uniform distribution of 1s along the filter [17]. Considering the previous assumptions,

we propose the following statement to provide auditability of the SBF comparison.

Acknowledging that the splits of SBF are different, we also assume that the similarity

of the splits is slightly different from the complete BF similarity, i.e., Jaccard(eτa, e
τ
b ) ̸=

1Other similarity functions available for regular BF can also be used in the SBF approach, e.g. token

distance.



4.3 SBF Evaluation 64

Jaccard(ϕi
a, ϕ

i
b), such that ϕi

a ∈ SBF (eτa, s) and ϕi
b ∈ SBF (eτb , s). The rationale of this

assumption is justified in Appendix A.3. Therefore, the similarity comparison between any

pair of splits is related to the similarity between the BFs plus a certain error (ϵ) and can

be represented by Eq. (4.4).

Jaccard(eτa, e
τ
b ) = Jaccard(ϕi

a, ϕ
i
b) + ϵ (4.4)

, such that 0 ≤ ϵ ≤ 1.

In order to illustrate the similarity difference between the split and complete BF, Figure

4.1 depicts this difference using the words ANA and ANE. In Figure 4.1(a), the similarity of

the words produced by a regular BF is 0.66. In Figure 4.1(b), we apply SBF to divide the

original BF into two splits. Notice that, for each split, we introduce an error (ϵ) of 0.14 and

0.16 during the comparison (Eq. 4.4), respectively.

Figure 4.1: An example of SBF using two splits, (a) illustrates the similarity calculation over

anonymized values of the words ANA and ANE (Fig. 2.2). In (b), the BFs are split in two.

The similarities between the splits are presented as well as the resulting error.

It is worthwhile to mention that the relation between the number of splits and the error is

examined through experiments in Section 4.3. The experiments demonstrate that the number

of splits is important to predict the error. Moreover, we prove that the error is crucial to

determine the privacy and the quality of the PPRL linkage.

4.3 SBF Evaluation

To assess the accuracy of the similarity computation and investigate the privacy capabilities

provided by SBF, we need to answer the following Research Questions (RQs):
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RQ. 1 Does the similarity between two entities can be accurately calculated by SBF, Eq. (4.3)?

RQ. 2 What is the influence of split length (number of bits) over the similarity calculated using

the SBF (Eq. 4.4)?

RQ. 3 Does SBF improve the privacy capabilities of PPRL processes?

To answer these questions, we employed seven pairs of real-world data sources from

the following domains: bikes, beers, books, electronic goods, movies, music, and restau-

rants. Each pair of data sources presents different characteristics, such as the number, values,

length, and the level of dirtiness of attributes. A summary of the data sources characteristics

is shown in Table 4.1, and details about the data sources are presented in the Appendix A.5.

Table 4.1: SBF Data sources and anonymization parameters details.

Domain —A— —B— attributes l k

bike 2,689 3,721 3 920 7

beer 4,330 2,999 3 920 7

books 1190 1,106 4 2,456 8

eletronics 2,769 4,007 4 9,816 10

movies 7,029 6,063 4 7,360 9

music 20,062 3,805 7 9,816 10

restaurants 4,655 8,400 5 1,224 8

Table 4.1 also presents the anonymization parameters employed in the BFs: l (number

of bits of the filter) and k (number of hash functions). These parameter values were chosen

to achieve an optimal privacy (p = 0.5) of the filters [153].

4.3.1 Accuracy of the Similarity Computation

To evaluate the accuracy of the similarity calculation produced by SBF, we employ three

different BF strategies [152; 153; 154]: i) Balanced Bloom Filter (BBF); ii) Xor-Folding

Bloom Filter (XBF); and iii) Bloom-and-FlIp (BLIP). We vary the BF implementation to

ensure that SBF provides accurate results using a regular implementation (BBF) or privacy-

enhancing implementations such as BLIP and XBF.

BBF relies on the choice of the parameters in order to achieve a uniform distribution of

elements in the filters and, consequently, maximizes privacy [152]. To prevent bit pattern
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attacks, XBF folds (in half) the bit array, and employs the XOR logical operator in each half

of the filter in order to assemble a new filter [154]. In turn, BLIP [153] applies the concept of

randomized responses in order to flip the values of random bit positions and, consequently,

reduce the probability of entity re-identification during the PPRL.

The error produced by SBF (tackled by RQ 1 and RQ 2) is illustrated in Figure 4.2. This

error was calculated as the difference between the modulus of the similarity produced by the

regular BF (Jaccard) and SBF (Eqs. 4.3 and 4.4). The horizontal and vertical axis show the

number of splits and the error of the similarity computation, respectively. The dashed lines

indicate the results achieved by SBF using only one split (Eq. 4.4), while the continuous line

shows the use of all SBF splits in the similarity computation (Eq. 4.3).
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Figure 4.2: Error obtained using different BF hardening strategies.

As illustrated in Figure 4.2, regardless of the BF anonymization strategy, the similarity

calculation produced by Eq. 4.3 presents the same similarity values as the traditional BF.

In other words, SBF is able to calculate the similarity of two entities accurately when all

splits are employed, answering RQ. 1.

Figure 4.2 also exposes that the error (dashed lines) of utilizing a single split for

calculating the similarity of two entities increases as the number of splits grows. In
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other words, the error grows as we increase the number of splits, regardless of the BF

hardening strategies employed. The SBF error disagreements of the BF hardening strategies

are not statistically different from the mean error of the strategies examined using the

Wilcox test with 95% confidence.

According to Figure 4.2, it is possible to observe by the dotted lines a relation between

the error (presented in Eq. 4.4) and the number of splits. In order to confirm this relation,

we applied a Statistical correlation test (Pearson R test) over the calculated similarities. We

refuted the null hypothesis with a correlation factor of 0.82 and p-value< 0.005. In other

words, we confirm that there is a correlation between the number of splits and the error

presented in Eq. 4.4.

For a better understanding of the relation between the number of splits and the error, we

plotted Figure 4.3 considering the BBF strategy. The horizontal axis illustrates the length of

the split divided by the original filter length (l/s), — e.g., if a BF originally has 1,024 bits

and we split this BF into four parts, each split will represent 25% of the original split. The

vertical axis describes the error of comparing two entities using only one split. The colored

lines exhibit the mean error produced by the use of the individual splits for each data source.
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Figure 4.3: Error associated to split length (percentage) by data source, employing the BBF.

Figure 4.3 shows an increase of the error while we decrease the split length. The raise

of the error can be explained by the fact that, in smaller splits, every bit that diverges in Eq.

4.4 has a higher impact over the calculated similarity.

As shown in Figure 4.3, a logarithmic function describes the error. To confirm the previ-

ous statement, we build a logarithmic regression model (f(x) = a ∗ ln(b ∗ x) + c) and use
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the result of the experiments to train and test (with cross-validation) this model. Figure 4.4

illustrates the fitting of the model for each data source.
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Figure 4.4: Accuracy of the estimated error in SBF.

Figure 4.4 presents the same axis of Figure 4.3. The line represents the model output,

and red x mark represents the model error. As illustrated in Figure 4.4 and confirmed by the

Root Mean Square Error (RMSE) result (rmse=0.027), we demonstrate that a logarithmic

function fits well with the error growth in our experiments. This is relevant because i) we

provide an estimation of the impact of the split length in Eq. 4.4 error (RQ. 2), and ii) the

fact that a logarithmic function can describe the error is relevant to some privacy aspects,

detailed in Section 4.3.2.

4.3.2 Privacy

In order to investigate the privacy capabilities provided by SBF (RQ. 3), we assume that an

attacker needs to have access to a significant amount of information to execute a success-

ful privacy attack [32; 181]. Such attacks are more likely to succeed if the n-grams (n) are

hashed into the shared splits in SBF. It is possible to execute frequency-based and crypto-
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analysis attack successfully in one split. However, if we consider the usage of a small split

in SBF (e.g., split with 16 or 32 bits), such attacks need to possess more information than

the regular BF to re-identify a single split’s information based on few bits of information. In

other words, we believe that the re-identification attack is more prone to succeed when the

k parts of the n-gram are stored in the shared split. Thus, we estimate the SBF’s privacy by

the probability of n-grams being mapped in the SBF split.

We can estimate the probability of an individual position of the filter (bj) be used to map

a particular n-gram by P (bj) = 1 − e(−
k×n

l ) [17]. Consider that SBF divides the BF in s

splits, where each split has l
s

bits, and each n-gram of the plain data is mapped to k positions

by different hash functions. Equation 4.5 estimates the likelihood of an n-gram (ng) being

mapped into a split P (ng ∈ ϕ) by calculating the probability of k bits of the splits be used

to represent the n-gram.

P (ng ∈ ϕ) = P (b1 ∈ ϕ) ∩ · · · ∩ P (bk ∈ ϕ) (4.5)

Knowing that the BF hash function provides a uniform random distribution of the n-

grams inside the filter [152; 17], we can assume that the P (bk ∈ ϕ) = P (bj). Thus, it is

possible to modify Eq. 4.5 as follows.

P (ng ∈ ϕ) = P (b1 ∈ ϕ) ∩ · · · ∩ P (bk ∈ ϕ)

considering that, P (bk ∈ ϕ) = P (bj), and P (bj) = P (bj+1)

P (ng ∈ ϕ) = P (b1) ∩ · · · ∩ P (bk)

⇒ P (ng ∈ ϕ) = P (b1)× · · · × P (bk)

⇒ P (ng ∈ ϕ) = (P (bk))
k

⇒ P (ng ∈ ϕ) =
(

1− e−
k×n

l

)k

considering that we are calculating the probability over the split ϕ, l represents

the split length, such that, l =
l

s

⇒ P (ng ∈ ϕ) =
(

1− e−
s×k×n

l

)k

It is worthwhile to mention that the hash functions used (k), number of n-grams (n), and

the length of the regular Bloom Filter (l) provide a trade-off between the linkage quality and
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privacy [17]. This trade-off is given by the false-positive rate (fpr = 1 − e−
k×n

l ) of the BF.

Therefore, the higher the value for fpr, the higher the privacy and the lower the quality of

linkage, because the number of q-grams mapped to a single bit (and therefore the number of

resulting collisions) rises, which leads to lower linkage quality but makes it more challenging

for an adversary to learn the q-gram combinations in BF [30]. Thus, a value used to provide

a suitable comprising between quality and privacy is fpr = .5 [30; 152; 176].

In order to investigate the influence of the SBF parameters over the privacy guarantees,

we plotted the graph depicted in Figure 4.5 varying the false-positive rate and the split length

from 50% to less than 0.01% of the original BF (0 < fpr < 1). The original BF’s false-

positive rate is depicted by the lines, while the BF length (in percentual of the original length)

is illustrated in the horizontal axis. The P (ng ∈ ϕ) is depicted in the vertical axis.
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Figure 4.5: Probability of an n-gram being stored in a split considering different BF param-

eters.

Figure 4.5 shows the influence of the BF false-positive rate and the split configuration

over the SBF privacy. Before explaining the result, we have to remember that the false-

positive rate is proportional to the number of ’1’ in the BF. Lower f implies in a low pop-

ulated filter while higher fpr results in a filter with more ’1’, due to the relation between

the number of k and the l.

Another remark about the splits is that each split can store l
sk

n-grams. Thus, we can
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intuitively state that smaller splits increase SBF’s privacy guarantees, illustrated in Figure

4.5 and can be calculated by Equation 4.2.

To investigate if these properties are enough to keep the entities’ privacy during a real-

world PPRL process, we employ a state-of-the-art Bloom Filter cryptoanalysis attack [181],

presented in the related work section, against the NCVR dataset 2 with 224 thousand and 6

millions records. In this experiment, we employ the most used configuration of the BF [152],

when fpr = .5, over five attributes (firstname, lastname, age, gender, and city) of the NCVR

dataset. The attacks were executed over the SBF split, varying l/s from 0.01 to 0.25.

It is worth mentioning that the attacks were unable to re-identify any entities in the experi-

mented data source. This result can be explained by the fact that most BF attacks need to have

access to a considerable amount of information to re-identify the anonymized entities [32;

34; 173; 176; 181]. Therefore, since we share only a fraction of the original data, making it

hard for state-of-the-art cryptoanalysis attacks to re-identify the entities using their strategies

(e.g., pattern mining and dictionary attacks).

4.4 Auditable Blockchain-based PPRL

In this section, we present the components of the ABEL approach. First, we present a generic

protocol (3PAC protocol) that generalizes and formalizes the concepts employed to imple-

ment the ABEL approach. Finally, we present an extensive evaluation and a summary of

the ABEL capabilities.

4.4.1 An Auditable Protocol for PPRL

In this section, we present a novel privacy-preserving linkage protocol, which considers

covert adversaries to audit the comparison and classification steps of PPRL. This protocol

uses SBF to reduce the amount of information shared during the PPRL execution. Moreover,

this protocol uses the decentralized SBF characteristic (presented in Eq. 4.3) to provide

audibility in the similarity computations performed by the PPRL parties. The protocol also

considers a Semi-Trusted Third Party (STTP), where the parties may audit all their actions.

2Available at the authors website: https://dmm.anu.edu.au/pprlattack/
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Definition 5. (Semi-trusted third party) The STTP is a participant that is partially trusted

to perform a specific computation. Although STTP may misbehave, it will not conspire with

none of the parties. In other words, it can deviate from the protocol by:

1. Leaking the information sent by the participants;

2. Executing wrong computations over the information shared by the participants.

The intuition behind the protocol is to perform the comparison step in two stages in order

to improve the privacy-preserving capabilities of the protocol. In the first stage, STTP per-

forms the similarity computation according to Eq. (4.4) using only one split of the original

BF. In this stage, the single split’s similarity is used to eliminate entity pairs that present

similarity values that differ from the designated threshold, β-threshold. In summary, the

first stage selects entities that present a high probability of being similar using a small frac-

tion of the parties’ anonymized data source. As a result, a list of entities is disclosed to

the other participants.

In the second stage of the protocol, the parties perform similarity computations (inter-

actively) in the remaining splits of the entities disclosed by STTP. To audit the protocol

execution, the parties may compare the similarity calculated in the second stage with the

similarity exposed by STTP. If the difference between these similarities is higher than error,

it means that one party (or the STTP) did not follow the protocol. The protocol is detailed

in Protocol 1.
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Protocol 1. 3-Party Comparison and Classification Auditable Protocol (3PAC)

Setup

1. The parties agree on the BF and SBF parameters; the number of splits (s), the splits

that will be employed in the first stage (ϕi), the error and the thresholds α and β;

2. The parties anonymize the entities and randomly generate a unique ID for each en-

tity;

3. The parties send the SBF splits to STTP send(ϕi, STTP ) | ∀SBF (eτ , s) ∈ Dτ
p .

Stage 01

4. STTP computes the similarities between the splits;

5. STTP reveals (to all parties) a list ( ζ ) comprising the IDs and the similarity values

between the entities.

Stage 02

6. For each split (s) of the entities stored in ζ, the parties alternately exchange among

themselves the splits, one at time. At the end, each participant receives φ splits,

where |φ| = s−1
|P | ;

(a) The splits sent by the parties are employed as input to calculate the similarity

of the entities using Eq. (4.3);

i. If the difference between this similarity and the value calculated by STTP

is greater than the error, the participant detects the misbehave and aborts

the protocol execution.

(b) The parties exchange the splits similarity calculated in the previous step in

order to update the entities’ overall similarity;

i. The parties check if the difference between exchanged similarity and the

value stored in ζ. If this difference if higher than error, the parties detect

a misbehave and abort the protocol execution;

ii. At the end of this step, the parties update the entities’ similarity value in

ζ.

7. Finally, the parties select entities that have a similarity value higher than α-threshold.



4.4 Auditable Blockchain-based PPRL 74

In the Setup, the parties agree among themselves on the anonymization parameters (step

1), execute the data anonymization (step 2) and send the splits to STTP (step 3). Notice that

STTP is not aware of the data anonymization parameters or which split was chosen to be

used. In other words, STTP receives only a small part of the original BF, which makes it dif-

ficult to execute cryptoanalysis attacks [181; 32]. Two important parameters of our protocol

are chosen during Setup, β, and α thresholds. These thresholds are employed in Stage 1 and

2, where β is employed in both stages, and α is employed in the final step of Stage 2. These

thresholds must consider the SBF error and should be calculated as β = α − error.

In Stage 1, STTP computes the similarity of all pairs of entities received during the

Setup, using only one split to represent each entity. At the end of the stage, STTP publishes

a list (ζ) of all entities pairs with a similarity value greater than β. The β threshold must

be chosen carefully to reduce the amount of information shared in the subsequent stages.

In other words, by choosing a lower value of β, the number of entities forwarded to Stage

2 is increased, which enhances the probability of successful cryptoanalysis attacks and the

computation cost of the protocol. The reduction of shared information and computational

costs are detailed in Section 4.5.2.

In Stage 2, the parties distribute, among each other, the remaining splits to perform the

similarity computation of the entities disclosed in ζ . Each party is responsible for performing

the similarity computation in φ splits, where |φ| = s−1
|P |

, using Eq. (4.3) for each pair of en-

tities (step 6a). In other words, the splits of the entities (such that ê ∈ ζ) are distributed

among p participants.

Afterwards, in step 6a, the similarity computation is performed over the splits (φ) of the

entities. In step 6ai, each party compares the similarity value (calculated in step 6a) to the

value stored in ζ (step 4). Then, if the similarity value calculated in step 6a is different from

the similarity present in ζ plus error, the party assumes that a malicious party did not follow

the agreed protocol and aborts the protocol execution.

The entities’ overall similarity (Eq. 4.3) is interactively calculated by the parties in step

6b. The parties check the difference between the exchanged similarity value against the

calculated similarity, and the value stored in ζ . If the difference is higher than error, a party

aborts the protocol execution (step 6bi) because a malicious party seems to have sent bogus

similarity values. Finally, the parties learn which of their entities exist in all datasets (step 7).
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Notice that our protocol is intended to execute the Comparison and Classification steps

of PPRL in a covert adversary model. In this sense, the SBF splits provide auditability in

the comparison step of PPRL. It is worth mentioning that: i) no participant has access to

the complete anonymized representation of an entity; and ii) the similarity computation is

performed using entities (splits) that have a high probability of being similar. In other words,

the protocol also reduces the amount of information shared by participants, decreasing the

probability of a successful cryptoanalysis attack.

4.4.2 Auditable Blockchain-based Privacy-preserving Record Linkage

In this section, we describe the Auditable Blockchain-based Privacy-preserving Record

Linkage (ABEL), a Proof-of-Concept implementation of the 3PAC protocol presented

in Section 4.4.1.

Different from the traditional HBC protocols, which consider an external (neutral) party

in which all participants trust [44; 128; 171], ABEL considers a semi-trusted third party

(STTP), which parties do not fully trust. Because they do not rely on STTP, the parties

need to audit STTP computations. In order to enable the auditability of the computations

performed by the STTP, we implement it as a Smart Contract hosted in a Blockchain. In

other words, the use of a Smart Contract transforms the STTP into a piece of code that

executes in a Blockchain environment.

By considering the STTP as a Smart Contract, we offer three important characteristics

inherited from the Blockchain. The first is the tamper-evident characteristic of the STTP.

In other words, once that the STTP Smart Contract is deployed to the Blockchain, it can

not be modified [189], in other terms, a malicious party unlikely will change the Smart

Contract code.

The second characteristic is the decentralized execution model. This characteristic en-

ables the STTP to be executed in different machines eliminating the need for a centralized

computing environment. In other words, the PPRL parties could create a private network

with its own machines, and the computations will be executed in all machines of the net-

work, without a central server.

The final characteristic is the auditability (transparency) of the Blockchain. Once that

STTP is stored in the Blockchain, the STTP code, inputs, and outputs can be read (audited)
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by the Blockchain members. This advantage provides the ABEL auditability capability while

posing as a privacy disadvantage by making available private data to every Blockchain mem-

ber. As presented in Chapter 2, every Smart Contract invocation (transaction) is stored in the

Blockchain with all inputs and outputs. In other words, by default, all transaction attributes

(input and outputs) are readable by the Blockchain members. It is worth mentioning the

existence of Blockchain technologies that keep the transaction attributes private, such as the

Microsoft Confidential Consortium Framework3.

The aforementioned disadvantage can be minimized by building a private Blockchain

network amongst the PPRL parties and using an adequated SBF configuration during the

ABEL execution. The use of a private Blockchain network limits the access to the shared

data only to the PPRL parties and hide the data from the external malicious parties. In order

to preserve the entities’ privacy from an adversary among the PPRL parties, we employ

the SBF and send a split configuration (number and length of the splits) that diminish the

chance of success of attacks performed by a malicious party. Furthermore, the computations

performed at 3PAC Stage 2 are executed by the parties outside of the Blockchain, hiding the

data from the PPRL parties. In Stage 2, the Blockchain is employed by the parties only to

verify the computations and update the similarity value stored in ζ .

Another drawback of the Blockchain usage happens if one adversary controls at least

51% of the nodes of a Blockchain network. This adversary can take control over the

Blockchain and change the ledger’s states [5; 92; 189], i.e., switch the output of a trans-

action and modify the values stored in ζ . However, we will not address these attacks in this

thesis. For further details, we refer the reader to the related work [44]. Our research assumes

that any Blockchain owner has control of 51% of the Blockchain nodes. For instance, if two

parties want to execute ABEL, they will set up a private blockchain network where each one

will have one node. Thus, each party will control 50% of the blockchain network.

Figure 4.6 illustrates the ABEL execution of two participants (Alice and Bob). In this

example, we assume that the parties have already deployed the STTP (Smart Contract) in the

Blockchain, agreed on optimal anonymization parameters, executed all entities’ anonymiza-

tion in their datasets, and agreed on the number of splits (s = 3) and the thresholds (α = 0.7

and β = 0.4). In summary, Alice and Bob have executed steps 1 to 3 of the 3PAC protocol.

3https://microsoft.github.io/CCF/
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The example starts in step 4 of 3PAC. Steps 1a and 1b of Figure 4.6 illustrates the parties

sending the splits to STTP.

Figure 4.6: Outline of ABEL execution.

The similarity computation is performed in all splits (Cartesian product) received by

SCTP. If the calculated similarity value is higher than threshold β, STTP saves the IDs of the

splits as well as their similarity values in the Blockchain (step 6 of 3PAC). In our example, the

restriction of Stage 1 is satisfied only by the splits A1 and B9 (similarity(A1, B9) > β);

this fact is illustrated in steps 2 and 3 of Figure 4.6.

It is to mention that Stage 1 acts as a filtering process, removing from the subsequent

steps entities pairs that present values smaller than the β threshold. In other words, Stage

1 reduces the number of entities (information) shared during the ABEL execution, and this

reduction has an impact on the comparison reduction rate (detailed in Section 4.3) and to

the privacy of our approach. For instance, notice that the ζ list was assembled using a

minimal amount of information (i.e., only one split of each entity), reducing the success

rate of cryptoanalysis attacks; the privacy impact is presented in Section 4.5.4.

Steps 4a and 4b of Figures 4.6 illustrates the parties exchanging among each other, the

remaining splits of entities stored in the ζ list. Notice that, in our example, entities A1 and
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B9 presented a similarity value greater than β. Therefore, only A1 and B9 splits will be

exchanged by the parties. Notice that, by alternating the distribution of the split, Alice and

Bob only have access to two splits as well as their similarity values, making it challenging

to successfully execute a cryptoanalysis attack.

For each split, ABEL alternately distributed among the parties the splits of entities stored

in ζ . In our example, Alice sent the third split of A1 to Bob, and Bob sent the second split of

B9 to Alice. With the splits exchanged, the parties calculate the splits similarity, exchange

the calculated similarity among themselves, audit the computation performed by other parties

(steps 6.a and 6.b.i of 3PAC), and update the similarity value in ζ (step 6.b.ii of 3PAC).

The final stage is illustrated in Figures 4.6, 5a, and 5b, where the duplicate entities are

marked (with a grey circle). Thus, at the end of the process, a party only learns which of

its entities are present in the other parties’ datasets. A more in-depth discussion of the pri-

vacy attacks performed during the ABEL execution is presented in the following sections

(4.4.3 and 4.5.4).

4.4.3 Privacy Sketch

This section evaluates the privacy capabilities of our approach in an auditable security model

using the simulation paradigm. The paradigm assesses the approach through the messages

(information) exchanged by the parties and STTP during a simulated PPRL execution. The

simulation was executed according to the guideline proposed by Lindell et al. [103]: the

messages granted in the simulation must be the same as an adversary would have access

to use in a real attack. The simulation fails if an adversary learns anything different from

the expected output.

Considering that STTP is a Smart Contract, we can assume that the STTP code (protocol)

can be read and audited by the parties. Moreover, after STTP is deployed in a Blockchain

i) the code cannot be changed (tamper evident); ii) STTP cannot deviate from the protocol

(collude); and iii) all computations (Transactions) performed by STTP will be stored in the

Blockchain. We also consider that each party performs the anonymization of its respective

data source. Thus, in order to provide a better explanation, the simulation paradigm was

executed over Stages 1 and 2 of the 3PAC Protocol.

Before we detail the action performed in Stage 1, we present the inputs used in this
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stage: one split (ϕ1) of each entity stored in the parties’ data source (D̂p) and the β thresh-

old. To the best of our knowledge, the β threshold is not susceptible to any vulnerability

or privacy attack.

[3PAC] Stage 1 simulation

Inputs. ϕi∀i ∈ D̂p , β

1. Input Validation. STTP validates the parties’ inputs.

2. Single Split Comparison & Classification. STTP performs the similarity com-

putations and publishes (steps 4 and 5) the entities pairs that have a high probability

of being similar in ζ .

Output. ζ

STTP should implement a method to validate the splits (Input validation). For instance,

the validation method verifies if all parties sent their splits, or if all splits have different val-

ues. Thus, if one (or more) party tries to deviate from the protocol by sending wrong inputs,

STTP detects the misbehave and may abort the protocol execution. After the Input valida-

tion, STTP engages in the classification of the entities (Single Split Similarity Computation)

and stores the ζ list (the output) in the Blockchain.

The ζ list contains pairs of entity ids with their similarity values (Eq. 4.4), such that these

values are higher than the β threshold. Thus, since the single splits (ϕ1) were the inputs

of a Blockchain transaction (STTP execution), all the ϕ1 are available in the Blockchain.

Notice that, until this point, an adversary has access to one split of each entity, with its

estimated similarity.

Regarding the privacy issues related to the usage of single splits (ϕ1) as input to a privacy

attack by a malicious party, as demonstrated in Section 4.3.2, it is a hard task to re-identify

an entity using information from a set of single splits.

The information reduction (reduction rate, detailed in Section 4.3) provided by Stage 1

also helps to improve the privacy capabilities of the SBF. Due to the reduction of the number

of entities employed in Stage 2, where only the entities stored in ζ will be used as Stage 2

inputs, the chance of successfully executing a frequency or cryptoanalysis attacks decreases.
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[3PAC] Stage 2 simulation

Inputs (for each party) . ϕ1, φp , β, α , ζ

For each ϱ ∈ ζ ∩Dp (step 6 of 3PAC):

3. Exchange the φp splits, such that φp ∈ ϱ.

4. Compute the similarity of φp (step 6a).

5. Exchange and audit the calculated similarity in the previous step (step 6b of 3PAC)).

6. Conjointly classify the entities listed in ζ (step 7 of 3PAC).

Output. Each party learns which of its entities is also present in other parties’ data sources.

The input of Stage 2 (i.e., α, β, and ϕ1) is the same for every party. However, each party

receives a different split set φ, at each iteration. Figure 4.7 illustrates the split exchange at

each iteration. For instance, after the parties executed Stage 1, Charlie shared ϕ4, with splits

of entities C7 and C8 in the first iterations. Due to the filtering processing (i.e., similarity

smaller than β threshold), Charlie excludes entity C8 in iteration 2. In the split exchange

process, the parties alternate the splits in order to reduce the amount of shared information

and distribute the split computations.

After exchanging the first split, the parties compute the similarity of the received splits’

against their owns splits (step 6a of 3PAC). Then, the parties exchange among themselves the

calculated split similarity values and compute the entities’ overall similarity (step 6b). Notice

that, at this point, an adversary may try to force the honest parties to send more information

(splits), or hide information, by executing the following attacks:

• Send bogus split (e.g., with random data);

• Send wrong similarity values.

The honest parties could detect both attacks by auditing the other parties’ inputs. If some

adversary attempts to deviate from the protocol, it will be detected with a high probability

— the misbehave identification is detailed as follow.

In order to detect the bogus split sent by an adversary, the honest parties will compare

the similarity computed by themselves with the value stored in ζ . If the computed value

diverges from ζ (considering the error), an honest party will detect the misbehave and abort

the protocol execution. In other words, if an adversary sends a bogus split, e.g, a split with

zero in every position, in Stage 2 step 6b, the parties will calculate the similarity and compare

the similarity value against the value stored in ζ . Thus, if the calculated similarity presents
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Figure 4.7: Simulation of the ABEL execution. The parties’ exchanged messages (i.e., splits

and similarity values of entity pairs) are designated at each iteration. The misbehavior (at-

tack) of Charlie is illustrated in the final iteration and highlighted in red.

a value different than the expected SBF error plus the value stored in ζ , the party will detect

the adversary misbehave.

Regarding the second attack, where an adversary sends wrong similarity values, the

honest parties will confront the wrong similarity values with their calculated split similarity

and the value stored in ζ . And abort if the exchanged similarity diverges from the calculated

values or the value stored in ζ .

Figure 4.7 illustrates an attack in iteration 2 when Charlie tries to hide entity C8 by

sending a lower similarity value. The similarity value sent by Charlie (0.02) is not tolerated

because the overall similarity is 0.65 and the similarity of ϕ3 is 0.61. Thus, the other parties

identify the attack and abort the protocol execution.

Regarding the usage of the exchanged splits in the re-identification attack, we need to re-

mark that our approach performs an iterative filtering process where, at each iteration, fewer

splits are shared amongst the parties. In other words, only entities that will be marked as a

match are shared in the last iterations, making it hard to successfully employ re-identification

attacks.

In the attack illustrated in Figure 4.7, Charlie deviates from the protocol in the final

iteration. Otherwise stated, Charlie could have access to the maximum number of splits
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as possible, meaning that the attack was executed in the worst scenario. However, even if

the parties collude, Charlie has access only to the colored split designated in iteration 2,

reducing the chance of success during a re-identification attack.

Parties could collude and share the split among each other to gather more information

(splits) for a re-identification attack. In other words, the collusion among multiple parties

could reveal more information to be employed in an attack, increasing the chance of success

in a re-identification attack. However, the consequences of collusion among the parties could

be minimized if the SBF parameters are properly chosen. Furthermore, we demonstrate in

Section 4.5.4 that our approach could preserve the privacy of entities against the BF state-of-

the-art privacy attacks until a certain limit. We also remark that collusion is considered in a

malicious adversary model, and our approach considers a covert adversary model.

4.5 ABEL Evaluation

In this section, we evaluate the ABEL approach and present a discussion about the experi-

mental results. The main goal of the evaluation is to assess the effectiveness, efficiency, and

privacy capabilities of ABEL. To this end, we formulate the following research questions:

RQ. 1 Does the ABEL approach provide an effective linkage of entities?

RQ. 2 What is the computational cost of ABEL?

RQ. 3 Is the ABEL approach capable of preserving the privacy of entities considering a covert-

security model and state-of-the-art attacks?

To answer these questions, we use real-world personal data sources detailed in Table

4.2, which are widely used by the community. For further details on the data sources,

see Appendix A.5.

Table 4.2: Data source characteristics.

data source —A— x —B— attributes l k

ncvr 2,890,000 8 1,144 7

mvr 2,250,000 9 1,008 5

yv-er 90,231,001 6 976 7
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Considering the relevance of personal data sources, we selected three data sources from

distinct countries with different linguistic and structural characteristics to provide an exten-

sive evaluation of our approach. The YV-ER data source contains information about Italian

Holocaust victims, while NCVR and MVR comprise information about voter registration

from North Carolina and Michigan, respectively. We used the methodology presented in

[181] to build the NCVR and MVR data sources. The former contains data collected in Oc-

tober 2016 and June 2020 while the latter includes data obtained in September 2014 and

March 2017.

In our experiments, we compare ABEL against the regular BF representation of the en-

tities. We also test our approach using Standard blocking [115] as a blocking stage of the

PPRL. Thus, the comparison stage calculates the similarity for all entity pairs marked by the

blocking stage. We also consider that the regular BF will be handled by a trusty third party.

4.5.1 Linkage Quality

To evaluate the effectiveness of our approach, we compare the results of the SBF execution,

varying the number of parties as well as the α and β thresholds against the competitor (reg-

ular BF). Briefly, we compare our approach (which considers a covert adversary) against an

approach that considers an HBC security model. In this experiment, we vary the split length

as well as the α and β thresholds. The experimental design is detailed in Table 4.3.

Table 4.3: Experimental design.

splits α threshold error

0.125%

[0.1, · · · , 0.9] [ 0.01, · · · , 0.49 ]

0.060%

0.030%

0.010%

0.004%

Figure 4.8 illustrates the comparison between the results achieved by the competitor and ABEL.

The vertical axis represents the quality measure results, while the horizontal axis refers to the α

threshold. Different colors represent each data source, while the colored dotted line delineates the

competitor results, and the colored bars represent ABEL’s results.
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Figure 4.8: Effectiveness results of ABEL for different α values.

The results produced by ABEL are similar to the ones of the BF. However, the F1 results also

show that BF overcomes SBF for some threshold values, for instance, α = 0.9 for the ncvr and mvr

data sources. Two factors can explain this fact: i) the precision and recall results; and ii) the fact

that we consider a combination of different α (from 0.1 to 0.9 threshold) and β (from 0.01 to 0.4)

thresholds to build the figure; in other words, we use non-optimum parameter combinations.

By observing the precision and recall results, notice that the precision value is more closer to the

competitor than the recall value. These results are expected and can be explained by the fact that the

ABEL approach only performs the full comparison of entities if the first split has a similarity value

higher than β threshold (comparison filtering), reducing the recall. Otherwise, ABEL would miss

true match entities pairs by eliminating comparisons.

In order to investigate the impact of the ABEL parameters (split length, α, and β), we chose

the α threshold that presented the best result (in terms of F-1). With a fixed α, we varied each

parameter combination exhibited in the experimental design. The result is depicted in Figure 4.9.

The vertical and horizontal axes represent the quality measure and β threshold (β = α − error),

respectively. The continuous lines represent the split length (in percentage) while the red dotted line

expresses the competitor result.

Due to the error introduced by SBF, smaller splits need to consider a bigger error value to achieve

better quality results. This error can be estimated by providing the split length as input to an expo-

nential function, as illustrated in Figure 4.4. The vertical colored areas representing F1 in Figure 4.9

highlight the calculated error for each split length. Notice that the maximum F1 value starts near the

designated colored area - calculated using the optimum-β threshold for the split length.

It is important to remark that the ABEL results depicted in Figure 4.9 overcome or deliver the

same result of the competitor when we employ an SBF error calculated by the exponential function
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Figure 4.9: Quality results achieved by ABEL for different β-thresholds.

presented in Section 8.1. The comparison filtering performed by ABEL can explain this result. For

instance, consider that α = 0.65 and the entities pairs (’Ana’,’Ane’) and (’Ana’,’Lana’) have similar-

ity values equal to 0.66 and 0.60, respectively. If we define that β = 0.55 (error = .1), both pairs

will be tagged as similar, reducing the precision. However, if β = 0.61 (error = 0.05), only the first

pair will be tagged as similar, improving the precision.

Figure 4.9 also demonstrates that ABEL was unable to overcome the competitor in only one

scenario when we employ a small split length (16-bits split) for the MVR data source. We believe

that this result is explained by the fact that a split containing 16 bits is two small, considering that the

MVR was encoded with less than 1000 bits (Table 4.2), requiring a more significant SBF error than

the one we considered in our experiments. This result also demonstrates the tradeoff between privacy

and quality; a more in-depth discussion about this tradeoff is presented in Section 4.5.4.

The experiments presented in this section demonstrate that ABEL reaches a similar result when

compared to the competitor. Furthermore, the quality metrics achieve their maximum values when

we employ the optimum-β threshold. Thus, the answer to the first research question (RQ 1) of this

section is: the ABEL approach provides a linkage result as effective as the approaches that utilize

BF and consider an HBC security model.

4.5.2 ABEL Efficiency

In this section, we evaluate the efficiency of ABEL by analyzing its computational cost. As detailed

in Section 4.4.1, ABEL computes the similarity between entities at two distinct moments. First,

STTP performs the computations using only one split. Then, the parties use the output of STTP to

perform the remaining similarity computations. Thus, the total computational cost is expressed as,
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Cost(ABEL) = Cost(STTP ) + Cost(Parties).

STTP performs its computation over the splits of all entities (m) provided by the parties (P ).

In our experiments, m represents all entities that belong to a participant. However, if a block-

ing or filtering technique is employed, the available entities m are determined by these techniques.

Thus, Cost(STTP ) is related to m and the number of participants (P ), such that, Cost(STTP ) =

O(mmax × |P |)2, where mmax = max([m1, · · · ,m|P |]) . It is worth noticing that STTP performs

the comparison only in one split(ϕ) of each entity.

It is worth mentioning that the β threshold, which is defined by the parties and employed in the

First Stage of the 3PAC protocol, presents an influence on the number of pairs in ζ-list. In other

words, the β threshold has an impact on the number of computations performed by ABEL in the

Comparison step. The impact is illustrated in Figure 4.10, where the vertical axis represents the

comparison reduction and the horizontal axis refers to the error value considered to set up β.
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Figure 4.10: Comparison reduction provided by ABEL.

Notice that the reduction rate (rr) depicted in Figure 4.10 was achieved over a blocked data

source. Figure 4.10 reveals that ABEL provides an extra filtering process to the comparisons. Fur-

thermore, the experimental results indicate that the usage of smaller split lengths in SBF, with less

than 5% of the original BF length, granted the highest rr. For instance, we were able to reduce the

number of comparisons by 25% when we executed ABEL with 16 bits splits.

Regarding the split length influence over the rr, it is possible to observe that the use of smaller

splits resulted in higher rr. Figure 4.10 also evidences that, when β considers a small error in SBF,
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the number of comparisons reaches the maximum reduction rate, regardless of the split size. These

results occur due to the rigorous filtering process performed by STTP, which selects only the most

similar pairs of entities to be compared by the parties.

The grey line in Figure 4.10 represents (with 95% of confidence) an exponential function that

describes the reduction rate in relation to the split length and error considered in β, observed in

our experiments. Thus, we can estimate the ζ-list’s length by |ζ| = (1 − rr) × (m × p), where

0 ≤ rr ≤ 1. Notice that we employ 1 − rr to estimate the impact of the filtering process over the

number of comparisons. For instance, if we have a rr = .25 our approach will consider the 75%

(1 − .25) of the original comparisons.

The number of iterations is calculated as a ratio between the number of remains parties (|P | − 1)

and the number of exchangeable splits (φ). As φ is proportional to the split length (in percentage),

we can define the number of iterations by Eq. 4.6.

iterations = ⌈(|P | − 1)× |φ|⌉

replacing φ, where φ =
(s− 1)

|P |

iterations =

⌈

(|P | − 1)(s− 1)

|P |

⌉

(4.6)

Figure 4.11 depicts the relationship between the number of iterations, split length, and num-

ber of parties. The vertical axis refers to the number of iterations performed by ABEL whilst the

horizontal axis represents the split length as a percentage of the original length. The colored lines

(generated using Eq. 4.6) delineate the number of iterations for different parties (from two to five

parties) for each split length.

According to Figure 4.11, if the parties employ smaller splits to improve the privacy guarantees

of SBF, then the number of iterations increases, raising the computational cost of ABEL. It is worth-

while to mention that, as more parties engage in ABEL, the number of iterations slightly increases,

especially for smaller split lengths. For instance, for two parties considering splits with 25% and 1%

of the original size ABEL will iterate 2 and 50 times, respectively. When we employ the same slpit

length (25% and 1%) for 5 five parties, ABEL will iterate 4 and 80 times.

Finally, it is possible to estimate the parties’ computational cost. As shown in Eq. 4.7, the cost

is related to the ζ list and the number of ABEL iterations.
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Figure 4.11: Comparison reduction provided by ABEL.

Cost(parties) = iterations×O(ζ)2 (4.7)

The overall cost of ABEL is defined by Eq. 4.8.

Cost(ABEL) = Cost(STTP ) + Cost(parties)

= O(mmax × |P |)2 + iterations×O(ζ)2
(4.8)

4.5.3 Blockchain Efficiency

Since ABEL considers STTP as a Blockchain Smart Contract, we provide a Proof-of-Concept imple-

mentation using the Ethereum DL technology. In order to investigate the impact of BC, we use three

different BC setups to measure the comparison time (Λsttp) between STTP and the standard BF.

We execute the experiments using private (consortium) and public Ethereum networks. For the

private network (Private-PoW), we build a three-nodes network using the Prof-of-Work (PoW) con-

sensus mechanism — this network was accessible only by the parties. Concerning the public net-

works, we use the Ethereum Roposten network (Ropsten-PoW) that employs the PoW consensus

mechanism, and the Rinkbey network (Rinkbey-PoA) that provides the Proof-of-Authority consen-

sus mechanism — these networks are publicly accessible.

Figure 4.12 illustrates the execution time of the individual comparisons. The vertical axis repre-

sents the execution time in seconds. The red dotted line outlines the result of the regular BF.
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Figure 4.12: Comparison time of a pair of entities over different Blockchain solutions.

The results shown in Figure 4.12 highlight that the mean execution time of the public networks

were equivalent (with 95% confidence), regardless of the consensus mechanism. Another highlight is

the fact that the private network outperformed the public network, by reaching half of the execution

time of the public network. However, when we compare the STTP comparison time against the

regular BF, the private network was ten times slower.

These outcomes were expected and can be explained by the mining schedule of BC, the consensus

mechanism, and network delays. We detail these reasons as follows. As presented in Chapter 2, each

transaction needs to pay a fee to the miner, setting this fee as a critical feature in the transaction

scheduling [189], with an important impact on the transaction mining scheduler. For instance, if a

transaction A sets its fee to 0.1 ether and transaction B sets its fee to 0.2, probably transaction B

will be executed prior to A.

In order to store and execute a transaction in BC, one miner needs to break a cryptographic

enigma (in the PoW) or a miner that has the execution token needs to schedule the transaction (in

the PoA). In bigger networks, such as Roposten and Rinkbey, the transaction needs to be delivered

to the miner node, and the network delay has an important influence on the BL transaction sched-

uler. Otherwise stated, delays in the transaction propagation among nodes of the networks hold back

the transaction execution.
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4.5.4 Privacy Evaluation

In Section 4.4.3 we provided a privacy sketch evaluation; in this section, we evaluate if our approach

is able to preserve the entity’s privacy against attacks. To this end, we employ the state-of-the-art

BF cryptoanalysis attacks [32; 181] using all splits available in Stages 1 and 2 for the NCVR data

source and considering two and three parties. We varied the split length for each different number of

parties and executed the re-identification attack over the entity splits available at the end of ABLE.

In other words, we tested our approach considering that we have from 10% to 50% of the original

amount of information of the entities.

As a result, we were unable to re-identify none of the entities from the data source. We attribute

the privacy-preserving capability of ABEL to the: i) reduction rate (detailed in Section 4.5.2), that

prevents the parties to share entities (splits) that are not possible match, and ii) the use of the SBF

in ABEL, which add an error (exposed in Section 4.5.1) to the entities that are possible matches.

However, we believe that our approach is unable to preserve the privacy of the entities when the

parties choose inappropriate parameters. For instance, if the parties choose a low α threshold (e.g.,

0.1), STTP will return almost every entity of the original data source, increasing the success rate

of any privacy attack.

In this Section, we tested our approach against privacy attacks, and as a result, we demonstrate

that ABEL is capable of preserving the privacy of the entities during the PPRL execution. This

results answers RQ.6, formulated at the beginning of Section 4.5.

4.6 Summary

In this Chapter, we presented the SBF, 3PAC protocol, and the ABEL approach. We detailed the re-

sults of the approaches mentioned above in terms of effectiveness, efficiency, and privacy. We demon-

strated that SBF improves the privacy-preserving capabilities of the original BF while maintaining the

comparations’ quality. We tested the ABEL implementations with several data sources and Splitting

Bloom Filter parameters (number of splits and thresholds) over different Blockchain configurations

(PoW, PoA, public and privates networks). All experiments conducted in public Blockchain are avail-

able at our wallet public address4 whilst the source code is available at the main author website5.

Regarding the results, our experiments demonstrate a relation between privacy capabilities, com-

putational cost, and linkage quality. This relation is influenced by the BF parameters (k,l,n), SBF split

4https://ropsten.etherscan.io/address/0x99429f64cf4d5837620dcc293c1a537d58729b68
5https://github.com/thiagonobrega/auditable_pprl
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length (s), ABEL thresholds error (α and β), and the number of parties (P).

The values of the aforementioned parameters should be carefully chosen. If one of the aspects is

prioritized (quality, efficiency, or privacy), the remaining ones will be negatively impacted. Roughly

speaking, if we use small splits we increase the privacy at the cost of minimizing quality and effi-

ciency. Similarly, if bigger splits are preferred, we increase efficiency at the cost of lower privacy

capabilities. The selection of ABEL thresholds (α and β) follows the same idea: if we consider a

high error, we prioritize the quality over privacy and efficiency. The tradeoff between effectiveness

(quality), efficiency, and privacy is summarized in Table 4.4.

Table 4.4: Effectiveness, efficiency, and privacy tradeoff

Parameters Influence

splits error Privacy Efficiency Effectiveness

bigger bigger


y



y Deacrease
x



x

 Increase
x

 Increase

bigger smaller


y Deacrease
x

 Increase


y Deacrease

smaller bigger
x

 Increase


y Deacrease
x

 Increase

smaller smaller
x



x

 Increase


y



y Deacrease


y Deacrease

As shown in Table 4.4, if we opt to maximize privacy by employing small splits and considering

a small error in the thresholds, we prejudice the effectiveness and efficiency of the approach. In

turn, if we employ bigger splits and a bigger error in the thresholds, we prioritize the efficiency and

effectiveness, minimizing privacy. Thus, thresholds error and split length should be carefully selected

to avoid impacting the effectiveness, efficiency, or privacy of the linkage process negatively.In the

following chapter we present our second contribution, the Unsupervised Classification step for PPRL.

4.7 Disclaimer

This chapter [130] was published in a peer revised Journal, Information Systems, which is specialized

in designing and implementing languages, data models, process models, algorithms, software, and

hardware for information systems. After the publication, Peter Christen designed a novel privacy

attack that could re-identify records in certain conditions. Thus, committed to research, we opted

to publish a second article demonstrating the limitation of SBF in the same journal (Information

Systems). The content of the article is shown in Appendix A.2.
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We opted to preserve the content of the original chapter/article and presented the limitation in

the Appendix as a matter of transparency and to provide more information to the readers.

Note



Chapter 5

Unsupervised Classification step for

PPRL

Due to the widespread usage of private data - i.e., medical [52; 55; 76; 167], shopping preferences

[33], and financial records [30] - as well as the recent data privacy laws (i.e., GDPR and LGPD) and

regulations (HIPPA), PPRL has gained attention within the research community. Several works tackle

privacy, efficiency, and quality aspects in different steps of the PPRL process. However, according to

recent surveys [30; 33; 176], PPRL lacks contributions in the classification step.

In the PPRL context, the classification step employs the comparison step output to classify entity

pairs. In other words, the classification step utilizes a vector containing the entity pairs similarity val-

ues as input to a decision model Ξ, which will classify them into matching or non-matching [128;

176].

In the RL context, i.e., a scenario with no concern regarding data privacy, several classification

techniques are available. The most widely used in the RL context are the simplest ones: threshold-

based and rule-based classifiers. However, more sophisticated techniques are available such as:

• The probabilistic classifier (Fellegi and Sunter method [53]), which consists in employing the

frequency distributions of QIDs, similarity of the entity pairs, and error (previous estimated on

the data) to classify the entities;

• Supervised machine learning classifiers, such as support vector machines and decision trees

[68; 194; 51; 41; 67; 188]. These classifiers require training data with labels for matching and

non-matching to train the decision model;

• Semi-supervised classifiers (active learning-based approaches) [19; 57; 96]. The goal of active

93



94

learning is to reduce the manual labeling effort as much as possible by asking the oracle (a

specialist) only for the most important unlabeled training data to train and improve the decision

model;

• Unsupervised machine learning classifiers: in some real-world applications, such as the PPRL

scenario, there is no labeled dataset available, and it is not possible to manually label the

dataset due to privacy or financial restrictions. In this context, unsupervised ML algorithms

(e.g., clustering algorithms) are employed to identify matching entities [26; 48; 78; 88];

• Deep Learning (DL): in the past few years, DL has become a major direction in machine

learning [91; 41; 46; 75; 105]. DL exploits some hidden structure of the data, using labeled

examples, in order to automatically construct important features without the need for manual

feature engineering. DL can also be used in the RL context as a classifier to decide whether an

entity pair is a match or not. However, the results show that DL does not outperform current

solutions on structured RL, although it can significantly outperform them on textual and dirty

RL [121].

However, the panorama in the PPRL context is different. Due to the restrictions imposed by

the privacy-preserving guarantees, the Classification step of PPRL has the following challenges. In

general, there is no labeled data available to train a classifier, making it hard to employ supervised

machine learning and deep learning classifiers. Furthermore, the classification step does not have

access to the data (plain or anonymized data), but only to the entity pairs’ similarity, making it hard

to use a probabilistic or ruled-based classifier. Moreover, we can not ask a specialist to label a few

instances to train a classifier since the specialist can not observe the data due to the privacy restrictions

imposed by PPRL. Thereby hampering the usage of Semi-supervised classifiers.

Furthermore, most PPRL solutions developed so far use the threshold-based classifier [30], which

is very simple. First, a specialist defines a threshold value, e.g., threshold value is defined as 90%

similarity. Finally, the classifier will mark as a match all entity pairs that manifest a similarity value

greater or equal to the defined threshold value. The definition of the threshold value is a complex task

and requires a specialist to configure an adequate value for each PPRL scenario.

To better illustrate this problem, we plotted (Figure 5.1) the mean similarity value of the matching

entities from four widely used datasets, detailed in Appendix (A.5), which belong to the following

domains: i) products commercialized from best buy and abt (abt-buy), ii) books from amazon and

Goodreads website (books3), iii) publications from DBLP and ACM, and iv) movies from IMDB

and rotten tomatoes (movies2).
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Figure 5.1: Mean entity pairs similarity by dataset.

In Figure 5.1, the vertical axis represents the number of matching entity pairs whilst the horizontal

axis refers to the mean similarity of the entity pairs. Notice that more than 95% of the DBLP-ACM

dataset (green area) matching instances are after the 70% threshold value. However, if we apply the

same threshold value (70%) to the abt-buy dataset, the threshold-based classifier will probably mark

non-matching entity pairs as duplicates. Therefore, resulting in a low linkage from the RL process. It

is worthwhile to mention that the threshold value definition can be observed in all datasets depicted

in Figure 5.1; there is no unique threshold value that fits all datasets. We also remark that we do not

plot the non-matching mean similarity, and therefore we simplify the threshold definition problem.

In this context, we propose the Auto-Tuned Unsupervised Classification (AT-UC) step. This ap-

proach tackles the classification problem, specifically, the need for a specialist to guess the threshold

classification value. Moreover, AT-UC is an unsupervised approach that does not require complex pa-

rameter tuning and/or adjustments for different datasets. To accomplish that goal, we employ Transfer

Learning in a privacy-preserving context without labeled training data.

As previously explained, classification in PPRL urges for the use of ML-based classifiers. How-

ever, employing ML-based classifiers in PPRL is still an open problem [30; 165]. In order to ac-

complish our goal, we propose the use of public datasets to build ML-based classifiers. These clas-

sifiers will be readjusted using a technique named Transfer Learning [165], where a classifier trained

in one dataset is modified and reused in a different dataset. To readjust the classifier, we intend

to verify the public and private dataset’s resemblance and use a resemblance metric to customize
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the original model to be employed in the private dataset. It is important to notice that, due to the

privacy-preserving guarantees of PPRL, the resemblance between the datasets needs to be calculated

employing the anonymized representation of the private data.

The use of Transfer Learning in traditional Record Linkage has been proposed in [165; 124].

However, due to the privacy restriction, it is not possible to assume that such works can be used in

the PPRL context. For instance, in PPRL, we cannot see the parties’ data to adjust the transfer model.

To the best of our knowledge, we are not aware of any ML-based approach that provides satisfactory

results that could be applied in real-world PPRL applications. Thus, in the subsequent sections, we

present the following contributions:

• A feature space that can be employed in PPRL scenarios;

• An implementation of three similarity metrics to anonymized data;

• A feature and dataset selection based on the datasets resemblance;

• A novel ML-based classifier to PPRL;

• A Proof-of-Concept implementation of the ML-based classifier;

• An empirical evaluation using real-world data to assess our contributions.

5.1 Problem Formalization

In this work, we consider a PPRL process under the HBC adversary model with p dataset custodi-

ans [P1, · · · , Pp] with their individual datasets [D1, · · · , Dp]. Each dataset D contains anonymized

records, such that e[p,i] ∈ Dp. It is worthwhile to remark that we consider a dedicated Linkage

Unit (LU) as a semi-trusted third party (STTP) [30]. In our approach, the linkage unit is an external

party that conducts the linkage’s classification step over the PPRL comparison step output [177]. We

formally define the problem of the PRRL classification step on multiple datasets as follows.

Definition 6 (PPRL Classification step). The classification step aims to determine which of their

records e[1,i] ∈ D1, · · · , e[p,k] ∈ Dp matches (correspond to the same entity) according to a decision

model Ξ(·). The decision model Ξ classifies records pairs stored in all datasets into one of the two

classes: M for matches and U for non-matches.

In a PPRL scenario, the use of a traditional ML-based decision model is challenging due to the

absence of training data to build a classifier as a consequence of the privacy-preserving guarantees
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needed by the PPRL. To overcome this problem and enable the usage of ML-based decision model

in PPRL, we propose the adoption of a Transfer Learning technique to train an ML-based decision

model over an auxiliary dataset, named as source dataset Dsource, to be employed over a sensitive

dataset, named as target dataset Dtarget [197; 132]. We now present a definition of inductive transfer

learning in a PPRL context.

Definition 7. (Inductive Transfer Learning) Given a source dataset Dsource and a target dataset

Dtarget with the same learning task (Tsource = Ttarget) of identifying the duplicated entities, trans-

fer learning aims to help improving the learning of the target classifier Ξ(·) in Dtarget using the

knowledge in Dsource, where Dsource ̸= Dtarget.

Regarding the information presented in the source and target datasets, we assume that the

Dtarget, contains the similarity values of the masked records of p datasets (comparison step out-

put) [177], where each pair of records is represented by similarity metrics xj . Thus, we have

Dtarget = {(x1, · · · , xj)1, . . . , (x1, · · · , xj)t}, where the t is length of the comparison step out-

put. Regarding Dsource, it contains an extra information in each row, the linkage label y, i.e.,

Dsource = {(x1, · · · , xj , y), . . . , (x1, · · · , xj , y)}. This scenario, where we do not have any train-

ing data available from Dtarget and an adequate amount of training data from Dsource, is named as

”unsupervised domain adaptation” in Transfer Learning [132; 192]. Thus, we state the Unsupervised

Domain Adaptation for PPRL problem as follows.

Problem Statement 4 (Unsupervised Domain Adaptation for PPRL). Given Dtarget, with no avail-

able training data, how to train a good ML decision model (Ξ) by adapting the training data from

Dsource and preserving the privacy of the target dataset?

Note that, different source datasets may produce different classifiers [106; 186; 197; 192], and

therefore may influence the linkage quality (F1) of the Ξ over Dtarget. Thus, the usage of an adequate

Dsource as a training dataset is crucial to our approach, and we need to address source selection

in a PPRL context.

Problem Statement 5 (Unsupervised Source Selection for PPRL). Let C be a set of candidates

dataset, C = [D1, · · · , Dp]. How to select a suitable candidate dataset for the target dataset? In

other words, how to select a Dsource that may train a good decision model Ξ to Dtarget without

disclosing the target (plain or anonymized) information?

As previously stated, we use n similarity metrics in our work, and the selection of proper simi-

larity metrics may increase the linkage quality [100]. However, the existing methods were proposed



5.2 Auto-Tuned Unsupervised Classification step 98

to a RL scenario, a scenario where it is possible to observe the original data. To select the proper

similarity metric, in the PPRL context, we have to address the following problem.

Problem Statement 6 (Unsupervised Similarity Metric Selection for PPRL). Given a Dsource, how

to select the most relevant similarity metrics to be employed as features to a ML-based decision model

(Ξ) for Dtarget, considering the privacy-guarantees of PPRL?

Given the aforementioned problems, the goals of this contribution can be summarized as:

Given: {C,Dtarget}

Find: Dsource and Ξ

Maximizing: F1(Ξ, Dtarget)

Considering: PPRL with a HBC adversary model

5.2 Auto-Tuned Unsupervised Classification step

In the PPRL context, the linkage quality is heavily impacted by privacy restrictions. For instance,

the PPRL parties can not examine the other parties’ data (entities/records), making it hard even to

establish the threshold that will be employed to define whether a record pair is duplicated or not. In

this context, we propose the use of an Unsupervised Domain Adaptation [132], a Transfer Learning

approach to overcome the challenges of building a classifier using only the information available

in a traditional PPRL process. This section presents an Auto-Tuned Unsupervised Classification

step approach (AT-UC) for PPRL. The main goal of AT-UC is to provide an effective ML-based

classifier for the PPRL process.

The Unsupervised Domain Adaptation employs an auxiliary dataset, named as the source dataset.

The source dataset is altered (e.g., by excluding/modifying entities or attributes) to train a classifier

to be executed over the private data, the target dataset [192]. Intuitively, the source and target datasets

must have some characteristics in common. Thus, in order to properly employ the AT-UC, we have

to address the two research questions presented in Section 5.1: i) How to select a suitable source

dataset? and ii) How to alter the source dataset to train a good classifier for the target dataset?

In order to address the research questions and design the AT-UC, we have to make assumptions

about the features space, source dataset, and adversary model. Regarding the features, we assume a
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homogeneous feature space [134]. In other words, by considering the similarity values (calculated

by the comparison step of PPRL) as features, we assume that the source and the target datasets share

the same set of features.

Regarding the source dataset, the PPRL parties will elect the source candidates dataset from

datasets that do not store sensitive data, e.g., public or synthetic datasets. Concerning the adversary

model, we consider a three-party protocol with an HBC adversary model; alternatively stated, a

semi-trusted third party (STTP) will perform the classification step obeying the pre-agreed protocol

between the PPRL parties. Figure 5.2 illustrates the AT-UC execution outline by the semi-trusted

third party.

Figure 5.2: AT-UC execution outline.

Notice that AT-UC builds a classifier using a three-stage Transfer Learning approach. The first

stage (Source Selection) consists of selecting a source dataset as well as the features that will be

employed to train a classifier. The second stage aims to build relevant training data and a classifier

for the target dataset. Finally, in the third stage (Classification), the classifier trained in stage 2 is

executed over the target dataset. Each stage of AT-UC is detailed in the following sections.

For didactic reasons, Figure 5.2 does not show an important step of the AT-UC execution, the

initialization stage. Before PPRL begins, during the setup stage of PPRL, each party needs to upload

to the semi-trusted third party a pair of datasets with the linkage labels between them.

For example, suppose that two hospitals aspire to find patients treated by COVID-19 in both hos-

pitals. Consider that the hospitals agree to represent the patient records with three attributes (first

name, last name, and address). In that case, one hospital could upload voter registration records

with three attributes (name, family name, and country), and another hospital could upload a publica-

tion dataset with two attributes (full name and university address). Notice that voter registration and

publication datasets are public, with an accurate gold standard, and widely used by RL and PPRL

communities.
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Regarding the target dataset, input of AT-UC, as illustrated in Figure 5.2, each row contains the

identifiers (id) of the entity pairs, and each column represents a different similarity metric. The source

dataset has the same format as the target dataset with an extra column, the linkage label, indicating

if the row represents a match or not.

5.2.1 Source Selection

The Source Selection stage aims to identify a source dataset and a feature space (similarity metrics)

that can train an effective classifier to the target dataset. Moreover, we present in detail the idea of

source and features (similarity metrics) selection of AT-UC.

Regarding the source selection, it is intuitive that various source datasets can produce different

linkage results to the target dataset in a Transfer Learning scenario. Thus, finding the most related

source dataset in terms of similarity metrics to train our classifier is crucial to our approach.

To tackle this stage, we have to consider the limitations imposed by PPRL: i) the privacy of the

target dataset; ii) the absence of linkage label in the target dataset; and iii) the entities’ data (neither

raw nor anonymized data) can not be observed to avoid reidentification attacks by the STTP. In other

words, identify a suitable source dataset is a hard task because we do not have a linkage label in

the target dataset to test the classifier, and the classifier must be trained without the entities’ data,

using limited information.

To overcome these limitations, we use the similarity metrics as features to our classifier and,

consequently, to identify a relevant source dataset to the target. In order to select a source dataset,

we employ an indirect measure; specifically, we use the work of Ben-David et al. [14; 13] which

suggests that a suitable source dataset is one from which a classifier cannot learn to identify if a row is

originated from the target or source dataset. In other words, a suitable source dataset must have a small

dH∆H distance [13]. It is worth mentioning that AT-UC differs from the work of Thirumuruganathan

et al. [165] that recommends using a source dataset with Matthews Correlation Coefficient (MCC)1

[9] smaller than .2 as negative training criteria, whereas our approach proposes source selection that

considers minimum dH∆H . Algorithm 2 (selectSourceDataset) presents this process in more detail.

1The MCC or phi coefficient is used in machine learning as a measure of the quality of binary



5.2 Auto-Tuned Unsupervised Classification step 101

Algorithm 2: selectSourceDataset

input : C = {D1, · · · , DN},Dtarget

output: Dtrain, dH∆H

1 distances← ∅
2 datasets← ∅

3 for Dcandidate ∈ C do

4 Dbase ← prepareSource(Dcandidate,Dtarget)

5 Dsample ← sample(Dbase)

6 model← trainSeparationModel(Dsample)

7 Dpredicted ← predict(model,Dbase)

8 distance← calculate dH∆H(Dpredicted)

9 Dcanditade ← filter(Dpredicted,’source’)

10 distances.append(distance)

11 datasets[distance]← Dcanditade

12 end

13 dH∆H ← min(distances)

14 Dtrain ← datasets[dH∆H ]

The input of the selectSourceDataset is a set of source candidate datasets (C) and the target

dataset. For each candidate, we execute a pre-processing step over the source and target (line 4) to

build a training dataset for a classifier (separationClassifier) that will distinguish if a row came

from the target or the source dataset. In this pre-processing step, we concatenate the source and target

datasets, i.e., we label the rows from the source and target with ’S’ and ’T’, respectively.

Figure 5.3 represents the execution of one iteration of Algorithm 2. Notice that the target dataset

contains only the similarity metrics (Xn), while the source candidate dataset contains a label (y)

indicating whether the an entity pair represents a match (1) or not (0). The pre-processing step and

origin labeling procedure (line 4) are depicted in Figure 5.3.a. Notice that each entity pair is identified

according to its origin, i.e., ’S’ from source and ’T’ from the target dataset.

The purpose of the prepareSource method is to create a training dataset to build a classifier

that intends to identify whether an instance is originated from the source or target datasets.

Explaining the Idea

Moreover, we also handle aspects that could impact the classifier quality in the pre-processing
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Figure 5.3: Source Selection example.

step of the selectSourceDataset algorithm. In other words, traditional supervised and unsupervised

learning algorithms work under the single-label scenario, i.e., each row (instance) in the training set

is associated with a single label which characterizes its property. However, considering that we are

employing entity pairs similarity as features, it is possible to exist two identical rows (with the same

feature values), where one is labeled as ’source’ and the other as ’target’. This raises uncertainty to the

classifier. To avoid addressing the multi-label problem in this work, we disregard these conflicting

labels in the pre-processing step.

After the data pre-processing, we extract a random sample (line 5) of the Dbase. To this end,

we employ Dsample to train the separation classifier sc - line 6 of Algorithm 2, illustrated in Stage

b of Figure 5.3. In the following step (line 7), we employ the separation classifier over the Dbase

to predict if the rows are originated from the source or the target dataset. The prediction is stored

in the Dpredicted. It is worth to remark that the output of Dpredicted contains the same information

of the Dbase with two extras columns appended: the prediction of the classifier (’S’ or ’T’) and the

confidence of prediction which varies from 0 to 1.

Figure 5.3.c depicts the Dpredicted (line 7 of Algorithm 2). Notice that the prediction is depicted

by the column o and the confidence of prediction is represented by P (o). The prediction will be

utilized in the dH∆H calculation, whilst the prediction probability will be employed in the next step

of AT-UC (Stage 02), detailed in the following section.

The output of the predict method contains two relevant pieces of information, the prediction

label and the confidence of the prediction. The label is used to calculate the dH∆H distance. In

turn, the confidence of the prediction will be employed during the Domain Adaptation, Stage

3 of Figure 5.2.

Explaining the Idea
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As demonstrated by Ben-David et al. [13; 14], the distance between the source and the target

dataset distributions (dH∆H ) can be approximated by the output of the separationClassifier. Thus,

in line 8, we use Equation 2.3 to calculate the dH∆H . At line 9, we filter the rows that actually came

from the source with their prediction probability as a candidate dataset (Dcanditate), Figure 5.3.d.

Moreover, for each Dcanditate in C, we save the distances (line 10) and the candidate’s dataset in a

map indexed by the distance (line 11). Finally, we return a training dataset that presents the smallest

dH∆H (lines 13 and 14).

5.2.2 Feature Selection

The selection of the set of features to be employed in the classifier poses an important aspect to the

linkage quality. The works [100; 192] demonstrate that an adequate similarity metric (features) could

improve linkage quality in a traditional Record Linkage scenario. However, in our case, due to the

privacy-preserving limitations - e.g., the STTP is unable to access the raw values of the entities - we

cannot employ the techniques described in the previous works.

To tackle the privacy restrictions imposed by PPRL, we utilize the same intuition of Algorithm 2

to select the features. Moreover, we assume that the smallest dH∆H distance could select an adequate

set of features and a source dataset. In summary, we vary the feature set of the candidate datasets,

applying Algorithm 2 to select the feature combination that provides the smallest distance to the

target dataset.

Algorithm 3: featureSelection

input : C, Dtarget, features

output: Dtrain

1 distances← ∅
2 datasets← ∅

3 for Dcandidate ∈ C do

4 for feature ∈ features do

5 Dtarget ← extractFeatures(Dtarget,feature)

6 Dcandidate ← extractFeatures(Dcandidate,feature)

7 D, d← selectSourceDataset(Dcandidate,Dtarget)

8 distances.append(d)

9 datasets[d]← D

10 end

11 end

12 Dtrain ← datasets[min(distances)]
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The input of Algorithm 3 is a set of source candidate datasets (C), the target dataset (Dtarget),

and a set of features to be tested. Notice that the input of Algorithm 3 is almost the same as Al-

gorithm 2, with an extra parameter, a set of similarity metrics that will be employed as features to

our classifier. The set of features could include the combination of all features (
n
⋃

r=2
C

|features|
r ). It

is worthwhile to mention that the PPRL parties could eliminate some features combination to reduce

the computational cost of this step.

Algorithm 3 iterates over the set C (line 3) and, for each Dcandidate, we extract one feature com-

bination, provided by features parameter, for Dcandidate and Dtarget (lines 5 and 6). For instance,

if we have three similarity metrics (i.e., Jaccard, Dice, and Hamming) in the original feature space,

the method calls extractFetature(Dcandidate, [jaccard, dice]) which returns Dcandidate without the

hamming column.

For each combination of feature and source candidate, Algorithm 3 calculates the distance

between the source candidate and the target (line 7) and stores the distance (line 8) as well as

the Dcandidate in a map indexed by the distance (line 9). Notice that Algorithm 3 calls the

selectSourceDataset method (Algorithm 2) in order to calculate the distance of the source and tar-

get datasets. It is worthwhile to mention that, the selectSourceDataset method (line 7) will return

the distance between the Dcandidate (selected by extractFeatures method in line 6) and Dtarget.

Considering that we calculated the distance of every combination of Dcandidate and features to

the Dtarget, in the final step, the algorithm returns a training dataset with features that present the

smallest distance to the target to be employed in the Domain Adaptation stage (line 12).

5.2.3 Classifier Manufacturing Stage (Domain Adaptation)

The Classifier Manufacturing stage aims to build a training dataset by adjusting the source dataset

and training a ML-based classifier, illustrated at Stages 2.1 and 2.2 of Figure 5.2. In Stage 2.1,

we perform the source dataset adjustment by selecting the entries (rows) that are more relevant to

the target dataset, assuming that some rows of the source dataset are more appropriate to train the

target classifier than others.

The need for stage 2.1 is justified by the limited information available from the entities that are

used as training data. Thus, if we do not select the most suitable entities pairs to train a classi-

fier, we could add a bias from the source dataset to the classifier, resulting in low linkage quality

to the target dataset.

To reduce the source bias, we use only a percentual (µ) of the most relevant rows of the source

(Dsource) in the training dataset. To explain how we select the rows from the source, we need to
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x1 x2 x3 x4 L P (ō)

(e1,e4) 0.8 0.7 0.6 0.8 M .50

(e1,e5) 0.3 0.6 0.6 0.4 U .42

(e2,e4) 0.1 0.0 0.2 0.1 U .34

✓ (e2,e5) 1.0 0.9 1.0 0.9 U .90

✓ (e9,e8) 0.7 0.6 0.5 0.7 M .80

✓ (e9,e7) 0.5 0.8 0.8 0.6 U .79

✗ (e1,e5) 0.1 0.1 0.1 0.1 U .78

✗ (e6,e7) 0.8 0.9 0.9 1.0 U .60

Table 5.1: Row selection, with µ = 40%. xn represents the similarity values, L is the linkage

label (where M indicates match and U no match), and P (ō) is the prediction probability.

remember the information available at Classifier Manufacturing input. Each row of the source dataset

contains the similarity metrics values (features), the label marking if the entities are duplicated, and

the probability of a row being originated from the target, added at line 7 of Algorithm 2. Thus, the

Classifier Manufacturing stage employs the prediction probability to elect the most relevant rows.

Table 5.1 illustrates the execution of our method.

In the example of Table 5.1, we set µ = 0.4, i.e., we are interested in the 40% most relevant rows

of the dataset. In other words, in our example, we will select three rows (40%) from all eight available

rows. First, we remove the rows that Stage 1 did not mark as originated from the target dataset (rows

crossed by the red line), i.e., rows which the prediction probability is smaller than 50%.

In the subsequent step, we order the remaining rows by the prediction probability and return

the training dataset by selecting rows associated with the highest probabilities (P (ō)) - rows marked

with a green tick in Table 5.1. Only three (40%) of the eight remaining rows were used to build

the training dataset.

It is worth mentioning that, differently from other works Kirielle et al. [88], we do not use a

pseudo-label function to label the target data. Instead, we assume that the number of match instances

in a typical RL process is significantly smaller than non-match instances. In other words, instead

of considering the target dataset’s label (or pseudo labels) to perform the domain adaptation, we

employ the overall source/target datasets similarity to perform a domain adaptation. Furthermore,

to ensure the existence of matching instances in our training data (source dataset), we check if the

training data has a minimum percentage matching example - line 5 of Algorithm 2. For instance, in
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our experiments, we require that the number of matches is at least 10% of the non-matches. If the

selected instances do not fit the criteria, the dataset can not be employed as a source dataset.

The Classifier Manufacturing stage of the AT-UC differs from two other Transfer Learning tech-

niques. These techniques are detailed as follows. The Naive Transfer Learning is a widely used TL

technique [131; 192; 197; 196; 186]. This technique proposes that a classifier for a target dataset can

be trained using the complete source dataset, without any modification. In other words, if we do no

execute the Classifier Manufacturing stage, AT-UC selects a source for a Naive Transfer Learning

technique.

The work of Thirumuruganathan et al. [165], which does not consider the privacy of the entities

and has access to the raw entities data, considers that all predicted rows are originated from the target

dataset. Thirumuruganathan et al. address the source bias by considering a high dimensional feature

space with at least 300 features. However, the Naive Transfer Learning technique as well as a version

of the work of Thirumuruganathan et al. were overcame by our approach in a PPRL scenario. The

results are detailed in Section 5.3.

5.3 Evaluation

In this section, we evaluate the AT-UC effectiveness, efficiency and privacy in a PPRL scenario. To

this end, based on the problem statements introduced in Section 5.1, we present a discussion regarding

the experimental results to answer the following Research Questions (RQs):

RQ.1: Is dh∆h able to select a suitable source dataset compared to other methods (e.g. MCC), con-

sidering a PPRL scenario?

RQ.2: Is feature (similarity metrics) selection able to improve the linkage quality of our approach?

RQ.3: Is AT-UC able to improve the PPRL quality results when compared to the baseline (the

threshold-based classifier) and the competitors (e.g., naive, or transER [88] classifiers)?

RQ.4: What are the most adequate classifiers to be used as separation and target classifiers?

In order to measure the linkage quality of the proposed approach, we employ the classical metrics:

Precision, Recall, and F1 (explained in Section 2.3.3).

Before defining the experimental setup, we present considerations regarding the datasets, simi-

larity metrics (features), ML-Classifiers, anonymization parameters, baselines, and competitors em-

ployed in our experiments.
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5.3.1 Datasets and similarity metrics

To answer the aforementioned research questions, we employed 15 pairs of real-world and syn-

thetic datasets from the following domains: personal, movies, books, restaurants, citation, and

products. A summary of the data sources characteristics and their anonymization parameters

are shown in Table 5.2.

context
DATASET DETAILS BF

name ds-type input-type entities pair matching pairs attribute number missing values n hash bits

personal

census synthetic dirty 685,584 345 6 291 4 472

mvr real clean-clean 2,250,000 150 9 1,772 5 1,008

nvr real clean-clean 2,890,000 170 8 352 7 1,144

tse real clean-clean 4,000,000 154 3 0 7 1,072

yv-er real dirty 90,231,001 5,109 6 5,551 7 976

books

amazon-barnesnobel1 real clean-clean 126,360 232 2 3 7 1,984

goodreads-barnesnobel real clean-clean 90,662 89 4 925 9 4,632

amazon-barnesnobel2 real clean-clean 83,448 64 3 331 8 2,760

movies
imdb-roten real clean-clean 310,248 190 3 0 9 5,456

imdb-tmd real clean-clean 127,086 356 2 0 4 584

restaurants

fodors-zagats real clean-clean 176,423 112 4 0 7 1,288

yelp-yellowpages real clean-clean 76,874 116 6 0 7 1,248

yelp-zomato real clean-clean 98,496 119 3 0 7 1,112

citacion dplp-acm real clean-clean 6,001,104 2224 4 14 8 6,400

products abt-buy real dirty 1,157,776 1076 1 0 8 6,144

Table 5.2: Datasets details

Each dataset in Table 5.2 presents different characteristics, such as the dataset type, input type,

number of entity pairs, duplicated entities, missing values, number of attributes, level of dirtiness of

attributes (missing values), and the anonymization parameters.

The input type indicates if all parties executed a de-duplication process during the pre-processing

step - i.e., Clean-Clean RL [33]. This is relevant to the classification step since, if a dirty input

is employed to a PPRL context, we could have ’1:m’ matching results; in other words, we could

have one entity marked as similar to m other entities. This makes it harder for the classifier to

identify the matching entities.

Our experiment uses all personal datasets as target datasets because, typically, PPRL is employed

to identify duplicated entities in data that contains private personal information. As source datasets,

we use all datasets, including the personal datasets. It is worthwhile to mention that we do not employ
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the same dataset as source and target. For instance, if CENSUS is the target dataset, all datasets are

used as source candidates, except CENSUS.

Considering the relevance of personal datasets, we selected one synthetic (census) and four real-

world datasets from three distinct countries with different linguistic and structural characteristics to

provide an extensive evaluation of our approach. The YV-ER dataset contains information about Ital-

ian Holocaust victims. The NCVR and MVR comprise information about voter registration from

North Carolina and Michigan, respectively. Finally, the TSE dataset contains information about

Brazilian politicians. The methodology presented in [29; 82; 127] was employed to build the NCVR

using data collected in October 2016 and June 2020, the MVR utilizing data obtained in September

2014 and March 2017, and the TSE dataset applying data gathered in 2014 and 2018 elections.

5.3.2 Similarity Metrics

An important remark about our experiments is the similarity metrics that we consider. Traditionally,

the PPRL approach considers only one token similarity metric, Jaccard or Sørensen–Dice distance, to

classify the BF anonymized representation of the entities [177; 157; 171; 135; 30].

Training a classifier using only two distances from the same family (token distance) can result in

low linkage quality. The low linkage quality can be explained by the low variance2 and high bias3 of

the classifier; in other words, a classifier trained with two token distances may be underfitted.

To overcome the underfitting problem, we assume that the similarity metrics (features) diver-

sification could improve the classifier accuracy and implement five similarity metrics. We diver-

sify our similarity metrics by selecting functions from different families (Token, Edit-based, and

Compression-based distance) to capture various aspects of the data.

In order to better understand the similarity metrics, first, we need to present the notation used

in these functions. Let A, B be two BF with the same number of bits (l), |A| be the number of 1s

stored in the filter. Knowing that the n-grams of the entities are mapped as 1 in BF, we use the word

2A model with high variance pays much attention to training data and does not generalize on the data which

it has not seen before. As a result, a high variance may result from an algorithm modeling the random noise in

the training data (overfitting). Such models perform very well on training data but produce high error rates on

test data.
3Bias is the difference between the average prediction of a model and the correct value which we are trying

to predict. The bias may produce a mistake from erroneous assumptions in the learning algorithm. Models with

high bias pay little attention to the training data and oversimplify the model. Moreover, high bias can cause

an algorithm to miss the relevant relations between features and target outputs (underfitting), leading to a high

error on training and test data.
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n-gram to reference the positions that were mapped as 1 in the filter. In the following, we detail three

Token distances (Jaccard, DICE, and Overlap), one Edit-based distance (Hamming), and the Entropy

as the Compression-based distance.

Jaccard similarity[10] is computed as that the number of n-grams shared (represented by 1),

divided by the number of all unique n-grams present in both filters.

jaccard(A,B) =
|A ∩B|
|A ∪B|

The Dice’s coefficient [129] is defined as two times the number of common n-grams in the filter

and divided by the total number of n-grams present in both strings.

dice(A,B) =
2× |A ∩B|
|A|+ |B|)

The overlap coefficient measures the overlap between two BFs, considering two filters a full

match if one is a subset of another. It is defined as the size of the intersection divided by the smaller

of the size of the filters:

overlap(A,B) =
|A ∩B|

min(|A|, |B|)

Regarding the Edit-based similarity metric, we implemented the Hamming distance [28]. This

distance is computed by overlaying one filter over another and finding the positions where the fil-

ters vary. In other words, it measures the minimum number of substitutions required to transform

one filter into the other.

hamming(A,B) = 1− min(|A| − |A ∩B|, |B| − |A ∩B|)
l

Shannon entropy [36; 127] is a well-known concept in Information Theory. It is employed for

quantifying the expected value of information in binary data, a BF in our context. Let X be a BF

with alphabet χ (where χ = [0, 1]) and the probability mass function p(x) = Pr{X = x}, x ∈ χ,

we can define entropy of a BF as H(X) = −∑x∈χ p(x) log p(x) [36]. Thus, the Entropy distance

measures the amount of information stored in a BF, and we can measure the difference of information

stored in the BF employing the following equation:

entropy(A,B) = 1− min(H(A), H(B))

max(H(A), H(B))
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5.3.3 Machine Learning Techniques

We tested our approach using four different machine learning classifiers: i) Logistic Classifier (Lo-

gistic), ii) Support Vector Machine Classifier (SVM), iii) Gradient Booster Classifier (GBC), and

iv) Decision Tree (DT). We use these classifiers to train the separation model (line 6 of Algorithm

2) and the target classifier. It is worth mentioning that the Logistic, SVM, GBC, and DT classi-

fiers are reported as the most used non-Deep Learning techniques in the context of RL [28; 84;

91].

5.3.4 Experimental Design

To execute our experiments, we first anonymize and calculate five similarity metrics (Jaccard, Dice,

Overlap, Hamming, and Entropy) for all entity pairs in the datasets, in order to generate the output

of the Comparison step of PPRL. Then, we vary the ML techniques for the separation model and

the target classifier for each dataset.

A standard PPRL or RL process has to deal with an unbalanced instance of the label. In other

words, typically, the RL process presents more non-matching entity pairs than matching ones; we

extract samples (lines 4 and 5 of Algorithm 2) with, at least, 1:10 proportion of non-matching en-

tities. We also consider µ = 10% to filter the most relevant rows during the Classification Man-

ufacturing stage.

We compare our approach against a threshold-based classifier (baseline) and competitors. As

competitors, we employ the naive-based transfer learning (naive) [28], CORrelation ALignment

(coral) [158], and the TransER [88]; we also compare the dh∆h against a state-of-the-art metric

proposed in the work of Thirumuruganathan [165].

Our approach and all baseline approaches were implemented in Python 3, and we ran all exper-

iments on a Linux server with 2.4 GHz CPUs and 24 GBytes of RAM. The programs and datasets

are available at the authors’ website4.

5.3.5 Linkage Quality Results

In order to answer the first three RQs, we use as separation model and target classifier the Logistic

classifier because it has produced the best result for the majority of the experiments. Latter, to

assess the impact of different classifiers regarding the overall linkage quality (RQ.4), we tested our

4https://www.github.com/thiagonobrega/
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approach considering all models presented in Section 5.3.3.

RQ.1) Is the dh∆h able to select a suitable source dataset compared to other methods, consider-

ing a PPRL scenario?

In our approach, we consider the dh∆h distance to measure if the candidate dataset is related (in

terms of similarity metrics) to the target dataset. In its turn, the work of Thirumuruganathan et al.

[165] recommended the usage of a source dataset that presented a MCC smaller than 0.2.

In order to investigate if dh∆h can provide good linkage results in a PPRL scenario, we plotted

dh∆h, MCC, and F1 by source and target datasets, considering all similarity metrics presented in

Section 5.3.2. Figure 5.4 (left side) illustrates the dh∆h whilst the MCC is depicted on the right side.
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Figure 5.4: Comparison between the dh∆h and MCC regarding dataset relatedness distance.

The vertical and horizontal axes of Figure 5.4 represent the distance (dh∆h or MCC) and F1,

respectively. The colors indicate the target dataset, while the shapes designate the source dataset

used to train the classifier; notice that the shape legend is different on both sides of Figure 5.4. The

shadowed shapes (grey circled) specify the source dataset that should be used by our approach; in

other words, it indicates the dataset that presented the smallest distance between the candidate and

target datasets. Also notice that we plotted a red line in the MCC, marking the threshold (0.2) pointed

as the maximum values that should be considered by a TL approach that employs the MCC [165].

Observing Figure 5.4, it is possible to notice that, by employing the dh∆h, we are able to execute

AT-UC in all target datasets, while when we use MCC, we are unable to execute AT-UC on the YV-ER

dataset. Notice that, by considering YV-ER as the target dataset, the MCC (purple triangle shape) is

0.87. Thus, with MMC = 0.87 above the 0.2 threshold, we disregard the restaurant dataset as the
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source, preventing the linkage to this dataset when we employ MCC.

When we compare the source datasets selected by dh∆h and MCC, notice that, by considering

the dh∆h distance, the linkage quality is higher than the MCC in two scenarios (TSE and YV-ER),

and remains approximately the same in three scenarios (CENSUS, NCVR and MVR).

In order to provide a better illustration of the source selection impact over the linkage quality,

we use the results plotted in Figure 5.4 to compare the linkage quality achieved by training the target

classifier using the selected source (considering dh∆h) against the remaining source candidates. The

comparison results are depicted in Figure 5.5.
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Figure 5.5: An illustration that the source selection step is able to chooses a source dataset

that returns a F1 near the maximum possible value acquired by our baseline.

The vertical axis of Figure 5.5 represents F1 whilst the horizontal axis outlines the various target

datasets. The colored bars illustrate the selected source dataset results and the mean quality of all

remaining source candidate datasets. Notice that we plotted an error bar for all source candidate

datasets; the top of this error bar represents the maximum F1 value of all source candidate datasets.

Observing the selected datasets and the maximum possible F1, it is possible to establish that the

source selection results displayed the same value of the highest F1 of all source candidates. In other

words, our source selection approach (detailed in Algorithm 1) presents a F1 value compatible with

the maximum F1 observed in our experiments.

The error bars in Figure 5.5 also illustrate a significant F1 variation for all datasets, except for

MVR. This variation indicates the relevance of selecting an adequate source dataset for our approach.

Regarding our first research question, our source selection step overperformed the MCC method
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and selected the source dataset that presented the highest possible F1 values in every experiment

scenario. Thus, based on our experimental results, we can state that our source selection step is able

to elect an adequate source dataset in a PPRL system.

RQ.2) Does feature (similarity metrics) selection improve the linkage quality of our approach?

Before we answer this research question, we need to verify the impact of different similarity

metrics over the linkage quality. Figure 5.6 plots the F1 achieved by Algorithm 2 for each target

dataset, considering the usage of distinct similarity metrics. In other words, for each target dataset,

we examine all candidate datasets, varying the number of similarity metrics employed as features.
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Figure 5.6: Quality (F1) impact of features selection per target dataset.

The horizontal and vertical axes depict the target dataset and F1, respectively. The colored bar

represents the result achieved by our approach using different similarity metrics. In other words,

we executed the source selection using all candidate datasets and a combination of 2, 3, 4, and 5

similarity metrics as input to Algorithm 2.

In Figure 5.6, it is possible to observe a variation of F1 for each target dataset depending on the

number of similarity metrics used as features in our final classifier. It is worthwhile to mention that,

for the most challenging datasets to perform the linkage (CENSUS and YV-ER), which presented the

highest number of missing values (see Table 5.2) and lowest F1, the usage of specific features allows

an improvement in terms of F1. These facts indicate the relevance of selecting adequate similarity
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metrics for each source and target dataset [101; 192].

To estimate the impact of feature selection on the overall quality of our approach, we executed

Algorithm 3 using the combination of all features (five similarity metrics), such that
5
⋃

r=2
C5
r = 26,

and compared it (Algorithm 3) against the source selection (Algorithm 2) considering all available

similarity metrics as features. Table 5.3 summarizes the results.

target source #1 source #2 selected features
gain

f1 precision recall

MVR CENSUS CENSUS [dice, jaccard, overlap, hamming, entropy] 0 0 0

NCVR CENSUS CENSUS [dice, jaccard, overlap, hamming, entropy] 0 0 0

YV-ER RESTAURANTS BOOKS [jaccard, overlap, hamming] 13% 2% 17%

CENSUS NCVR MOVIES [jaccard, entropy] 5% 6% -18%

TSE BOOKS BOOKS [dice, jaccard, overlap, hamming] -1% 3% -8%

Table 5.3: Feature Selection quality results

Table 5.3 presents the target dataset, the selected source considering all five similarity metrics

(source #1), the chosen source dataset considering feature selection (source #2), the similarity metrics

employed, and the quality metrics gains.

Regarding the NCVR and MVR target datasets, Algorithm 3 chose the same source dataset with

all five similarity metrics as Algorithm 2. Therefore, no changes are observed in the quality metrics.

For the remaining target datasets, different source datasets and similarity metrics were chosen by

Algorithm 3.

Concerning the CENSUS and YV-ER datasets, it is possible to recognize an improvement on

F1 when we employ the feature selection step. Regarding the YV-ER dataset, Table 5.3 exposes an

increase in all quality metrics. For the CENSUS dataset, we witness an increase in precision and

a decrease in recall. In other words, the selected source was able to train a classifier that produced

more accurate predictions (+6% precision). It decreased the number of detected duplicate entities

(-18% recall), resulting in a 5% gain in the overall quality (F1), making the target classifier pre-

dictions more accurate.

Regarding the TSE dataset, notice that the selected source dataset is the same for the two test

scenarios; however, the features are different. The source dataset and features chosen by Algorithm 3

present a reduction of 1% in terms of the overall quality (F1). Nevertheless, we would like to remark

that the feature selection step increases the prediction accuracy in terms of precision at a recall cost.

In practical terms, the feature selection step in the TSE dataset and, similarly to the CENSUS

and YV-ER datasets, improved the target classifier predictions. In other words, when we trained

the target classifier using every similarity metric available, the target classifier was able to recognize
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140 entity pairs as duplicated correctly and 95 (40%) pairs wrongly. In turn, when we employed

feature selection, the target classifier was able to distinguish 128 entity pairs as duplicated correctly

and 50 (28%) pairs wrongly.

Regarding our second research question, the feature selection step increases the overall quality.

Furthermore, it makes the target classifier more reliable and identifies the duplicated entities with

more precision.

RQ.3) Is AT-UC able to improve the PPRL quality results when compared to the baseline

and the competitors?

As detailed in Section 5.3.4, we compare the results of our approach against a baseline and three

competitors. As a baseline, we consider the threshold-based classifier. As competitors, we employ

the naive-based transfer learning (naive), CORrelation ALignment (coral) [158], and the TransER

[88]. Table 5.4 displays the results (Precision, Recall, and F1), the source used to train the model,

the target, and the approach.

Before describing the Naive classifier results, we would like to highlight that the reported results

represent the best linkage result for every tested scenario since, otherwise, the mean result would

be zero for almost every target. Comparing the AT-UC result against the Naive approach, we can

observe that our approach overcomes the naive approach for every metric. Furthermore, by observing

the precision and recall metrics, it is possible to verify that the naive-based classifier wrongfully

marks a large number of pairs as similar due to the high value of recall (near 100% of coverage) and

low value of precision in every case.

To evaluate the transER, we employed all possible source datasets because the approach does not

have a methodology for selecting a source. However, transER was able to execute only in three cases.

Thus, we report the results as best in the source column. AT-UC overcame the results achieved by

transER, especially for the TSE dataset.

These results can be explained by the fact that transER considers homogeneous domains (as we

do). However, we assume that features represent different similarity metrics of the complete record,

while transER considers the similarity metrics of the record’s attributes. Moreover, due to this differ-

ence, the techniques employed to minimize the different class conditional probability distributions in

AT-UC demonstrate more adequate to be employed in a PPRL context.
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approach target source precision recall f1

at-uc

census restaurants 14% 77% 22%

mvr census 97% 99% 98%

ncvr census 100% 78% 87%

tse books 84% 87% 85%

yv-er tse 66% 56% 61%

naive

census best 1% 100% 2%

mvr best 5% 99% 9%

ncvr best 2% 91% 4%

tse best 0% 13% 0%

yv-er best 43% 87% 58%

transER

census - - - -

mvr best 83% 99% 90%

ncvr best 74% 99% 85%

tse best 3% 100% 6%

yv-er - - - -

coral

census 5-best 9% ±6% 49% ±6% 15% ±9%
mvr 5-best 96% ±1% 88% ±1% 91% ±8%
ncvr 5-best 99% 49% 66%

tse 5-best 81% ±1% 80% ±1% 80% ±8%
yv-er 5-best 93% ±15% 40% ±15% 46% ±45%

threshold

census 5-best 8% ±5% 61% ±5% 14% ±9%
mvr 5-best 49% ±46% 71% ±46% 51% ±44%
ncvr 5-best 49% ±47% 67% ±47% 49% ±42%
tse 5-best 27% ±24% 71% ±34% 32% ±31%
yv-er 5-best 60% ±42% 64% ±42% 60% ±39%

Table 5.4: Instance Alignment Impact

As mentioned in Chapters 2 and 3, the usage of the CORAL in a RL context could be damaged

due to the nature of the data distribution of a typical RL process. We report the CORAL results for

the five best linkage results because: i) it does not have a methodology to select a source candidate,

and ii) if we use the complete set of results, the mean metric values will drop, making it hard to

compare with our approach.

The usage of CORAL in non-normal data damages the knowledge transfer [88]. This fact can be

seen in the reported error for each target dataset. Notice that there is no error for NCVR. This result

was achieved because the CORAL could be executed only for one pair of datasets. Regarding the

linkage quality, AT-UC overcame the mean result of the best five results of CORAL.

The most used classification technique in a PPRL context is the threshold-based classifier. To

evaluate this classifier, we tested similarity values from .6 to 1 with an increment of 0.5 and re-

ported the five best results. Prior to confronting the AT-UC result against the threshold classifier,
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we remark the challenge of guessing the threshold value for each target dataset. In our experiments,

each dataset presented a different optimal value. Particularly, for the TSE and CENSUS datasets,

the threshold value was sensitive, and a slight increment (or decrement) in the threshold presented

an important impact over F1.

Regarding the comparison of our approach and threshold-based classifier, it is possible to rec-

ognize that our approach overcomes the mean quality of the baseline and produced results near the

optimal threshold, i.e., the error upper bound. Moreover, AT-UC overwhelms the optimal baseline

value for the CENSUS, MVR, and TSE datasets.

Finally, we can state that our approach can improve the linkage quality compared to the com-

petitors and the baseline, answering the third research question. Furthermore, AT-UC has other as-

pects that should be mentioned. Similar to other approaches [158; 88], AT-UC requires minimal

parametrization. Moreover, it eliminates the need for an expert to guess a threshold value or select

a source dataset employed in the TL approach.

It is worthwhile to mention that all of the competitors were proposed to a typical RL scenario,

where the privacy of the data is not an issue, while AT-UC is specifically designed to operate in a

PPRL scenario. To evaluate the privacy risk, we employ a state-of-the-art privacy attack, the results

and our considerations are reported in Section 5.3.7.

RQ.4) Which are the most adequate classifiers to be used as the separation and the tar-

get classifiers?

To answer the previous research questions, we used classifiers that presented the best quality result

in terms of F1. Thus, to answer this research question, we first investigate the impact of different ML

methods on separation and target classifiers.

Figure 5.7 illustrates the impact of different techniques as the separation classifier (Algorithm 2,

line 3). For each target dataset, we vary the ML techniques on the separation and the target classifiers.

As a consequence of this experimental setup, an error bar is plotted for each colored bar.

In Figure 5.7, it is possible to observe that the SVM and the Logistic techniques employed as

separation classifiers presented the best quality result. Moreover, when we compare SVM against

the Logistic classifier, we observe an overlap between the confidence intervals, preventing us from

stating that one technique is statistically better than the other [38].

The result achieved by the SVM and Logistic classifiers can be explained by the fact that SVM

tries to find the margin that separates the classes (source or target), and this fact reduces the risk of er-

ror on the data [72; 73]. In turn, Logistic regression delineates different decision boundaries with dis-

tinct weights that are near the optimal point. In other words, Logistic and SVM techniques fit a single
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Figure 5.7: Quality results by target and separation classifiers.

line to divide the space precisely into two, whereas DT and GBC bisect the space into smaller regions.

It is worth mentioning that techniques that bisect the decision boundary are more susceptible to

overfitting the training data when classifiers have difficulty to separate the classes [73]. We believe

this fact explains the quality result achieved by DT and GBC as separation classifier.

Considering the previous arguments, we chose Logistic Classifier as a separation classifier to in-

vestigate the impact of different ML techniques as target classifiers. Even though we cannot affirm

that there is a statistical difference between the results produced by Logistic and SVM, the Logis-

tic classifier presented an average value of F1 higher than the other competitors, and it is simpler

than the SVM.

Figure 5.8 illustrates the quality results for various ML techniques as the target classifier, consid-

ering Logistic as separation classifier. A boxplot is depicted for the target datasets and, inside each

boxplot, we plotted the result of the different ML techniques.
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Figure 5.8: Quality results by dataset and target classifier.
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Observing the NCVR and MVR datasets, notice that the quality result manifests almost the same

value regarding the employed ML techniques. This result can be explained by the fact that the NCVR

and MVR datasets presented similarity values with a significant difference between the classes (match

and non-match). For instance, most of the matching instances have similarity metrics values near 0.9,

while non-match instances presented mean similarity values below 0.6. In other words, the NCVR

and MVR datasets are easy datasets to perform the linkage.

The use of Logistic, GBC, and SVM as target classifiers produced the best quality results. The

SVM technique provides a good quality result for every tested scenario, except for the CENSUS

dataset, where it wrongly classifies various instances as matches. This classification error can be

perceived by the high recall (all duplicated entities are found) and low precision.

The GBC and Logistic classifiers achieve almost the same quality results for every target dataset.

In our implementation, we use an exponential optimized loss function for the GBC that considers an

AdaBoost algorithm with an exponential loss function. This exponential loss could explain the sim-

ilar results achieved by the Logistic and GBC classifiers. Thus, considering the computational cost,

quality results, and the Logistic Classifier simplicity, we used it as a target classifier algorithm in

our experiments.

Several works indicate that Logistic and SVM are the ML techniques that provide the best linkage

results in the RL context [28; 84; 91]. Our work corroborates this statement and suggests that the GBC

technique can also supply satisfactory linkage quality in a PPRL scenario.

5.3.6 Efficiency Results

In this section, we evaluate the efficiency of AT-UC in a PPRL process. Moreover, we assess

the computational cost, in terms of execution time, of AT-UC steps (Source Selection, Classifier

Manufacturing and Classification) for each experiment executed in Section 5.3.

Figure 5.9a, depicts the mean execution time for each step of AT-UC considering different sepa-

ration models (line 6 of Algorithm 2) and classifiers. Notice that, regardless of the separation model,

the source selection step consumes 90% (on average) of the execution time. On the other hand, the

classifier manufacturing and the classification steps consume (on average) 1% and 9% of the exe-

cution time, respectively.

Figure 5.9b shows the execution time of the source selection by the number of features and the
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separation model. Notice that DT and Logistic present the shortest execution time while more com-

plex models such as GBC and SVM present the longest execution time.
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Figure 5.9: AT-UC Efficiency Results.

It is worthwhile to mention that the PPRL process execution time usually present a long execution

time due to the comparison step of PPRL. For instance, the smallest personal dataset (census) depicted

in Table 5.2 took more than 30 minutes to execute the comparison step. Therefore, AT-UC does not

represent a significant impact on the PPRL execution time.

5.3.7 Privacy Sketch

As illustrated in Figure 5.2 and presented at the beginning of Section 5.2, AT-UC is executed by a

semi-trusted third party, considering an HBC adversary model. Moreover, AT-UC considers as input

the similarities of record pairs (i.e., the output of the Comparison step) and the public (or synthetic)

datasets employed to train the classifier.

Public datasets are widely available on the Internet. However, it is not common to use these

datasets in a privacy attack because it is hard to determine if a public dataset is related to the datasets

used in a PPRL process. Therefore, the source candidates sent by the PPRL parties to STTP could

make it easy for STTP to identify which public datasets were related to the private dataset and ex-

ecute an attack.

Moreover, the Source Selection stage could be employed to reduce the search space of an attack

performed by a STTP, regardless of the source candidate datasets sent by the PPRL parties. For

instance, a STTP could have pre-stored several public and synthetic datasets and use the Source
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Selection algorithm to choose the most related datasets to execute a privacy attack. In the following,

we present arguments on how a STTP could execute an attack using our approach.

First, we would like to remark that, for the candidate’s datasets, the PPRL parties send only

the calculated similarity values of the records stored in a public dataset. The PPRL parties do not

inform the semi-trusted third party any other details regarding the dataset, e.g., the dataset origin or

the attributes (QID) used to calculate the similarity.

To leverage the information presented in the candidate’s datasets, STTP must associate the simi-

larity values sent by the PPRL parties to the actual dataset values to execute a privacy attack over the

target dataset. This association is not an easy task because the PPRL parties could extract a sample,

use privacy-preserving techniques such as Differential Privacy or L-Diversity [107] over the public

datasets or use a privacy-preserving data generator [137] to create a custom syntactic dataset.

Our privacy sketch assumes that a STTP can associate the similarity values with the raw dataset

pair. Moreover, we assume STTP can precisely identify the attributes used to generate the record.

In order to measure the privacy risk of our approach, we employ a privacy attack that uses similar-

ity values of a known (source) dataset to re-identify entities from an unknown (target) dataset [180].

This attack employs the similarity values of both datasets (source and target) to generate a pair of

graphs, where entities and similarity values are converted to nodes and edges. Then, these graphs

are aligned using several Graph and Machine Learning-based techniques to identify entities with the

same neighborhood (nodes and vertices). The results reported in [180] demonstrated an accuracy

superior to 95% for the NCVR dataset.

We use the NCVR and MVR datasets because they presented the highest number of common

attribute values to maximize the chance of success of the attack. We extracted a sample with 10,000

records from the datasets and executed the attack over the attributes firstname, lastname, and mid-

dlename.

In the initial result, we used all three attributes and executed the attack. As a result, the attack

was unable to re-identify any entities. We did not expect this outcome. Thus, we used two attributes

(firstname and lastname) and still obtained the same outcome. No entities were re-identified.

In order to properly evaluate the privacy risk, we used a single attribute (firstname) of the dataset

to provide a vulnerable scenario. It is worth mentioning that it is strongly advised not to use only one

attribute in the RL task because the low variability in the data is expected to have a high number of

false-positive matches, compromising the linkage quality. In this scenario, in which one attribute is

employed as QID, the attack could re-identify 139 (1,4%) entities of 10,000.

Notice that, to re-identify entities using a state-of-the-art attack, we had to use two datasets with a
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similar set of attribute values. However, AT-UC considers only the similarity values; AT-UC is context

agnostic. Therefore, it can use a source dataset with no common attributes (or attribute values) to the

target dataset, making it hard for an attacker to use the information stored in the source candidates

to attack the target dataset. For instance, for the CENSUS and TSE datasets (Table 5.4) AT-UC uses

non-personal datasets as sources (Restaurants and Books). In these cases, it is unlikely that a book

title and restaurants share the same attributes as a person in a PPRL process.

In summary, the usage of external datasets can increase privacy risk for PPRL. Even if PPRL

does not use our approach, an attacker can employ our source selection stage to select external (e.g.,

public) datasets that are most suitable to execute an attack over the target dataset. Knowing these

implications, the PPRL parties should consider the adoption of well-known actions to mitigate re-

identification risk, such as i) avoid conducting the linkage process considering few attributes, ii)

choose proper anonymization parameters, and iii) use an anonymization technique that provides Dif-

ferential Privacy guarantees.
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5.4 Summary

In this chapter, we have presented AT-UC, which enables the usage of ML-based classifiers in the

PPRL process. AT-UC uses public (or synthetic) datasets to train a classifier to identify matching

records pairs of private datasets. The use of AT-UC simplifies the PPRL process by employing a

ML-based classification step, mitigating the problem introduced by the manual threshold selection.

AT-UC was evaluated experimentally using several real-world data sources regarding efficiency and

effectiveness (quality). The results demonstrated that AT-UC is able to overcome the quality of the

most used technique (threshold) in the PPRL context.

It is important to mention that our contribution assumes that among public datasets exists a suit-

able dataset that can be used as a source dataset. However, we are aware that may not exist public

datasets suitable for every PPRL scenario. Thus, to overcome this limitation, in the following chapter

we investigate the usage of a Deep Learning-based classifier in the PPRL context.



Chapter 6

Deep Learning-based Classifiers for

PPRL

Currently, data has been used in several domains, from government policies to business analytics [30].

Furthermore, services and enterprises use data as the primary input for their products and services.

For instance, governments use the citizens’ populational and medical information to define and fund

the public health policy [30; 176]. Regarding the data as a business, companies merge multiple

public/private datasets into a unique database to validate the consumer registration data to speed up

the customer acquisition process and improve information quality. This process is named customer

on-boarding service [147].

Moreover, due to the laws and regulations, the aforementioned data usage (e.g., on-boarding

services and public policy) needs to be carried over private data. Thus, enforcing governments and

private companies to employ privacy-preserving technology to preserve the privacy of the data (e.g.,

customers or populations). In this context, PPRL is used to identify entities (e.g., personal records)

across multiples dataset that do not have a unique identifier (e.g., social security number). It is worth

remarking that the PPRL process decides whether a record pair is a match using the similarity value,

calculated by comparing the anonymized/encoded QIDs values [30].

In order to classify the record pairs, most of the PPRL solutions consider a simple threshold

classifier. In summary, the PPRL parties elect the threshold value (which usually vary from 0 to 1) and

compare it against the similarity value of each record pair. Notice that the threshold value definition

is a complex task that requires expert operators to ”guess” the appropriate value. For instance, if the

threshold value is too high (e.g., 0.9 or 1), PPRL will miss true match entities. On the other hand, if

this value is too low, PPRL will likely classify false positive matches.
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Several works have been proposed to improve the linkage quality in the PPRL context, including

the usage of Machine Learning [25; 27] and Transfer Learning [126] techniques. These techniques

preponderantly employ statistical machine learning models (e.g., the Support Vector Machine and

Logistic classifier) over the record pairs’ similarity values to classify whether or not the records

are a match.

Moreover, according to recent work [105; 123], similarity measurements are dependent on the

task (e.g., RL) and the data itself. For instance, by comparing events that happen across time

(dates), we can select syntactical or chronological similarity measurements depending on the task

performed. However, in the PPRL context, the PPRL solutions employ limited syntactical similarity

measurements, such as Jaccard, due to the binary characteristics of the encoded records [30; 113;

177]. Thus, due to the limitation imposed by PPRL (e.g., binary similarity measures and privacy

restrictions), it is hard to create/employ classifiers for PPRL.

In the RL context, where data privacy is not an issue, Deep Learning techniques were employed

to mitigate the similarity measures bias [41; 46; 75; 91; 105; 121]. In summary, Deep Learning tech-

niques were employed to perform linkage tasks using the non-linearity characteristics of unstructured

data and other complex data structures. In other words, these techniques were employed to detect

patterns that could indicate whether or not an object pair is a match or not. Moreover, the aforemen-

tioned works demonstrated that Deep Learning could improve the linkage quality when employed in

non-tabular data, such as the PPRL encoded.

To our best knowledge, no work directly explores the non-linearity provided by the PPRL inputs -

encoded records. In other words, in the PPRL context, the existing decision models rely upon an indi-

rect similarity measure instead of the actual data. In order to explore the non-linearity of the encoded

data in the PPRL context, we propose a novel methodology to compare encoded records in this thesis.

The basic idea of the proposed methodology is to perform the record pairs classification without us-

ing predefined similarity metrics (e.g., Jaccard and Dice). In other words, the proposed methodology

leverages Neural Networks (NN) and sophisticated statistical learning methods (e.g., SVM and Gra-

dient Boosting) to learn patterns that could indicate whether or not an encoded record pair is a match.

Besides the aforementioned challenges of PPRL, the encoding/anonymization step presents it-

self as a complicating element to the use of raw encoded data (e.g., the Bloom Filter value of two

records) as input to classifiers. Moreover, from the perspective of the classifier, the encoding pro-

cess can be seen as a dimensionality reduction with noise addition. Furthermore, the dimensionality

reduction happens when we transform a 128-bits word (considering UTF-8 encoding and six letters

words) into 12 bits in one BF, losing the syntax and semantic representation of the word. In turn,
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the noised addition occurs due to the hash collision and the hardening techniques employed in the

PPRL encoding step.

The following example illustrates the dimensionality reduction of the information performed by

the PPRL encoding step. Assume the we have to compare the sentences: ”The mayor removed

the bus top” and ”The city authority moved the bus terminal”. Using the plain sentences, we

can employ the semantics of ”city authority” and ”mayor” to determine that these sentences

are related. However, in PPRL, we need to transform this sentence into corresponding bit

arrays and calculate their similarity - e.g., 0.50. This makes it hard for a classifier, using only

the record pairs’ similarity values, to decide whether these sentences are related, or not.

Explaining the argument

To mitigate the problems caused by the encoding technique, we propose the use of Recurrence

Plot (presented in Section 6.1.1) to reencode the PPRL data. In other words, Recurrence Plot (RP) is

employed to map PPRL encoded data (e.g., Bloom Filter) as a complex dynamical system [112] in

order to evidentiate patterns that can be used by classifiers to decide whether record pairs are a match

or not. Therefore, by representing encoded record pairs as RP, we are able to train classifiers using

the encoded data. Moreover, we can use deep learning techniques to explore the hidden patterns

and the non-linearity characteristics of the information held by the encoded representations of the

records. We tested our approach using the PPRL’s most common encoding technique, the Bloom

Filter (BF) - detailed in Chapter 2.

In Chapter 5, we propose the AT-UC approach that employs Transfer Learning (Instance-based)

to build classifiers for the PPRL process. AT-UC was conceived assuming that a suitable source

dataset exists for every target dataset. However, in PPRL applications, it is possible that there is

no suitable source dataset. To mitigate this problem, we make the following contributions: (i) we

propose a novel representation of the records pairs for comparing PPRL anonymized/encoded data;

ii) we propose and test several deep learning architectures, considering RPs in the PPRL context; iii)

we evaluate our contributions using real-world datasets considering different parameter settings, and

we compare our method with existing classification (hardening) techniques regarding linkage quality.

6.1 Deep Learning-based Classifiers

This section describes how to use an alternative representation of Bloom Filter pairs that enables

a novel comparison methods in the PPRL context. First, we detail how to represent BF pairs as
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RP. Then, in the subsequent section, to validate the use of RP in the PPRL context, we propose a

methodology to incorporate RP in a PPRL workflow.

It is worthwhile to mention that, by representing BF pairs as Recurrence Plots (dynamical system),

we are able to explore new classification strategies in PPRL. In other words, instead of using the

similarity value between encoded record pairs, we use RP’s to train a classifier (decision model) and

employ this classifier to perform the linkage. Notice that this workflow is a secondary contribution

employed to enable and assess our main contribution, i.e., the use of RP within the PPRL context.

6.1.1 Recurrence Plot as a Feature to Train PPRL classifiers

As presented in Chapter 2, Recurrence Plot (RP) is a well-known and widely used technique to explore

and reveal a pattern in data. RP has been used in several contexts, from time series analysis to medical

applications [112]. In this section, we discuss the use of RP to uncover patterns in pairs of encoded

records (e.g., BF pairs). In other words, we use RP to highlight patterns in encoded record pairs that

could indicate whether a record pair is a match, or not.

The use of RP to represent pair of encoded records intends to replace the standard similarity

measures (e.g., Jaccard and Dice) by the RP. Furthermore, the RP aims to highlight patterns

that will be employed as features to the PPRL Classification step. Moreover, the use of RP

to represent record pairs will allow Machine-Learning techniques to learn from the encoded

records, reducing the bias introduced by the standard similarity measures [105]. In summary,

RP will enable the use of Deep Learning techniques (i.e., Neural networks) in the PPRL con-

text.

Explaining the Idea

Before explaining how to employ RP within the PPRL context, first, we need to present assump-

tions regarding the PPRL encoded data. We assume that such data is represented by a 1-dimensional

array of bits or integers. In our experiments and the formalization presented in this section, we con-

sider a 1-dimensional array of bits, such as the Bloom Filter technique. Thus, each position of the

encoded data array (ê) represents a state that needs to be mapped by RP, such as:

ê = [x1, · · · , xl],

where xi represents the value (bit) in the encoded data position whilst l is the length of the en-

coded data.
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In a typical PPRL process, pairs of encoded data are used in the Comparison step. Thus, to

highlight the states (encoded data patterns) that simultaneously occur in both records, we must operate

a bivariate Recurrence Plot [112]. In this sense, we employed the Cross Recurrence Plot (CRP) as our

bivariate technique because it can show which states in one dynamical system occur simultaneously

in a second dynamical system [47]. Consequently, the aforementioned CRP characteristic could be

employed to detect regions of the encoded data (i.e., BF segments) that coincide.

CRP will be employed to identify similar regions of the encoded records. In other words, the

CRP highlights common states (e.g., bits) over encoded record pairs. Moreover, these regions

(the RPs) will be forwarded to a ML-based classifier to extract patterns that could identify

matching records.

Explaining the Idea

In Section 2.8, we presented a generic CRP formalization (Equation 2.7). In order to provide

further details of the CRP in the PPRL context, we introduce a modified version of CRP. Equation 6.1

formalizes CRP using two encoded records (ê1 and ê2) and m neighbors. The m-neighbors is used to

create and delimitate an area around each bit position of the encoded record that the Heaviside func-

tion will compute. For a graphical example of the m-neighbors, see the red dashed areas of Figure 6.1

CRP (ê1, ê2,m, ϵ) =

l1
∑

i=0

l2
∑

j=0

Θ

(

α,

m
∑

w=0

||ê1[i+ w]− ê2[j + w]||
)

(6.1)

where l1 and l2 are the lengths of the encoded records, α is a threshold distance employed in the

Heaviside function (Θ), and ||ê1[i] − ê2[j]|| is the distance between two sets of elements of the

encoded records ê1[i] and ê2[j].

Notice that CRP will generate a 2-dimensional matrix, CRPi,j . In a typical PPRL encoding

process, all parties encode their data using the same number of bits (l). Thus, we can calculate the

CRPn,n dimensions using l and m. Equation 6.2 show the formula.

n = l − (m− 1) (6.2)

As disclosed in Equation 6.1, CRP will iterate over the elements (e.g., bits) of the encoded records

and compute the distance of these elements considering m neighbors. Later, this distance will be

compared against a threshold (α) in a Heaviside function. In Equation 6.3, we define the Heaviside

function used in our solution.
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Θ(αi, v) =











1 : v ≤ αi

0 : v > αi

(6.3)

To illustrate the use of CRP over encoded data, consider the encoded records of ANA and ANE

(depicted in Section 2.1.4). In Figure 6.1, we illustrate the CRP encoding process for the BF (l = 8)

of ANA and ANE. Moreover, in the following example, we consider three neighbors (m = 3) and

the Heaviside threshold of one (α = 1).

Figure 6.1: CRP encoding process

The CRP is represented as a 6 × 6 matrix. This dimension is defined by the filter length and the

number of neighbors (Equation 6.2, n = 8− (3− 1)). Each element in the matrix is calculated using

Equation 6.1. The Heaviside function ( Θ(α,
∑m

w=0 ||ê1[i + w] − ê2[j + w]||)) in the last segment

of Equation 6.1 is employed to define whether a filter position represents a co-occurrence in both
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encoded records, or not. In other words, the first segment of the equation (
∑l1

i=0

∑l2
j=0) iterates over

each position of the CRPi,j , while the second one (the Heaviside function) marks the position with

1 or 0 if a region of both filters indicates a co-occurrence (or not), respectively.

The first step of Figure 6.1 illustrates the computation of the element CRP0,0. The red square

illustrates the neighborhood (m) used to define whether a bit position co-occurs in both filters. Notice

that the distance between the regions is calculated by the
∑m

w=0 ||ê1[i + w] − ê2[j + w]||. This

information is highlighted in red. The calculated distance (Manhattan distance) was zero for the first

step because the regions are identical. This distance is compared against the Heaviside threshold

(α = 1) and the region is marked as co-occurrence in the CRP.

The process is repeated for every element of the CRP matrix, and the position is marked accord-

ingly. For instance, in the second step, the distance (2) is greater than α. Therefore, the Heaviside

function marks the region as zero. Finally, at the end of the CRP generation, the matrix will be filled

with zeros and ones, evidencing similar regions in the encoded data.

By representing the encoded record pair as a CRP, we expect to highlight the local similarity/dif-

ference of the data. Moreover, following the work of Recurrence Quantification [112], a CRP of two

systems (encoded data in our context) is represented as a series of parallel segments in the matrix.

The frequency and length of these lines are related to a certain similarity between both encoded data.

Thus, by employing CRP over PPRL encoded data, we expect similar encoded data (e.g., matching

records) to generate a particular pattern (e.g., several bold and continuous diagonal lines). Figure 6.2

shows examples of a CRP of matching encoded data and non-matching encoded data.

Notice that the matching encoded data exhibits the expected pattern while the non-matching en-

coded data presents fewer diagonal lines and several black squares. It is worthwhile mentioning that

several numeric methods, analogous to the binary data similarity metrics, have been previously pro-

posed [112]. For instance, the RP can be assessed by its: i) diagonal, vertical, and white vertical

lines frequency distribution, average length, longest length, and entropy; ii) pattern recurrence rate;

iii) determinism; iv) divergence; v) laminarity; and vi) laminarity determinism ratio.

In this work, instead of using the previously mentioned numeric methods, CRP will be classified

by Machine Learning-based classifiers. These classifiers will use the CRPs as input to the ML models.

Instead of using a similarity value, or a small set of similarity values [126], as features, we will employ

a 2-dimensional matrix of features, where the classifiers will look for partners that indicate matching

encoded records. Moreover, instead of finding a decision boundary (line or hyperplane) based only on

similarity values, our work employs CRP as input to extract patterns representing matching records.

In Section 6.1.2, we detail a workflow that considers CRP in a PPRL process.
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(a) Matching (b) Non-matching

Figure 6.2: CRP representation of two encoded record pairs. The records were encoded

considering a l = 100, k = 5, and a false positive rate of .5. Figure 6.2a illustrates a

matching pair with 0.9 of similarity, while Figure 6.2b exemplifies a non-matching pair, with

a similarity value smaller than 0.7.

6.1.2 MHT Workflow

This section presents a simplified workflow to incorporate CRP in a PPRL solution. Before introduc-

ing the workflow, first, we need to raise assumptions and constraints regarding the components of the

PPRL and workflow functionalities. The workflow was conceived to be employed in a Semi-Honest

(or HBC) adversary model. Moreover, we also consider the existence of a Semi-Trusted Third Party

(STTP), which will carry out the classification step of PPRL. Furthermore, the MHT Workflow is

entirely executed by the PPRL party (data owner). The only new information to STTP are the CRP

encoding parameters and the trained classifier.

We also assume that the CRPi,j of the encoded record provides a matrix with n× n (detailed in

Section 6.1.1) elements for each encoded record pair. Moreover, a classifier trained with the CRPi,j

can recognize patterns that indicate whether a record pair is a match or not. It is worth mentioning

that the existing ML classifier in the PPRL context employs a low-dimensional feature space (i.e., a

similarity value); therefore, the existing ML classifiers are focused on finding an optimal threshold

similarity value due to the limited information available to the classifier. Furthermore, regarding data

privacy, the workflow was designed to provide as little additional information as possible to a mali-

cious party. In other words, the workflow uses information already available to the STTP, considering
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a standard HBC PPRL process. Moreover, the workflow can be used along with Differential Privacy

tools, such as the privacy-preserving SGD (Section 2.7).

The primary purpose of the CRP in the MHT Workflow is to provide an ML-based classifier

with labeled instances to train a classifier to distinguish matching instances using patterns

within the CRPs. Moreover, the use of the CRP during the classification step of PPRL aims

to extract the patterns (over the unlabeled data, testing data) and classify them using the

previously trained data.

Explaining the Idea

In order to create the classifiers (models) mentioned above, the proposed workflow is divided

into three phases: i) training data generation, ii) CRP encoding, and iii) model training. Figure

6.3 depicts the workflow.

Figure 6.3: MHT Workflow

In the data generation phase, first, we extract a random sample with a fraction (Υs) of the orig-

inal dataset length, 0 < Υs < 1. This sample is divided into two sub-datasets (D̄a and D̄b) during

the record pair generation phase. It is important to remark that we control the percentage of match-

ing records (Υm) presented in sub-datasets. In the last step of the data generation phase (instance

harvesting), we extract record pairs (instances) that could provide better insights for the classifier to

reduce the number of training instances.

During instance harvesting, the similarity (e.g., Jaccard) between each record pair in the sub-

datasets D̄a and D̄b are calculated to select the non-matching examples that present the highest similar

values (Υh). For example, assume that an instance (a1 ∈ D̄a) is compared against the b1, b2, and

b3 non-matching instances (such that, [b1, b2, b3] ∈ D̄b), resulting in similarities of 0.1, 0.4, and

0.6, respectively. Considering the instance harvesting with Υh = 33%, only b3 will be employed as a

non-matching example. In other words, in this step, we select the closest non-matching instances (i.e.,

those ones that are harder to distinguish) to the matching instance. Moreover, we expect to produce a

high-quality classifier with few record pairs by performing this selection of training examples.
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In the encoding phase, the output of the data generation phase (the selected record pairs) will

be converted to the CRP representation using the Heaviside function threshold (α) and the num-

ber of neighbors (m), defined by the PPRL parties. Finally, the classifier will be trained over the

CRPs. Notice that, in Figure 6.3, the model training phase has two possible training methods: one

that does not consider the privacy of the classifiers and the second that uses a Differential Privacy

technique to mitigate privacy attacks through the trained models. Algorithm 4 formalizes the com-

plete workflow process.

Algorithm 4: MHT Workflow

input : Draw,Υs,Υm,Υh, α,m, l, n,Ξ0, ϵ

output: Ξ

1 Dsample ← random sample(Draw,Υs)

2 D̄a, D̄b ← pair generation(Dsample,Υm)

3 Ti ← instance harvesting(D̄a, D̄b,Υh)

4 CRPi,j ← crp encoding(Ti, α,m, l, n)

5 Ξ← trainig(CRPi,j ,Ξ0, ϵ)

The input of the MHT Workflow include: i) PPRL party database (Draw), ii) random sample

length (Υs), iii) pair generation parameter (percentage of matching records Υm), iv) instance picking

parameters (Υh), v) CRP encoding parameters (α,m, l, n), vi) the untrained classifier (Ξ0) and vii)

the privacy budget of the training parameter (ϵ). The output of the Algorithm 4 is the trained classifier

Ξ. It is important to mention that the workflow is executed by the PPRL parties. In turn, the STTP

only receives the trained model Ξ.

The first three lines of Algorithm 4 apprise the training data generation (detailed in early in

this section). Yet, it is important to remark the computational cost of instance harvesting (line 3).

This method presents quadratic computational cost considering the sample length (Υh). It is worth

mentioning that, in our experiments, this method was executed over small samples (100 ≤ Υh ≤
10, 000) and, therefore, does not represent the most costly operation in the workflow.

The most costly method is crp encoding method (line 4). In Equation 6.1, it is possible to

observe that the CRP encoding has an asymptotical cost of O(n2) in terms of the original encoding

length (e.g., the Bloom Filter length l). Also notice that the crp encoding method is O(n2) iff.

m ≪ l, if m ≡ l, otherwise the method will present an asymptotical cost of O(n3). Moreover, the

encoding will be executed for each instance in Ti. This computational cost is partially mitigated by

the instance harvesting method. Yet, the PPRL operator must be aware of the involved computational

cost, mainly because STTP will employ this method to compare and classify each record pair. Thus,
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considering the computational cost of the CRP encoding, it is strongly recommended to use filtering

and blocking techniques in the PPRL blocking step to avoid unnecessary comparison by the STTP

[30]. It is important to remark that blocking and filtering techniques are not in the scope of this work.

Finally, in line 5, the model (Ξ0) will be trained over CRP (line 4) considering (or not) a privacy

budget (ϵ). If ϵ > 0, Ξ0 will be trained using optimizers that consider the privacy (as presented in Sec-

tion 2.7). In turn, if ϵ = 0, no privacy constraint will be executed during the classifier training. At the

end of the workflow, the PPRL parties send their trained classifier Ξ and the encoded/anonymized

records to the STTP.

6.1.3 Privacy Considerations

In the PPRL process, the encoded records (e.g., BF representation of the records) are always sent to

STTP, considering a three-party protocol. In the MHT Workflow, one new piece of information is

sent to the STTP: the trained classifier (Ξ). As presented in Section 2, Ξ could represent a privacy

risk. For instance, a STTP could use the model parameters to reveal the training data.

To mitigate the aforementioned attack, the MHT Workflow is compatible with Differential Privacy

mechanism to train the classifier. This mechanism distances the classifier parameters to the training

data at linkage quality cost, making it hard for attackers to use the model parameters to re-identify

the instances used to train the classifier. Therefore, it provides privacy guarantees according to a

customized privacy budget (ϵ). Furthermore, the data (the encoded record) employed to train the

classifier is available to STTP. In other words, even if an STTP could infer the training data from the

classifier, STTP will not be able to acquire new information. However, in future work that generates

or uses an external dataset to train the classifier, Differential Privacy is needed.

Nevertheless, in the PPRL context, most ML-based classifiers employ statistical learning classi-

fiers (e.g., Logistic Classifier and Support Vector Machine) and do not consider Differential Privacy

over the trained models [30]. It is worthwhile to mention that our workflow is compatible with the

Differential Privacy training mechanism, mainly because the CRP encoding enables the use of deep

learning and Decision tree classification mechanisms [58], which are compatible with this training

method. The Differential Privacy quality impact is reported in our experiments, Section 6.2.

6.1.4 Neural Network Architecture

Existing PPRL ML-based classifiers rely on standard binary similarity measures to classify whether

an encoded record pair is a match or not [30; 177]. Moreover, a classifier that relies only on similarity
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measures needs to define a decision boundary. In this context, there are several well-known statistical

learning approaches, such as SVM and Logistic Classifier [25; 126]. However, within the PPRL

context, to our best knowledge, no classifier was explicitly designed to recognize patterns. This fact

was reflected in our experiments when we employed a state-of-the-art CNN for pattern recognition

(ResNet50 [191]), and it was unable to learn the pattern using the available training data.

This section presents the CNN architectures to be employed as a classifier in a PPRL context

that uses the CRP representation for the encoded data. Section 6.1.4 introduces a CRP Convolution

Neural Network (CCN). CCN considers as input the CRP of two encoding records. Moreover, to

assess the CRP encoding impact on the linkage quality, we created a competitor that uses the raw

encoding data (e.g., the bit array of a BF) as input data. Notice that the CCN is also a secondary

contribution to validate the use of CRP in the PPRL context. In the following section, we present the

network architecture previously mentioned.

Deep learning (connectionist architectures) has been studied for more than 70 years [73].

However, most deep learning architectures were built/proposed on empirical effort [62]. The

architectures presented in the following section are not different. We detail the insights used

to build the network architectures in each section. All networks presented in this section are

based on several empirical tries.

Deep Learning Network Architectures

CRP Convolution Neutral Network (CCN)

Convolutional neural networks are often employed for pattern recognition tasks, such as object and

face detection [64], because of their capacity to extract important features in high-dimensional data

[73]. Due to this capacity and the simplicity of the CNNs, we use this network to implement a

classifier that is able to recognize patterns in CRP of encoded data.

Before presenting the architecture of our CCN, we must first detail its input. The input of the

CCN is a CRP with n × n (width, height). It is important to remark that each CRP represents

two encoded PPRL records. It is worth remarking that the classification label is generated in the

training data generation phase of the MHT Workflow and passed to the CCN at training time as

one-hot encoded vectors.

Figure 6.4 illustrates the CNN architecture. The CNN is divided into two parts: the convolutional

layers, to extract the features of CRP, and the classification layer, to perform the classification of the

CRP based on the extracted features.
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Figure 6.4: CRP Convolution Neutral Network (CCN)

The input layer passes the CRP to three consecutive convolutional layers, where max pooling

and dropout (p = 0.25) are applied. The number of kernels for the convolutional layers was set to

d1 and d2. The parameters d1 and d2 are defined according to the dimension of the CRP, such that

d1 = n2

5 × 2, and d2 = n2

5 × 3 where n represents the width and height of CRP.

The core insight of this network is to take the CRP and extract local features (i.e., the CRP

diagonal lines) in the first convolutional layers and then combine the local features to create

compound features (e.g., patterns recurrence rate, determinism, divergence, and laminarity)

in the final layers. In summary, each convolution filter learns as much as possible from this

feature map.

Explaining the Idea
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We use the Pooling layers to reduce the size of the output (feature maps) of each convolutional

layer, preserving the most relevant features. [62; 73]

Pooling layers

Next, the data is flattened and passed through the classification layers. The classification is a fully

connected layer of 128, 64, and 32 units with dropout (p = 0.50). The activation functions of the

convolutional layers and the fully connected layer were ReLUs. Finally, a fully connected layer with

two units (matching and non-matching labels) and a softmax activation function are used to produce

the final output, i.e., the probability for each classification label.

Siamese Convolution Neutral Network for PPRL (SCN)

To demonstrate that CRP can improve the linkage quality, we propose a competitor to CCN that does

not use the CRP representation of encoded record pairs. Instead of employing the CCN, we propose

a Siamese Neural Networks (SNN) that utilize the raw encoded records as input.

Bromley et al. [18] introduced Siamese Neural Networks to verify signatures on credit cards.

However, SSN has been used in many different areas, from one-shot learning to textual and facial

recognition tasks [24; 90; 123]. As SNN perform well in areas where similarities between different

entities need to be evaluated [123; 105], we opt to test this type of network to address the task of

duplicate detection over encoded data. Figure 6.5 illustrates the network architecture.

Figure 6.5: Siamese Convolution Neutral Network for PPRL (SCN)
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The basic idea of this SCN is to use one CNN for each encoded record (e.g., bloom filter) to

extract the patterns. Then, in the classification layers, we intend to use this pattern (extracted by

the convolutional layers) to decide whether a record pair is a match or not. Notice that the encoded

data makes the classification harder, mainly due to the reduced amount of information and the noise

added by the encoding method. This fact is illustrated in our experiments and highlights the positive

influence of the CRP representation in the PPRL classification step.

6.2 Evaluation

In this section, we evaluate the DLC effectiveness, i.e., the linkage and classifier quality. To this

end, we present a discussion regarding the experimental results to answer the following Research

Questions (RQ):

1. Is CRP able to improve the classifiers effectiveness?

2. What is the influence of the training parameters of the MHT workflow over the linkage quality?

3. What is the impact of using different classifiers - e.g., state-of-the-art NN (ResNet50) and

classical Machine Learning classifiers (SVM and GBC) - in the MHT workflow?

4. Is DLC able to improve the PPRL quality results compared to the baseline and the competitor?

5. What is the linkage quality cost of the Privacy-Preserving Training step (ϵ > 0) of the MHT

workflow?

The linkage quality of the contributions presented in this chapter were evaluated in terms of

Precision, Recall, and F1 metrics (detailed in Section 2.3.3). Next, we present considerations regard-

ing the datasets, anonymization parameters, ML classifiers, baselines, and competitors employed

in our experiments.

6.2.1 Experimental Design

To assess our contributions, we assume that the PPRL parties use a Balanced Bloom Filter (BBF)

as their data’s encoding/anonymization technique. Moreover, we employed four pairs of real-world

and synthetic datasets to answer the aforementioned research questions. A summary of the dataset

characteristics and their anonymization parameters are shown in Table 6.1.
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DATASET DETAILS BF

name ds-type input-type record pair matching pairs attribute number missing values k l n

mvr real clean-clean 1× 108 100 4 1,772 7 250 36

nvr real clean-clean 1× 108 100 5 352 4 200 28

dblp-acm real clean-clean 6× 106 500 3 14 3 450 94

census synthetic dirty 6.85× 105 80 3 291 3 100 23

Table 6.1: Statistics of datasets

The datasets are detailed in Appendix A.5 and Chapter 5. We use different anonymization pa-

rameters in our experiments. Moreover, we also employ a dataset with ’1:m’ matching (census), one

entity could be marked as similar to m other entities, to test our contribution in a Dirty-Clean RL task

[33]. In other words, we tested our contribution in challenging linkage conditions.

The MHT workflow can use different ML techniques, from deep learning to statistical learning

algorithms (e.g., SVM and Gradient Boosting Classifiers). We explored this characteristic and tested

the CRP data representation as well as the MHT workflow, considering the CCN (detailed in Section

6.1.4). Moreover, we compared the CCN against two distinct families of classifiers, Deep Learning

and Classical Machine Learning classifiers. Table 6.2 illustrates our experimental design.

parameter values

Training Data Generation

Random Sample Length Υs 10%

Percentage matching examples (Υm) 10%

Percentage non-matching examples (Υh) 50% to 300%

CRP encoding

Heaviside function threshold (α) 1, 5, 10

CRP neighbors (m) 5, 10, 20, 30, 40

CRP distance function Manhattan

Model training

Classifiers CCN, SCN, SVM1, GBC2, Resnet50

Metric Functions Precision and Recall

Loss Functions binary crossentropy, categorical crossentropy

epochs 50

Privacy Budget (ϵ) .5 , 1 , 5 , 10

Table 6.2: Experimental Design

1trained with RBF kernel
2trained with 100 estimators, max depth of five, and learning rate 0.1
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Regarding the Deep Learning classifiers, we tested the CCN against the ResNet50 [191], a state-

of-the-art convolutional neural network for image partner recognition.In addition, we compare our

CCN against well-known classical Machine Learning classifiers: Support Vector Machine (SVM)

and Gradient Booster Classifier (GBC). We selected these techniques because: i) both of them are

capable of dealing with high-dimensional data (such as CRP) [73], and ii) the simplicity and ex-

plainability provided by these techniques [73; 91]. Furthermore, we compare our approach against

a threshold-based classifier (baseline) and a competitor. As the competitor, we employed AT-

UC (Chapter 5).

We varied several parameters in the MHT workflow, i.e., the Training Data Generation, CRP, and

Model training stages. To optimize the experimental design, we considered the same random sample

length (Υs = 10% of the original dataset), percentage matching examples (Υm = 10% of the original

dataset), metric functions, and CRP distance function.

In the Training Data Generation phase, we vary the percentage of non-matching examples (Υh)

to investigate the influence of the ratio between the matching and non-matching examples in the

final linkage quality.

We vary the threshold α and the number of BF neighbors (m), in the CRP encoding phase.

The variation of parameters (α,m) is employed to investigate the existence of a relation between the

anonymization parameters - bloom filter length (l) and hash functions (k) - and the CRP parame-

ters. Regarding the CRP distance function (presented in Equation 2.7 and 6.1), we employed the

Manhattan distance.

The classifiers were trained considering Precision and Recall as metric functions. We opted to

combine these functions because PPRL (and RL) are usually unbalanced - e.g., more than 95% be-

long to one class (match or non-match). Thus, the use of other metrics (such as accuracy) could

result in unbalanced classifiers [28]. Regarding the loss functions, we employed the Binary Cross

Entropy (BCE) and Categorical Cross Entropy (CCE). CCE and BCE are defined in Equations 6.4

and 6.5, respectively.

CCE = −log(q(x)) (6.4)

, where q(x) is the probability of class x in the prediction.

BCE = −(p(x) ∗ log(q(x) + (1− p(x)) ∗ log(1− q(x)) (6.5)

, where p(x) is the probability of class x in the dataset (e.g., the probability of a record pair repre-

sents a match in the dataset).
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BCE and CCE are reported as the most promising loss functions for linkage tasks [73].

Our approach and all baseline ones were implemented in Python 3, and we ran all experiments

on a Linux server with 128 TensorCores (TPU), 2.4 GHz CPUs, and 48 GBytes of RAM. Moreover,

considering the random sample in the first stages of the MHT workflow (Algorithm 4), we executed

the experimental design five times to mitigate the influence of the sample in our results. Finally, it is

worth mentioning that the programs and datasets are available at the authors’ website3.

6.2.2 Results

In this section, we answer the aforementioned research questions. The results presented in this section

consider the experimental design shown in Table 6.2.

RQ.1) Is CRP able to improve the classifiers effectiveness?

To answer our first research question and investigate the influence of CRP (and its parametriza-

tion) on the linkage quality, we compared the results of SCN and CCN. SCN is a Siamese network that

employs one CCN for each BF to extract relevant features in the encoded data. CCN receives as input

a CRP of an encoded record pair. Figure 6.6 depicts the F1 for the complete experimental design.
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Figure 6.6: SCN vs. CCN linkage quality.

Notice that SCN achieved an F1 = 0. In other words, SCN could not learn patterns in the raw

3https://www.github.com/thiagonobrega/
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encoded data and classified every record pair as a non-match for every observation. This result is ex-

pected mainly due to the dimensionality reduction and the noise addition performed by the PPRL

anonymization step.

Considering the unsatisfactory results of SCN, we conducted additional experiments to investigate

if SCN is capable of identifying matching instances of encoded records. We considered 200 epochs

during the training phase and added two extra convolutional layers. Nevertheless, even with this

modification, the F1 generated by SCN was smaller than 10% for the NCVR dataset. Observing these

results, we can state that CRP highlights the encoded data patterns and simplifies the task of the convo-

lutional layers of CCN. Therefore, the use of CRP improves the linkage quality in the MHT workflow.

In order to investigate the influence of the different CRP configurations (α and m) over the linkage

quality, in Figure 6.7, we plotted the F1 for the CCN considering several CRP configurations.

nc
vr

m
vr

db
lp

_a
cm

ce
ns

us

dataset

0.2

0.4

0.6

0.8

F1

CRP Parametrization vs F1

CRP:
1x5 5x10 5x30 10x40 5x20

Figure 6.7: Linkage result for different CRP configurations.

Each colored line represents one CRP configuration (α × m). For instance, 10x40 represents

a CRP with a Heaviside function threshold of 10 and 40 neighbors. In Figure 6.7, it is possible

to notice a correlation between the anonymization (l, n, k) and CRP (α,m) parameters. Table 6.3

evidences this correlation. Table 6.3 presents the length of the filter (l), the mean number of bigrams

of the filters (n), the number of hash functions (k), and the CRP configuration that achieved the

best results in Figure 6.7.



6.2 Evaluation 144

dataset l k n best crp conf

ncvr 200 4 28 5x30

mvr 250 7 36 10x40

census 100 3 23 5x20

dblp acm 450 3 94 5x30

Table 6.3: Correlation between the encoding and CRP parameters.

The correlation between anonymization and CRP parameters is evidenced when we used a CRP

configuration that employs: i) a Heaviside function threshold (α) close to the number of hash func-

tions (α ≈ k); and ii) the number of neighbors (m) near to the mean number of n-grams of the BF

(m ≈ n). This parameter configuration (α ≈ k and m ≈ n) leaded to the best linkage results

in our experiments.

The linkage results of this parametrization can be partially explained by the near-uniform distri-

bution of bits (fpr = .5) performed by the Bloom Filter [151]. In other words, assume that each

n-gram (n) of the encoded record is represented by k bits and the n-grams are almost uniformly dis-

tributed over l. For two similar BFs, it is expected (with a high probability) that among m bits, at least

m − k bits (considering the Manhattan distance in Equation 6.1) are identical. This insight requires

further investigation and can be explored in future work.

In summary, configuring of the CRP parameters (α ≈ k and m ≈ n) results in enhanced link-

age quality. Table 6.4 summarizes the mean gain of the aforementioned CRP parameterization for

each dataset.

dataset precision recall F1

mvr 27.5% ±38.1 18.2% ±33.8 23.8% ±35.2
ncvr -11.3% ±14.4 51.2% ±13.5 23.7% ±9.6
dblp acm -0.6% ±4.0 28.6% ±8.5 18.8% ±4.9
census 15.0% ±22.3 1.7% ±1.8 3.7% ±4.0

Table 6.4: Influence of the CRP parameters over the linkage quality.

Table 6.4 demonstrated that the CRP parametrization produced (statistically relevant) gains for

every tested metric and dataset. However, it is important to notice the limited gain for the census

dataset. We believe that this result can be explained by the limitations of the MHT workflow (e.g., the
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simplified data generation process, that provides only exact matching examples to the classifier) and

the complexity of the dataset (presented in Appendix A.5). In the following research questions, we

discuss the limitations of the MHT workflow. It is worth mentioning that, for the following research

questions, we consider the CRP parametrization depicted in Table 6.3.

RQ.2) What is the influence of the training parameters of the MHT workflow over the

linkage quality?

In this section, we investigate the influence of the percentage of non-matching examples (Υh)

and loss functions (BCE and CCE) over the linkage quality. It is worth mentioning that we are

considering only the CCN with CRP parameters shown in Table 6.3.

The ratio of negative (non-matching) and positive (matching) instances in the training data has the

potential to influence the linkage metrics results [28]. In the RL context, depending on the classifier

and the data distribution, it is recommended to use a 1:1 ratio of positive/negative examples to train

the classifier [56]. Figure 6.8 illustrates the influence of the ratio between the matching and non-

matching instances in the MHT workflow.
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Figure 6.8: Influence of Υh and Υs parameters over the linkage quality.

The horizontal and vertical axes depict the F1 values and the datasets, respectively. The colored
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bar represents the result of different matching and non-matching ratios. We use 2:1, 1:1, and 1:3.

The first and second number of the ratio indicates the number of matching and non-matching ex-

amples, respectively. For instance, 2:1 means that we have two non-matching examples for each

matching example.

In Figure 6.8, it is possible to observe that the ratios 2:1 and 1:1 are statically equivalent. The

1:3 ratio demonstrated that the F1 became more dependent on the sample (evidenced by the error bar

for ncvr and dplp-acm datasets). Therefore, as in the RL context [56], we suggest using the 1:1 ratio

in the MHT workflow parameters (Υs and Υh).

To assess the influence of the Loss functions, we tested our approach using two Loss functions

(BCE and CCE) widely used in unbalanced classification tasks. Figure 6.9 exhibits our results.
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Figure 6.9: Influence of loss functions over the linkage quality.

According to Figure 6.9, the F1 measure is almost the same. However, for the dblp-acm dataset,

the CCE presented a smaller F1. Moreover, the error bars for dplp-acm dataset indicate that F1 results

were more dispersed than the BCE. In other words, depending on the sample, the use of CCE as a

loss function could result in poor linkage results. This fact can be explained by the fact that BCE

considers the probability of the target (p(x)) and prediction (q(x)) of the class, while CCE considers

only the probability of the prediction. In other words, BCE provides a mechanism to adjust the loss

in unbalanced classification tasks, similar to the RL task.
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Considering the results of this research question, we use the 1:1 ratio and the BCE loss function

for the following research question.

RQ.3) What is the impact of using different classifiers - e.g., state-of-the-art NN (ResNet50)

and classical Machine Learning classifiers (SVM and GBC) - in the MHT Workflow?

The previous research question evaluated the linkage quality considering CCN. Now, we use dif-

ferent classifiers as competitors to CCN. Moreover, we compared CCN against a ResNet50 network,

a convolutional neural network that is 50 layers deep, a widely used NN for image recognition tasks.

We trained this network using the same input as CCN.

Recently, several studies [108; 109; 169] report that classical machine learning techniques (e.g.,

SVM and GBC) achieved results closer to the Deep Learning strategies. Moreover, the use of tech-

niques such as SVM and GBC has the advantage of providing an explicable model (classifiers) [148]

than Deep Learning models. Thus, considering the aforementioned studies, we tested the linkage

capacities of SVM and GBC in our MHT workflow.

For each classifier, we plotted a Receiver Operating Characteristic curve (ROC curve) to assess

the classifier’s performance. The ROC curve illustrates a binary classifier diagnostic ability. The

vertical axis of a ROC curve represents the True Positive Rate (or recall, defined in Chapter 2). The

horizontal axis of the curve represents the False Positive Rate (FPR). Figure 6.10 depicts our results.

We plotted the Area Under the Curve (AUC) for each classifier. The AUC reflects the quality

of the linkage. AUC value is within the range [0.5–1.0], where the minimum value represents the

performance of a random classifier, and the maximum value corresponds to a perfect classifier (e.g.,

with a classification error rate equivalent to zero) [73].

The ResNet50 was unable to learn from the training data. In other words, the trained ResNet50

indicates that all test examples are non-matching, resulting in an F1=0. Therefore, the ResNet50

ROC curve can not be witnessed in Figure 6.10.

The performance of the CCN, SVM, and GBC classifiers for the ncvr, mvr, and dplp-acm datasets,

is almost the same, aligned with the results reported by recent studies [108; 109; 169]. Moreover,

for the mvr dataset, SVM and GBC overcame CCN, demonstrating that classical machine learning

techniques could be employed considering the CRP representation of the encoded data to perform

linkage tasks. It is worth remarking that, in RQ1, we argued that CRP could improve the linkage

quality for Deep Learning-based classifiers. In this research question, we demonstrated that CRP

could improve the linkage quality using classical machine learning classifiers.
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Figure 6.10: ROC Curves

It is important to comment on the results depicted for the census dataset. As mentioned in the

previous chapter, the census dataset is a challenging dataset for record linkage. This fact is reflected in

the low AUC of the classifiers. In addition, due to dirty and complex data characteristics presented in

the dataset, the classifiers were unable to identify patterns that could distinguish matching from non-

matching instances. These results are justified by the quality of the training examples for complex

datasets. In other words, the MHT workflow does not provide a suitable training dataset due to the

limitation of the training dataset generation phase. This limitation should be addressed in future work

by exploring techniques such as Transfer Learning, Federated Learning, and Privacy-Preserving Data

Generation in the training dataset generation phase.

Table 6.5 details the linkage results (Precision, Recall and F1) for the classifiers depicted in

Figure 6.10.
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dataset model precision recall f1

census

CCN 87.23% ±0.0 10.38% ±0.08 18.55% ±0.13
GBC 69.86% ±1.5 7.94% ±0.13 14.26% ±0.25
SVM 95.74% ±6.02 10.27% ±0.58 18.55% ±1.06

dblp acm

CCN 98.95% ±0.34 90.82% ±0.19 94.71% ±0.26
GBC 97.12% ±0.65 97.6% ±1.07 97.35% ±0.21
SVM 93.4% ±0.04 98.21% ±0.04 95.74% ±0.04

mvr

CCN 99.12% ±1.04 90.63% ±3.87 94.66% ±2.36
GBC 100.0% ±0.0 95.91% ±1.06 97.91% ±0.55
SVM 100.0% ±0.0 97.52% ±0.14 98.75% ±0.07

ncvr

CCN 69.47% ±0.52 99.76% ±0.22 81.9% ±0.29
GBC 68.52% ±0.76 99.9% ±0.09 81.28% ±0.51
SVM 69.09% ±0.55 99.9% ±0.08 81.69% ±0.36

Table 6.5: Linkage metrics for different classifiers.

Table 6.5 shows the mean result and the standard error for all executions. The linkage metrics

reflect the ROC curve results. GBC, SVM, and CCN have equivalent results for the tested data.

RQ.4) Is DLC able to improve the PPRL quality results compared to the baseline and the

competitor?

To answer this research question, we compare the results of our approach against a baseline and

a competitor. As a baseline, we consider the threshold-based classifier. As competitor, we employ

AT-UC (Chapter 5). Figure 6.11, exhibit our results.

The most used classification technique in a PPRL context is the threshold-based classifier. To

evaluate this classifier, we tested similarity values from .6 to 1 with an increment of 0.5 and reported

the mean value for the three best results. Comparing DLC against the threshold-based classifier, it is

possible to recognize that our approach overcomes the mean quality of the baseline.

Comparing DLC and AT-UC, the results (especially for the mvr and dblp-acm datasets) indicate

that performing classification over the pattern extracted from the encoded data could significantly

increase the linkage quality. On the other hand, the DLC results for the ncvr and census datasets

could be explained by the limitations of the training data generation phase of the MHT workflow. In
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Figure 6.11: Comparison between DLC against competitor and baseline in terms of quality

results.

summary, DLC overcame the baseline and produced results equivalent to its competitor.

The result depicted in this section is affected by the MHT workflow. We believe that the quality

of the training data provided by the MHT workflow impacted the results. In other words, due to the

simplicity of the training data generation stage, the training data is mainly exact matching. There-

fore, the classifiers are trained with limited examples, making it hard to extract suitable patterns to

distinguish between every matching/non-matching test data instance. This point is evidenced by the

results of the census dataset, a complex synthetic dataset.

Notice that, even with limited training data, CRP along with ML techniques (e.g., CCN and

GBC) was able to overcome the competitor or achieve results equivalent to its competitor, AT-UC.

The limitation of the MHT workflow can be explored in future work by proposing novel methods for

data augmentation and privacy-preserving data generation.

RQ.5) What is the linkage quality cost of the Privacy-Preserving Training step (ϵ > 0) of

the MHT workflow?

In Section 6.1.3, we argued that our contributions do not change the chance of success of the
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existing attacks [182; 180; 181; 177]. However, in future work, Transfer Learning or Federated

Learning techniques could be incorporated into our framework, and novel information can be used to

train PPRL classifiers. In order to protect the privacy of the training data, we incorporated the Privacy-

Preserving Training step, which provides Differential privacy guarantees to the trained classifier.

In order to evaluate the comprise between privacy and linkage quality, we executed the MHT

workflow for the same input considering different privacy budgets (ϵ ∈ [1, 3, 10]) for the MVR

dataset. We calculated the ϵ using Equation 4.14. Figure 6.12 depicts our results.
1.

0
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Figure 6.12: Privacy budget vs. linkage quality.

The colored bars represent F1 for each privacy budget. It is important to remark that the smaller

ϵ values imply more privacy for the training data. Notice that the 0.0 indicates the value of F1 of

the regular training (no privacy budget).

The results reported in Figure 6.12 indicate that the privacy budget impacts the linkage quality.

Moreover, for a ϵ = 1, a privacy budget capable of maintaining the privacy of the training data in

a real-world application [44], F1 was reduced by almost 10%. Table 6.6 the impact of the privacy

budget over the linkage quality metrics.

Table 6.6 explains the F1 results. Notice that F1 is impacted by the compromise of the recall

imposed by the privacy budget. In other words, the privacy budget makes it harder for the classifier

to extract and identify the patterns due to the noise added to the gradient of the optimizer.

This result was expected, and the PPRL parties should be aware of the linkage quality of the

4We use C = 1.5, and δ = 7.8−2,3.2−4,1.3−5
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ϵ precison recall F1

1.0 0.61 -17.47 -9.81

5.0 0.61 -11.42 -6.09

10.0 0.61 -2.86 -1.26

Table 6.6: Linkage quality vs. Privacy budget.

privacy budget. Moreover, the PPRL parties must know that the privacy budget makes the classifier

lose true match examples. However, the privacy budget in our experiments does not increase the false

match. In other words, the classifier does not wrongly classify non-matching examples as matching.

This fact is relevant because, depending on the context of the PPRL task, wrongly classifying non-

matching as matching could have serious outcomes (e.g., marking a citizen as a terrorist).

6.3 Summary

In this chapter, we presented DLC, a methodology that operates a novel representation of the BF pairs

(the CRP) that enables classifiers to distinguish between matching (and non-matching) BF pairs based

on bit patterns of the encoded records. Moreover, by employing the CRP representation (our main

contribution) as a feature space for ML-based classifiers, we are able to train classifiers to recognize

patterns that indicate whether or not an encoded record pair represents a match instead of defining

a separation boundary using standard similarity metrics. Finally, we proposed a workflow to test

CRP and CCN.

The use of DLC simplifies the PPRL process by employing an ML-based classification step, mit-

igating the problem introduced by the selection of a proper similarity measure. Moreover, DLC was

evaluated experimentally using several real-world data sources. The results demonstrated that DLC

could overcome the quality of the most used technique (threshold) in the PPRL context. However,

the results also demonstrated the limitations of our workflow, which we intend to address in future

work and use techniques such as Transfer Learning, Federated Learning, and Privacy-Preserving

Data Generation in the dataset generation phase.



Chapter 7

Conclusions and Future Work

In this chapter, we summarize the contributions presented in this thesis. Moreover, this chapter reveals

the perspectives of future research topics by commenting on weaknesses and topics not addressed by

the contributions present in this document.

7.1 Contributions

We presented our contributions to the PPRL process in Chapters 4, 5 and 6. We provide the contri-

butions that: i) enable the usage of a novel adversary model and ii) improve the linkage quality by

proposing an automatic classification approach to the PPRL process. Moreover, besides privacy and

quality improvements, our work produces an impact on the adoption (usability) of PPRL by compa-

nies and governments by reducing the level of trust to execute PPRL and eliminating the need for

an expert to define a classification threshold. Furthermore, the contributions presented in this the-

sis tackled our main objective - to improve the privacy and the linkage quality of the PPRL process

(introduced in Section 1.2). In the following, we emphasize our contributions.

In Figure 1.2 (Chapter 1), we highlight our contributions within a traditional PPRL workflow. To

provide a better explanation and show how our contributions can be fitted into a PPRL process, we

expanded Figure 1.1 and, in each step of the process, we highlight the most relevant contributions

(techniques, approaches, and protocols) of our work in Figure 7.1.

153
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Figure 7.1: Detail of our contributions (SBF, ABEL, AT-UC, and DLC) to the PPRL work-

flow.

Figure 7.1 illustrates all steps of a generic PPRL process. Notice that our contributions are high-

lighted in different colors. Our first contribution (SBF) is located in the Anonymization step. Notice

that SBF does not require any modification in the Pre-processing and Blocking steps. In other words,

SBF can receive the input of any Pre-processing step and can be used as input to any Blocking step.

The SBF approach is designed to work with the majority of the current BF implementations,

including BF with privacy-preserving enhancing mechanisms, such as the Bloom and Flip (BLIP)

[153], Xor-Folding BF (XBF) [154], among others. The output of SBF is a set of splits that are

consumed by the ABEL module to calculate the entity pairs’ similarity. In the Comparison step,

we propose ABEL, which uses SBF to perform the record similarity computation under the covert

adversary model. ABEL’s output is a similarity graph, where the edges are the entities’ IDs, and the

vertices represent the similarity values. It is worthwhile to mention that the PPRL output does not

contain any entities’ private data (anonymized or plain). Instead, it contains the entities’ IDs and the

similarities employed in the Classification step.

Therefore, with SBF and ABEL, we tackle our first and second specific goals, which are to
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improve the privacy-preserving capabilities of the Bloom Filter and consider a novel adversary model

to PPRL, respectively. Moreover, our experiments demonstrated a relationship between the SBF’s

error and split length with the linkage’s privacy, efficiency, and effectiveness. In summary, smaller

splits lead to privacy increase and efficiency, and effectiveness cost.

This similarity graph can be used as input to any of the available classification techniques. For

instance, we use a threshold-based classification in the evaluation presented in Chapter 4. However,

to address the problems related to the Threshold-based and Unsupervised Learning Classifiers, we

propose AT-UC (Chapter 5).

AT-UC is a methodology to provide ML-based classifiers to the PPRL process. AT-UC ex-

ploits Transfer Learning techniques, which leverage the information available in public (or synthetic)

datasets to train classifiers in a privacy-preserving context. In summary, in the AT-UC, we imple-

mented the following contributions: i) a dataset selection method based on the dataset’s resemblance

and ii) the usage of an ML-based classifiers for PPRL.

AT-UC receives the entity similarity graph and a set of non-private training datasets as input.

Finally, at the end of the AT-UC execution, a ML-based classifier will indicate whether a record pair

is a match or not. Notice that the ML-based classifier is trained without the need of an expert to label

instances or define a similarity threshold. Furthermore, the AT-UC addresses our third specific

goal, the use of a machine learning-based classifier in a PPRL context.

Examining the AT-UC results, we conclude that the use of Transfer Learning techniques can

improve the Classification step by leveraging the knowledge of public datasets to train ML-based

classifiers to the PPRL, overcoming the threshold-based classifier’s linkage results (the most used

classifier in the PPRL context).

The Deep learning-based classifier for PPRL (fourth specific goal) is addressed by DLC (Chapter

6). The use of Deep learning classifiers in the PPRL process seeks to mitigate the issues of employing

predefined binary similarity measures. Instead of utilizing the similarity measures (such as AT-UC),

DLC trains classifiers to identify patterns over encoded data (e.g., Bloom Filter pairs) that indicate

whether an encoded record pair represents a match or not.

In order to enable the usage of Deep learning techniques, our first contribution was a novel rep-

resentation of encoded data (e.g., Bloom Filter pairs). This representation uses the Cross Recurrence

Plot (CRP) to highlight patterns in the encoded data. Our second contribution was two deep learning

models based on Convolutional Neural Networks that leverage the CRP of the anonymized data to

identify matching record pairs. We also proposed a workflow to validate the use of our classifier

in a PPRL context.
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Analyzing the DLC results, we conclude that by representing the encoded record pairs as CRPs,

it was possible to highlight patterns in the data that could be employed classifiers to identify matching

entities. Moreover, our experiments demonstrated that the CRPs patterns could provide a suitable

feature space for the ML-based classifier instead of standard binary similarity measures.

It is important to mention that DLC also contributes to PPRL linkage quality, with no or minimal

cost to the privacy guarantee of the PPRL process. Moreover, DLC (and AT-UC) also contributes to

adopting PPRL in a real-world application.

Notice that we illustrated the inputs and outputs of each contribution presented in this document.

Furthermore, we explained that each contribution impacts only a specific PPRL step, preserving the

input and output of all PPRL original steps. Thus, by preserving the original input and output of the

PPRL process, our contributions can be easily plugged into a novel or existing PPRL workflow.

In summary, besides the practical aspects of our contributions (linkage quality and privacy), this

work may contribute to the usage of PPRL solutions in real-world problems (such as epidemiologic,

populational, law enforcement, and medical applications) by presenting a review of such application

in each chapter of this document.

7.2 Future Work

In this section, we highlight the main open areas, research opportunities, and future work in the

context of this thesis. We divided the research opportunities into two groups, the Privacy aspects and

Linkage Quality & Novel PPRL Applications.

7.2.1 Privacy aspects

This section presents three viable research opportunities to improve the PPRL privacy guarantees.

Improve the privacy guarantees of the PPRL process (Privacy-Preserving Blockchain): ex-

isting Blockchain systems present low transactional privacy. All transactions, including the smart

contract execution, are exposed on the Blockchain. Thus, by exposing the data on the Blockchain, an

attacker could exploit the exposed data to attack the privacy of the individuals. To tackle this prob-

lem, several researchers [93; 187; 43; 149] and companies (such as Microsoft 1) have been working

on novel strategies in the last few years.

1Confidential Consortium Framework https://github.com/microsoft/CCF which employ SGX technology to

execute the Blockchain nodes in secure enclaves
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For instance, in 2016, Kosba et al. [93] proposed a decentralized smart contract system that en-

crypts the data on the Blockchain, thus retaining transactional privacy from the public’s view. More-

over, in 2019, Ddwivedi et al. [43] proposed the use of a blockchain to provide secure management

and analysis of healthcare big data. They proposed a modified blockchain with additional privacy and

security properties based on advanced cryptographic primitives. The aforementioned works make

data and transactions more secure and anonymous over a blockchain-based network.

Employ the aforementioned Privacy-Preserving Blockchain approach [93; 187; 43; 149] could

improve the privacy guarantees of the PPRL process. Furthermore, such an approach could mitigate

several privacy attacks, such as the attack mentioned in Appendix A.2.3.

Novel Privacy Attacks: several PPRL attacks [181; 180; 182; 177] employ statistical machine

learning strategies to reidentify entities. These attacks exploit the similarity graph of the entities and

the bit patterns of the encoded data to gain information. The CRP and RP representation (presented in

Chapters 5 and 6) could be used to conceive novel PPRL privacy attacks. The Recurrence Plots could

be employed to evidence patterns in the encoded data. Moreover, deep learning algorithms could be

employed to facilitate the re-identification of the entities.

Differential Privacy in PPRL: Differential Privacy is under-explored within the PPRL context.

This technique can be employed in SBF and ABEL to mitigate several PPRL attacks. Moreover,

Differential Privacy can be employed in the Transfer Learning context to reduce the privacy risk of

transferred knowledge and private data, such as described in Section 5.3.7.

7.2.2 Linkage Quality and Novel PPRL Applications

This section presents three viable research opportunities to improve the PPRL process linkage quality

and novel PPRL application.

Distributed Representation of Words (DR) in PPRL: DR has been used in Natural Language

Processing (NLP) applications as a feature representation of the input to Deep Learning and other so-

phisticated processing tools [73]. In the traditional RL context, NLP has been employed with mean-

ingful results [41] to perform linkage tasks over non-structured data (e.g., text). One possible research

opportunity is to employ privacy-preserving techniques to perpetuate (encode) the DR and propose a

PPRL method to perform linkage over non-structured data. For instance, a privacy-preserving NLP

solution could link medical records. Moreover, a privacy-preserving NLP solution could identify

patients with the same condition (e.g., diabetes) and suggest treatments with privacy guarantees.

Federated Learning (collaborative learning): is a machine learning technique that trains an

algorithm across multiple data owners without the need for data exchanging during the training pro-
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cess [73]. In Chapter 6, we propose a method (DLC) that enables the possibility of using Federated

Learning in the PPRL context. However, we did not explore this possibility. Future research can be

conducted to propose novel Federated Learning strategies to PPRL or assess the existing Federated

Learning in the PPRL context.

Deep Unsupervised Domain Adaptation: in this work, we presented two contributions to the

classification step of PPRL: AT-UC and DLC. The first transfers the knowledge from non-private

datasets, and the second employs deep learning classifiers to match entity pairs. Proposing a tech-

nique that transfers the knowledge of non-private datasets to be employed in the MHT workflow could

improve the linkage quality of the PPRL process - e.g., employing privacy-preserving data augmenta-

tion techniques (further detailed in Section 6.3). Therefore, a combination of AT-UC and DLC could

be considered a future work opportunity.
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Appendix

A.1 Notation Summary

Symbol Description

PPRL

P Participant of PPRL

|P | number of participants

e Entity

ê Anonimyzed entity

Dp Dataset of participant p

D̂p Anonimyzed dataset of participant p

Ξ Decision model

Bloom Filter

l Bloom filter length

n set of elements (q-grams) to be inserted in BF

k Bloom filter hash functions

bm Value of bit m in the filter

Spliting Bloom Filter
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s Number of splits

ϕ Split

3PAC/ABEL

Ψ Blockchain public readable database

α Alpha threshold

β Beta threshold (β = α− error)

ζ List of entities (ids) pairs with their similarity values

φ A set of splits (ϕ)

AT-UC

Dtarget Target Dataset

Dsource Source Dataset

Tsource/target Target/Source Learning Task

DLC

D̄a, D̄b Sub-dataset of the original

Υs sub-dataset sample size in percentage

Υm Percentage of non-matching isntance in the sub-dataset

α CRP threshold

m CRP neighbors

Θ Heaviside function

ϵ privacy budget
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A.2 Limitation: Blockchain-based privacy-preserving

record linkage

The “Blockchain-based Privacy-Preserving Record Linkage – Enhancing Data Privacy in an Un-

trusted Environment” (BC-PPRL) uses Blockchain technology to provide accountability to the com-

putation performed during the comparison step of PPRL. The BC-PPRL utilizes small fragments

(splits) of the encoded records to iterative compute the similarity of the records and classify them

into matches and non-matches, without sharing the complete information of the encoded records.

Christen et al. propose a novel attack that leverages the exchanged information by the BC-PPRL. In

this section, we acknowledge the Christen et al. findings and provide a detailed explanation of how

the privacy of BB-PPRL could be compromised. We also make available a simplified version of the

BC-PPRL, the datasets, and version (ported to python 3) of the attack that could be executed in the

google cloud environment at: https://github.com/thiagonobrega/bcpprl-simplified.

A.2.1 Introduction

In recent times, companies and government significantly increased the amount of collected data.

Much of this data is about personal information, such as shopping transactions, browsing history,

telecommunication records, financial information, or electronic health records. This data has been

employed in data mining and analytic techniques that can provide relevant information for several

areas of knowledge. For instance, personal data can i) be employed to perform crime and fraud de-

tection [176], ii) lead to better patient outcomes or to detect a disease outbreak in the health sector

[10], iii) be of vital importance to national security [179] or iv) be a competitive edge to a com-

mercial enterprise [30].

Data mining and analysis often require information from multiple data sources to be inte-

grated in order to enable precise and useful analysis [10]. However, to execute data integra-

tion, first, we have to identify and aggregate records that relate to the same entity (e.g., peo-

ple, restaurants, publications, products, among others) from one or more data sources [30]. This

process is known as Record Linkage (RL), Data Matching (DM), or Entity Resolution (ER) [30;

10]. Although the process receives several names in the literature, in this work, we will adopt RL.

The RL process is composed of four major steps. The first one is data pre-processing, which

ensures the data from several data sources are in the same format. The second step, indexing, intends

to reduce the number of comparisons performed by selecting record pairs to be matched (compared)
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in the subsequent step. In the third step, the actual record pair comparison occurs. In the comparison

step, each record pairs receives a similarity value. These pairs are compared using various attributes

(for a person, it can include name, sex, and age) and comparison functions. Finally, in the last

step (classification), the record pairs are classified into matches, non-matches, or potential matches,

depending on the decision model used [10].

A recurring problem that Record Linkage faces is the absence of attributes capable of uniquely

identifying records, which refer to the same entity, in the different data sources. The absence of a

unique identifier, such as an ID, makes the use of simple comparison operations (e.g. SQL joins)

impossible, making the linkage to be carried out with sophisticated comparisons involving a set

of common attributes to all records in the different data sources. Such a set of attributes is called

quasi-identifiers (QIDs) [30].

Currently, Record Linkage not only faces computational and operational challenges intrinsic to

the comparison and classification methods, but it also has to address privacy preservation challenges

due to recent laws and regulations such as European General Data Protection Regulation (GDPR),

Brazilian General Data Protection Law (LGPD) and the US HIPAA Privacy Rule. In this context,

Privacy-Preserving Record Linkage (PPRL) emerges, aiming to identify matching records across pri-

vate data sources, ensuring that the data’s privacy and confidentiality are preserved throughout the

linkage process.

In order to address privacy-related issues, the basic idea of Privacy-Preserving Record Linkage

(PPRL) is to execute the linkage process in anonymized data (by perturbing the original data with the

use of encryption, hash functions, and noise additions), ensuring that the privacy and confidentiality of

the data are preserved during the linkage process. PPRL reveals only a limited amount of information.

For instance, a party only knows which of its own records exist in the other party’s data source or the

number of duplicated records presented in the datasets used as input to the PPRL process [179].

Moreover, a PPRL solution should address efficiency, linkage quality, and privacy characteristics.

Furthermore, the PPRL solution needs to provide a comprised among privacy, efficiency, and quality

according to the needs of the PPRL parties’ requirements.

In this context, the Blockchain-based Privacy-Preserving Record Linkage (BC-PPRL) [130] in-

troduces a novel protocol that enables the auditability of the computations performed by the PPRL

parties. Furthermore, the BC-PPRL compares the records iteratively (using a fraction of the orig-

inal information) to audit the computation performed by different parties and reduce the informa-

tion shared during the PPRL process. A filtering process explains the information reduction in the

BC-PPRL. In other words, in each iteration, records pairs (represented by a fraction of the origi-
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nal information) that present a similarity value below a predefined threshold are removed from the

comparison step of PPRL.

Christen et al. proposed a novel attack that leverages the exchanged information during the BC-

PPRL execution to re-identify the encoded records. The attack proposed by Christen et al. can

successfully re-identify records using small piece information.

Thus, considering the novel attack, this work has the objective of acknowledging the limitation

of the BC-PPRL and clarifying in which circumstances the attack will succeed. Moreover, this work

intends to make clear to other researchers how the BC-PPRL can (or can not) be safely used.

Outline. In Section A.2.2, we provide details regarding BC-PPRL. Section A.2.3 details the

limitations of BC-PPRL. Finally, Section A.2.4 introduces our final arguments.

A.2.2 Blockchain-based Privacy-Preserving Record Linkage

This section explains the assumptions and intuitions employed to design the BC-PPRL. Thus, be-

fore presenting the assumptions, it is important to remember that the BC-PPRL introduces a novel

protocol that enables the auditability of the computations performed by the PPRL parties, named

Auditable Blockchain-based PPRL (ABEL). To implement the protocol, we employ a decentralized

environment (Blockchain networks) where untrusted (or semi-trusted) parties perform the computa-

tions required by PPRL.

It is important to mention that the Blockchain does not provide a mechanism to preserve the

privacy of the records during the PPRL process. Actually, the Blockchain reduces the privacy of

PPRL by replicating the entire data amongst the untrusted parties. To overcome this limitation, we

introduced the Splitting Bloom Filter (SBF), an improvement for the most prevalent anonymization

technique used in PPRL applications: Bloom Filter (BF) [152]. SBF enables an iterative comparison

of the BF similarity by breaking the original BF in splits. It is important to remark that each BF is

the anonymized representation of one record.

The basic idea of ABEL is to iterative execute the comparison step of PPRL by employing small

segments (splits) of the original BF. In each iteration, the split similarity will be used to validate

the similarity computations and filter the BFs that will be forwarded to the next iteration. In other

words, BFs that present a similarity value below a predefined classification threshold are removed

from the protocol in each iteration. Moreover, this filtering process could reduce the amount of in-

formation regarding BFs that probably will not be classified as a match from being shared during

the linkage process.
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The iterative comparison step, the filtering process, and the use of small splits of the BFs can dif-

ficulty BF re-identification, resulting in privacy-enhancing to the PPRL process. It is important to re-

mark that, in the BC-PPRL, i) a significant part of the BF is removed from the PPRL execution (due to

the filtering process), and ii) the filtering process is conducted over a small fraction of the information.

By removing BFs, in the early stages of the protocol, it is expected that privacy attacks face an

additional challenge to re-identify BFs using a fraction of the original information, for the BFs that

probably will not be classified as a match. Regarding the BFs that probably will be classified as

matches, the BC-PPRL will forward all splits.

In order to explain why the share of a fraction of the original could improve the privacy of PPRL,

in the following, we detail the filtering process performed by ABEL. Furthermore, we detail two

important characteristics of ABEL: i) the indistinguishability and ii) the uncertainty about the splits.

ABEL filtering process

As previously argued, ABEL removes (i.e., filters) BFs from the PPRL process that probably will not

be classified as a match. This filtering process occurs because ABEL only shares the splits of a BF

if the similarity is above a certain threshold to the other records. This filtering process is important

to reduce the amount of information shared during PPRL.

To illustrate how much information (split) is filtered (retained) by ABEL in each iteration, we

used a sample of the NCVR dataset to count the number of BF retained in each iteration of the ABEL

execution. Figure 1 illustrates the filtering process over splits with 3.125% (32bits) of the original

BF length. To provide a realistic scenario, we use standard blocking to define the computation that

will be considered during PPRL. By employing the standard blocking, we reduce the number of total

computations in the first iteration (using the first split) by 80%.

It is important to mention that, to plot Figure 1, we do not use the pair of BFs (or records). Instead,

we count the number of BFs pruned from the PPRL by our protocol. Therefore, Figure 1 represents

the number of BFs removed in each iteration.

In Figure 1, it is possible to notice that more than 65% of the BFs are filtered in the first iteration.

In other words, for 65% of the BFs in the original dataset, we share only 3% of the original BF

(information). This number represents a very small fraction of the original information, and we

estimate that it refers to no more than three bigrams of the original information. Moreover, only the

splits that are more likely to be matched in the subsequent iterations are shared. It is worthwhile to

mention that ABEL filters more than 90% of the BFs until the 8th iteration.
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Figure A.1: The number of filtered records, considering similarity threshold = 0.4 and 0.05

error.

In summary, depending on the BC-PPRL parameters (e.g., threshold, error, and split length), the

filtering process can reduce the shared information of records that will not be classified as match

by the PPRL process.

Indistinguishability

The indistinguishability could be employed as a privacy metric to indicate whether the adversary can

distinguish between two items of interest (such as recipients of a message or sensitive attributes

in a database) [183].

In order to explain how ABEL and SBF can promote a degree of indistinguishability, consider that

a dataset (D1) contains three distinct BFs: A=101111, B=101110, and C=110011. The owner of D1

intends to execute the PPRL process with D2, which contains only one BF, T=110011. If an observer

receives all BFs from D1, he or she can recognize that these filters represent three distinct entities. In

Figure A.2, we illustrate how ABEL and SBF increase the indistinguishability until a certain point.

Notice in Figure A.2 that the BFs are split into three parts. Also, ABEL shares one split per

iteration if the split satisfies the adjusted threshold (α) defined by the PPRL parties. In the first

iteration, the first splits of all records are shared. Notice that the first split of A and B are the same,

making it hard to distinguish the origin of the splits. Moreover, due to the difference of the first

split of A and B (11) to the first split of T (01), the remaining splits of A and B are not shared in

the subsequent iterations.

It is worth mentioning that, at the end of the ABEL execution, an observer receives a reduced

amount of information from the filtered records. In Figure A.2, the colored splits represent the avail-
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Figure A.2: BF indistinguishability over ABEL iterations

able information to an observer. Notice that this observer knows all bits of C. Therefore, for filter C,

no indistinguishability is provided. However, for BFs A and B, the observer has limited information,

i.e., the observer may infer that A and B share the same bigram. Furthermore, the observer doesn’t

know for sure if one split is relative to one or multiples records. This raises uncertainty about the

cardinality of the record and the origin of the split. Briefly, the example illustrates how ABEL and

SBF promote a degree of indistinguishability to PPRL.

To illustrate the indistinguishability in a real-world dataset, we plotted, in Figure A.3, the number

of unique split values over the NCVR dataset considering different combinations of attributes and

splits. It is important to remark that the BF parametrization is exposed in Table A.2, and all BF

depicted in Figure A.3 consider the same false-positive rate.
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Figure A.3: Number of unique values BF per split length.

The indistinguishability in the NCVR dataset can be noticed in the BF with 100 bits. On average, a

split with 10% of the original BF represents 10 BF. Therefore, because each split represents multiples

records, an attacker will have an extra challenge to distinguish records represented by the same split.

Figure A.3 also shows that the original BF length (l), split length (s), and the dataset characteristic
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(e.g., the attributes values diversity) are important to the indistinguishability. In summary, a bigger

BF (i.e., l=1000 bits) that requires a significant number of hash functions to represent each n-gram

(i.e., k¿100) demands a split with 1% of the original BF length to reduce the number of unique splits

values. Thus, while we reduce the original BF length, it is possible to observe a reduced number of

unique values over bigger splits.

Uncertainty

Another possible outcome of using a fraction of the original information to represent a record is an in-

crease in uncertainty. Uncertainty and indistinguishability are highly correlated in the PPRL context;

however, they are different. Indistinguishability investigates whether the adversary is able to distin-

guish between two outcome mechanisms [183]. Indistinguishability metrics are usually binary; they

indicate whether two outcomes are indistinguishable or not but do not quantify the privacy levels

in-between.

Uncertainty normally considers the probability/estimation that the adversary makes about the

information. These metrics assume that high uncertainty from an adversary is associated with high

privacy because the adversary cannot base his/her guesses on information known with certainty [183].

However, it is worthwhile to mention that even guesses with complete uncertain information can be

correct. This results in privacy loss even in scenarios with a highly uncertain adversary.

Ordinarily, uncertainty is measured by employing the Entropy (H(x)) to measure the amount of

information and therefore quantify the uncertainty of the information. Cross-Entropy was used in the

Privacy-preserving Distributed Clustering [114] to measure the uncertainty from the clustered data,

and therefore measure the privacy of the information stored in a cluster.

Cross-Entropy measures the amount of information needed to identify an object in the dataset if

the original data is coded in terms of the distribution Q, rather than their true distribution P. Cross-

Entropy can be expressed using the entropy of P and the KL-distance, such that:

CE(P,Q) = H(P ) +KL(P ||Q) (A.1)

It is important to remark that the KL-distance (a.k.a., relative entropy) measures how one proba-

bility distribution differs from a second distribution. The KL-distance is defined as:

KL(P ||Q) =
∑

x∋X

P (x)× log

(

P (x)

Q(x)

)

(A.2)

such that X represents a set of entities (discrete random variable) that can be encoded with different

probabilities P(X) and Q(X).
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Merugu and Ghosh [114] argued that there is a linear dependency between CE and KL-distance.

They employ the KL-distance to estimate uncertainty and, therefore, the privacy in the context of

their work. We are able to use the same idea to measure the uncertainty produced by BC-PPRL.

Thus, consider that P is the original distribution of bit patterns in BFs and Q is the distribution of bit

patterns in splits, i.e., the first split used by Semi-Trusted Third Party (STTP).

It is important to explain how KL-distance is interpreted as an uncertainty metric. In summary,

a KL(P ||Q) = 0 indicates that the two distributions in question have identical quantities of infor-

mation. Thus, considering that high uncertainty provides high privacy [183; 114], lower KL-distance

means low uncertainty and, therefore, less privacy.

In Section A.2.3 we correlate the uncertainty, indistinguishability, and the filtering process on the

results achieved by Christen et al.

A.2.3 BC-PPRL Limitation

In this section, we intend to make clear the limitations exposed in BC-PPRL [130]. Moreover, we

intend to confirm and acknowledge the results of Christen et al.

In Section 8 of BC-PPRL [130], there is a discussion regarding the limitation of BC-PPRL. It is

argued that BC-PPRL faces challenges regarding execution time (efficiency) and privacy. Regarding

the efficiency, it was demonstrated that BC-PPRL has an elevated execution time due to the usage

of Blockchain networks. On average, each Blockchain computation was 20 times slower than the

regular computation. Moreover, knowing that ABEL requires multiple iterations of the protocol, the

execution of the PPRL process using BC-PPRL could be 20 to 200 times slower than a standard

PPRL approach.

Concerning the privacy capabilities in Section 8.2.4, it was explicitly stated that ”... we believe

that our approach is unable to preserve the privacy of the entities when the parties choose inappro-

priate parameters...”. Section 8.2.5 presented a comprising between the BC-PPRL parameters and

the efficiency, privacy, and linkage quality. Moreover, it was explained that bigger splits negatively

impact privacy, while smaller splits have a positive impact on privacy.

Christen et al. demonstrate this privacy limitation. Furthermore, Christen et al. evidence that

BC-PPRL could reveal a significant amount of information. In the following sections, we comment

on the result of the novel attack, the pprlSegmentAtomAttack. We also present arguments to make

clear in which case the aforementioned attack is more likely to succeed. Finally, we compare the

pprlSegmentAtomAttack result against other attacks.
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Comments on pprlSegmentAtomAttack results

The results reported by Christen et al. demonstrated that BC-PPRL reveals a significant amount of

information when more than 5% of the BF (with 1,000 bits) are shared. Moreover, Christen et al. test

the attack considering different combinations of encoded attributes, number of hash (k) functions,

and segment length(s).

In the tested scenarios, the capabilities of BC-PPRL are limited. Moreover, BC-PPRL showed a

discrete improvement on privacy when a non-optimal BF occupation (fewer hash functions) is em-

ployed. It is worthwhile to mention that, ideally, a BF needs to have 50% of its bits set to 1 to reduce

the collision probability of a BF element (e.g., n-gram) [30].

However, we believe that this experiment has an issue related to the amount of information used

to represent each bi-gram. To provide a simple illustration of our argument, let’s consider that each

character represented by ASCII (or UTF-8) has 8 bits; therefore, a bi-gram is represented by 16 bits.

For instance, in the experiment, each bigram of the attributes ’First name’ and ’First Name + Last

Name’ is represented by 123 bits and 57 bits, respectively. This encoding represents an increase

of information from seven to three times of the original information. Entropy-based metrics of the

encoded values could indicate this extra information.

This argument is corroborated by the results shown in Table 3 generated by Christen et al. Table 3

shows that, when the occupation of BF diminishes (smaller k), the attack reduces the number of 1-to-1

correct re-identification rates. It is important to remark that the extra information does not change the

findings of Christen et al.; instead, it just modifies the limits that BC-PPRL is able to work properly.

To provide a more precise definition of the BC-PPRL limitation, we re-executed the attack em-

ploying a sample with 1,000 records of the dataset used in the experiment of Christen et al. We also

consider different BF lengths with an optimal occupation of BF (50% of bits set 1).

Table A.2 shows the re-identification results obtained with pprlSegmentAtomAttack on the same

three attribute combinations employed in the original attack. In this attack, we randomly selected

1,000 records of one dataset to be attacked and used all records of the other dataset (224,073 records)

as the source of information. It is worth mentioning that we consider the amount of shared information

(si) instead of considering BF segment length(s). For instance, when we consider that 10% of the BF

is shared, it could be yielded in one split of 10%, two splits of 5%, or ten splits of 1%. The results

reported in Table A.2 are the mean value of 10 rounds of re-identifications.
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Table A.2: Counts of the five different outcomes of the atom-based attack on 1,000 randomly

selected BF splits for different encoded attribute combinations. Each row shows the results

of 10 repletion’s of the attack.

Encoded attributes l shared information k 1-to-1 correct 1-to-many correct 1-to-1 wrong 1-to-many wrong No matches

first name

+

last name

+

street

address

1000

25% 24 998 2 0 0 0

20% 24 996 ±1 3 ±1 0 ±1 0 0

10% 24 327 ±28 117 ±17 386 ±6 170 ±20 0

5% 24 3 ±2 6 ±2 756 ±31 234 ±27 0

2% 24 0 0 910 90 0

500

25% 12 931 ±7 33 ±10 29 ±4 6 0

20% 12 606 ±8 121 ±7 199 ±12 74 ±11 0

10% 12 7 ±2 7 ±2 665 ±10 320 ±11 0

5% 12 0 0 816 ±10 184 ±10 0

2% 12 0 0 1000 0 0

200

25% 5 15 ±2 10 ±4 672 ±17 302 ±16 0

20% 5 0 ±1 3 ±2 728 ±17 269 ±17 0

10% 5 0 0 795 ±21 205 ±21 0

5% 5 0 0 966 ±5 34 ±5 0

2% 5 0 0 1000 0 0

100

25% 2 0 0 865 ±12 135 ±12 0

20% 2 0 0 ±1 788 ±11 211 ±11 0

10% 2 0 0 998 ±2 2 ±2 0

5% 2 0 0 1000 0 0

2% 2 0 0 1000 0 0

first name

+

last name

1000

25% 57 936 ±6 64 ±6 0 0 0

20% 57 933 ±4 67 ±4 0 ±1 0 0

10% 57 862 ±6 119 ±5 17 ±2 2 ±2 0

5% 57 84 ±3 120 ±11 443 ±12 354 ±7 0

2% 57 0 0 593 ±24 407 ±24 0

500

25% 28 914 ±10 82 ±9 2 ±1 1 ±1 0

20% 28 860 ±6 124 ±6 13 ±3 3 ±2 0

10% 28 110 ±9 161 ±9 399 ±1 331 0

5% 28 0 ±1 2 ±1 550 ±16 447 ±16 0

2% 28 0 0 494 ±8 506 ±8 0

200

25% 11 144 ±2 184 ±11 364 ±15 307 ±7 0

20% 11 28 ±3 60 ±5 450 ±16 462 ±19 0

10% 11 0 0 526 ±9 474 ±9 0

5% 11 0 0 562 ±10 438 ±10 0

2% 11 0 0 325 ±7 675 ±7 0

100

25% 6 0 ±1 3 ±1 572 ±12 424 ±13 0

20% 6 0 ±1 1 565 ±7 433 ±7 0

10% 6 0 0 560 ±10 440 ±10 0

5% 6 0 0 443 ±5 557 ±5 0

2% 6 0 0 789 ±1 211 ±1 0

first name

1000

25% 123 477 523 0 0 0

20% 123 460 540 0 0 0

10% 123 469 529 2 0 0

5% 123 291 547 99 63 0

2% 123 5 18 403 574 0

500

25% 61 485 515 0 0 0

20% 61 468 525 5 2 0

10% 61 309 493 107 91 0

5% 61 19 91 342 548 0

2% 61 0 0 425 575 0

200

25% 25 338 552 64 46 0

20% 25 212 488 158 142 0

10% 25 5 41 385 569 0

5% 25 0 1 381 618 0

2% 25 0 0 457 543 0

100

25% 12 12 80 353 555 0

20% 12 5 19 427 549 0

10% 12 0 0 522 478 0

5% 12 0 0 697 303 0

2% 12 0 0 850 150 0
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As shown in Table A.2, the re-identification results to the BF with 1,000 bits are equivalent to the

result reported by Christen et al. However, when we reduce the number of bits used to represent each

n-gram (denoted by k), it is possible to notice that re-identification rate diminishes. It is worthwhile

to remark that all tested BF consider a 50% occupation rate of the filter.

To illustrate the re-identification rate, consider the two distinct BF configuration BF with 1,000

bits and 100 bits regarding the attributes first and last name. Notice that for the 1,000 bits BF, with

25% of the original information, the attack was able to re-identify 99% of the records. However, for

the 100 bits BF, the attack was unable to re-identify none of the records. We believe that these results

can be explained by the amount of information used to represent the n-grams.

As segments get shorter, less correct 1-to-1 assignments can be identified regarding the BF length,

which is expected as the number of unique bit patterns in BF segments gets smaller and, therefore,

less accurate atom assignments are possible.

It is important to emphasize that the amount of information required to correctly and

uniquely identify a substantial number of the plain-text values encoded into the BFs of the

other database owner depends on the configuration of the original BF. However, regardless of

the original BF length, attacks will successfully re-identify the records when a certain amount of

information is shared.

Thus, the amount of information required to correctly and uniquely re-identify a substantial num-

ber of records depends on several parameters, such as the encoded attributes and BF parameters. For

instance, considering the results shown in Table A.2, related to the attributes First and Last name

encoded with a BF with 1,000 bits, if 10% of the original BF are shared, almost all records can be

re-identified. However, considering a BF with 100 bits, when 25% of the original BF is shared, less

than 1% of the records are re-identified.

In order to provide a clear definition of the BC-PPRL privacy limitation, in the next section, we

present metrics that could be used to estimate the amount of information needed to re-identify the

encoded records.

BC-PPRL privacy limitation

As argued in the previous section, BC-PPRL could reveal a significant amount of information de-

pending on several parameters. This section ratifies Christen et al. finding, that the probability of

n-gram being hashed in one split does not provide an accurate privacy metric to the encoded record.

Furthermore, we provide a discussion that could indicate a more suitable method to estimate the
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privacy limitation of BC-PPRL.

BC-PPRL [130] correlates the probability P (ng) of all encoded bits of an n-gram be hashed in the

shared information (split) to the chance of successfully re-identifying an encoded record. However,

Christen et al. demonstrated that using P (ng) or P (∃hi(ng) ∋ ϕ, 1 ≤ i ≤ k) is not a precise method

to estimate the re-identification rate of an attack. Moreover, P (ng) and P (∃hi(ng) ∋ ϕ, 1 ≤ i ≤ k)

fails to predict the chance of re-identification in several cases (e.g., if the original BF uses too much

information to represent each n-gram). In summary, the inadequate privacy estimation considering

the P (ng) and P (∃hi(ng) ∋ ϕ, 1 ≤ i ≤ k) is justified by the fact that both metrics do not take into

the amount of information used to represent each n-gram.

In order to provide a better indication of the shared amount of information (splits) that reduces

the chance of re-identification, we propose the usage of indistinguishability and uncertainty metrics.

As presented in Section A.2.2, the indistinguishability could be expressed in terms of the unique

values of the shared information (splits). The uncertainty brought by the usage of a fraction of the

information to represent could be expressed in terms of relative entropy (KL(P ||Q)).

It is worthwhile to mention that indistinguishability (PU(P,Q)) and uncertainty (KL(P ||Q))

could be calculated by the database owner. Assuming that P is the original BF and Q is the split (or

amount of information), a database owner could calculate the KL(P ||Q) and count the percent of

unique values (PU(P,Q)) that a specific amount of information produces.

Figure A.4 illustrates the relation amongst the aforementioned metrics and the re-identification

rate achieved by the pprlSegmentAtomAttack. Notice that the vertical axis is used to plot three met-

rics, the re-identification rate and two privacy metrics (KL(P ||Q) and PU(P,Q)). The colored

lines represent the KL(P ||Q) and PU(P,Q), and the grey bars represent the percentage of the

re-identified records.

It is worthwhile to mention that we use an interval from 0 to 1 to represent all results. For

instance, if a PU(P,Q) or the percentage of re-identified records is 100%, we represent it by 1.

To normalize the KL(P ||Q) scores between 0 (identical) and 1 (maximally different), we employ

the Jensen–Shannon divergence (JS). The Jensen–Shannon divergence is defined by JS(P ||Q) =

1
2 × KL(P ||M) + 1

2 × KL(Q||M), where M = (P+Q)
2 . In other words, JS(P ||Q) = 0 has the

same meaning of KL(P ||Q) = 0, that the P and Q are similar; therefore, the shared splits have the

same amount of information as the original ones.

Regarding the indistinguishability (PU(P,Q)), it is possible to observe that, when the shared

information has multiple BF, represented by one split (or set of splits), the tested attack is unable

to re-identify the encoded records. It is important to mention that in the results depicted in Figure
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Figure A.4: Re-identification results and privacy metrics for different attribute combinations,

BF length, and shared information. The NM, LN, and ADDR represent the First name, Last

name, and street address.

A.4 when we have PU(P,Q) < 95%, the attack is unable to re-identify the records, including the

BF encoded with 1,000 bits.

We are aware that this attack can be improved, and this result might vary depending on the attack

and the data. Therefore, we suggest that the Indistinguishability should be smaller than 50%. In

other words, by considering PU(P,Q) < 50%, we ensure that, on average, each split represents

two encoded values. Thus, an attacker will be unsure and will have difficulty in distinguishing which

original encoded value generates the split, as explained in Section A.2.2.

Regarding the uncertainty, it is possible to observe that when we consider an amount of informa-

tion (Q) that differs from the original value (P), the attack is unable to re-identify the encoded records.

In other words, when the shared split set presents the uncertainty metric bigger than zero, the tested

attack is unable to properly re-identify the records.
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It is important to comment on the result related to the BF with 200 bits, specifically to the three

attributes (First name, Last name, and Street address) when more than 20% of the original informa-

tion is shared. Notice that, in this scenario, the uncertain metric is zero. We believe that a slight

improvement on the attack or a better data source could result in a higher re-identification rate.

In summary, we believe that the combination of indistinguishability and uncertainty metrics could

indicate the amount of information that could be shared, depending on the BF parameter. Based on

the experimental results, we believe that PU(P,Q) < .5 and KL(P ||Q) > 0.1 provide a suitable

configuration parameter to BC-PPRL. However, it is important to mention that further investigation

should be conducted to determine the indistinguishability and uncertainty metrics values that should

be used. In Section A.2.3, we use the Brazilian Politician Registration to illustrate the re-identification

(and the privacy metrics) results considering a different dataset.

Re-identification results considering the complete BC-PPRL

In BC-PPRL [130], the approach was tested considering five attributes against a different attack.

Thus, assuming that pprlSegmentAtomAttack provides a more accurate test scenario, we employ this

attack to re-assess the privacy of the BC-PPRL. This section intends to provide further details on

the re-identification rate that an attack could produce when executed over the BC-PPRL outputs. To

evaluate the re-identification accuracy, we consider two attributes (first and last names) of a sample

with 10,000 records of the NCVR dataset. The plain records values were encoded considering a BF

with l=200 bits; the anonymization details are shown in Table A.3.

First, we calculate indistinguishability and uncertainty. The indistinguishability and uncertainty

results are described in Table A.3. Notice that the metrics indicate that we can share 20% of the orig-

inal information. Therefore, considering the indistinguishability and uncertainty, we select a 5% split

length (s=10bits) to be used in each iteration of BC-PPRL. In other words, only in the fifth iteration,

when 25% of the encoded information is shared, a portion of the encoded records will be re-identified.

As mentioned in Section A.2.2, BC-PPRL filters the anonymized records (BFs) according to

a predefined threshold. In Figure A.5, we plotted the amount of records filtered in each iteration

considering the pre-agreed threshold (α = 0.85) and error (error = 0.05).

In each iteration of BC-PPRL, we executed the attack against the shared information. For in-

stance, we executed an attack in the first iteration, considering 5% of all BF. While in the second

iteration, we ran the attack over 10% of the original BF to the forwarded records (33% of the remain-

ing encoded records). We executed this attack until the last iteration of the protocol. Table A.4 shows
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Table A.3: Privacy metrics

shared information k percent 1-to-1 correct PU(P,Q) KL(P ||Q) JS(P ||Q)

Encoded attributes l

first name

+

last name

+

street address

1000 bits

25% 24 99% 100% 0.000 0.000

20% 24 99% 100% 0.000 0.000

10% 24 33% 100% 0.000 0.000

5% 24 0% 100% 0.000 0.000

2% 24 0% 94% 0.023 0.085

500 bits

25% 12 93% 100% 0.000 0.000

20% 12 60% 100% 0.000 0.000

10% 12 0% 100% 0.000 0.000

5% 12 0% 99% 0.001 0.018

2% 12 0% 9% 0.505 0.416

200 bits

25% 5 1% 100% 0.000 0.000

20% 5 0% 100% 0.000 0.000

10% 5 0% 95% 0.019 0.078

5% 5 0% 8% 0.722 0.480

2% 5 0% 0% 0.121 0.210

100 bits

25% 2 0% 98% 0.005 0.039

20% 2 0% 92% 0.035 0.104

10% 2 0% 8% 0.776 0.501

5% 2 0% 0% 0.349 0.361

2% 2 0% 0% 0.051 0.136

first name

+

last name

1000 bits

25% 57 93% 100% 0.000 0.000

20% 57 93% 100% 0.000 0.000

10% 57 86% 100% 0.000 0.000

5% 57 8% 99% 0.000 0.012

2% 57 0% 91% 0.044 0.114

500 bits

25% 28 90% 100% 0.000 0.000

20% 28 85% 100% 0.000 0.000

10% 28 11% 99% 0.000 0.010

5% 28 0% 97% 0.011 0.059

2% 28 0% 9% 0.421 0.383

200 bits

25% 11 14% 99% 0.000 0.006

20% 11 2% 99% 0.000 0.012

10% 11 0% 92% 0.035 0.104

5% 11 0% 10% 0.444 0.385

2% 11 0% 0% 0.188 0.257

100 bits

25% 6 0% 98% 0.009 0.053

20% 6 0% 93% 0.037 0.104

10% 6 0% 9% 0.406 0.377

5% 6 0% 0% 0.101 0.195

2% 6 0% 0% 0.018 0.080

first name

1000 bits

25% 123 47% 99% 0.000 0.010

20% 123 46% 99% 0.000 0.010

10% 123 46% 99% 0.000 0.010

5% 123 29% 99% 0.002 0.023

2% 123 0% 92% 0.037 0.106

500 bits

25% 61 48% 99% 0.000 0.010

20% 61 46% 99% 0.000 0.010

10% 61 30% 99% 0.001 0.017

5% 61 1% 96% 0.017 0.071

2% 61 0% 30% 0.298 0.318

200 bits

25% 25 33% 99% 0.001 0.020

20% 25 21% 99% 0.003 0.031

10% 25 0% 94% 0.027 0.092

5% 25 0% 31% 0.266 0.303

2% 25 0% 0% 0.087 0.179

100 bits

25% 12 1% 96% 0.015 0.069

20% 12 0% 92% 0.031 0.099

10% 12 0% 29% 0.308 0.324

5% 12 0% 1% 0.161 0.243

2% 12 0% 0% 0.018 0.080
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Figure A.5: ABEL filtering process.

the re-identification results achieved in each iteration of the BC-PPRL execution.

Table A.4: Re-identification accuracy per iteration

iteration shared information 1-to-1 correct 1-to-many correct 1-to-1 wrong 1-to-many wrong No matches

Iteration 1 5% 1 0 5,588 4,411 0

Iteration 2 10% 1 1 1,855 1,392 0

Iteration 3 15% 8 17 1,157 975 0

Iteration 4 20% 48 137 804 759 0

Iteration 5 25% 214 312 614 450 0

Iteration 6-20 100% 1,346 125 0 0 0

It is worthwhile to remark that from the sixth iteration onwards, we did not execute the attack.

Moreover, we consider that all encoded recorded forwarded before 25% could be re-identified. At the

end of the BC-PPRL execution, 13% of the records could be re-identified.

It is important to mention that 85% of the re-identified records were classified as match by the

classification step (similarity value higher than the predefined threshold). Therefore, even if no

records are re-identified by the attack (e.g., in an ideal PPRL process) at the end of the PPRL process,

the parties will know that these records are presented in the other databases. In other words, in this

attack, a malicious party could re-identify 2% of the records that will not be classified as a match.

To illustrate the indistinguishability and uncertainty metrics on the re-identification accuracy, we

plotted the re-identification results and the metrics in Figure A.6. The axis and elements of the figure
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are the same of Figure A.4.
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Figure A.6: Number of unique BF values per amount of shared information

Notice that as prognosticated by the indistinguishability and uncertainty metrics, the attack begins

to re-identify the encoded records at the fifth iteration.

Comparison of re-identification results with existing BF attack

As mentioned by [130] and Christen et al., BC-PPRL makes available information regarding the

anonymization parameters. This information could be employed to create highly effective attacks

(as the pprlSegmentAtomAttack). It is worth mentioning that highly effective attacks exist [35; 31;

180], even in scenarios where a third party is involved. In these scenarios, the third party is unaware

of the anonymization parameter employed and faces different challenges in re-identifying the en-

coded records.

In order to provide a clear measurement of the BC-PPRL limitation to the PPRL process, we

compare the result shown in Section A.2.3 against the result reported in recent BF re-identification

attacks [32; 35; 31; 180]. The results reported in Section A.2.3 are compared against an attack that

does not consider information regarding the anonymization parameters.

Table A.5 shows the re-identification results of different attacks. It is important to mention that

the majority of the compared attacks assume that the third party has different conditions to be properly

executed, such as i) guess certain parameters used during BF encoding (e.g., BF length), ii) guess the

domain of the sensitive databases depending on its knowledge about the database owners, and iii)
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Table A.5: Comparison of re-identification results

Publication Dataset Num BF 1-to-1 correct 1-to-1 correct %

[35] NCVR diff. attr. >200k >49k 25%

[31] NCVR First + Last name >200k - 20.7%

[180] (with out sim adjust)
NCVR First + Last name 100k -

>50% accuracy

[180] (with sim adjust) >90% accuracy

this work NCVR First + Last name 10k 1,346 13%

access to an encoded dataset with values that occur frequently.

Table A.5 illustrates that the executed attack was able to re-identify fewer records than the others

(in percentual), considering the experimental setup that we tested. However, it is important to men-

tion that the re-identification results depend on the anonymization parameters, data, and thresholds

employed in the BC-PPRL.

Brazilian politicians re-identification results

We re-executed the experiment considering the public Brazilian Politician Registration (BRP), avail-

able from: https://www.tse.jus.br. We employed all records from the 2014 and 2018 federal and estate

elections, comprising 26,093 and 29,010 records, respectively.

Table A.6 shows different attributes combinations, and for each combination, we outline a set

of unique values, VA for the attacker and VB for the victim dataset. The number of unique q-grams

extracted from values in VA is shown as |QA|, and from VB as |QB|. The intersection of the common

q-grams is denoted as |QC |.

Table A.6: Characteristics of the encoded attribute combinations and q-gram sets used in the

attack

|VA| |VB| |VC | Jaccard overlap |QA| |QB| |QU | |QC |
Encoded attribute

FULL NAME;BIRTH CITY 26,093 29,010 3,117 6.0 959 1018 1111 866

FIRST NAME;LAST NAME 20,393 22,655 6,117 16.6 770 812 859 723
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FIRST NAME 5,992 6,487 3,017 31.9 604 625 675 554

We encoded the records considering four different BF lengths, 1000, 500, 200, and 100 bits. Table

A.7 shows the number of hash functions for each attribute combination.

Table A.7: Characteristics of the q-gram sets for each attribute combinations

shared information k |Qseg
B | ksegmin ksegavr ksegmed ksegmax

Encoded attribute bf len

FULL NAME;BIRTH CITY

1000 1% 23 207 1 1.09 1 4

1000 5% 23 720 1 1.64 1 6

1000 10% 23 936 1 2.52 2 7

1000 25% 23 1,018 1 5.82 6 14

500 1% 11 104 1 1.05 1 2

500 5% 11 434 1 1.25 1 4

500 10% 11 683 1 1.55 1 5

500 25% 11 982 1 2.80 3 8

200 1% 5 57 1 1.05 1 2

200 5% 5 220 1 1.11 1 3

200 10% 5 422 1 1.21 1 3

200 25% 5 794 1 1.62 1 5

100 1% 2 24 1 1.00 1 1

100 5% 2 82 1 1.02 1 2

100 10% 2 158 1 1.06 1 2

100 25% 2 426 1 1.15 1 2

FIRST NAME;LAST NAME

1000 1% 56 332 1 1.29 1 4

1000 5% 56 771 1 2.92 3 9

1000 10% 56 811 1 5.51 5 13

1000 25% 56 812 5 13.80 14 24

500 1% 28 183 1 1.15 1 3

500 5% 28 617 1 1.76 2 7

500 10% 28 783 1 2.83 3 9

Continued on next page
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Table A.7: Characteristics of the q-gram sets for each attribute combinations

shared information k |Qseg
B | ksegmin ksegavr ksegmed ksegmax

Encoded attribute bf len

500 25% 28 812 1 6.82 7 14

200 1% 11 83 1 1.06 1 2

200 5% 11 345 1 1.22 1 4

200 10% 11 562 1 1.60 1 6

200 25% 11 773 1 2.88 3 8

100 1% 6 47 1 1.00 1 1

100 5% 6 202 1 1.10 1 3

100 10% 6 357 1 1.25 1 4

100 25% 6 651 1 1.79 2 5

FIRST NAME

1000 1% 119 421 1 1.64 1 5

1000 5% 119 623 1 5.58 5 12

1000 10% 119 625 3 11.21 11 22

1000 25% 119 625 14 27.96 28 41

500 1% 60 266 1 1.24 1 3

500 5% 60 590 1 2.90 3 10

500 10% 60 623 1 5.53 5 13

500 25% 60 625 5 14.18 14 23

200 1% 24 125 1 1.07 1 2

200 5% 24 440 1 1.57 1 5

200 10% 24 569 1 2.47 2 8

200 25% 24 624 1 5.62 6 12

100 1% 12 69 1 1.00 1 1

100 5% 12 276 1 1.22 1 3

100 10% 12 436 1 1.55 1 5

100 25% 12 595 1 2.99 3 8

We employ the pprlSegmentAtomAttack over each scenario presented in Table A.7. We also

expose the re-identification results considering the same output as Christen et al. (1-to-1-correct,

1-to-1-wrong, 1-to-many-correct, 1-to-many-wrong, and no matches). The re-identification results
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are shown in Table A.8.

Notice that the re-identification rate is similar to the results shown in Section A.2.3. To assess

the privacy limitation of BC-PPRL over a different dataset, we show the privacy metrics calculated

over the victim’s dataset in Table A.9.

Table A.9: Privacy metrics

shared information k PU(P,Q) KL(P ||Q) JS(P ||Q)

Encoded attribute bf len

FULL NAME;BIRTH CITY

1000 25% 23 99% 0.000 0.003

1000 10% 23 99% 0.000 0.004

1000 5% 23 99% 0.000 0.013

1000 1% 23 3% 0.744 0.487

500 25% 11 99% 0.000 0.003

500 10% 11 99% 0.001 0.014

500 5% 11 91% 0.055 0.123

500 1% 11 0% 0.668 0.474

200 25% 5 99% 0.000 0.008

200 10% 5 65% 0.297 0.282

200 5% 5 3% 1.037 0.554

200 1% 5 0% 0.120 0.209

100 25% 2 90% 0.055 0.127

100 10% 2 2% 0.991 0.573

100 5% 2 0% 0.438 0.395

100 1% 2 0% 0.056 0.143

FIRST NAME;LAST NAME

1000 25% 56 99% 0.000 0.009

1000 10% 56 99% 0.001 0.014

1000 5% 56 99% 0.003 0.029

1000 1% 56 4% 0.460 0.399

500 25% 28 99% 0.000 0.009

500 10% 28 99% 0.003 0.029

500 5% 28 90% 0.060 0.128

Continued on next page
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Table A.9: Privacy metrics

shared information k PU(P,Q) KL(P ||Q) JS(P ||Q)

Encoded attribute bf len

500 1% 28 0% 0.189 0.258

200 25% 11 99% 0.002 0.025

200 10% 11 78% 0.127 0.193

200 5% 11 4% 0.648 0.462

200 1% 11 0% 0.108 0.199

100 25% 6 91% 0.048 0.118

100 10% 6 4% 0.586 0.445

100 5% 6 0% 0.177 0.251

100 1% 6 0% 0.005 0.043

FIRST NAME

1000 25% 119 99% 0.001 0.015

1000 10% 119 99% 0.001 0.016

1000 5% 119 98% 0.008 0.049

1000 1% 119 14% 0.414 0.379

500 25% 60 99% 0.001 0.016

500 10% 60 98% 0.005 0.040

500 5% 60 94% 0.028 0.093

500 1% 60 0% 0.134 0.222

200 25% 24 98% 0.004 0.037

200 10% 24 85% 0.082 0.156

200 5% 24 14% 0.449 0.388

200 1% 24 0% 0.012 0.068

100 25% 12 93% 0.033 0.101

100 10% 12 14% 0.382 0.363

100 5% 12 0% 0.153 0.236

100 1% 12 0% 0.000 0.000

In order to better illustrate the impact of Indistinguishability and Uncertainty on the re-

identification rate of the attack, we plotted Table A.9 and A.8 result in Figure A.4. The elements

of Figure A.4 are the same as the Figure A.7.
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Figure A.7: Re-identification results and privacy metrics for different attribute combinations,

BF length, and shared information.
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Table A.8: Re-identification results.

shared information k 1-to-1 correct 1-to-many correct 1-to-1 wrong 1-to-many wrong No matches

attr bf len

FULL NAME;BIRTH CITY

1000 1% 23 2 0 18,536 10,472 0

1000 5% 23 41 34 19,955 8,980 0

1000 10% 23 4,828 2,452 14,772 6,958 0

1000 25% 23 28,574 324 88 24 0

500 1% 11 1 0 12,441 16,568 0

500 5% 11 8 4 18,991 10,007 0

500 10% 11 86 61 19,820 9043 0

500 25% 11 15,929 3793 6,731 2,557 0

200 1% 5 1 1 16,042 12,966 0

200 5% 5 1 2 22,848 6159 0

200 10% 5 2 6 25,583 3,419 0

200 25% 5 213 156 19,506 9,135 0

100 1% 2 1 0 29,009 0 0

100 5% 2 1 1 24,096 4,912 0

100 10% 2 1 2 24,642 4,365 0

100 25% 2 4 3 25,232 3,771 0

FIRST NAME;LAST NAME

1000 1% 56 6 13 11,835 10,801 0

1000 5% 56 5,977 5,658 5,609 5,411 0

1000 10% 56 20,214 1,965 307 169 0

1000 25% 56 21,300 1,349 3 3 0

500 1% 28 4 3 13,776 8,872 0

500 5% 28 254 661 9,903 11,837 0

500 10% 28 6,105 5,650 5,572 5,328 0

500 25% 28 21,025 1,510 81 39 0

200 1% 11 0 5 0 22,650 0

200 5% 11 4 31 8,649 13,971 0

200 10% 11 108 363 9,116 13,068 0

200 25% 11 7,128 6,120 5,088 4,319 0

100 1% 6 1 3 12,484 10,167 0

100 5% 6 2 8 7,874 14,771 0

100 10% 6 10 25 10,618 12,002 0

100 25% 6 345 819 9,748 11,743 0

FIRST NAME

1000 1% 119 14 45 2,656 3,772 0

1000 5% 119 3,376 2,399 427 285 0

1000 10% 119 4,695 1,781 10 1 0

1000 25% 119 4,747 1,740 0 0 0

500 1% 60 1 5 2,375 4,106 0

500 5% 60 543 1,556 1,835 2,553 0

500 10% 60 3,488 2,369 397 233 0

500 25% 60 4,740 1,745 1 1 0

200 1% 24 0 4 3,546 2,937 0

200 5% 24 7 18 3,927 2,535 0

200 10% 24 116 453 2,538 3,380 0

200 25% 24 3,690 2,365 289 143 0

100 1% 12 0 0 6,487 0 0

100 5% 12 2 5 3,859 2,621 0

100 10% 12 12 31 2,984 3,460 0

100 25% 12 473 1,417 2,083 2,514 0



A.2 Limitation: Blockchain-based privacy-preserving record linkage 203

Notice that the attack was unable to re-identify the encoded records when Indistinguishability

and Uncertainty are below the values mentioned in Section A.2.3. These results provide an addi-

tional indication that Indistinguishability and Uncertainty could be employed to estimate the privacy

limitation of the BC-PPRL.

A.2.4 Conclusion

In the aforementioned sections, we acknowledge the BC-PPRL limitation that was reported by Chris-

ten et al. Furthermore, we presented elements (Indistinguishability and Uncertainty) that can be used

to predict the cases which the BB-PPRL fails to preserve the privacy of the encoded records. In other

words, Indistinguishability and Uncertainty evidence the amount of information that has a reduced

chance to be re-identified in an attack.

It is important to mention that several parameters could impact BC-PPRL. For instance, the

number of the hash functions (amount of information) represents an important element to the re-

identification rate of an attack. Further investigation should be executed to evaluate the trade-off be-

tween linkage quality and privacy regarding the number of hash functions and filter length. It is worth-

while to mention that there are studies regarding the occupation of the BF; however, we are not aware

of works that correlate the length and number of the hash functions to the privacy of the information.

Regarding the privacy issues of the PPRL, we believe that it is a hard task to fulfill. Mainly due

to the high re-identification of the existing attacks, a total PPRL that can fully preserve all records’

privacy is still an open problem. The BB-PPRL was not proposed to solve that issue. It was designed

to demonstrate that novel techniques can be employed to improve the PPRL process.

Moreover, considering the i) complex parametrization of BC-PPRL, ii) computation cost of BC-

PPRL, and iii) the fact that attacks could be improved and combined, the BB-PPRL should be care-

fully used. Furthermore, to ensure high privacy capabilities, the BB-PPRL should be combined with

other techniques. The PPRL parties could use the BB-PPRL as a preliminary stage of the comparison

step to select records and reduce the information that will be sent to a third party. For instance, consid-

ering the experimental scenario shown in Section A.2.3, the parties could re-encode the 1,346 records

and send 75% of the original BF to a third party. This reduces the number and the amount of shared

information of the encoded records, hampering the chance of success in re-identification attacks.

Finally, we would like to thank the time and effort of all seven researchers involved in the critique

of the BB-PPRL. We believe that the discussion brought by Christen et al. was highly relevant to the

PPRL and might help other researchers as much as we.
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A.3 SBF Splits Differences

A BF stores m elements with k hash functions into l-bits, such that eτ = [b0, · · · , bl]. SBF

divides the original BF into s splits with l
s bits, such that SBF (eτ , s) = [ϕ0, · · · , ϕs−1], and

ϕi =
[

bi, · · · , bi+( l

s
−1)

]

. In this context, consider that Pr(u) = p represents that a bit position stores

’1’1, and the probability of a bit position storing the value ’0’ can be estimated by Pr(z) = 1−Pr(u);

thus, Pr(z) = 1 − p.

The probability of a split (ϕi) storing a specific distribution of bits (Pr(ϕi = x)) can be estimated

by the number of ’0’ and ’1’ bits stored in the split [17]. Assuming that the BF length (l) is big

enough, and the BF parameters are correctly configured, it is possible to consider that the BF bits’

values are independent events [89]. Therefore, we can use a Binomial distribution, with l
s positions

(or trials) to estimate the Pr(ϕi = x), i.e., Pr(ϕi = x) ∼ B
(

l
s , p
)

, as presented in Eq. (A.3)

B

(

l

s
, p

)

=

( l
s

x

)

px(1− p)
l

s
−x (A.3)

Assuming Pr(ϕi = x) as a Binomial distribution, we are able to estimate the variation of the bits

within the splits using the binomial distribution mean (µ), variance (σ2) and standard deviation (σ).

Consider that X is a binomially distributed random variable, such as X ∼ B(n, p), we can estimate

the mean number of ’1’ in each split using Eq. (A.4).

µ =
l

s
· p (A.4)

Knowing that the variance of a binomial distribution can be calculated by σ2(X ) = n ·p · (1−p),

and the standard deviation is the square root of the variance, we can use σ2 and σ to estimate the

variation of the bits within the splits applying Eq. (A.6) and Eq. (A.5).

σ2 =
l

s
· p · (1− p) (A.5)

σ =

√

l

s
· p · (1− p) (A.6)

Moreover, we employ the coefficient of variation (CV), defined as standard deviation (σ) divided

by the mean (µ) to describe the variability of ’1’ within a split relative to the mean number of ’1’

in other splits. It is worthwhile to mention that the CV represents the variability in percentage. Eq.

(A.7) calculates the CV of the SBF splits.

1The Pr(u) and Pr(z) of a BF can be estimated using BF setup parameters, as presented in Section 2.3.3,

such that Pr(z) = e−
k×n

l and Pr(u) = 1− e−
k×n

l .
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CV =
µ

σ

⇒
l
s · p

√

l
s · p · (1− p)

⇒
l
s · p

√

l
s ·
√

p · (1− p)

, considering that
l

s
=

√

l

s
·
√

l

s

⇒ ✓
✓✓
√

l
s ·
√

l
s · p

✓
✓✓
√

l
s ·
√

p · (1− p)

, considering that p =
√
p · √p, and

√
a · b⇒ √a ·

√
b,

such that a ≥ 0 and b ≥ 0.

⇒

√

l
s ·✚✚
√
p · √p

✚✚
√
p ·
√

(1− p)
⇒

√

l
s · p

√

(1− p)
⇒

√
l · √p

√
s ·
√

(1− p)

⇒
√
l · p

√

s · (1− p)

Eq. (A.7) represents the percentual variation of ’1’ in terms of l, s, and p. Thus, considering that

in a PPRL context p ≈ 0.5 and l is bigger than s, it is intuitive that Eq. (A.7) will produce CV > 0

. For instance, if we consider l=1,024, s=10 and p=0.5, the expect variability of ’1’ is approximated

31%. In other words, it is possible to configure a SBF to present, with a high probability, a slightly

variation in the number of ’1’. Therefore, assuming that the BF and SBF parameters are properly

configured, the variation in the number of ’1’ is reflected in the Jaccard similarity metric, such that

Jaccard(ϕi
a, ϕ

i
b) ̸= Jaccard(ϕi+1

a , ϕi+1
b ), where ϕi

a ∈ SBF (eτa, s) and ϕi
b ∈ SBF (eτb , s).

Furthermore, the Jaccard similarity of two BFs can be expressed as the mean similarity of their

splits, as expressed in Eq. (4.3), Jaccard SBF (eτa, e
τ
b , s) =

1
s

∑s
i=0

|ϕi
a

⋂
ϕi

b
|

|ϕi
a

⋃
ϕi

b
|
. Thus, considering the

typical parameters of BF employed in a PPRL context, it is unlikely that every split of a BF is identical.

This statement is straightforward to demonstrate by using the BF and SBF parameters in Eq. (A.3),

and can be estimated by
s
∑

i=1
Pr(ϕi = x). For instance, considering the previous example (l=1,024,

p=0.5, and s=10), the probability of every split being identical is Pr(ϕi = x) ≈ 2.52× 10−133.
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Finally, consider that the SBF can be configured to vary the number ’1’ in its splits, and the remote

probability of every split presents the same bit distribution. We assume that there is a difference

between Jaccard similarity of the original BF and the similarity of one SBF split Jaccard(eτa, e
τ
b ) ̸=

Jaccard(ϕi
a, ϕ

i
b), such that ϕi

a ∈ SBF (eτa, s) and ϕi
b ∈ SBF (eτb , s). Moreover, we associate this

difference to an error ϵ, and use Eq. (4.4) to represent this intuition.

Jaccard(eτa, e
τ
b ) = Jaccard(ϕi

a, ϕ
i
b) + ϵ

, such that 0 ≤ ϵ ≤ 1.

In this appendix, we intend to acknowledge the existence of differences between the similarity of

one split and the BF that originated it. Appendix A.4 demonstrates the relation between our experi-

mental results (Section 4.3) and the content of this Appendix

A.4 Experimental Analysis of the Relation between ϵ-error

and σ

In order to illustrate the alignment of the arguments presented in Appendix A.3 with the results

described in Section 4.3, we selected five datasets (bike, beer, NCVR, MVR and yv-er) that were

encoded with the same filter length (l = 1, 024 − bits) to show that the ϵ error is proportional to

the error presented in Eq. (A.6).

Therefore, knowing the BF setup for these datasets and considering p ≈ 0.53, we calculated

the standard deviation (SD) for every used split length in the experiments and compared the results

against the mean measured error (ϵ). The results are shown in Figure A.8; notice that we convert the

error as a percentage of the bit length.

Notice that the calculated SD (x marks) is proportional to and near the line that represents the

measured mean error of the experiments. This result corroborates with the experimental results pre-

sented in Sections 4.3 and 4.3.2, illustrated in Figures 4.3, 4.4, and 4.5, showing that the smaller the

length of the SBF splits, the bigger the error originated from Eq. (4.4).

We would also like to mention that, until this point, we can acknowledge the existence of ϵ, and

this error is related to the error measured in our experiments. In future work, we intend to investigate

the particular characteristics of ϵ.
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Figure A.8: Comparison of the measured and calculated errors associated with split length,

considering a BBF.
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A.5 Exploratory Data Analysis

Exploratory data analysis (EDA) investigates data sources and summarizes their main characteristics

to define how to manipulate data sources to test hypotheses or check assumptions. Furthermore,

EDA is used to understand data source variables and their relationships by summarizing their main

characteristics, often employing data visualization methods.

In this research context, EDA represents an important tool to test our research hypotheses, espe-

cially when assessing and proposing classifiers to the PPRL process. Thus, to provide an overview

of the 15 pairs of data sources employed in the evaluations presented in this document, we offer a

brief EDA of the data source quality and how similar the duplicated entities (matching entities) are

in each data source pair.

The EDA’s main goal is to provide a better explanation of the insights and evaluations presented

in this document. A summary of the data sources characteristics is shown in Table A.10.

context
DATASET DETAILS

name ds-type input-type entities pair matching pairs attribute number missing values

personal

census synthetic dirty 685,584 345 6 291

mvr real clean-clean 2,250,000 150 9 1,772

nvr real clean-clean 2,890,000 170 8 352

tse real clean-clean 4,000,000 154 3 0

yv-er real dirty 90,231,001 5,109 6 5,551

books

amazon-barnesnobel1 real clean-clean 126,360 232 2 3

goodreads-barnesnobel real clean-clean 90,662 89 4 925

amazon-barnesnobel2 real clean-clean 83,448 64 3 331

movies
imdb-roten real clean-clean 310,248 190 3 0

imdb-tmd real clean-clean 127,086 356 2 0

restaurants

fodors-zagats real clean-clean 176,423 112 4 0

yelp-yellowpages real clean-clean 76,874 116 6 0

yelp-zomato real clean-clean 98,496 119 3 0

citacion dplp-acm real clean-clean 6,001,104 2,224 4 14

products abt-buy real dirty 1,157,776 1,076 1 0

Table A.10: Data source summary

Each dataset in Table A.10 presents different characteristics, such as the dataset type, input type,

number of entity pairs, duplicated entities, missing values, the number and content of attributes, and

the level of dirtiness of attributes (missing values). The input type indicates if all parties executed
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a de-duplication process during the pre-processing step. This is relevant to the classification step

because if a dirty input is employed to a PPRL, we could have ’1:m’ matching results; in other words,

we could have one entity marked as similar to m other entities. Thus, making it harder to classifier

identifies the matching entities.

In the following, each sub-section provides information about one specific data source. In each

sub-section, we provide a brief description of the data source and report three characteristics of the

data source:

• the missing attributes of each attribute;

• the number of unique values per attribute;

• the similarity of the duplicated entities.

It is worth mentioning that missing attribute values are an open research problem to the PPRL and

RL and poses as a significant data source quality metric. In other words, data sources with missing

values are considered hard to link [126] when compared to data sources with no missing values.

Thus, to represent the missing attributes, we plot a figure where each bar describes one attribute and

illustrates the missing values; we remove a piece of the bar.

The number of unique values per attribute may indicate a good blocking key or how each attribute

is susceptible to privacy attacks. In other words, attributes with few unique values are easier to break

the privacy; for example, the gender attribute usually has to value (male and female), making it more

straightforward to reidentify than an attribute with more unique value like a phone number. Thus, to

represent the attributes’ unique values, we plotted a bar graph where each bar represents the number

of unique values. We also plot two vertical axes, one representing the counting of the values and the

other representing the percentual of unique values in the data source.

The duplicated entities’ similarity intends to demonstrate how hard it is to select a classification

threshold in the PPRL. This characteristic’s primary goal is to illustrate that each data source presents

different sub-optimal thresholds depending on entity values and the employed similarity metric em-

ployed. To illustrate this characteristic, we compare the data source’s duplicated entities using differ-

ent similarity metrics and plot de distribution (almost a histogram) of the similarity value in a figure.

In the following, we presented the characteristics mentioned above for the 15 data sources em-

ployed in this document.
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A.5.1 Personal Data Sources

YV-ER

This data source comprised of all records having Italy as the victim’s place of residence. The Dataset

contains 9,499 records and 12,749 tagged record pairs. Thi data source is made public by the Yad

Vashem foundation and Hewlett Packard Labs to be used for Entity Resolution research.

Name: yv-er

Type: real

Description: Italian holocaust victim’s

Original Application: deduplication

url https://github.com/tomersagi/yv-er

Collected: 21/10/2020

Considering that this data source was originally employed for de-duplication, in other words, all

parties have the exact same data source, in the following Figures A.9, we presented the unique values

and missing attributes.
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Figure A.9: Yv-er data source unique and missing values per attributes

Some of the attributes shown in Figure A.9 are not intuitive. Thus, Table A.11 provides a brief

dictionary of data for a better understanding.
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attribute description

src Name of submission and submission year for pages of testimony

firstname Disambiguated first name

lastname Disambiguated surname

gender Male, Female

bd birth day

bm birth month

by birth year

city Disambiguated city of Permanent residence

county Disambiguated county of War-time residence

region Disambiguated region of death or camp type

prof profession

Table A.11: Data dictionary

The similarity of the duplicated entities is plotted in Figure A.10
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Figure A.10: Similarity of the duplicated entities.

A summary with further information about the attributes is shown in the following Table.

metrica id src firstname lastname gender bd bm by city county region country prof

0 count 9,499 9,499 9,499 9,499 9,499 3948 3979 6316 9,499 9,499 9,499 9,499 9,499

1 unique 9,499 1,141 694 1,382 2 31 12 97 192 71 18 2 355

2 top 7,080,822 NaN Rakhel Levi Male 5 8 1900 Roma Roma Dodecanese Islands Italy NaN

3 freq 1 4,412 195 401 5,220 168 376 143 2,620 3,850 3,150 9,498 7,040

4 NaN 0 0 0 0 0 5,551 5,520 3,183 0 0 0 0 0
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North Carolina Voter Registration (NCVR)

The NCVR comprises information about voter registration from North Carolina - USA. The

methodology presented in [22,34,56] were employed to build the NCVR using data collected in

October 2016 and June 2020.

Name: ncvr

Type: real

Description: voter registration

Original Application: linkage

url https://www.ncsbe.gov/

Collected: 18/10/2016 and 31/05/2020

Considering that this data source was initially employed for linkage, we show the missing and

unique value of the attributes separately. In Figure A.11 we expose the missing values in 2016 and

2020 NCVR data source, respectively.
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Figure A.11: NCVR missisng attributes

In Figure ?? we presented the unique values of attributes form the 2016 and 2020 NCVR data

source, respectively.

The similarity of the duplicated entities is plotted in Figure A.13.
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(a) 2016 NCVR data source
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(b) 2020 NCVR data source

Figure A.12: NCVR missisng attributes
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Figure A.13: Similarity of the duplicated entities.

A summary with further information about the attributes is shown in the following Table.

metrica ncid first name middle name last name gender code res street address res city desc county desc state cd

0 count 1,700 1,700 1,551 1,700 1,700 1,700 1,700 1,700 1,700

1 unique 1,700 858 821 1,227 3 1,696 370 99 1

2 top CK13433 JAMES LEE WILLIAMS F 1 DUKE UNIVERSITY WEST CAMPUS CHARLOTTE MECKLENBURG NC

3 freq 1 24 41 17 922 2 133 149 1,700

4 NaN 0 0 149 0 0 0 0 0 0

0 count 1,700 1,700 1,546 1,700 1,700 1,700 1,658 1,700 1,658

1 unique 1,700 964 863 1,322 3 1656 345 92 1

2 top AN211944 CHRISTOPHER MARIE MOORE F REMOVED CHARLOTTE MECKLENBURG NC

3 freq 1 18 38 14 801 42 168 196 1,658

4 NaN 0 0 154 0 0 0 0 42 0
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Michigan Voter Registration (MVR)

The MVR comprises information about voter registration from Michigan - USA. The methodology

presented in [22,34,56] were employed to build the MVR using data collected in September 2014

and March 2017.

Name: mvr

Type: real

Description: voter registration

Original Application: linkage

url https://mvic.sos.state.mi.us/

Collected: 05/09/2014 and 29/03/2017

Considering that this data source was initially employed for linkage, we show the missing and

unique value of the attributes separately. In Figure A.14 we expose the missing values in 2016 and

2020 MVR data source, respectively.
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(a) 2014 MVR data source

12

9

las
tna

me

firs
tna

me

midd
len

am
e

na
mes

ufi
x

bir
thy

ea
r

ge
nd

er

da
te_

reg
ist

rat
ion

str
ee

t_n
am

e

ex
ten

sio
n

cit
y

sta
te

zip

1

500

Number of unique values per attribute
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Figure A.14: MVR missisng attributes

In Figure A.15 we presented the unique values of attributes form the 2014 and 2017 MVR data

source, respectively.

The similarity of the duplicated entities is plotted in Figure A.16.
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(a) 2014 MVR data source
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(b) 2017 MVR data source

Figure A.15: MVR missisng attributes
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Figure A.16: Similarity of the duplicated entities.

A summary with further information about the attributes is shown in the following Table.

metrica lastname firstname middlename namesufix gender street name extension city state

0 count 500 500 471 16 500 500 89 500 500

1 unique 459 334 242 3 2 454 74 212 1

2 top SMITH DAVID MARIE JR F OAK APT 2 DETROIT MI

3 freq 5 10 32 10 287 4 7 47 500

4 NaN 0 0 0 29 484 0 0 0 0

0 count 500 500 456 21 499 500 74 500 500

1 unique 450 361 255 3 2 458 64 216 1

2 top WILSON JAMES MARIE JR F FOREST APT 1 DETROIT MI

3 freq 6 7 17 14 267 3 5 33 500

4 NaN 0 0 0 44 479 0 1 0 0
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Tribunal Superior Eleitoral (TSE)

The TSE comprises information about Brazilian politicians. The methodology presented in

[22,34,56] were employed to build the TSE using data collected in September 2014 and March 2018.

Name: tse

Type: real

Description: politicians registration

Original Application: linkage

url https://www.tse.jus.br/

Collected: 15/05/2019

Considering that this data source was initially employed for linkage, we show the missing and

unique value of the attributes separately. In Figure A.17 we expose the missing values in 2014 and

2018 tse data source, respectively.
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Figure A.17: TSE missisng attributes

In Figure A.18 we presented the unique values of attributes form the 2014 and 2017 TSE data

source, respectively.

The similarity of the duplicated entities is plotted in Figure A.19.
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(a) 2014 TSE data source
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(b) 2017 TSE data source

Figure A.18: TSE missisng attributes
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Figure A.19: Similarity of the duplicated entities.

A summary with further information about the attributes is shown in the following Table.

metrica NR CPF CANDIDATO NM CANDIDATO DS GENERO DS ESTADO CIVIL DS COR RACA DS OCUPACAO DS NACIONALIDADE SG UF DT NASCIMENTO SG UF NASCIMENTO NM MUNICIPIO NASCIMENTO DS GRAU INSTRUCAO NM EMAIL

0 count 2,001 2,001 2,001 2,001 2,001 2,001 2,001 2,001 2,001 2,001 2,001 2,001 2,001

1 unique 1999 1997 2 5 5 138 3 28 1,876 27 897 7 1,396

2 top 15705099487 FRANCISCO JOSÉ DA SILVA MASCULINO CASADO(A) BRANCA OUTROS BRASILEIRA NATA SP 11/03/1965 RJ RIO DE JANEIRO SUPERIOR COMPLETO #NULO#

3 freq 2 2 1,337 1,052 1,096 371 1992 275 3 258 165 928 470

4 NaN 0 0 0 0 0 0 0 0 0 0 0 0 0

0 count 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000

1 unique 1999 1999 2 5 5 141 2 28 1872 28 897 7 1455

2 top 47555882604 ANTONIO AUGUSTO JUNHO ANASTASIA MASCULINO CASADO(A) BRANCA OUTROS BRASILEIRA NATA RJ 15/05/1967 RJ RIO DE JANEIRO SUPERIOR COMPLETO #NULO#

3 freq 2 2 1,369 1,066 1,100 374 1994 294 3 281 168 899 396

4 NaN 0 0 0 0 0 0 0 0 0 0 0 0 0

Census

This data source is employed to simulate the de-duplication performed in a populational census.
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Name: census

Type: synthetic

Description: census data source

Original Application: deduplication

url https://hpi.de/naumann/projects/repeatability/datasets/

Collected: 09/06/2020

Considering that this data source was originally employed for de-duplication, in other words,

all parties have the exact same data source, in the following Figure A.20, we presented the unique

values and missing attributes.
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Figure A.20: Census data source unique and missing values per attributes

The similarity of the duplicated entities is plotted in Figure A.21

A summary with further information about the attributes is shown in the following Table.

metrica first name last name middle name street address zip code

0 count 720 841 671 841 841

1 unique 606 323 24 39 171

2 top JEFFREY MOSQUERA A STARKEY 102

3 freq 9 7 92 98 26

4 NaN 121 0 170 0 3
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Figure A.21: Similarity of the duplicated entities.
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