Universidade Federal da Paraíba
Universidade Federal de Campina Grande
Programa Associado de Pós-Graduação em Matemática Doutorado em Matemática

Some generalizations of minimax theorems for lower semicontinuous functionals and a new approach for logarithmic Schrödinger equations

Ismael Sandro da Silva

Some generalizations of minimax theorems for lower semicontinuous functionals and a new approach for logarithmic Schrödinger equations

by
Ismael Sandro da Silva ${ }^{\dagger}$ advised by

Prof. Dr. Claudianor Oliveira Alves

Tese apresentada ao Corpo Docente do Programa
Associado de Pós-Graduação em Matemática -
UFPB/UFCG, como requisito parcial para obtenção do título de Doutor em Matemática.

Campina Grande - PB
November/2023

[^0]```
S586s Silva, Ismael Sandro da.
 Some generalizations of minimax theorems for lower semicontinuous
 functionals and a new approach for logarithmic Schrödinger equations /
 Ismael Sandro da Silva. - Campina Grande, 2023.
 154 f.
 Tese (Doutorado em Matemática) - Universidade Federal de
 Campina Grande, Centro de Ciências e Tecnologia, 2023.
 "Orientação: Prof. Dr. Claudianor Oliveira Alves".
 Referências.
 1. Matemática - Análise - Equações Diferenciais Parciais. 2. Teoria
 dos Pontos Críticos. 3. Funcionais Semicontinuos Inferiormente.
 4. Equações Logarpitmicas de Schrödinger. I. Alves, Claudianor
 Oliveira. II. Título.
```

Universidade Federal da Paraíba<br>Universidade Federal de Campina Grande Programa Associado de Pós-Graduação em Matemática Doutorado em Matemática

## Concentration Area: Analysis

Approval date: 21. de Novembro


Tese apresentada ao Corpo Docente do Programa Associado de Pós-Graduação em Matemática - UFPB/UFCG, como requisito parcial para obtenção do título de Doutor em Matemática.

November/2023

## Resumo

O presente trabalho é soerguido em duas direções principais: primeiro, desenvolvem-se novos teoremas abstratos para uma classe de funcionais semicontínuos inferiormente da seguinte forma: dado $X$ um espaço de Banach, $I=\Phi+\Psi: X \longrightarrow(-\infty, \infty]$ é uma soma de um funcional $\Phi$ de classe $C^{1}$ com um funcional convexo e semicontínuo inferiormente $\Psi: X \longrightarrow(-\infty, \infty](\Psi \not \equiv \infty)$. Nossos resultados são referentes à Teoria dos Pontos Críticos para funcionais nãodiferenciáveis construída por Szulkin em [81]; é-se provada uma generalização do teorema da fonte de Bartsch [23] e também de um teorema devido a Heinz em [61] relacionado com a noção do gênero de conjuntos fechados e simétricos com respeito à origem. Uma versão do teorema do passo da montanha simétrico é também provada. Como aplicação dos resultados abstratos mencionados, mostra-se a existência de uma infinidade de soluções para uma ampla classe de problemas elípticos. Os problemas envolvem não-linearidades logarítmicas, não-lineradades descontínuas e o operador 1-Laplaciano.

Posteriormente, como uma consequência natural de nossos estudos, introduzimos uma nova abordagem para o estudo das equações logarítmicas que nos possibilita aplicar métodos variacionais clássicos para funcionais de classe $C^{1}$ no intuito de obter soluções para diferentes classes de equações logarítmicas de Schrödinger. Essa nova ideia é introduzida utilizando-se técnicas exploradas no estudo dos espaços de Orlicz. Os resultados obtidos garantem desde resultados de multiplicidade de soluções para equações logarítmicas de Schrödinger envolvendo a categoria de Lusternik-Schnirelmann, à existência de soluções positiva para uma classe de equações logarítmicas sobre um domínio exterior, considerando diferentes condições de contorno.

Palavras-chave: funcionais semicontínuos inferiormente, teoria dos tontos críticos para funcionais não-diferenciáveis, teorema da fonte, equações logarítmicas de Schrödinger.

## Abstract

The current text has been constructed in two main directions: first one, we have established new abstracts theorems for a class of semicontinuous functionals of the following form: let $X$ be a Banch space, $I=\Phi+\Psi: X \longrightarrow(-\infty, \infty]$ is a sum of a $C^{1}$-functional $\Phi$ with a convex lower semicontinuous functional $\Psi: X \longrightarrow(-\infty, \infty]$ $(\Psi \not \equiv \infty)$. Our results are referring to the nonsmooth critical point theory developed by Szulkin in [81]; it is proved a generalization of the Bartsch's fountain theorem [23] and also a theorem due to Heinz in [61] related with the genus of $\mathbb{Z}_{2}$-symmetric closed sets. A version of the symmetric mountain pass theorem it is also proved. As application of the mentioned abstract result, we have showed the existence of many infinitely solutions for large classes of elliptical problems. The problems involve logarithmic nonlinearities, discontinuous nonlinearities and the 1-Laplacian operator.

After that, as a byproduct of our study, we have introduced a new approach in order to study logarithmic equations which allow us to apply $C^{1}$-variational methods to get solutions for several classes of logarithmic Schrödinger equations. We have established this new approach through the Orlicz space's techniques. The produced results include the multiplicity of solutions for logarithmic Schrödinger equations involving the Lusternik-Schnirelmann category, and also they include the existence of positive solutions for a class of logarithmic equations on a exterior domain, by considering different boundary conditions.

Keywords: lower semicontinuous functionals, nonsmooth critical point theory, fountain theorem, logarithmic Schrödinger equations.

## Acknowledgments

O primeiro voto de gratidão não poderia ser a outrem, faculto aquele no qual, pelo e para qual a Eternidade sustenta-se e tudo que é encontra substância. Ao Verbo Vivo, que me concedeu a Graça da vida e o vislumbre real do infinito no sonho de estar ao seu lado na redenção final. Ao único Deus, o YHVH, pela fé e forças que inequivocamente me conduziram em todos os propósitos e realizações que culminaram na conquista em foco. A Ele que - sinto-me compelido a registrar - me faz conceber a verdade absoluta evocada em toda a minha experiência com a Matemática, desde a contemplação do mais simples teorema ao mais astuto e elegante argumento abstrato.

Este parágrafo, certamente atribui a esses votos uma tez mais especial. Há alguns meses, estaria eu sonhando com esse momento, como em um lapso de prospecção do quanto significaria tê-la ao meu lado: Yngrid Mikaella Alves Santos (e hoje da Silva), Minha Esposa, inspirou-me, amou-me e, se em algum momento eu oscilava ou temia, renovava-me as forças e a certeza de concretizar quando me mostrava esse sorriso, meu porto seguro. Muito obrigado, minha oração é ter pra sempre esse amor afagando-me e inspirando em todos os projetos. Eu Te Amo!

Meu Pais e Irmão, Sandro Luiz da Silva (Pai), Rejane Miranda da Silva (Mãe) e Jhonatas Luiz da Silva (irmão). Jamais poderia esquecer do peculiar começo, ante às dificuldades e questionamentos se tudo valeria a pena. Foram minha referência, exemplo e auxílio impreteríveis à essa conquista. Obrigado por cada oração, votos de incentivo e - não poucas vezes - adjetivações típicas a qualquer apaixonado pela Matemática, He! Tudo corroborou essa conquista. Obrigado, amo vocês!

Atenciosamente, agradeço ao meu orientador, Prof. Dr. Claudianor Oliveira Alves. Votos de gratidão pela amizade, confiabilidade e profissionalismo com que conduziu esse nosso tempo. Resultado de uma esmerada experiência, que a nós hoje, estudantes e coparticipes de pesquisa, é facultada tão atenciosamente, as orientações e conversas tidas, apontadoras do quase poético equilíbrio entre amizade e profissionalismo, me fizeram aguçar ainda mais intensamente o desejo pela pesquisa e
trabalho com a Matemática.
Em justiça, registro também meus agradecimentos ao Prof. Dr. Daniel Cordeiro de Morais Filho. Meu primeiro orientador e referência contínua de atuação na Matemática. As conversas sobre as sinfonias, sonatas e fatos encantadores da Matemática sempre marcarão minha trajetória e qualquer conquista e realização profissional em Matemática. Muito obrigado por toda a confiança e apreço sempre tão verazes.

Aos membros componentes da banca examinadora da presente tese, pelo esmero e dedicação ávidas em ler, sugerir e apontar melhoras no presente texto. É inconteste o fato de que, se o presente trabalho adquiriu algum mérito em excelência, é também pela presteza e cuidado de vocês, Professores cujo trabalho admiro e me inspiro (e isso nem sequer é por nuance figurativa), devotaram à leitura do texto que hoje é apresentado.

Ora, esse é o ponto dos votos em que urge me sustentar na singela e utilíssima desculpa que uma menção explícita de nomes, seja do corpo docente e discente que me acompanhou, dos funcionários da UAMat e até dos coparticipes do grupo PETMatemática (PET), traria ao texto uma delonga quase indirimível. Mas ressalto que a conjuntura de todo o corpo da UAMat tem participação efetiva no profissional que me torno e sigo forjando.

Cedo, não obstante, a algumas menções explícitas de amigos e experiências construídas ao longo de minha formação. Insisto: caso destque alguma ausência ou omissão, isso vestigia o apreço que o tenho. Ademais, é provável que esteja em alguma classe de equivalência de menção aqui feita (se entendeu essa última você está implícita e inequivocamente citado). Mediante tal arguição estratégica, findo com meus agradecimentos aos amigos: Luis, Lucas Siebra e Rodrigo, que compunham comigo o tri... (quarteto, Rodrigo). Ao amigos Pedro Fellype e Rosy Martins, que compunham juntamente comigo o PRI. Por último, a todos que experienciaram comigo o PET, projeto que mudou não só a minha, mas a trajetória profissional de muitos.

Muito Obrigado!!!
"In the beginning was the Word, and the Word was with God, and the Word was God".

Holy Bible, Jhon 1:1 (King James Version)

## Dedication

To the most enchanting Flower (Yngrid M. A. S. da Silva), to my Parents and Brother, and, of course, to Mathematics.

## Contents

Introdução ..... 1
Notations ..... 12
1 Minimax theorems for lower semicontinuous functions and their applications ..... 14
1.1 Abstract theorems ..... 16
1.1.1 Deformation lemmas and Fountain Theorem ..... 17
1.1.2 Minimax results involving the G-index theory ..... 27
1.2 Some Applications to elliptic problems ..... 35
1.2.1 A logarithmic variational inclusion problem ..... 35
1.2.2 A concave perturbation of logarithmic equation ..... 49
1.2.3 A problem involving the 1-Laplacian operator with subcritical growth ..... 53
2 Existence of multiple solutions for a Schrödinger logarithmic equation via Lusternik-Schnirelman category theory ..... 58
2.1 Variational framework on the logarithmic equation ..... 60
2.1.1 Basics on the logarithmic equation ..... 60
2.1.2 The auxiliary problem ..... 63
2.2 Existence of solution for the auxiliary problem ..... 64
2.3 The Nehari manifold and the existence of positive solution for $\left(P_{\varepsilon}\right)$ ..... 71
2.3.1 Main properties of $\mathcal{N}_{\varepsilon}$ ..... 71
2.3.2 Existence of positive solution for $\left(P_{\varepsilon}\right)$ ..... 75
2.4 Multiplicity of solution for $\left(P_{\varepsilon}\right)$ ..... 87
2.4.1 Proof of Theorem 2.1 ..... 93
3 Existence of positive solution for a class of Schrödinger logarithmic equations on exterior domains ..... 94
3.1 The variational framework ..... 96
3.1.1 The energy functional ..... 96
3.2 Technical Results ..... 112
3.3 Existence of positive solution for $\left(P_{0}\right)$ (Dirichlet case) ..... 118
3.4 Existence of positive solution for $\left(S_{0}\right)$ (Neumann case) ..... 120
Appendix
A A brief on nonsmooth critical point theory ..... 132
A. 1 The locally Lipschitz case ..... 132
A. 2 The lower semicontinuous case ..... 134
B Group actions on Banach spaces ..... 136
B. 1 General settings ..... 136
B. 2 The Haar's Integral ..... 137
B.2.1 The normalized Haar measure ..... 138
B.2.2 A vector-valued version of the Haar's integral ..... 138
C A short review on Orlicz spaces ..... 142
C. 1 On N-functions and Orlicz spaces ..... 142
C. 2 A special example of N -function ..... 144
Bibliography ..... 146

No estudo das Equações Diferenciais Parciais, os denominados métodos variacionais e cálculo das variações figuram como um tópico de notável relevância, em virtude de sua ampla aplicabilidade. Em linhas gerais, tal método consiste em associar a um problema, digamos por exemplo da forma


#### Abstract

$\left(E_{1}\right)$


$$
\left\{\begin{array}{c}
-\Delta u+V(x) u=f(u), \text { em } \Omega \\
u \equiv 0, \text { em } \partial \Omega
\end{array}\right.
$$

$\operatorname{com} \Omega \subset \mathbb{R}^{N}$ um conjunto aberto, um funcional do tipo $J: X \longrightarrow \mathbb{R}$, com $X$ um espaço de Banach adequado que nos permita assegurar que $J \in C^{1}(X, \mathbb{R})$. É esperado que os pontos críticos de tal funcional coincidam com soluções do problema. Um funcional $J$ nestes termos é dito o funcional energia ou funcional de Eüler-Lagrange associado ao problema. Esse método é amplamente difundido e bem consolidado no estudos das Equações Diferenciais, em especial no estudo de problemas elípticos. Aqui, apenas a título de exemplo, citamos os clássicos trabalhos de Rabinowitz [75, 76] e del Pino e Felmer [51].

Esse método tem intrínseco um dificuldade natural: as condicões sobre a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ devem ser convenientes de modo a permitir a regularidade do funcional $J$. Isso inviabiliza, em um primeiro momento, o tratameto, via métodos variacionais clássicos, de equações do tipo $\left(E_{1}\right)$ nas quais a função $f$ não contenha as propriedades desejadas, a exemplo dos casos nos quais a função apresente descontinuidades.

No intento de abranger um maior número de casos, propostas de generalizações da cognominada Teoria dos Pontos Críticos tem sido idealizadas. Utilizando as técnicas
da Análise convexa, os pioneiros trabalhos devidos a Clarke [41] e o de Chang [36] em 1981, permitiram a extensão da noção de ponto crítico para funcionais localmente Lipschitz. Isso possibilitou o estudo de equações com a estrutura dada em $\left(E_{1}\right)$ nas quais a função $f$ apresenta uma descontinuidade; veja, e.g., [16, 36, 45].

Posteriormente, em 1986, Szulkin [81] generalizou a Teoria dos Pontos Críticos para uma classe de funcionais semicontínuos inferiormente (s.c.i.) que é objeto de estudo do presente texto. A saber, Szulkin considerou funcionais $I: X \longrightarrow(-\infty, \infty]$, $X$ um espaço de Banach, satisfazendo a seguinte condição:
$(H): I=\Phi+\Psi: X \longrightarrow(-\infty, \infty]$, com $\Phi \in C^{1}(X, \mathbb{R})$ e $\Psi: X \longrightarrow(-\infty, \infty]$ um funcional s.c.i. convexo e próprio (i.e., não ocorre $\Psi \equiv \infty$ ).

Dado um ponto $u \in X$, diz-se que $u$ é um ponto crítico para para um funcional $I=\Phi+\Psi$ satisfazendo a condição $(H)$ descrita acima se $I(u)<\infty$ e

$$
\left\langle\Phi^{\prime}(u), v-u\right\rangle+\Psi(v)-\Psi(u) \geq 0, \quad \forall v \in X .
$$

Nota-se que, caso $\Psi \equiv 0$, temos $I=\Phi \in C^{1}(X, \mathbb{R})$ e a condição de ponto crítico acima fornece, pela arbitrariedade de $v$, que $\Phi^{\prime}(u) \equiv 0$. Assim, o estudo de Szulkin é, de fato, uma generalização do caso clássico. Os trabalhos [10, 12, 13, 62, 69, 79] ilustram como a teoria desenvolvida por Szulkin fornece uma ferramento útil e abrangente no estudo das Equações Diferenciais.

A Teoria de Pontos Críticos para funcionais que satisfazem ( $H$ ) proposta em [81] ainda nos fornece uma ferramenta para o estudo de desigualdades variacionais, isto possibilita sua utilização para o estudo de algumas aplicações físicas que recaem em desigualdades variacionais. Em [52, p. XVIII] podemos encontrar o seguinte exemplo.

Problema 1: Suponha que $u(x, t)$ represente a pressão no ponto $x$ no, instante $t$, em um fluido contido numa região $\Omega \subset \mathbb{R}^{3}$ delimitado por uma membrana, representada por $\partial \Omega$ que é semipermeável, i.e., permite que o fluido penetre em $\Omega$ mas evita que ele vaze completamente. Então, u satisfaz

$$
\int_{\Omega}\left(\frac{\partial u}{\partial t}(v-u)+\nabla_{x} u \nabla v+g(v-u)\right) d x \geq 0, \forall v \in H^{1}(\Omega)
$$

onde $g$ é uma função previamente prescita, satisfazendo uma condição de fronteira.

Em [34, 71] o leitor interessado poder encontrar mais resultados e aplicações da teoria apresentada em [81].

Os comentários acima atestam a relevância, tanto em perspectiva teóricas quanto no contexto de aplicações, da teoria proposta por Szulkin. Diante do exposto, como um dos alvos da presente tese, nos propusemos a complementar o trabalho feito em [81]. Com maior acurácia, revisando com detalhe os resultados desenvolvidos em [81], encontra-se uma extensa lista de resultados do tipo minimax válidos para funcionais verificando $(H)$. Em verdade, as versões clássicas do Teoerma do Passo da Montanha de Ambrosetti-Rabinowitz [75, Theorem 2.2], do Teorema do Ponto de Sela [75, Theorem 4.6] e também do Teorema de Clark, que envolve a teoria do gênero, são generalizadas para a classe dos funcionais satisfazendo $(H)$.

Atentando à literatura da Teoria dos Pontos Críticos, pudemos perceber que alguns resultados do tipo minimax não foram ainda estendidos para os funcionais verificando $(H)$. Um exemplo importante é o do famoso Teorema da Fonte devido a Bartsch (see [23, 83]). O Teorema da Fonte tem sido explorado em muitos trabalhos no sentido de estabelecer a existência e multiplicidade de soluções para problemas elípticos; aqui referenciamos [23, 25, 26, 60, 68, 78, 85].

Em seu formato original, o Teorema da Fonte pode ser enunciado como segue: fixe $X$ um espaço de Banach e, para cada $k \in \mathbb{N}$, fixe as notações abaixo.

$$
\begin{aligned}
& i): Y_{k}:=\bigoplus_{j=1}^{k} X_{j} \text { e } Z_{k}:=\overline{\bigoplus_{j=k}^{\infty} X_{j}} ; \\
& i i): B_{k}:=\left\{u \in Y_{k} ;\|u\| \leq \rho_{k}\right\} \text { e } N_{k}:=\left\{u \in Z_{k} ;\|u\|=r_{k}\right\}, \text { com } \rho_{k}>r_{k}>0 .
\end{aligned}
$$

Considere agora $G$ um grupo topológico compacto agindo isometricamente em $X$ e suponha a seguinte condição verificada:
$\left(G_{0}\right)$ : O grupo $G$ age isometricamente em $X$ e $X=\overline{\bigoplus_{j \in \mathbb{N}} X_{j}}$, com $X_{j} \cong Y$ subespaços de dimensão finita invariantes pela ação de $G$ e a ação de $G$ em $Y$ é admissível no sentido da Definição 1.2 no Capítulo 1.

Teorema 0.0.0.1 (Teorema da Fonte de Bartsch) Seja $I \in C^{1}(X, \mathbb{R})$ um fincional $G$-invariante (i.e. $I(g \cdot)=I(\cdot), \forall g \in G$ ) que satisfaz a condição $(P S)_{c}$ para todo $c \in \mathbb{R}$. Assuma que

$$
i): a_{k}:=\sup _{u \in Y_{k},\|u\|=\rho_{k}} I(u) \leq 0 ;
$$

$$
i i): b_{k}:=\inf _{u \in Z_{k},\|u\|=r_{k}} I(u) \rightarrow \infty .
$$

Então, definindo $c_{k}:=\inf _{\gamma \in \Theta_{k}} \sup _{u \in B_{k}} I(\gamma(u))$, com

$$
\begin{equation*}
\Theta_{k}:=\left\{\gamma \in \Gamma_{G}\left(B_{k}\right) ;\left.\left.\quad \gamma\right|_{\partial B_{k}} \equiv I d\right|_{\partial B_{k}}\right\} \tag{1}
\end{equation*}
$$

O funcional I tem uma sequência de pontos críticos $\left(u_{k}\right)$ tal que $I\left(u_{k}\right)=c_{k} \rightarrow \infty$.

Em [45], Dai estabeleceu uma versão do resultado acima para funcionais $I$ que são localmente Lipschitz e utilizou o resultado para estabelecer a existência de uma infinidade de soluções para um problema elíptico do tipo $(E)$ no qual a função $f$ possui descontinuidades. É portanto natural indagar se uma versão do Teorema da Fonte, nos termos acima e em [45], seria válida para funcionais I do tipo Szulkin, i.e., funcionais s.c.i satisfazendo a condição em $(H)$.

Afirmamos, precipuamente, que a resposta à indagação suscitada no parágrafo anterior é afirmativa. Como um dos nossos principais resultados abstratos neste texto, no Capítulo 1, generalizamos o Teorema da Fonte devido a Bartsch para funcionais do tipo Szulkin (veja o Theorem 1.4).

Em [25] e [83, Chapter 3] podemos encontrar uma versão dual do Teorema da Fonte. Tal resultado pode ser interpretado como uma complemento - ou como um corolário de fato; veja a prova de tal resultado em [83, Theorem 3.18] - do clássico Teorema da Fonte de Bartsch. A versão dual do Teorema da Fonte fornece condições para que um funcional $G$-invariante possua uma sequência negativa de pontos críticos $\left(c_{k}\right)$ satifazendo $c_{k} \rightarrow 0$. É natural perguntarmos-nos se uma versão dual do Teorema da Fonte não seria possível para funcionais verificando $(H)$. Não obstante, uma vez que a principal ideia em [83, Theorem 3.18] consiste em aplicar o Teorema da Fonte ao funcional $-I$ para obtermos uma sequência de valores críticos para o funcional $I$, concluímos que a replicação imediata deste resultado não é possível para funcionais do tipo Szulkin. De fato, se quando $I$ verifica $(H)$ não é imediato que o funcional $-I$ também verifique, assim não podemos aplicar a teoria desenvolvida em [81] concomitantemente aos funcionais $I$ e $-I$.

Visando complementar nosso estudo, ante à ausência de uma versão dual Para o Teorema da Fonte no contexto dos funcionais do tipo Szulkin, debruçamos-nos à investigar a possibilidade de estabelecer um resultado que nos desse o mesmo tipo de
informação do Teorema da Fonte dual: encontrar uma sequência de valores críticos negatios $\left(c_{k}\right)$ para um funcional $G$-invariante $I \operatorname{com} c_{k} \rightarrow 0$. Nessa característica, provamos ser válida uma versão do Teorema de Heinz [61, Proposition 2.2], que em sua versão clássica complementa o famoso Teorema de Clark envolvendo teoria de gênero (see [39] para tópicos correlatos). Pudemos notar que em [81], embora uma versão do Teorema de Clark seja estebelecida, não é provada uma versão do resultado devido a Heinz em [61]. Em nosso resultado (Teorema 1.5 na sequência), além de generalizar o resultado devido a Heinz para os funcionais com a estrutura posta em $(H)$, nós consideramos um tipo de ação mais geral do que clássica ação antípoda de $\mathbb{Z}_{2}=\{I d,-I d\}$.

Com a técnica introduzida para provarmos o Teorema 1.5 no Capítulo 1, percebemos ser possível complementar um dos resultados densenvolvidos por Szulkin em [81]. Mais precisamente, nossos argumentos permitem provar que a sequência de valores críticos $\left(d_{k}\right)$ dada em [81, Corollary 4.8] é tal que

$$
d_{k} \longrightarrow \infty
$$

Esse o conteúdo do Teorema 1.6 do Capítulo 1.
Uma vez que os resultado apresentados no Capítulo 1 (os quais também constam em [8]) estabelecem novos teoremas minimax para funcionais do tipo Szulkin e que alguns resultados em [81] são melhoradas, nosso estudo pode se configurar como um complemento à teoria proposta por Szulkin em [81].

Como consequência dos teoremas abstratos desenvolvidos, no Capítulo 1 garantimos a existência de uma infinidade de problemas elípticos com simetria e que possuem o funcional energia associado com a forma dada em $(H)$.

Utilizando nossa versão generalizada do Teorema da Fonte, provamos a existência de infinitas soluções para o seguinte problema de inclusão variacional:

$$
\left\{\begin{array}{l}
-\Delta u+u+\partial F(x, u) \ni u \log u^{2}, \text { q.t.p. em } \mathbb{R}^{N}, \\
u \in H^{1}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

com $f: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ uma função $N$-mensurável e tal que $F(x, t):=\int_{0}^{t} f(x, t) d s \geq 0$ seja localmente Lipschitz. Como usual, $\partial F(x, t)$ denota o gradiente generalizado de $F$ com respeito à variável $t \in \mathbb{R}$ no ponto $x \in \mathbb{R}^{N}$ (veja [36,41] para mais detalhes envolvendo a noção de gradiente generalizado).

Tal problema foi inspirado no resultado devido a Ji e Szulkin em [62], no qual, explorando propriedades particulares da não-lineraidade $f(t)=t \log t^{2}$, estabeleceram a existência de uma infinidade de soluções para o problema

$$
\begin{equation*}
-\Delta u+V(x) u=u \log u^{2}, \quad x \in \mathbb{R}^{N}, \tag{2}
\end{equation*}
$$

com $V \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ satisfazendo $\lim _{|x| \rightarrow+\infty} V(x)=+\infty$.
A segunda classe de problemas que estudamos é um tipo de perturbação de equações logarítmicas de Schrödinger da forma:

$$
\left\{\begin{array}{l}
-\Delta u+u=u \log u^{2}+\lambda h(x)|u|^{q-2} u \text { em } \mathbb{R}^{N} \\
u \in H^{1}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

Nesse caso, utilizamos nossa versão generalizada do Teorema de Heinz para assegurar a existência de uma infinidade de soluções para o problema acima. A necessidade de recorrer à Teoria de Ponto Crítico proposta em [81] dá-se pelo fato de que a condição de crescimento sobre $f(t)=t \log t^{2}$ não assegura a boa definição do funcional energia associado ao problema sobre o espaço $H^{1}\left(\mathbb{R}^{N}\right)$ (veja, e.g., $[6,7,10-13,62,69,79]$ para mais comentários envolvendo tal sutileza).

Por fim, como aplicação de nosso último teorema do tipo minimax provado no Capítulo 1, mostramos a existência de uma infinidade soluções para a classe de problemas a seguir envolvendo o operador 1-Laplaciano.

$$
\left\{\begin{array}{c}
-\Delta_{1} u=|u|^{p-2} u, \text { em } \Omega \\
\left.u\right|_{\Omega}=0, \text { em } \partial \Omega
\end{array}\right.
$$

Aqui $\Omega \subset \mathbb{R}^{N}, N \geq 2$, é um domínio limitado com fronteira suave e $p \in\left(1,1^{*}\right)$ é uma potência subcrítica. Em um sentido formal, o operador 1-Laplaciano é definido por $\Delta_{1} u:=\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$ (veja $[15,17,37,49,63,70,73]$ e referências relacionadas para uma introdução ao estudo do operador 1-Laplaciano).

Retornando à equação $\left(E_{1}\right)$, considerando $f(t)=t \log t^{2}$ e $V \equiv 1$, conforme já comentado, dependendo da escolha de $\Omega \subset \mathbb{R}^{N}$, a equação de Schrödinger

$$
\begin{equation*}
-\Delta u+u=u \log u^{2}, \text { em } \Omega \tag{2}
\end{equation*}
$$

pode não ter aplicabilidade imediata do clássico método variacional para funcionais $C^{1}$; veja por exemplo as já citadas refrências $[6,7,10,12,13,62,79]$ nas quais o caso $\Omega$ ilimitado é abordado.

Quando, por exemplo, tem-se $\Omega=\mathbb{R}^{N}$, o candidato a funcional energia associado a $\left(E_{2}\right)$ é dado por

$$
E(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+2|u|^{2}\right) d x-\frac{1}{2} \int_{\mathbb{R}^{N}} u^{2} \log |u|^{2} d x
$$

para $u \in H^{1}\left(\mathbb{R}^{N}\right)$. Na expressão dada a $E$ está sendo utilizado implicitamente o fato de que

$$
\int_{0}^{t} s \log s^{2} d s=\frac{1}{2} t^{2} \log t^{2}-\frac{t^{2}}{2}
$$

Ocorre que não podemos assegurar que $E \in C^{1}\left(H^{1}\left(\mathbb{R}^{N}\right), \mathbb{R}\right)$. Em verdade, no trabalho [80], encontramos registrado um exemplo de uma função $u_{1} \in H^{1}\left(\mathbb{R}^{N}\right)$ tal que $\int_{\mathbb{R}^{N}} u_{1}^{2} \log \left|u_{1}\right|^{2} d x=-\infty$. Consequentemente, $E\left(u_{1}\right)=\infty$, mostrando que $E$ não está, sequer, bem definido sobre $H^{1}\left(\mathbb{R}^{N}\right)$. Isso faz com que, além da permeabilidade em aplicações (vide [84]), o estudo das equações logarítmicas torne-se atrativo do ponto de vista matemático.

No sentido de vencer tal dificuldade, a estratégia utilizada nos trabalhos [10-13, 62, 79] - veja também os Capítulos 1,2 e 3 na sequência - é considerar uma decomposição de $t \log t^{2}$ da forma:

$$
\begin{equation*}
F_{2}(t)-F_{1}(t)=\frac{1}{2} t^{2} \log t^{2} \quad \forall t \in \mathbb{R} \tag{3}
\end{equation*}
$$

com $F_{1}, F_{2} \in C^{1}(\mathbb{R})$. Sendo $F_{2}$ uma função com crescimento subcrítico e $F_{1}$ uma função convexa e par e com $F_{1}(0)=0$ (veja o corpo da tese para definição explícita de $F_{1}$ e $F_{2}$ ). Vale registrar que a função $F_{1}$ satisfaz à seguinte condição de crescimento.

$$
\left|F_{1}(t)\right| \leq|t|^{r}+|t|^{p}, \quad t \in \mathbb{R}
$$

$\operatorname{com} r \in(1,2)$ e $p \in\left[2,2^{*}\right)$.
Isso nos possibilita escrever $E=\Phi+\Psi$, com

$$
\Phi(u):=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+(V(x))|u|^{2}+1\right) d x-\int_{\mathbb{R}^{N}} F_{2}(u) d x
$$

e

$$
\Psi(u):=\int_{\mathbb{R}^{N}} F_{1}(u) d x
$$

As condições sobre $F_{1}$ e $F_{2}$ nos permitem concluir que $E$ verifica $(H)$. Nesse caso um ponto crítico para $E$ é um ponto $u \in H^{1}\left(\mathbb{R}^{N}\right)$ tal que $E(u)<\infty$ e

$$
\begin{array}{r}
\int_{\mathbb{R}^{N}}(\nabla u \cdot \nabla(v-u)+2 u(v-u)) d x+\int_{\mathbb{R}^{N}}\left(F_{1}(v)-F_{1}(u)\right) d x- \\
-\int_{\mathbb{R}^{N}} F_{2}^{\prime}(u)(v-u) \geq 0, \quad \forall v \in H^{1}\left(\mathbb{R}^{N}\right) \tag{4}
\end{array}
$$

Em virtude das mencionadas propriedades de $F_{1}$ e $F_{2}$ sabemos que $E(v)<\infty$ equivale a $F_{1}(v) \in L^{1}\left(\mathbb{R}^{N}\right)$. Assim, tem-se

$$
C_{0}^{\infty}\left(\mathbb{R}^{N}\right) \subset D(E)=\{v ; E(v)<\infty\}=\{v ; \Psi(v)<\infty\} .
$$

Com isso, fixada $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, escolhendo $v=u+t \phi, t \approx 0^{+}$, em (4), depois dividindo por $t$ e fazendo $t \rightarrow 0$ obtemos

$$
\int_{\mathbb{R}^{N}}(\nabla u \cdot \nabla \phi+2 u \phi) d x+\int_{\mathbb{R}^{N}} F_{1}^{\prime}(u) \phi d x-\int_{\mathbb{R}^{N}} F_{2}^{\prime}(u) \phi d x \geq 0 .
$$

Substituindo $\phi$ por $-\phi$ concluímos que um ponto crítico $u$ de $E$ verifica

$$
\int_{\mathbb{R}^{N}}(\nabla u \cdot \nabla \phi+u \phi) d x=\int_{\mathbb{R}^{N}} u \log u^{2} \phi d x, \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) .
$$

A identidade acima, junto à teoria de regularidade para equações elípticas, permite-nos concluir que pontos críticos para $E$ no sentido dos funcionais do tipo Szulkin fornecem soluções clássicas de ( $E_{2}$ ). Essa técnica tem sido amplamente explorada no estudo das equações logarítmicas de Schrödinger, no sentindo de reparar a falta de suavidade do funcional, a exemplo dos já supracitados trabalhos [10-13, 62, 79].

Atentando ao procedimento indicado, podemos perceber que os pontos críticos do funcional $E$ devem residir no espaço

$$
\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) ; \int_{\mathbb{R}^{N}} F_{1}(u) d x<\infty\right\} .
$$

Desde que a função $F_{1}$ é convexa e inspirado em Cazenave [42], nos perguntamos se existiria um espaço de Banach (um espaço de Orlicz) contido na coleção acima e sobre o qual o funcional $E$ seja de classe $C^{1}$.

Com essa questão em mente, no Capítulo 2, estabelecemos, em verdade, que a função $F_{1}$ é uma N -função satisfazendo a denominada condição $\left(\Delta_{2}\right)$. Com isso o conjunto da forma

$$
Z(\Omega):=\left\{u \in L_{l o c}^{1}(\Omega) ; \int_{\Omega} F_{1}(u) d x<\infty\right\},
$$

com $\Omega$ um aberto qualquer de $\mathbb{R}^{N}$, constitui um espaço de Banach separável e reflexivo; veja o Apêndice C para uma sucinta revisão sobre espaços de Orlicz. Esse resultado envolvendo a função $F_{1}$ nos permite atacar a equação do tipo ( $E_{2}$ ) via métodos variacionais clássicos, por considerar o funcional $E$ restrito ao espaço
$X=H^{1}\left(\mathbb{R}^{N}\right) \cap Z\left(\mathbb{R}^{N}\right)$. Como exposto no Capítulo 2, essa restrição permite concluir que $E \in C^{1}(X, \mathbb{R})$.

Embora as equações logarítmicas tenham sido amplamente estudadas nos últimos anos e vários resultados sobre existência e multiplicidade tenham sido estabelecidos, alguns fatos intrínsecos ao estudo dos problemas elípticos, que recaem em a aplicação do teoria clássica de pontos críticos, não tinham ainda sido estabelecidos para equações logarítmicas de Schrödinger. Citamos aqui, e.g., resultados de multiplicidade à luz do que é feito em $[14,43]$ utilizando a teoria de categoria de Lusternik-Schnirelmann.

No Capítulo 2, introduzindo o novo espaço de funcões associado com $F_{1}$ (espaço $Z$ acima), provamos a existência e multiplicidade de soluções para seguinte classe de problemas.

$$
\left\{\begin{array}{l}
-\varepsilon^{2} \Delta u+V(x) u=u \log u^{2}, \text { em } \mathbb{R}^{N}, \\
u \in H^{1}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

$\operatorname{com} V: \mathbb{R}^{N} \longrightarrow \mathbb{R}$ uma função contínua satisfazendo
$\left(V_{1}\right):-1<\inf _{x \in \mathbb{R}^{N}} V(x) ;$
$\left(V_{2}\right)$ : Existem um conjunto aberto e limitado $\Lambda \subset \mathbb{R}^{N}$ verificando

$$
V_{0}:=\inf _{x \in \Lambda} V(x)<\min _{x \in \partial \Lambda} V(x) .
$$

O resultado de multiplicidade de solução que provamos ser válido para o problema acima estima inferiormente o número de soluções pela categoria de LusternikSchnirelmann do conjunto

$$
M:=\left\{x \in \Lambda ; V(x)=V_{0}\right\}
$$

em

$$
M_{\delta}:=\left\{x \in \mathbb{R}^{N} ; d(x, M) \leq \delta\right\}, \delta \approx 0^{+} .
$$

O teorema abstrato que fundamenta nosso resultado de multiplicidade pode ser enunciado como se segue; veja [83, Chapter 5] para uma prova do resultado abaixo e mais detalhes envolvendo a categoria de Lusternik-Schnirelmann.

Teorema 0.0.0.2 Fixe $V=\psi^{-1}(0)$ uma variedade classe $C^{1}$ dada como imagem inversa de um valor regular do funcional $\psi \in C^{1}(W, \mathbb{R})$, com $W$ um espaço de Banach. Seja $I \in C^{1}(W, \mathbb{R})$ tal que $\left.I\right|_{V}$ é limitado inferiormente. Suponha que I satisfaz a
condição $(P S)_{c}$ para níveis $c \in\left[\left.\inf I\right|_{V}, d\right]$, então $\left.I\right|_{V}$ tem ao menos cat $I_{I^{d}}\left(I^{d}\right)$ pontos críticos em $I^{d}=\{u \in V ; I(u) \leq d\}$.

É fácil notar que a aplicação do teorema acima só faz sentido no contexto dos funcionais de classe $C^{1}$, uma vez que versa sobre pontos críticos para funcionais restrito a variedades de classe $C^{1}$. O "approach" por nós introduzido no Capítulo 2 é, portanto, fundamental no sentido de aplicarmos o teorema anterior, porquanto nos permite concluir que o funcional energia associado ao problema é de classe $C^{1}$. É válido ainda ressaltar que, diante das condições $\left(V_{1}\right)-\left(V_{2}\right)$ acima, nossos resultados melhoram e estendem os resultados devido a Alves e de Morais [10] e a Alves e Ji [11].

Ainda inspirados pela nova abordagem para estudar equações logarítmicas de Schrödinger introduzida no Capítulo 2, no Capítulo 3 estudamos uma classe de equações logarítmicas sobre domínios exteriores. Mais precisamente, estudamos a existência de solução positiva para a classe de problemas da forma

$$
\left\{\begin{array}{c}
-\Delta u+u=Q(x) u \log u^{2}, \text { em } \Omega \\
\mathcal{B} u=0 \mathrm{em} \partial \Omega
\end{array}\right.
$$

$\operatorname{com} \Omega \subset \mathbb{R}^{N}, N \geq 3$, um domínio exterior (i.e., $\Omega^{c}=\mathbb{R}^{N} \backslash \Omega$ é um domínio limitado com fronteira suave). Consideraremos os casos $\mathcal{B} u=u$ e $\mathcal{B} u=\frac{\partial u}{\partial \nu}$.

A principal ideia no estudo do último problema é, no caso Dirichlet ( $\mathcal{B} u=u$ ), adaptar os resultados do importante trabalho de Benci e Cerami [27] e de Alves e de Freitas em [9]. Uma vez mais, faz-se crucial a condição de que o funcional energia associado ao problema seja de classe $C^{1}$, dado que os resultados circunstantes em $[9,27]$ fazem uso frequente da regularidade do funcional energia estudado, abordando propriedades e estimativas relacionadas à variedades de classe $C^{1}$ (nesse caso específico, à famosa variedade de Nehari associada ao problema). No caso Neumann $\left(\mathcal{B} u=\frac{\partial u}{\partial \nu}\right)$, inspiramos-nos e adpatamos diferentes técnicas desenvolvidas em [4, 18,33]. Em nosso caso, nos resultados de compacidade substituimos as sequências de Palais-Smale por sequências de Cerami (veja maiores detalhe na Seção 3.4). Ainda relacianado ao estudo de problemas sobre domínios exteriores, citamos os trabalhos em [2,3,18, 21, 29, 66] no intento de ilustrar o interesse diverso e a relevância dessa classe de problemas.

Os resultados apresentados nos Capítulos 2 e 3 nos propiciaram como fruto os trabalhos em $[6,7]$. Concomitantemente, tais resultados ilustram como a nova técnica
introduzida nos permite obter inéditos e relevantes resultados concernentes ao estudo das equações logarítmicas de Schrödinger.

Para findar a introdução, uma vez exposto o encadeamento teórico de nosso estudo, registramos a seguir alguns aspectos sob os quais o presente texto foi construído.

1 ${ }^{\text {- }}$ O texto, naturalmente, pressupõe alguma experiência com os resultados da Análise Funcional e Teoria da Medida e Integração, de modo que, recorrentemente, os resultados clássicos são utilizados tacitamente, ainda que com alguma menção explícita. A experiência com alguns resultados usuais da Teoria das Equações Diferenciais Parciais e da Teoria dos Pontos Críticos podem, e muito, contribuir para o entedimento pleno do texto. No intento de conferir fluidez à leitura, as provas de alguns resultados são, às vezes, apenas referenciadas.
$2^{0}$ - Os apêndices são devotados a tópicos teóricos que permeiam os capítulos, mas que suas respectivas exposições poderiam atribuir algum grau de prolixidade aos temas desenvolvidos. Os apêndices são construídos de modo a apenas listar os resultados de interesse. Nessa perspectiva, apenas as provas não típicas ou as de caráter original são explicitadas nos apêndices.
$3^{0}$ - Informamos que os resultados e conceitos registrados nessa introdução serão reenunciados no momento oportuno durante os capítulos, atenuando-se assim o labor adicional de regressar à introdução para recordar algum resultado de interesse.

## Notations

Throughout this text we fix the following notations.

- $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right):=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right): u\right.$ is radial $\}$.
- $C_{0, \text { rad }}^{\infty}\left(\mathbb{R}^{N}\right):=\left\{u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right): u\right.$ is radial $\}$.
- $L^{p}\left(\mathbb{R}^{N}\right)$ is the usual Lebesgue space, with norm $\|u\|_{p}:=\left(\int_{\mathbb{R}^{N}}|u|^{p} d x\right)^{1 / p}$, $1 \leq p<1$, and $\|u\|_{\infty}:=\operatorname{esssup}_{x \in \mathbb{R}^{N}}|u(x)|$.
- If $\Omega \subset \mathbb{R}^{N}$ is a measurable set, we simply write $\int_{\Omega} f$ instead of $\int_{\Omega} f(x) d x$ for any measurable real-values function $f$ defined on $\Omega$.
- If $X$ is a Banach space e $x_{0} \in X$, then $B_{r}\left(x_{0}\right)$ designates the ball centered in $x_{0}$ of radius $r>0$.
- $\operatorname{supp} u$ designates the support of a measurable function $u: \mathbb{R}^{N} \longrightarrow \mathbb{R}$.
- $\operatorname{int}(A)$ denotes the interior of a set $A$.
- $\bar{A}$ denotes the closure of a set $A$.
- $\partial A$ denotes the boundary of a set $A$.
- $o_{n}(1)$ denotes a real sequence with $o_{n}(1) \rightarrow 0$
- $o_{\varepsilon}(1)$ denotes a real parameter that depends on $\varepsilon$ satisfying $O_{\varepsilon}(1) \rightarrow 0$, as $\varepsilon \rightarrow 0$.
- $C\left(x_{1}, \ldots, x_{n}\right)$ denotes a positive constant that depends on $x_{1}, \ldots, x_{n}$.
- $1^{*}:=\frac{N}{N-1}$, if $N \geq 2$.
- $2^{*}:=\frac{2 N}{N-2}$, if $N \geq 3$ and $2^{*}:=\infty$ if either $N=1$ or $N=2$.
- i.e.: abbreviation for the Latin expression id est.
- e.g.: abbreviation for the Latin expression exempli gratia.


## CHAPTER 1

## Minimax theorems for lower semicontinuous functions and their applications

In 1986, Szulkin [81] generalized the study of Critical Point Theory to a class of lower semicontinuous (l.s.c) functionals $I: X \rightarrow(-\infty,+\infty]$ having the following structure
$\left(H_{0}\right) I:=\Phi+\Psi$, with $\Phi \in C^{1}(X, \mathbb{R})$ and $\Psi: X \rightarrow(-\infty,+\infty]$ is a convex l.s.c. functional and proper, i.e. $\Psi \not \equiv \infty$.

From now on, a functional $I: X \rightarrow(-\infty,+\infty]$ is said to be of Szulkin-type if its structure is given as in $\left(H_{0}\right)$. In the important work [81], Szulkin has established a powerful list of minimax results involving the class $\left(H_{0}\right)$. Generalized versions of the famous Mountain Pass Theorem of Ambrosetti-Rabinowitz [75, Theorem 2.2], the Saddle Point Theorem [75, Theorem 4.6] and classical results of the genus theory has been proved in [81].

However, observing the literature on minimax theorems, we could find some classical results that have not been yet extended for Szulkin-type functionals. For instance, the classical Bartsch's Fountain Theorem, which ensures the existence and multiplicity of critical points for $\mathbb{Z}_{2}$-symmetric $C^{1}$-functionals (see Bartsch [23, Theorem 2.5] and Willem [83, Theorem 3.6]). By exploring the Bartsch's theorem, many authors were interested in finding critical points of real-valued functional $\Phi$
defined on an infinite dimensional Banach space $X$, which allow to solve wide classes of ordinary or partial differential equations. Besides of the applications in the study of differential equations, several works were focused in establishing generalizations of the Fountain Theorem; see, e.g., $[25,26,45,60,65,85]$ for a valuable literature of this subject.

Accounting this questions, we have aimed to solve the following problem:
$\left(Q_{1}\right)$ Is it possible to prove a Fountain-type Theorem for Szulkin-type functionals?

In this chapter a complete and positive answer to $\left(Q_{1}\right)$ is given by proving a nonsmooth version of Theorem 2.5 in [23] for Szulkin-type functionals (see Theorem 1.4 below).

Considering the literature related with the Fountain Theorem, a second question that naturally arises in this nonsmooth setting is the following
$\left(Q_{2}\right)$ Is it possible to prove a dual Fountain-type Theorem for Szulkin-type functionals?

Indeed, in [25], Bartsch and Willem have proved a dual version of th Fountain Theorem. A careful analysis of the proof of the classical dual Fountain Theorem can be found in [83, Theorem 3.18]. The main basic idea due to Bartsch and Willem consists in applying Theorem 2.5 of [23] to the functional $-\Phi$, with $\Phi$ a $C^{1}$ functional on $X$, obtaining a real sequence $\left(c_{j}\right)$ of negative critical values of $I$ such that $c_{j} \rightarrow 0$, as $j \rightarrow \infty$. However, when $I$ is a Szulkin-type functional it is easily seen that this procedure cannot be used in general as in the smooth case, because when $I$ is a Szulkintype functional we do not know, in general, if the functional $-I$ also verifies $\left(H_{0}\right)$.

In order to overcome this difficulty and to give an answer for $\left(Q_{2}\right)$, we have proved a nonsmooth version of a Heinz's Theorem (see [61, Proposition 2.2]) for Szulkin-type functionals. As in the dual Fountain Theorem, this result ensures the existence of a negative sequence $\left(c_{j}\right)$ of critical values converging to 0 , as $j \rightarrow \infty$.

Finally, we would like to emphasize that, by adapting the arguments used along the proof of the main Theorem 1.5, we are able to show a more precise version of [81, Corollary 4.8]. On the contrary of [81, Corollary 4.8], the conclusion of our result in Theorem 1.6 ensures that the obtained critical levels $c_{k}$ satisfy $c_{k} \rightarrow \infty$ as $k \rightarrow \infty$.

From a theoretical point of view, the results obtained here complete the study made by Szulkin in the seminal paper [81], since new minimax theorems are established.

We would like to register that the results developed in the present chapter are referring to the article [8] due to Alves, da Silva and Molica Bisci.

### 1.1 Abstract theorems

Throughout this chapter, let $I:=\Phi+\Psi$ be a Szulkin-type functional defined on a Banach space $X=(X,\|\cdot\|)$. The effective domain of $I$ is defined by

$$
D(I):=\{u \in X: I(u)<+\infty\},
$$

and so, for a Szulkin-type functional $I$ one has that $D(I)=D(\Psi)$. For each $u \in D(I)$, we say that the subdifferential of $I$ at $u$ is the set

$$
\begin{equation*}
\partial I(u):=\left\{\varphi \in X^{*}:\left\langle\Phi^{\prime}(u), v-u\right\rangle+\Psi(v)-\Psi(u) \geq\langle\varphi, v-u\rangle, \forall v \in X\right\} . \tag{1.1}
\end{equation*}
$$

For our goals, we will need of the following definition.
Definition 1.1 Suppose that I is a Szulkin-type functional. Then
i) a point $u \in X$ is called a critical point of $I$ if $0 \in \partial I(u)$, or more precisely, $u \in D(I)$ and

$$
\left\langle\Phi^{\prime}(u), v-u\right\rangle+\Psi(v)-\Psi(u) \geq 0, \quad \forall v \in X
$$

ii) a sequence ( $u_{n}$ ) is called a Palais-Smale sequence (briefly (PS) sequence) for I at level $c \in \mathbb{R}$ if $I\left(u_{n}\right) \rightarrow c$ and

$$
\left\langle\Phi^{\prime}\left(u_{n}\right), v-u_{n}\right\rangle+\Psi(v)-\Psi\left(u_{n}\right) \geq-\varepsilon_{n}\left\|v-u_{n}\right\|, \quad \forall v \in X
$$

with $\varepsilon_{n} \rightarrow 0^{+}$, or equivalently (see [81, Proposition 1.2])

$$
\left\langle\Phi^{\prime}\left(u_{n}\right), v-u_{n}\right\rangle+\Psi(v)-\Psi\left(u_{n}\right) \geq\left\langle w_{n}, v-u_{n}\right\rangle, \quad \forall v \in X,
$$

where $w_{n} \in X^{*}$ with $w_{n} \rightarrow 0$ in $X^{*}$;
iii) I satisfies the Palais-Smale condition (briefly (PS) condition) at level $c \in \mathbb{R}$ when each (PS) sequence ( $u_{n}$ ) at level c has a convergent subsequence. If I verifies the (PS) condition for all level c, we say simply that I satisfies the (PS) condition.

Let us denote by $I^{c}, K$ and $K_{c}$ respectively, the following sets

$$
\begin{gathered}
I^{c}:=I^{-1}((-\infty, c]) \text { for every } c \in \mathbb{R}, \\
K:=\{u \in X: u \text { is a critical point of } I\},
\end{gathered}
$$

and

$$
K_{c}:=\{u \in K: I(u)=c\} .
$$

In order to prove the main variant of the classical Fountain Theorem given in Theorem 1.4 below, at the beginning of this section, we recall a suitable version of the standard deformation lemma valid for Szulkin-type functionals; see [81, Proposition 2.3]. In addition, in Lemma 1.2 an equivariant version of the aforementioned result has been established. Finally, in the last subsection two abstract results have been proved. More precisely, [61, Proposition 2.2] due to Heinz has been extended to Szulkin-type functionals as well as a new version of [81, Corollary 4.8] is given in Theorem 1.6.

### 1.1.1 Deformation lemmas and Fountain Theorem

Hereafter, we fix $G$ a compact group that acts isometrically on $X$; see the Appendix B for a brief of group actions on Banach spaces. The subspace of invariant elements of $X$ is defined by

$$
\operatorname{Fix}(G):=\{u \in X: g u=u \forall g \in G\} .
$$

Example 1.1 Let $I d: X \rightarrow X$ be the identity map on $X$ and consider the usual representation
$\mathbb{Z}_{2}=\{I d,-I d\}$. Standard computations ensure that the group $\mathbb{Z}_{2}$ acts isometrically on $X$.

A subset $A$ of $X$ is said to be $G$-invariant if $g A=A$ for every $g \in G$, where $g A:=\{g x: x \in A\}$. Also, when $A \subset X$ is a $G$-invariant set, a map $\gamma: A \rightarrow X$ is called equivariant map if

$$
\gamma(g x)=g \gamma(x) \quad \forall x \in A, \forall g \in G .
$$

If a functional (not necessarily linear) $\varphi$ defined on $X$ satisfies $\varphi(g x)=\varphi(x)$ for any $x \in X$ and $g \in G$, we say that $\varphi$ is a $G$-invariant functional.

Notation: $\Gamma_{G}(A):=\{\gamma \in C(A, X): \gamma$ is equivariant $\}$.
By following [83, Section 3.2] and [25], the notion of admissible action is given below.

Definition 1.2 Let $Y$ be a finite dimensional vector space. Moreover, let us assume that $G$ is a compact topological group that acts diagonally on $Y^{k}$, that is

$$
g v=g\left(v_{1}, \ldots, v_{k}\right)=\left(g v_{1}, \ldots, g v_{k}\right),
$$

for every $v=\left(v_{1}, \ldots, v_{k}\right) \in Y^{k}$ and each $g \in G$. The action of $G$ on $Y$ is said to be admissible if, for each equivariant map $\gamma: \partial U \rightarrow Y^{k-1}$, where $k \geq 2$ and $U$ is a bounded $G$-invariant open set of $Y^{k}$ with $0 \in U$, there is $u \in \partial U$ such that $\gamma(u)=0$.

For our goals, we will consider a special condition on a decomposition of space $X$ with respect to action of $G$ on $X$ as follows:
$\left(G_{0}\right) G$ is a compact group that acts isometrically on

$$
X=\overline{\bigoplus_{j \in \mathbb{N}} X_{j}}
$$

where every $X_{j}$ is a $G$-invariant subspace of $X$ such that $X_{j} \cong Y$, being $Y$ a finite dimensional vector space for which the action of $G$ is admissible.

In our theoretical results, we need to deal with the abstract notion of Haar's integral on a compact group $G$ whose the details and related notions can be found in [72]; see the Appendix B for a short review on this subject. Fix $f: G \longrightarrow \mathbb{R}$ an integrable function with respect to a measure $\mu$. We say that $\mu$ is a left invariant measure if

$$
\begin{equation*}
\int_{G} f\left(g^{-1} y\right) d \mu=\int_{G} f(y) d \mu, \forall g \in G, \tag{1.2}
\end{equation*}
$$

for every $f \in \mathcal{L}(G, \mu)$.
Remark 1.1 When $G$ is a compact group, there is a left invariant positive measure $\mu$ such that $\mu(G)=1$. Such measure is called the Normalized Haar measure. The integral associated with $\mu$ is the so called Haar's integral. We also notice that the left invariant Haar measure $\mu$ can be extended for $X$-valued functions (see Appendix B for further details).

Let $\beta: X \rightarrow X$ be a continuous map on $X$. By the left invariance property of $\mu$, if $\eta: X \rightarrow X$ is the map given by

$$
\begin{equation*}
\eta(u):=\int_{G} g \beta\left(g^{-1} u\right) d \mu, u \in X, \tag{1.3}
\end{equation*}
$$

then $\eta \in \Gamma_{G}(X)$. This fact will be useful later on.
As usual, by a deformation we mean a family of maps of the form

$$
\alpha_{s}:=\alpha(s, \cdot): W \subset X \rightarrow X, s \in\left[0, s_{0}\right]
$$

such that $\left.\alpha_{0} \equiv I d\right|_{W}$, with $\alpha \in C\left(\left[0, s_{0}\right] \times W, X\right)$ and $\left.I d\right|_{W}$ denotes the restriction of the identity map $I d$ on $X$ to $W$.

The next result has been proved by Szulkin in [81, Proposition 2.3].
Lemma 1.1 Let $I=\Phi+\Psi$ be a Szulkin-type functional for which the (PS) condition holds and let $N$ be a neighbourhood of $K_{c}$. Then, fixed $\varepsilon_{0}>0$, there is $\varepsilon \in\left(0, \varepsilon_{0}\right)$ such that, for each compact set $A \subset X \backslash N$ with

$$
c \leq \sup _{u \in A} I(u) \leq c+\varepsilon,
$$

there exist a closed set $W$, with $A \subset \operatorname{int}(W)$, and a deformation $\alpha_{s}: W \rightarrow X$, with $0 \leq s \leq s_{0} \approx 0^{+}$, such that
i) $\left\|\alpha_{s}(u)-u\right\| \leq s, \quad \forall u \in W$;
ii) There is a number $\delta=\delta_{\varepsilon} \approx 0^{+}$such that

$$
I\left(\alpha_{s}(u)\right)-I(u) \leq s+\delta s \quad \forall u \in W,
$$

and

$$
I\left(\alpha_{s}(u)\right)-I(u) \leq-3 \varepsilon s+\delta s \quad \forall u \in W, I(u) \geq c-\varepsilon .
$$

Moreover, by ii) it follows that
iii) $I\left(\alpha_{s}(u)\right)-I(u) \leq 2 s, \quad \forall u \in W$;
iv) $I\left(\alpha_{s}(u)\right)-I(u) \leq-2 \varepsilon s, \quad \forall u \in W, I(u) \geq c-\varepsilon ;$
v) $\sup _{u \in A} I\left(\alpha_{s}(u)\right)-\sup _{u \in A} I(u) \leq-2 \varepsilon s$.
vi) $I\left(\alpha_{s}(u)\right)-I(u) \leq 0, \forall u \in W \cap C$, for each closed set verifying $C \cap K=\emptyset$.

We would like to point out that $i i_{\text {) }}$ is not contained in the statement of [81, Proposition 2.3]. However, the sufficiently small constant $\delta>0$ in $i i)$ explicitly appears along the proof of the cited proposition.

Now, we are able to prove an equivariant version of Lemma 1.1 making use of the next notion that involves a functional $\Psi: X \rightarrow(-\infty,+\infty]$ as well as the action of a compact topological group $G$ on $X$.

Definition 1.3 Let $\Psi: X \rightarrow(-\infty,+\infty]$ be a functional and let $G$ be a compact topological group that acts on $X$. We say that $\Psi$ is compatible with the action of $G$ on $X$ (briefly $G$-compatible) if the following inequality holds

$$
\begin{equation*}
\Psi\left(\int_{G} g^{-1} \beta(g u) d \mu\right) \leq \int_{G} \Psi\left(g^{-1} \beta(g u)\right) d \mu, \tag{1.4}
\end{equation*}
$$

for every fixed $u \in X, \beta \in C(G u, X)$, where $G u:=\{g u ; g \in G\}$ and $\mu$ denotes the normalized Haar measure on $G$.

The inequality in (1.4) is verified in some meaningful cases and some of them are briefly discussed in the next example.

Example 1.2 By using the usual notations, let us restrict our attention to the following cases:

1) Let $\Psi \equiv\|\cdot\|: X \rightarrow \mathbb{R}$ be the norm defined on $X$. Fixed $u \in X$ and a map $\beta \in C(G u, X)$, let $\eta \in C(G, X)$ be given by $\eta(g):=g^{-1} \beta(g u)$. Next, let $\left(\beta_{n}\right)$ be a sequence of simple functions with

$$
\begin{equation*}
\int_{G} \beta_{n}(g) d \mu \rightarrow \int_{G} \eta(g) d \mu \quad \text { and } \quad \int_{G}\left\|\beta_{n}(g)\right\| d \mu \rightarrow \int_{G}\|\eta(g)\| d \mu . \tag{1.5}
\end{equation*}
$$

Each function $\beta_{n}$ can be written as a finite sum:

$$
\beta_{n}=\sum_{i} \chi_{A_{i}} v_{i} \quad \text { where } \quad A_{i}:=\beta_{n}^{-1}\left(\left\{v_{i}\right\}\right) \quad \text { and } \quad v_{i} \in X .
$$

Since $\mu$ is the normalized Haar measure on $G(\mu(G)=1)$, we have $\sum_{i} \mu\left(A_{i}\right)=1$ and

$$
\left\|\int_{G} \beta_{n}(g) d \mu\right\|=\left\|\sum_{i} \mu\left(A_{i}\right) v_{i}\right\| \leq \sum_{i} \mu\left(A_{i}\right)\left\|v_{i}\right\|=\int_{G}\left\|\beta_{n}(g)\right\| d \mu,
$$

for every $n \in \mathbb{N}$. Consequently, by using (1.5) it follows that

$$
\left\|\int_{G} \eta(g) d \mu\right\| \leq \int_{G}\|\eta(g)\| d \mu,
$$

that is,

$$
\left\|\int_{G} g^{-1} \beta(g u) d \mu\right\| \leq \int_{G}\left\|g^{-1} \beta(g u)\right\| d \mu
$$

So $\|\cdot\|$ is compatible with the action of $G$ on $X$. In general, the result is still true for an arbitrary convex continuous function $\Psi: X \rightarrow \mathbb{R}$.
2) Let us assume that $G:=\left\{g_{1}, \ldots, g_{k}\right\}$ is a finite group and let $\Psi: X \rightarrow(-\infty,+\infty]$ be a convex functional. Since

$$
\sum_{i=1}^{k} \mu\left(\left\{g_{i}\right\}\right)=1
$$

for each $u \in X$ and $\beta \in C(G u, X)$ the integral $\int_{G} g^{-1} \beta(g u) d \mu$ can be written as a finite convex combination of vectors of $X$. More precisely, one has

$$
\int_{G} \beta(g) d \mu=\sum_{i=1}^{k} \mu\left(\left\{g_{i}\right\}\right) v_{i}
$$

where $v_{i}:=g_{i}^{-1} \beta\left(g_{i} u\right)$.
Then, since $\Psi$ is convex,
$\Psi\left(\int_{G} g^{-1} \beta(g u) d \mu\right)=\Psi\left(\sum_{i=1}^{k} \mu\left(\left\{g_{i}\right\}\right) v_{i}\right) \leq \sum_{i=1}^{k} \mu\left(\left\{g_{i}\right\}\right) \Psi\left(v_{i}\right)=\int_{G} \Psi\left(g^{-1} \beta(g u)\right) d \mu$,
i.e. $\Psi$ is compatible with the action of $G$ on $X$.

The next result (Equivariant Deformation Lemma) is a more general form of Corollary 2.4 in [81]. This preparatory property can be also viewed as a complement of Lemma 5.1 proved by Bereanu and Jebelean in [28].

Lemma 1.2 Let $I=\Phi+\Psi$ be a Szulkin-type functional for which the (PS) condition holds. Assume that $\Phi$ and $\Psi$ are $G$-invariant functionals and $\Psi$ is compatible with the action of the compact topological group $G$ on $X$. Moreover, suppose that $G$ acts isometrically on $X$. Under the hypothesis of Lemma 1.1, the same conclusions hold with $\alpha_{s}: W \rightarrow X$ equivariant in $A$, whenever $A$ is a $G$-invariant set.

Proof. Denote by $\beta_{s}$ the deformation of Lemma 1.1 and set

$$
\begin{equation*}
\alpha_{s}(u):=\int_{G} g^{-1} \beta_{s}(g u) d \mu . \tag{1.6}
\end{equation*}
$$

Thanks to (1.3), we observe that $\alpha_{s} \in \Gamma_{G}(A)$. Now, let us prove that the function $\alpha_{s}$ verifies all the assumptions of Lemma 1.1. More precisely, since $i i i), i v$ ) and $v$ ) are a
direct consequence of $i i$ ), it is enough to show $i$ ) and $i i$ ). By Lemma 1.1, Part $-i$ ), it follows that

$$
\begin{align*}
\left\|\alpha_{s}(u)-u\right\| & =\left\|\int_{G} g^{-1} \beta_{s}(g u) d \mu-\int_{G}\left(g^{-1} g\right) u d \mu\right\| \\
& \leq \int_{G}\left\|g^{-1}\left(\beta_{s}(g u)-g u\right)\right\| d \mu  \tag{1.7}\\
& \leq \int_{G} s d \mu=s \quad \text { for every } u \in W
\end{align*}
$$

i.e. $\alpha_{s}$ verifies $i$ ) as claimed.

In order to prove $i i$ ) let us write $\beta_{s}(u)=u+h_{s}(u)$, so that $\alpha_{s}(u)=u+w_{s}(u)$, where $w_{s}(u)=\int_{G} g^{-1} h_{s}(g u) d \mu$. Consequently, the Taylor's formula immediately yields

$$
\begin{equation*}
I\left(\alpha_{s}(u)\right)=\left\{\Phi(u)+\left\langle\Phi^{\prime}(u), w_{s}(u)\right\rangle+r(s)\right\}+\Psi\left(\alpha_{s}(u)\right), \quad \frac{r(s)}{s}=o_{s}(1) \tag{1.8}
\end{equation*}
$$

Now, the compatibility condition of $\Psi$ gives

$$
\begin{equation*}
I\left(\alpha_{s}(u)\right) \leq \int_{G}\left(\Phi(u)+\left\langle\Phi^{\prime}(u), g^{-1} h_{s}(g u)\right\rangle\right) d \mu+\int_{G} \Psi\left(g^{-1} \beta_{s}(g u)\right) d \mu+\frac{\delta}{2} s \tag{1.9}
\end{equation*}
$$

for $s \approx 0^{+}$. Moreover, since

$$
\left\langle\Phi^{\prime}(u), g^{-1} h_{s}(g u)\right\rangle=\left\langle\Phi^{\prime}(g u), h_{s}(g u)\right\rangle,
$$

the $G$-invariance of $\Phi$ and the Taylor's expansion applied to $I\left(\beta_{s}(g u)\right)$ give

$$
\begin{align*}
I\left(\alpha_{s}(u)\right) & \leq \int_{G}\left(\Phi(g u)+\left\langle\Phi^{\prime}(g u), h_{s}(g u)\right\rangle\right) d \mu+\int_{G} \Psi\left(\beta_{s}(g u)\right) d \mu+\frac{\delta}{2} s  \tag{1.10}\\
& =\int_{G}\left(I\left(\beta_{s}(g u)\right)-\rho(s)\right) d \mu+\frac{\delta}{2} s \leq \int_{G} I\left(\beta_{s}(g u)\right) d \mu+\delta s .
\end{align*}
$$

Here, we have used $\rho$ as being the rest in the Taylor's expansion. Finally, by Lemma 1.1, Part - ii) and (1.10), it follows that

$$
\begin{equation*}
I\left(\alpha_{s}(u)\right) \leq \int_{G} I(g u) d \mu+s+2 \delta s \leq I(u)+s+2 \delta s \tag{1.11}
\end{equation*}
$$

for every $u \in W$. Similarly

$$
\begin{equation*}
I\left(\alpha_{s}(u)\right) \leq I(u)-3 \varepsilon s+2 \delta s, \quad \text { for every } \quad u \in W \quad \text { and } \quad I(u) \geq c-\varepsilon \tag{1.12}
\end{equation*}
$$

Inequalities (1.11) and (1.12) ensure that $\alpha_{s}$ satisfies $i i$ ) provided that $\delta$ is sufficiently small.

For the sake of completeness, let us recall now the notion of homotopy. Let $B$ be a subset of $X$ and $f, g \in C(B, X)$. As usual, we say that $f$ is homotopic to $g$ if there is $h \in C([0,1] \times B, X)$ satisfying

$$
\begin{equation*}
h(0, \cdot) \equiv f \quad \text { and } \quad h(1, \cdot) \equiv g . \tag{1.13}
\end{equation*}
$$

The map $h$ is called a homotopy between $f$ and $g$. We will write $f \approx g$ to designate that $f$ is homotopic to $g$ by an equivariant homotopy, i.e., there exists $h \in C([0,1] \times B, X)$ satisfying (1.13) with $h(t, \cdot) \in \Gamma_{G}(B)$ for any $t \in[0,1]$. It easily seen that $\approx$ is an equivalence relation in $C(B, X)$.

In what follows, for each $k \in \mathbb{N}$, we set
i) $Y_{k}:=\bigoplus_{j=1}^{k} X_{j}$ and $Z_{k}:=\overline{\bigoplus_{j=k}^{\infty} X_{j}}$;
ii) $B_{k}:=\left\{u \in Y_{k} ;\|u\| \leq \rho_{k}\right\}$ and $N_{k}:=\left\{u \in Z_{k} ;\|u\|=r_{k}\right\}$, with $\rho_{k}>r_{k}>0$.

Finally, let us recall the Intersection Lemma proved in [83, Lemma 3.4]; see also [25, Theorem 2] for additional comments and remarks.

Lemma 1.3 Assume that $\left(G_{0}\right)$ holds. If $\gamma \in C\left(B_{k}, X\right) \cap \Gamma_{G}\left(B_{k}\right)$ and $\gamma\left|\partial B_{k} \equiv I d\right|_{\partial B_{k}}$, then $\gamma\left(B_{k}\right) \cap N_{k} \neq \emptyset$.

We recall in the next result the classical Ekeland's Variational Principle [53, Theorem 1] that will be useful in the sequel.

Theorem 1.3 Let $(Y, d)$ be a complete metric space. Suppose that $\varphi: Y \rightarrow(-\infty, \infty]$ is a proper lower semicontinuous functional bounded from below. Given $\delta, \tau>0$ and $u_{0} \in Y$ such that

$$
\begin{equation*}
\inf _{u \in Y} \varphi(u) \leq \varphi\left(u_{0}\right) \leq \inf _{u \in Y} \varphi(u)+\delta, \tag{1.14}
\end{equation*}
$$

then, there exists $v_{0} \in Y$ verifying
i) $\varphi\left(v_{0}\right) \leq \varphi\left(u_{0}\right), \quad d\left(v_{0}, u_{0}\right) \leq 1 / \tau ;$
ii) $\varphi(v)-\varphi\left(v_{0}\right) \geq-\delta \tau d\left(v, v_{0}\right), \forall v \in Y$.

Now, we are ready to show a version of the classical Fountain Theorem due to Bartsch [23] that is valid for Szulkin-type functionals.

Theorem 1.4 Let $I=\Phi+\Psi$ be a Szulkin-type functional for which the (PS) condition holds with $I(0)=0$. Assume that $\Phi$ and $\Psi$ are $G$-invariant functionals with $\Psi$ compatible with respect to the action of a compact topological group $G$ on $X$. Moreover, assume that $\left(G_{0}\right)$ holds as well as
i) $a_{k}:=\sup _{u \in Y_{k},\|u\|=\rho_{k}} I(u) \leq 0$;
ii) $b_{k}:=\inf _{u \in Z_{k},\|u\|=r_{k}} I(u) \rightarrow \infty$,
for every $k \geq 2$. Finally, set $c_{k}:=\inf _{\gamma \in \Theta_{k}} \sup _{u \in B_{k}} I(\gamma(u))<\infty$, where

$$
\begin{equation*}
\Theta_{k}:=\left\{\gamma \in \Gamma_{G}\left(B_{k}\right) ;\left.\left.\quad \gamma\right|_{\partial B_{k}} \equiv I d\right|_{\partial B_{k}}\right\} . \tag{1.15}
\end{equation*}
$$

Then, the functional $I$ has infinitely many critical points $\left(u_{k}\right)$ such that $I\left(u_{k}\right)=c_{k} \rightarrow \infty$.

Proof. Let us argue by contradiction. In such a case, we may assume that $K_{c_{k}}=\emptyset$ for some $k \geq 2$. Now, if $k$ is large enough, by Lemma 1.3, one has $c_{k} \geq b_{k}>0$. Thus, we are in position to apply Lemma 1.1 with $N=\emptyset$ and $\varepsilon_{0}=c_{k}$. By fixing $\varepsilon \in\left(0, c_{k}\right)$ given in Lemma 1.1, we will get a contradiction. Indeed, let us define

$$
\begin{equation*}
\tilde{\Theta}_{k}:=\left\{\gamma \in \Gamma_{G}\left(B_{k}\right) ;\left.\left.\gamma\right|_{\partial B_{k}} \approx I d\right|_{\partial B_{k}} \text { in } I^{c_{k}-\frac{\varepsilon}{4}} \text { and }\left.(I \circ \gamma)\right|_{\partial B_{k}} \leq\left(c_{k}-\frac{\varepsilon}{2}\right)\right\} . \tag{1.16}
\end{equation*}
$$

Thanks to conditions $i$ ) and $i i$ ), if $\gamma \in \Theta_{k}$ and $u \in \partial B_{k}$, we derive

$$
I(\gamma(u))=I(u) \leq 0<c_{k}-\frac{\varepsilon}{2}<c_{k}-\frac{\varepsilon}{4} .
$$

Hence $\Theta_{k} \subset \tilde{\Theta}_{k}$ and

$$
\begin{equation*}
\tilde{c}_{k}:=\inf _{\gamma \in \tilde{\Theta}_{k}} \sup _{u \in B_{k}} I(\gamma(u)) \leq c_{k} . \tag{1.17}
\end{equation*}
$$

If $\tilde{c}_{k}<c_{k}$, it easily seen that there exists $\gamma_{0} \in \tilde{\Theta}_{k}$ such that

$$
m_{0}:=\sup _{u \in B_{k}} I\left(\gamma_{0}(u)\right)<c_{k} .
$$

Moreover, by (1.16), there exists a homotopy $H \in C\left([0,1] \times \partial B_{k}, I^{c_{k}-\frac{\varepsilon}{4}}\right)$ such that

$$
\begin{equation*}
\left.H(0, \cdot) \equiv \gamma_{0}\right|_{\partial B_{k}} \text { and }\left.H(1, \cdot) \equiv I d\right|_{\partial B_{k}}, \tag{1.18}
\end{equation*}
$$

with $H(t, \cdot)$ equivariant for every $t \in[0,1]$. Since $B_{k}$ is a ball of radius $\rho_{k}$ each point $u \in B_{k}$ can be represented as $u \equiv(s, \tilde{u}), s \in\left[0, \rho_{k}\right], \tilde{u} \in \partial B_{k}$; polar coordinates of $u$. Hence, if $u \in \partial B_{k}$ then $u \equiv\left(\rho_{k}, u\right)$. Now, define $\gamma_{1}: B_{K} \rightarrow X$ by

$$
\gamma_{1}(s, v):=\left\{\begin{array}{l}
\gamma_{0}(s, v) \quad s \in\left[0, \frac{\rho_{k}}{2}\right]  \tag{1.19}\\
H\left(\frac{2}{\rho_{k}} s-1, v\right) \quad s \in\left[\frac{\rho_{k}}{2}, \rho_{k}\right] .
\end{array}\right.
$$

According to (1.18), when $s=\rho_{k} / 2$ it holds $H\left(2 s / \rho_{k}-1, \cdot\right)=H(0, \cdot) \equiv \gamma_{0}$, which assures that $\gamma_{1}$ is well defined and $\gamma_{1} \in \Gamma_{G}\left(B_{k}\right)$, since $\gamma_{0}$ and $H(t, \cdot)$ are equivariants. By using again (1.18), if $u \in \partial B_{k}$ one has

$$
\gamma_{1}(u)=H(1, u)=\left.I d\right|_{\partial_{B_{k}}}(u),
$$

so that $\gamma_{1} \in \Theta_{k}$, and

$$
\sup _{u \in B_{k}} I\left(\gamma_{1}(u)\right) \leq \max \left\{m_{0}, c_{k}-\frac{\varepsilon}{4}\right\}<c_{k},
$$

against the definition of $c_{k}$. This contradiction assures that $\tilde{c}_{k}=c_{k}$ in (1.17). Consequently, we can work with $\tilde{\Theta}_{k}$ instead $\Theta_{k}$.
Now, let us observe that the collection $\tilde{\Theta}_{k}$ is a (complete) metric subspace of the complete metric space $C\left(B_{k}, X\right)$ endowed by $d(f, g):=\sup _{u \in B_{k}}\|f(u)-g(u)\|$. Indeed, suppose that $\gamma_{n} \rightarrow \gamma$ in $C\left(B_{k}, X\right)$ with $\gamma_{n} \in \tilde{\Theta}_{k}$. The semicontinuity of $I$ yields

$$
I(\gamma(u)) \leq \lim \inf I\left(\gamma_{n}(u)\right) \leq c_{k}-\frac{\varepsilon}{2}, \quad u \in \partial B_{k}
$$

Moreover, the action properties give

$$
\gamma(g u)=\lim \gamma_{n}(g u)=g \lim \gamma_{n}(u) \quad \forall u \in B_{k}, \forall g \in G,
$$

so that $\gamma \in \Gamma_{G}\left(B_{k}\right)$. On the other hand, thanks to the continuity of $\Phi$, it is possible to find a sequence of positive numbers $\tau_{n}=o_{n}(1)$ such that

$$
\begin{equation*}
\Phi\left(t \gamma_{n}(u)+(1-t) \gamma(u)\right) \leq t \Phi\left(\gamma_{n}(u)\right)+(1-t) \Phi(\gamma(u))+\tau_{n} \quad \forall u \in \partial B_{k}, \forall t \in[0,1] . \tag{1.20}
\end{equation*}
$$

More precisely $\tau_{n}:=2 \max \left\{\tau_{n}^{1}, \tau_{n}^{2}\right\}$ with

$$
\tau_{n}^{1}:=\sup _{u \in B_{k}, t \in[0,1]}\left|\Phi\left(t \gamma_{n}(u)+(1-t) \gamma(u)\right)-\Phi(\gamma(u))\right|
$$

and

$$
\tau_{n}^{2}:=\sup _{u \in B_{k}}\left|\Phi\left(\gamma_{n}(u)\right)-\Phi(\gamma(u))\right| .
$$

Inequality (1.20) associated to the convexity of $\Psi$ implies

$$
\begin{align*}
I\left(t \gamma_{n}(u)+(1-t) \gamma(u)\right) & \leq t I\left(\gamma_{n}(u)\right)+(1-t) I(\gamma(u))+\tau_{n} \\
& \leq c_{k}-\frac{\varepsilon}{2}+\tau_{n} \leq c_{k}-\frac{\varepsilon}{4} \quad \forall u \in \partial B_{k}, \forall t \in[0,1], \tag{1.21}
\end{align*}
$$

for $n$ sufficiently large.
Thus $\left.\left.\gamma_{n}\right|_{\partial B_{k}} \approx \gamma\right|_{\partial B_{k}}$ via the equivariant homotopy $F(t, \cdot):=t \gamma_{n}(\cdot)+(1-t) \gamma(\cdot)$. Consequently $\left.\left.\gamma\right|_{\partial B_{k}} \approx I d\right|_{\partial B_{k}}$, so that $\tilde{\Theta}_{k}$ is a complete metric subspace of $C\left(B_{k}, X\right)$ as claimed. Hence, the conclusion follows arguing as in [81, Theorem 3.2].
Now, since $I$ is a lower semicontinuous functional, by using [81, Lemma 3.1] and the definition of $c_{k}$, we have that the functional $\varphi: \tilde{\Theta}_{k} \rightarrow(-\infty,+\infty]$ defined by

$$
\varphi(\gamma):=\sup _{u \in B_{k}} I(\gamma(u))
$$

is lower semicontinuous and bounded from below. Since $\tilde{\Theta}_{k}$ is a complete metric space, we can apply the classical Ekeland's Variational Principle recalled in Theorem 1.3, to the functional $\varphi$ with $\delta=\varepsilon$ and $\tau=1$. Then, we may take $\gamma \in \tilde{\Theta}_{k}$ such that $\varphi(\gamma) \leq c_{k}+\varepsilon$, and

$$
\begin{equation*}
\varphi(\eta)-\varphi(\gamma) \geq-\varepsilon d(\eta, \gamma) \quad \forall \eta \in \tilde{\Theta}_{k} \tag{1.22}
\end{equation*}
$$

It follows that $A:=\gamma\left(B_{k}\right)$ is a compact equivariant set with

$$
\sup _{v \in A} I(v)=\sup _{u \in B_{k}} I(\gamma(u)) \leq c_{k}+\varepsilon
$$

so that $A$ verifies all the assumptions of the equivariant deformation lemma given in Lemma 1.2. Hence, let $\eta:=\alpha_{s} \circ \gamma$, where $\alpha_{s}$ is the equivariant deformation given in Lemma 1.2 and let us prove that $\eta \in \tilde{\Theta}_{k}$ for $s \approx 0^{+}$. Indeed $\eta \in \Gamma_{G}\left(B_{k}\right)$ and if $u \in \partial B_{k}$, by iii) and $i v$ ) in Lemma 1.1, it follows that

$$
\left\{\begin{array}{l}
I(\eta(u))=I\left(\alpha_{s}(\gamma(u))\right) \leq I(\gamma(u)) \leq c_{k}-\frac{\varepsilon}{2}, \quad I(\gamma(u)) \in\left(c_{k}-\varepsilon, c_{k}-\frac{\varepsilon}{2}\right]  \tag{1.23}\\
I(\eta(u)) \leq I(\gamma(u))+2 s \leq c_{k}-\frac{\varepsilon}{2}, \quad I(u) \leq c_{k}-\varepsilon
\end{array}\right.
$$

so that

$$
\left.(I \circ \eta)\right|_{\partial B_{k}} \leq c_{k}-\frac{\varepsilon}{2}
$$

Now, since $\alpha_{s} \circ \gamma$ can be viewed as an equivariant homotopy such that $\left.\left(\alpha_{s} \circ \gamma\right)\right|_{\partial B_{k}} \approx$ $\left.\gamma\right|_{\partial B_{k}}$ in $I^{c_{k}-\frac{\varepsilon}{2}}$, it follows that

$$
\left.\left.\left.\eta\right|_{\partial B_{k}} \approx\left(\alpha_{s} \circ \gamma\right)\right|_{\partial B_{k}} \approx I d\right|_{\partial B_{k}} \quad \text { in } \quad I^{c_{k}-\frac{\varepsilon}{4}}
$$

taking into account that $\left.\left.\gamma\right|_{\partial B_{k}} \approx I d\right|_{\partial B_{k}}$.

Finally, since $\eta \in \tilde{\Theta}_{k}$, by using $i$ ) and $v$ ) of Lemma 1.1 and (1.22), one has

$$
\begin{align*}
-\varepsilon s & \leq \varphi(\eta)-\varphi(\gamma) \\
& =\sup _{u \in B_{k}} I\left(\alpha_{s}(\gamma(u))\right)-\sup _{u \in B_{k}} I(\gamma(u)) \leq-2 \varepsilon s, \tag{1.24}
\end{align*}
$$

which is an absurd. Hence, there exists a positive integer $k_{0}$ such that $K_{c_{k}} \neq \emptyset$ for $k \geq k_{0}$. The proof is complete since, by construction, one clearly has $c_{k} \geq b_{k}$.

### 1.1.2 Minimax results involving the G-index theory

Preceding the main results of this subsection, we introduce the notion of the $G$-index that will be required in our abstract results. The reader can consult [23] for a discussion in a more general situation. Let $\Sigma$ be the class of subsets of $(X-\{0\})$ that are $G$-invariant and closed in $X$. Let us assume that the condition $\left(G_{0}\right)$ holds and let $Y$ be the vector space fixed in that condition.

Definition 1.4 The $G$-index of $A \in \Sigma \backslash\{\emptyset\}$ is defined as

$$
\gamma_{G}(A):=\min \left\{k \in \mathbb{N} \backslash\{0\}: \exists \phi: A \rightarrow Y^{k} \backslash\{0\}, \phi \in \Gamma_{G}(A)\right\}
$$

if such integer exists and $\gamma_{G}(A):=+\infty$ otherwise. Finally, we also set $\gamma_{G}(\emptyset):=0$.
Remark 1.2 Note that when $G=\mathbb{Z}_{2}$ the $G$-index introduced above coincides with the genus of symmetric subset of $(X-\{0\})$; details and useful remarks on genus theory can be found in [75].

Denote by $\mathcal{C}$ the collection of all nonempty closed and bounded subsets of $X$. In $\mathcal{C}$ we put the Hausdorff metric $d_{H}$ given by

$$
d_{H}(A, B):=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}, \quad A, B \in \mathcal{C}
$$

where $d$ denotes the usual distance on $X$. It is well known that $\left(\mathcal{C}, d_{H}\right)$ is a complete metric space. Denote by $\mathcal{D}_{G}$ the subcollection of $\mathcal{C}$ of all nonempty compact $G$-invariant subset of $X$. By following the ideas in [81, Section 4] the reader is invited to note that $\left(\mathcal{D}_{G}, d_{H}\right)$ is a complete metric space; see also [46, Apêndice A$]$ for related computations. By a similar way, we notice that, setting

$$
\Gamma_{j}:={\left.\overline{\left\{A \in \mathcal{D}_{G}\right.} ; 0 \notin A, \gamma_{G}(A) \geq j\right\}^{d}}_{d_{H}}
$$

the reasoning made in [81] can be adapted to show that the space $\left(\Gamma_{j}, d_{H}\right)$ is a complete metric space. The next properties can be proved by using an analogous reasoning as made in [75].

Proposition 1.1 For every $A, B \in \Sigma$ the following facts hold:
i) If there exists $\phi: A \rightarrow B, \phi \in \Gamma_{G}(A)$, then $\gamma_{G}(A) \leq \gamma_{G}(B)$;
ii) $A \subset B$ implies that $\gamma_{G}(A) \leq \gamma_{G}(B)$;
iii) $\gamma_{G}(A \cup B) \leq \gamma_{G}(A)+\gamma_{G}(B)$;
iv) $\gamma_{G}(\overline{A \backslash B}) \geq \gamma_{G}(A)-\gamma_{G}(B)$, since $\gamma_{G}(B)<\infty$;
$v)$ If $G$ is a finite group and $A$ is a compact set, then $\gamma_{G}(A)<\infty$.
vi) If $A$ is a compact set, then we have

$$
\gamma_{G}\left(N_{\delta}(A)\right)=\gamma_{G}(A),
$$

$$
\delta \approx 0^{+}, \text {where }
$$

$$
N_{\delta}(A):=\{x \in X: d(x, A) \leq \delta\} .
$$

Proof. The proof of $i)-i v$ ) and $v i$ ) follows using the same type of argument as made in [75]. To see that $v$ ) holds, write $G=\left\{g_{1}, \ldots, g_{n}\right\}$ and for each $x \in A$ consider the $G$-orbit $G x:=\{g x ; g \in G\}=\left\{g_{1} x, \ldots, g_{n} x\right\}$. We may fix $\phi=\phi_{x}: G x \longrightarrow Y \backslash\{0\}$ an equivariant continuous map (e.g., fix $v_{0} \neq 0$ in $Y$ and set $\left.\phi\left(g_{j} x\right)=g_{j} v_{0}\right)$. Since $G x$ is a closed and finite subset of $A$, we can extend $\phi$ to $\tilde{\phi}: U \longrightarrow Y \backslash\{0\}$, with $U=U_{x}$ an equivariant neighborhood of $G x$, and $\tilde{\phi} \in \Gamma_{G}(U)$. By repeating this procedure for each $x \in A$, by the compactness of $A$ it is possible to find $U_{1}, \ldots, U_{k}$ a finite list of equivariant closed sets and equivariant maps $\tilde{\phi}_{j}: U_{j} \longrightarrow Y \backslash\{0\}, j \in\{1, \ldots, k\}$, $A \subset \bigcup_{j} U_{j}$. Arguing as in [24, §2.3-§2.4], by considering an $G$-invariant partition of unity subordinate to $\left\{U_{j}\right\}_{1 \leq j \leq k}$, one can obtain $\gamma: A \longrightarrow Y^{k} \backslash\{0\}, \gamma \in \Gamma_{G}(A)$. So, the item $v$ ) holds and the proof is now complete.

Finally, in view of the preceding proposition, by following the same idea in [81, Proposition 4.2], we can prove the property below.

Proposition 1.2 If $A \in \Gamma_{j}$ is such that $0 \notin A$, then $\gamma_{G}(A) \geq j$.

Let $A$ be a compact set of a real Banach space $X$ and $\delta>0$. Let us recall the notation

$$
N_{\delta}(A):=\{x \in X: d(x, A) \leq \delta\}
$$

The next technical result will be useful in the sequel.
Lemma 1.4 Let $I=\Phi+\Psi$ be a Szulkin-type functional for which the (PS) condition holds. Moreover, let $\left(c_{j}\right)$ be a real sequence such that $c_{j} \rightarrow c \in \mathbb{R}$. Then, given $\delta>0$, there exists $j_{0} \in \mathbb{N}$ such that

$$
K_{c_{j}} \subset N_{\delta}\left(K_{c}\right),
$$

for every $j \geq j_{0}$.
Proof. Arguing by contradiction, assume that there exist a subsequence $\left(c_{j_{k}}\right)$ of $\left(c_{j}\right)$, a number $\delta_{0}>0$, and a sequence $\left(u_{k}\right)$ with $u_{k} \in K_{c_{j_{k}}}$ such that

$$
\begin{equation*}
d\left(u_{k}, K_{c}\right)>\delta_{0}, \quad \forall k \in \mathbb{N} \tag{1.25}
\end{equation*}
$$

The definition of $K_{c_{j_{k}}}$ immediately yields

$$
\begin{equation*}
\left\langle\Phi^{\prime}\left(u_{k}\right), v-u_{k}\right\rangle+\Psi(v)-\Psi\left(u_{k}\right) \geq 0, \quad \forall v \in X \tag{1.26}
\end{equation*}
$$

as well as

$$
I\left(u_{k}\right)=c_{j_{k}} \rightarrow c
$$

so that $\left(u_{k}\right)$ is a $(\mathrm{PS})_{\mathrm{c}}$ sequence for the functional $I$. Now, the (PS) condition ensures the existence of $u_{0} \in X$ and a subsequence of $\left(u_{k}\right)$, still denoted again by $\left(u_{k}\right)$, such that

$$
u_{k} \rightarrow u_{0} \quad \text { in } \quad X
$$

Now, taking $v=u_{0}$ in (1.26), we get $\lim \sup \Psi\left(u_{k}\right) \leq \Psi\left(u_{0}\right)$. The last inequality in addition to the semicontinuity property of $\Psi$ gives $\lim \Psi\left(u_{k}\right)=\Psi\left(u_{0}\right)$, so that $u_{0} \in K_{c}$. Hence $d\left(u_{k}, K_{c}\right) \rightarrow 0$ as $k \rightarrow \infty$, against (1.25).

The next result extends [61, Proposition 2.2] to Szulkin-type functionals.
Theorem 1.5 Let $I=\Phi+\Psi$ be a Szulkin-type functional for which the (PS) condition holds and such that $I(0)=0$. Assume that $\Phi$ and $\Psi$ are $G$-invariant functionals with $\Psi$ compatible with respect to the action of a compact topological group $G$ on $X$. Moreover, suppose that $\left(G_{0}\right)$ holds and require that the $G$-index satisfies the following property:

$$
\begin{equation*}
\gamma_{G}(A)<\infty \text { for every compact set } A \in \Sigma \tag{*}
\end{equation*}
$$

Finally, for every $j \in \mathbb{N}$, set

$$
c_{j}:=\inf _{A \in \Gamma_{j}} \sup _{u \in A} I(u),
$$

and assume that the following conditions are verified:
i) $-\infty<c_{j}$ for every $j \in \mathbb{N}$;
ii) Given $j \in \mathbb{N}$, there exists $A \in \Sigma$ such that

$$
\gamma_{G}(A) \geq j \quad \text { and } \quad \sup _{u \in A} I(u)<0
$$

where $A \neq \emptyset$ is a compact set.
Then, the numbers $c_{j}$ are negative critical values of $I$ and $c_{j} \rightarrow 0$ as $j \rightarrow \infty$.
Proof. We first notice that conditions $i$ ) and $i i$ ) imply that $-\infty<c_{j}<0$. Now, a careful analysis of the arguments in [81, Theorem 4.3] ensures that the sequence ( $c_{j}$ ) consists of critical values of $I$. In fact, the proof of [81, Theorem 4.3] only depends on the properties $i$ ) $-v i$ ) in Proposition 1.1 with $G=\mathbb{Z}_{2}$ and where $\gamma_{G}$ coincides with the genus of a symmetric set as in Remark 1.2. In view of Proposition 1.1, the argument used in [81, Theorem 4.3] can be adopted in our case. It remains to show that $c_{j} \rightarrow 0$ as $j \rightarrow \infty$. To this aim, let us observe that the definition of $c_{j}$ yields

$$
c_{j} \leq c_{j+1}, \quad \forall j \in \mathbb{N}
$$

Arguing by contradiction, if $c_{j} \nrightarrow 0$ for $j \rightarrow \infty$, there exists $c<0$ such that $c_{j} \rightarrow c$. The (PS) condition ensures that $K_{c}$ is compact. Moreover, the assumptions on $I$ yields that $K_{c}$ is $G$-invariant and $0 \notin K_{c}$. Thereby, $K_{c} \in \Sigma$ and, by following the idea of Lemma 1.4, as $c_{j} \rightarrow c$ and $K_{c_{j}} \neq \emptyset$, one has that $K_{c} \neq \emptyset$. By $v i$ ) of Proposition 1.1 there is $\delta>0$ such that $\gamma_{G}\left(N_{2 \delta}\left(K_{c}\right)\right)=\gamma_{G}\left(K_{c}\right)$; note that $N_{\delta}\left(K_{c}\right) \neq \emptyset$. By $\left(G_{*}\right)$, we can assume that $\gamma_{G}\left(K_{c}\right)=p$

$$
\begin{aligned}
\varphi_{j}: \Gamma_{j} & \rightarrow(-\infty,+\infty] \\
A & \longmapsto \varphi_{j}(A):=\sup _{u \in A} I(u) .
\end{aligned}
$$

Clearly $\varphi_{j}$ is lower semicontinuous functional since $I$ is too. Set

$$
\varepsilon_{0}:=\min \{1, \delta,-c\}
$$

and take $\varepsilon \in\left(0, \varepsilon_{0}\right)$ as in Lemma 1.1. Now, let $A_{1} \in \Gamma_{j+p}$ be such that

$$
c_{j+p} \leq \varphi_{j+p}\left(A_{1}\right)<c_{j+p}+\frac{\varepsilon^{2}}{2} .
$$

Since $c_{j} \rightarrow c$, it follows that, for a convenient $j_{0} \in \mathbb{N}$,

$$
\varphi_{j+p}\left(A_{1}\right)<c_{j+p}+\frac{\varepsilon^{2}}{2} \leq c+\frac{\varepsilon^{2}}{2} \leq c_{j}+\varepsilon^{2}<c_{j}+\varepsilon<0
$$

for $j \geq j_{0}$. Hence, by fixing $j=j_{0}$, we get $0 \notin A_{1}$ and $\gamma_{G}\left(A_{1}\right) \geq j_{0}+p$ by Proposition 1.2. If we set $A_{2}:=\overline{A_{1} \backslash N_{2 \delta}\left(K_{c}\right)}$ we also have

$$
\sup _{u \in A_{2}} I(u) \leq \sup _{u \in A_{1}} I(u)<c_{j_{0}}+\varepsilon^{2}<0
$$

so that $0 \notin A_{2}$ and $\gamma_{G}\left(A_{2}\right) \geq\left(j_{0}+p\right)-p=j_{0}$ by Proposition 1.1, Part - iv). Consequently $A_{2} \in \Gamma_{j_{0}}$. Now, Theorem 1.3 applied to the function $\varphi_{j_{0}}: \Gamma_{j_{0}} \rightarrow(-\infty,+\infty]$ (note that $\Gamma_{j_{0}}$ is complete) yields the existence of $A \in \Gamma_{j_{0}}$ such that

$$
c_{j_{0}} \leq \sup _{u \in A} I(u)=\varphi_{j_{0}}(A) \leq \varphi_{j_{0}}\left(A_{2}\right)<c_{j_{0}}+\varepsilon, \quad d_{H}\left(A, A_{2}\right) \leq \varepsilon
$$

as well as

$$
\begin{equation*}
\varphi_{j_{0}}(B)-\varphi_{j_{0}}(A) \geq-\varepsilon d_{H}(A, B) \forall B \in \Gamma_{j_{0}} . \tag{1.27}
\end{equation*}
$$

Since Lemma 1.4 gives $K_{c_{0}} \subset N_{\delta}\left(K_{c}\right)$ for $j_{0} \approx \infty$, by setting $N=N_{\delta}\left(K_{c}\right)$ we derive $A \cap N=\emptyset$, taking into account that $\varepsilon<\delta$. These informations ensure that $A, N$ and $K_{c_{j_{0}}}$ verify the hypothesis of the deformation result given in Lemma 1.1.

Thus by Lemma 1.2 the existence of an equivariant deformation $\alpha_{s}$ is obtained. In this way, if we set $B:=\alpha_{s}(A)$, on account of Proposition 1.1, Part - $i$ ), one has $B \in \Gamma_{j_{0}}$. Now, combining the properties of $\alpha_{s}$ with (1.27) we derive the contradiction

$$
-2 \varepsilon s \geq \varphi(B)-\varphi(A) \geq-\varepsilon s
$$

This completes the proof.
Remark 1.3 We emphasize that if $G$ is finite, condition $\left(G_{*}\right)$ in Theorem 1.5 automatically holds; see Proposition 1.1-v).

The last result can be viewed as a complement of Corollary 4.8 proved by Szulkin in [81].

Theorem 1.6 Let $I=\Phi+\Psi$ be a Szulkin-type functional for which the (PS) condition holds and such that $I(0)=0$. Assume that $\Phi$ and $\Psi$ are $G$-invariant functionals with $\Psi$ compatible with respect to the action of a compact topological group $G$ on $X$. Moreover, suppose that $\left(G_{0}\right)$ holds and require that the $G$-index satisfies $\left(G_{*}\right)$.

Finally, assume that there exist subspaces $Y, Z$ of $X$ such that $X=Y \oplus Z$, $\operatorname{dim} Y<\infty, Z$ is closed and
i) There are numbers $r, \rho>0$ such that $\left.I\right|_{\partial B_{r}(0) \cap Z} \geq \rho$;
ii) For each positive integer $k$ there is a $k$-dimensional subspace $X_{k}$ of $X$ such that $I(u) \rightarrow-\infty$ as $\|u\| \rightarrow \infty$ with $u \in X_{k}$.

Then I has infinitely many critical values. Furthermore, if $I^{-c_{0}}$ has no critical points for some $c_{0}>0$, then there exists a sequence $\left(c_{j}\right)$ of critical values of $I$ with $c_{j} \rightarrow \infty$ as $j \rightarrow \infty$.

In order to prove Theorem 1.6 some notations are introduced. To this aim, let us fix $c_{0}>0$ such that $I^{-c_{0}}$ has no critical points and set $M_{k}:=\bar{B}_{R_{k}}(0) \cap X_{k}$ with $R_{k}>r$ and $\left.I\right|_{\partial M_{k}} \leq-c_{0}$. Now, let us define the following sets

$$
\mathcal{F}:=\left\{\eta \in \Gamma_{G}\left(M_{k}\right) ;\left.\left.\eta\right|_{\partial M_{k}} \approx I d\right|_{\partial M_{k}} \text { in } I^{-c_{0}} \text { by an equivariant homotopy }\right\},
$$

for each $j \in \mathbb{N}$ and $k \geq j$,

$$
\tilde{\Lambda}_{j}^{k}:=\left\{\begin{array}{c}
\eta\left(M_{k} \backslash U\right): \eta \in \mathcal{F}, U \text { is } G \text {-invariant and open in } M_{k}, U \cap \partial M_{k}=\emptyset \\
\text { with } \gamma_{G}(W) \leq k-j, \text { for } W \in \Sigma, W \subset U
\end{array}\right\}
$$

and

$$
\tilde{\Lambda}_{j}:=\bigcup_{k \geq j} \tilde{\Lambda}_{j}^{k} .
$$

Finally, for each $j \in \mathbb{N}$, we fix
$\Lambda_{j}:=\left\{A \subset X: A\right.$ is compact, $G$-invariant and for each open $U \supset A$, there is $\left.A_{0} \in \tilde{\Lambda}_{j}, A_{0} \subset U\right\}$.
and

$$
c_{j}:=\inf _{A \in \Lambda_{j}} \sup _{u \in A} I(u) .
$$

By applying the same arguments used in [81, Theorem 4.4, Lemma 4.6] we can prove that $\Lambda_{j}$ verifies the properties $i$ ) $-v$ ) below (note that, in view of the Proposition 1.1, the arguments in [81, Theorem 4.4] can be applied to the $G$-index $\gamma_{G}$ ).

Lemma 1.5 The sets $\Lambda_{j}$ defined above satisfy the following claims:
i) $\left(\Lambda_{j}, d_{H}\right)$ is a complete metric space;
ii) $c_{j} \geq \rho$, for all $j>\operatorname{dim} Y$;
iii) $\Lambda_{j+1} \subset \Lambda_{j}$;
iv) Let $A \in \Lambda_{j}$ and $W$ be a closed $G$-invariant set containing $A$ in its interior. Moreover, if $\alpha: W \rightarrow X$ is an equivariant mapping such that

$$
\left.\left.\alpha\right|_{W \cap I^{-c_{0}}} \approx I d\right|_{W \cap I^{-c_{0}}}
$$

by an equivariant homotopy, then $\alpha(A) \in \Lambda_{j}$;
$v)$ For each compact $B$ with $B \in \Sigma, \gamma_{G}(B) \leq p,\left.I\right|_{B}>-c_{0}$, there exists a number $\delta_{0}>0$ such that $A \backslash \operatorname{int}\left(N_{\delta}(B)\right) \in \Lambda_{j}$, for $A \in \Lambda_{j+p}, \delta \in\left(0, \delta_{0}\right)$.

Part $-v$ ) in Lemma 1.5 is different with respect to the statement of [81, Lemma 4.6]. However, the main assertion is a direct consequence of the arguments proved there.

Proof of Theorem 1.6. The first part of the proof can be derived by using similar arguments given in [81, Corollary 4.8]. Hence, it remains to show that $c_{j} \rightarrow \infty$ as $j \rightarrow \infty$. Now, by Lemma 1.5, Part - iiii), it follows that

$$
c_{j} \leq c_{j+1} \quad \forall j \in \mathbb{N} .
$$

Thus, if $c_{j} \nrightarrow \infty$, by $i i$ ) of last lemma, there exists $c>0$ such that $c_{j} \rightarrow c$. Arguing as in the proof of Theorem 1.5, we deduce that $K_{c}$ is a compact $G$-invariant set with $0 \notin K_{c}$ and $K_{c} \neq \emptyset$. Hence, for a convenient $\delta>0$, by condition $\left(G_{*}\right)$, one has $\gamma_{G}\left(N_{2 \delta}\left(K_{c}\right)\right)=\gamma_{G}\left(K_{c}\right)=: p \in \mathbb{N}$. Now, set $\varepsilon_{0}:=\min \{1, \delta\}$, take $\varepsilon \in\left(0, \varepsilon_{0}\right)$ as in Lemma 1.1 and define

$$
\begin{aligned}
\varphi_{j}: \Lambda_{j} & \rightarrow(-\infty,+\infty] \\
A & \longmapsto \varphi(A):=\sup _{u \in A} I(u) .
\end{aligned}
$$

Clearly $\varphi_{j}$ is a lower semicontinuous functional that is bounded from below for every $j \in \mathbb{N}$. Hence, let $A_{1} \in \Lambda_{j+p}$ be such that

$$
\varphi_{j+p}\left(A_{1}\right)<c_{j+p}+\frac{\varepsilon^{2}}{2} .
$$

Consequently, for some $j_{0} \in \mathbb{N}$,

$$
\varphi_{j+p}\left(A_{1}\right)<c_{j}+\varepsilon,
$$

for $j \geq j_{0}$. Now, if $A_{2}:=\overline{A_{1} \backslash \operatorname{int}\left(N_{2 \delta}\left(K_{c}\right)\right)}$, by Part $\left.-v\right)$ of Lemma 1.5 we have $A_{2} \in \Lambda_{j_{0}}$ and $\varphi_{j_{0}}\left(A_{2}\right) \leq \varphi_{j_{0}}\left(A_{1}\right)$. Moreover, by Theorem 1.3, there exists $A \in \Lambda_{j_{0}}$ such that

$$
\varphi_{j_{0}}(A) \leq \varphi_{j_{0}}\left(A_{2}\right)<c_{j_{0}}+\varepsilon \quad d_{H}\left(A, A_{2}\right) \leq \varepsilon
$$

as well as

$$
\begin{equation*}
\varphi_{j_{0}}(B)-\varphi_{j_{0}}(A) \geq-\varepsilon d_{H}(B, A) \quad \forall B \in \Lambda_{j_{0}} . \tag{1.28}
\end{equation*}
$$

If we set $N:=N_{\delta}\left(K_{c}\right)$, Lemma 1.4 implies that $K_{c_{j_{0}}} \subset N$ if $j_{0} \approx \infty$. The definition of $\varepsilon_{0}$ yields $A \cap N=\emptyset$ and

$$
c_{j_{0}} \leq \sup _{u \in A} I(u)<c_{j_{0}}+\varepsilon
$$

Then, we can apply Lemma 1.2 to obtain an equivariant deformation $\alpha_{s}$. If we set $B:=\alpha_{s}(A)$, by Part - vi) of Lemma 1.1 and Part - $i v$ ) of Lemma 1.5, one has $B \in \Lambda_{j_{0}}$. Finally, a contradiction is achieved by replacing $B$ in (1.28) and arguing as in the proof of Theorem 1.5.

### 1.2 Some Applications to elliptic problems

In this section we illustrate how the abstract results of the previous section can be applied to establish the existence of infinitely many solutions for some classes of elliptic problems.

### 1.2.1 A logarithmic variational inclusion problem

We start this subsection by recalling some concepts related to the critical point theory for locally Lipschitz functions required in the sequel. Additional comments and remarks about this subject can be found in the Appendix A (we also refer the texts in $[34,36,40,41,71])$.

Let $\varphi \in C(X, \mathbb{R})$ be a locally Lipschitz function (briefly $\varphi \in \operatorname{Lip}_{\text {loc }}(X, \mathbb{R})$ ). The generalized directional derivative of $\varphi$ at $u$ along the direction $v \in X$ is defined by

$$
\varphi^{\circ}(u ; v):=\limsup _{w \rightarrow u, t \rightarrow 0^{+}} \frac{\varphi(w+t v)-\varphi(w)}{t}
$$

The generalized gradient of the function $\varphi \in \operatorname{Lip}_{\mathrm{loc}}(X, \mathbb{R})$ in $u$ is the set

$$
\partial \varphi(u)=\left\{\phi \in X^{*}: \varphi^{\circ}(u ; v) \geq\langle\phi, v\rangle, \forall v \in X\right\} .
$$

By a critical point of $\varphi \in \operatorname{Lip}_{\text {loc }}(X, \mathbb{R})$, we mean a point $u \in X$ is if $0 \in \partial \varphi(u)$. If, in addition, the functional $\varphi \in \operatorname{Lip}_{\text {loc }}(X, \mathbb{R})$ is convex, then the generalized gradient of $\varphi$ at $u$ is given by

$$
\begin{equation*}
\partial \varphi(u):=\left\{\phi \in X^{*}: \varphi(v)-\varphi(u) \geq\langle\phi, v-u\rangle, \forall v \in X\right\} \tag{1.29}
\end{equation*}
$$

i.e., the set $\partial \varphi(u)$ coincides with the subdifferential of $\varphi$ at $u$ in the sense of the convex analysis.

In this subsection we study the existence of infinitely many solutions for the logarithmic inclusion problem

$$
\left\{\begin{array}{l}
-\Delta u+u+\partial G(x, u) \ni u \log u^{2}, \text { in } \mathbb{R}^{N}  \tag{1}\\
u \in H^{1}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

where $G(x, t):=\int_{0}^{t} g(x, s) d s$ is a convex locally Lipschitz function with $G(x, \cdot) \geq 0$ for every $x \in \mathbb{R}^{N}$. The notation $\partial G(x, t)$ designates the generalized gradient of $G$ with respect to the variable $t$.

We also require that the nonlinear term $g$ is a $N$-measurable function that satisfies the following technical conditions:
$\left(f_{1}\right)$ There is a nonnegative and radial function $h \in L^{1}\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$ such that

$$
|f(x, t)| \leq h(x)|t|, \quad \forall x \in \mathbb{R}^{N} \quad \text { and } \quad \forall t \in \mathbb{R}
$$

$\left(f_{2}\right) g(x,-t)=-g(x, t)$ and $f(|x|, t)=g(x, t)$ for all $x \in \mathbb{R}^{N}$ and $t \in \mathbb{R}$.
$\left(f_{3}\right)$ There is $C>0$ such that for any $\eta_{t} \in \partial G(x, t)$ it holds

$$
G(x, u)-\frac{1}{2} \eta_{t} t \geq-C h(x), \text { a.e } x \in \mathbb{R}^{N}, \forall t \in \mathbb{R} \text {. }
$$

Example 1.7 (A function satisfying $\left(f_{1}\right)-\left(f_{3}\right)$ ) : Consider

$$
G(x, t):=h(x) \int_{0}^{t} H(|s|-a) s d s
$$

where $a>0, h \in L^{1}\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$ is nonnegative and radial and $H$ is the Heaviside function, i.e.,

$$
H(t):= \begin{cases}0, & t \leq 0 \\ 1, & t>0\end{cases}
$$

In this case, we notice that

$$
\partial G(x, t)=h(x)\left\{\begin{array}{lr}
\{s\} & |s|>a \\
{[-a, 0]} & s=-a \\
{[0, a]} & s=a \\
\{0\} & |s|<a
\end{array}\right.
$$

Direct computations ensure that $\left(f_{1}\right)-\left(f_{3}\right)$ are verified.

Now, consider the energy functional associated to problem $\left(P_{1}\right)$ given by

$$
I(u):=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+|u|^{2}\right)+\int_{\mathbb{R}^{N}} G(x, u)-\int_{\mathbb{R}^{N}} L(u), u \in H^{1}\left(\mathbb{R}^{N}\right),
$$

where

$$
L(t):=-\frac{t^{2}}{2}+\frac{t^{2} \log t^{2}}{2}, \quad \forall t \in \mathbb{R}
$$

Hereafter, we make use of the approach given in $[10,11,62]$ to decompose $I$ as a sum of a $C^{1}$ functional and a convex lower semicontinuous functional. To this aim,
fixed $\delta>0$ sufficiently small, we set

$$
F_{1}(s):=\left\{\begin{array}{lr}
0 & s=0 \\
-\frac{1}{2} s^{2} \log s^{2} & 0<|s|<\delta \\
-\frac{1}{2} s^{2}\left(\log \delta^{2}+3\right)+2 \delta|s|-\frac{\delta^{2}}{2} & |s| \geq \delta
\end{array}\right.
$$

and

$$
F_{2}(s):=\left\{\begin{array}{cr}
0 & s=0 \\
-\frac{1}{2} s^{2} \log \left(\frac{s^{2}}{\delta^{2}}\right)+2 \delta|s|-\frac{3}{2} s^{2}-\frac{\delta^{2}}{2} & |s| \geq \delta
\end{array}\right.
$$

for every $s \in \mathbb{R}$. Therefore

$$
F_{2}(s)-F_{1}(s)=\frac{1}{2} s^{2} \log s^{2} \quad \forall s \in \mathbb{R}
$$

and

$$
\begin{equation*}
I(u)=\frac{1}{2}\|u\|^{2}+\int_{\mathbb{R}^{N}} G(x, u)+\int_{\mathbb{R}^{N}} F_{1}(u)-\int_{\mathbb{R}^{N}} F_{2}(u) u \in H^{1}\left(\mathbb{R}^{N}\right), \tag{1.30}
\end{equation*}
$$

where $\|\cdot\|$ denotes the norm in $H^{1}\left(\mathbb{R}^{N}\right)$ induced by the inner product given by

$$
\langle u, v\rangle:=\int_{\mathbb{R}^{N}}(\nabla u \cdot \nabla v+2 u v), \quad \forall u, v \in H^{1}\left(\mathbb{R}^{N}\right)
$$

According to [10, Section 2] and [62, Section 2] the functions $F_{1}$ and $F_{2}$ satisfy the following conditions:
$\left(A_{1}\right) F_{1}$ is an even function with $F_{1}^{\prime}(s) s \geq 0$ and $F_{1} \geq 0$. Moreover $F_{1} \in C^{1}(\mathbb{R}, \mathbb{R})$ and convex provided that $\delta \approx 0^{+} ;$
$\left(A_{2}\right) F_{2} \in C^{1}(\mathbb{R}, \mathbb{R})$ and for each $p \in\left(2,2^{*}\right)$, there exists $C=C_{p}>0$ such that

$$
\left|F_{2}^{\prime}(s)\right| \leq C|s|^{p-1} \quad \forall s \in \mathbb{R}
$$

Now, by $\left(A_{1}\right)$ and $\left(A_{2}\right)$, it is easily seen that $I$ is a Szulkin-type functional with

$$
\Phi(u):=\frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}^{N}} F_{2}(u)
$$

and

$$
\Psi(u):=\int_{\mathbb{R}^{N}} F_{1}(u)+\int_{\mathbb{R}^{N}} G(x, u)
$$

We notice that $\Psi=\Psi_{1}+\Psi_{2}$, where

$$
\Psi_{1}(u):=\int_{\mathbb{R}^{N}} F_{1}(u) \text { and } \Psi_{2}(u):=\int_{\mathbb{R}^{N}} G(x, u)
$$

Direct arguments and [10, Lemma 2.1] ensure the validity of the next result.

Lemma 1.6 Let $\Psi_{1}: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow(-\infty,+\infty]$ be the functional defined above. Then
i) $D(I)=D\left(\Psi_{1}\right)$, that is $I(u)<\infty$ if and only if $\Psi_{1}(u)<\infty$.
ii) Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with regular boundary. Then the functional

$$
\begin{equation*}
\tilde{\Psi}_{1}(u)=\int_{\Omega} F_{1}(u) \tag{1.31}
\end{equation*}
$$

belongs to $C^{1}\left(H^{1}(\Omega), \mathbb{R}\right)$.
Moreover, according to [36], the structural conditions on the function $G$ assure that the functional $\Psi_{2}: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ is convex and lower semicontinuous as well as $\Psi_{2} \in \operatorname{Lip}_{\text {loc }}\left(H^{1}\left(\mathbb{R}^{N}\right), \mathbb{R}\right)$.

From now on, for each $u \in H^{1}\left(\mathbb{R}^{N}\right)$, let us consider the functional $\varphi_{1}^{u}$ defined by

$$
\begin{equation*}
\left\langle\varphi_{1}^{u}, v\right\rangle:=\int_{\mathbb{R}^{N}} F_{1}^{\prime}(u) v, \quad \forall v \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) \tag{1.32}
\end{equation*}
$$

If

$$
\left\|\varphi_{1}^{u}\right\|:=\sup _{v \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right),\|v\| \leq 1}\left\langle\varphi_{1}^{u}, v\right\rangle<\infty
$$

then $\varphi_{1}^{u}$ can be extended to a continuous linear functional on $H^{1}\left(\mathbb{R}^{N}\right)$.
Moreover, if $\tilde{I}: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow(-\infty,+\infty]$ denotes the functional given by

$$
\tilde{I}(u):=\frac{1}{2}\|u\|^{2}+\int_{\mathbb{R}^{N}} F_{1}(u)-\int_{\mathbb{R}^{N}} F_{2}(u),
$$

then $\tilde{I}$ is a Szulkin-type functional and $I=\tilde{I}+\Psi_{2}$.
By [10, Lemma 2.2 and Corollary 2.1] the following lemma holds.
Lemma 1.7 If $u \in D(\tilde{I})$ and $\left\|\varphi_{1}^{u}\right\|<\infty$ then there is a unique functional in $\partial \tilde{I}(u)$, denoted by $\tilde{I}^{\prime}(u)$, such that

$$
\begin{equation*}
\tilde{I}^{\prime}(u)(v)=\left\langle\Phi^{\prime}(u), v\right\rangle+\int_{\mathbb{R}^{N}} F_{1}^{\prime}(u) v \quad \forall v \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) . \tag{1.33}
\end{equation*}
$$

Furthermore, $F_{1}^{\prime}(u) u \in L^{1}\left(\mathbb{R}^{N}\right)$, and

$$
\begin{equation*}
\tilde{I}^{\prime}(u)(u)=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+|u|^{2}\right)-\int_{\mathbb{R}^{N}} u^{2} \log u^{2}, \tag{1.34}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\tilde{I}(u)-\frac{1}{2} \tilde{I}^{\prime}(u)(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}|u|^{2} . \tag{1.35}
\end{equation*}
$$

Remark 1.4 Lemma 1.7 remains valid if we take $\tilde{J}:=\left.\tilde{I}\right|_{H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right)}$. Indeed, the arguments used in [10, Lemma 2.2 and of Corollary 2.1] can be adapted to the radial space $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$ by taking $\left\{\varphi_{1}^{u}\right\} \subset H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$ and

$$
\left\langle\varphi_{1}^{u}, v\right\rangle=\int_{\mathbb{R}^{N}} F_{1}^{\prime}(u) v \quad v \in C_{0, \mathrm{rad}}^{\infty}\left(\mathbb{R}^{N}\right) .
$$

The notion of solution for problem $\left(P_{1}\right)$ requires some comments. To this aim, let us define the functions

$$
\begin{equation*}
\underline{g}(x, t):=\lim _{r \downarrow 0} \operatorname{essinf}\{g(x, s):|s-t|<r\} \tag{1.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{g}(x, t):=\lim _{r \downarrow 0} \operatorname{esssup}\{g(x, s):|s-t|<r\} . \tag{1.37}
\end{equation*}
$$

According to [36, Section 2] if $G(x, t)=\int_{0}^{t} g(x, s) d s$, then

$$
\partial G(x, t)=[\underline{g}(x, t), \bar{g}(x, t)] .
$$

The above remark makes sense to the following notion.
Definition 1.5 $A$ function $u \in H^{1}\left(\mathbb{R}^{N}\right)$ is said to be a solution of $\left(P_{1}\right)$ if $u^{2} \log u^{2} \in$ $L^{1}\left(\mathbb{R}^{N}\right)$ and there exists $\rho \in L^{2}\left(\mathbb{R}^{N}\right)$ such that

$$
\rho(x) \in[\underline{g}(x, u(x)), \bar{g}(x, u(x))] \quad \text { a.e in } \quad \mathbb{R}^{N}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}(\nabla u \cdot \nabla \phi+u \phi)+\int_{\mathbb{R}^{N}} \rho \phi=\int_{\mathbb{R}^{N}} u \log u^{2} \phi, \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) . \tag{1.38}
\end{equation*}
$$

A proof of the next technical result can be found in [16, Lemma 4.1].
Lemma 1.8 The functions $\underline{g}$ and $\bar{g}$ are $N$-measurable functions, $\Psi_{2} \in \operatorname{Lip}_{\mathrm{loc}}\left(L^{2}\left(\mathbb{R}^{N}\right), \mathbb{R}\right)$ and

$$
\begin{equation*}
\partial \Psi_{2}(u) \subseteq \partial G(x, u)=[\underline{g}(x, u(x)), \bar{g}(x, u(x))], \tag{1.39}
\end{equation*}
$$

for every $u \in L^{2}\left(\mathbb{R}^{N}\right)$.

The inclusion in (1.39) has the following meaning: for each $\eta \in \partial \Psi_{2}(u)$ there is a function $\tilde{\eta} \in L^{2}\left(\mathbb{R}^{N}\right)$ such that
i) $\eta(v)=\int_{\mathbb{R}^{N}} \tilde{\eta} v \quad \forall v \in L^{2}\left(\mathbb{R}^{N}\right)$;
ii) $\tilde{\eta}(x) \in[\underline{g}(x, u(x)), \bar{g}(x, u(x))]$ a.e. in $\mathbb{R}^{N}$.

Our next step is to prove that the critical points of $I$ in the sense given in Definition A. 1 are solutions of $\left(P_{1}\right)$.

Lemma 1.9 Every critical point of the functional I is a solution of $\left(P_{1}\right)$.

Proof. Suppose that $u \in D(I)$ is a critical point of $I$, that is

$$
\begin{align*}
\int_{\mathbb{R}^{N}}(\nabla u \cdot \nabla(v-u)+2 u(v-u)) & +\int_{\mathbb{R}^{N}}(G(x, v)-G(x, u))  \tag{1.40}\\
& \geq \int_{\mathbb{R}^{N}} F_{2}^{\prime}(u)(v-u)-\int_{\mathbb{R}^{N}}\left(F_{1}(v)-F_{1}(u)\right),
\end{align*}
$$

for every $v \in H^{1}\left(\mathbb{R}^{N}\right)$. The last sentence means that the functional $-\Phi^{\prime}(u)$ belongs to $\partial \Psi(u)$. Hence, by choosing $v=u+t \phi, t>0, \phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, we find

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \frac{1}{t}(G(x, u+t \phi)-G(x, u))+\int_{\mathbb{R}^{N}} \frac{1}{t}\left(F_{1}(u+t \phi)-F_{1}(u)\right) \geq\left\langle-\Phi^{\prime}(u), \phi\right\rangle, \tag{1.41}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\frac{1}{t}\left[\Psi_{2}(u+t \phi)-\Psi_{2}(u)\right]+\int_{\mathbb{R}^{N}} \frac{1}{t}\left(F_{1}(u+t \phi)-F_{1}(u)\right) \geq\left\langle-\Phi^{\prime}(u), \phi\right\rangle . \tag{1.42}
\end{equation*}
$$

As $\Psi_{2}$ is convex, when $t \rightarrow 0^{+}$, the Lemmas A. 4 and 1.6 imply that

$$
\begin{equation*}
\Psi_{2}^{\circ}(u, \phi)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}(u) \phi \geq\left\langle-\Phi^{\prime}(u), \phi\right\rangle . \tag{1.43}
\end{equation*}
$$

Replacing $\phi$ with $-\phi$ in (C.3) and by using Lemma A. 4 it follows that

$$
\begin{equation*}
\Psi_{2}^{\circ}(u,-\phi)-\left\langle\Phi^{\prime}(u), \phi\right\rangle \geq \int_{\mathbb{R}^{N}} F_{1}^{\prime}(u) \phi . \tag{1.44}
\end{equation*}
$$

Then, according to the notation introduced in (1.32), one has

$$
\begin{equation*}
\Psi_{2}^{\circ}(u,-\phi)-\left\langle\Phi^{\prime}(u), \phi\right\rangle \geq\left\langle\varphi_{1}^{u}, \phi\right\rangle \tag{1.45}
\end{equation*}
$$

The following claim will be crucial in the rest of the proof.
Claim $1.1 \sup _{\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right),\|\phi\| \leq 1} \Psi_{2}^{\circ}(u, \phi)<\infty$.
Indeed, by Lemma 1.8, for each $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with $\|\phi\| \leq 1$, there is $\tilde{\eta}_{\phi} \in L^{2}\left(\mathbb{R}^{N}\right)$ such that $\tilde{\eta}_{\phi}(x) \in[\underline{g}(x, u(x)), \bar{g}(x, u(x))]$ and

$$
\Psi_{2}^{\circ}(u, \phi)=\int_{\mathbb{R}^{N}} \tilde{\eta}_{\phi} \phi .
$$

Now, by $\left(f_{1}\right)$, there exists a constant $C:=C(u, h)>0$, independent of $\phi$, such that

$$
\left|\int_{\mathbb{R}^{N}} \tilde{\eta}_{\phi} \phi\right| \leq C\|\phi\| .
$$

The above inequality ensures our assertion.
Now, Claim 1.1 in addition to inequality (1.45) ensures that

$$
\sup _{\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right),\|\phi\| \leq 1}\left\langle\varphi_{1}^{u}, \phi\right\rangle<\infty .
$$

Consequently, the classical Hahn-Banach's extension theorem ensures that the functional $\varphi_{1}$ admits an extension, still denoted by $\varphi_{1}$, to a continuous linear functional on $H^{1}\left(\mathbb{R}^{N}\right)$. Moreover, Lemma A.1, inequality (C.3) and the density of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ in $H^{1}\left(\mathbb{R}^{N}\right)$ yield

$$
\begin{equation*}
\left\langle-\Phi^{\prime}(u)-\varphi_{1}^{u}, v\right\rangle \leq \Psi_{2}^{\circ}(u, v) \quad \forall v \in H^{1}\left(\mathbb{R}^{N}\right) \tag{1.46}
\end{equation*}
$$

that is,

$$
\begin{equation*}
-\Phi^{\prime}(u)-\varphi_{1}^{u} \in \partial \Psi_{2}(u) . \tag{1.47}
\end{equation*}
$$

Thus, there exists $\varphi_{2} \in \partial \Psi_{2}(u)$ such that $-\Phi^{\prime}(u)-\varphi_{1}^{u}=\varphi_{2}$. Now, by Lemma 1.8, there exists $\rho \in L^{2}\left(\mathbb{R}^{N}\right)$ such that $\rho(x) \in[\underline{g}(x, u(x)), \bar{g}(x, u(x))]$ a.e. in $\mathbb{R}^{N}$ and

$$
\left\langle\varphi_{2}, v\right\rangle=\int_{\mathbb{R}^{N}} \rho v, \quad \forall v \in H^{1}\left(\mathbb{R}^{N}\right) .
$$

Hence

$$
\left\langle-\Phi^{\prime}(u), v\right\rangle=\left\langle\varphi_{1}^{u}, v\right\rangle+\int_{\mathbb{R}^{N}} \rho v \forall v \in H^{1}\left(\mathbb{R}^{N}\right)
$$

Taking $v=\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ in the above equation, one has

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \rho \phi+\int_{\mathbb{R}^{N}} F_{1}^{\prime}(u) \phi=\left\langle-\Phi^{\prime}(u), \phi\right\rangle \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right), \tag{1.48}
\end{equation*}
$$

which completes the proof.
Next, we cite an important result due to Kobayashi-Ôtani that generalizes the Principle of Symmetric Criticality due to Palais (see [83, Theorem 1.28]) and it is a key point in the arguments used in the sequel.

Theorem 1.8 Let $X$ be a reflexive Banach space and let $G$ be a compact topological group that acts isometrically on $X$. If $I=\Phi+\Psi$ is a Szulkin-type functional with $\Phi$ and $\Psi$ being $G$-invariant, then

$$
\begin{equation*}
0 \in \partial\left(\left.I\right|_{Z}\right)(u) \Longrightarrow 0 \in \partial I(u) \tag{1.49}
\end{equation*}
$$

for any $u \in Z:=\operatorname{Fix}(G)$.

An exhaustive proof of Theorem 1.8 is given in [64, Theorem 3.16].
The main result of this subsection reads as follows.
Theorem 1.9 The functional I has a sequence of critical points $\left(u_{n}\right)$ such that $I\left(u_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. Hence, the problem $\left(P_{1}\right)$ has infinitely many nontrivial solutions.

The proof of Theorem 1.9 is divided into several preliminary results. To this goal, let $O(N)$ be the orthogonal group in $\mathbb{R}^{N}$. So, by using a standard change of variable, it is easy to check that the functional $I$ is $O(N)$-invariant. Moreover, the space of invariant elements of $H^{1}\left(\mathbb{R}^{N}\right)$ under the natural action of $O(N)$ coincides with the subspace $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$ of radial functions of $H^{1}\left(\mathbb{R}^{N}\right)$. The classical Symmetric Criticality Principle recalled in Theorem 1.8 ensures that the critical points of $J:=\left.I\right|_{H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)}$ are also critical points of the functional $I$. We notice that Theorem 1.9 can be proved by using Theorem 1.4 due to the $\mathbb{Z}_{2}$-invariant of the even functional $J$; see Example 1.1 for related topics. A key ingredient along the proof of Theorem 1.9 is the Sobolev compact embedding

$$
\begin{equation*}
H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right), \quad \forall p \in\left(2,2^{*}\right) \tag{1.50}
\end{equation*}
$$

See [83, Corollary 1.26] for additional comments and remarks.
Let us prove the following technical result.
Lemma 1.10 Let $\left(u_{n}\right)$ be a (PS) sequence for the functional $J$ at a level $c$ and let $\varphi_{1}^{(n)}:=\varphi_{1}^{u_{n}}$ as in (1.32). Then, $\left\|\varphi_{1}^{(n)}\right\|<\infty$ for any $n \in \mathbb{N}$ and there is a unique $w_{n} \in \partial J\left(u_{n}\right)$, which will be denoted by $J^{\prime}\left(u_{n}\right)$, such that:
i) For some $\varphi_{2}^{(n)} \in \partial \Psi_{2}\left(u_{n}\right)$ one has

$$
J^{\prime}\left(u_{n}\right)(v)=\left\langle\varphi_{2}^{(n)}, v\right\rangle+\left\langle\varphi_{1}^{(n)}, v\right\rangle+\left\langle\Phi^{\prime}\left(u_{n}\right), v\right\rangle, \quad \forall v \in H_{r a d}^{1}\left(\mathbb{R}^{N}\right)
$$

ii) $J^{\prime}\left(u_{n}\right) u_{n}=o_{n}(1)\left\|u_{n}\right\|$ with

$$
J^{\prime}\left(u_{n}\right)\left(u_{n}\right) \leq \Psi_{2}^{\circ}\left(u_{n}, u_{n}\right)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(u_{n}\right) u_{n}+\left\langle\Phi^{\prime}\left(u_{n}\right), u_{n}\right\rangle, \quad \forall n \in \mathbb{N}
$$

Proof. Let $\left(u_{n}\right)$ be a (PS) for the functional $J$. Then
$\Psi_{2}(v)-\Psi_{2}\left(u_{n}\right)+\int_{\mathbb{R}^{N}}\left(F_{1}(v)-F_{1}\left(u_{n}\right)\right) \geq\left\langle-\Phi^{\prime}\left(u_{n}\right), v-u_{n}\right\rangle+\left\langle w_{n}, v-u_{n}\right\rangle, \quad v \in H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$,
with $w_{n} \in\left(H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)\right)^{\prime}$, and $w_{n} \rightarrow 0$. Set $\phi \in C_{0, \text { rad }}^{\infty}\left(\mathbb{R}^{N}\right)$, and take $v:=u_{n}+t \phi$, with $t>0$. By Lemma A. 4 it follows that

$$
\begin{equation*}
\Psi_{2}^{\circ}\left(u_{n}, \phi\right)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(u_{n}\right) \phi \geq\left\langle-\Phi^{\prime}\left(u_{n}\right), \phi\right\rangle+\left\langle w_{n}, \phi\right\rangle \quad \forall \phi \in C_{0, \mathrm{rad}}^{\infty}\left(\mathbb{R}^{N}\right) \tag{1.52}
\end{equation*}
$$

as $t \rightarrow 0^{+}$. Since

$$
\left\langle\varphi_{1}^{(n)}, \phi\right\rangle=\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(u_{n}\right) \phi \quad \phi \in C_{0, \mathrm{rad}}^{\infty}\left(\mathbb{R}^{N}\right),
$$

arguing as in the proof of Lemma 1.9, one has

$$
\begin{equation*}
\sup _{\phi \in C_{0, \text { rad }}^{\infty}\left(\mathbb{R}^{N}\right),\|\phi\| \leq 1}\left\langle\varphi_{1}^{(n)} \phi\right\rangle<\infty . \tag{1.53}
\end{equation*}
$$

Therefore, the functional $\varphi_{1}^{n}$ can be extended to the whole $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$. By using (1.52), again as in Lemma 1.9, we get

$$
\begin{equation*}
-\Phi^{\prime}\left(u_{n}\right)-\varphi_{1}^{(n)}+w_{n} \in \partial \Psi_{2}\left(u_{n}\right) \tag{1.54}
\end{equation*}
$$

Consequently, by setting $J^{\prime}\left(u_{n}\right):=w_{n}$, one has

$$
\begin{equation*}
J^{\prime}\left(u_{n}\right)=\varphi_{2}^{(n)}+\varphi_{1}^{(n)}+\Phi^{\prime}\left(u_{n}\right), \tag{1.55}
\end{equation*}
$$

for some $\varphi_{2}^{(n)} \in \partial \Psi_{2}\left(u_{n}\right)$. Hence part $i$ ) has been proved. In order to show part $\left.i i\right)$, let us observe that

$$
J^{\prime}\left(u_{n}\right)\left(u_{n}\right)=\left\langle w_{n}, u_{n}\right\rangle=o_{n}(1)\left\|u_{n}\right\|,
$$

as $J^{\prime}\left(u_{n}\right) \rightarrow 0$. Hence, by choosing $v:=u_{n}+t u_{n}$ in (1.51), we have

$$
\begin{equation*}
J^{\prime}\left(u_{n}\right)\left(u_{n}\right) \leq \frac{1}{t}\left[\Psi_{2}\left(u_{n}+t u_{n}\right)-\Psi_{2}\left(u_{n}\right)\right]+\int_{\mathbb{R}^{N}} \frac{1}{t}\left[F_{1}\left(u_{n}+t u_{n}\right)-F_{1}\left(u_{n}\right)\right]+\left\langle\Phi^{\prime}\left(u_{n}\right), u_{n}\right\rangle . \tag{1.56}
\end{equation*}
$$

Since $F_{1}$ is convex, the map

$$
t \longmapsto \frac{F_{1}\left(u_{n}+t u_{n}\right)-F_{1}\left(u_{n}\right)}{t}, t>0
$$

is monotone and

$$
\frac{F_{1}\left(u_{n}+t u_{n}\right)-F_{1}\left(u_{n}\right)}{t} \rightarrow F_{1}^{\prime}\left(u_{n}\right) u_{n}
$$

as $t \rightarrow 0^{+}$. Now, Lemma 1.7 and (1.53) yields $F_{1}^{\prime}\left(u_{n}\right) u_{n} \in L^{1}\left(\mathbb{R}^{N}\right)$ and

$$
\int_{\mathbb{R}^{N}} \frac{F_{1}\left(u_{n}+t u_{n}\right)-F_{1}\left(u_{n}\right)}{t} \rightarrow \int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(u_{n}\right) u_{n},
$$

by using the classical Lebesgue's Dominated Convergence Theorem. In conclusion, as $t \rightarrow 0$ in (1.56), by Lemma A.4, it follows that

$$
J^{\prime}\left(u_{n}\right)\left(u_{n}\right) \leq \Psi_{2}^{\circ}\left(u_{n}, u_{n}\right)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(u_{n}\right) u_{n}+\left\langle\Phi^{\prime}\left(u_{n}\right), u_{n}\right\rangle
$$

This completes the proof.
A consequence of Lemma 1.10 is the following result that will be useful in order to prove that any (PS) sequence for the functional $J$ is bounded; see Lemma 1.12.

Lemma 1.11 Let $\left(u_{n}\right)$ be a (PS) sequence for the functional $J$ at level $c$. Then

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2} \leq M+o_{n}(1)\left\|u_{n}\right\|, \quad n \geq n_{0} \tag{1.57}
\end{equation*}
$$

for some $M>0$ and $n_{0} \in \mathbb{N}$.
Proof. Since $J\left(u_{n}\right) \rightarrow c$, there is $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
J\left(u_{n}\right) \leq c+1, \quad n \geq n_{0} \tag{1.58}
\end{equation*}
$$

By setting $\tilde{J}=\left.\tilde{I}\right|_{H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)}$, i.e.

$$
\tilde{J}(u)=\frac{1}{2}\|u\|^{2}+\int_{\mathbb{R}^{N}} F_{1}(u)-\int_{\mathbb{R}^{N}} F_{2}(u) \quad u \in H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right),
$$

we can write $J=\tilde{J}+\left.\Psi_{2}\right|_{H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right)}$. By Lemmas 1.7 and 1.10 Part - $\left.i i\right)$, one has

$$
J^{\prime}\left(u_{n}\right)\left(u_{n}\right) \leq \tilde{J}^{\prime}\left(u_{n}\right)\left(u_{n}\right)+\Psi_{2}^{\circ}\left(u_{n}, u_{n}\right)
$$

as well as

$$
\begin{equation*}
J\left(u_{n}\right)-\frac{1}{2} J^{\prime}\left(u_{n}\right)\left(u_{n}\right) \geq \frac{1}{2} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2}+\left(\Psi_{2}\left(u_{n}\right)-\frac{1}{2} \Psi_{2}^{\circ}\left(u_{n}, u_{n}\right)\right) \tag{1.59}
\end{equation*}
$$

Now, gathering $J^{\prime}\left(u_{n}\right) u_{n}=o_{n}(1)\left\|u_{n}\right\|$ with (1.58) and (1.59), we get

$$
c+1+o_{n}(1)\left\|u_{n}\right\| \geq \frac{1}{2} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2}+\left(\Psi_{2}\left(u_{n}\right)-\frac{1}{2} \Psi_{2}^{\circ}\left(u_{n}, u_{n}\right)\right), \quad \forall n \geq n_{0} .
$$

In order to finish the proof, it is enough to show that there is $M>0$ (independent of $n$ ) such that

$$
\begin{equation*}
\left(\Psi_{2}\left(u_{n}\right)-\frac{1}{2} \Psi_{2}^{\circ}\left(u_{n}, u_{n}\right)\right) \geq-M, \quad \forall n \in \mathbb{N} \tag{1.60}
\end{equation*}
$$

Bearing in mind the above computations, we employ Lemma 1.8 to obtain

$$
\Psi_{2}\left(u_{n}\right)-\frac{1}{2} \Psi_{2}^{\circ}\left(u_{n}, u_{n}\right)=\int_{\mathbb{R}^{N}} G\left(x, u_{n}\right)-\frac{1}{2} \int_{\mathbb{R}^{N}} \eta^{(n)} u_{n}
$$

where $\eta^{(n)} \in L^{2}\left(\mathbb{R}^{N}\right)$ and $\eta^{(n)}(x) \in\left[\underline{g}\left(x, u_{n}(x)\right), \bar{g}\left(x, u_{n}(x)\right)\right]$ a.e. in $\mathbb{R}^{N}$. Finally, the condition $\left(f_{3}\right)$ yields

$$
\int_{\mathbb{R}^{N}} G\left(x, u_{n}\right)-\frac{1}{2} \int_{\mathbb{R}^{N}} \eta^{(n)} u_{n} \geq-C \int_{\mathbb{R}^{N}} h(x) \geq-M
$$

for some $M=M_{h}>0$. This completes the proof.
Let us recall now the so-called logarithmic Sobolev inequality proved in [10, p. 144], as well as [62, Sentence (2.4)] and the references therein. More precisely, for each $b>0$, one has

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} u^{2} \log u^{2} \leq \frac{b^{2}}{\pi}\|\nabla u\|_{2}^{2}+\left(\log \|u\|_{2}^{2}-N(1+\log b)\right)\|u\|_{2}^{2} \tag{1.61}
\end{equation*}
$$

for every $u \in H^{1}\left(\mathbb{R}^{N}\right)$.
An immediate consequence of (1.61) is given below.
Corollary 1.1 There is $C>0$ such that

$$
\left.\int_{\mathbb{R}^{N}} u^{2} \log u^{2} \leq \frac{1}{2}\|\nabla u\|_{2}^{2}+C\left(\log \|u\|_{2}^{2}\right)+1\right)\|u\|_{2}^{2}
$$

for every $u \in H^{1}\left(\mathbb{R}^{N}\right)$.

The following results involve the notion of (PS) condition and will be proved as consequences of Corollary 1.1.

Lemma 1.12 If $\left(u_{n}\right)$ is a (PS) sequence for the functional $J$ at level $c \in \mathbb{R}$, then $\left(u_{n}\right)$ is bounded.

Proof. By Lemma 1.11 and Corollary 1.1, for each $r \in(0,1)$ there is $C_{1}>0$ such that

$$
\frac{1}{2} \int_{\mathbb{R}^{N}} u_{n}^{2} \log u_{n}^{2} \leq \frac{1}{4}\|u\|^{2}+C_{1}\left(1+\left\|u_{n}\right\|^{1+r}\right)
$$

Since $J\left(u_{n}\right) \rightarrow c$, there is $n_{0} \in \mathbb{N}$ such that

$$
c+1 \geq J\left(u_{n}\right) \geq \frac{1}{2}\left\|u_{n}\right\|^{2}-\frac{1}{2} \int_{\mathbb{R}^{N}} u_{n}^{2} \log u_{n}^{2}, \quad n \geq n_{0}
$$

Then

$$
c+1 \geq \frac{1}{4}\left\|u_{n}\right\|^{2}-C_{1}\left(1+\left\|u_{n}\right\|^{1+r}\right)
$$

for every $n \geq n_{0}$. The proof is complete.
Lemma 1.13 The functional $J$ satisfies the (PS) condition.

Proof. Let $\left(u_{n}\right)$ be a (PS) sequence for $J$ at level $c$. By Lemma 1.12, the sequence $\left(u_{n}\right)$ is bounded. Consequently, the embedding (1.50) yields
i) $u_{n} \rightharpoonup u_{0}$ in $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$;
ii) $u_{n} \rightarrow u_{0} \in L^{p}\left(\mathbb{R}^{N}\right)$ with $p \in\left(2,2^{*}\right)$;
iii) $\left\|u_{n}\right\| \rightarrow M$ and $u_{n}(x) \rightarrow u_{0}(x)$ a.e. in $\mathbb{R}^{N}$.

As $\left(u_{n}\right)$ is a (PS) sequence, we have that

$$
\begin{equation*}
\left\langle u_{n}, v-u_{n}\right\rangle+\Psi(v)-\Psi\left(u_{n}\right) \geq-\varepsilon_{n}\left\|v-u_{n}\right\|+\int_{\mathbb{R}^{N}} F_{2}^{\prime}\left(u_{n}\right)\left(v-u_{n}\right), \quad \forall v \in H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right) \tag{1.62}
\end{equation*}
$$

with $\varepsilon_{n} \rightarrow 0^{+}$. If we take $v:=u_{0}$ in (1.62), the boundedness of $\left(u_{n}\right)$ and the subcritical growth of $F_{2}$ immediately give

$$
\begin{equation*}
\left\langle u_{n}, u_{0}-u_{n}\right\rangle+\Psi\left(u_{0}\right)-\Psi\left(u_{n}\right) \geq o_{n}(1) . \tag{1.63}
\end{equation*}
$$

Hence, the lower semicontinuity property of $\Psi$ combined with inequality (1.63) leads to

$$
\begin{equation*}
\left\|u_{0}\right\|^{2} \geq \lim \left\|u_{n}\right\|^{2}=M^{2} \tag{1.64}
\end{equation*}
$$

on account of $i$ ), $i i$ ) and $i i i$ ). In conclusion $u_{n} \rightarrow u_{0}$ in $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$.
In order to prove that $J$ satisfies the hypotheses of the Fountain Theorem 1.4, a suitable splitting of the Sobolev space $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$ is necessary. To this aim, we first observe that by [67, Proposition 1.a. 9 and Section 1.b, p. 8] and [62, Section 5] the next property holds.

Lemma 1.14 Let $A$ be a dense subset of $H^{1}\left(\mathbb{R}^{N}\right)$, then $H^{1}\left(\mathbb{R}^{N}\right)$ has an orthonormal hilbertian basis that is constituted by elements of $A$.

Thanks to Lemma 1.14 the following result holds.
Corollary 1.2 The space $H^{1}\left(\mathbb{R}^{N}\right)$ has an orthonormal hilbertian basis constituted by elements of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. Consequently, there exists a sequence $\left(v_{j}\right) \subset C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{equation*}
H^{1}\left(\mathbb{R}^{N}\right)=\overline{\bigoplus_{j \in \mathbb{N}} X_{j}} \quad \text { with } \quad X_{j}=\operatorname{span}\left\{v_{j}\right\} \tag{1.65}
\end{equation*}
$$

and $\left\langle v_{i}, v_{j}\right\rangle=0$, for every $i \neq j$.
Moreover, the same conclusion holds if we replace $H^{1}\left(\mathbb{R}^{N}\right)$ and $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ by $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$ and $C_{0, \text { rad }}^{\infty}\left(\mathbb{R}^{N}\right)$ respectively.

From now on, let us consider

$$
\begin{equation*}
H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)=\overline{\bigoplus_{j \in \mathbb{N}} X_{j}} \tag{1.66}
\end{equation*}
$$

and set

$$
\begin{equation*}
Y_{k}:=\bigoplus_{j=1}^{k} X_{j} \quad \text { as well as } \quad Z_{k}:=\overline{\bigoplus_{j=k}^{\infty} X_{j}} \tag{1.67}
\end{equation*}
$$

for every $k \in \mathbb{N}$.
Since the action of $\mathbb{Z}_{2}$ on $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$ satisfies $\left(G_{0}\right)$ with $X_{j} \cong \mathbb{R}=: V$ we only need to prove that the functional $J$ satisfies the Parts $-i$ ) and $i i)$ of Theorem 1.4.

To this aim, let us briefly recall the next fact.
Lemma 1.15 Let $\beta_{k}$ defined by

$$
\begin{equation*}
\beta_{k}:=\sup _{u \in Z_{k},\|u\|=1}\|u\|_{p} . \tag{1.68}
\end{equation*}
$$

Then $\beta_{k} \rightarrow 0$.

See [83, Lemma 3.8] as well as the proof of Proposition 3.7 in [62] for additional comments and remarks.

Taking into account Lemma 1.15, we are able to prove that the functional $J$ satisfies the Fountain geometry.

Lemma 1.16 The functional $J$ verifies
i) $\sup _{u \in Y_{k},\|u\|=\rho_{k}} J(u) \leq 0$;
ii) $\inf _{u \in Z_{k},\|u\|=r_{k}} J(u) \rightarrow \infty$.

Proof. We first recall that

$$
J(u)=\frac{1}{2}\|u\|^{2}+\int_{\mathbb{R}^{N}} G(x, u)+\int_{\mathbb{R}^{N}} F_{1}(u)-\int_{\mathbb{R}^{N}} F_{2}(u), \quad \forall u \in H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right) .
$$

Part $-i)$ By $\left(f_{1}\right)$ one has

$$
|G(x, s)| \leq B|s|^{2}, \quad \forall x \in \mathbb{R}^{N} \quad \text { and } \quad \forall s \in \mathbb{R},
$$

for some constant $B>0$. Now, by definition, since $Y_{k} \subset C_{0, \text { rad }}^{\infty}\left(\mathbb{R}^{N}\right)$ it follows that $Y_{k} \subset D(J)$ for each $k \in \mathbb{N}$. Hence

$$
\begin{equation*}
J(u) \leq \frac{1}{2}\|u\|^{2}+B\|u\|_{2}^{2}-\frac{1}{2} \int_{\mathbb{R}^{N}} u^{2} \log u^{2}, \tag{1.69}
\end{equation*}
$$

for every $u \in Y_{k}$.
If we take $v:=\frac{u}{\|u\|}$ for $u \neq 0$, it follows that

$$
\begin{align*}
J(u) & \leq \frac{1}{2}\|u\|^{2}\left(1+B-\int_{\mathbb{R}^{N}} v^{2} \log \left(v^{2}\|u\|^{2}\right)\right) \\
& =\frac{1}{2}\|u\|^{2}\left(1+B-\int_{\mathbb{R}^{N}} v^{2} \log v^{2}-\log \left(\|u\|^{2}\right) \int_{\mathbb{R}^{N}} v^{2}\right) \tag{1.70}
\end{align*}
$$

for every $u \in Y_{k}$. As $\operatorname{dim} Y_{k}<\infty$, all the norms on $Y_{k}$ are equivalent. Hence, if $\|u\|=\rho_{k} \approx \infty$, one gets

$$
1+B-\int_{\mathbb{R}^{N}} v^{2} \log v^{2}-\log \left(\|u\|^{2}\right) \int_{\mathbb{R}^{N}} v^{2} \leq 0 .
$$

Then

$$
\sup _{u \in Y_{k},\|u\|=\rho_{k}} J(u) \leq 0,
$$

so that $i$ ) is verified.
Part - ii) By $\left(A_{2}\right)$ for every $s \in \mathbb{R}$,

$$
\left|F_{2}(s)\right| \leq C|s|^{p}, \quad p \in\left(2,2^{*}\right)
$$

for some $C>0$. Hence

$$
J(u) \geq \frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}^{N}} F_{2}(u) \geq \frac{1}{2}\|u\|^{2}-\beta_{k}^{p} C\|u\|^{p}
$$

for every $u \in Z_{k}$. Moreover, by Lemma 1.15 one has $\beta_{k} \rightarrow 0$. Then, by choosing

$$
r_{k}:=\left(p C \beta_{k}^{p}\right)^{\frac{1}{2-p}},
$$

it follows that $r_{k} \rightarrow \infty$ and

$$
J(u) \geq\left(\frac{1}{2}-\frac{1}{p}\right) r_{k}^{2}
$$

In conclusion

$$
\inf _{u \in Z_{k},\|u\|=r_{k}} J(u)>0
$$

for $k$ sufficiently large.
Conclusion of the proof of Theorem 1.9. First of all, we emphasize that, for every $k \in \mathbb{N}$, the minimax levels

$$
c_{k}:=\inf _{\gamma \in \Theta_{k}} \sup _{u \in B_{k}} J(\gamma(u))
$$

are finite. Indeed, if we take $\tilde{\gamma}:=\left.I d\right|_{B_{k}}$, by using the classical inequality

$$
\left|t^{2} \log t^{2}\right| \leq C\left(|t|+|t|^{p}\right), \quad p>2 \quad \text { and } \quad \forall t \in \mathbb{R}
$$

we infer that there exists $C_{1}>0$ such that

$$
\begin{equation*}
J(\tilde{\gamma}(u)) \leq|J(u)| \leq \frac{1}{2}\|u\|^{2}+B\|u\|_{2}^{2}+C_{1}\left(\|u\|_{1}+\|u\|_{p}^{p}\right) \tag{1.71}
\end{equation*}
$$

for every $u \in B_{k} \subset Y_{k}$. The equivalence of the norms in $Y_{k}$ in addition to (1.71) guarantee that

$$
c_{k}=\inf _{\gamma \in \Theta_{k}} \sup _{u \in B_{k}} J(\gamma(u)) \leq \sup _{u \in B_{k}} J(\tilde{\gamma}(u))<\infty .
$$

Finally, we would like to point out that if $u \in H^{1}\left(\mathbb{R}^{N}\right)$ is a critical point of $I$, then there exists $\rho \in L^{2}\left(\mathbb{R}^{N}\right)$ with

$$
\rho(x) \in[\underline{g}(x, u(x)), \bar{g}(x, u(x))] \text { a.e. in } \mathbb{R}^{N},
$$

such that

$$
\int_{\mathbb{R}^{N}}(\nabla u \cdot \nabla \phi+u \phi)+\int_{\mathbb{R}^{N}} \rho(x) \phi=\int_{\mathbb{R}^{N}} u^{2} \log u \phi, \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) .
$$

Therefore, by elliptic regularity theory, there is $r \geq 1$ such that $u \in H^{1}\left(\mathbb{R}^{N}\right) \cap W_{\text {loc }}^{2, r}\left(\mathbb{R}^{N}\right)$ and

$$
-\Delta u+u+\rho(x)=u \log u^{2} \text { a.e. in } \mathbb{R}^{N}
$$

In conclusion

$$
\Delta u-u+u \log u^{2} \in[\underline{g}(x, u(x)), \bar{g}(x, u(x))] \text { a.e. in } \mathbb{R}^{N} .
$$

### 1.2.2 A concave perturbation of logarithmic equation

In this subsection we study the existence of solutions for the following class of problems

$$
\left\{\begin{array}{l}
-\Delta u+u=u \log u^{2}+\lambda h(x)|u|^{q-2} u, \text { in } \mathbb{R}^{N},  \tag{2}\\
u \in H^{1}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

where $\lambda$ is a positive parameter, $q \in(1,2)$ and $h: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is chosen as in the condition $\left(f_{1}\right)$ above. By using the same notations of the previous subsection, the energy functional associated to $\left(P_{2}\right)$ is given by

$$
\begin{equation*}
I_{\lambda}(u):=\frac{1}{2}\|u\|^{2}+\int_{\mathbb{R}^{N}} F_{1}(u)-\int_{\mathbb{R}^{N}} F_{2}(u)-\frac{\lambda}{q} \int_{\mathbb{R}^{N}} h(x)|u|^{q}, \quad \forall u \in H^{1}\left(\mathbb{R}^{N}\right) . \tag{1.72}
\end{equation*}
$$

Note that $I_{\lambda}$ is a Szulkin-type functional, with $I_{\lambda}(u)=\Phi(u)+\Psi(u)$, where

$$
\Phi(u):=\frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}^{N}} F_{2}(u)-\frac{\lambda}{q} \int_{\mathbb{R}^{N}} h|u|^{q}
$$

and

$$
\Psi(u):=\int_{\mathbb{R}^{N}} F_{1}(u) .
$$

In the sequel, we say that a function $u \in H^{1}\left(\mathbb{R}^{N}\right)$ is a solution of $\left(P_{2}\right)$ if $u^{2} \log u^{2} \in L^{1}\left(\mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}(\nabla u \nabla \phi+u \phi)=\int_{\mathbb{R}^{N}}\left(u \log u^{2} \phi+\lambda h(x)|u|^{q-2} u \phi\right), \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) . \tag{1.73}
\end{equation*}
$$

By Part - ii) of Lemma 1.6 it is possible to see that any critical point of the Szulkin-type functional $I_{\lambda}$ is a solution of $\left(P_{2}\right)$; see also [10, Lemma 2.1]. Moreover, if $J_{\lambda}:=\left.I_{\lambda}\right|_{H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)}$, again by Theorem 1.8, the critical points of $J_{\lambda}$ are also critical points of the functional $I_{\lambda}$.

The main result this subsection reads as follows.
Theorem 1.10 There exists $\lambda_{0}>0$ such that, for $\lambda \in\left(0, \lambda_{0}\right)$, the functional $J_{\lambda}$ has infinitely many critical points $\left(u_{n}\right)$ with $J_{\lambda}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence, for $\lambda \in\left(0, \lambda_{0}\right)$, the problem $\left(P_{2}\right)$ has infinitely many nontrivial solutions.

In order to prove Theorem 1.10, let us introduce a modified functional $\tilde{J}_{\lambda}$ which will be crucial in our approach. However, let us start by proving the following technical result.

Proposition 1.3 If $\lambda \approx 0^{+}$, then there is a function

$$
g(t):=\frac{1}{2} t^{2}-B t^{p}-C \lambda t^{q}, \quad t>0
$$

with $p \in\left(2,2^{*}\right)$ and $B, C>0$, that attains a nonnegative maximum and

$$
J_{\lambda}(u) \geq g(\|u\|), \quad \forall u \in H^{1}\left(\mathbb{R}^{N}\right)
$$

Proof. Since $F_{1} \geq 0$, we have that, for every $u \in H^{1}\left(\mathbb{R}^{N}\right)$

$$
\begin{aligned}
J_{\lambda}(u) \geq & \frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}^{N}} F_{2}(u)-\frac{\lambda}{q} \int_{\mathbb{R}^{N}} h(x)|u|^{q} \\
& \geq \frac{1}{2}\|u\|^{2}-C_{1}\|u\|^{p}-\lambda C_{2}\|u\|^{q} \\
& =: g(\|u\|),
\end{aligned}
$$

for some $C_{1}=C(p)>0$ and $C_{2}=C(h, q)>0$. Here, we have chosen $g(t):=$ $\frac{1}{2} t^{2}-C_{1} t^{p}-\lambda C_{2} t^{q}$. Moreover, if $\lambda \approx 0^{+}$it is clearly seen that the function $g$ attains a nonnegative maximum.

Now, fix $R_{0}, R_{1}$ and $R_{2}$ positive constants satisfying:
$\left.\left(g_{1}\right) g\right|_{\left[0, R_{0}\right]} \leq 0$ and $g\left(R_{0}\right)=0 ;$
$\left.\left(g_{2}\right) g\right|_{\left[R_{0}, R_{2}\right]} \geq 0,\left.g\right|_{\left[R_{2}, \infty\right)} \leq 0$ and $g\left(R_{2}\right)=0$, where $R_{0}<R_{1}<R_{2}$ and $R_{1}$ is the point in which $g$ attains its maximum value; note that $g(t) \rightarrow-\infty$, as $t \rightarrow \infty$.

Moreover, take $\eta \in C^{\infty}([0, \infty))$ such that the following condition holds:
$\left(\eta_{1}\right) \eta$ is a nonnegative and non-increasing function such that

$$
\left.\eta\right|_{\left[0, R_{0}\right]} \equiv 1 \quad \text { and }\left.\quad \eta\right|_{\left[R_{2}, \infty\right)} \equiv 0
$$

Set $\varphi(u):=\eta(\|u\|)$. Arguing as in [74], let us consider the energy functional

$$
\begin{equation*}
\tilde{J}_{\lambda}(u):=\frac{1}{2}\|u\|^{2}+\int_{\mathbb{R}^{N}} F_{1}(u)-\varphi(u) \int_{\mathbb{R}^{N}} F_{2}(u)-\frac{\lambda}{q} \int_{\mathbb{R}^{N}} h(x)|u|^{q}, \tag{1.74}
\end{equation*}
$$

for every $u \in H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$.
Lemma 1.17 Let $\tilde{J}_{\lambda}$ be the functional given in (1.74). Then, the following facts hold:
i) $\tilde{J}_{\lambda} \in\left(H_{0}\right)$ with $\tilde{J}_{\lambda}=\tilde{\Phi}_{\lambda}+\tilde{\Psi}$ and $\tilde{\Psi}=\left.\Psi\right|_{H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)}$;
ii) If $\tilde{J}_{\lambda}(u)<0$ then $\|u\|<R_{0}$ and $\tilde{J}_{\lambda}(u)=J_{\lambda}(u)$;
iii) Let $\left(u_{n}\right)$ be a (PS $)_{c}$ sequence for $\tilde{J}_{\lambda}$ with $c<0$ then $\left(u_{n}\right)$ is a (PS $)_{c}$ sequence for $J_{\lambda} ;$
iv) If $u \in B_{R_{0}}(0)$ is a critical point of $\tilde{J}_{\lambda}$ then $u$ is a critical point of $J_{\lambda}$.

Proof. Part $-i$ immediately follows by $\left(\eta_{1}\right)$ and the definition of $\tilde{J}_{\lambda}$. Moreover, if $\lambda \approx 0^{+}$then

$$
\tilde{g}(t):=\frac{1}{2} t^{2}-\lambda C_{2} t^{q} \geq 0
$$

for every $t \geq R_{2}$ and $\tilde{J}_{\lambda}(\|u\|) \geq \tilde{g}(\|u\|)$. Hence, Part - ii) holds. The rest of the proof is an easy consequence of $i$ ) and $i i$ ).

By using the above notations and results we are able to prove Theorem 1.10.

Proof of Theorem 1.10. - By Lemma 1.17 it is sufficient to show that $\tilde{J}_{\lambda}$ has a sequence of critical points $\left(u_{n}\right)$ with $u_{n} \in B_{R_{0}}(0)$ for every $n \in \mathbb{N}$. This will be done by showing that $\tilde{J}_{\lambda}$ satisfies the hypotheses of Theorem 1.5. To this aim, we first notice that $\tilde{J}_{\lambda}$ is even and $\tilde{J}_{\lambda}(0)=0$. Therefore, we can apply Theorem 1.5 with $G=\mathbb{Z}_{2}$. In this way, $\gamma_{G}=\gamma$ is the genus of a symmetric closed set; see Remark 1.2. Moreover, $\tilde{J}_{\lambda}$ is a coercive functional and consequently any $(\mathrm{PS})_{c}$ sequence for $\tilde{J}_{\lambda}$ is bounded. If $\left(u_{n}\right)$ is a $(\mathrm{PS})_{c}$ sequence for $\tilde{J}_{\lambda}$, with $c<0$, then Lemma 1.17 ensures that $\left(u_{n}\right)$ is also a $(\mathrm{PS})_{c}$ sequence for $J_{\lambda}$. Finally, arguing as in Lemma 1.13, it easily seen that $\tilde{J}_{\lambda}$ satisfies the $(\mathrm{PS})_{c}$ condition for $c<0$. It remains to show that $\tilde{J}_{\lambda}$ satisfies $i$ ) and $\left.i i\right)$ of Theorem 1.5.

Part - i) Since $\tilde{J}_{\lambda}$ satisfies

$$
\tilde{J}_{\lambda}(u) \geq g(\|u\|) \quad \forall u \in H^{1}\left(\mathbb{R}^{N}\right)
$$

and $\tilde{J}_{\lambda}(u) \geq 0$ for every $\|u\| \geq R_{2}$, we conclude that $\tilde{J}_{\lambda}$ is bounded from below. Consequently

$$
c_{j}:=\inf _{A \in \Gamma_{j}} \sup _{u \in A} \tilde{J}_{\lambda}(u)>-\infty
$$

Part - ii) For each $k \in \mathbb{N}$, let us consider $Y_{k}$ and $Z_{k}$ as in (1.67). In this case $\operatorname{dim} Y_{k}<\infty$ and $Y_{k} \subset C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. Bearing in mind that

$$
F_{1}(u)<\infty, \quad \forall u \in Y_{k}
$$

we infer that $Y_{k} \subset D\left(\tilde{J}_{\lambda}\right)$ for any $k \in \mathbb{N}$. As $\tilde{J}_{\lambda} \equiv J_{\lambda}$ in $B_{R_{0}}$, one has

$$
\tilde{J}_{\lambda}(u)=\frac{1}{2}\|u\|^{2}-\frac{1}{2} \int_{\mathbb{R}^{N}} u^{2} \log u^{2}-\frac{\lambda}{q} \int_{\mathbb{R}^{N}} h(x)|u|^{q} .
$$

Moreover, if $\delta \approx 0^{+}$

$$
|t|^{2}\left|\log t^{2}\right| \leq C_{1}\left(|t|^{2-\delta}+|t|^{2+\delta}\right), \quad \forall t \in \mathbb{R}
$$

for some $C_{1}=C_{1}(\delta)>0$. Consequently

$$
\tilde{J}_{\lambda}(u) \leq \frac{1}{2}\|u\|^{2}+C \int_{\mathbb{R}^{N}}\left(|u|^{2-\delta}+|u|^{2+\delta}\right)-\frac{\lambda}{q} \int_{\mathbb{R}^{N}} h(x)|u|^{q},
$$

for every $u \in B_{R_{0}}$. Now, if $u \in Y_{k}$ then $u \in L^{r}\left(\mathbb{R}^{N}\right)$ for every $r \in[1,2)$. Since all the norms on $Y_{k}$ are equivalent, one has

$$
\begin{equation*}
\tilde{J}_{\lambda}(u) \leq \frac{1}{2}\|u\|^{2}+C_{2}\left(\|u\|^{2-\delta}+\|u\|^{2+\delta}\right)-C\|u\|^{q} \tag{1.75}
\end{equation*}
$$

for some constant $C_{2}>0$. Now, for each $k \in \mathbb{N}$, fix $A:=S_{\rho}(0) \cap Y_{k}$ with $\rho \approx 0^{+}$. Then $A$ is a closed and symmetric set with $\gamma(A)=k$. By choosing $\delta$ such that $2-\delta>q$, on account of (1.75), it follows that

$$
\sup _{u \in A} \tilde{J}_{\lambda}(u)<0
$$

The proof is now complete.

### 1.2.3 A problem involving the 1-Laplacian operator with subcritical growth

In this subsection we study the existence of infinitely many solutions for the following problem

$$
\left(P_{3}\right)
$$

$$
\left\{\begin{aligned}
-\Delta_{1} u & =|u|^{p-2} u, \text { in } \Omega \\
\left.u\right|_{\partial \Omega} & =0, \text { on } \partial \Omega
\end{aligned}\right.
$$

where $\Omega \subset \mathbb{R}^{N}$ (with $N \geq 2$ ) is a bounded domain with smooth boundary $\partial \Omega$ and $p \in\left(1,1^{*}\right)$. In order to simplify the notation, we set $q:=p /(p-1)$.

Several classes of problem involving the 1-Laplacian operator in a similar configuration of $\left(P_{3}\right)$ have been studied in last years. Here we refer $[17,57,58]$.

From now on we denote by $\mathcal{M}\left(\Omega, \mathbb{R}^{N}\right)$ (briefly $\mathcal{M}(\Omega)$ ) the space of the vector Radon measures on $\Omega$ and by $B V(\Omega)$ the space of the functions $u: \Omega \rightarrow \mathbb{R}$ of bounded variation, i.e.,

$$
B V(\Omega):=\left\{u \in L^{1}(\Omega): D u \in \mathcal{M}(\Omega)\right\}
$$

where $D u$ denotes the distributional derivative of $u \in L^{1}(\Omega)$. It is well known that $u \in B V(\Omega)$ if, and only if, $u \in L^{1}(\Omega)$ and

$$
\left.\int_{\Omega}|D u|=\sup \left\{\int_{\Omega} u \operatorname{div} \phi: \phi \in C_{0}^{1}\left(\Omega, \mathbb{R}^{N}\right), \text { and }\|\phi\|_{\infty} \leq 1\right)\right\}<+\infty
$$

Moreover $B V(\Omega)$ is a Banach space endowed by the norm

$$
\|u\|_{B V(\Omega)}:=\int_{\Omega}|D u|+\int_{\partial \Omega}|u| d \mathcal{H}^{N-1}
$$

where, as usual, $\mathcal{H}^{N-1}$ denotes the $(N-1)$-dimensional Hausdorff measure. We also recall that the continuous embedding

$$
\begin{equation*}
B V(\Omega) \hookrightarrow L^{r}(\Omega), \quad r \in\left[1,1^{*}\right] \tag{1.76}
\end{equation*}
$$

is compact provided that $r \in\left[1,1^{*}\right)$; see $[20,22,63]$ for advanced theoretical results on the subject.

According to Kawohl and Schuricht in [63], as well as Degiovanni in [48], the notion of solution for problem $\left(P_{3}\right)$ can be formulated as follows.

Definition 1.6 We say that a function $u \in B V(\Omega)$ is a solution of $\left(P_{3}\right)$ if there exists $z \in L^{\infty}\left(\Omega, \mathbb{R}^{N}\right)$ with $\|z\|_{\infty} \leq 1$, such that

$$
\left\{\begin{array}{l}
-\int_{\Omega} u \operatorname{div} z=\int_{\Omega}|D u|+\int_{\partial \Omega}|u| d \mathcal{H}^{N-1}, \quad \operatorname{div} z \in L^{q}(\Omega) \\
-\operatorname{div} z=|u|^{p-2} u \text { a.e. in } \Omega
\end{array}\right.
$$

where $q:=p /(p-1)$.
Remark 1.5 Notice that the vector field $z$ in the preceding definition gives the formal sense for $\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$. More precisely, the map $z$ replaces $D u /|D u|$ when the expression $D u /|D u|$ is undetermined.

Now, let us consider the energy functional $I: L^{p}(\Omega) \rightarrow(-\infty,+\infty]$ given by

$$
\begin{equation*}
I(u)=\Phi(u)+\Psi(u) \tag{1.77}
\end{equation*}
$$

where

$$
\Phi(u):=-\frac{1}{p} \int_{\Omega}|u|^{p}
$$

and

$$
\Psi(u):=\left\{\begin{array}{lr}
\int_{\Omega}|D u|+\int_{\partial \Omega}|u| d \mathcal{H}^{N-1} & u \in B V(\Omega) \\
\infty & u \in L^{p}(\Omega) \backslash B V(\Omega)
\end{array},\right.
$$

for every $u \in L^{p}(\Omega)$.
It is easily seen that $\Phi \in C^{1}\left(L^{p}(\Omega), \mathbb{R}\right)$ as well as $\Psi$ is a convex and lower semicontinuous functional, so that $I$ is a Szulkin-type functional. Consequently $D(I)=B V(\Omega)$ and, for each fixed $u \in B V(\Omega)$, the subdifferential $\partial \Psi(u)$ can be identified as a subset of $L^{q}(\Omega)$.

The next results will be crucial in the sequel.
Lemma 1.18 If $u \in B V(\Omega)$ and $\partial \Psi(u) \neq \emptyset$ then $u \in L^{\infty}(\Omega)$.
Proof. We first notice that $L^{1^{*}}(\Omega) \hookrightarrow L^{p}(\Omega)$, so that $L^{q}(\Omega) \hookrightarrow L^{N}(\Omega)$. Consequently, if $w \in \partial \Psi(u) \subset L^{q}(\Omega)$, one has that $w \in L^{N}(\Omega)$. The conclusion is achieved by arguing as in [48, Proposition 3.3].

Lemma 1.19 If $u \in B V(\Omega)$ then, for each $w \in \partial \Psi(u)$, there exists $z \in L^{\infty}\left(\Omega, \mathbb{R}^{N}\right)$ with $\|z\|_{\infty} \leq 1$, such that

$$
\left\{\begin{array}{c}
w=-\operatorname{div} z \in L^{q}(\Omega) \\
-\int_{\Omega} u \operatorname{div} z=\int_{\Omega}|D u|+\int_{\partial \Omega}|u| d \mathcal{H}^{N-1} .
\end{array}\right.
$$

Proof. Let us define

$$
\tilde{\Psi}(u):=\left\{\begin{array}{lr}
\int_{\Omega}|D u|+\int_{\partial \Omega}|u| d \mathcal{H}^{N-1} & u \in B V(\Omega) \\
\infty & u \in L^{1^{*}}(\Omega) \backslash B V(\Omega)
\end{array},\right.
$$

and take $w \in \partial \Psi(u) \subset L^{q}(\Omega)$. Then $w \in L^{N}(\Omega)$ and

$$
\tilde{\Psi}(v)-\tilde{\Psi}(u)=\Psi(v)-\Psi(u) \geq \int_{\Omega} w(v-u), \quad \forall v \in B V(\Omega)=D(\tilde{\Psi})
$$

so that $w \in \partial \tilde{\Psi}(u)$. The conclusion follows by [63, Proposition 4.23].
The next result connects critical points of the energy functional $I$ with solutions of $\left(P_{3}\right)$.

Lemma 1.20 If $u \in B V(\Omega)$ is a critical point of the functional $I$ then $u \in L^{\infty}(\Omega)$. Moreover, the function $u$ is a solution of $\left(P_{3}\right)$ in the sense of Definition 1.6.

Proof. Let $u \in B V(\Omega)$ be a critical point of $I$. Then

$$
-\Phi^{\prime}(u) \in \partial \Psi(u) \subset L^{q}(\Omega)
$$

Thereby, there exists $w \in \partial \Psi(u)$ such that

$$
-\Phi^{\prime}(u)=w \text { in } L^{q}(\Omega)
$$

Consequently, Lemma 1.19 and the definition of $\Phi$ yield the existence of $z \in L^{\infty}\left(\Omega, \mathbb{R}^{N}\right)$, with $\|z\|_{\infty} \leq 1$, such that $-\operatorname{div} z=w$ in $L^{q}(\Omega)$ and

$$
\left\{\begin{array}{l}
-\int_{\Omega} u \operatorname{div} z=\int_{\Omega}|D u|+\int_{\partial \Omega}|u| d \mathcal{H}^{N-1}, \operatorname{div} z \in L^{q}(\Omega) \\
-\operatorname{div} z=|u|^{p-2} u \text { a.e. in } \Omega .
\end{array}\right.
$$

Moreover, Lemma 1.18 ensures that $u \in L^{\infty}(\Omega)$. The proof is now complete.
By Lemmas 1.19 and 1.20 we are able to prove the main result of this subsection.
Theorem 1.11 The functional $I$ has infinitely many critical points $\left(u_{n}\right)$ with $I\left(u_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. Hence, problem $\left(P_{3}\right)$ has infinitely many nontrivial solutions.

Proof. Hereafter, we are going to prove that $I$ verifies the assumptions of Theorem 1.6 with $Y=\{0\}$. We first prove that $I$ satisfies the compactness (PS) condition. To this end, let $\left(u_{n}\right)$ be a (PS) sequence for $I$. So, let $c \in \mathbb{R}$ such that

$$
I\left(u_{n}\right) \rightarrow c,
$$

and

$$
\Psi(v)-\Psi\left(u_{n}\right) \geq \int_{\Omega}\left|u_{n}\right|^{p-2} u_{n}\left(v-u_{n}\right)+\int_{\Omega} w_{n}\left(v-u_{n}\right), \quad \forall v \in B V(\Omega)
$$

where $w_{n} \in L^{q}(\Omega)$ and $w_{n} \rightarrow 0$ in $L^{q}(\Omega)$. The last inequality gives

$$
\left|u_{n}\right|^{p-2} u_{n}+w_{n} \in \partial \Psi\left(u_{n}\right), \quad \forall n \in \mathbb{N} .
$$

Hence, Lemma 1.19 yields

$$
\Psi\left(u_{n}\right)=\int_{\Omega}\left|D u_{n}\right|+\int_{\partial \Omega}\left|u_{n}\right| d \mathcal{H}^{N-1}=\int_{\Omega}\left|u_{n}\right|^{p}+\int_{\Omega} w_{n} u_{n}, \quad \forall n \in \mathbb{N} .
$$

If we set

$$
A\left(u_{n}\right):=\Psi\left(u_{n}\right)-\int_{\Omega}\left|u_{n}\right|^{p}+\int_{\Omega} w_{n} u_{n}=0
$$

the classical Hölder's inequality leads to

$$
\begin{aligned}
c+1 & \geq I\left(u_{n}\right)-\frac{1}{r} A\left(u_{n}\right) \\
& \geq\left(1-\frac{1}{r}\right) \Psi\left(u_{n}\right)+\left(\frac{1}{r}-\frac{1}{p}\right)\left\|u_{n}\right\|_{L^{p}(\Omega)}^{p}-\frac{1}{r}\left\|w_{n}\right\|_{L^{q}(\Omega)}\left\|u_{n}\right\|_{L^{p}(\Omega)} \\
& \geq C_{1}\left\|u_{n}\right\|_{B V(\Omega)}+C_{2}\left(\left\|u_{n}\right\|_{L^{p}(\Omega)}^{p}-\left\|u_{n}\right\|_{L^{p}(\Omega)}\right)
\end{aligned}
$$

for some $r<p$ and $n$ large enough. Since the real function $h(t):=t^{p}-t$, for every $t \geq 0$, is bounded from below, the last inequality clearly implies that $\sup _{n \in \mathbb{N}}\left\|u_{n}\right\|_{B V(\Omega)}<\infty$.

Therefore the (PS) condition is verified, since the embedding $B V(\Omega) \hookrightarrow L^{p}(\Omega)$ is compact. Now, if $u \in B V(\Omega)$ is a critical point of $I$ then

$$
|u|^{p-2} u \in \partial \Psi(u) .
$$

Consequently, by Lemma 1.19, it follows that

$$
\int_{\Omega}|u|^{p}=\int_{\Omega}|D u|+\int_{\partial \Omega}|u| d \mathcal{H}^{N-1} .
$$

Thereby, by setting

$$
B(u)=\int_{\Omega}|D u|+\int_{\partial \Omega}|u| d \mathcal{H}^{N-1}-\int_{\Omega}|u|^{p},
$$

one has

$$
I(u)=I(u)-\frac{1}{p} B(u)=\left(1-\frac{1}{p}\right)\|u\|_{B V(\Omega)} \geq 0
$$

for every $u \in L^{p}(\Omega)$. Hence, the set $I^{-c}$ has no critical points for any $c>0$. Finally, let us prove that the functional $I$ satisfies conditions $i$ ) and $i$ ) of Theorem 1.6.

Part - i) Without loss of generality we can suppose $u \in B V(\Omega)$, otherwise $I(u)=\infty$. Now, if $u \in B V(\Omega)$, the embedding $B V(\Omega) \hookrightarrow L^{p}(\Omega)$ immediately yields

$$
I(u) \geq C\|u\|_{L^{p}(\Omega)}-\frac{1}{p}\|u\|_{L^{p}(\Omega)}^{p}
$$

for some constant $C>0$. Since $p>1$, if $\|u\|_{L^{p}(\Omega)}=r \approx 0^{+}$, we also have

$$
I(u) \geq \rho,
$$

for some $\rho>0$. Thus, condition $i$ ) of Theorem 1.6 is proved with $Z=L^{p}(\Omega)$.
Part - $i i$ ) For each $k \in \mathbb{N}$, let us consider $X_{k}$ be a $k$-dimensional subspace of $C_{0}^{\infty}(\Omega)$. Since all the norms are equivalent on $X_{k}$, it easily seen that

$$
I(u) \leq C_{k}\|u\|_{L^{p}(\Omega)}-\frac{1}{p}\|u\|_{L^{p}(\Omega)}^{p} \quad \forall u \in X_{k}
$$

for a convenient $C_{k}>0$. Thus

$$
I(u) \rightarrow-\infty, \text { as }\|u\|_{L^{p}(\Omega)} \rightarrow \infty \text { and } u \in X_{k}
$$

The proof is now complete.

## CHAPTER 2

## Existence of multiple solutions for a Schrödinger logarithmic equation via Lusternik-Schnirelman category theory

In the current chapter we are interested in the following problem
$\left(P_{\varepsilon}\right)$

$$
\left\{\begin{array}{l}
-\varepsilon^{2} \Delta u+V(x) u=u \log u^{2}, \text { in } \mathbb{R}^{N}, \\
\quad u \in H^{1}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

where $V: \mathbb{R}^{N} \longrightarrow \mathbb{R}$ is a continuous function satisfying
$\left(V_{1}\right):-1<\inf _{x \in \mathbb{R}^{N}} V(x) ;$
$\left(V_{2}\right)$ : There exists an open and bounded set $\Lambda \subset \mathbb{R}^{N}$ satisfying

$$
V_{0}:=\inf _{x \in \Lambda} V(x)<\min _{x \in \partial \Lambda} V(x) .
$$

We emphisize that, without lost of generality, we will assume throughout this chapter that $0 \in \Lambda$ and $V_{0}=V(0)$.

Before presenting the main results concerning with the study of problem $\left(P_{\varepsilon}\right)$, we would like to mention some interesting aspects related to the equation

$$
\begin{equation*}
-\varepsilon^{2} \Delta u+V(x) u=u \log u^{2}, \quad x \in \mathbb{R}^{N}, \tag{1}
\end{equation*}
$$

under different assumptions on $V$ and $\varepsilon$.

It is natural to apply variatonal methods to look by solutions of $\left(E_{1}\right)$. The usual variational framework lead us to consider the energy functional

$$
\begin{equation*}
E_{\varepsilon}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+(V(\varepsilon x))|u|^{2}\right) d x-\int_{\mathbb{R}^{N}} F(u) d x \tag{2.1}
\end{equation*}
$$

with

$$
F(t)=\int_{0}^{t} s \log s^{2} d s=\frac{1}{2} t^{2} \log t^{2}-\frac{t^{2}}{2} .
$$

However, it is well known that the functional $E_{\varepsilon}$ is not well defined, e.g., on $H^{1}\left(\mathbb{R}^{N}\right)$ because there exist functions $u \in H^{1}\left(\mathbb{R}^{N}\right)$ such that $\int_{\mathbb{R}^{N}} u^{2} \log u^{2}=-\infty$, which gives the possibility that $E_{\varepsilon}(u)=\infty$.

In the literature there is a broad list of works that provide different techniques to carry out this difficulty referring to the study of equation $\left(E_{1}\right)$ via variational methods. Here we refer the works [10-13, 44, 62, 79]. The main point in those works consists in to use alternatives critical point theories for nonsmooth functionals. Although the frameworks introduced in those works allows us to get solutions for $\left(E_{1}\right)$, some questions involving critical points for $C^{1}$-functionals cannot be explored in those works (we would like to cite, e.g., the existence of multiple solutions for $\left(E_{1}\right)$ via the LusternikSchnirelmann's category; see [83, Chapater 5]).

Motivated by the above fact, we intent to prove the existence of multiple solution for $\left(P_{\varepsilon}\right)$ by relating the multiplicity of solution with the category of LusternikSchnirelmann of the set

$$
M:=\left\{x \in \Lambda ; V(x)=V_{0}\right\}
$$

in the set

$$
M_{\delta}:=\left\{x \in \mathbb{R}^{N} ; d(x, M) \leq \delta\right\}, \quad \delta \approx 0^{+} .
$$

We would like to mention that this type of information is a novelty for logarithmic Schrödinger equations. In our search, we have not found any article that relates the multiplicity of solution for equations of ( $E_{1}$ )-type with the Lusternik-Schnirelmann's category.

The main result to be proved in this chapter is the following.
Theorem 2.1 If the conditions $\left(V_{1}\right)-\left(V_{2}\right)$ hold and $\delta>0$ is small enough, then there is $\varepsilon_{3}>0$, such that, for $\varepsilon \in\left(0, \varepsilon_{3}\right)$, the following items are valid:
i) $\left(P_{\varepsilon}\right)$ has at least $\frac{\operatorname{cat}_{M_{\delta}}(M)}{2}$ positive solutions, if $\operatorname{cat}_{M_{\delta}}(M)$ is an even number;
ii) $\left(P_{\varepsilon}\right)$ has at least $\frac{\operatorname{cat}_{M_{\delta}}(M)+1}{2}$ positive solutions, if $\operatorname{cat}_{M_{\delta}}(M)$ is an odd number.

In order to prove the preceding theorem, we will introduce a new reflexive and separable Banach space in which the functional $E_{\varepsilon}$ in (2.1) is a $C^{1}$-functional. Such technique enable us to adapt some results valid in the classical Critical Point Theory. We also mention that, in view of conditions $\left(V_{1}\right)-\left(V_{2}\right)$ above, the results presented throughout this chapter improve the results of Alves and de Morais Filho [10] and Alves and Ji [11] on the existence and concentration of positive solutions for $\left(P_{\varepsilon}\right)$.

Note that, by the change of variable $u(x)=v(x / \varepsilon)$, the problem $\left(P_{\varepsilon}\right)$ is equivalent to the problem

$$
\left\{\begin{array}{l}
-\Delta v+V(\varepsilon x) v=v \log v^{2}, \text { in } \mathbb{R}^{N}, \\
\quad v \in H^{1}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

We will explore this fact in our computations.
We would like to mention that the results developed in the present chapter have been published in the paper [7].

### 2.1 Variational framework on the logarithmic equation

In this section we present the main tools requested to our variational approach. We start by recalling the decomposition of the nonlinearity $f(t)=t \log t^{2}$ explored in Chapter 1, which is an important step in order to overcome the lack of smoothness of energy functional associated with $\left(S_{\varepsilon}\right)$. Finally, taking into account the conditions $\left(V_{1}\right)-\left(V_{2}\right)$ mentioned above and motivated by $[11,51]$, we introduce an auxiliary problem that is a crucial tool in our study to obtain the existence of solution for $\left(S_{\varepsilon}\right)$.

### 2.1.1 Basics on the logarithmic equation

Let us start by presenting a convenient decomposition of the function

$$
F(t)=\int_{0}^{t} s \log s^{2} d s=\frac{1}{2} t^{2} \log t^{2}-\frac{t^{2}}{2}
$$

which has been explored in Section 1.2, as well as in a lot of works (see, e.g., [10-12, 62, 79]).

Fixed $\delta>0$ sufficiently small, we set

$$
F_{1}(s):=\left\{\begin{array}{lrl}
0, & s & =0  \tag{2.2}\\
-\frac{1}{2} s^{2} \log s^{2}, & 0<|s| & <\delta \\
-\frac{1}{2} s^{2}\left(\log \delta^{2}+3\right)+2 \delta|s|-\frac{\delta^{2}}{2}, & |s| \geq \delta
\end{array}\right.
$$

and

$$
F_{2}(s):= \begin{cases}0, & |s|<\delta \\ \frac{1}{2} s^{2} \log \left(\frac{s^{2}}{\delta^{2}}\right)+2 \delta|s|-\frac{3}{2} s^{2}-\frac{\delta^{2}}{2}, & |s| \geq \delta\end{cases}
$$

for every $s \in \mathbb{R}$. Hence,

$$
\begin{equation*}
F_{2}(s)-F_{1}(s)=\frac{1}{2} s^{2} \log s^{2}, \quad \forall s \in \mathbb{R} . \tag{2.3}
\end{equation*}
$$

By direct computations, one can verifies that $F_{1}$ and $F_{2}$ verify the properties $\left(P_{1}\right)-\left(P_{4}\right)$ below:
$\left(P_{1}\right) F_{1}$ is an even function with $F_{1}^{\prime}(s) s \geq 0$ and $F_{1} \geq 0$. Moreover $F_{1} \in C^{1}(\mathbb{R}, \mathbb{R})$ and it is also convex if $\delta \approx 0^{+}$.
$\left(P_{2}\right) \quad F_{2} \in C^{1}(\mathbb{R}, \mathbb{R}) \cap C^{2}((\delta,+\infty), \mathbb{R})$ and for each $p \in\left(2,2^{*}\right)$, there exists $C=C_{p}>0$ such that

$$
\left|F_{2}^{\prime}(s)\right| \leq C|s|^{p-1}, \quad \forall s \in \mathbb{R}
$$

$\left(P_{3}\right) s \mapsto \frac{F_{2}^{\prime}(s)}{s}$ is a nondecreasing function for $s>0$ and a strictly increasing function for $s>\delta$.
$\left(P_{4}\right) \lim _{s \rightarrow \infty} \frac{F_{2}^{\prime}(s)}{s}=\infty$.
We recall below the definition of a $N$-function, which plays a special role in the sequel.

Definition 2.1 $A$ continuous function $\Phi: \mathbb{R} \rightarrow[0,+\infty)$ is a $N$-function if:
(i) $\Phi$ is convex.
(ii) $\Phi(t)=0 \Leftrightarrow t=0$.
(iii) $\lim _{t \rightarrow 0} \frac{\Phi(t)}{t}=0$ and $\lim _{t \rightarrow \infty} \frac{\Phi(t)}{t}=+\infty$.
(iv) $\Phi$ is an even function.

Associated with each N-function we have the conjugate function $\tilde{\Phi}$ that is given by the Legendre's transformation of $\Phi$, more precisely,

$$
\tilde{\Phi}(t)=\max _{t \geq 0}\{s t-\Phi(t)\} \text { for } s \geq 0
$$

See the Appendix C for further details involving N-functions.
An important step in our study is the fact that the function $F_{1}$ is a $N$-function. More precisely, the following result is valid.

Proposition 2.1 The function $F_{1}$ is a $N$-function. Furthermore, it holds that $F_{1}$, $\tilde{F}_{1} \in\left(\Delta_{2}\right)$. Equivalently, there exists $l \in(1,2)$ such that

$$
\begin{equation*}
1<l \leq \frac{F_{1}^{\prime}(s) s}{F_{1}(s)} \leq 2, \quad \forall s>0 \tag{2.4}
\end{equation*}
$$

Proof. See the Proposition C. 2 in Appendix C.
The last proposition allows us to conclude that the space

$$
L^{F_{1}}\left(\mathbb{R}^{N}\right)=\left\{u \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right) ; \int_{\mathbb{R}^{N}} F_{1}(|u|) d x<+\infty\right\}
$$

is a reflexive and separable Banach space. In a more precise description, $L^{F_{1}}\left(\mathbb{R}^{N}\right)$ is the Orlicz space associated with the $N$-function $F_{1}$. On $L^{F_{1}}\left(\mathbb{R}^{N}\right)$, we will consider the usual Luxemburg norm

$$
\|u\|_{F_{1}}=\inf \left\{\lambda>0 ; \int_{\Omega} F_{1}\left(\frac{|u|}{\lambda}\right) \leq 1\right\}
$$

The study of problem $\left(S_{\varepsilon}\right)$ lead us to work in the space

$$
H_{\varepsilon}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) ; \int_{\mathbb{R}^{N}} V(\varepsilon x)|u|^{2} d x<\infty\right\}
$$

In the sequel, in order to avoid the points $u \in H^{1}\left(\mathbb{R}^{N}\right)$ that verify $F_{1}(u) \notin L^{1}\left(\mathbb{R}^{N}\right)$, we will restrict the functional $E_{\varepsilon}$ given in (2.1) to the space $X_{\varepsilon}:=H_{\varepsilon} \cap L^{F_{1}}\left(\mathbb{R}^{N}\right)$, which will be denoted by $I_{\varepsilon}$, that is, $\left.I_{\varepsilon} \equiv E_{\varepsilon}\right|_{X_{\varepsilon}}$. Hereafter, let us consider on $X_{\varepsilon}$ the norm

$$
\|\cdot\|_{\varepsilon}:=\|\cdot\|_{H_{\varepsilon}}+\|\cdot\|_{F_{1}}
$$

where

$$
\|u\|_{H_{\varepsilon}}:=\left(\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+(V(\varepsilon x)+1)|u|^{2}\right)\right)^{1 / 2}, \quad u \in H_{\varepsilon} .
$$

In view of the Proposition 2.1, $\left(X_{\varepsilon},\|\cdot\|_{\varepsilon}\right)$ is a reflexive and separable Banach space. In this way, from the conditions on $F_{1}$ and $V$, one has $I_{\varepsilon} \in C^{1}\left(X_{\varepsilon}, \mathbb{R}\right)$ with

$$
I_{\varepsilon}^{\prime}(u) v=\int_{\mathbb{R}^{N}}\left(\nabla u \nabla v+(V(\varepsilon x)+1) u v+\int_{\mathbb{R}^{N}} F_{1}^{\prime}(u) v-\int_{\mathbb{R}^{N}} F_{2}^{\prime}(u) v, \quad \forall v \in X_{\varepsilon}\right.
$$

Note also that, as a natural consequence of the definition of $\|\cdot\|_{\varepsilon}$, the embedding $X_{\varepsilon} \hookrightarrow H^{1}\left(\mathbb{R}^{N}\right)$ and $X_{\varepsilon} \hookrightarrow L^{F_{1}}\left(\mathbb{R}^{N}\right)$ are continuous.

### 2.1.2 The auxiliary problem

From now on, we fix $b_{0} \approx 0^{+}$and $a_{0}>\delta$ in a such way that $\left(\inf _{\mathbb{R}^{N}} V+1\right)>2 b_{0}$ and $\frac{F_{2}^{\prime}\left(a_{0}\right)}{a_{0}}=b_{0}$. Using these notations, we set

$$
\bar{F}_{2}^{\prime}(s):=\left\{\begin{array}{lr}
F_{2}^{\prime}(s), & 0 \leq s \leq a_{0} \\
b_{0} s & s \geq a_{0}
\end{array}\right.
$$

Now, consider $t_{1}, t_{2}>0$ with $a_{0} \in\left(t_{1}, t_{2}\right)$ and $h \in C^{1}\left(\left[t_{1}, t_{2}\right]\right)$ verifying
$\left(h_{1}\right): h(t) \leq \bar{F}_{2}^{\prime}(t), \quad t \in\left[t_{1}, t_{2}\right]$;
$\left(h_{2}\right): h\left(t_{i}\right)=\bar{F}_{2}^{\prime}\left(t_{i}\right)$ and $h^{\prime}\left(t_{i}\right)=\bar{F}_{2}^{\prime \prime}\left(t_{i}\right), i \in\{1,2\} ;$
$\left(h_{3}\right): \frac{h(t)}{t}$ is a nondecreasing function.

Remark 2.1 The existence of a such function $h$ is assured by using the results in [5, Appendix A].

In the building of the function $h$, it is considered that, besides of the properties $\left(P_{2}\right)-\left(P_{4}\right)$ above, the function $F_{2}$ belongs to $C^{2}((\delta,+\infty), \mathbb{R})$.

Define

$$
\tilde{F}_{2}^{\prime}(s):= \begin{cases}\bar{F}_{2}^{\prime}(s), & t \notin\left[t_{1}, t_{2}\right] \\ h(t), & t \in\left[t_{1}, t_{2}\right] .\end{cases}
$$

Denote by $\chi_{\Lambda}$ the characteristic function of the set $\Lambda$ and let $g_{2}: \mathbb{R}^{N} \times[0, \infty) \longrightarrow \mathbb{R}$ given by

$$
g_{2}(x, t):=\chi_{\Lambda}(x) F_{2}^{\prime}(t)+\left(1-\chi_{\Lambda}(x)\right) \tilde{F}_{2}^{\prime}(t)
$$

On account that $F_{2}^{\prime}$ is an odd function, we can extend the definition of $g_{2}$ to $\mathbb{R}^{N} \times \mathbb{R}$ by setting $g_{2}(x, t)=-g_{2}(x,-t)$, for each $t \leq 0$ and $x \in \mathbb{R}^{N}$.

Hereafter, we will study the existence of solution for the following auxiliary problem

$$
\left\{\begin{array}{l}
-\Delta u+(V(\varepsilon x)+1) u=g_{2}(\varepsilon x, u)-F_{1}^{\prime}(u), \text { in } \mathbb{R}^{N},  \tag{S}\\
\quad u \in H^{1}\left(\mathbb{R}^{N}\right) \cap L^{F_{1}}\left(\mathbb{R}^{N}\right) .
\end{array}\right.
$$

Setting

$$
\Lambda_{\varepsilon}:=\left\{x \in \mathbb{R}^{N} ; \varepsilon x \in \Lambda\right\}
$$

we see that if $u$ is a positive solution of $\left(\tilde{S}_{\varepsilon}\right)$ satisfying

$$
\begin{equation*}
0<u(x)<t_{1}, \quad \forall x \in\left(\mathbb{R}^{N}-\Lambda_{\varepsilon}\right), \tag{2.5}
\end{equation*}
$$

then $u$ is a solution of $\left(S_{\varepsilon}\right)$. Have this in mind, we will study the existence of positive solutions for $\left(S_{\varepsilon}\right)$ by looking for solutions of $\left(\tilde{S}_{\varepsilon}\right)$ that satisfy (2.5).

From the definition of $g_{2}$, it is possible to prove the following properties:
$\left(A_{1}\right):\left\{\begin{array}{l}i): g_{2}(x, t) \leq b_{0}|t|+C|t|^{p-1}, \quad t \geq 0, x \in \mathbb{R}^{N} ; \\ i i): g_{2}(x, t) \leq F_{2}^{\prime}(t), \quad x \in \mathbb{R}^{N} ; \\ i i i): g_{2}(x, t) \leq b_{0} t, \quad t \geq 0, x \in\left(\mathbb{R}^{N}-\Lambda\right) ; \\ i v): \frac{1}{2}|t|^{2}+\left[F_{2}(t)-\frac{1}{2} F_{2}^{\prime}(t) t+\frac{1}{2} G_{2}^{\prime}(\varepsilon x, t) t-G_{2}(\varepsilon x, t)\right] \geq 0, \quad \forall t \in \mathbb{R}, x \in \mathbb{R}^{N} .\end{array}\right.$
Associated with $\left(\tilde{S}_{\varepsilon}\right)$ we have the following functional

$$
J_{\varepsilon}(u):=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+(V(\varepsilon x)+1)|u|^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}(u)-\int_{\mathbb{R}^{N}} G_{2}(\varepsilon x, u), \quad \forall u \in X_{\varepsilon},
$$

where $G_{2}(x, t):=\int_{0}^{t} g_{2}(x, s) d s$. The conditions on $g_{2}$ ensures that $J_{\varepsilon} \in C^{1}\left(X_{\varepsilon}, \mathbb{R}\right)$, and thereby, critical points of $J_{\varepsilon}$ are weak solutions of $\left(\tilde{S}_{\varepsilon}\right)$.

### 2.2 Existence of solution for the auxiliary problem

In this section we will establish the existence of solution for $\left(\tilde{S}_{\varepsilon}\right)$. We start by showing that $J_{\varepsilon}$ satisfies the geometric configuration of the Mountain Pass Theorem (see [19]).

Lemma 2.1 Given $\varepsilon>0$, the functional $J_{\varepsilon}$ satisfies
i) There exist $r, \rho>0$ such that $J_{\varepsilon}(u) \geq \rho$ for any $u \in X_{\varepsilon},\|u\|_{\varepsilon}=r$.
ii) There exits $v \in X_{\varepsilon}$ with $\|v\|_{\varepsilon}>r$ satisfying $J_{\varepsilon}(v)<0=J_{\varepsilon}(0)$.

Proof. $i$ ): From $\left(A_{1}\right)$, one has that $G_{2}(\varepsilon x, t) \leq F_{2}(t)$, and so,

$$
J_{\varepsilon}(u) \geq \frac{1}{2}\|u\|_{H_{\varepsilon}}^{2}+\int_{\mathbb{R}^{N}} F_{1}(u)-\int_{\mathbb{R}^{N}} F_{2}(u) .
$$

Gathering (C.3) with (C.6) (note that $m$ can be chosen equal to 2 ) and using ( $P_{2}$ ), there is $r \approx 0^{+}$such that

$$
J_{\varepsilon}(u) \geq \frac{1}{2}\|u\|_{H_{\varepsilon}}^{2}+\|u\|_{F_{1}}^{2}-D\|u\|_{\varepsilon}^{p} \geq C\|u\|_{\varepsilon}^{2}-D\|u\|_{\varepsilon}^{p}
$$

for some $C, D>0$. The last inequality gives the desired condition, because $p>2$.
ii): Fix $u \in O_{\varepsilon}:=\left\{u \in X_{\varepsilon} ;\left|\operatorname{supp}(|u|) \cap \Lambda_{\varepsilon}\right|>0\right\}$. Note that, for each $x \in \mathbb{R}^{N}$ we can write

$$
F_{1}(t)=\chi_{\Lambda_{\varepsilon}}(x) F_{1}(t)+\left(1-\chi_{\Lambda_{\varepsilon}}(x)\right) F_{1}(t) .
$$

Therefore, from the definition of $g_{2}$,

$$
\begin{aligned}
J_{\varepsilon}(t u) \leq \frac{t^{2}}{2}\|u\|_{H_{\varepsilon}}^{2}-\frac{1}{2} \int_{\mathbb{R}^{N}} \chi_{\Lambda_{\varepsilon}}|t u|^{2} \log |t u|^{2} & +\frac{1}{2} \int_{\left[|t| u \mid \leq t_{1}\right]}\left(1-\chi_{\Lambda_{\varepsilon}}\right)|t u|^{2} \log |t u|^{2}+ \\
& +\int_{\left[t|u|>t_{1}\right]}\left(1-\chi_{\Lambda_{\varepsilon}}\right)\left[F_{1}(t u)-\tilde{F}_{2}(t u)\right]
\end{aligned}
$$

Recalling that $X_{\varepsilon} \hookrightarrow L^{2}\left(\mathbb{R}^{N}\right)$, there is $C>0$ independent of $t$ such that

$$
\int_{\left[\left||u|>t_{1}\right]\right.}|t u|^{2} \leq C,
$$

and so,

$$
\left|\left[t|u|>t_{1}\right]\right| \leq \frac{C}{t_{1}^{2}} t^{2}=: C_{1} t^{2}
$$

By the definition of $F_{1}$,

$$
F_{1}(t) \leq A t^{2}+B, \quad t \geq 0
$$

with $A, B>0$. Then,

$$
\int_{\left[t|u|>t_{1}\right]}\left(1-\chi_{\Lambda_{\varepsilon}}\right) F_{1}(t|u|) \leq D t^{2}
$$

for a convenient $D>0$. Since $\tilde{F}_{2} \geq 0$, we find

$$
\begin{aligned}
J_{\varepsilon}(t u) \leq t^{2}\left[\frac{1}{2}| | u \|_{H_{\varepsilon}}^{2}-\int_{\mathbb{R}^{N}} \chi_{\Lambda_{\varepsilon}}|u|^{2} \log |u|^{2}\right. & -\log t\left(\int_{\mathbb{R}^{N}} \chi_{\Lambda_{\varepsilon}}|u|^{2}+\int_{\left[t|u| \leq t_{1}\right]}\left(\chi_{\Lambda_{\varepsilon}}-1\right)|u|^{2}\right) \\
& \left.+\int_{\left[|t u| \leq t_{1}\right]}\left(1-\chi_{\Lambda_{\varepsilon}}\right)|u|^{2} \log |u|^{2}+D\right] .
\end{aligned}
$$

By the Lebesgue Dominated Convergence Theorem, we have

$$
\int_{\left[\left||u| \leq t_{1}\right]\right.}\left(\chi_{\Lambda_{\varepsilon}}-1\right)|u|^{2} \longrightarrow 0, \text { as } t \rightarrow+\infty .
$$

Note also that, since $u \in O_{\varepsilon}$ and $u \in L^{F_{1}}(\mathbb{R})$, it holds

$$
\int_{\mathbb{R}^{N}} \chi_{\Lambda_{\varepsilon}}|u|^{2}>0
$$

and

$$
\frac{1}{2} \int_{\left[t|u| \leq t_{1}\right]}\left(1-\chi_{\Lambda_{\varepsilon}}\right)|u|^{2} \log |u|^{2} \leq \int_{\mathbb{R}^{N}} F_{2}(u) d x<\infty
$$

Combining all of the above information we derive that

$$
J_{\varepsilon}(t u) \rightarrow-\infty, \text { as } t \rightarrow \infty,
$$

and the proof is finished by taking $v=t u$ with $t$ large enough.
For the next lemma, we have adapted the reasoning employed in [12, Lemma 3.1]. However, taking into account that in our case the functional $J_{\varepsilon}$ is on $X_{\varepsilon}$, which has a different topology of $H^{1}\left(\mathbb{R}^{N}\right)$, it was necessary to develop new estimates that are not found in [12].

In the sequel, we will need of the following logarithmic inequality (see [50, pg 153])

$$
\int_{\mathbb{R}^{N}}|u|^{2} \log \left(\frac{|u|}{\|u\|_{2}}\right) \leq C\|u\|_{2} \log \left(\frac{\|u\|_{2^{*}}}{\|u\|_{2}}\right), \quad \forall u \in L^{2}\left(\mathbb{R}^{N}\right) \cap L^{2^{*}}\left(\mathbb{R}^{N}\right),
$$

for some positive constant $C$. As an immediate consequence,

$$
\begin{equation*}
\int_{\Lambda_{\varepsilon}}|u|^{2} \log \left(\frac{|u|}{\|u\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}}\right) \leq C\|u\|_{L^{2}\left(\Lambda_{\varepsilon}\right)} \log \left(\frac{\|u\|_{L^{2^{*}}\left(\Lambda_{\varepsilon}\right)}}{\|u\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}}\right), \quad \forall u \in L^{2}\left(\Lambda_{\varepsilon}\right) \cap L^{2^{*}}\left(\Lambda_{\varepsilon}\right) . \tag{2.6}
\end{equation*}
$$

Lemma 2.2 Let $\left(v_{n}\right)$ be a $(P S)_{c}$ sequence for $J_{\varepsilon}$. Then, the sequence $\left(v_{n}\right)$ is bounded in $X_{\varepsilon}$.

Proof. Let $\left(v_{n}\right)$ be a $(P S)_{c}$ sequence for $J_{\varepsilon}$. Then,

$$
\begin{equation*}
J_{\varepsilon}\left(v_{n}\right)-\frac{1}{2} J_{\varepsilon}^{\prime}\left(v_{n}\right) v_{n} \leq(c+1)+o_{n}(1)\left\|v_{n}\right\|_{\varepsilon}, \tag{2.7}
\end{equation*}
$$

for large $n$.

On the other hand, observe that

$$
\begin{align*}
J_{\varepsilon}\left(v_{n}\right)-\frac{1}{2} J_{\varepsilon}^{\prime}\left(v_{n}\right) v_{n} & =\int_{\mathbb{R}^{N}}\left(F_{1}\left(v_{n}\right)-\frac{1}{2} F_{1}^{\prime}\left(v_{n}\right) v_{n}\right)+\int_{\mathbb{R}^{N}}\left(\frac{1}{2} G_{2}^{\prime}\left(\varepsilon x, v_{n}\right) v_{n}-G_{2}\left(\varepsilon x, v_{n}\right)\right)= \\
& =\frac{1}{2} \int_{\mathbb{R}^{N}}\left|v_{n}\right|^{2}+\int_{\mathbb{R}^{N}}\left[F_{2}\left(v_{n}\right)-\frac{1}{2} F_{2}^{\prime}\left(v_{n}\right) v_{n}+\frac{1}{2} G_{2}^{\prime}\left(\varepsilon x, v_{n}\right) v_{n}-G_{2}\left(\varepsilon x, v_{n}\right)\right], \tag{2.8}
\end{align*}
$$

because

$$
\int_{\mathbb{R}^{N}}\left[\left(F_{1}\left(v_{n}\right)-\frac{1}{2} F_{1}^{\prime}\left(v_{n}\right) v_{n}\right)+\left(\frac{1}{2} F_{2}^{\prime}\left(v_{n}\right) v_{n}-F_{2}\left(v_{n}\right)\right)\right]=\frac{1}{2} \int_{\mathbb{R}^{N}}\left|v_{n}\right|^{2} .
$$

Consequently,

$$
\begin{aligned}
J_{\varepsilon}\left(v_{n}\right)-\frac{1}{2} J_{\varepsilon}^{\prime}\left(v_{n}\right) v_{n} & \geq \frac{1}{2} \int_{\Lambda_{\varepsilon}}\left|v_{n}\right|^{2}+\int_{\left\{\Lambda_{\varepsilon} \cap\left[\left|v_{n}\right|>t_{1}\right]\right\}}\left(\frac{1}{2}\left|v_{n}\right|^{2}+F_{2}\left(v_{n}\right)-\frac{1}{2} F_{2}^{\prime}\left(v_{n}\right) v_{n}\right)+ \\
& +\int_{\left\{\Lambda_{\varepsilon}^{\varepsilon} \cap\left[\left|v_{n}\right|>t_{1}\right]\right\}}\left(\frac{1}{2} G_{2}^{\prime}\left(\varepsilon x, v_{n}\right) v_{n}-G_{2}\left(\varepsilon x, v_{n}\right)\right) .
\end{aligned}
$$

From $\left.\left(A_{1}\right)-i v\right)$,

$$
J_{\varepsilon}\left(v_{n}\right)-\frac{1}{2} J_{\varepsilon}^{\prime}\left(v_{n}\right) v_{n} \geq \frac{1}{2} \int_{\Lambda_{\varepsilon}}\left|v_{n}\right|^{2}
$$

and so, from (2.7),

$$
\begin{equation*}
(c+1)+o_{n}(1)\left\|v_{n}\right\|_{\varepsilon} \geq \frac{1}{2} \int_{\Lambda_{\varepsilon}}\left|v_{n}\right|^{2} . \tag{2.9}
\end{equation*}
$$

Recall that there are constants $A, B>0$ such that

$$
F_{1}(t) \leq A|t|^{2}+B, \quad \forall t \in \mathbb{R}
$$

This together with (2.9) leads to

$$
\begin{equation*}
\int_{\Lambda_{\varepsilon}} F_{1}\left(v_{n}\right) \leq C_{\varepsilon}+\left\|v_{n}\right\|_{\varepsilon}, \tag{2.10}
\end{equation*}
$$

for some $C_{\varepsilon}>0$. Thanks to (2.6),

$$
\begin{aligned}
& \frac{1}{2} \int_{\Lambda_{\varepsilon}}\left|v_{n}\right|^{2} \log \left|v_{n}\right|^{2} \leq C\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)} \log \left(\frac{\left\|v_{n}\right\|_{L^{2^{*}}\left(\Lambda_{\varepsilon}\right)}}{\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}}\right)+\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}^{2} \log \left(\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}\right)= \\
& \quad=\left(\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}^{2}-C\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}\right) \log \left(\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}\right)+C\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)} \log \left(\left\|v_{n}\right\|_{L^{2^{*}}\left(\Lambda_{\varepsilon}\right)}\right) .
\end{aligned}
$$

that combines with the embedding $X_{\varepsilon} \hookrightarrow H_{\varepsilon}$ to give

$$
\int_{\Lambda_{\varepsilon}}\left|v_{n}\right|^{2} \log \left|v_{n}\right|^{2} \leq\left(2\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}^{2}-2 C| | v_{n} \|_{L^{2}\left(\Lambda_{\varepsilon}\right)}\right) \log \left(\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}\right)+\tilde{C}| | v_{n} \|_{\varepsilon}\left|\log \left(\tilde{C}| | v_{n} \|_{\varepsilon}\right)\right|
$$

for some convenient $\tilde{C}>0$ independent of $\varepsilon$. In order to get the last inequality, we have explored the fact that the function $t \mapsto \log t, t>0$, is increasing. Now, using the fact that given $r \in(0,1)$ there is $A>0$ satisfying

$$
|t \log t| \leq A\left(1+|t|^{1+r}\right), \quad t \geq 0
$$

we obtain, by gathering this inequality with (2.9), the inequalities below

$$
\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)} \log \left(\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}\right) \leq A\left(1+\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}^{1+r}\right)
$$

and

$$
\left.\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}^{2} \log \left(\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}^{2}\right) \leq A\left(1+\left(\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}^{2}\right)^{1+r}\right) \leq \tilde{A}\left(1+\left\|v_{n}\right\|_{L^{2}\left(\Lambda_{\varepsilon}\right)}\right)^{1+r}\right) .
$$

From these information, modifying $A$ if necessary, we arrive at

$$
\begin{equation*}
\int_{\Lambda_{\varepsilon}}\left|v_{n}\right|^{2} \log \left|v_{n}\right|^{2} \leq A\left(1+\left\|v_{n}\right\|_{\varepsilon}^{1+r}\right) \tag{2.11}
\end{equation*}
$$

As $\left(v_{n}\right)$ is a $(P S)_{c}$ sequence for $J_{\varepsilon}$,

$$
(c+1) \geq J_{\varepsilon}\left(v_{n}\right)=\frac{1}{2}| | v_{n} \|_{H_{\varepsilon}}^{2}+\int_{\Lambda_{\varepsilon}^{\varepsilon}} F_{1}\left(v_{n}\right)-\int_{\Lambda_{\varepsilon}}\left|v_{n}\right|^{2} \log \left|v_{n}\right|^{2}-\int_{\Lambda_{\varepsilon}^{\varepsilon}} G_{2}\left(\varepsilon x, v_{n}\right)
$$

for large $n$. From $\left(A_{1}\right)$,

$$
G_{2}(\varepsilon x, t) \leq \frac{b_{0}}{2} t^{2}, \quad \forall x \in \Lambda_{\varepsilon}^{c}
$$

then

$$
(c+1)+A\left(1+\left\|v_{n}\right\|_{\varepsilon}^{1+r}\right) \geq C\left\|v_{n}\right\|_{H_{\varepsilon}}^{2}+\int_{\Lambda_{\varepsilon}^{c}} F_{1}\left(v_{n}\right),
$$

for some $C>0$, and so, by (2.10),

$$
\begin{equation*}
D_{\varepsilon}+\left\|v_{n}\right\|_{\varepsilon}+A\left(1+\left\|v_{n}\right\|_{\varepsilon}^{1+r}\right) \geq \tilde{C}\left(\left\|v_{n}\right\|_{H_{\varepsilon}}^{2}+\int_{\mathbb{R}^{N}} F_{1}\left(v_{n}\right)\right) \tag{2.12}
\end{equation*}
$$

where $D_{\varepsilon}:=\left(C_{\varepsilon}+c+1\right)>0$ and $\tilde{C}:=\min \{C, 1\}$. From now on in this proof, we fix $r \in(0,1)$ so that $1+r<l$, where $l$ is the number obtained in (C.6).

Suppose that $\left\|v_{n}\right\|_{F_{1}} \leq 1$. Employing (C.3) in (2.12), and modifying $\tilde{C}$ if necessary, one gets

$$
\begin{equation*}
D_{\varepsilon}+\left\|v_{n}\right\|_{\varepsilon}+A\left(1+\left\|v_{n}\right\|_{\varepsilon}^{1+r}\right) \geq \tilde{C}\left(\left\|v_{n}\right\|_{H_{\varepsilon}}+\left\|v_{n}\right\|_{F_{1}}\right)^{2}=\tilde{C}\left\|v_{n}\right\|_{\varepsilon}^{2} \tag{2.13}
\end{equation*}
$$

Otherwise, if $\left\|v_{n}\right\|_{F_{1}}>1$, we have two possibilities: $\left\|v_{n}\right\|_{H_{\varepsilon}}>1$ or $\left\|v_{n}\right\|_{H_{\varepsilon}} \leq 1$. When $\left\|v_{n}\right\|_{H_{\varepsilon}}>1$, in the same way of the preceding case we obtain

$$
\begin{equation*}
D_{\varepsilon}+\left\|v_{n}\right\|_{\varepsilon}+A\left(1+\left\|v_{n}\right\|_{\varepsilon}^{1+r}\right) \geq C_{l}\left\|v_{n}\right\|_{\varepsilon}^{l} \tag{2.14}
\end{equation*}
$$

If it occurs $\left\|v_{n}\right\|_{F_{1}}>1$ and $\left\|v_{n}\right\|_{H_{\varepsilon}} \leq 1$, using the definition $\|\cdot\|_{\varepsilon}$ in (2.12), we find

$$
\begin{equation*}
\tilde{D}_{\varepsilon}+\left\|v_{n}\right\|_{F_{1}}+C_{r}\left\|v_{n}\right\|_{F_{1}}^{1+r} \geq \tilde{C}\left\|v_{n}\right\|_{F_{1}}^{l} \tag{2.15}
\end{equation*}
$$

The proof is completed by combining (2.13)-(2.15).
Next, we present an important property of the $(P S)$ sequences whose the proof can be found in [11] and that is a crucial tool in order to prove that $J_{\varepsilon}$ satisfies the $(P S)$ condition in the space $X_{\varepsilon}$.

Lemma 2.3 Let $\left(v_{n}\right)$ be a $(P S)_{c}$ sequence for $J_{\varepsilon}$. Then, given $\tau>0$ there is $R>0$ such that

$$
\limsup _{n \rightarrow \infty} \int_{B_{R}^{c}(0)}\left(\left|\nabla v_{n}\right|^{2}+(V(\varepsilon x)+1)\left|v_{n}\right|^{2}\right)<\tau
$$

Proof. See [11, Lemma 3.4] or [56, Lemma 3.3] for a similar result.
Corollary 2.1 The functional $J_{\varepsilon}$ satisfies the $(P S)$ condition.
Proof. Let $\left(v_{n}\right)$ be a $(P S)_{c}$ sequence for $J_{\varepsilon}$. Without loss of generality we may assume that $v_{n} \rightharpoonup v$ in $X_{\varepsilon}$ for some $v \in X_{\varepsilon}$. Moreover, arguing as in [5, Section 2], we also have $J_{\varepsilon}^{\prime}(v)=0$, and so, $J_{\varepsilon}^{\prime}(v) v=0$, i.e.,

$$
\begin{equation*}
\|v\|_{H_{\varepsilon}}^{2}+\int_{\mathbb{R}^{N}} F_{1}^{\prime}(v) v=\int_{\mathbb{R}^{N}} G_{2}^{\prime}(\varepsilon x, v) v . \tag{2.16}
\end{equation*}
$$

As the embedding $X_{\varepsilon} \hookrightarrow L^{q}\left(B_{R}(0)\right)$ is compact for each $R>0$ and $p \in\left[2,2^{*}\right)$, the growth condition on $G_{2}^{\prime}$ (see $\left.\left(A_{1}\right)\right)$ together with the Lemma 2.3 yields

$$
\int_{\mathbb{R}^{N}} G_{2}^{\prime}\left(\varepsilon x, v_{n}\right) v_{n} \longrightarrow \int_{\mathbb{R}^{N}} G_{2}^{\prime}(\varepsilon x, v) v
$$

Taking into account this information and using the fact that $\left(v_{n}\right)$ is $(P S)$ sequence, we find

$$
\left\|v_{n}\right\|_{H_{\varepsilon}}^{2}+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(v_{n}\right) v_{n}=\int_{\mathbb{R}^{N}} G_{2}^{\prime}\left(\varepsilon x, v_{n}\right) v_{n}+o_{n}(1) .
$$

The last equality combined with (2.16) implies that

$$
\left\|v_{n}\right\|_{H_{\varepsilon}}^{2}+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(v_{n}\right) v_{n}=\|v\|_{H_{\varepsilon}}^{2}+\int_{\mathbb{R}^{N}} F_{1}^{\prime}(v) v+o_{n}(1)
$$

from where it follows that

$$
\begin{equation*}
\left\|v_{n}\right\|_{H_{\varepsilon}}^{2} \rightarrow\|v\|_{H_{\varepsilon}}^{2} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(v_{n}\right) v_{n} \longrightarrow \int_{\mathbb{R}^{N}} F_{1}^{\prime}(v) v \tag{2.18}
\end{equation*}
$$

and so, $v_{n} \rightarrow v$ in $H_{\varepsilon}$. It remains to show that $v_{n} \rightarrow v$ in $L^{F_{1}}\left(\mathbb{R}^{N}\right)$. Note that, since $F_{1}^{\prime}(t) t \geq 0$, the convergence in (2.18) means that

$$
F_{1}^{\prime}\left(v_{n}\right) v_{n} \rightarrow F_{1}^{\prime}(v) v \text { in } L^{1}\left(\mathbb{R}^{N}\right)
$$

This fact associated with (C.6) and Lebesgue's Dominated Convergence Theorem shows that, going to a subsequence if necessary,

$$
F_{1}\left(v_{n}\right) \rightarrow F_{1}(v) \text { in } L^{1}\left(\mathbb{R}^{N}\right)
$$

Finally, using that $F_{1} \in\left(\Delta_{2}\right)$, we deduce that

$$
\int_{\mathbb{R}^{N}} F_{1}\left(\left|v_{n}-v\right|\right) \longrightarrow 0
$$

showing that $v_{n} \rightarrow v$ in $L^{F_{1}}\left(\mathbb{R}^{N}\right)$, which finishes the proof.
The main result of this section reads as follows
Theorem 2.2 For each $\varepsilon>0$ the functional $J_{\varepsilon}$ has a nontrivial critical point $u_{\varepsilon}$. Consequently, $\left(\tilde{S}_{\varepsilon}\right)$ has a nontrivial solution.

Proof. By Lemma 2.1 and Corollary 2.1, we see that the functional $J_{\varepsilon}$ satisfies the assumptions of the Mountain Pass Theorem found in [19, Theorem 2.1], then the mountain pass level given by

$$
c_{\varepsilon}:=\inf _{\gamma \in \Gamma_{\varepsilon}} \max _{t \in[0,1]} J_{\varepsilon}(\gamma(t))
$$

with

$$
\Gamma_{\varepsilon}:=\left\{\gamma \in C\left([0,1], X_{\varepsilon}\right) ; \gamma(0)=0 \text { and } J_{\varepsilon}(\gamma(1))<0\right\}
$$

is a critical point of $J_{\varepsilon}$.
From now on, otherwise mentioned, the notation $u_{\varepsilon}$ designates the solution of $\left(\tilde{S}_{\varepsilon}\right)$ given in the preceding theorem.

### 2.3 The Nehari manifold and the existence of positive solution for $\left(P_{\varepsilon}\right)$

In this section we will prove that the Nehari set associated with $J_{\varepsilon}$, namely

$$
\mathcal{N}_{\varepsilon}:=\left\{u \in X_{\varepsilon}-\{0\} ; J_{\varepsilon}^{\prime}(u) u=0\right\}
$$

is a $C^{1}$-manifold and that critical points of $\left.J_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$ are critical points of $J_{\varepsilon}$ in the usual sense. Furthermore, by studying the behavior of levels $c_{\varepsilon}$ as $\varepsilon \rightarrow 0^{+}$, we will prove some properties related with $\mathcal{N}_{\varepsilon}$ that allows us to prove that the solutions $u_{\varepsilon}$ of $\left(\tilde{S}_{\varepsilon}\right)$ are solutions of $\left(S_{\varepsilon}\right)$ for $\varepsilon \approx 0^{+}$.

### 2.3.1 Main properties of $\mathcal{N}_{\varepsilon}$

First of all, set

$$
\Psi_{\varepsilon}(u):=J_{\varepsilon}(u)-\frac{1}{2} \int_{\mathbb{R}^{N}}|u|^{2}-\left[\int_{\mathbb{R}^{N}}\left[F_{2}(u)-\frac{1}{2} F_{2}^{\prime}(u) u+\frac{1}{2} G_{2}^{\prime}(\varepsilon x, u) u-G_{2}(\varepsilon x, u)\right]\right] .
$$

Accordingly to (2.8),

$$
\mathcal{N}_{\varepsilon}=\Psi_{\varepsilon}^{-1}(\{0\})
$$

We start our study with the following result
Proposition 2.2 There exists $\beta>0$, such that

$$
\|u\|_{\varepsilon} \geq\|u\|_{H_{\varepsilon}} \geq \beta, \quad \forall u \in \mathcal{N}_{\varepsilon},
$$

for all $\varepsilon>0$.
Proof. For each $u \in \mathcal{N}_{\varepsilon}$,

$$
\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+(V(\varepsilon x)+1)|u|^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}(u) u=\int_{\mathbb{R}^{N}} G_{2}^{\prime}(\varepsilon, u) u .
$$

Therefore, from $\left(A_{1}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\left(\alpha_{0}+1-b_{0}\right)|u|^{2}\right) \leq C \int_{\mathbb{R}^{N}}|u|^{p}, \tag{2.19}
\end{equation*}
$$

where $\alpha_{0}=\inf _{\mathbb{R}^{N}} V$. The number $b_{0}$ has been chosen so that $\alpha_{0}+1-b_{0}>0$, then the expression

$$
\|u\|_{0}^{2}:=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\left(\alpha_{0}+1-b_{0}\right)|u|^{2}\right)
$$

defines a norm on $H^{1}\left(\mathbb{R}^{N}\right)$. Setting $H=\left(H^{1}\left(\mathbb{R}^{N}\right),\|\cdot\|_{0}\right)$, one sees that the embedding $H \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$ is continuous. From (2.19),

$$
M \leq\|u\|_{0}^{p-2}
$$

for a convenient $M>0$ that is independent of $\varepsilon$. The last inequality yields

$$
0<\beta:=M^{\frac{1}{(p-2)}} \leq\|u\|_{0} \leq\|u\|_{H_{\varepsilon}} \leq\|u\|_{\varepsilon}
$$

For the sake of completeness, we would like to mention that repeating the ideas found in [11, Lemma 3.6 and Remark 3.1], it can be proved the following lemma

Lemma 2.4 For each $u \in O_{\varepsilon}=\left\{u \in X_{\varepsilon} ;\left|\operatorname{supp}(|u|) \cap \Lambda_{\varepsilon}\right|>0\right\}$, there is a unique $t_{u}>0$ such that $t_{u} u \in \mathcal{N}_{\varepsilon}$. Reciprocally, if $u \in \mathcal{N}_{\varepsilon}$, then $u \in O_{\varepsilon}$.

In the next proposition we prove that $\mathcal{N}_{\varepsilon}$ is a $C^{1}$-manifold for each $\varepsilon>0$.
Proposition $2.3 \mathcal{N}_{\varepsilon}$ is a $C^{1}$-manifold for each $\varepsilon>0$.

Proof. In the sequel we will prove that for all $u \in \mathcal{N}_{\varepsilon}$ we must have $\Psi_{\varepsilon}^{\prime}(u) u \neq 0$. Assume by contradiction that there is $u \in \mathcal{N}_{\varepsilon}$ with $\Psi_{\varepsilon}^{\prime}(u) u=0$, i.e.,

$$
0=-\int_{\mathbb{R}^{N}}|u|^{2}-\left[\int_{\mathbb{R}^{N}}\left(\frac{1}{2} F_{2}^{\prime}(u) u-\frac{1}{2} F_{2}^{\prime \prime}(u) u^{2}\right)+\int_{\mathbb{R}^{N}}\left(\frac{1}{2} G_{2}^{\prime \prime}(\varepsilon x, u) u^{2}-\frac{1}{2} G_{2}^{\prime}(\varepsilon x, u) u\right)\right] .
$$

Using that $G_{2}^{\prime} \equiv F_{2}^{\prime}$ in $\Lambda_{\varepsilon}$, we find
$0=-\int_{\Lambda_{\varepsilon}}|u|^{2}-\left[\int_{\Lambda_{\varepsilon}^{c}}\left(|u|^{2}+\frac{1}{2} F_{2}^{\prime}(u) u-\frac{1}{2} F_{2}^{\prime \prime}(u) u^{2}\right)+\int_{\Lambda_{\varepsilon}^{c}}\left(\frac{1}{2} G_{2}^{\prime \prime}(\varepsilon x, u) u^{2}-\frac{1}{2} G_{2}^{\prime}(\varepsilon x, u) u\right)\right]$.

By the definition of $F_{2}$,

$$
F_{2}^{\prime}(s):=\left\{\begin{array}{lr}
0, & s \in[0, \delta] \\
s \log \left(\frac{s^{2}}{\delta^{2}}\right)+2 \delta-2 s, & |s| \geq \delta,
\end{array}\right.
$$

and so,

$$
t^{2}+\frac{1}{2} F_{2}^{\prime}(t) t-\frac{1}{2} F_{2}^{\prime \prime}(t) t^{2}=\delta t>0, \quad t \geq \delta
$$

leading to

$$
|u|^{2}+\frac{1}{2} F_{2}^{\prime}(u) u-\frac{1}{2} F_{2}^{\prime \prime}(u) u^{2} \geq 0, \text { a.e } x \in \Lambda_{\varepsilon}^{c} .
$$

Using this information and the fact that $G_{2}^{\prime}(\varepsilon x, t) \equiv F_{2}^{\prime}(t)$, for $x \in \Lambda_{\varepsilon}^{c}$ and $t \leq t_{1}$ in (2.20), we arrive at
$\int_{\Lambda_{\varepsilon}}|u|^{2} \leq-\int_{\Lambda_{\varepsilon}^{c} \cap\left[t_{1}<|u|<t_{2}\right]}\left(\frac{1}{2} G_{2}^{\prime \prime}(\varepsilon x, u) u^{2}-\frac{1}{2} G_{2}^{\prime}(\varepsilon x, u) u\right)-\int_{\Lambda_{\varepsilon}^{c} \cap\left[|u| \geq t_{2}\right]}\left(\frac{1}{2} G_{2}^{\prime \prime}(\varepsilon x, u) u^{2}-\frac{1}{2} G_{2}^{\prime}(\varepsilon x, u) u\right)$.
As $G_{2}^{\prime}(\varepsilon x, u)=h(u)$ for $x \in \Lambda_{\varepsilon}^{c}$ and $u(x) \in\left(t_{1}, t_{2}\right),\left(h_{3}\right)$ gives

$$
G_{2}^{\prime \prime}(\varepsilon x, u) u^{2}-\frac{1}{2} G_{2}^{\prime}(\varepsilon x, u) u=\frac{1}{2}\left(h^{\prime}(u) u-h(u)\right) u \geq 0, \text { a.e } x \in \Lambda_{\varepsilon}^{c} \cap\left[t_{1}<|u|<t_{2}\right] .
$$

Note also that, by the definition of $\bar{F}_{2}^{\prime}$,

$$
G_{2}^{\prime \prime}(\varepsilon x, u) u^{2}-\frac{1}{2} G_{2}^{\prime}(\varepsilon x, u) u=0 \text {, a.e } x \in \Lambda_{\varepsilon}^{c} \cap\left[|u| \geq t_{2}\right] .
$$

Gathering the above information, we derive that $u=0$, a.e. $x \in \Lambda_{\varepsilon}$. Hence, inasmuch as $u \in \mathcal{N}_{\varepsilon}$, we get

$$
\|u\|_{H_{\varepsilon}}^{2}+\int_{\mathbb{R}^{N}} F_{1}^{\prime}(u) u=\int_{\Lambda_{\varepsilon}^{\varepsilon}} G_{2}^{\prime}(\varepsilon x, u) u \leq b_{0} \int_{\mathbb{R}^{N}}|u|^{2}
$$

that leads to $u \equiv 0$, which is absurd because $u \in \mathcal{N}_{\varepsilon}$, showing the desired result.
In view of the last proposition, we can establish the notion of critical point for $\left.J_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$. Recall that $u \in \mathcal{N}_{\varepsilon}$ is a critical point of $J_{\varepsilon}$ constrained to $\mathcal{N}_{\varepsilon}$ when

$$
\left\|J_{\varepsilon}^{\prime}(u)\right\|_{*}:=\min _{\lambda \in \mathbb{R}}\left\|J_{\varepsilon}^{\prime}(u)-\lambda \Psi_{\varepsilon}^{\prime}(u)\right\|=0 . \quad \text { (See [83, Proposition 5.2]) }
$$

By a $(P S)_{c}$ sequence associated with $\left.J_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$, we mean a sequence $\left(u_{n}\right)$ in $\mathcal{N}_{\varepsilon}$ such that

$$
J\left(u_{n}\right) \rightarrow c \text { and }\left\|J^{\prime}\left(u_{n}\right)\right\|_{*} \rightarrow 0
$$

From now on, we say that $\left.J_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$ satisfies the $(P S)$ condition when each $(P S)_{c}$ sequence for $\left.J_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$ has a convergent subsequence, for any $c \in \mathbb{R}$.

The next proposition relates critical points of $\left.J_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$ with critical points of $J_{\varepsilon}$ in $X_{\varepsilon}$.

Proposition 2.4 Let $u \in \mathcal{N}_{\varepsilon}$ be a critical point of $J_{\varepsilon}$ constrained to $\mathcal{N}_{\varepsilon}$. Then $u$ is a critical point of $J_{\varepsilon}$ on $X_{\varepsilon}$.

Proof. If $u \in \mathcal{N}_{\varepsilon}$ is a critical point of $\left.J_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$, then

$$
J_{\varepsilon}^{\prime}(u)=\lambda \Psi^{\prime} \varepsilon(u),
$$

for some $\lambda \in \mathbb{R}$. Consequently,

$$
0=J_{\varepsilon}^{\prime}(u) u=\lambda \Psi_{\varepsilon}^{\prime}(u) u
$$

Since $u \in \mathcal{N}_{\varepsilon}$, the arguments explored in the proof of Proposition 2.3 yields $\Psi_{\varepsilon}^{\prime}(u) u \neq 0$. Hence, the above equality guarantees that $\lambda=0$ and the proof is over.

We finish this subsection by proving that $\left.J_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$ satisfies the $(P S)$ condition.
Proposition $\left.2.5 J_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$ satisfies the $(P S)$ condition.
Proof. Let $\left(u_{n}\right)$ be an arbitrary $(P S)_{c}$ sequence for $\left.J_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$. Then,

$$
J_{\varepsilon}\left(u_{n}\right) \rightarrow c \quad \text { and } \quad J_{\varepsilon}^{\prime}\left(u_{n}\right)=\lambda_{n} \Psi_{\varepsilon}^{\prime}\left(u_{n}\right)+o_{n}(1)
$$

for some sequence of real numbers $\left(\lambda_{n}\right)$. Taking into account that $J_{\varepsilon}\left(u_{n}\right) \rightarrow c$ and $J_{\varepsilon}^{\prime}\left(u_{n}\right) u_{n}=0$, repeating the same reasoning of the proof of Lemma 2.2, one has that $\left(u_{n}\right)$ is a bounded sequence. By Corollary 2.1, it suffices to show that $\left(u_{n}\right)$ is a $(P S)_{c}$ sequence for $J_{\varepsilon}$. Aiming this fact, we will prove that

$$
\begin{equation*}
\lambda_{n} \rightarrow 0 \tag{2.21}
\end{equation*}
$$

Note that $\left(u_{n}\right)$ satisfies

$$
0=J_{\varepsilon}^{\prime}\left(u_{n}\right) u_{n}=\lambda_{n} \Psi_{\varepsilon}^{\prime}\left(u_{n}\right) u_{n}+o_{n}(1)
$$

Arguing as in the proof of Proposition 2.3, it is possible to show that if $\left|\Psi_{\varepsilon}^{\prime}\left(u_{n}\right) u_{n}\right|=$ $o_{n}(1)$, then

$$
\int_{\Lambda_{\varepsilon}}\left|u_{n}\right|^{2} \leq o_{n}(1) \Rightarrow \int_{\Lambda_{\varepsilon}}\left|u_{n}\right|^{2}=o_{n}(1)
$$

This combined with the boundedness of $\left(u_{n}\right)$ leads to

$$
\int_{\Lambda_{\varepsilon}}\left|u_{n}\right|^{p}=o_{n}(1) .
$$

Consequently,

$$
\left\|u_{n}\right\|_{H_{\varepsilon}}^{2}+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(u_{n}\right) u_{n}=\int_{\Lambda_{\varepsilon}} F_{2}^{\prime}\left(u_{n}\right) u_{n}+\int_{\Lambda_{\varepsilon}^{c}} G_{2}^{\prime}\left(\varepsilon x, u_{n}\right) \leq o_{n}(1)+b_{0} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2}
$$

which combines with (C.6) to give

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{2}+(V(\varepsilon x)+1)\left|u_{n}\right|^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}\left(u_{n}\right) \leq o_{n}(1) .
$$

The above inequality implies that $u_{n} \rightarrow 0$ in $X_{\varepsilon}$, which contradicts Proposition 2.3. Thereby, (2.21) is true and the proof is completed.

### 2.3.2 Existence of positive solution for $\left(P_{\varepsilon}\right)$

For the goals of this section, we will consider the following autonomous problem

$$
\left\{\begin{array}{c}
-\Delta u+V_{0} u=u \log u^{2}, \text { in } \mathbb{R}^{N},  \tag{0}\\
u \in H^{1}\left(\mathbb{R}^{N}\right) \cap L^{F_{1}}\left(\mathbb{R}^{N}\right) .
\end{array}\right.
$$

The energy functional related to the $\left(P_{0}\right)$ is given by

$$
J_{0}(u):=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\left(V_{0}+1\right)|u|^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}(u)-\int_{\mathbb{R}^{N}} F_{2}(u) .
$$

It is well known (see $[10,11,79])$ that $\left(P_{0}\right)$ has a positive ground state solution $u_{0}$, which satisfies

$$
c_{0}:=\inf _{u \in \mathcal{N}_{0}} J_{0}(u)=J_{0}\left(u_{0}\right),
$$

where $\mathcal{N}_{0}$ is the Nehari set associated with $J_{0}$, i.e.,

$$
\mathcal{N}_{0}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \cap L^{F_{1}}\left(\mathbb{R}^{N}\right) ; J_{0}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}|u|^{2}\right\}
$$

Hereafter, we fix

$$
\begin{equation*}
X=\left(H^{1}\left(\mathbb{R}^{N}\right) \cap L^{F_{1}}\left(\mathbb{R}^{N}\right),\left(\|\cdot\|_{H^{1}\left(\mathbb{R}^{N}\right)}+\|\cdot\|_{L^{F_{1}}\left(\mathbb{R}^{N}\right)}\right)\right) \tag{2.22}
\end{equation*}
$$

where $\|\cdot\|_{H^{1}\left(\mathbb{R}^{N}\right)}$ denotes the usual norm in $H^{1}\left(\mathbb{R}^{N}\right)$.
The level $c_{0}$ can be characterized by

$$
c_{0}=\inf _{u \in \mathcal{N}_{0}} J_{0}(u)=\inf _{u \in(X-\{0\})} \max _{t \geq 0} J_{0}(t u)
$$

In the next lemma we prove that the solution $u_{\varepsilon}$ obtained in Theorem 2.2 is a ground state solution of ( $\tilde{S}_{\varepsilon}$ ), and we study the behavior of levels $c_{\varepsilon}$, as $\varepsilon \rightarrow 0^{+}$. By a ground state solution we mean a solution of least energy of $\left(\tilde{S}_{\varepsilon}\right)$, that is, a solution verifying

$$
\inf _{u \in \mathcal{N}_{\varepsilon}} J_{\varepsilon}(u)=J_{\varepsilon}\left(u_{\varepsilon}\right) .
$$

Lemma 2.5 The following properties hold:
i) There is $\gamma_{0}>0$ such that $c_{\varepsilon} \geq \gamma_{0}$ for all $\varepsilon>0$.
ii) $c_{\varepsilon}=\inf _{u \in \mathcal{N}_{\varepsilon}} J_{\varepsilon}(u)$ for all $\varepsilon>0$.
iii) $\underset{\varepsilon \rightarrow 0}{\limsup } c_{\varepsilon} \leq c_{0}$.

Proof. i) Note that

$$
J_{\varepsilon}(u) \geq \frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\left(\alpha_{0}+1\right)|u|^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}(u)-\int_{\mathbb{R}^{N}} F_{2}(u),
$$

with $\alpha_{0}=\inf _{\mathbb{R}^{N}} V$. Arguing as Lemma 2.1-i), we find $r_{0} \approx 0^{+}$and $\gamma_{0}>0$ independent of $\varepsilon$ such that

$$
J_{\varepsilon}(u) \geq \rho_{0}, \quad \forall u \in X_{\varepsilon},\|u\|_{\varepsilon}=r_{0} .
$$

By the definition of $c_{\varepsilon}$, we derive $c_{\varepsilon} \geq \gamma_{0}$.
ii) By Lemma 2.4 we know that $u \in O_{\varepsilon}$ for each $u \in \mathcal{N}_{\varepsilon}$. In this way, using the same ideas of Theorem 2.1-ii), there is $t_{0}$ such that $J_{\varepsilon}\left(t_{0} u\right)<0$. Setting $\eta:[0,1] \longrightarrow X_{\varepsilon}$ given by $\eta(t):=t\left(t_{0} u\right)$, it follows that $\eta \in \Gamma_{\varepsilon}$, and so,

$$
c_{\varepsilon} \leq \max _{t \in[0,1]} J_{\varepsilon}(\eta(t)) \leq \max _{s \geq 0} J_{\varepsilon}(s u) \leq J_{\varepsilon}(u) .
$$

The above inequality shows that

$$
c_{\varepsilon} \leq \inf _{u \in \mathcal{N}_{\varepsilon}} J_{\varepsilon}(u) .
$$

The reverse inequality follows by observing that

$$
\inf _{u \in \mathcal{N}_{\varepsilon}} J_{\varepsilon}(u) \leq J_{\varepsilon}\left(u_{\varepsilon}\right)=c_{\varepsilon} .
$$

iii): Let $u_{0} \in \mathcal{N}_{0}$ be a positive ground state solution of $\left(P_{0}\right)$, i.e,

$$
J_{0}\left(u_{0}\right)=c_{0} \quad \text { and } \quad J_{0}^{\prime}\left(u_{0}\right)=0
$$

For each $R>0$, set $\phi_{R}(x):=\phi\left(\frac{1}{R} x\right)$, where $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is such that $\phi(x)=1$, for $x \in B_{1}(0)$, and $\phi(x)=0$, for $x \in B_{2}^{c}(0)$. Then, putting $u_{R}:=\phi_{R} u_{0}$, it is easy to check that

$$
u_{R} \rightarrow u_{0} \text { in } H^{1}\left(\mathbb{R}^{N}\right) \quad \text { as } \quad R \rightarrow \infty
$$

Since $0 \leq u_{R} \leq u_{0}$, the Lebesgue Dominated Convergence Theorem ensures that

$$
\int_{\mathbb{R}^{N}} F_{1}\left(u_{R}\right) \longrightarrow \int_{\mathbb{R}^{N}} F_{1}\left(u_{0}\right), \text { as } R \rightarrow \infty .
$$

By the last two limits we can infer that $u_{R} \rightarrow u_{0}$ in $X$.
Given $R>0$, from the definition of $u_{R}$, one can see that $u_{R} \in O_{\varepsilon}$ for each $\varepsilon>0$, since $u_{0}>0$ and $0 \in \Lambda_{\varepsilon}$. So, thanks to preceding item, we find $t_{\varepsilon}>0$ in such way that

$$
c_{\varepsilon} \leq \max _{t \geq 0} J_{\varepsilon}\left(t u_{R}\right)=J_{\varepsilon}\left(t_{\varepsilon} u_{R}\right)
$$

Our next step is to show that, for some $\varepsilon_{0}>0$, the family $\left(t_{\varepsilon}\right)_{0<\varepsilon<\varepsilon_{0}}$ is bounded. In fact, as $t_{\varepsilon} u_{R} \in \mathcal{N}_{\varepsilon}$,
$\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{R}\right|^{2}+(V(\varepsilon x)+1)\left|u_{R}\right|^{2}\right)=\frac{1}{t_{\varepsilon}} \int_{\Lambda_{\varepsilon}} F_{2}^{\prime}\left(t_{\varepsilon} u_{R}\right) u_{R}+\frac{1}{t_{\varepsilon}} \int_{\Lambda_{\varepsilon}^{c}} \tilde{F}_{2}^{\prime}\left(t_{\varepsilon} u_{R}\right) u_{R}-\frac{1}{t_{\varepsilon}} \int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(t_{\varepsilon} u_{R}\right) u_{R}$.
Considering that $u_{R} \equiv 0$ in $B_{2 R}^{c}(0)$ and $V(\varepsilon x) \rightarrow V(0)=V_{0}$, we have

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{R}\right|^{2}+(V(\varepsilon x)+1)\left|u_{R}\right|^{2}\right) \longrightarrow \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{R}\right|^{2}+\left(V_{0}+1\right)\left|u_{R}\right|^{2}\right),
$$

as $\varepsilon \rightarrow 0$, for each $R>0$. On the other hand, if $t_{\varepsilon} \rightarrow \infty$ as $\varepsilon \rightarrow 0$, the following claim holds:

## Claim 2.1

$$
\left(\frac{1}{t_{\varepsilon}} \int_{\Lambda_{\varepsilon}} F_{2}^{\prime}\left(t_{\varepsilon} u_{R}\right) u_{R}+\frac{1}{t_{\varepsilon}} \int_{\Lambda_{\varepsilon}} \tilde{F}_{2}^{\prime}\left(t_{\varepsilon} u_{R}\right) u_{R}-\frac{1}{t_{\varepsilon}} \int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(t_{\varepsilon} u_{R}\right) u_{R}\right) \longrightarrow \infty
$$

First of all, the limit $\chi_{\Lambda_{\varepsilon}}(x) \rightarrow 1$ as $\varepsilon \rightarrow 0^{+}$together with $\left(A_{1}\right)$ guarantees that

$$
\frac{1}{t_{\varepsilon}} \int_{\Lambda_{\varepsilon}^{c}} \tilde{F}_{2}^{\prime}\left(t_{\varepsilon} u_{R}\right) u_{R}=o_{\varepsilon}(1)
$$

Thereby, in order to get the Claim 2.1, it suffices to show that

$$
A_{\varepsilon}:=\left(\frac{1}{t_{\varepsilon}} \int_{\Lambda_{\varepsilon}} F_{2}^{\prime}\left(t_{\varepsilon} u_{R}\right) u_{R}-\frac{1}{t_{\varepsilon}} \int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(t_{\varepsilon} u_{R}\right) u_{R}\right) \longrightarrow \infty .
$$

Observe that, by (2.3),

$$
\begin{aligned}
A_{\varepsilon} & =\int_{\mathbb{R}^{N}}\left|u_{R}\right|^{2}+\int_{\mathbb{R}^{N}}\left|u_{R}\right|^{2} \log \left(t_{\varepsilon}\left|u_{R}\right|\right)^{2}-\frac{1}{t_{\varepsilon}} \int_{\Lambda_{\varepsilon}^{\varepsilon}} F_{2}^{\prime}\left(t_{\varepsilon} u_{R}\right) u_{R}= \\
& =\log \left(t_{\varepsilon}\right)^{2} \int_{\mathbb{R}^{N}}\left|u_{R}\right|^{2}-\frac{1}{t_{\varepsilon}} \int_{\Lambda_{\varepsilon}} F_{2}^{\prime}\left(t_{\varepsilon} u_{R}\right) u_{R}+C_{R},
\end{aligned}
$$

with $C_{R}=\int_{\mathbb{R}^{N}}\left(\left|u_{R}\right|^{2}+\left|u_{R}\right|^{2} \log \left|u_{R}\right|^{2}\right)$. From the definition of $F_{2}$,

$$
\frac{1}{t_{\varepsilon}} F_{2}^{\prime}\left(t_{\varepsilon} u_{R}\right) u_{R}=u_{R}^{2} \log \left(t_{\varepsilon}\left|u_{R}\right|\right)^{2}-\log \delta^{2} u_{R}^{2}+\frac{2 \delta}{t_{\varepsilon}} u_{R}-2 u_{R}^{2}
$$

and so,

$$
\frac{1}{t_{\varepsilon}} \int_{\Lambda_{\varepsilon}^{\varepsilon}} F_{2}^{\prime}\left(t_{\varepsilon} u_{R}\right) u_{R} \leq \int_{\Lambda_{\varepsilon}^{\varepsilon}} u_{R}^{2} \log \left(t_{\varepsilon}\left|u_{R}\right|\right)^{2}+\frac{2 \delta}{t_{\varepsilon}} \int_{\mathbb{R}^{N}} u_{R}+B_{R}
$$

with $B_{R}:=-\log \delta^{2} \int_{\mathbb{R}^{N}} u_{R}^{2}$. From this and using that $t_{\varepsilon} \rightarrow \infty$ as $\varepsilon \rightarrow 0$, one finds

$$
A_{\varepsilon} \geq \log \left(t_{\varepsilon}\right)^{2} \int_{\mathbb{R}^{N}}\left|u_{R}\right|^{2}-\int_{\Lambda_{\varepsilon}^{c}} u_{R}^{2} \log \left(t_{\varepsilon}\left|u_{R}\right|\right)^{2}+o_{\varepsilon}(1)+D_{R}
$$

where $D_{R}=C_{R}-B_{R}$. Therefore,

$$
A_{\varepsilon} \geq \log \left(t_{\varepsilon}\right)^{2} \int_{\Lambda_{\varepsilon}}\left|u_{R}\right|^{2}-\int_{\Lambda_{\varepsilon}^{c}} u_{R}^{2} \log \left|u_{R}\right|^{2}+o_{\varepsilon}(1)+D_{R}
$$

from where it follows that

$$
A_{\varepsilon} \rightarrow \infty \text { as } \varepsilon \rightarrow 0^{+}
$$

showing the Claim 2.1.
As a byproduct of the Claim 2.1, we get that $\left(t_{\varepsilon}\right)_{0<\varepsilon<\varepsilon_{0}}$ is bounded, for some $\varepsilon_{0}>0$. Now, take $t_{R}>0$ such that $J_{0}\left(t_{R} u_{R}\right)=\max _{t \geq 0} J_{0}\left(t u_{R}\right)$. Note that

$$
J_{\varepsilon}\left(t_{\varepsilon} u_{R}\right)-J_{0}\left(t_{\varepsilon} u_{R}\right)=\frac{t_{\varepsilon}^{2}}{2} \int_{\mathbb{R}^{N}}\left(V(\varepsilon x)-V_{0}\right)\left|u_{R}\right|^{2}+\int_{\Lambda_{\varepsilon}^{c}}\left(F_{2}\left(t_{\varepsilon} u_{R}\right)-\tilde{F}_{2}\left(t_{\varepsilon} u_{R}\right)\right)
$$

Using that $u_{R}$ has compact support, $u_{R} \rightarrow u_{0}$ in $X$ as $R \rightarrow \infty$ and the Lebesgue's Dominated Convergence Theorem, we arrive at

$$
\begin{gather*}
J_{\varepsilon}\left(t_{\varepsilon} u_{R}\right)-J_{0}\left(t_{\varepsilon} u_{R}\right)=o_{\varepsilon}(1) \\
\limsup _{\varepsilon \rightarrow 0} c_{\varepsilon} \leq \limsup _{\varepsilon \rightarrow 0} J_{\varepsilon}\left(t_{\varepsilon} u_{R}\right) \leq J_{0}\left(t_{R} u_{R}\right) \tag{2.23}
\end{gather*}
$$

The choose of $t_{R}$ gives $t_{R} \rightarrow 1$ (see [11, Lemma 3.7]), and then,

$$
J_{0}\left(t_{R} u_{R}\right) \rightarrow J_{0}\left(u_{0}\right)=c_{0}, \quad \text { as } R \rightarrow \infty
$$

The result is a direct consequence of the limit above and (2.23).
Now, we are ready to prove the existence of positive ground state solution for $\left(\tilde{S}_{\varepsilon}\right)$.

Proposition 2.6 Given $\varepsilon>0$ the problem $\left(\tilde{S}_{\varepsilon}\right)$ has a positive ground state solution.

Proof. Let $u_{\varepsilon}$ be the solution of $\left(\tilde{S}_{\varepsilon}\right)$ given in Theorem 2.2. For $v \in X_{\varepsilon}$, set $v^{+}:=\max \{v, 0\}$ and $v^{-}:=\max \{0,-v\}$. Therefore, either $u_{\varepsilon}^{+}=0$ or $u_{\varepsilon}^{-}=0$, otherwise we would have $u_{\varepsilon}^{+}, u_{\varepsilon}^{-} \in \mathcal{N}_{\varepsilon}$ and $J_{\varepsilon}\left(u_{\varepsilon}\right)=J_{\varepsilon}\left(u_{\varepsilon}^{+}\right)+J_{\varepsilon}\left(u_{\varepsilon}^{-}\right) \geq 2 c_{\varepsilon}$, which contradicts $J_{\varepsilon}\left(u_{\varepsilon}\right)=c_{\varepsilon}$. Thereby, since $g$ is odd, we may assume that $u_{\varepsilon}$ is a nonnegative solution of $\left(\tilde{S}_{\varepsilon}\right)$. By an analogous reasoning as used in the proof of [11, Theorem 3.1] and [44, Section 3.1], using a suitable version of maximum principle ( [82, Theorem 1]), we deduce that $u_{\varepsilon}$ is positive in whole $\mathbb{R}^{N}$.

Our next result improves [11, Lemma 3.9] and it is an essential step in order to get a solution for $\left(S_{\varepsilon}\right)$.

Lemma 2.6 Let $\left(u_{n}\right)$ be a nonnegative sequence with $u_{n} \in X_{\varepsilon_{n}}, J_{\varepsilon_{n}}\left(u_{n}\right)=c_{\varepsilon_{n}}$, $J_{\varepsilon_{n}}^{\prime}\left(u_{n}\right)=0$ and $\varepsilon_{n} \rightarrow 0$. Then, there exits a sequence $\left(y_{n}\right) \subset \mathbb{R}^{N}$ such that $w_{n}(x):=u_{n}\left(x+y_{n}\right)$ has a convergent subsequence, $\sup _{n \in \mathbb{N}}\left\|w_{n}\right\|_{\infty}<\infty$ and

$$
\begin{equation*}
w_{n}(x) \rightarrow 0 \quad \text { as }|x| \rightarrow \infty \quad \text { uniformly in } \quad n \in \mathbb{N} . \tag{2.24}
\end{equation*}
$$

Furthermore, for some $y_{0} \in \Lambda$, the following limit holds $\lim _{n \rightarrow+\infty}\left(\varepsilon_{n} y_{n}\right)=y_{0}$.
Proof. To begin with, note that $\left(u_{n}\right)$ is a bounded sequence in the space $X$ given in (2.22). Indeed, by the assumptions and employing Lemma 2.5-iii), ( $u_{n}$ ) must satisfy

$$
J_{\varepsilon_{n}}\left(u_{n}\right) \leq M_{1} \quad \text { and } \quad J_{\varepsilon_{n}}^{\prime}\left(u_{n}\right) u_{n}=0, \quad \forall n \in \mathbb{N},
$$

for some positive $M_{1}$. By following closely the arguments of Lemma 2.2, we find, instead of (2.9),

$$
M_{1} \geq \frac{1}{2} \int_{\Lambda_{\varepsilon_{n}}}\left|u_{n}\right|^{2} .
$$

Hence, by the same ideas explored in the proof of Lemma 2.2, there are a $M_{1}, M_{2}>0$ such that

$$
\int_{\Lambda_{\varepsilon_{n}}}\left|u_{n}\right|^{2} \log \left|u_{n}\right|^{2} \leq M_{2}\left(1+\left|\left|v_{n}\right|_{H_{\varepsilon_{n}}}^{1+r}\right)\right.
$$

and,

$$
M_{1}+M_{2}\left(1+\left\|v_{n}\right\|_{H_{\varepsilon_{n}}}^{1+r}\right) \geq C\left\|u_{n}\right\|_{H_{\varepsilon_{n}}}^{2}+\int_{\Lambda_{\varepsilon}^{\varepsilon}} F_{1}\left(u_{n}\right) \geq C\left\|u_{n}\right\|_{H_{\varepsilon_{n}}}^{2}, \quad \forall n \in \mathbb{N}
$$

for some $C>0$ and $0<r<1$, which shows the boundedness of $\left(\left\|u_{n}\right\|_{H_{\varepsilon_{n}}}\right)$ in $\mathbb{R}$. Now, the conditions on $V$ ensure that $\left(u_{n}\right)$ is bounded in $H^{1}\left(\mathbb{R}^{N}\right)$. Since

$$
\int_{\mathbb{R}^{N}} F_{1}\left(u_{n}\right)=J_{\varepsilon_{n}}\left(u_{n}\right)-\frac{1}{2}\left\|u_{n}\right\|_{H_{\varepsilon_{n}}}^{2}+\int_{\mathbb{R}^{N}} G_{2}\left(\varepsilon_{n} x, u_{n}\right),
$$

we infer that

$$
\sup _{n \in \mathbb{N}} \int_{\mathbb{R}^{N}} F_{1}\left(u_{n}\right)<\infty
$$

proving the boundedness of $\left(u_{n}\right)$ in $X$. For some $r, \lambda>0$ and a sequence $\left(y_{n}\right)$ it holds

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \int_{B_{r}\left(y_{n}\right)}\left|u_{n}\right|^{2} \geq \lambda>0 \tag{2.25}
\end{equation*}
$$

Otherwise, using a concentration-compactness principle due to Lions ( [83, Lemma 1.21]), we would have

$$
u_{n} \rightarrow 0 \text { in } L^{p}\left(\mathbb{R}^{N}\right) \quad \forall p \in\left(2,2^{*}\right),
$$

then

$$
\int_{\mathbb{R}^{N}} G_{2}^{\prime}\left(\varepsilon_{n} x, u_{n}\right) u_{n}=o_{n}(1) \text { and } \int_{\mathbb{R}^{N}} G_{2}\left(\varepsilon_{n} x, u_{n}\right)=o_{n}(1)
$$

From the assumptions in the statement we get $J_{\varepsilon_{n}}^{\prime}\left(u_{n}\right) u_{n}=0$. This associated with the last equality give

$$
o_{n}(1)=\left\|u_{n}\right\|_{H_{\varepsilon_{n}}}^{2}+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(u_{n}\right) u_{n}
$$

The above limit together with (C.6) ensures that

$$
\left\|u_{n}\right\|_{H_{\varepsilon_{n}}}^{2}+\int_{\mathbb{R}^{N}} F_{1}\left(u_{n}\right) \rightarrow 0
$$

which permits to conclude that $J_{\varepsilon_{n}}\left(u_{n}\right)=c_{\varepsilon_{n}} \rightarrow 0$, contradicting Lemma 2.5-i).
From now on, set $w_{n}:=u_{n}\left(\cdot+y_{n}\right)$. The boundedness of $\left(u_{n}\right)$ and (2.25) yield that $\left(w_{n}\right)$ is a bounded sequence in $X$, and so, we may assume that there is $w \in X-\{0\}$ such that

$$
w_{n} \rightharpoonup w \text { in } X
$$

Our next step is proving that $\left(\varepsilon_{n} y_{n}\right)$ is a bounded sequence in $\mathbb{R}^{N}$. This fact is a direct consequence of the claim below.

Claim 2.2 It holds $\lim _{n \rightarrow+\infty} d\left(\varepsilon_{n} y_{n}, \bar{\Lambda}\right)=0$, with $d$ being the usual distance between $\varepsilon_{n} y_{n}$ and $\bar{\Lambda}$ in $\mathbb{R}^{N}$.

The proof of the claim follows the same ideas of [11, Claim 3.1], however for the reader's convenience we will write its proof. Arguing by contradiction, if the claim is not true, there exist some subsequence of $\left(\varepsilon_{n} y_{n}\right)$, still denoted by itself, and $\gamma>0$ satisfying

$$
d\left(\varepsilon_{n} y_{n}, \bar{\Lambda}\right) \geq \gamma, \quad \forall n \in \mathbb{N}
$$

Then, for some $r>0$,

$$
B_{r}\left(\varepsilon_{n} y_{n}\right) \subset \Lambda^{c}, \quad \forall n \in \mathbb{N}
$$

Now, for each $j \in \mathbb{N}$, we fix $v_{j}=\phi_{j} w$, with $\phi_{j}$ defined as in Lemma 2.5-iii). So, we know that $v_{j} \rightarrow w$ in $X$. For each $j$ fixed, a simple change of variable leads to

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\nabla w_{n} \nabla v_{j}+\left(V\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right)\right) w_{n} v_{j}\right)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(w_{n}\right) v_{j}=\int_{\mathbb{R}^{N}} G_{2}^{\prime}\left(\varepsilon_{n} x, w_{n}\right) v_{j} . \tag{2.26}
\end{equation*}
$$

Writing

$$
\int_{\mathbb{R}^{N}} G_{2}^{\prime}\left(\varepsilon_{n} x, w_{n}\right) v_{j}=\int_{B_{\frac{r}{\varepsilon_{n}}}(0)} G_{2}^{\prime}\left(\varepsilon_{n} x, w_{n}\right) v_{j}+\int_{B_{\frac{r}{r}}^{\varepsilon_{n}}}(0)<G_{2}^{\prime}\left(\varepsilon_{n} x, w_{n}\right) v_{j}
$$

and using $\left(A_{1}\right)$, we find

$$
\int_{\mathbb{R}^{N}} G_{2}^{\prime}\left(\varepsilon_{n} x, w_{n}\right) v_{j} \leq b_{0} \int_{B_{\frac{r}{\varepsilon_{n}}}(0)} w_{n} v_{j}+\int_{B_{\frac{\varepsilon_{n}}{\varepsilon_{n}}}(0)} F_{2}^{\prime}\left(w_{n}\right) v_{j}
$$

and so

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\nabla w_{n} \nabla v_{j}+C w_{n} v_{j}\right)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(w_{n}\right) v_{j} \leq \int_{B_{\frac{r}{\varepsilon}}^{\varepsilon_{n}}(0)} F_{2}^{\prime}\left(w_{n}\right) v_{j}, \tag{2.27}
\end{equation*}
$$

for a convenient $C>0$. Since $v_{j}$ has compact support, one can sees that

$$
\int_{B_{\frac{r}{\varepsilon_{n}}}^{\varepsilon_{n}}} F_{2}^{\prime}\left(w_{n}\right) v_{j} \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

By using that $w_{n} \rightharpoonup w$ in $X$, we firstly take the limit of $n \rightarrow \infty$ and after the limit of $j \rightarrow \infty$ in the inequality (2.27) to get

$$
\int_{\mathbb{R}^{N}}\left(|\nabla w|^{2}+C|w|^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}(w) w \leq 0
$$

which yields $w=0$. This contradiction proves the claim.
The preceding claim ensures that, going to a subsequence if necessary, $\varepsilon_{n} y_{n} \rightarrow y_{0} \in \bar{\Lambda}$ for some $y_{0}$. Actually, we will prove that $y_{0} \in \Lambda$. To this aim, note that for each $R>0$ the sequence $\chi_{n}(x):=\chi_{\Lambda}\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right)$ is a bounded sequence in $L^{q}\left(B_{R}(0)\right)$, for any $q \in[2, \infty)$. Since $L^{q}\left(B_{R}(0)\right)$ is a reflexive space for all $q \in[2, \infty)$, then there exists a function $\chi_{R} \in L^{q}\left(B_{R}(0)\right)$ such that

$$
\chi_{n} \rightharpoonup \chi_{R} \text { in } L^{q}\left(B_{R}(0)\right)
$$

The reader is invited to note that, given positive numbers $0<R_{1}<R_{2}$, the functions $\chi_{R_{1}}$ and $\chi_{R_{2}}$ obtained in the same way of $\chi_{R}$ satisfy

$$
\left.\chi_{R_{1}} \equiv \chi_{R_{2}}\right|_{B_{R_{1}}(0)} .
$$

Therefore, there is a measurable function $\chi \in L_{l o c}^{q}\left(\mathbb{R}^{N}\right)$ satisfying

$$
\begin{equation*}
\chi_{n} \rightharpoonup \chi \text { in } L^{q}\left(B_{R}(0)\right), \tag{2.28}
\end{equation*}
$$

for each $R>0$. Note also that $0 \leq \chi \leq 1$.
In the same way of (2.26), for each $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ we have

$$
\int_{\mathbb{R}^{N}}\left(\nabla w_{n} \nabla \phi+\left(V\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right)+1\right) w_{n} \phi\right)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(w_{n}\right) \phi=\int_{\mathbb{R}^{N}} G_{2}^{\prime}\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}, w_{n}\right) \phi
$$

By Claim 2.2 and (2.28),

$$
\int_{\mathbb{R}^{N}}\left(\nabla w \nabla \phi+\left(V\left(y_{0}\right)+1\right) w \phi\right)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}(w) \phi=\int_{\mathbb{R}^{N}} \tilde{G}_{2}^{\prime}(x, w) \phi
$$

where

$$
\tilde{G}_{2}^{\prime}(z, t):=\chi(z) F_{2}^{\prime}(t)+(1-\chi(z)) \tilde{F}_{2}^{\prime}(t)
$$

It is easy to check that $\tilde{G}_{2}^{\prime}$ satisfies

$$
\tilde{G}_{2}^{\prime}(z, t) \leq C\left(|t|+|t|^{p-1}\right)
$$

where $p \in\left(2,2^{*}\right)$. Moreover, the map $t \longmapsto \frac{\tilde{G}_{2}^{\prime}(z, t)}{t}$, for $t>0$, is an nondecreasing function.

The above arguments guarantee that $\tilde{J}^{\prime}(w)=0$, where $\tilde{J}: X \longrightarrow \mathbb{R}$ is the functional given by

$$
\tilde{J}(u):=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\left(V\left(y_{0}\right)+1\right)|u|^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}(u)-\int_{\mathbb{R}^{N}} \tilde{G}_{2}(x, u),
$$

and $\tilde{G}_{2}(x, u):=\int_{0}^{t} \tilde{G}_{2}^{\prime}(x, s) d s$. Next, we set

$$
\begin{gathered}
J_{V\left(y_{0}\right)}:=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\left(V\left(y_{0}\right)+1\right)|u|^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}(u)-\int_{\mathbb{R}^{N}} F_{2}(u) \quad \forall u \in X, \\
\mathcal{M}_{0}:=\left\{u \in X-\{0\} ; J_{V\left(y_{0}\right)}^{\prime}(u) u=0\right\}
\end{gathered}
$$

and

$$
c_{V\left(y_{0}\right)}=\inf _{u \in \mathcal{M}_{0}} J_{V\left(y_{0}\right)}(u)=\inf _{u \in X-\{0\}}\left\{\max _{t \geq 0} J(t w)\right\}
$$

Define also $\Sigma_{0}:=\operatorname{supp} \chi$ and $\mathcal{O}_{0}:=\left\{u \in X_{\varepsilon} ;\left|\operatorname{supp}(|u|) \cap \Sigma_{0}\right|>0\right\}$. Using the same ideas explored in the proof of Lemma 2.1, the conditions on $\tilde{G}_{2}$ allows us to conclude that

$$
\tilde{J}(t v) \rightarrow-\infty, \text { as } t \rightarrow \infty
$$

for each $v \in \mathcal{O}_{0}$. Since $w \neq 0$ and $\tilde{J}^{\prime}(w)=0$, we get $w \in \mathcal{O}_{0}$. Therefore, by standard arguments,

$$
\tilde{J}(w)=\max _{t \geq 0} \tilde{J}(t w) \geq \max _{t \geq 0} J(t w) \geq c_{V\left(y_{0}\right)} .
$$

In the same way of (2.8), we find by a change of variable,

$$
\begin{aligned}
c_{\varepsilon_{n}} & =J_{\varepsilon_{n}}\left(u_{n}\right)-\frac{1}{2} J_{\varepsilon_{n}}^{\prime}\left(u_{n}\right) u_{n}= \\
& =\frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|w_{n}\right|^{2}+\left[F_{2}\left(w_{n}\right)-\frac{1}{2} F_{2}^{\prime}\left(w_{n}\right) w_{n}+\frac{1}{2} G_{2}^{\prime}\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}, w_{n}\right) w_{n}-G_{2}\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}, w_{n}\right)\right]\right) .
\end{aligned}
$$

From $\left.\left(A_{1}\right)-i v\right)$,
$c_{\varepsilon_{n}} \geq \frac{1}{2} \int_{B_{R}(0)}\left(\left|w_{n}\right|^{2}+\left[F_{2}\left(w_{n}\right)-\frac{1}{2} F_{2}^{\prime}\left(w_{n}\right) w_{n}+\frac{1}{2} G_{2}^{\prime}\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}, w_{n}\right) w_{n}-G_{2}\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}, w_{n}\right)\right]\right)$
for each $R>0$. Now, fix $p \in\left(2,2^{*}\right)$. Since $w_{n} \rightarrow w$ in $L^{p}\left(B_{R}(0)\right)$, the growth conditions on $F_{2}^{\prime}$ and $\tilde{F}_{2}^{\prime}$ assures that, for some $q \in\left(p, 2^{*}\right)$, it holds

$$
\left\{\begin{array}{l}
F_{2}^{\prime}\left(w_{n}\right) w_{n} \rightarrow F_{2}^{\prime}(w) w, \text { in } L^{\frac{q}{p}}\left(B_{R}(0)\right) ; \\
\tilde{F}_{2}^{\prime}\left(w_{n}\right) w_{n} \rightarrow \tilde{F}_{2}^{\prime}(w) w, \text { in } L^{\frac{q}{p}}\left(B_{R}(0)\right) .
\end{array}\right.
$$

The convergence in (2.28) implies that $\chi_{n} \rightharpoonup \chi$ in $L^{r}\left(B_{R}(0)\right)$, where $r$ is the conjugate exponent of $q / p$. Gathering these information,

$$
\chi_{n} F_{2}^{\prime}\left(w_{n}\right)+\left(1-\chi_{n}\right) \tilde{F}_{2}^{\prime}\left(w_{n}\right) \longrightarrow \chi F_{2}^{\prime}(w)+(1-\chi) \tilde{F}_{2}^{\prime}(w) \text { in } L^{1}\left(B_{R}(0)\right) .
$$

Now, employing the fact that

$$
G_{2}^{\prime}\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}, w_{n}\right)=\chi_{n}(x) F_{2}^{\prime}\left(w_{n}\right)+\left(1-\chi_{n}(x)\right) \tilde{F}_{2}^{\prime}\left(w_{n}\right),
$$

we conclude that

$$
G_{2}^{\prime}\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}, w_{n}\right) \rightarrow \tilde{G}_{2}^{\prime}(x, w) \text { in } L^{1}\left(B_{R}(0)\right) .
$$

Using an analogous reasoning we also derive

$$
G_{2}\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}, w_{n}\right) \rightarrow \tilde{G}_{2}(x, w) \text { in } L^{1}\left(B_{R}(0)\right) .
$$

Consequently, by Fatou's Lemma (recall the inequality in $\left.\left(A_{1}\right)-i v\right)$ ) and Lemma 2.5,

$$
c_{0} \geq \int_{B_{R}(0)}\left(\frac{1}{2}|w|^{2}+\left[F_{2}(w)-\frac{1}{2} F_{2}^{\prime}(w) w+\frac{1}{2} \tilde{G}_{2}^{\prime}(x, w) w-\tilde{G}_{2}(x, w)\right]\right), \quad \forall R>0 .
$$

Letting $R \rightarrow \infty$, one gets

$$
\begin{aligned}
c_{0} & \geq \int_{\mathbb{R}^{N}}\left(\frac{1}{2}|w|^{2}+\left[F_{2}(w)-\frac{1}{2} F_{2}^{\prime}(w) w+\frac{1}{2} \tilde{G}_{2}^{\prime}(x, w) w-\tilde{G}_{2}(x, w)\right]\right)= \\
& =\tilde{J}(w)-\frac{1}{2} \tilde{J}^{\prime}(w) w=\tilde{J}(w) \geq c_{V\left(y_{0}\right)} .
\end{aligned}
$$

By the definitions of levels $c_{0}$ and $c_{V\left(y_{0}\right)}$, the above inequality ensures that $V\left(y_{0}\right) \leq V(0)=\inf _{x \in \Lambda} V(x)$. Indeed, note that, if $\lambda_{1}<\lambda_{2}$, then

$$
\max _{t \geq 0} J_{\lambda_{1}}(t u)<\max _{t \geq 0} J_{\lambda_{2}}(t u)
$$

so that $c_{\lambda_{1}}<c_{\lambda_{2}}$, where $J_{\lambda}$ is the energy functional associated with the problem
$\left(P_{\lambda}\right)$

$$
\left\{\begin{array}{c}
-\Delta u+\lambda u=u \log u^{2}, \text { in } \mathbb{R}^{N}, \\
u \in H^{1}\left(\mathbb{R}^{N}\right) \cap L^{F_{1}}\left(\mathbb{R}^{N}\right) .
\end{array}\right.
$$

and

$$
c_{\lambda}:=\inf _{u \in X \backslash\{0\}} \max _{t \geq 0} J_{\lambda}(t u)
$$

Thus, by $\left(V_{2}\right)$, we must have $V\left(y_{0}\right)=V(0)=V_{0}$ and $y_{0} \in \Lambda$.
In order to finish the proof, it remains to prove that

$$
w_{n} \longrightarrow w \text { in } X \quad \text { as } \quad n \rightarrow+\infty
$$

Aiming this goal, we will prove the following result
Claim $2.3 \lim _{n \rightarrow+\infty} \int_{\left(\Lambda_{\varepsilon_{n}}-y_{n}\right)}\left|w_{n}\right|^{2}=\int_{\mathbb{R}^{N}}|w|^{2}$.
Note first that, since $\varepsilon_{n} y_{n} \rightarrow y_{0} \in \Lambda$, there exists a number $r>0$ such that $B_{r}\left(\varepsilon_{n} y_{n}\right) \subset \Lambda$, for all $n$ large enough. Thereby,

$$
B_{\frac{r}{\varepsilon_{n}}}(0) \subset \Lambda_{\varepsilon_{n}}-y_{n}
$$

for all $n$ large enough, and so,

$$
\begin{equation*}
\chi_{\left(\Lambda_{\varepsilon_{n}}-y_{n}\right)}(x) \longrightarrow 1, \text { a.e. } x \in \mathbb{R}^{N} \tag{2.29}
\end{equation*}
$$

Now, note that, by using $\tilde{G}_{2}^{\prime} \leq F_{2}^{\prime}$ and that $\tilde{J}^{\prime}(w) w=0$ we get $J_{V\left(y_{0}\right)}^{\prime}(w) w \leq 0$, so that $J_{0}^{\prime}(w) w \leq 0$, because $V\left(y_{0}\right)=V_{0}$. Therefore, for some $t_{0} \in(0,1]$ it holds $t_{0} w \in \mathcal{N}_{0}$. Then, from (2.29) and Lemma 2.5-iii),

$$
\begin{align*}
c_{0} \leq J_{0}\left(t_{0} w\right)=\frac{t_{0}^{2}}{2} \int_{\mathbb{R}^{N}}|w|^{2} \leq \frac{t_{0}^{2}}{2} \liminf _{n \rightarrow+\infty} \int_{\left(\Lambda_{\varepsilon_{n}}-y_{n}\right)}\left|w_{n}\right|^{2} & \leq \frac{t_{0}^{2}}{2} \limsup _{n \rightarrow+\infty} \int_{\left(\Lambda_{\varepsilon_{n}}-y_{n}\right)}\left|w_{n}\right|^{2} \leq \\
& \leq \frac{t_{0}^{2}}{2} \limsup _{n \rightarrow+\infty} c_{\varepsilon_{n}} \leq c_{0}, \tag{2.30}
\end{align*}
$$

where we have used that

$$
\frac{1}{2} \int_{\left(\Lambda_{\varepsilon_{n}}-y_{n}\right)}\left|w_{n}\right|^{2}=\frac{1}{2} \int_{\Lambda_{\varepsilon_{n}}}\left|u_{n}\right|^{2} \leq J_{\varepsilon_{n}}\left(u_{n}\right)-\frac{1}{2} J_{\varepsilon_{n}}^{\prime}\left(u_{n}\right) u_{n}=c_{\varepsilon_{n}} .
$$

The above computations prove the claim.
Observe that the sentence in (2.30) also ensures that $t_{0}=1$, and so, $w \in \mathcal{N}_{0}$. Using that $J_{\varepsilon_{n}}^{\prime}\left(u_{n}\right) u_{n}=0$, by a change of variable, we find

$$
\begin{gather*}
\int_{\mathbb{R}^{N}}\left(\left|\nabla w_{n}\right|^{2}+\left(V\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right)+1\right)\left|w_{n}\right|^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(w_{n}\right) w_{n}= \\
\int_{\left(\Lambda_{\varepsilon_{n}}-y_{n}\right)} F_{2}^{\prime}\left(w_{n}\right) w_{n}+\int_{\left(\Lambda_{\varepsilon_{n}}-y_{n}\right)^{c}} \tilde{F}_{2}^{\prime}\left(w_{n}\right) w_{n} \tag{2.31}
\end{gather*}
$$

By applying Claim 2.3 and interpolation,

$$
\chi_{\left(\Lambda_{\varepsilon_{n}}-y_{n}\right)} w_{n} \longrightarrow w \text { in } L^{p}\left(\mathbb{R}^{N}\right)
$$

and

$$
\int_{\left(\Lambda_{\varepsilon_{n}}-y_{n}\right)} F_{2}^{\prime}\left(w_{n}\right) w_{n}=\int_{\mathbb{R}^{N}} F_{2}^{\prime}(w) w+o_{n}(1) .
$$

As $w \in \mathcal{N}_{0}$ and

$$
\left.\left.\left(V\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right)+1\right]\right)\left|w_{n}\right|^{2}-\tilde{F}_{2}^{\prime}\left(w_{n}\right) w_{n}\right) \geq 0 \quad \text { in } \quad\left(\Lambda_{\varepsilon_{n}}-y_{n}\right)^{c}
$$

the equality (2.31) yields that

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left(|\nabla w|^{2}+\left(V\left(y_{0}\right)+1\right)|w|^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}(w) w \leq \\
& \left.\leq \liminf \int_{\mathbb{R}^{N}}\left(\left|\nabla w_{n}\right|^{2}+\int_{\left(\Lambda_{\varepsilon_{n}}-y_{n}\right)}\left(V\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right)+1\right)\left|w_{n}\right|^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(w_{n}\right) w_{n}\right) \leq \\
& \leq \int_{\mathbb{R}^{N}}\left(|\nabla w|^{2}+\left(V_{0}+1\right)\left|w_{n}\right|^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}^{\prime}(w) w .
\end{aligned}
$$

Taking into account $V\left(y_{0}\right)=V_{0}$, we derive that

$$
\left\|w_{n}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2} \rightarrow\|w\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2} \text { and } \int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(w_{n}\right) w_{n} \rightarrow \int_{\mathbb{R}^{N}} F_{1}^{\prime}(w) w
$$

The above limit together with (C.6) ensure that $w_{n} \rightarrow w$ in $X$. Finally the boundedness of $\left(w_{n}\right)$ in $L^{\infty}(\Omega)$ and the limit (2.24) follow as in [11, Lemma 3.10]

As a direct consequence of the computations made above, see the sentence (2.30), we have the following result

Corollary 2.2 The levels $c_{\varepsilon}$ satisfies $\lim _{\varepsilon \rightarrow 0} c_{\varepsilon}=c_{0}$.

Finally, we are ready to prove that $\left(P_{\varepsilon}\right)$ has a positive solution for all $\varepsilon$ small enough.

Theorem 2.3 There exists $\varepsilon_{0}>0$ such that $\left(S_{\varepsilon}\right)$ (and so $\left(P_{\varepsilon}\right)$ ) has a positive solution $u_{\varepsilon} \in X_{\varepsilon}$ for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$.

Proof. In what follows, we will prove that

$$
\begin{equation*}
u_{\varepsilon}(x)<t_{1}, \quad \forall x \in \mathbb{R}^{N}-\Lambda_{\varepsilon}, \tag{2.32}
\end{equation*}
$$

for $\varepsilon \in\left(0, \varepsilon_{0}\right)$. Indeed, consider a sequence $\varepsilon_{n} \rightarrow 0$ and $\left(u_{\varepsilon_{n}}\right)$ such that $J_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}\right)=c_{\varepsilon_{n}}$ and $J_{\varepsilon_{n}}^{\prime}\left(u_{\varepsilon_{n}}\right)=0$. By Lemma 2.6, going to a subsequence if necessary, there exists a sequence $\left(y_{n}\right)$ in $\mathbb{R}^{N}$ satisfying $\varepsilon_{n} y_{n} \rightarrow y_{0}$, with $V\left(y_{0}\right)=V_{0}$. Thus, for some $r>0$ it holds $B_{r}\left(\varepsilon_{n} y_{n}\right) \subset \Lambda$, and so, $B_{\frac{r}{\varepsilon_{n}}}\left(y_{n}\right) \subset \Lambda_{\varepsilon_{n}}$. The last inclusion is equivalent to

$$
\mathbb{R}^{N}-\Lambda_{\varepsilon_{n}} \subset \mathbb{R}^{N}-B_{\frac{r}{\varepsilon_{n}}}\left(y_{n}\right)
$$

On the other hand, the sequence $\left(y_{n}\right)$ can be chosen such that $w_{n}(x)=u_{\varepsilon_{n}}\left(x+y_{n}\right)$ satisfies (2.24). Therefore, for $R>0$ large enough,

$$
w_{n}(x)<t_{1}, \quad \forall x \in \mathbb{R}^{N}-B_{R}(0)
$$

which implies

$$
u_{\varepsilon_{n}}(x)<t_{1}, \quad \forall x \in \mathbb{R}^{N}-B_{R}\left(y_{n}\right) .
$$

Since for $n \in \mathbb{N}$ large enough $r / \varepsilon_{n} \geq R$, we have

$$
\mathbb{R}^{N}-\Lambda_{\varepsilon_{n}} \subset \mathbb{R}^{N}-B_{\frac{r}{\varepsilon_{n}}}\left(y_{n}\right) \subset \mathbb{R}^{N}-B_{R}\left(y_{n}\right),
$$

for all $n$ large enough, showing that

$$
u_{\varepsilon_{n}}(x)<t_{1}, \quad \forall x \in \mathbb{R}^{N}-\Lambda_{\varepsilon_{n}} .
$$

Since $\varepsilon_{n} \rightarrow 0$ is arbitrary, the proof is over.
Remark 2.2 A natural question related with the problem $\left(P_{\varepsilon}\right)$ it is about the concentration of positive solutions. Using (2.24), the same arguments employed in [11, Section 4] guarantee that the below result holds.

Corollary 2.3 (Concentration phenomena) Let $v_{\varepsilon}(x)=u_{\varepsilon}(x / \varepsilon)$. Then, $v_{\varepsilon}$ is a solution of $\left(P_{\varepsilon}\right)$ for $\varepsilon \in\left(0, \varepsilon_{0}\right)$. Moreover, if $z_{\varepsilon} \in \mathbb{R}^{N}$ is a global maximum point of $v_{\varepsilon}$, we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} V\left(z_{\varepsilon}\right)=V_{0} .
$$

### 2.4 Multiplicity of solution for $\left(P_{\varepsilon}\right)$

In this section we will show the existence of multiple solution for $\left(P_{\varepsilon}\right)$ by using the Lusternik-Schnirelmann category theory. More precisely, setting

$$
\begin{equation*}
M:=\left\{x \in \Lambda ; V(x)=V_{0}\right\} \text { and } M_{\delta}:=\left\{x \in \mathbb{R}^{N} ; d(x, M) \leq \delta\right\}, \tag{2.33}
\end{equation*}
$$

where $\delta>0$ is small enough of such way that $M_{\delta} \subset \Lambda$, our arguments will prove that $\left(S_{\varepsilon}\right)$ has at least $\operatorname{cat}_{M_{\delta}}(M)$ solutions. To begin with, we start by recalling some notions related with the Lusternik-Schnirelmann category theory, for further details see [83, Chapter 5, and references therein].

Definition 2.2 Let $Y$ be a closed subset of a topological space $Z$. We say that the (Lusternik-Schnirelmann) category of $Y$ in $Z$ is $n, \operatorname{cat}_{Z}(Y)=n$ for short, if $n$ is the least number of closed and contractible sets in $Z$ which cover $Y$.

Suppose that $W$ is a Banach space and $V$ is a $C^{1}$ - manifold of the form $V=\Psi^{-1}(\{0\})$, where $\Psi \in C^{1}(W, \mathbb{R})$ and 0 is a regular value of $\Psi$. For a functional $I: W \longrightarrow \mathbb{R}$ denote

$$
I^{d}:=\{u \in V ; I(u) \leq d\} .
$$

The following result can be found in [83, Chapter 5] and it is our main abstract tool to get the existence of multiple solution for $\left(P_{\varepsilon}\right)$.

Theorem 2.4 Let $I \in C^{1}(W, \mathbb{R})$ be such that $\left.I\right|_{V}$ is bounded from below. Suppose that I satisfies the $(P S)_{c}$ condition for $c \in\left[\left.\inf I\right|_{V}, d\right]$, then $\left.I\right|_{V}$ has at least cat $I_{I^{d}}\left(I^{d}\right)$ critical points in $I^{d}$.

In the sequel, let us introduce some notations that will be used later on. Hereafter, we denote by $u_{0}$ a positive ground state solution of $\left(P_{0}\right)$. Furthermore, for each $\delta>0$, we fix $\phi \in C^{\infty}([0, \infty)$ such that $0 \leq \phi \leq 1$ and

$$
\phi(t)=\left\{\begin{array}{lr}
1, & 0 \leq t \leq \frac{\delta}{2} \\
0, & t \geq \delta
\end{array}\right.
$$

Using the above notation, for each $y \in M$ we also set

$$
w_{\varepsilon, y}(x):=\phi(|\varepsilon x-y|) u_{0}\left(\frac{\varepsilon x-y}{\varepsilon}\right)
$$

and let $t_{\varepsilon, y}>0$ be such that $t_{\varepsilon, y} w_{\varepsilon, y} \in \mathcal{N}_{\varepsilon}$. Note that $\left|\operatorname{supp}\left(w_{\varepsilon, y}\right) \cap \Lambda_{\varepsilon}\right|>0$, then we know that $t_{\varepsilon, y}$ verifies $J_{\varepsilon}\left(t_{\varepsilon, y} w_{\varepsilon, y}\right)=\max _{t \geq 0} J_{\varepsilon}\left(t w_{\varepsilon, y}\right)$.

For each $\varepsilon>0$, we define the map

$$
\begin{aligned}
\Phi_{\varepsilon}: M & \longrightarrow \mathcal{N}_{\varepsilon} \\
y & \longmapsto \Phi_{\varepsilon, y} \equiv t_{\varepsilon, y} w_{\varepsilon, y} .
\end{aligned}
$$

Now, fix $\rho>0$ such that $M_{\delta} \subset B_{\rho}(0)$ and $\zeta: \mathbb{R}^{N} \longrightarrow \mathbb{R}^{N}$ given by

$$
\zeta(x)= \begin{cases}x, & |x| \leq \rho \\ \rho \frac{x}{|x|}, & |x| \geq \rho\end{cases}
$$

Finally, we set $\beta: \mathcal{N}_{\varepsilon} \longrightarrow \mathbb{R}^{N}$ given by

$$
\beta(u):=\frac{\int_{\mathbb{R}^{N}} \zeta(\varepsilon x)|u(x)|^{p}}{\|u\|_{p}^{p}} .
$$

Lemma 2.7 The following limit holds

$$
\lim _{\varepsilon \rightarrow 0} J_{\varepsilon}\left(\Phi_{\varepsilon, y}\right)=c_{0}, \quad \text { uniformly in } \quad y \in M
$$

Proof. Arguing by contradiction, we get sequences $\left(\varepsilon_{n}\right)$ and $\left(y_{n}\right)$, with $\varepsilon_{n} \rightarrow 0$ and $\left(y_{n}\right) \subset M$, such that

$$
\begin{equation*}
\left|J_{\varepsilon_{n}}\left(\Phi_{\varepsilon_{n}, y_{n}}\right)-c_{0}\right| \geq \delta_{0} \tag{2.34}
\end{equation*}
$$

for some $\delta_{0}>0$. Setting $t_{n}=t_{\varepsilon_{n}, y_{n}}$ and using that $\Phi_{\varepsilon_{n}, y_{n}} \in \mathcal{N}_{\varepsilon_{n}}$, we find

$$
\begin{align*}
J_{\varepsilon_{n}}\left(\Phi_{\varepsilon_{n}, y_{n}}\right)=\frac{t_{n}^{2}}{2} & \int_{\mathbb{R}^{N}}\left(\left|\nabla \phi\left(\varepsilon_{n} z\right) u_{0}(z)\right|^{2}+\left(V\left(\varepsilon_{n} z+y_{n}\right)+1\right)\left|\phi\left(\varepsilon_{n} z\right) u_{0}(z)\right|^{2}\right)+  \tag{2.35}\\
& +\int_{\mathbb{R}^{N}} F_{1}\left(t_{n} \phi\left(\varepsilon_{n} z\right) u_{0}(z)\right)-\int_{\mathbb{R}^{N}} G_{2}\left(\varepsilon_{n} z+y_{n}, t_{n} \phi\left(\varepsilon_{n} z\right) u_{0}(z)\right)
\end{align*}
$$

and

$$
\begin{gather*}
t_{n}^{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla \phi\left(\varepsilon_{n} z\right) u_{0}(z)\right|^{2}+\left(V\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right)+1\right)\left|\phi\left(\varepsilon_{n} z\right) u_{0}(z)\right|^{2}\right)= \\
=\int_{\mathbb{R}^{N}} G_{2}^{\prime}\left(\varepsilon_{n} z+y_{n}, t_{n} \phi\left(\varepsilon_{n} z\right) u_{0}(z)\right) t_{n} \phi\left(\varepsilon_{n} z\right) u_{0}(z)-\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(t_{n} \phi\left(\varepsilon_{n} z\right) u_{0}(z)\right) t_{n} \phi\left(\varepsilon_{n} z\right) u_{0}(z) . \tag{2.36}
\end{gather*}
$$

Note that, if $z \in B_{\frac{\delta}{\varepsilon_{n}}}(0)$, then $\varepsilon_{n} z+y_{n} \in B_{\delta}\left(y_{n}\right) \subset M_{\delta}$. By (2.33), we derive that $\varepsilon_{n} z+y_{n} \in \Lambda$. Hence, for $z \in B_{\frac{\delta}{\varepsilon_{n}}}(0)$ one has $G_{2}^{\prime} \equiv F_{2}^{\prime}$. This information together with
(2.36) yields

$$
\begin{gathered}
\int_{\mathbb{R}^{N}}\left(\left|\nabla \phi\left(\varepsilon_{n} z\right) u_{0}(z)\right|^{2}+\left(V\left(\varepsilon_{n} x+y_{n}\right)+1\right)\left|\phi\left(\varepsilon_{n} z\right) u_{0}(z)\right|^{2}\right)= \\
=\int_{\mathbb{R}^{N}}\left|\phi\left(\varepsilon_{n} z\right) u_{0}(z)\right|^{2} \log \left(\left|t_{n} \phi\left(\varepsilon_{n} z\right) u_{0}(z)\right|^{2}\right)= \\
=\int_{\mathbb{R}^{N}}\left|\phi\left(\varepsilon_{n} z\right) u_{0}(z)\right|^{2} \log \left(\left|\phi\left(\varepsilon_{n} z\right) u_{0}(z)\right|^{2}\right)+\log \left(\left|t_{n}\right|^{2}\right) \int_{\mathbb{R}^{N}}\left|\phi\left(\varepsilon_{n} z\right) u_{0}(z)\right|^{2} .
\end{gathered}
$$

Our next step is proving that, going to a subsequence, $t_{n} \rightarrow 1$. Since $y_{n} \in M$, we can assume $y_{n} \rightarrow y_{0} \in M$. In this way, the above equality ensures that $\left(t_{n}\right)$ is a bounded sequence. Otherwise, going to a subsequence if necessary, we would have $t_{n} \rightarrow \infty$ and thus $\log \left(\left|t_{n}\right|^{2}\right) \rightarrow \infty$. Gathering this information with the Lebesgue Dominated Convergence Theorem in the above equality we arrive at a contradiction.

We may assume that $t_{n} \rightarrow t_{0} \geq 0$. Using the same ideas of preceding paragraph, one can see that $t_{0}>0$. Finally, by combining the Lebesgue's Theorem with the last equality we find

$$
t_{0}^{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{0}\right|^{2}+V_{0}\left|u_{0}\right|^{2}\right)=\int_{\mathbb{R}^{N}}\left|t_{0} u_{0}\right|^{2} \log \left(t_{0}\left|u_{0}\right|^{2}\right),
$$

which shows that $t_{0}=1$, because $u_{0}$ is a ground state solution of $\left(P_{0}\right)$. As $t_{n} \rightarrow 1$, the sentence in (2.35) implies that $J_{\varepsilon_{n}}\left(\Phi_{\varepsilon_{n}, y_{n}}\right) \rightarrow J_{0}\left(u_{0}\right)=c_{0}$, contradicting (2.34). The proof is now complete.

Let us introduce the following set

$$
\tilde{\mathcal{N}}_{\varepsilon}:\left\{u \in \mathcal{N}_{\varepsilon} ; J_{\varepsilon}(u) \leq c_{0}+o_{1}(\varepsilon)\right\} .
$$

Note that the last lemma assures that $\Phi_{\varepsilon, y} \in \tilde{\mathcal{N}}_{\varepsilon}$.
Lemma 2.8 The map $\beta$ satisfies

$$
\lim _{\varepsilon \rightarrow 0} \beta\left(\Phi_{\varepsilon, y}\right)=y, \quad \text { uniformly in } \quad y \in M .
$$

Proof. The idea is the same found in [14, Lemma 4.2]. If the result is false, there are sequences $\varepsilon_{n} \rightarrow 0$ and $\left(y_{n}\right) \subset M$ such that

$$
\left|\beta\left(\Phi_{\varepsilon_{n}, y_{n}}\right)-y_{n}\right| \geq \delta_{1},
$$

for some $\delta_{1}>0$. By using the definition of $\beta$ and setting $z=\frac{\varepsilon_{n} x-y}{\varepsilon_{n}}$, we find

$$
\beta\left(\Phi_{\varepsilon_{n}, y_{n}}\right)=y_{n}+\frac{\int_{\mathbb{R}^{N}}\left(\zeta\left(\varepsilon z+y_{n}\right)-y_{n}\right)\left|\phi\left(\left|\varepsilon_{n} z\right|\right) u_{0}(z)\right|^{p}}{\int_{\mathbb{R}^{N}}\left|\phi\left(\left|\varepsilon_{n} z\right|\right) u_{0}(z)\right|^{p}}
$$

Without loss of generality, we may assume that $y_{n} \rightarrow y_{0} \in M \subset B_{\rho}(0)$. Thus, the definition of $\zeta$ together with the Lebesgue Dominated Convergence Theorem implies that

$$
\left|\beta\left(\Phi_{\varepsilon_{n}, y_{n}}\right)-y_{n}\right|=o_{n}(1),
$$

which is absurd.
In the next lemma we prove a version of result of Cingolani-Lazzo in [43, Claim 4.2]. In that paper the authors have considered a homogenous type nonlinearity while in our case we are working with a logarithmic nonlinearity.

Lemma 2.9 Let $u_{n} \in \mathcal{N}_{\varepsilon_{n}}$. Suppose that $J_{\varepsilon_{n}}\left(u_{n}\right) \rightarrow c_{0}$, where $\varepsilon_{n} \rightarrow 0$. Then, there exists a sequence $\left(y_{n}\right)$ in $\mathbb{R}^{N}$ such that $w_{n}(x):=u_{n}\left(x+y_{n}\right)$ has a convergent subsequence in $X$. Furthermore,

$$
\lim _{n \rightarrow+\infty}\left(\varepsilon_{n} y_{n}\right)=y_{0},
$$

for some $y_{0} \in M$.
Proof. As made in the proof of Lemma 2.6, we have that $\sup _{n \in \mathbb{N}}\left\|u_{n}\right\|_{\varepsilon_{n}}<\infty$, and so, $\left(u_{n}\right)$ is a bounded sequence in $X$. By Lemmas $\left.2.5-i i\right)$ and 2.34 , we know that $c_{\varepsilon_{n}}=\inf _{u \in \mathcal{N}_{\varepsilon_{n}}} J_{\varepsilon_{n}}(u)$ and $J_{\varepsilon_{n}}\left(u_{n}\right)=c_{\varepsilon_{n}}+o_{n}(1)$. Therefore, by a slight variant of Ekeland's Variational Principle, there is $v_{n} \in \mathcal{N}_{\varepsilon_{n}}$ such that
i) $J_{\varepsilon_{n}}\left(v_{n}\right)=c_{\varepsilon_{n}}+o_{n}(1)$;
ii) $\left\|v_{n}-u_{n}\right\|_{\varepsilon_{n}} \leq o_{n}(1)$;
iii) $\left\|J_{\varepsilon_{n}}^{\prime}\left(v_{n}\right)\right\|_{*}=o_{n}(1)$.

The reasoning employed in the proof of the Proposition 2.5 shows that $\left\|J_{\varepsilon_{n}}^{\prime}\left(v_{n}\right)\right\|_{X_{\varepsilon_{n}}^{\prime}} \rightarrow 0$, where $X_{\varepsilon_{n}}^{\prime}$ designates the topological dual space of $X_{\varepsilon_{n}}$. From the condition $i$ ) above,

$$
J_{\varepsilon_{n}}^{\prime}\left(v_{n}\right) v_{n}=o_{n}(1) .
$$

Now, by following the steps in the proof of Lemma 2.6, we get a sequence $\left(y_{n}\right) \subset \mathbb{R}^{N}$ such that

$$
\lim _{n \rightarrow+\infty}\left(\varepsilon_{n} y_{n}\right)=y_{0}
$$

for some $y_{0} \in M$. Moreover, the sequence $\tilde{w}_{n}=v_{n}\left(\cdot+y_{n}\right)$ has a convergent subsequence in $X$ and thus, using $i i)$ above, $w_{n}:=u_{n}\left(\cdot+y_{n}\right)$ has a convergent subsequence in $X$. This finishes the proof.

The below result relates the number of solutions of $\left(\tilde{S}_{\varepsilon}\right)$ with $\operatorname{cat}_{M_{\delta}}(M)$.
Proposition 2.7 Assume that $\left(V_{1}\right)-\left(V_{2}\right)$ hold and that $\delta$ is small enough. Then, $\operatorname{problem}\left(\tilde{S}_{\varepsilon}\right)$ has at least cat $M_{M_{\delta}}(M)$ solutions, with $\varepsilon \in\left(0, \varepsilon_{1}\right)$, for some $\varepsilon_{1}>0$.

Proof. In this proof we will employ the Theorem 2.4 with $I=J_{\varepsilon}, V=\mathcal{N}_{\varepsilon}$ and $d=c_{o}+o_{1}(\varepsilon)$. In this case, we have $J_{\varepsilon}^{d}=\tilde{\mathcal{N}}_{\varepsilon}$. On account of Proposition 2.5, the functional $\left.J_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$ verifies the $(P S)$ condition, and so, the Theorem 2.4 guarantees that $\left.J_{\varepsilon}\right|_{\mathcal{N}_{\varepsilon}}$ has at least $\operatorname{cat}_{\tilde{\mathcal{N}}_{\varepsilon}}\left(\tilde{\mathcal{N}}_{\varepsilon}\right)$ critical points in $\tilde{\mathcal{N}}_{\varepsilon}=J_{\varepsilon}^{d}$. Thereby, by Proposition 2.4, $J_{\varepsilon}$ has cat $\tilde{\mathcal{N}}_{\varepsilon}\left(\tilde{\mathcal{N}}_{\varepsilon}\right)$ critical points, from where it follows that $\left(\tilde{P}_{\varepsilon}\right)$ has at least cat $\tilde{\mathcal{N}}_{\varepsilon}\left(\tilde{\mathcal{N}}_{\varepsilon}\right)$ solutions.

In order to finish the proof, we will prove

$$
\operatorname{cat}_{\tilde{\mathcal{N}}_{\varepsilon}}\left(\tilde{\mathcal{N}}_{\varepsilon}\right) \geq \operatorname{cat}_{M_{\delta}}(M) .
$$

Our argument follows the ideas of [43, Section 6]. It suffices to consider the case $\operatorname{cat}_{\tilde{\mathcal{N}}_{\varepsilon}}\left(\tilde{\mathcal{N}}_{\varepsilon}\right)<\infty$. Let $n=\operatorname{cat}_{\tilde{\mathcal{N}}_{\varepsilon}}\left(\tilde{\mathcal{N}}_{\varepsilon}\right)$ and take $A_{1}, \ldots A_{n}$ closed and contractible sets in $\tilde{\mathcal{N}}_{\varepsilon}$ satisfying $\tilde{\mathcal{N}}_{\varepsilon}=\bigcup_{i=1}^{n} A_{i}$. In this way, it is possible to find $h_{i} \in C\left([0,1] \times A_{i}, \tilde{\mathcal{N}}_{\varepsilon}\right)$, with $h_{i}(0, u)=u$ and $h_{i}(1, u)=h_{i}\left(1, v_{0}^{i}\right)$, for some fixed $v_{0}^{i} \in A_{i}, i \in\{1, \ldots, n\}$. Note that, by Lemma 2.7, we have $\Phi_{\varepsilon}(M) \subset \tilde{\mathcal{N}}_{\varepsilon}$ for $\varepsilon \approx 0^{+}$. Also, the map

$$
\beta \circ \Phi_{\varepsilon}: M \longrightarrow M_{\delta}
$$

is well defined for $\varepsilon \approx 0^{+}$. Set

$$
\begin{aligned}
\eta:[0,1] \times M & \longrightarrow M_{\delta} \\
(t, y) & \longmapsto \eta(t, y)=t \beta\left(\Phi_{\varepsilon, y}\right)+(1-t) y .
\end{aligned}
$$

By using the properties related with $\beta$, one can see that $\eta$ is well defined and $\beta \circ \Phi_{\varepsilon}$ is homotopic to inclusion map $i: M \longrightarrow M_{\delta}$. Since $\Phi_{\varepsilon}$ is a continuous map, the sets $B_{i}:=\Phi_{\varepsilon}^{-1}\left(A_{i}\right)$ are closed subsets of $M$. In addition,

$$
\begin{equation*}
M=\bigcup_{i=1}^{n} B_{i} . \tag{2.37}
\end{equation*}
$$

Now we are able to show that $n \geq \operatorname{cat}_{M_{\delta}}(M)$. Indeed, it remains to prove that, for each $i \in\{1, \ldots, n\}$, the set $B_{i}$ is contractible in $M_{\delta}$. To this aim, let

$$
H_{i}:[0,1] \times B_{i} \longrightarrow M_{\delta}
$$

be given by

$$
H_{i}(t, u)=\left\{\begin{array}{l}
\eta(2 t, u), \quad 0 \leq t \leq \frac{1}{2} \\
g_{i}(2 t-1), \quad \frac{1}{2} \leq t \leq 1
\end{array}\right.
$$

with $g_{i}(t, u):=\beta\left(h_{i}\left(t, \Phi_{\varepsilon, y}\right)\right)$. The above conditions on $\eta$ and $h_{i}$ ensure that $H_{i}$ is well defined. Furthermore,

$$
H_{i}(0, y)=\eta(0, y)=y \quad \text { and } \quad H_{i}(1, y)=\beta\left(h_{i}\left(1, v_{0}^{i}\right)\right), \forall y \in B_{i}
$$

which shows that $B_{i}$ is contractible in $M_{\delta}$. From (2.37) we get the desired inequality.

The result below points out an important property of the solutions of $\left(\tilde{S}_{\varepsilon}\right)$ obtained in the last theorem.

Proposition 2.8 (Positive solutions counting) There exists $\varepsilon_{2}>0$ such that, for $\varepsilon \in\left(0, \varepsilon_{2}\right)$, it holds
i) $\left(\tilde{S}_{\varepsilon}\right)$ has at least $\frac{\operatorname{cat}_{M_{\delta}}(M)}{2}$ positive solutions, if cat $_{M_{\delta}}(M)$ is an even number;
ii) $\left(\tilde{S}_{\varepsilon}\right)$ has at least $\frac{\operatorname{cat}_{M_{\delta}}(M)+1}{2}$ positive solutions, if cat $_{M_{\delta}}(M)$ is an odd number.

Proof. Take $\varepsilon_{2} \approx 0^{+}$and fix $\varepsilon \in\left(0, \varepsilon_{2}\right)$. If $v_{\varepsilon}$ is a critical point of $J_{\varepsilon}\left(v_{\varepsilon}\right) \leq c_{0}+o_{\varepsilon}(1)$, we must have $v_{\varepsilon}^{+}=0$ or $v_{\varepsilon}^{-}=0$. Otherwise, we would have $v_{\varepsilon}^{+}, v_{\varepsilon}^{-} \in \mathcal{N}_{\varepsilon}$, and so,

$$
2 c_{\varepsilon} \leq J_{\varepsilon}\left(v_{\varepsilon}^{+}\right)+J_{\varepsilon}\left(v_{\varepsilon}^{-}\right)=J_{\varepsilon}\left(v_{\varepsilon}\right) \leq c_{0}+o_{\varepsilon}(1)
$$

which is a contradiction for $\varepsilon_{2} \approx 0^{+}$. Therefore, using the same arguments of Lemma 2.6, we deduce that either $v_{\varepsilon}>0$ or $v_{\varepsilon}<0$.

Now, suppose that $k:=\operatorname{cat}_{M_{\delta}}(M)$ is an even number and let $v_{1}, \ldots, v_{k}$ be the solutions of $\left(\tilde{P}_{\varepsilon}\right)$ given in the preceding proposition. If at least $\frac{k}{2}$ of the solutions $v_{1}, \ldots, v_{k}$ are positive solutions, the item $i$ ) is proved. Otherwise, we know that at least $\frac{k}{2}$ of the solutions $v_{1}, \ldots, v_{k}$ are negative. Denote by $w_{1}, \ldots, w_{\frac{k}{2}}$ such negative solutions. Since $g_{2}(x, \cdot)-F_{1}^{\prime}$ is an odd function, the functions $-w_{1}, \ldots,-w_{\frac{k}{2}}$ are positive solutions of the problem

$$
\left\{\begin{array}{l}
-\Delta u+(V(\varepsilon x)+1) u=g_{2}(\varepsilon x, u)-F_{1}^{\prime}(u), \text { in } \mathbb{R}^{N}  \tag{S}\\
\quad u \in H^{1}\left(\mathbb{R}^{N}\right) \cap L^{F_{1}}\left(\mathbb{R}^{N}\right) .
\end{array}\right.
$$

and thus $i$ ) is proved. The proof of $i i$ ) follows by a similar reasoning.

### 2.4.1 Proof of Theorem 2.1

The proof is as follows.
Proof of Theorem 2.1. Let $v_{\varepsilon}$ be a critical point of $J_{\varepsilon}\left(v_{\varepsilon}\right) \leq c_{0}+o_{\varepsilon}(1)$. It suffices to show that there exists $\varepsilon_{3} \approx 0^{+}$such that, for $\varepsilon \in\left(0, \varepsilon_{3}\right)$,

$$
\begin{equation*}
0<v_{\varepsilon}(x)<t_{1}, \quad \forall x \in \mathbb{R}^{N}-\Lambda_{\varepsilon} \tag{2.38}
\end{equation*}
$$

for each solution $v_{\varepsilon}$ of $\left(\tilde{S}_{\varepsilon}\right)$ given in the items $\left.\left.i\right)-i i\right)$ of the last proposition. Arguing by contradiction, we get a sequence $\left(v_{\varepsilon_{n}}\right)$ of solutions of $\left(\tilde{S}_{\varepsilon_{n}}\right)$ where $\varepsilon_{n} \rightarrow 0$ and $v_{n}:=v_{\varepsilon_{n}}$ does not satisfy (2.38). Note that the obtained sequence $\left(v_{n}\right)$ satisfies the hypothesis of Lemma 2.9 and that the sequence $\left(w_{n}\right)$ given in the lemma must satisfy (2.24). Thus, a contradiction is obtained by following closely the same ideas used in the proof of Theorem 2.3. This argument ensures that $\left(S_{\varepsilon}\right)$ verifies $\left.\left.i\right)-i i\right)$ in the statement of the Theorem 2.1. Now, the result follows by a change of variable.

We finish this chapter by pointing out an important question related with the number of positive solutions obtained in our previous results.

Remark 2.3 In $[14,43]$ the result of multiplicity of solution involving the LusternikSchnirelmann category assures the existence of at least $\operatorname{cat}_{M_{\delta}}(M)$ positive solutions. In [14], for example, the key point is the fact that the nonlinearity $f$ was assumed such that $f(t)=0, t \leq 0$. In our case, this framework lead us to consider $f(t)=\left|t^{+}\right|^{2} \log \left|t^{+}\right|^{2}$, as well as,

$$
J_{\varepsilon}(u):=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+(V(\varepsilon x)+1)|u|^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}\left(u^{+}\right)-\int_{\mathbb{R}^{N}} G_{2}\left(\varepsilon x, u^{+}\right), \quad \forall u \in X_{\varepsilon} .
$$

However, we were not able to reproduce some estimates made throughout this work by considering $J_{\varepsilon}$ given as above. For example, in the Lemma 2.2, we were not able to show the boundedness of the $(P S)$ sequences when $J_{\varepsilon}$ is chosen in this way. In fact, since the norm on $X_{\varepsilon}$ involves the norm $\|\cdot\|_{F_{1}}$ of Orlicz space $L^{F_{1}}\left(\mathbb{R}^{N}\right)$, we need of the information of term $\int_{\mathbb{R}^{N}} F_{1}(u)$ in our computations. This justifies because our number of positive solutions by using the Lusternik-Schnirelmann category is a little bit different from that given in $[14,43]$.

## CHAPTER 3

## Existence of positive solution for a class of Schrödinger logarithmic equations on exterior domains

In the study developed in Chapter 2, the new function space introduced in the Section 2.1 allowed us to apply $C^{1}$-variational methods to find solutions for a class of elliptical problems with logarithmic nonlinearity. Inspired in such ideas, in the present chapter we intent to treat on the existence of positive solution for the following class of logarithmic equations.

$$
\left\{\begin{array}{c}
-\Delta u+u=Q(x) u \log u^{2}, \text { in } \Omega, \\
\mathcal{B} u=0 \text { on } \partial \Omega,
\end{array}\right.
$$

with $\Omega \subset \mathbb{R}^{N}, N \geq 3$, an exterior domain (i.e., $\Omega^{c}=\mathbb{R}^{N} \backslash \Omega$ is a bounded smooth domain) and $\mathcal{B} u=u$ or $\mathcal{B} u=\frac{\partial u}{\partial \nu}$.

As in the problem $\left(P_{\varepsilon}\right)$ in Chapter 2, if one tries to apply variational methods to the above problem, it is required to deal with the lack of smoothness of the natural candidate to energy functional associated to the problem.

In order to overcome such difficulty, we borrow the ideas of the preceding chapter and we consider a decomposition of the nonlinearity $f(t)=t \log t^{2}$, as well as a function space on which we will can to use the classical variational methods.

Our study is divided into two cases.

Case 1. Dirichlet case: In this case we will assume $Q \equiv 1$ and $\mathcal{B} u=u$. These conditions lead us to consider the problem:

$$
\left\{\begin{array}{c}
-\Delta u+u=u \log u^{2}, \quad \text { in } \Omega,  \tag{0}\\
u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

The main result associated with $\left(P_{0}\right)$ to be proved in this chapter is the following:
Theorem 3.1 There exists $\rho_{0} \approx 0^{+}$such that, if $\Omega^{c} \subset B_{\rho}(0)$, then the problem $\left(P_{0}\right)$ has a positive solution for each $\rho \in\left(0, \rho_{0}\right)$.

Case 2. Neumann case: this case corresponds to the choosing $\mathcal{B} u:=\frac{\partial u}{\partial \eta}$. On the function $Q$, we will assume in this case that
$\left(Q_{1}\right) \lim _{|x| \rightarrow \infty} Q(x)=Q_{0}$ and $q_{0}:=\inf _{x \in \mathbb{R}^{N}} Q(x)>0$ for all $x \in \mathbb{R}^{N} ;$
$\left(Q_{2}\right) \quad Q_{0} \geq Q(x) \geq Q_{0}-C e^{-M_{0}|x|^{2}}$, for $x \geq R_{0}$,
with $Q_{0}, C, M_{0}, R_{0}>0$.
In Case 2 our problem takes the following form:

$$
\left\{\begin{array}{l}
-\Delta u+u=Q(x) u \log u^{2}, \text { in } \Omega  \tag{0}\\
\frac{\partial u}{\partial \eta}=0, \text { on } \partial \Omega,
\end{array}\right.
$$

The main result on the problem $\left(S_{0}\right)$ is the following.
Theorem 3.2 If the conditions $\left(Q_{1}\right)-\left(Q_{2}\right)$ hold, then for some $M_{0}$ large enough, the problem $\left(S_{0}\right)$ has a positive ground state solution.

It is important to mention that the conditions $\left(Q_{1}\right)-\left(Q_{2}\right)$ are inspired in the works $[4,33]$.

The new approach introduced in Chapter 2 and used in this chapter plays a crucial role in order to study the problems $\left(P_{0}\right)$ and $\left(S_{0}\right)$, because it permits to adapt several arguments explored in the literature about problems in exterior domains related with $C^{1}$-functionals to the problems $\left(P_{0}\right)$ and $\left(S_{0}\right)$; here, we have adapted and modified a lot of arguments present in the papers [3,4,9, 18, 27, 33, 54].

We would like to emphasize the results in the sequel can be found in the work due to Alves and da Silva in [6].

### 3.1 The variational framework

This section is devoted to show some technical results that will be used later on. We start by recalling an important result involving the uniqueness of positive solution for the logarithmic equation on the whole $\mathbb{R}^{N}$. After that, we recall some notions studied in Chapter 2 and we introduce the convenient function space that allows us to apply the $C^{1}$-variational methods in order to get solutions for our problem. Next, a result of nonexistence of ground state solution for $\left(P_{0}\right)$ is also established. Finally, we prove a compactness lemma analogous to the result of Benci and Cerami in [27, Lemma 3.1] that plays a crucial role in our study.

Our first result in this section can be found in [44, Section 1] (see also [30]) and it concerns with the uniqueness of solution for the following class of problems

$$
\left\{\begin{array}{c}
-\Delta u+\kappa u=u \log u^{2}, \text { in } \mathbb{R}^{N},  \tag{3.1}\\
u \in H^{1}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

where $\kappa>0$.
Theorem 3.3 The problem (3.1) has a unique positive solution $u \in C^{2}\left(\mathbb{R}^{N}, \mathbb{R}\right)$, up to translations, such that $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$. More precisely, the solution $u$ is given by

$$
u(x)=C_{\kappa, N} e^{\frac{-|x|^{2}}{2}} .
$$

The theorem above ensures that any positive solution of (3.1) has an exponential decaying.

### 3.1.1 The energy functional

In the same way of Chapter 2 (see also $[6,10,11,62]$ ), we will explore a suitable decomposition of the function

$$
F(s)=\int_{0}^{s} t \log t^{2} d t=\frac{1}{2} s^{2} \log s^{2}-\frac{s^{2}}{2}, \quad s \in \mathbb{R}
$$

which allows us to introduce an energy functional associated with $\left(P_{0}\right)$. For each $\delta>0$ sufficiently small, let $F_{1}, F_{2} \in C^{1}(\mathbb{R})$ be given as in the Section 2.1 .1 verifying

$$
\begin{equation*}
F_{2}(s)-F_{1}(s)=\frac{1}{2} s^{2} \log s^{2}, \quad \forall s \in \mathbb{R} \tag{3.2}
\end{equation*}
$$

Recall that $F_{1}$ and $F_{2}$ satisfy the properties $\left(P_{1}\right)-\left(P_{2}\right)$ below:
$\left(P_{1}\right) F_{1}$ is an even function with $F_{1}^{\prime}(s) s \geq 0$ and $F_{1}(s) \geq 0$ for all $s \in \mathbb{R}$. Moreover $F_{1} \in C^{1}(\mathbb{R}, \mathbb{R})$ and it is also convex if $\delta \approx 0^{+} ;$
$\left(P_{2}\right) F_{2} \in C^{1}(\mathbb{R}, \mathbb{R})$ and for each $p \in\left(2,2^{*}\right)$, there exists $C=C_{p}>0$ such that

$$
\left|F_{2}^{\prime}(s)\right| \leq C|s|^{p-1} \quad \forall s \in \mathbb{R}
$$

As in Subsection 2.1.1, it will be explored the fact that $F_{1}$ is a $N$-function verifying the $\left(\Delta_{2}\right)$ condition (see the Appendix $C$ for the proof). This fact ensures that the Orlicz space

$$
L^{F_{1}}(\Omega)=\left\{u \in L_{l o c}^{1}(\Omega) ; \int_{\Omega} F_{1}(|u|) d x<+\infty\right\}
$$

with the norm

$$
\|u\|_{F_{1}}=\inf \left\{\lambda>0 ; \int_{\Omega} F_{1}\left(\frac{|u|}{\lambda}\right) \leq 1\right\}
$$

is a reflexive and separable Banach space.
From now on, we will set $X:=H_{0}^{1}(\Omega) \cap L^{F_{1}}(\Omega)$ endowed with the norm

$$
\|\cdot\|_{X}:=\|\cdot\|_{H_{0}^{1}(\Omega)}+\|\cdot\|_{F_{1}} .
$$

Here, $L^{F_{1}}(\Omega)$ designates the Orlicz space associated with $F_{1}$ and $\|\cdot\|_{F_{1}}$ denotes the usual norm associated with $L^{F_{1}}(\Omega)$. In view of the last proposition, the space $X$ is a separable and reflexive Banach space. Furthermore, the embeddings $X \hookrightarrow H^{1}(\Omega)$ and $X \hookrightarrow L^{F_{1}}(\Omega)$ are continuous.

The natural candidate for the energy functional associated with $\left(P_{0}\right)$ is given by

$$
I(u):=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+2|u|^{2}\right)+\int_{\Omega} F_{1}(u)-\int_{\Omega} F_{2}(u), \quad \forall u \in X .
$$

It will be convenient to take the norm of $H_{0}^{1}(\Omega)$ as being

$$
\|u\|_{H_{0}^{1}(\Omega)}:=\left(\int_{\Omega}\left(|\nabla u|^{2}+2|u|^{2}\right)\right)^{\frac{1}{2}}
$$

which is equivalent to the usual norm of $H_{0}^{1}(\Omega)$. Moreover, it is associated with the inner product

$$
\langle u, v\rangle_{H_{0}^{1}(\Omega)}:=\int_{\Omega}(\nabla u \nabla v+2 u v), \quad \forall u, v \in H_{0}^{1}(\Omega) .
$$

Similarly, we will consider

$$
\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)}:=\left(\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+2|u|^{2}\right)\right)^{\frac{1}{2}}, \quad \forall u \in H^{1}\left(\mathbb{R}^{N}\right)
$$

as the norm in $H^{1}\left(\mathbb{R}^{N}\right)$.
From $\left(P_{1}\right)-\left(P_{2}\right), I \in C^{1}(X, \mathbb{R})$ and

$$
I^{\prime}(u) v=\int_{\Omega}(\nabla u \nabla v+2 u v)+\int_{\Omega} F_{1}^{\prime}(u) v-\int_{\Omega} F_{2}^{\prime}(u) v, \quad \forall v \in X .
$$

In our approach, we will use some properties of the limit problem below
$\left(P_{\infty}\right)$

$$
\left\{\begin{array}{c}
-\Delta u+u=u \log u^{2}, \text { in } \mathbb{R}^{N}, \\
u \in H^{1}\left(\mathbb{R}^{N}\right) .
\end{array}\right.
$$

Associated with $\left(P_{\infty}\right)$, we have the functional

$$
I_{\infty}(u):=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+2 u^{2}\right)+\int_{\mathbb{R}^{N}} F_{1}(u)-\int_{\mathbb{R}^{N}} F_{2}(u), \quad \forall u \in Y,
$$

where $Y:=\left(H^{1}\left(\mathbb{R}^{N}\right) \cap L^{F_{1}}\left(\mathbb{R}^{N}\right),\|\cdot\|_{Y}\right)$ and $\|\cdot\|_{Y}:=\|\cdot\|_{H^{1}\left(\mathbb{R}^{N}\right)}+\|\cdot\|_{L^{F_{1}}\left(\mathbb{R}^{N}\right)}$. Related to the functionals $I$ and $I_{\infty}$, we also have the Nehari sets

$$
\mathcal{N}:=\left\{u \in X-\{0\} ; I^{\prime}(u) u=0\right\}
$$

and

$$
\mathcal{N}_{\infty}:=\left\{u \in Y-\{0\} ; I_{\infty}^{\prime}(u) u=0\right\}
$$

which can be characterized by

$$
\mathcal{N}:=\Psi_{0}^{-1}(0) \text { and } \mathcal{N}_{\infty}:=\Psi_{\infty}^{-1}(0)
$$

with

$$
\begin{equation*}
\Psi_{0}(u)=I(u)-\frac{1}{2} \int_{\Omega}|u|^{2} \text { and } \Psi_{\infty}(u)=I_{\infty}(u)-\frac{1}{2} \int_{\mathbb{R}^{N}}|u|^{2} . \tag{3.3}
\end{equation*}
$$

A direct computation shows that $\Psi_{0} \in C^{1}(X, \mathbb{R})$ and $\Psi_{\infty} \in C^{1}(Y, \mathbb{R})$. Furthermore, associated with $\mathcal{N}$ and $\mathcal{N}_{\infty}$, we consider the levels $d_{0}$ and $d_{\infty}$ given by

$$
d_{0}:=\inf _{u \in \mathcal{N}} I(u) \text { and } d_{\infty}:=\inf _{u \in \mathcal{N}_{\infty}} I_{\infty}(u) .
$$

The next result presents an important property of the sets $\mathcal{N}$ and $\mathcal{N}_{\infty}$ that is crucial in our approach

Proposition 3.1 The sets $\mathcal{N}$ and $\mathcal{N}_{\infty}$ are $C^{1}$-manifolds with the topology of $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ respectively,. Furthermore, the critical points of $\left.I\right|_{\mathcal{N}}$ and $\left.I_{\infty}\right|_{\mathcal{N}_{\infty}}$ are critical points of $I$ and $I_{\infty}$ respectively

Proof. For the first part, from (3.3), it is sufficient to show that 0 is a regular value for $\Psi_{0}$ and $\Psi_{\infty}$. Indeed, if $u \in \Psi_{0}^{-1}(\{0\})$, then

$$
\Psi_{0}^{\prime}(u) u=I^{\prime}(u) u-\int_{\Omega}|u|^{2}=-\int_{\Omega}|u|^{2}<0
$$

since $u \neq 0$. Consequently, $\Psi_{0}^{\prime}(u) \neq 0$ and 0 is a regular value of $\Psi_{0}$. A similar reasoning shows that 0 is also a regular value of $\Psi_{\infty}$.

Now, note that if $u \in \mathcal{N}$ is a critical point of $\left.I\right|_{\mathcal{N}}$, then it holds

$$
I^{\prime}(u)=\lambda \Psi_{0}^{\prime}(u),
$$

for some $\lambda \in \mathbb{R}$. So, one can see that $0=\lambda \Psi_{0}^{\prime}(u) u$, which implies that $\lambda=0$ and $I^{\prime}(u)=0$, because $\Psi_{0}^{\prime}(u) u<0$ for $u \in \mathcal{N}$. In a similar way, the result follows for $\left.I_{\infty}\right|_{\mathcal{N}_{\infty}}$.

The last proposition yields that a critical point of $\left.I\right|_{\mathcal{N}}$ is a point $u \in X$ such that

$$
\left\|I^{\prime}(u)\right\|_{*}:=\min _{\lambda \in \mathbb{R}}\left\|I^{\prime}(u)-\lambda \Psi_{0}^{\prime}(u)\right\|=0 . \quad(\text { See }[83, \text { Section } 5.3])
$$

Analogously, we define a critical point of $\left.I_{\infty}\right|_{\mathcal{N}_{\infty}}$.
Remark 3.1 Note that in the preceding proposition, it is crucial the fact that in our approach, in view of the topology induced by the spaces $X$ and $Y$, the energy functionals $I$ and $I_{\infty}$ are of $C^{1}$ class. This fact is not verified if we consider, for example, $I$ and $I_{\infty}$ with the usual topology of $H_{0}^{1}(\Omega)$ and $H^{1}\left(\mathbb{R}^{N}\right)$.

In the next result, we point out an important property related with the sets $\mathcal{N}$ and $\mathcal{N}_{\infty}$ that will be explored later on.

Proposition 3.2 There exist $\rho_{1}, \rho_{2}>0$ such that

$$
\rho_{1} \leq\|u\|_{X}, \quad \forall u \in \mathcal{N}
$$

and

$$
\rho_{2} \leq\|u\|_{Y}, \forall u \in \mathcal{N}_{\infty} .
$$

Proof. In fact, for $u \in \mathcal{N}$ it holds

$$
0<\|u\|_{H_{0}^{1}(\Omega)}^{2} \leq\|u\|_{H_{0}^{1}(\Omega)}^{2}+\int_{\Omega} F_{1}^{\prime}(u) u=\int_{\Omega} F_{2}^{\prime}(u) u \leq\|u\|_{H_{0}^{1}(\Omega)}^{p},
$$

with $p \in\left(2,2^{*}\right]$. Using the embedding $X \hookrightarrow H_{0}^{1}(\Omega)$, one gets

$$
0<1 \leq\|u\|_{H_{0}^{1}(\Omega)}^{p-2} \leq C\|u\|_{X}^{p-2},
$$

for a convenient $C=C(p)>0$. Thus, the first part of the result follows by setting $\rho_{1}:=\left(C^{-1}\right)^{\frac{1}{p-2}}$. The second part of the lemma is proved with a similar argument.

From now on, let us designate by $u_{\infty}$ a positive ground state solution of $\left(P_{\infty}\right)$ that can be assumed radial, that is,

$$
I_{\infty}\left(u_{\infty}\right)=d_{\infty}>0 \quad \text { and } \quad I_{\infty}^{\prime}\left(u_{\infty}\right)=0 .(\text { See Theorem 3.3 })
$$

The next result relates the levels $d_{0}$ and $d_{\infty}$.
Lemma 3.1 It holds $d_{0}=d_{\infty}$.

Proof. Fix $\rho>0$ the smallest positive number such that $\mathbb{R}^{N} \backslash \Omega \subset B_{\rho}(0)$. Now, let $\phi \in C^{\infty}\left(\mathbb{R}^{N}\right)$ satisfying
with $0 \leq \phi \leq 1$. Take $\left(y_{n}\right) \subset \mathbb{R}^{N}$ with $\left|y_{n}\right| \rightarrow \infty$ and set

$$
\phi_{n}(x):=\phi(x) u_{\infty}\left(x-y_{n}\right) .
$$

For each $n \in \mathbb{N}$, fix $t_{n}>0$ of a such way that $t_{n} \phi_{n} \in \mathcal{N}$. Thereby,

$$
\begin{equation*}
d_{0} \leq I\left(t_{n} \phi_{n}\right)=I_{\infty}\left(t_{n} \phi_{n}\right), \quad \forall n \in \mathbb{N} \tag{3.4}
\end{equation*}
$$

Note that, from the Lebesgue's Dominated Convergence Theorem,

$$
\begin{equation*}
\phi\left(\cdot+y_{n}\right) u_{\infty} \longrightarrow u_{\infty} \tag{3.5}
\end{equation*}
$$

Our next step is proving that $t_{n} \rightarrow 1$. To see why, firstly we recall that $t_{n} \phi_{n} \in \mathcal{N}$ leads to

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\left|\nabla\left(t_{n} \phi_{n}\right)\right|^{2}+\left|\left(t_{n} \phi_{n}\right)\right|^{2}\right)=\int_{\mathbb{R}^{N}}\left(t_{n} \phi_{n}\right)^{2} \log \left(\left|t_{n} \phi_{n}\right|^{2}\right) . \tag{3.6}
\end{equation*}
$$

This combined with (3.2) gives

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\left|\nabla\left(\phi_{n}\right)\right|^{2}+\left|\left(\phi_{n}\right)\right|^{2}\right)=2 \int_{\mathbb{R}^{N}}\left(F_{2}\left(\phi_{n}\right)-F_{1}\left(\phi_{n}\right)\right)+\log t_{n}^{2} \int_{\mathbb{R}^{N}} \phi_{n}^{2} . \tag{3.7}
\end{equation*}
$$

Using (3.5) and the invariance by translation of $\mathbb{R}^{N}$, one finds

$$
\int_{\mathbb{R}^{N}} F_{i}\left(\phi_{n}\right) \longrightarrow \int_{\mathbb{R}^{N}} F_{i}\left(u_{\infty}\right) \text { for } i \in\{1,2\} \quad \text { and } \quad \int_{\mathbb{R}^{N}}\left|\phi_{n}\right|^{2} \longrightarrow \int_{\mathbb{R}^{N}}\left|u_{\infty}\right|^{2}
$$

Gathering the limits above with (3.5), one sees that $\left(t_{n}\right)$ is a bounded. So, we may assume that $t_{n} \rightarrow t_{0} \geq 0$. If $t_{0}=0$, the equality (3.7) gives a contradiction. Therefore, it holds $t_{0}>0$ and, from the Lebesgue's Theorem,

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla\left(t_{0} u_{\infty}\right)\right|^{2}+\left|\left(t_{0} u_{\infty}\right)\right|^{2}\right)=\int_{\mathbb{R}^{N}}\left|t_{0} u_{\infty}\right|^{2} \log \left(\left.t_{0} u_{\infty}\right|^{2}\right)
$$

showing that $t_{0}=1$, that is, $t_{n} \rightarrow 1$ as $n \rightarrow+\infty$. Using this limit together (3.4), we arrive at

$$
d_{0} \leq \lim I_{\infty}\left(t_{n} \phi_{n}\right)=I_{\infty}\left(u_{\infty}\right)=d_{\infty} .
$$

As $X \subset Y$, the reverse inequality follows directly of the definition of $I_{\infty}$, by noting that the condition $I^{\prime}(u) u=0$ also implies $I_{\infty}^{\prime}(u) u=0$.

Next, we establish the nonexistence of ground state solution for $\left(P_{0}\right)$, i.e., we are going to prove that it does not exist a positive solution $u_{0}$ of $\left(P_{0}\right)$ such that $I\left(u_{0}\right)=d_{0}$.

Theorem 3.4 The problem $\left(P_{0}\right)$ has no ground state solution.

Proof. Seeking for a contradiction, assume that $\left(P_{0}\right)$ has a positive ground state solution $w \in X$. Then,

$$
I^{\prime}(w)=0 \quad \text { and } \quad I(w)=d_{0} .
$$

Let $v$ be the null extension of $w$, i.e., $v(x)=w(x)$ for $x \in \Omega$ and $v(x)=0$ otherwise. It follows that $I_{\infty}^{\prime}(v) v=I^{\prime}(w) w=0$, and by Lemma 3.1, $I_{\infty}(v)=I(w)=d_{0}=d_{\infty}$. Therefore, $v \in \mathcal{N}_{\infty}$ is a critical point for $\left.I_{\infty}\right|_{\mathcal{N}_{\infty}}$, and so, $v$ is a critical point of $I_{\infty}$. As made in [44, Section 3.1], by using a suitable version of the maximum principle found in [82], one deduces that $v>0$ in whole $\mathbb{R}^{N}$, which is absurd because $v=0$ in $\mathbb{R}^{N} \backslash \Omega$, finishing the proof.

In order to prove our next proposition, we recall the inequality in (1.61):

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|u|^{2} \log |u|^{2} d x \leq \frac{b^{2}}{\pi}\|\nabla u\|_{2}^{2}+\left(\log \|u\|_{2}^{2}-N(1+\log b)\right)\|u\|_{2}^{2}, \quad \forall u \in H^{1}\left(\mathbb{R}^{N}\right), \tag{3.8}
\end{equation*}
$$

where $b>0$ is a fixed positive constant.
Let us recall that a $(P S)_{c}$ sequence for $\left.I\right|_{\mathcal{N}}$ is a sequence $\left(u_{n}\right) \subset \mathcal{N}$ such that

$$
\left\|I^{\prime}\left(u_{n}\right)\right\|_{*} \rightarrow 0 \text { and } I\left(u_{n}\right) \rightarrow c
$$

Lemma 3.2 If $\left(u_{n}\right)$ is a $(P S)_{c}$ sequence for $\left.I\right|_{\mathcal{N}}$, then $\left(u_{n}\right)$ is bounded in $X$.
Proof. Let $\left(u_{n}\right)$ be a $(P S)_{c}$ sequence for $\left.I\right|_{\mathcal{N}}$. Since $I^{\prime}\left(u_{n}\right) u_{n}=0$, one has

$$
\begin{equation*}
c+o_{n}(1)=I\left(u_{n}\right)-\frac{1}{2} I^{\prime}\left(u_{n}\right) u_{n}=\frac{1}{2} \int_{\Omega}\left|u_{n}\right|^{2}, \tag{3.9}
\end{equation*}
$$

and so,

$$
\int_{\Omega}\left|u_{n}\right|^{2} \leq C, \quad \forall n \in \mathbb{N}
$$

for a convenient $C>0$. Applying the logarithmic inequality for some $b \approx 0^{+}$, we derive that

$$
\int_{\mathbb{R}^{N}}|v|^{2} \log |v|^{2} \leq \frac{1}{2}\|\nabla v\|_{2}^{2}+C\left(\log \|v\|_{2}^{2}+1\right)\|v\|_{2}^{2}, \quad v \in H^{1}\left(\mathbb{R}^{N}\right)
$$

which leads to

$$
\int_{\Omega}\left|u_{n}\right|^{2} \log \left|u_{n}\right|^{2} \leq \frac{1}{2}\left\|\nabla u_{n}\right\|_{2}^{2}+C
$$

for some $C>0$ independent of $n$. Therefore, by (3.8), there are $C_{1}, C_{2}>0$ such that

$$
C_{1} \geq \frac{1}{2}\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2}-\frac{1}{2} \int_{\Omega}\left|u_{n}\right|^{2} \log \left|u_{n}\right|^{2} \geq C_{2}\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2}
$$

showing that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2}<\infty \tag{3.10}
\end{equation*}
$$

The definition of $I$ gives

$$
\int_{\Omega} F_{1}\left(u_{n}\right)=I\left(u_{n}\right)-\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2}+\int_{\Omega} F_{2}\left(u_{n}\right) .
$$

Hence, by (3.9) and (3.10),

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \int_{\Omega} F_{1}\left(u_{n}\right)<\infty \tag{3.11}
\end{equation*}
$$

The sentences (3.10) and (3.11) guarantee that $\left(u_{n}\right)$ is a bounded sequence in $X$.
By using the definition of the functions $F_{1}$ and $F_{2}$ and a Brezis-Lieb type result (Proposition C.1), it is possible to prove the lemma below whose the idea for the proof can be found in [80, Lemma 3.1].

Lemma 3.3 Let $\left(u_{n}\right)$ be a bounded sequence in $X$ such that $u_{n} \rightarrow u$ a.e. in $\Omega$. Then,

$$
\int_{\Omega}\left|u_{n}-u\right|^{2} \log \left|u_{n}-u\right|^{2}=\int_{\Omega} u_{n}^{2} \log u_{n}^{2}-\int_{\Omega} u^{2} \log u^{2}+o_{n}(1)
$$

Proof. The proof could be made following the reasoning in [80, Lemma 3.1]. However, for the reader's comfort, we will present the idea of the proof. The argument consists in a suitable application of a Brezis-Lieb type result: By (3.2), one gets

$$
2\left(F_{2}\left(u_{n}-u\right)-F_{1}\left(u_{n}-u\right)\right)=\left|u_{n}-u\right|^{2} \log \left|u_{n}-u\right|^{2},
$$

from where we derive that

$$
\int_{\Omega}\left|u_{n}-u\right|^{2} \log \left|u_{n}-u\right|^{2}=2 \int_{\Omega}\left(F_{2}\left(u_{n}-u\right)-F_{1}\left(u_{n}-u\right)\right)
$$

Now, the proof follows by noting that, since $F_{2}$ has subcritical growth, the Lemma 3.1 in [4] assures that

$$
\int_{\Omega} F_{2}\left(u_{n}-u\right)=\int_{\Omega} F_{2}\left(u_{n}\right)-\int_{\Omega} F_{2}(u)+o_{n}(1) .
$$

In a similar way,

$$
\int_{\Omega} F_{1}\left(u_{n}-u\right)=\int_{\Omega} F_{1}\left(u_{n}\right)-\int_{\Omega} F_{1}(u)+o_{n}(1),
$$

by the Brezis-Lieb type result valid for N-functions in Proposition C.1.
Our next result is an important compactness lemma that describes the behavior of $(P S)_{c}$ sequences for $\left.I\right|_{\mathcal{N}}$.

Lemma 3.4 Let $\left(u_{n}\right)$ be a $(P S)_{c}$ sequence for $\left.I\right|_{\mathcal{N}}$ with $u_{n} \rightharpoonup u_{0}$. Then, going to a subsequence if necessary, either
i) $u_{n} \rightarrow u_{0}$ in $X$, or
ii) There exist $k \in \mathbb{N}$ and $k$ sequences $\left(u_{n}^{j}\right)_{n \in \mathbb{N}}, u_{n}^{j} \in Y$, with

$$
u_{n}^{j} \rightharpoonup u_{j}
$$

and $u_{j}$ nontrivial solutions of $\left(P_{\infty}\right), j \in\{1, \ldots, k\}$. Furthermore, it holds

$$
\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2} \rightarrow\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{2}+\sum_{j=1}^{k}\left\|u_{j}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2} \text { and } I\left(u_{n}\right) \rightarrow I\left(u_{0}\right)+\sum_{j=1}^{k} I_{\infty}\left(u_{j}\right) .
$$

Proof. Initially, for a convenient sequence of real numbers $\left(\lambda_{n}\right)$, we must have

$$
\begin{equation*}
I^{\prime}\left(u_{n}\right)=\lambda_{n} \Psi_{0}^{\prime}\left(u_{n}\right)+o_{n}(1) . \tag{3.12}
\end{equation*}
$$

As $I^{\prime}\left(u_{n}\right) u_{n}=0$, one gets

$$
\lambda_{n} \Psi_{0}^{\prime}\left(u_{n}\right) u_{n}=o_{n}(1) .
$$

From this information, we claim that $\lambda_{n}=o_{n}(1)$. Indeed, notice that $\left|\Psi_{0}^{\prime}\left(u_{n}\right) u_{n}\right| \nrightarrow 0$, otherwise we would have

$$
\Psi_{0}^{\prime}\left(u_{n}\right) u_{n}=\int_{\Omega}\left|u_{n}\right|^{2}=o_{n}(1),
$$

and so, since $\left(u_{n}\right)$ is a bounded sequence in $X$, by interpolation, it follows that

$$
\left\|u_{n}\right\|_{p}=o_{n}(1), \quad \forall p \in\left(2,2^{*}\right) .
$$

This combines with $\left(P_{2}\right)$ to give

$$
\int_{\Omega} F_{2}^{\prime}\left(u_{n}\right) u_{n}=o_{n}(1) .
$$

Now, the limit above together with the fact that $I^{\prime}\left(u_{n}\right) u_{n}=0$ leads to

$$
\int_{\Omega}\left(\left|\nabla u_{n}\right|^{2}+2\left|u_{n}\right|^{2}\right)+\int_{\Omega} F_{1}^{\prime}\left(u_{n}\right) u_{n}=o_{n}(1) .
$$

Since $F_{1}$ is convex with $F_{1}(0)=0$, we know that $F_{1}^{\prime}(s) s \geq F_{1}(s)$ for all $s \in \mathbb{R}$. Then, we can infer that

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{2}+2\left|u_{n}\right|^{2}\right)+\int_{\Omega} F_{1}\left(u_{n}\right)=o_{n}(1) .
$$

Using the fact that $F_{1} \in\left(\Delta_{2}\right)$, the last limit yields $u_{n} \rightarrow 0$ in $X$, which contradicts the fact that $u_{n} \in \mathcal{N}$ in view of the Proposition 3.2. So, it follows that $\left|\Psi_{0}^{\prime}\left(u_{n}\right) u_{n}\right| \nrightarrow 0$ and $\lambda_{n}=o_{n}(1)$. By (3.12), since $\left(u_{n}\right)$ is a bounded sequence, it holds $I^{\prime}\left(u_{n}\right) \rightarrow 0$, that is, the sequence $\left(u_{n}\right)$ is a $(P S)_{c}$ sequence for $I$. In addition, accounting that $u_{n} \rightharpoonup u_{0}$ and the growth conditions on $F_{1}$ and $F_{2}$, we deduce that $I^{\prime}\left(u_{0}\right) v=0$, for any $v \in X$, implying that $u_{0}$ is a solution of $\left(P_{0}\right)$.

From now on, inspired in the ideas of [27], we set

$$
\psi_{n}^{1}(x):=\left\{\begin{array}{cr}
u_{n}-u_{0}, & x \in \Omega \\
0, & x \in \mathbb{R}^{N} \backslash \Omega .
\end{array}\right.
$$

A direct verification shows that $\psi_{n}^{1} \rightharpoonup 0$ in $X$. In [4, 27], it was proved that $\left(\psi_{n}^{1} \mid \Omega\right)$ is a $(P S)$ sequence for $\left.I_{\infty}\right|_{H_{0}^{1}(\Omega)}$ with

$$
\begin{equation*}
I_{\infty}\left(\psi_{n}^{1}\right)=I\left(u_{n}\right)-I\left(u_{0}\right)+o_{n}(1) . \tag{3.13}
\end{equation*}
$$

However, since we are working with a logarithmic nonlinearity, we are not able to show that $\left(\left.\psi_{n}^{1}\right|_{\Omega}\right)$ is also a $(P S)$ sequence. In our case we will prove that a weaker condition occurs. More precisely, the following properties hold:
i) $I_{\infty}\left(\psi_{n}^{1}\right)=I\left(u_{n}\right)-I\left(u_{0}\right)+o_{n}(1)$;
ii) Let $\phi \in C_{0}^{\infty}(\Omega)$ with $\|\phi\|_{Y} \leq 1$ and, for each $y \in \mathbb{R}^{N}$, define $\phi^{(y)}(x)=\phi(x+y)$ for all $x \in \mathbb{R}^{N}$. Then,

$$
\sup _{y \in \mathbb{R}^{N}}\left\|I_{\infty}^{\prime}\left(\psi_{n}^{1}\right)\right\|\left\|\phi^{(y)}\right\|_{Y}=o_{n}(1)
$$

Verification of $i$ ) By simplicity, in what follows $\psi_{n}^{1}$ also denotes $\left.\psi_{n}^{1}\right|_{\Omega}$. The definition of $\psi_{n}^{1}$ gives $I_{\infty}\left(\psi_{n}^{1}\right)=I\left(\psi_{n}^{1}\right)$, then by a simple computation, the Lemma 3.3 guarantees that $i$ holds.

Verification of $i i$ ) First of all, note that

$$
\begin{equation*}
I_{\infty}^{\prime}\left(\psi_{n}^{1}\right) \phi^{(y)}=\int_{\Omega}\left(\nabla \psi_{n}^{1} \nabla \phi^{(y)}+2 \psi_{n}^{1} \phi^{(y)}\right)+\int_{\Omega} F_{1}^{\prime}\left(\psi_{n}^{1}\right) \phi^{(y)}-\int_{\Omega} F_{2}^{\prime}\left(\psi_{n}^{1}\right) \phi^{(y)} . \tag{3.14}
\end{equation*}
$$

In order to prove the item $i i$ ), we will need to show the following claim

## Claim 3.1

$$
\sup _{y \in \mathbb{R}^{N}} \int_{\Omega}\left|F_{i}^{\prime}\left(u_{n}-u_{0}\right)-\left(F_{i}^{\prime}\left(u_{n}\right)-F_{i}^{\prime}\left(u_{0}\right)\right)\right|\left|\phi^{(y)}\right|=o_{n}(1), \quad \text { for } \quad i \in\{1,2\}
$$

In the proof of the claim above, we adapt some ideas presented in [12, Proof of (3.39)]. In what follows, we will only show that the claim for function $F_{1}$, because the proof for $F_{2}$ follows by using similar arguments (see also [4, Lemma 3.1]).

Given $\varepsilon>0$ and $r \in(1,2)$, the definition of $F_{1}$ guarantees that there is $t_{0}>0$ small enough such that

$$
\begin{equation*}
\left|F_{1}^{\prime}(t)\right| \leq \varepsilon|t|^{r-1}, \quad|t| \leq 2 t_{0} . \tag{3.15}
\end{equation*}
$$

On the other hand, note that it is possible to get $t_{1}>t_{0}$ large enough such that

$$
\begin{equation*}
\left|F_{1}^{\prime}(t)\right| \leq \varepsilon|t|^{2^{*}-1}, \quad|t| \geq t_{1}-1 \tag{3.16}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\left|F_{1}^{\prime}(t)-F_{1}^{\prime}(s)\right| \leq \varepsilon\left|t_{0}\right|^{r-1}, \quad|t-s| \leq s_{0}, \text { and }|t|,|s| \leq t_{1}+1, \tag{3.17}
\end{equation*}
$$

for some $s_{0}>0$ small enough. Therefore,

$$
\begin{equation*}
\left|F_{1}^{\prime}(t)\right| \leq C_{\varepsilon}|t|^{r-1}+\varepsilon|t|^{2^{*}-1}, \quad t \in \mathbb{R}, \tag{3.18}
\end{equation*}
$$

for some $C_{\varepsilon}>0$. Now, fixing $R>0$ of such way $B_{R}^{c}(0) \subset \Omega$ and using then fact that $F_{1}$ has a subcritical growth, it is easy to prove that

$$
\int_{B_{R}(0) \cap \Omega}\left|F_{1}^{\prime}\left(u_{n}-u_{0}\right)-\left(F_{1}^{\prime}\left(u_{n}\right)-F_{1}^{\prime}\left(u_{0}\right)\right)\right|\left|\phi^{(y)}\right|=o_{n}(1), \quad \text { uniformly in } \quad y \in \mathbb{R}^{N} .
$$

Our next step is to estimate the integral below

$$
\int_{B_{R}^{c}(0) \cap \Omega}\left|F_{1}^{\prime}\left(u_{n}-u_{0}\right)-\left(F_{1}^{\prime}\left(u_{n}\right)-F_{1}^{\prime}\left(u_{0}\right)\right)\right|\left|\phi^{(y)}\right| .
$$

Fix $\varepsilon>0$. From (3.18), since $R>0$ can be chosen large enough, one has

$$
\begin{align*}
\int_{B_{R}^{c}(0) \cap \Omega}\left|F_{1}^{\prime}\left(u_{0}\right) \| \phi^{(y)}\right| & \leq C_{\varepsilon} \int_{B_{R}^{c}(0) \cap \Omega}\left|u_{0}\right|^{r-1}\left|\phi^{(y)}\right|+\varepsilon \int_{B_{R}^{c}(0) \cap \Omega}\left|u_{0}\right|^{2^{*}-1}\left|\phi^{(y)}\right| \\
& \leq C\left(\left\|u_{0}\right\|_{2}^{r-1}\left\|\phi^{(y)}\right\|_{\frac{2}{3-r}}+\left\|u_{0}\right\|_{2^{*}}^{2^{*}-1}\left\|\phi^{(y)}\right\|_{2^{*}}\right) \\
& \leq \varepsilon C\left\|\phi^{(y)}\right\|_{Y} \tag{3.19}
\end{align*}
$$

where $C$ does not depend on $y \in \mathbb{R}^{N}$. Setting

$$
A_{n}:=\left\{x \in B_{R}^{c}(0) ;\left|u_{n}(x)\right| \leq t_{0}\right\}
$$

and

$$
B_{n}:=\left\{x \in B_{R}^{c}(0) ;\left|u_{n}(x)\right| \geq t_{1}\right\}
$$

we have by (3.15),

$$
\begin{align*}
& \int_{A_{n} \cap\left[\left|u_{0}\right| \leq \delta\right]}\left|F_{1}^{\prime}\left(u_{n}-u_{0}\right)-F_{1}^{\prime}\left(u_{n}\right)\right|\left|\phi^{(y)}\right| \leq \\
& \leq \varepsilon \int_{A_{n} \cap\left[\left|u_{0}\right| \leq \delta\right]}\left(\left|u_{n}-u_{0}\right|^{r-1}\left|\phi^{(y)}\right|+\left|u_{n}\right|^{r-1}\left|\phi^{(y)}\right| \leq\right.  \tag{3.20}\\
& \leq \varepsilon C\|\phi\|_{Y}
\end{align*}
$$

where $C$ does not depend on $y \in \mathbb{R}^{N}$. Here, we have explored the fact that $\left|\operatorname{supp} \phi^{(y)}\right|=|\operatorname{supp} \phi|$ for any $y \in \mathbb{R}^{N}$. In a similar way, by using (3.16),

$$
\begin{equation*}
\int_{B_{n} \cap\left[\left|u_{0}\right| \leq \delta\right]}\left|F_{1}^{\prime}\left(u_{n}-u_{0}\right)-F_{1}^{\prime}\left(u_{n}\right)\left\|\phi^{(y)} \mid \leq \varepsilon C\right\| \phi \|_{Y} .\right. \tag{3.21}
\end{equation*}
$$

Next, let us consider $C_{n}:=\left\{x \in B_{R}^{c}(0) ; t_{0} \leq\left|u_{n}(x)\right| \leq t_{1}\right\}$. Accounting that $\left(u_{n}\right)$ is a bounded sequence in $X$, we derive that

$$
M:=\sup _{n \in \mathbb{N}}\left|C_{n}\right|<\infty .
$$

Thereby, by (3.17),

$$
\begin{equation*}
\int_{C_{n} \cap\left[\left|u_{0}\right| \leq \delta\right]}\left|F_{1}^{\prime}\left(u_{n}-u_{0}\right)-F_{1}^{\prime}\left(u_{n}\right)\left\|\left.\phi^{(y)}\left|\leq t_{0}^{r-1} \varepsilon\right| C_{n}\right|^{1 / 2}\right\| \phi^{(y)}\left\|_{2} \leq \varepsilon C\right\| \phi \|_{Y},\right. \tag{3.22}
\end{equation*}
$$

for a convenient $C$ independent of $\varepsilon$ and $y \in \mathbb{R}^{N}$. From (3.20), (3.21) and (3.22),

$$
\begin{equation*}
\int_{B_{R}^{c}(0) \cap\left[\left|u_{0}\right| \leq \delta\right]}\left|F_{1}^{\prime}\left(u_{n}-u_{0}\right)-F_{1}^{\prime}\left(u_{n}\right)\left\|\phi ^ { ( y ) } \left|\leq \varepsilon C\|\mid \phi\|_{Y} .\right.\right.\right. \tag{3.23}
\end{equation*}
$$

Now, we are going to analyze the case that $\left|u_{0}\right|>\delta$. The boundedness of $\left(u_{n}\right)$ in $X$ together with the inequality (3.18) give

$$
\begin{gathered}
\int_{B_{R}^{c}(0) \cap\left[\left|u_{0}\right|>\delta\right]}\left|F_{1}^{\prime}\left(u_{n}-u_{0}\right)-F_{1}^{\prime}\left(u_{n}\right) \| \phi^{(y)}\right| \leq \\
\leq C_{\varepsilon} \int_{B_{R}^{c}(0) \cap\left[\left|u_{0}\right|>\delta\right]}\left(\left|u_{n}-u_{0}\right|^{r-1}\left|\phi^{(y)}\right|+\left|u_{n}\right|^{r-1}\left|\phi^{(y)}\right|+\varepsilon C\|\phi\|_{Y}\right.
\end{gathered}
$$

where $C$ is independent of $\varepsilon$ and $y$. Since $u_{0} \in X \subset H_{0}^{1}(\Omega)$, one has

$$
\left|B_{R}^{c}(0) \cap\left[\left|u_{0}\right|>\delta\right]\right| \longrightarrow 0, \quad \text { as } \quad R \rightarrow+\infty
$$

Thereby,

$$
\begin{aligned}
& C_{\varepsilon} \int_{B_{R}^{c}(0) \cap\left[\left|u_{0}\right|>\delta\right]}\left(\left|u_{n}-u_{0}\right|^{r-1}\left|\phi^{(y)}\right|+\left|u_{n}\right|^{r-1}\left|\phi^{(y)}\right| \leq\right. \\
\leq & C_{\varepsilon}\left(\|\left(u_{n}-u_{0}\left\|_{2^{*}}^{r-1}+\right\| u_{n} \|_{2^{*}}^{r-1}\right)| | \phi| |_{2^{*}}\left|B_{R}(0)^{c} \cap\left[\left|u_{0}\right|>\delta\right]\right|^{\left(2^{*}-r\right) / 2^{*}} \leq\right. \\
\leq & \varepsilon C\|\phi\|_{Y},
\end{aligned}
$$

for $R>0$ large enough and $C$ independent of $\varepsilon$ and $y$. Using the last information together with (3.19) and (3.23), one finds

$$
\sup _{y \in \mathbb{R}^{N}} \int_{B_{R}^{c}(0) \cap \Omega}\left|F_{1}^{\prime}\left(u_{n}-u_{0}\right)-\left(F_{1}^{\prime}\left(u_{n}\right)-F_{1}^{\prime}\left(u_{0}\right)\right)\left\|\phi^{(y)} \mid \leq \varepsilon C\right\| \phi \| .\right.
$$

Since $\varepsilon$ is an arbitrary positive number, the last inequality with $\|\phi\|_{Y} \leq 1$ ensures that the Claim 3.1 is valid for the function $F_{1}$ and this finishes the proof of the claim.

Now, we are ready to show the item $i i)$. In fact, fix $\phi \in C_{0}^{\infty}(\Omega)$. So, by (3.14),

$$
\begin{aligned}
{\left[I_{\infty}^{\prime}\left(\psi_{n}^{1}\right)-\left(I^{\prime}\left(u_{n}\right)-I^{\prime}\left(u_{0}\right)\right)\right]\left(\phi^{(y)}\right) } & =\int_{\Omega}\left[F_{1}^{\prime}\left(u_{n}-u_{0}\right)-\left(F_{1}^{\prime}\left(u_{n}\right)-F_{1}^{\prime}\left(u_{0}\right)\right)\right] \phi^{(y)}+ \\
& +\int_{\Omega}\left[F_{2}^{\prime}\left(u_{n}-u_{0}\right)-\left(F_{2}^{\prime}\left(u_{n}\right)-F_{2}^{\prime}\left(u_{0}\right)\right)\right] \phi^{(y)}
\end{aligned}
$$

Hence, by Claim 3.1,

$$
\sup _{y \in \mathbb{R}^{N}} \mid I_{\infty}^{\prime}\left(\psi_{n}^{1}\right)-\left(I^{\prime}\left(u_{n}\right)-I^{\prime}\left(u_{0}\right)\right)\| \| \phi^{(y)} \|_{Y}=o_{n}(1),
$$

from where it follows that

$$
\sup _{y \in \mathbb{R}^{N}}\left\|I_{\infty}^{\prime}\left(\psi_{n}^{1}\right)\right\|\left\|\phi^{(y)}\right\|_{Y}=o_{n}(1)
$$

and the item $i i)$ is proved. If $\psi_{n}^{1} \rightarrow 0$, then the proof would be finished. Thereby, in order to get the desired result, let us consider that

$$
\begin{equation*}
\psi_{n}^{1} \nrightarrow 0 \text { in } Y \text {. } \tag{3.24}
\end{equation*}
$$

In this way, we can prove that the following claim holds
Claim 3.2 There exist $\lambda_{0}>0$ and $n_{0} \in \mathbb{N}$ such that

$$
I_{\infty}\left(\psi_{n}^{1}\right) \geq \lambda_{0}, \quad \forall n \geq n_{0}
$$

Otherwise, considering a subsequence of $\left(\psi_{n}^{1}\right)$ if necessary, we would have

$$
I_{\infty}\left(\psi_{n}^{1}\right) \leq o_{n}(1) .
$$

Now, recalling that

$$
F_{2}^{\prime}(t) t-F_{1}^{\prime}(t) t=t^{2} \log t^{2}+t^{2}, \quad t \in \mathbb{R}
$$

the same arguments explored in the proof of item $i$ ) ensure that

$$
I_{\infty}^{\prime}\left(\psi_{n}^{1}\right) \psi_{n}^{1}=I^{\prime}\left(u_{n}\right) u_{n}-I^{\prime}\left(u_{0}\right) u_{0}=o_{n}(1),
$$

and so,

$$
I_{\infty}\left(\psi_{n}^{1}\right)=I_{\infty}\left(\psi_{n}^{1}\right)-\frac{1}{2} I_{\infty}^{\prime}\left(\psi_{n}^{1}\right) \psi_{n}^{1}+o_{n}(1)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left|\psi_{n}^{1}\right|^{2}+o_{n}(1) .
$$

Consequently, one finds $\int_{\mathbb{R}^{N}}\left|\psi_{n}^{1}\right|^{2}=o_{n}(1)$, and by interpolation, $\int_{\mathbb{R}^{N}}\left|\psi_{n}^{1}\right|^{p}=o_{n}(1)$. So, the growth condition on $F_{2}$ allows us to conclude that

$$
\int_{\mathbb{R}^{N}} F_{2}^{\prime}\left(\psi_{n}^{1}\right) \psi_{n}^{1}=o_{n}(1) .
$$

From the computations above, one has

$$
\left\|\psi_{n}^{1}\right\|_{H_{1}\left(\mathbb{R}^{N}\right)}^{2}+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(\psi_{n}^{1}\right) \psi_{n}^{1}=o_{n}(1)
$$

which contradicts (3.24). Then, the claim is proved.
Now, lets us consider a decomposition of $\mathbb{R}^{N}$ into unit hypercubes $B_{i}$ with vertices having integer coordinates and set

$$
d_{n}:=\max _{i \in \mathbb{N}}\left\|\psi_{n}^{1}\right\|_{L^{p}\left(B_{i}\right)},
$$

for a fixed $p \in\left(2,2^{*}\right)$.
Claim 3.3 There exist $\lambda_{1}>0$ and $n_{1} \in \mathbb{N}$ such that

$$
d_{n} \geq \lambda_{1}, \quad \forall n \geq n_{1}
$$

Arguing as in the last claim,

$$
I_{\infty}^{\prime}\left(\psi_{n}^{1}\right) \psi_{n}^{1}=I^{\prime}\left(u_{n}\right) u_{n}-I^{\prime}\left(u_{0}\right) u_{0}=o_{n}(1),
$$

and so

$$
\left\|\psi_{n}^{1}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}+\int_{\mathbb{R}^{N}} F_{1}^{\prime}\left(\psi_{n}^{1}\right) \psi_{n}^{1}=\int_{\mathbb{R}^{N}} F_{2}^{\prime}\left(\psi_{n}^{1}\right) \psi_{n}^{1}+o_{n}(1) .
$$

By (2.4),

$$
C\left(\left\|\psi_{n}^{1}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}+\int_{\mathbb{R}^{N}} F_{1}\left(\psi_{n}^{1}\right)\right) \leq \int_{\mathbb{R}^{N}} F_{2}^{\prime}\left(\psi_{n}^{1}\right) \psi_{n}^{1}+o_{n}(1),
$$

for some constant $C>0$. Combining this inequality with $\left(P_{2}\right)$, one finds

$$
\begin{aligned}
I_{\infty}\left(\psi_{n}^{1}\right) & =\frac{1}{2}\left\|\psi_{n}^{1}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}+\int_{\mathbb{R}^{N}} F_{1}\left(\psi_{n}^{1}\right)-\int_{\mathbb{R}^{N}} F_{2}\left(\psi_{n}^{1}\right) \leq \\
& \leq C \int_{\mathbb{R}^{N}}\left|\psi_{n}^{1}\right|^{p}+o_{n}(1)=C \sum_{i \in \mathbb{N}}\left\|\psi_{n}^{1}\right\|_{L^{p}\left(B_{i}\right)}^{p}+o_{n}(1) .
\end{aligned}
$$

Since each $B_{i}$ is a unit hypercube of $\mathbb{R}^{N}$, there is a constant $\tilde{C}>0$ independent of $i$ such that

$$
\begin{equation*}
\left\|\psi_{n}^{1}\right\|_{L^{p}\left(B_{i}\right)} \leq \tilde{C}\left\|\psi_{n}^{1}\right\|_{H^{1}\left(B_{i}\right)}, \quad \forall i \in \mathbb{N} \tag{3.25}
\end{equation*}
$$

Hence, modifying $\tilde{C}>0$ if necessary, it holds

$$
I_{\infty}\left(\psi_{n}^{1}\right)+o_{n}(1) \leq C d_{n}^{p-2} \sum_{i \in \mathbb{N}}\left\|\psi_{n}^{1}\right\|_{H^{1}\left(B_{i}\right)}^{2} \leq M d_{n}^{p-2}
$$

for some $M>0$. Now, we apply Claim 3.2 to get the desired result.
Hereafter, for our goals, let us consider $y_{n}^{1}$ the center of $B_{i}$ in such way that

$$
d_{n}=\left\|\psi_{n}^{1}\right\|_{L^{p}\left(B_{i}\right)} .
$$

In this way, one can see that, by taking a subsequence, $\left|y_{n}^{1}\right| \rightarrow \infty$. Otherwise, for some $R>0$ large enough we must have

$$
\int_{B_{R}(0)}\left|\psi_{n}^{1}\right|^{p} \geq \int_{B_{i}}\left|\psi_{n}^{1}\right|^{p}=d_{n}^{p} \geq \lambda_{1}^{p}>0
$$

which is a contradiction, because the weak limit $\psi_{n}^{1} \rightharpoonup 0$ in $Y$ implies that

$$
\int_{B_{R}(0)}\left|\psi_{n}^{1}\right|^{p} \longrightarrow 0
$$

Thereby, we may assume that $\left|y_{n}^{1}\right| \rightarrow \infty$.
Notice that, by the invariance of translations of $\mathbb{R}^{N}$, we conclude that $\left(\psi_{n}^{1}\left(\cdot+y_{n}^{1}\right)\right)$ is bounded in $Y$. Then, for some $u_{1} \in Y$,

$$
\begin{equation*}
\psi_{n}^{1}\left(\cdot+y_{n}^{1}\right) \rightharpoonup u_{1} \text { in } Y \tag{3.26}
\end{equation*}
$$

Our next step is to prove that $u_{1}$ is a nontrivial solution of $\left(P_{\infty}\right)$.
Claim 3.4 The function $u_{1}$ is a nontrivial solution of $\left(P_{\infty}\right)$.

Initially, let us prove that $u_{1} \neq 0$. To see why, let us denote by $B_{0}$ the unit hypercube of $\mathbb{R}^{N}$ centered at the origin. Then, by the Claim 3.3,

$$
\int_{B_{0}} \mid \psi_{n}^{1}\left(\cdot+\left.y_{n}^{1}\right|^{p}=\int_{B_{i}}\left|\psi_{n}^{1}\right|^{p}=d_{n}^{p} \geq \lambda_{1}^{p}>0 .\right.
$$

Observe that, by (3.26), $\psi_{n}^{1}\left(\cdot+y_{n}^{1}\right) \rightarrow u_{1}$ in $L^{p}\left(B_{0}\right)$. Hence,

$$
\int_{B_{0}}\left|u_{1}\right|^{p} \geq \lambda_{1}^{p}>0
$$

showing that $u_{1} \neq 0$.
Set

$$
\Omega_{n}:=\left\{x \in \mathbb{R}^{N} ; x+y_{n}^{1} \in \Omega\right\} .
$$

Note that, for each $v \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, we have that suppt $v \subset \Omega_{n}$ for $n$ large enough. Setting $v^{(n)}(x):=v\left(x-y_{n}^{1}\right)$, it follows that

$$
\text { suppt } v^{(n)} \subset \Omega \quad \text { and } \quad v^{(n)} \in H_{0}^{1}(\Omega)
$$

Taking $v \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with $\|v\|_{Y} \leq 1$, we see that $\left\|v^{(n)}\right\|_{X}=1$ and

$$
I_{\infty}^{\prime}\left(\psi_{n}^{1}\left(\cdot+y_{n}^{1}\right)\right) v=I_{\infty}^{\prime}\left(\psi_{n}^{1}\right) v^{(n)}
$$

Thus, by item $i i), I_{\infty}^{\prime}\left(\psi_{n}^{1}\left(\cdot+y_{n}^{1}\right)\right) v=o_{n}(1)$. On the other hand, standard arguments involving the weak convergence of $\left(\psi_{n}^{1}\left(\cdot+y_{n}^{1}\right)\right)$ yield

$$
I_{\infty}^{\prime}\left(\psi_{n}^{1}\left(\cdot+y_{n}^{1}\right)\right) v=I_{\infty}^{\prime}\left(u_{1}\right) v
$$

By gathering these information, we derive that $I_{\infty}^{\prime}\left(u_{1}\right) v=0$, then $u_{1}$ is a nontrivial critical point of $I_{\infty}$, and so, $u_{1}$ is a solution of $\left(P_{\infty}\right)$.

Define $\psi_{n}^{2}:=\left(\psi_{n}^{1}\left(\cdot+y_{n}^{1}\right)-u_{1}\right)$. If $\psi_{2}^{n} \rightarrow 0$, then the proof is finished. Otherwise, we use the fact that $\psi_{n}^{2} \rightharpoonup 0$ and the ideas explored above to find a unbounded sequence $\left(y_{n}^{2}\right)$ of $\mathbb{R}^{N}$ and to produce $u_{2} \in Y$ a nontrivial solution of $\left(P_{\infty}\right)$. Continuing with this procedure, for each $j \geq 2$ it is possible to define

$$
\psi_{n}^{j}:=\psi_{n}^{j-1}\left(\cdot+y_{n}^{j-1}\right)-u_{j-1},
$$

with

$$
\left\{\begin{array}{l}
y_{n}^{j-1} \rightarrow \infty \\
\psi_{n}^{j-1} \rightharpoonup u_{j-1},
\end{array}\right.
$$

and $u_{j-1}$ a nontrivial solution of $\left(P_{\infty}\right)$. By exploring the same type of argument used in the prove of item $i$ ), one can prove that
$i i i):\left\|\psi_{n}^{j}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}=\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2}-\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{2}-\sum_{i=1}^{j-1}\left\|u_{i}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}+o_{n}(1) ;$
iv): $I_{\infty}\left(\psi_{n}^{j}\right)=I\left(u_{n}\right)-I\left(u_{0}\right)-\sum_{i=1}^{j-1} I_{\infty}\left(u_{i}\right)+o_{n}(1)$.
$v): \liminf _{n \rightarrow \infty} I_{\infty}\left(\psi_{n}^{j}\right)>0$ for each $j \in \mathbb{N}$.
We finish the proof by proving that the following claim holds.
Claim 3.5 There is a number $k \in \mathbb{N}$ such that $\psi_{n}^{k} \rightarrow 0$ in $Y$.
In fact, otherwise it would be possible to get by the preceding procedure a nontrivial solution $u_{j}$ of $\left(P_{\infty}\right)$ for each $j \in \mathbb{N}$, and so,

$$
I_{\infty}\left(u_{j}\right) \geq d_{\infty}=\inf _{u \in \mathcal{N}_{\infty}} I_{\infty}(u)>0, \forall j \in \mathbb{N}
$$

Thus, from iv),

$$
I_{\infty}\left(\psi_{n}^{j}\right) \leq I\left(u_{n}\right)-I\left(u_{0}\right)-(j-1) d_{\infty}+o_{n}(1) .
$$

As $\left(I\left(u_{n}\right)\right)$ is a bounded sequence, for $j$ large enough the last inequality implies that $\liminf _{n \rightarrow \infty} I_{\infty}\left(\psi_{n}^{j}\right)<0$, which contradicts $v$ ). From this, the Claim 3.5 is proved and the proof is over.

### 3.2 Technical Results

In this section we prove some technical results that are crucial in the proof of Theorem 3.1. The main goal is to prove that $\left.I\right|_{\mathcal{N}}$ satisfies the $(P S)_{c}$ condition for all $c \in\left(d_{\infty}+\varepsilon, 2 d_{\infty}-\varepsilon\right)$, for some $\varepsilon>0$ small enough.

In the sequel,

$$
\chi(t):=\left\{\begin{array}{lr}
1, & 0 \leq t \leq R \\
\frac{R}{t}, & R \leq t
\end{array}\right.
$$

where $R>0$ is such that $\Omega^{c} \subset B_{R}(0)$. Next, let $\tau: Y \longrightarrow \mathbb{R}^{N}$ be given by

$$
\tau(u):=\int_{\mathbb{R}^{N}}|u|^{2} \chi(|x|) x
$$

and set

$$
P:=\{u \in X ; u \geq 0\} \quad \text { and } \quad T_{0}:=\{u \in \mathcal{N} \cap P ; \tau(u)=0\} .
$$

Employing the above notations, let us define the level

$$
c_{0}:=\inf _{u \in T_{0}} I(u),
$$

which satisfies

$$
\begin{equation*}
d_{\infty}=d_{0} \leq c_{0} \tag{3.27}
\end{equation*}
$$

Our first result is the following
Lemma 3.5 The number $c_{0}$ satisfies $d_{\infty}<c_{0}$.
Proof. Arguing by contradiction, in view of (3.27), if the lemma does not hold, then it occurs

$$
d_{\infty}=d_{0}=c_{0} .
$$

Thus, it is possible to take a sequence $\left(v_{n}\right)$ in $\mathcal{N} \cap P$ such that

$$
\tau\left(v_{n}\right)=0 \text { and } I\left(v_{n}\right) \longrightarrow d_{0}=\inf _{u \in \mathcal{N}} I(u)
$$

By applying the Ekeland's Variational Principle, there is a sequence $\left(u_{n}\right)$ in $\mathcal{N}$ satisfying $I\left(u_{n}\right) \leq I\left(v_{n}\right),\left\|u_{n}-v_{n}\right\|_{X}=o_{n}(1)$ and $\left(u_{n}\right)$ is also a $(P S)_{d_{0}}$ sequence for $\left.I\right|_{\mathcal{N}}$ (see e.g. [83, Theorem 8.5]). Thanks to Lemma 3.4, there are $k \in \mathbb{N}$ and nontrivial solutions $u_{1}, \ldots, u_{k}$ of $\left(P_{\infty}\right)$ with

$$
\begin{equation*}
\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2} \longrightarrow\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{2}+\sum_{j=1}^{k}\left\|u_{j}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2} \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
I\left(u_{n}\right) \longrightarrow I\left(u_{0}\right)+\sum_{j=1}^{k} I_{\infty}\left(u_{j}\right), \tag{3.29}
\end{equation*}
$$

where $u_{0}$ has been chosen in a such way that $u_{n} \rightharpoonup u_{0}$ and $u_{0}$ is a solution of $\left(P_{0}\right)$. Using the fact that $d_{\infty}=d_{0}$, it holds

$$
I\left(u_{0}\right)+\sum_{j=1}^{k} I_{\infty}\left(u_{j}\right) \geq I\left(u_{0}\right)+k d_{0}
$$

Since $I\left(u_{n}\right) \rightarrow d_{0}$ and $I\left(u_{0}\right) \geq 0$, from (3.29) one has $k=0$ or $k=1$. If $k=0$, accounting (3.28), we find

$$
u_{n} \longrightarrow u_{0} \text { in } \quad H_{0}^{1}(\Omega) .
$$

Now, as $\left(u_{n}\right)$ is a $(P S)_{d_{0}}$ sequence for $\left.I\right|_{\mathcal{N}}$ (and also for $\left.I\right)$ and $u_{0}$ is a solution of $\left(P_{0}\right)$, one gets

$$
\begin{aligned}
\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2}+\int_{\Omega} F_{1}^{\prime}\left(u_{n}\right) u_{n} & =\int_{\Omega} F_{2}^{\prime}\left(u_{n}\right) u_{n}= \\
& =\int_{\Omega} F_{2}^{\prime}\left(u_{0}\right) u_{0}+o_{n}(1)= \\
& =\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{2}+\int_{\Omega} F_{1}^{\prime}\left(u_{0}\right) u_{0}+o_{n}(1)
\end{aligned}
$$

that is,

$$
\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2}+\int_{\Omega} F_{1}^{\prime}\left(u_{n}\right) u_{n} \longrightarrow\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{2}+\int_{\Omega} F_{1}^{\prime}\left(u_{0}\right) u_{0}
$$

In particular, one has

$$
\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2} \longrightarrow\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{2} \text { and } \int_{\Omega} F_{1}^{\prime}\left(u_{n}\right) u_{n} \longrightarrow \int_{\Omega} F_{1}^{\prime}\left(u_{0}\right) u_{0}
$$

which yields that $u_{n} \rightarrow u_{0}$ in $H_{0}^{1}(\Omega)$ and $u_{n} \rightarrow u_{0}$ in $L^{F_{1}}(\Omega)$, since $F_{1} \in\left(\Delta_{2}\right)$. From this, $u_{n} \rightarrow u_{0}$ in $X$, and so,

$$
I\left(u_{n}\right) \longrightarrow I\left(u_{0}\right)=d_{0},
$$

showing that $u_{0}$ is a ground state solution for $\left(P_{0}\right)$, which contradicts Theorem 3.4. So, $k=1$ and $u_{0}=0$. Otherwise, if $u_{0} \neq 0$, the function $u_{0}$ would be a nonzero solution of $\left(P_{0}\right)$, and so,

$$
d_{0}=\lim I\left(u_{n}\right) \geq 2 d_{0},
$$

giving a new contradiction. By following the notation in the proof of Lemma 3.4, one finds

$$
\left\{\begin{array}{l}
u_{n}\left(x+y_{n}^{1}\right)=\psi_{n}^{1}\left(x+y_{n}^{1}\right) \rightharpoonup u_{1} ; \\
y_{n}^{1} \rightarrow \infty .
\end{array}\right.
$$

Note also that $\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2} \rightarrow\left\|u_{1}\right\|_{H_{0}^{1}(\Omega)}^{2}$ and $I_{\infty}\left(u_{1}\right)=d_{\infty}$. Thus, $u_{1}$ is a ground state solution of $\left(P_{\infty}\right)$.

Now, on accounting of Theorem 3.3 one can gets a contradiction by following the same ideas in [27, Lemma 4.3]. For the sake of completeness, we recall some steps made in [27, Lemma 4.3]. Denote, by simplicity, $y_{n}:=y_{n}^{1}$,

$$
\begin{gathered}
\left(\mathbb{R}^{N}\right)_{n}^{+}:=\left\{x \in \mathbb{R}^{N} ;\left\langle x, y_{n}\right\rangle_{\mathbb{R}^{N}}>0\right\} \\
\left(\mathbb{R}^{N}\right)_{n}^{-}:=\mathbb{R}^{N}-\left(\mathbb{R}^{N}\right)_{n}^{+}
\end{gathered}
$$

and

$$
w_{n}(x):=u_{n}(x)-u_{1}\left(x-y_{n}\right) .
$$

The above information gives $w_{n} \rightarrow 0$ in $H^{1}\left(\mathbb{R}^{N}\right)$.
By Theorem 3.3, without loss of generality we may assume that $u_{1}$ is a radially symmetric solution of $\left(P_{\infty}\right)$. In the same way as [27, Lemma 4.3] (see also [2, Lemma $4.3]$ ), we derive that

$$
\left\{\begin{array}{l}
u_{1}\left(x-y_{n}\right) \geq \frac{1}{2} u_{1}(0)>0, \quad x \in B_{r}\left(y_{n}\right) \\
u_{1}\left(x-y_{n}\right) \rightarrow 0, \text { a.e } x \in\left(\mathbb{R}^{N}\right)_{n}^{-} \text {and } \int_{\left(\mathbb{R}^{N}\right)_{n}^{-}}\left|u_{1}\left(x-y_{n}\right)\right|^{2} \chi(|x|)|x|=o_{n}(1),
\end{array}\right.
$$

for some $r>0$, as well as

$$
\begin{equation*}
\left\langle\tau\left(u_{1}\left(x-y_{n}\right)\right), y_{n} /\right| y_{n}| \rangle_{\mathbb{R}^{N}} \geq C>0, n \geq n_{0} \tag{3.30}
\end{equation*}
$$

for some $C>0$. On the other hand, taking into accounting that $\tau\left(u_{1}\left(\cdot-y_{n}\right)\right)=$ $\tau\left(u_{n}-w_{n}\right)$, and that $\left|\tau\left(u_{n}\right)\right|,\left|\tau\left(w_{n}\right)\right|=o_{n}(1)$, we derive that

$$
\begin{equation*}
\left|\tau\left(u_{1}\left(x-y_{n}\right)\right)\right|=o_{n}(1) . \tag{3.31}
\end{equation*}
$$

From (3.30)-(3.31), we find a contradiction, finishing the proof.
Hereafter we will fix $\rho>0$ as the smallest positive number such that $\Omega^{c} \subset B_{\rho}(0)$. Let $\phi(x):=\varphi\left(\frac{|x|}{\rho}\right)$, where $\varphi \in C_{0}^{\infty}([0, \infty))$ is an increasing function such that $\varphi(t)=0$, $0 \leq t \leq 1$, and $\varphi(t)=1, t \geq 2$. Now, for each $y \in \mathbb{R}^{N}$, we set

$$
\psi_{y, \rho}(x):=\phi(x) u_{\infty}(x-y),
$$

where $u_{\infty} \in \mathcal{N}_{\infty}$ is a ground state solution of $\left(P_{\infty}\right)$, which is assumed to be a decreasing and radially symmetric at the origin. Finally, fix $t_{y, \rho}>0$ satisfying

$$
\phi_{\rho}(y):=t_{y, \rho} \psi_{y, \rho} \in \mathcal{N}_{\infty} .
$$

Next, we prove an important property related to the mappings $\phi_{\rho}(y)$.
Lemma 3.6 The family of mappings $\left(\phi_{\rho}(y)\right)$ satisfies the following limits:
i): $\lim _{\rho \rightarrow 0} I_{\infty}\left(\phi_{\rho}(y)\right)=d_{\infty}$, uniformly in $y \in \mathbb{R}^{N}$;
ii): For each fixed $\rho>0$, it holds $\lim _{|y| \rightarrow \infty} I_{\infty}\left(\phi_{\rho}(|y|)\right)=d_{\infty}$.

Proof. Verification of $i$ ): From the definition of $\psi_{y, \rho}$ and the properties of $u_{\infty}$ (see Theorem 3.3 above), for each fixed $p \in\left[2,2^{*}\right]$, one has

$$
\begin{aligned}
\left\|\psi_{y, \rho}-u_{\infty}(\cdot-y)\right\|_{p}^{p} & \leq C \int_{B_{2 \rho}(0)}\left|u_{\infty}(\cdot-y)\right|^{p} \\
& \leq C \int_{B_{2 \rho}(0)}\left|u_{\infty}(0)\right|^{p} \\
& \leq \tilde{C} \rho^{N}=o_{\rho}(1), \quad \forall y \in \mathbb{R}^{N}
\end{aligned}
$$

Similarly, since $N \geq 3$,

$$
\begin{aligned}
\left\|\nabla\left(\psi_{y, \rho}-u_{\infty}(\cdot-y)\right)\right\|_{2}^{2} & \leq C \int_{B_{2 \rho}(0)}|\nabla \phi|^{2}\left|u_{\infty}(\cdot-y)\right|^{2}+C \int_{B_{2 \rho}(0)}|\phi(x)-1|^{2}\left|\nabla u_{\infty}(\cdot-y)\right|^{2} \\
& \leq C_{1} \rho^{N}+C_{2} \rho^{N-2}, \quad \forall y \in \mathbb{R}^{N}
\end{aligned}
$$

Hence,

$$
\left\|\psi_{y, \rho}\right\|_{p} \longrightarrow\left\|u_{\infty}(\cdot-y)\right\|_{p} \text { as } \rho \rightarrow 0
$$

as well as

$$
\left\|\psi_{y, \rho}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)} \longrightarrow\left\|u_{\infty}(\cdot-y)\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}, \text { as } \rho \rightarrow 0
$$

uniformly in $y \in \mathbb{R}^{N}$. From this,

$$
\int_{\mathbb{R}^{N}} F_{2}\left(\psi_{y, \rho}\right) \longrightarrow \int_{\mathbb{R}^{N}} F_{2}\left(u_{\infty}\right), \text { as } \rho \rightarrow 0
$$

uniformly in $y \in \mathbb{R}^{N}$. Now, using the definition of $\psi_{y, \rho}$, one gets

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|F_{1}\left(\psi_{y, \rho}\right)-F_{1}\left(u_{\infty}(\cdot-y)\right)\right|=\int_{B_{\rho}(0)}\left|F_{1}\left(\psi_{y, \rho}\right)-F_{1}\left(u_{\infty}(\cdot-y)\right)\right| \tag{3.32}
\end{equation*}
$$

By the mean value theorem,

$$
\begin{equation*}
\left.\int_{B_{\rho}(0)}\left|F_{1}\left(\psi_{y, \rho}\right)-F_{1}\left(u_{\infty}(\cdot-y)\right)\right|=\int_{B_{\rho}(0)}\left|F_{1}^{\prime}\left(\theta_{y, \rho}\right)\right||\phi(x)-1| \mid u_{\infty}(\cdot-y)\right) \mid, \tag{3.33}
\end{equation*}
$$

where $\left|\theta_{y, \rho}\right| \leq\left|\psi_{y, \rho}\right|+\left|u_{\infty}(\cdot-y)\right|$. Then, since $\left(\theta_{y, \rho}\right) \subset \mathbb{R}$ is a bounded and $F_{1} \in C^{1}(\mathbb{R})$, we derive that

$$
\left.\int_{B_{\rho}(0)}\left|F_{1}^{\prime}\left(\theta_{y, \rho}\right)\right||\phi(x)-1| \mid u_{\infty}(\cdot-y)\right)\left|\leq C \int_{B_{\rho}(0)}\right| \phi(x)-1| | u_{\infty}(0) \mid=o_{\rho}(1) .
$$

From (3.32)-(3.33),

$$
\int_{\mathbb{R}^{N}} F_{1}\left(\psi_{y, \rho}\right) \longrightarrow \int_{\mathbb{R}^{N}} F_{1}\left(u_{\infty}(\cdot-y)\right), \quad \forall y \in \mathbb{R}^{N}
$$

Adapting the ideas used in the proof of Lemma 3.1, we can show that $t_{y, \rho} \rightarrow 1$ as $\rho \rightarrow 0$, and so,

$$
\left\|\phi_{\rho}(y)\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}=\left\|t_{y, \rho} \psi_{y, \rho}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)} \longrightarrow\left\|u_{\infty}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)} \text { as } \rho \rightarrow 0,
$$

and

$$
\int_{\mathbb{R}^{N}} F_{i}\left(\phi_{\rho}(y)\right) \longrightarrow \int_{\mathbb{R}^{N}} F_{i}\left(u_{\infty}\right), \quad i \in\{1,2\}
$$

The last convergences yield that

$$
\lim _{\rho \rightarrow 0} I_{\infty}\left(\phi_{\rho}(y)\right) \longrightarrow I_{\infty}\left(u_{\infty}\right)=d_{\infty}
$$

uniformly in $y \in \mathbb{R}^{N}$, proving the part $i$ ) of lemma.
Verification of $i i$ ): The proof follows as in the proof Lemma 3.1 and it will be omitted.

A byproduct of the last lemma is the following corollary.
Corollary 3.1 Given $\varepsilon \approx 0^{+}$, there exists $\rho_{0}>0$ such that

$$
\sup _{y \in \mathbb{R}^{N}} I_{\infty}\left(\phi_{\rho}(y)\right)<2 d_{\infty}-\varepsilon, \quad \forall \rho \in\left(0, \rho_{0}\right)
$$

Next, we establish more two important properties of the mappings $\phi_{\rho}(y)$.
Lemma 3.7 Fixed $\rho>0$, there exists $R_{0}>\rho$ such that

$$
\begin{aligned}
& i): d_{\infty}<I\left(\phi_{\rho}(y)\right)<\frac{c_{0}+d_{\infty}}{2},|y| \geq R_{0} ; \\
& i i):\left\langle\tau\left(\phi_{\rho}(y)\right), y\right\rangle,|y|=R_{0} .
\end{aligned}
$$

Proof. Verification of $i)$ : By the definition of $\phi_{\rho}(y)$,

$$
d_{\infty} \leq I_{\infty}\left(\phi_{\rho}(y)\right)=I\left(\phi_{\rho}(y)\right)
$$

On the other hand, as $d_{\infty}=d_{0}$ (see Lemma 3.1) and $\left(P_{0}\right)$ has no ground state solution, it follows that

$$
d_{\infty}<I\left(\phi_{\rho}(y)\right), \quad \text { for any } \quad \rho>0 \quad \text { and } \quad y \in \mathbb{R}^{N} .
$$

Finally, note that, by part $i i$ ) of Lemma 3.6,

$$
I\left(\phi_{\rho}(y)\right)<\frac{c_{0}+d_{\infty}}{2}, \quad|y| \geq R_{0}
$$

for some $R_{0}>0$ large enough, because $c_{0}>d_{\infty}$. This completes the proof of item $\left.i\right)$. Verification of $i i$ ): The proof follows as in [27, Lemma 4.3 (b)].

We finish this section by showing that $\left.I\right|_{\mathcal{N}}$ satisfies the $(P S)_{c}$ for some levels $c \in \mathbb{R}$.

Proposition 3.3 For each fixed $\varepsilon \approx 0^{+}$, the functional $\left.I\right|_{\mathcal{N}}$ satisfies the $(P S)_{c}$ condition for $c \in\left(d_{\infty}+\varepsilon, 2 d_{\infty}-\varepsilon\right)$.

Proof. Let $\left(u_{n}\right)$ be a $(P S)_{c}$ sequence for $\left.I\right|_{\mathcal{N}}$. By Lemma 3.2, we know that $\left(u_{n}\right)$ is a bounded sequence in $X$. Since $X$ is a reflexive space, we may assume that

$$
u_{n} \rightharpoonup u_{0} \text { in } X
$$

If $u_{n} \nrightarrow u_{0}$, by Lemma 3.4 there are $u_{1}, \ldots, u_{k}$ solutions of $\left(P_{\infty}\right)$ such that

$$
\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2} \longrightarrow\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{2}+\sum_{j=1}^{k}\left\|u_{j}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}
$$

and

$$
I\left(u_{n}\right) \longrightarrow I\left(u_{0}\right)+\sum_{j=1}^{k} I_{\infty}\left(u_{j}\right)
$$

Supposing that $u_{0} \neq 0$, we arrive at

$$
I\left(u_{n}\right) \geq(k+1) d_{\infty}+o_{n}(1) .
$$

Since $k \geq 1$, it follows that

$$
c \geq(k+1) d_{\infty} \geq 2 d_{\infty}
$$

which is absurd, because $c<2 d_{\infty}$. This contradiction allows us to infer that $u_{0}=0$. Moreover, we must have $k=1$, because if $k>1$, then

$$
I\left(u_{n}\right) \geq k d_{\infty} \geq 2 d_{\infty}
$$

obtaining again a contradiction. From this, the unique possibility is $u_{0}=0$ and $u_{1}>0$, and so,

$$
c+o_{n}(1)=I\left(u_{n}\right)=I_{\infty}\left(u_{1}\right)+o_{n}(1)=d_{\infty}+o_{n}(1) .
$$

The last equality implies that $c=d_{\infty}$, which is absurd. This reasoning shows that $u_{n} \rightarrow u_{0}$ and the proof is finished.

### 3.3 Existence of positive solution for $\left(P_{0}\right)$ (Dirichlet case)

Along this section we show how the technical results of the preceding section imply in the existence of positive solution for $\left(P_{0}\right)$. The key point is to show that the functional $I$ possesses a $(P S)_{c}$ sequence in a suitable level $c \in\left(d_{\infty}+\varepsilon, 2 d_{\infty}-\varepsilon\right)$, $\varepsilon \approx 0^{+}$. Bearing this in mind, set

$$
G:=\left\{\phi_{\rho}(y) ;|y| \leq R_{0}\right\}
$$

and

$$
H:=\left\{\eta \in C(\mathcal{N} \cap P, \mathcal{N} \cap P) ; \eta(u)=u, \text { if } I(u)<\frac{c_{0}+d_{\infty}}{2}\right\}
$$

Hereafter, we are using the same notations introduced in Section 4. Now, fix

$$
\Gamma:=\{\eta(G) ; \eta \in H\}
$$

and

$$
c:=\inf _{A \in \Gamma} \sup _{u \in A} I(u) .
$$

In view of Lemma 3.7-ii), as made in [9, 27], we can prove the lemma below.
Lemma 3.8 It holds

$$
A \cap T_{0} \neq \emptyset, \quad \forall A \in \Gamma
$$

Our second result in this section ensures that, for some convenient $\varepsilon>0$, we must have
$c \in\left(d_{\infty}+\varepsilon, 2 d_{\infty}-\varepsilon\right)$, which is a key step to show the $(P S)_{c}$ condition of $I$ restricted to $\mathcal{N}$.

Lemma 3.9 There exists $\varepsilon>0$ such that $c \in\left(d_{\infty}+\varepsilon, 2 d_{\infty}-\varepsilon\right)$.
Proof. Using the preceding lemma, for each $A \in \Gamma$ there exists $u_{0} \in A \cap T_{0}$. Therefore,

$$
c_{0}=\inf _{u \in T_{0}} I(u) \leq I\left(u_{0}\right) \leq \sup _{u \in A} I(u),
$$

and so,

$$
c_{0} \leq c
$$

Take $\varepsilon \in\left(0, \frac{d_{\infty}}{2}\right), \varepsilon \approx 0^{+}$, such that

$$
\begin{equation*}
d_{\infty}+\varepsilon<c_{0} \leq c, \tag{3.34}
\end{equation*}
$$

which is possible in view of Lemma 3.5. On the other hand, since

$$
c \leq \sup _{u \in A} I(u), \quad \forall A \in \Gamma,
$$

we know that,

$$
c \leq \sup _{\phi_{\rho}(y) \in G} I\left(\eta\left(\phi_{\rho}(y)\right)\right), \quad \forall \eta \in H
$$

Choosing $\eta:=I d_{(\mathcal{N} \cap P)}$ and applying the Corollary 3.1, one finds

$$
c<2 d_{\infty}-\varepsilon
$$

for $\varepsilon$ and $\rho$ small enough. This combines with (3.34) to give

$$
c \in\left(d_{\infty}+\varepsilon, 2 d_{\infty}-\varepsilon\right)
$$

Now we are able to prove that the problem $\left(P_{0}\right)$ has a positive solution.

Proof of Theorem 3.1: Combining the preceding lemma with the Proposition 3.3, it suffices to show that $\left.I\right|_{\mathcal{N}}$ has a $(P S)_{c}$ sequence in $P$. More precisely, we will prove that the following condition holds:
(D): For each $\lambda \in\left(0, c-\frac{c_{0}+d_{\infty}}{2}\right)$, there exists $u_{\lambda} \in I^{-1}([c-\lambda, c+\lambda])$ with $u_{\lambda} \in \mathcal{N} \cap P$ and

$$
\left\|I^{\prime}\left(u_{\lambda}\right)\right\|_{*}<\lambda
$$

Arguing by contradiction, we find $\lambda_{0} \in\left(0, c-\frac{c_{0}+d_{\infty}}{2}\right)$ such that

$$
\left\|I^{\prime}\left(u_{\lambda}\right)\right\|_{*} \geq \frac{\lambda_{0}}{2}, \quad \forall u \in I\left(\left[c-\lambda_{0}, c+\lambda_{0}\right]\right) \cap(\mathcal{N} \cap P)
$$

By applying the version of quantitative deformation lemma in [83], we get $\eta \in C([0,1] \times \mathcal{N} \cap P, \mathcal{N} \cap P)$ satisfying
i) : $\eta(t, u)=u, \quad \forall u \in I^{-1}\left(\left[c-\lambda_{0}, c+\lambda_{0}\right]\right)$;
ii) : $\eta\left(1, I^{c+\frac{\lambda_{0}}{2}}\right) \subset I^{c-\frac{\lambda_{0}}{2}}$, with $I^{d}:=\{u \in \mathcal{N} \cap P ; I(u) \leq d\}$.

By the definition of $c$, it holds

$$
\sup _{u \in A_{0}} I(u) \leq c+\frac{\lambda_{0}}{2},
$$

for some $A_{0} \in \Gamma$, that is,

$$
A_{0} \in I^{c+\frac{\lambda_{0}}{2}}
$$

Then, by item $i i$,

$$
\begin{equation*}
\eta\left(1, A_{0}\right) \in I^{c-\frac{\lambda_{0}}{2}} \tag{3.35}
\end{equation*}
$$

Note that $A_{0}=\eta_{0}(G)$ for some $\eta_{0} \in H$. Setting $\gamma_{1}:=\eta(1, \cdot) \circ \eta_{0}$ we derive that $\gamma_{1} \in C(\mathcal{N} \cap P, \mathcal{N} \cap P)$ and, if $I(u)<\frac{c_{0}+d_{\infty}}{2}$,

$$
\gamma_{1}(u)=\eta\left(1, \eta_{0}(u)\right)=u
$$

(Note that $c-\lambda_{0}>\frac{c_{0}+d_{\infty}}{2}$ ). Thus, $\gamma_{1} \in H$ and

$$
\eta\left(1, A_{0}\right)=\eta\left(1, \eta_{0}(G)\right)=\gamma_{1}(G) \in \Gamma
$$

Consequently, by (3.35),

$$
c \leq \sup _{u \in \eta\left(1, A_{0}\right)} I(u) \leq c-\lambda_{0} .
$$

This contradiction completes the proof.

### 3.4 Existence of positive solution for $\left(S_{0}\right)$ (Neumann case)

In this section, we study the existence of solution for the following class of problems

$$
\left\{\begin{array}{l}
-\Delta u+u=Q(x) u \log u^{2}, \text { in } \Omega  \tag{0}\\
\frac{\partial u}{\partial \eta}=0, \text { in } \partial \Omega,
\end{array}\right.
$$

where $\Omega$ is an exterior domain as in the problem $\left(P_{0}\right)$, and $Q: \mathbb{R}^{N} \longrightarrow \mathbb{R}$ is a continuous function satisfying the following conditions:
$\left(Q_{1}\right) \lim _{|x| \rightarrow \infty} Q(x)=Q_{0}$ and $q_{0}:=\inf _{x \in \mathbb{R}^{N}} Q(x)>0$ for all $x \in \mathbb{R}^{N} ;$
$\left(Q_{2}\right) Q_{0} \geq Q(x) \geq Q_{0}-C e^{-M|x|^{2}}$, for $x \geq R_{0}, M \geq M_{0}$,
with $Q_{0}, C, M_{0}, R_{0}>0$.
The reader will see in this section that different of the Dirichlet case, we will prove that if $M_{0}>0$ is large enough, then the Problem $\left(S_{0}\right)$ has a ground state solution.

Let $\left(E,\|\cdot\|_{E}\right)$ be a Banach space and $d \in \mathbb{R}$. We recall that a Cerami sequence for a functional $J \in C^{1}(E, \mathbb{R})$ at level $d$ (shortly $(C)_{d^{-}}$sequence), is a sequence $\left(u_{n}\right) \subset E$ satisfying

$$
J\left(u_{n}\right) \longrightarrow d \text { and }\left(1+\left\|u_{n}\right\|_{E}\right)\left\|J^{\prime}\left(u_{n}\right)\right\|_{E^{\prime}} \longrightarrow 0
$$

We say that $J$ verifies the Cerami condition at level $d$, or $(C)_{d}$-condition for short, if each $(C)_{d}$-sequence for $J$ admits a convergent subsequence. Note that a $(C)_{d}$-sequence for $J$ is also a $(P S)_{d}$-sequence. Therefore, if $u_{n} \rightarrow u_{0}$ and $\left(u_{n}\right)$ is a $(C)_{d}$-sequence, then $u_{0}$ is a critical point of $J$. See [35] for further details.

Hereafter, we will need of the auxiliary problem below

$$
\left\{\begin{array}{l}
-\Delta u+u=Q_{0} u \log u^{2}, \text { in } \mathbb{R}^{N} \\
u \in H^{1}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

Note that, in view of the condition $\left(Q_{1}\right)$, the problem $\left(S_{\infty}\right)$ is the limit problem of $\left(S_{0}\right)$.
Applying the Theorem 3.3, by a change of variable, we get the uniqueness of positive solution for $\left(S_{\infty}\right)$. In fact, if $u_{1}$ is a solution for (3.1), by defining $v_{1}(x):=u_{1}\left(\sqrt{k^{-1}} x\right)$, by a direct computation, we find

$$
-\Delta v_{1}=-v_{1}+\frac{1}{k} v_{1} \log v_{1}^{2} \text { in } \mathbb{R}^{N}
$$

So, we get the existence and uniqueness of positive solution for $\left(S_{\infty}\right)$ by choosing $k=Q_{0}^{-1}$.

From now on, we may assume that, up to translations, the problem $\left(S_{\infty}\right)$ has a unique positive solution of the form

$$
\begin{equation*}
v_{\infty}(x)=C_{1} e^{-C_{2}|x|^{2}}, \quad \forall x \in \mathbb{R}^{N} \tag{3.36}
\end{equation*}
$$

for convenient $C_{1}, C_{2}>0$.
Related with the problems $\left(S_{0}\right)$ and $\left(S_{\infty}\right)$ we have the energy functionals

$$
J(u):=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+(1+Q(x))|u|^{2}\right)+\int_{\Omega} Q(x) F_{1}(u)-\int_{\Omega} Q(x) F_{2}(u), \quad \forall u \in Z,
$$

and

$$
J_{\infty}(u):=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\left(1+Q_{0}\right)|u|^{2}\right)+\int_{\mathbb{R}^{N}} Q_{0} F_{1}(u)-\int_{\mathbb{R}^{N}} Q_{0} F_{2}(u), \quad \forall u \in Y
$$

with $Z:=\left(H^{1}(\Omega) \cap L^{F_{1}}(\Omega),\|\cdot\|_{Z}\right),\|\cdot\|_{Z}:=\|\cdot\|_{H^{1}(\Omega)}+\|\cdot\|_{L^{F_{1}}(\Omega)}$, and $Y$ is chosen as in the previous sections. Thus, $J \in C^{1}(Z, \mathbb{R}), J_{\infty} \in C^{1}(Y, \mathbb{R})$ and critical points of $J$ and $J_{\infty}$ correspond respectively to solutions of $(S)$ and $\left(S_{\infty}\right)$.

The Nehari sets associated with the functionals $J$ and $J_{\infty}$ respectively are given by

$$
\mathcal{M}:=\left\{u \in Z-\{0\} ; J^{\prime}(u) u=0\right\}
$$

and

$$
\mathcal{M}_{\infty}:=\left\{u \in Y-\{0\} ; J_{\infty}^{\prime}(u) u=0\right\} .
$$

Arguing as in the proof of Proposition 3.1, we also derive that the sets $\mathcal{M}$ and $\mathcal{M}_{\infty}$ are $C^{1}$-manifolds. Indeed, it suffices to replace $\Psi_{0}$ and $\Psi_{\infty}$ in the proof of Proposition 3.1 by

$$
\tilde{\Psi}_{0}(u)=J(u)-\frac{1}{2} \int_{\Omega} Q(x)|u|^{2} \text { and } \tilde{\Psi}_{\infty}(u)=J_{\infty}(u)-\frac{1}{2} \int_{\mathbb{R}^{N}} Q_{0}|u|^{2},
$$

respectively. From now on, we will denote by $l_{0}$ and $l_{\infty}$ the levels

$$
l_{0}:=\inf _{u \in \mathcal{M}} J(u) \text { and } l_{\infty}:=\inf _{u \in \mathcal{M}_{\infty}} J_{\infty}(u)
$$

It is not difficulty to prove that the function $v_{\infty}$ given in (3.36) satisfies

$$
\begin{equation*}
J_{\infty}\left(v_{\infty}\right)=l_{\infty} \tag{3.37}
\end{equation*}
$$

The next result is a version of Lemma 3.4 for the $(C)_{d}$-sequences of the functional $J$.

Lemma 3.10 Let $\left(v_{n}\right)$ be a $(C)_{d}$-sequence for $J$. Assume that $v_{n} \rightharpoonup v_{0}$. Then, going to a subsequence if necessary, either
i) $v_{n} \rightarrow v_{0}$ in $Z$, or
ii) There exists $k \in \mathbb{N}$ and $k$ nontrivial solutions $v_{j}$ of $\left(S_{\infty}\right), j \in\{1, \ldots, k\}$, satisfying

$$
\left\|v_{n}-v_{0}-\sum_{j=1}^{k} v_{n}^{j}\right\|_{H^{1}(\Omega)}^{2}=o_{n}(1) \text { and } J\left(u_{n}\right) \rightarrow J\left(v_{0}\right)+\sum_{j=1}^{k} J_{\infty}\left(u_{j}\right),
$$

with $v_{n}^{j}:=v_{j}\left(\cdot-y_{n}^{j}\right)$, and $\left(y_{n}^{j}\right) \subset \mathbb{R}^{N}$ with $\left|y_{n}^{j}\right| \rightarrow \infty$ for each $j \in\{1, \ldots, k\}$.

Proof. The proof is a slight variant of the argument made in Lemma 3.4 (see also the ideas in [4, Lemma 3.3] and [27, Lemma 3.1]). In fact, since $\left(v_{n}\right)$ is $(C)_{d}$-sequence for $J$, it holds $J^{\prime}\left(v_{n}\right) v_{n}=o_{n}(1)$. So, it is possible to prove that $\left(v_{n}\right)$ is bounded in the same way of the proof of Lemma 3.4. From this, it follows that $\left(v_{n}\right)$ is a bounded $(P S)_{d}$ sequence for $J$. Accounting that $v_{n} \rightharpoonup v_{0}$, we derive that $J^{\prime}\left(v_{0}\right)=0$, and so, $v_{0}$ is a solution of $\left(S_{0}\right)$. Following the ideas in the proof of Lemma 3.4, setting

$$
\xi_{n}^{1}(x):=v_{n}(x)-v_{0}(x), \text { in } \Omega ;
$$

we find that

$$
\xi_{n}^{1} \rightharpoonup 0 \text { in } Z
$$

Then, if $\xi_{n}^{1} \rightarrow 0$ in $Z$, the proof would be finished. Otherwise, if $\xi_{n}^{1} \nrightarrow 0$ in $Z$, arguing as in the proof of Lemma 3.4, see items $i$ ) $-i i$ ), we find

$$
\begin{equation*}
J\left(\xi_{n}^{1}\right)=J\left(v_{n}\right)-J\left(v_{0}\right)+o_{n}(1) \tag{3.38}
\end{equation*}
$$

and

$$
\begin{equation*}
J^{\prime}\left(\xi_{n}^{1}\right) \xi_{n}^{1}=J^{\prime}\left(v_{n}\right) v_{n}-J^{\prime}\left(v_{0}\right) v_{0}+o_{n}(1) \tag{3.39}
\end{equation*}
$$

In the same line of Lemma 3.4, let us consider $\left(y_{n}^{1}\right)_{n \in \mathbb{N}}$ in $\mathbb{R}^{N}$, with $y_{n}^{1}$ the centers of unit $N$-dimensional hypercubes $B_{i}, \mathbb{R}^{N}=\bigcup_{i \in \mathbb{N}} B_{i}$, and verify

$$
\left\|\xi_{n}^{1}\right\|_{L^{p}\left(\tilde{B}_{i}\right)}^{p}=\max _{j \in \mathbb{N}}\left\|\xi_{n}^{1}\right\|_{L^{p}\left(\tilde{B_{j}}\right)}^{p}:=\delta_{n},
$$

where $\tilde{B}_{i}=\left(B_{i} \cap \Omega\right)$. Next, we are going to guarantee that

$$
\delta_{n} \geq \tau_{0}>0, \quad n \geq n_{0}
$$

for some $n_{0} \in \mathbb{N}$, and

$$
\left|y_{n}^{1}\right| \rightarrow \infty
$$

In the sequel, we set

$$
\tilde{\xi}_{n}(x)=\xi_{n}^{1}\left(x+y_{n}^{1}\right), \quad \Omega_{n}^{1}=\left\{y-y_{n}^{1} ; y \in \Omega\right\}, \quad X_{n}:=H^{1}\left(\Omega_{n}^{1}\right) \cap L^{F_{1}}\left(\Omega_{n}^{1}\right)
$$

and the functional $J_{n}: X_{n} \longrightarrow \mathbb{R}$ given by
$J_{n}(u):=\frac{1}{2} \int_{\Omega_{n}^{1}}\left(|\nabla u|^{2}+\left(1+Q\left(x+y_{n}^{1}\right)\right)|u|^{2}\right)+\int_{\Omega_{n}^{1}} Q\left(x+y_{n}^{1}\right) F_{1}(u)-\int_{\Omega_{n}^{1}} Q\left(x+y_{n}^{1}\right) F_{2}(u), \quad u \in X_{n}$.
The following claim holds.
Claim 3.6 The sequence $\tilde{\xi}_{n}$ is such that

$$
\begin{equation*}
J_{n}\left(\tilde{\xi}_{n}\right) \geq \tau_{1}>0 \tag{3.40}
\end{equation*}
$$

for some $\tau_{1} \in \mathbb{R}$.
It suffices to show that

$$
\inf _{n \in \mathbb{N}}\left(\frac{1}{2} \int_{\Omega_{n}^{1}}\left(\left|\nabla \tilde{\xi}_{n}\right|^{2}+\left(1+Q\left(x+y_{n}^{1}\right)\right)\left|\tilde{\xi}_{n}\right|^{2}\right)+\int_{\Omega_{n}^{1}} Q\left(x+y_{n}^{1}\right) F_{1}\left(\tilde{\xi}_{n}\right)-\int_{\Omega_{n}^{1}} Q\left(x+y_{n}^{1}\right) F_{2}\left(\tilde{\xi}_{n}\right)\right)
$$

is a positive number.
Arguing as in the Claim 3.2, by considering (3.39) and the condition $\left(Q_{1}\right)$, we find

$$
J_{n}\left(\tilde{\xi}_{n}\right)=\int_{\Omega_{n}^{1}} Q\left(x+y_{n}^{1}\right)\left|\tilde{\xi}_{n}\right|^{2}+o_{n}(1) \geq q_{0} \int_{\Omega_{n}^{1}}\left|\tilde{\xi}_{n}\right|^{2}+o_{n}(1) .
$$

Now, if for some subsequence it holds $J_{n}\left(\tilde{\xi}_{n}\right) \leq o_{n}(1)$, then it would have $\left\|\left(\chi_{\Omega_{n}^{1}} \tilde{\xi}_{n}\right)\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}=o_{n}(1)$, and so $\int_{\mathbb{R}^{N}}\left|\chi_{\Omega_{n}^{1}} \tilde{\xi}_{n}\right|^{p}=o_{n}(1)$, for a fixed $p \in\left(2,2^{*}\right]$, by an interpolation argument. From this, by the properties on $F_{2}$ (vide $\left(P_{2}\right)$ above), it follows that

$$
\int_{\Omega_{n}^{1}} F_{2}^{\prime}\left(\tilde{\xi}_{n}\right) \tilde{\xi}_{n}=\int_{\mathbb{R}^{N}} F_{2}^{\prime}\left(\chi_{\Omega_{n}^{1}} \tilde{\xi}_{n}\right) \chi_{\Omega_{n}^{1}} \tilde{\xi}_{n}=o_{n}(1)
$$

Therefore,

$$
\int_{\Omega_{n}^{1}}\left(\left|\nabla \tilde{\xi}_{n}\right|^{2}+\left(1+Q\left(x+y_{n}^{1}\right)\right)\left|\tilde{\xi}_{n}\right|^{2}\right)+\int_{\Omega_{n}^{1}} Q\left(x+y_{n}^{1}\right) F_{1}^{\prime}\left(\tilde{\xi}_{n}\right) \tilde{\xi}_{n}=o_{n}(1)
$$

Equivalently, by a change of variable,

$$
\int_{\Omega}\left(\left|\nabla \xi_{n}\right|^{2}+(1+Q(x))\left|\xi_{n}\right|^{2}\right)+\int_{\Omega} Q(x) F_{1}^{\prime}\left(\xi_{n}\right) \xi_{n}=o_{n}(1)
$$

contradicting the fact that $\xi_{n} \nrightarrow 0$. The proof of the claim is completed.
In the same line of Lemma 3.4, we are able to show that the next claim holds.

Claim 3.7 There exist $\tau_{0}>0$ and $n_{0} \in \mathbb{N}$ such that

$$
\delta_{n} \geq \tau_{0}, \quad n \geq n_{0}
$$

Take into accounting the inequality in (3.40), the proof of the claim follows by reasoning as made in Claim 3.2. However, we would like point out an important fact related with the proof of the Claim 3.2. The inequality in (3.25) plays a crucial role in the proof of Claim 3.2. Such inequality is based in the fact that the constant associated with the embedding

$$
H^{1}\left(B_{i}\right) \hookrightarrow L^{p}\left(B_{i}\right)
$$

are independent of $i$. In the current proof a similar property also holds, more precisely

$$
H^{1}\left(\tilde{B}_{i}\right) \hookrightarrow L^{p}\left(\tilde{B}_{i}\right)
$$

since the sets $\tilde{B}_{i}=\left(B_{i} \cap \Omega\right)$ verify the uniform cone property (see [1]).
The preceding claim assures that

$$
\left|y_{n}^{1}\right| \longrightarrow \infty
$$

In fact, otherwise, it would be possible to find $R>0$, such that

$$
\int_{\left(B_{R}(0) \cap \Omega\right)}\left|\xi_{n}^{1}\right|^{p} \geq \int_{\tilde{B}_{i}}\left|\xi_{n}^{1}\right|^{p}=\delta_{n}^{p} \geq \tau_{0}^{p}>0
$$

This contradicts the convergence

$$
\int_{\left(B_{R}(0) \cap \Omega\right)}\left|\xi_{n}^{1}\right|^{p} \longrightarrow 0
$$

which is valid in view of the weak convergence $\xi_{n}^{1} \rightharpoonup 0$ in $Z$. Thus, hereafter we will assume that $\left|y_{n}^{1}\right| \rightarrow \infty$.

Now, since $y_{n}^{1} \rightarrow \infty$, we know that $\Omega_{n}^{1} \rightarrow \mathbb{R}^{N}$, as $n \rightarrow \infty$, (in the sense of the characteristic functions $\chi_{\Omega_{n}^{1}} \rightarrow 1$ a.e. in $\mathbb{R}^{N}$ ) for each $R>0$, there exists $m_{0} \in \mathbb{N}$ such that $B_{R}(0) \subset \Omega_{n}^{1}, n \geq m_{0}$. Considering that $\left(\xi_{n}^{1}\right)$ is a bounded sequence, it is possible to find $v_{1} \in Y \backslash\{0\}$ satisfying

$$
\tilde{\xi}_{n} \rightharpoonup v_{1} \text { in } H^{1}\left(B_{R}(0)\right) \cap L^{F_{1}}\left(B_{R}(0)\right),
$$

for each $R>0$ fixed. Fixed $\phi \in C_{0}^{\infty}(\Omega)$, inasmuch as $\left|y_{n}^{1}\right| \rightarrow \infty$, we know that, for some $m_{1} \in \mathbb{N}$, it holds

$$
\operatorname{supp} \phi\left(\cdot-y_{n}^{1}\right) \subset \Omega, \quad n \geq m_{1}
$$

Hence, $\phi^{\left(y_{n}^{1}\right)}:=\phi\left(\cdot-y_{n}^{1}\right) \in C_{0}^{\infty}(\Omega)$ for $n \geq m_{1}$.
By exploring the ideas in the proof of Lemma 3.4-ii), we derive

$$
\sup _{n \in \mathbb{N}}\left(\left|J^{\prime}\left(\xi_{n}\right)\right| \cdot\left\|\phi\left(\cdot-y_{n}^{1}\right)\right\|_{Z}\right)=o_{n}(1) .
$$

By combining these information with the properties $\left(Q_{1}\right)$ and (3.25) above, we derive that $v_{1}$ is a nontrivial solution of $\left(S_{\infty}\right)$. Set

$$
\xi_{n}^{2}:=\xi_{n}^{1}-v_{1}\left(\cdot-y_{n}^{1}\right), \text { in } \Omega .
$$

Hence, we can repeat the preceding steps made with $\xi_{n}^{1}$. Following this procedure, the reasoning made in final of Lemma 3.4 allows us to get a $k \in \mathbb{N}$ and unbounded sequences $\left(y_{n}^{1}\right), \ldots,\left(y_{n}^{k}\right)$ in $\mathbb{R}^{N}$ in such way that

$$
\xi_{n}^{j}:=\xi_{n}^{j-1}\left(\cdot+y_{n}^{j-1}\right)-v_{j-1} \rightharpoonup 0, \quad \text { in } Y,
$$

with $v_{j-1}$ a nontrivial solution of $\left(S_{\infty}\right), \xi_{n}^{k+1} \rightarrow 0$, as $n \rightarrow \infty, j \in\{2, \ldots, k\}$. Setting $v_{j}:=v_{j}\left(\cdot-y_{n}^{j}\right)$, these facts assure that

$$
\left\|v_{n}-v_{0}-\sum_{j=1}^{k} v_{n}^{j}\right\|_{H^{1}(\Omega)}^{2}=o_{n}(1)
$$

as well as

$$
J\left(u_{n}\right) \longrightarrow J\left(v_{0}\right)+\sum_{j=1}^{k} J_{\infty}\left(u_{j}\right)
$$

An immediate consequence of the preceding lemma is following corollary.
Corollary 3.2 The functional $J$ verifies the $(C)_{d}$-condition for $d \in\left(0, l_{\infty}\right)$.
Proof. Let $\left(v_{n}\right)$ be a $(C)_{d}$-sequence, with $d \in\left(0, l_{\infty}\right)$. In particular,

$$
J^{\prime}\left(v_{n}\right) v_{n}=o_{n}(1),
$$

and so, using the same ideas explored in the begin of the proof of Lemma 3.3, we derive that $\left(v_{n}\right)$ is a bounded sequence in $Z$ and, going to a subsequence if necessary, it holds $v_{n} \rightharpoonup v_{0}$, for some $v_{0} \in Z$. Since $\left(v_{n}\right)$ is a $(C)_{d}$-sequence, we have $J^{\prime}\left(v_{0}\right)=0$. Now, it is sufficient to observe that the hypothesis $d \in\left(0, l_{\infty}\right)$ combined with the items $\left.\left.i\right)-i i\right)$ of the preceding lemma gives the required result.

We are going to show that $J$ has a ground state solution, i.e., a positive solution $v_{0}$ satisfying $J\left(v_{0}\right)=l_{0}$. We start by showing that the functional $J$ satisfies the mountain geometric (see e.g [83, Section 2.3]).

Lemma 3.11 The functional J verifies the Mountain Pass geometry, i.e.,
i) $J(0)=0$ and there exist $r$, $\rho_{0}>0$ such that $J_{\partial B_{r}(0)} \geq \rho_{0}$;
ii) There exits $v,\|v\|_{Z}>r$, and $J(v) \leq J(0)=0$.

Proof. $i$ ): From the conditions $\left(Q_{1}\right)-\left(Q_{2}\right)$ it follows that, for some constant $C>0$, it holds

$$
J(u) \geq C\|u\|_{H^{1}(\Omega)}^{2}+C \int_{\Omega} F_{1}(u)-Q_{0} \int_{\Omega} F_{2}(u) .
$$

By using (2.4) and $\left(P_{2}\right)$, modifying the constant $C$ if necessary, we can find $r \approx 0^{+}$ such that, for $\|u\|_{Z}=r$, is valid that

$$
J(u) \geq C\|u\|_{H^{1}(\Omega)}^{2}+C\|u\|_{L^{F_{1}}(\Omega)}^{2}-C_{1}\|u\|_{Z}^{p} \geq C_{2}\|u\|_{Z}^{2}-C_{1}\|u\|_{Z}^{p}
$$

with $C_{1}, C_{2}>0$ and $p>2$. The property required in the item $\left.i\right)$ follows as a direct consequence of the last inequality.
ii): Fix $u \in Z-\{0\}$. So,

$$
J(t u)=\frac{t^{2}}{2}\left[\int_{\Omega}\left(|\nabla u|^{2}+|u|^{2}\right)-\frac{1}{2} \int_{\Omega} Q(x) u^{2} \log u^{2}-\log t \int_{\Omega} Q(x) u^{2}\right] \longrightarrow-\infty,
$$

as $t \rightarrow \infty$. So, the item $i i$ ) holds by taking $v=t u$, for some $t \approx \infty$.
We are going to show that the problem $\left(S_{0}\right)$ has a ground state solution. To begin with, we will show the existence of a $(C)_{d}$-sequence at mountain pass level. Namely, we have the following corollary.

Corollary 3.3 The functional $J$ has a sequence $(C)_{\tilde{l}_{0}}$-sequence, where $\tilde{l}_{0}$ is the level

$$
\tilde{l}_{0}:=\inf _{\gamma \in \Gamma} \sup _{t \in[0,1]} J(\gamma(t)),
$$

and

$$
\Gamma:=\{\gamma \in C([0,1], Z) ; \gamma(0)=0, \gamma(1)<0\} .
$$

Proof. The result follows by a variant of the classical Mountain Pass Theorem of Ambrosetti-Rabinowitz (see, e.g., [83, Section 2]). Note that the reasoning made in [83] can be adapted when the $(P S)_{d}$-sequences are replaced by $(C)_{d}$-sequences (see the

Proposition 1.1 in [38] for a statement of a variant Mountain Pass Theorem involving the Cerami sequences).

Exploring the ideas in [10, Lemma 3.3], in view of $\left(Q_{1}\right)$, we can show that the level $\tilde{l}_{0}$ in the above corollary coincides with the level $l_{0}$, namely, it holds

$$
\begin{equation*}
\tilde{l}_{0}=l_{0}:=\inf _{u \in \mathcal{M}} J(u) \tag{3.41}
\end{equation*}
$$

Thereby, the last corollary assures the existence of a $(C)_{l_{0}}$-sequence for $J$. The next lemma is our main technical result in the present section, and it relates the levels $l_{0}$ and $l_{\infty}$.

Lemma 3.12 Assume the conditions $\left(Q_{1}\right)-\left(Q_{2}\right)$. Then the following inequality holds.

$$
l_{0}<l_{\infty} .
$$

Proof. Set

$$
v_{n}(x):=v_{\infty}\left(x-x_{n}\right),
$$

with $x_{n}:=(n, 0, \ldots, 0) \in \mathbb{R}^{N}$ and $v_{\infty}$ the solution of $\left(S_{\infty}\right)$ satisfying (3.37). By (3.41),

$$
l_{0} \leq \max _{t \geq 0} J\left(t v_{n}\right)=: J\left(t_{n} v_{n}\right)
$$

and $t_{n} \in(0, \infty)$. In this way, we derive that $t_{n} v_{n} \in \mathcal{M}$, which yields

$$
t_{n}^{2} \int_{\Omega}\left(\left|\nabla v_{n}\right|^{2}+\left|v_{n}\right|^{2}\right)=\int_{\Omega} t_{n}^{2}\left|v_{n}\right|^{2} \log \left|t_{n} v_{n}\right|^{2} .
$$

Therefore, since $\left|x_{n}\right| \rightarrow \infty$, the same ideas employed in the proof of Lemma 3.1 enable us to show that, going to a subsequence if necessary, it holds $t_{n} \rightarrow 1$.

Now, it follows that

$$
\begin{aligned}
l_{0} \leq J\left(t_{n} v_{n}\right)= & \frac{1}{2} \int_{\Omega}\left(\left|t_{n} \nabla v_{n}\right|^{2}+(1+Q(x))\left|t_{n} v_{n}\right|^{2}\right)+\int_{\Omega} Q(x) F_{1}\left(t_{n} v_{n}\right)-\int_{\Omega} Q(x) F_{2}\left(t_{n} v_{n}\right)= \\
= & J_{\infty}\left(t_{n} v_{n}\right)-\frac{t_{n}^{2}}{2} A_{n}+\int_{\Omega^{c}} Q_{0} F_{2}\left(t_{n} v_{n}\right)-\int_{\Omega^{c}} Q_{0}\left[F_{1}\left(t_{n} v_{n}\right)+\frac{t_{n}^{2}}{2} v_{n}^{2}\right]+ \\
& +\int_{\Omega}\left(Q_{0}-Q(x)\right)\left[F_{2}\left(t_{n} v_{n}\right)-F_{1}\left(t_{n} v_{n}\right)-\frac{t_{n}^{2}}{2} v_{n}^{2}\right],
\end{aligned}
$$

with $A_{n}:=\int_{\Omega^{c}}\left(\left|\nabla v_{n}\right|^{2}+\left|v_{n}\right|^{2}\right)$. From $\left(Q_{1}\right)$,

$$
l_{0} \leq J_{\infty}\left(t_{n} v_{n}\right)-\frac{t_{n}^{2}}{2} A_{n}+\int_{\Omega^{c}} Q_{0} F_{2}\left(t_{n} v_{n}\right)+\int_{\Omega}\left(Q_{0}-Q(x)\right) F_{2}\left(t_{n} v_{n}\right) .
$$

Taking into account that $t_{n} \rightarrow 1$ as $\left|x_{n}\right| \rightarrow \infty$, the condition $\left(Q_{1}\right)$ and the invariance by translations of $\mathbb{R}^{N}$, one finds

$$
J_{\infty}\left(t_{n} v_{n}\right)=J_{\infty}\left(v_{\infty}\right)+o_{n}(1)=c_{\infty}+o_{n}(1)
$$

This information together with the last inequality give

$$
\begin{equation*}
l_{0} \leq l_{\infty}+o_{n}(1)-\frac{t_{n}^{2}}{2} A_{n}+B_{n} \tag{3.42}
\end{equation*}
$$

with $B_{n}:=\int_{\Omega^{c}} Q_{0} F_{2}\left(t_{n} v_{n}\right)+\int_{\Omega}\left(Q_{0}-Q(x)\right) F_{2}\left(t_{n} v_{n}\right)$.
Our next step is proving that $\frac{B_{n}}{A_{n}} \rightarrow 0$. Having this in mind, since $\left|\Omega^{c}\right|<\infty$, the equality in (3.36) implies

$$
\begin{equation*}
A_{n} \geq \int_{\Omega^{c}}\left|v_{n}\right|^{2} \geq C e^{-2 C_{2} n^{2}}, \quad \forall n \in \mathbb{N} \tag{3.43}
\end{equation*}
$$

for a convenient $C>0$. From the condition $\left(P_{2}\right)$, for some $p \in\left(2,2^{*}\right]$, it holds

$$
\left|F_{2}(t)\right| \leq C_{p}|t|^{p}, \quad \forall t \in \mathbb{R}
$$

Therefore, using again $\left|\Omega^{c}\right|<\infty$, one has

$$
\begin{equation*}
Q_{0} \int_{\Omega^{c}} F_{2}\left(t_{n} v_{n}\right) \leq C e^{-p C_{2} n^{2}} \tag{3.44}
\end{equation*}
$$

for some $C$. Now, take $R_{n} \in(0, n)$. So,

$$
\int_{\Omega}\left(Q_{0}-Q(x)\right) F_{2}\left(t_{n} v_{n}\right)=\int_{\Omega \cap\left[|x|>R_{n}\right]}\left(Q_{0}-Q\right) F_{2}\left(t_{n} v_{n}\right)+\int_{\Omega \cap\left[|x| \leq R_{n}\right]} F_{2}\left(t_{n} v_{n}\right) .
$$

By invoking the assumption $\left(Q_{2}\right)$, it follows that

$$
\begin{equation*}
\int_{\Omega \cap\left[|x|>R_{n}\right]}\left(Q_{0}-Q(x)\right) F_{2}\left(t_{n} v_{n}\right) \leq C e^{-M R_{n}^{2}}, \tag{3.45}
\end{equation*}
$$

for some $C>0$, as well as,

$$
\begin{equation*}
\int_{\Omega \cap\left[|x| \leq R_{n}\right]}\left(Q_{0}-Q(x)\right) F_{2}\left(t_{n} v_{n}\right) \leq C_{N} n^{N} e^{-p C_{2}\left(n-R_{n}\right)^{2}} \tag{3.46}
\end{equation*}
$$

for some constant $C_{N}>0$. The estimates in (3.43)-(3.46) combined produce, for some constant $C>0$,

$$
\frac{B_{n}}{A_{n}} \leq C\left(\frac{e^{2 C_{2} n^{2}}}{e^{p C_{2} n^{2}}}+\frac{e^{2 C_{2} n^{2}}}{e^{M R_{n}^{2}}}+\frac{C_{N} n^{N} e^{2 C_{2} n^{2}}}{e^{p C_{2}\left(n-R_{n}\right)^{2}}}\right)
$$

Setting $R_{n}:=\frac{n}{k}, k \in \mathbb{N}$, we find

$$
\frac{C_{N} n^{N} e^{2 C_{2} n^{2}}}{e^{p C_{2}\left(n-R_{n}\right)^{2}}}=\frac{C_{N} n^{N} e^{2 C_{2} n^{2}}}{e^{\left(\frac{k-1}{k}\right)^{2} p C_{2} n^{2}}} .
$$

Since $\left(\frac{k-1}{k}\right)^{2}$ converges to 1 , as $k \rightarrow \infty$, and $p>2$, we may fix $k_{0} \approx \infty$ such that $p\left(\frac{k_{0}}{k_{0}-1}\right)^{2}>2$. Hence

$$
\frac{C_{N} n^{N} e^{2 C_{2} n^{2}}}{e^{\left(\frac{k_{0}-1}{k_{0}}\right)^{2} p C_{2} n^{2}}} \longrightarrow 0 .
$$

Then, choosing $M_{0}$ large enough in the condition $\left(Q_{2}\right)$, we derive that

$$
\frac{e^{2 C_{2} n^{2}}}{e^{M R_{n}^{2}}}=\frac{e^{2 C_{2} n^{2}}}{e^{\left(M / k_{0}^{2}\right) n^{2}}} \longrightarrow 0
$$

These convergences assure that

$$
\frac{B_{n}}{A_{n}} \longrightarrow 0
$$

Recalling that $t_{n} \rightarrow 1$ for some $n_{0} \in \mathbb{N}$,

$$
-\frac{t_{n}^{2}}{2} A_{n}+B_{n}=\left(\frac{-t_{n}^{2}}{2}+\frac{B_{n}}{A_{n}}\right) A_{n}<0, \quad n \geq n_{0}
$$

Using this information in (3.42), we derive that

$$
l_{0}<l_{\infty},
$$

proving the desired result.
Now we can prove our main result.
Proof of Theorem 3.2. The proof is essentially established. In fact, by combining the Corollary 3.3 with (3.41), there exists a $(C)_{l_{0}}$-sequence for $J$, which will be denotes by $\left(v_{n}\right)$. Since $\left(v_{n}\right)$ is bounded, it follows that

$$
J\left(v_{n}\right) \longrightarrow l_{0} \text { and } J^{\prime}\left(v_{n}\right) \longrightarrow 0
$$

Invoking together the Corollary 3.2 and the Lemma3.12, we may assume that

$$
v_{n} \longrightarrow v_{0} \text { in } Z,
$$

for some $v_{0}$. In this way, we derive that

$$
J\left(v_{0}\right)=l_{0} \text { and } J^{\prime}\left(v_{0}\right)=0
$$

and so $v_{0}$ is a ground state solution for $\left(S_{0}\right)$. Now, we would like to point out that $v_{0}$ can be chosen as a positive solution. Indeed, writing $v_{0}=v_{0}^{+}-v_{0}^{-}$, with $v_{0}^{+}:=\max \left\{v_{0}, 0\right\}$ and $v_{0}^{-}:=\max \left\{-v_{0}, 0\right\}$, we find $J^{\prime}\left(v_{0}^{+}\right) v_{0}^{+}=J^{\prime}\left(v_{0}^{-}\right) v_{0}^{-}=0$ and $l_{0}=J\left(v_{0}\right)=J\left(v_{0}^{+}\right)+J\left(v_{0}^{-}\right)$. These facts combined assure that either $v_{0}^{+}=0$ or $v_{0}^{-}=0$. Hence, since $f(t)=t \log t$ is an odd function, we may assume that $v_{0} \geq 0$, so that $v_{0}>0$ by a variant of maximum principle presented in [82] (see [7, 10, 11] for a similar reasoning)

## APPENDIX A

## A brief on nonsmooth critical point theory

Next, we present, in general lines, some notions of the generalized critical point theory required in our study. We subdivide the list of abstract concepts and results into two parts: firstly, we present the notions related with locally Lipschitz functionals. Secondly, we introduce the concepts referring to l.s.c. functionals. For further details and proofs, we refer Chang [36], Clarke [40,41], Carl, Le and Motreanu [34], Motreanu and Panagiotopoulos [71, Chapters 1-2], and Szulkin [81].

## A. 1 The locally Lipschitz case

A real-valued functional $\varphi: X \rightarrow \mathbb{R}$ is called locally Lipschitz continuous (briefly $\left.\varphi \in \operatorname{Lip}_{\text {loc }}(X, \mathbb{R})\right)$ when to every $u \in X$ there correspond a neighbourhood $V:=V_{u}$ of $u$ and a constant $K:=K_{u}>0$ such that

$$
|\varphi(v)-\varphi(w)| \leq K\|v-w\|, \quad \forall v, w \in V .
$$

The generalized directional derivative of $\varphi \in \operatorname{Lip}_{\text {loc }}(X, \mathbb{R})$ at $u$ along the direction $v \in X$ is defined by

$$
\varphi^{\circ}(u ; v):=\limsup _{w \rightarrow u, t \rightarrow 0^{+}} \frac{\varphi(w+t v)-\varphi(w)}{t} .
$$

The generalized gradient of the function $\varphi \in \operatorname{Lip}_{\mathrm{loc}}(X, \mathbb{R})$ in $u$ is the set

$$
\partial \varphi(u)=\left\{\phi \in X^{*}: \varphi^{\circ}(u ; v) \geq\langle\phi, v\rangle, \forall v \in X\right\} .
$$

Proposition 2.1.2 of [41] ensures that $\partial \varphi(u)$ turns out nonempty, convex, in addition to weak* compact, and that

$$
\varphi^{\circ}(u ; v):=\max \{\langle\eta, v\rangle: \eta \in \partial \varphi(u)\} .
$$

In the sequel we say that a point $u \in X$ is a critical point of $\varphi \in \operatorname{Lip}_{\text {loc }}(X, \mathbb{R})$ if $0 \in \partial \varphi(u)$. We also recall that, when a functional $\eta: X \rightarrow \mathbb{R}$ is convex, the subdifferential of $\eta$ at $u$ is the set

$$
\begin{equation*}
\partial_{s} \eta(u):=\left\{\phi \in X^{*}: \eta(v)-\eta(u) \geq\langle\phi, v-u\rangle, \forall v \in X\right\} . \tag{A.1}
\end{equation*}
$$

If $\eta \in \operatorname{Lip}_{\text {loc }}(X, \mathbb{R})$ then $\partial_{s} \eta(u)=\partial \eta(u)$.
Some usual properties of the generalized directional derivative as well of the generalized gradient are listed below.

Lemma A. 1 Let $\varphi \in \operatorname{Lip}_{\text {loc }}(X, \mathbb{R})$, then
i) the map $(u, v) \mapsto \varphi^{\circ}(u, v)$ is an upper semicontinuous functional, i.e. if $\left(u_{j}, v_{j}\right) \rightarrow(u, v)$ then

$$
\lim \sup \varphi^{\circ}\left(u_{j}, v_{j}\right) \leq \varphi^{\circ}(u, v)
$$

ii) $\varphi^{\circ}(u,-v)=(-\varphi)^{\circ}(u, v)$.

Lemma A. 2 If $\psi$ is continuously Fréchet differentiable in an open neighborhood of $u \in X$, then $\partial \psi(u)=\left\{\psi^{\prime}(u)\right\}$.

Lemma A. 3 If $\varphi, \psi \in \operatorname{Lip}_{\text {loc }}(X, \mathbb{R})$, then for each $u \in X$ one has
i) $\partial(\varphi+\psi)(u) \subseteq \partial \varphi(u)+\partial \psi(u)$;
ii) $\partial(\varphi+\psi)(u)=\left\{\varphi^{\prime}(u)\right\}+\partial \psi(u)$, provided that $\varphi \in C^{1}(X, \mathbb{R})$.

In the next lemma we report an important property between $\varphi^{\circ}(u, v)$ and the Gâteaux derivatives of $\varphi$ at $u \in X$ along $v \in X$, i.e.

$$
\begin{equation*}
\frac{\partial \varphi}{\partial v}(u):=\lim _{t \rightarrow 0^{+}} \frac{\varphi(u+t v)-\varphi(u)}{t} . \tag{A.2}
\end{equation*}
$$

Lemma A. 4 If $\varphi \in \operatorname{Lip}_{\mathrm{loc}}(X, \mathbb{R})$ is convex, then $\frac{\partial \varphi}{\partial v}(u)$ exists for any $u, v \in X$ and

$$
\frac{\partial \varphi}{\partial v}(u)=\varphi^{\circ}(u, v)
$$

## A. 2 The lower semicontinuous case

From now on, we say that a functional $I: X \rightarrow(-\infty,+\infty]$ is a Szulkin-type functional if
$\left(H_{0}\right) I:=\Phi+\Psi$, with $\Phi \in C^{1}(X, \mathbb{R})$ and $\Psi: X \rightarrow(-\infty,+\infty]$ is a convex lower semicontinuous functional and proper, i.e. $\Psi \not \equiv \infty$.

The effective domain of $I$ is defined by

$$
D(I):=\{u \in X: I(u)<+\infty\}
$$

and so, for a Szulkin-type functional $I$ one has that $D(I)=D(\Psi)$. For each $u \in D(I)$, we say that the subdifferential of $I$ at $u$ is the set

$$
\begin{equation*}
\partial I(u):=\left\{\varphi \in X^{*}:\left\langle\Phi^{\prime}(u), v-u\right\rangle+\Psi(v)-\Psi(u) \geq\langle\varphi, v-u\rangle, \forall v \in X\right\} . \tag{A.3}
\end{equation*}
$$

Definition A. 1 Suppose that I is a Szulkin-type functional Then
i) a point $u \in X$ is called a critical point of $I$ if $0 \in \partial I(u)$, or more precisely, $u \in D(I)$ and

$$
\left\langle\Phi^{\prime}(u), v-u\right\rangle+\Psi(v)-\Psi(u) \geq 0, \quad \forall v \in X
$$

ii) a sequence $\left(u_{n}\right)$ is called a Palais-Smale sequence (briefly (PS) sequence) for $I$ at level $c \in \mathbb{R}$ if $I\left(u_{n}\right) \rightarrow c$ and

$$
\left\langle\Phi^{\prime}\left(u_{n}\right), v-u_{n}\right\rangle+\Psi(v)-\Psi\left(u_{n}\right) \geq-\varepsilon_{n}\left\|v-u_{n}\right\|, \quad \forall v \in X
$$

with $\varepsilon_{n} \rightarrow 0^{+}$, or equivalently (see [81, Proposition 1.2])

$$
\left\langle\Phi^{\prime}\left(u_{n}\right), v-u_{n}\right\rangle+\Psi(v)-\Psi\left(u_{n}\right) \geq\left\langle w_{n}, v-u_{n}\right\rangle, \quad \forall v \in X,
$$

where $w_{n} \in X^{*}$ with $w_{n} \rightarrow 0$ in $X^{*}$;
iii) I satisfies the Palais-Smale condition (briefly (PS) condition) at level $c \in \mathbb{R}$ when each (PS) sequence $\left(u_{n}\right)$ at level chas a convergent subsequence. If I verifies the (PS) condition for all level c, we say simply that I satisfies the (PS) condition.

For a fixed Szulkin-type functional $I$, denote by $K$ and $K_{c}$ respectively, the following sets

$$
K:=\{u \in X: u \text { is a critical point of } I\},
$$

and

$$
K_{c}:=\{u \in K: I(u)=c\} .
$$

The following result holds

Proposition A. 1 Suppose that I verifies $\left(H_{0}\right)$ and the (PS) condition at level $c \in \mathbb{R}$. Then, $K_{c}$ is a compact set.

## appendix B

## Group actions on Banach spaces

This appendix is focused in discussing the main notions associated with group actions on Banach spaces. The notions described in this subsection follow closely the presentation in [83, Sections 1.6 and 3.2]; see also Bartsch [24] for additional comments and remarks. We also give a short review about the building of the Haar's integral on a compact group $G$; see Nachbin [72] for a abstract preview on this subject.

## B. 1 General settings

Let $G$ be a topological group with neutral element $e$ and $X$ a Banach space. An action of $G$ on $X$ is a continuous function

$$
\begin{aligned}
\phi: G \times X & \rightarrow X \\
(g, v) & \mapsto \phi(g, v)=g v
\end{aligned}
$$

such that
$\left(G_{1}\right) e v=v, \forall x \in X ;$
$\left(G_{2}\right)(g h) v=g(h v), \forall v \in X, \forall g, h \in G ;$
$\left(G_{3}\right)$ For each $g \in G$ the map

$$
\begin{aligned}
\phi_{g}: X & \rightarrow X \\
v & \mapsto \phi_{g}(v)=g v
\end{aligned}
$$

is linear.

If in addition to the above condition, the following relation holds
$\left(G_{4}\right)\|g v\|=\|v\|, \forall v \in X, \forall g \in G$,
then the map $\phi$ is said to be an isometric action. According to the above definitions, we say that $G$ acts isometrically on $X$ when $\left(G_{1}\right)-\left(G_{4}\right)$ hold.

The subspace of invariant elements of $X$ is defined by

$$
\operatorname{Fix}(G):=\{u \in X: g u=u \forall g \in G\} .
$$

Example B. $11^{\mathbf{O}}$ ) Let $I d: X \rightarrow X$ be the identity map on $X$ and consider the usual representation $\mathbb{Z}_{2}=\{I d,-I d\}$. Standard computations ensure that the group $\mathbb{Z}_{2}$ acts isometrically on $X$.
$2^{\mathbf{0}}$ ) Consider $G=O(N)$ the group of orthogonal maps on $\mathbb{R}^{N}$. We define the action of $G$ on $H^{1}\left(\mathbb{R}^{N}\right)$ in the following way

$$
g u=u \circ g^{-1}, \quad g \in G, u \in H^{1}\left(\mathbb{R}^{N}\right) .
$$

Note that, in this case, $\operatorname{Fix}(G)=H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right)$ and that $G$ acts isometrically on $H^{1}\left(\mathbb{R}^{N}\right)$ (see [83, Section 1.5] for additional comments).

A subset $A$ of $X$ is said to be $G$-invariant if $g A=A$ for every $g \in G$, where $g A:=\{g x: x \in A\}$. Also, when $A \subset X$ is a $G$-invariant set, a map $\gamma: A \rightarrow X$ is called equivariant map if

$$
\gamma(g x)=g \gamma(x) \quad \forall x \in A, \forall g \in G .
$$

If a functional (not necessarily linear) $\varphi$ defined on $X$ satisfies $\varphi(g x)=\varphi(x)$ for any $x \in X$ and $g \in G$, we say that $\varphi$ is a $G$-invariant functional.

Notation: $\Gamma_{G}(A):=\{\gamma \in C(A, X): \gamma$ is equivariant $\}$.

## B. 2 The Haar's Integral

The proofs e more detailed comments about the results and concepts in the sequel can be found in [72, Chapter II].

## B.2.1 The normalized Haar measure

Suppose that $G$ is a locally compact group and $\mu$ a positive measure on $G$. According to the classical literature on the subject, $\mathcal{L}(G, \mu)$ denotes here the space of the integrable functions $f: G \longrightarrow \mathbb{R}$ with respect to the measure $\mu$, and $\mu$ is a left invariant measure when

$$
\begin{equation*}
\int_{G} f\left(g^{-1} y\right) d \mu=\int_{G} f(y) d \mu, \forall g \in G, \tag{B.1}
\end{equation*}
$$

for every $f \in \mathcal{L}(G, \mu)$.
The next result assures the existence of a left invariant measure on a locally compact topological group $G$.

Theorem B. 2 (Haar) Let $G$ be a locally compact group. Then, there exists at least one left invariant positive measure $\mu_{0} \neq 0$. Moreover, the measure $\mu_{0}(G)$ is unique except for a strictly positive factor of proportionality, i.e. if $\mu_{1}$ is a left invariant positive measure on $G$, there exists $c>0$ such that $\mu_{1}=c \mu_{0}(G)$. Finally

$$
\mu_{0}(G)<\infty \Leftrightarrow G \text { is compact. }
$$

See [72, Chapter II, Sections 4 and 5] for a detailed proof.
Corollary B. 1 (Normalized Haar measure) Let $G$ be a compact group. Then, there exists a left invariant positive measure $\mu$ on $G$ such that $\mu(G)=1$.

Proof. Take $\mu:=\frac{1}{\mu_{0}(G)} \mu_{0}$, with $\mu_{0}$ given in the Theorem B.2.
Remark B. 1 The integral associated to $\mu_{0}$ in the Theorem B. 2 is the so called Haar's integral.

## B.2.2 A vector-valued version of the Haar's integral

The Haar's integral as defined above can be extended for $X$-valued measurable functions, that is, for functions $f: G \longrightarrow X$. In the sequel we show how this construction can be established. The steps and arguments follow the ideas in [55, Apenddix E] and [31, Chapter 9.].

Fix $G$ a compact group that acting isometrically in a Banach space $X$ and let $\mu$ be the Normalized Haar's measure given in Corallary B.1. Denote by $\Sigma$ a $\sigma$-algebra of $G$ such that $\mu$ is well defined on $\Sigma$.

Definition B. 1 A function $\phi: G \longrightarrow X$ is said to be a measurable simple function if there exist $A_{1}, \ldots, A_{k} \in \Sigma, A_{i} \cap A_{j}=\emptyset, i \neq j$, and $v_{1}, \ldots, v_{k} \in X$ such that

$$
\phi=\sum_{j=1}^{k} \chi_{A_{j}} v_{j}
$$

with $\chi_{A_{j}}$ the characteristic function of $A_{j}, j \in\{1, \ldots, k\}$.
An arbitrary function $f: G \longrightarrow X$ is called a measurable function if there exists a sequence of measurable functions $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\phi_{n}(x) \longrightarrow f(x), \text { a.e. in } G
$$

By following the same ideas in the building of the Bochner's integral (see, e.g., [31, Chapter 9]) we have the following definition.

Definition B. 2 Consider a measurable simple function of the form $f=\sum_{j=1}^{k} \chi_{A_{j}} v_{j}$. We define the (vector) integral of $f$ as follows:

$$
\int_{G} f d \mu=\int_{G}\left(\sum_{j=1}^{k} \chi_{A_{j}} v_{j}\right) d \mu:=\sum_{j=1}^{k} \mu\left(A_{j}\right) v_{j} .
$$

Given a measurable function $f: G \longrightarrow X$, we say that $f$ is an integrable function if there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of measurable simple functions satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{G}\left\|f_{n}-f\right\| d \mu \longrightarrow 0 \tag{B.2}
\end{equation*}
$$

The convergence in (B.2) enable us to define the integral of a measurable function in the following way.

Definition B. 3 Given a measurable function $f: G \longrightarrow X$ and $B \in \Sigma$ we define the integral of $f$ on $B$ by the equality below:

$$
\int_{B} f d \mu:=\lim _{n \rightarrow \infty} \int_{G} \chi_{B} f_{n} d \mu
$$

with $\left(f_{n}\right)_{n \in \mathbb{N}}$ a sequence of measurable simple functions verifying (B.2).
The following propositions, whose the proofs can be found in [31, Section 9.7], assure that last definition is well posed. In addition, some technical properties involving vector integrals are pointed out in the next results.

Proposition B. 1 Let $f: G \longrightarrow X$ be a function. The following items are valid:
$i)$ : The function $f$ is a measurable function if, and only if, the function $\|f\|: G \longrightarrow \mathbb{R}$ is a real-valued measurable function.
ii): The function $f$ is an integrable function if, and only if, the function $\|f\| \in \mathcal{L}(G, \mu)$.
iii): If $f: G \longrightarrow X$ is an integrable function (in the sense of (B.2)), then there exists $\left(f_{n}\right)_{n \in \mathbb{N}}$ a sequence of measurable simple functions such that

$$
f_{n}(x) \longrightarrow f(x), \text { a.e in } G
$$

and

$$
\left\|f_{n}-f\right\| \longrightarrow 0 \text { in } L^{1}(G)
$$

The next result present some properties of the vector integrals which have been used in Chapter 1.

Proposition B. 2 Let $f: G \longrightarrow X$ be an integrable function and consider $B \in \Sigma$. So, it holds:

$$
i):\left\|\int_{B} f d \mu\right\| \leq \int_{B}\|f\| d \mu
$$

ii): Let $Y$ a Banach space and $T: X \longrightarrow Y$ a continuous linear map. Then, the function $T \circ f: G \longrightarrow Y$ is an integrable function with

$$
\int_{G} T \circ f d \mu=T\left(\int_{G} f d \mu\right)
$$

Next, we prove that the left invariance property of $\mu$ in (B.1) still holds for integrable $X$-valued functions $f: G \longrightarrow X$.

Theorem B. 3 For all integrable function $f: G \longrightarrow X$ it holds

$$
\int_{G} f\left(g^{-1} x\right) d \mu=\int_{G} f(x) d \mu .
$$

Proof. Initially, consider the case that

$$
f=\sum_{j=1}^{k} \chi_{A_{j}} v_{j}
$$

is a measurable simple function. So, given $g \in G$, we have

$$
f\left(g^{-1} x\right)=v_{j}
$$

for any $x \in g A_{j}=\left\{g y ; y \in A_{j}\right\}$. Since $G$ acts isometrically in $X$, it holds $g A_{j} \cap g A_{i}$, $i \neq j, i, j \in\{1, \ldots, k\}$, so that

$$
f\left(g^{-1} x\right)=\sum_{j=1}^{k} \chi_{g A_{j}}(x) v_{j}
$$

Since $\mu$ is a left-invariant for real function $\phi \in \mathcal{L}(G, \mu)$, we get

$$
\mu\left(g A_{j}\right)=\int_{G} \chi_{g A_{j}}(x) d \mu=\int_{G} \chi_{A_{j}}\left(g^{-1} x\right) d \mu=\int_{G} \chi_{A_{j}}(x) d \mu=\mu\left(A_{j}\right),
$$

para todo $j \in\{1, \ldots, k\}$. Hence

$$
\int_{G} f\left(g^{-1} x\right) d \mu=\sum_{j=1}^{k} \mu\left(g A_{j}\right) v_{j}=\sum_{j=1}^{k} \mu\left(A_{j}\right) v_{j}=\int_{G} f(x) d \mu
$$

showing that the result it is true for measurable simple functions.
The general case is a direct consequence of the first case. To see why, given a integrable function $f: G \longrightarrow X$, take $\left(f_{n}\right)_{n \in \mathbb{N}}$ a sequence of measurable simple functions verifying the Part iii) of Proposition B.1. Note that, for each $g \in G$, using the properties of convergence, we derive that

$$
\int_{G} f\left(g^{-1} x\right) d \mu=\lim _{n \rightarrow \infty} \int_{G} f_{n}\left(g^{-1} x\right) d \mu .
$$

The conclusion is now an application of the first part.
We will finish this subsection by presenting the useful example below.
Example B. 4 Define $\eta: X \longrightarrow X$ as follows:

$$
\eta(u):=\int_{G} g \beta\left(g^{-1} u\right) d \mu,
$$

with $\beta \in C(X, X)$. From the properties of the integral, we know that $\eta \in C(X, X)$. Furthermore, given $g_{0} \in G$, we get

$$
\eta\left(g_{0} u\right)=g_{0} \int_{G} g_{0}^{-1} g \beta\left(\left(g_{0}^{-1} g\right)^{-1} u\right) d \mu
$$

By the preceding theorem, we derive that

$$
\eta\left(g_{0} u\right)=g_{0} \eta(u)
$$

proving that $\eta$ is an equivariant map on $X$, i.e., $\eta \in \Gamma_{G}(X)$.

## APPENDIX C

## A short review on Orlicz spaces

This appendix is a primer of Orlicz spaces, in which we present some notions and properties related to the Orlicz spaces needed in our work; for further details see $[1,59,77]$.

## C. 1 On N-functions and Orlicz spaces

We start by recalling the definition of a N -function.
Definition C. 1 A continuous function $\Phi: \mathbb{R} \rightarrow[0,+\infty)$ is a $N$-function if:
(i) $\Phi$ is convex.
(ii) $\Phi(t)=0 \Leftrightarrow t=0$.
(iii) $\lim _{t \rightarrow 0} \frac{\Phi(t)}{t}=0$ and $\lim _{t \rightarrow \infty} \frac{\Phi(t)}{t}=+\infty$.
(iv) $\Phi$ is an even function.

We say that a $N$-function $\Phi$ verifies the $\Delta_{2}$-condition, denoted by $\Phi \in\left(\Delta_{2}\right)$, if

$$
\Phi(2 t) \leq k \Phi(t) \quad \forall t \geq t_{0},
$$

for some constants $k>0$ and $t_{0} \geq 0$.
The conjugate function $\tilde{\Phi}$ associated with $\Phi$ is given by the Legendre's transformation, more precisely,

$$
\tilde{\Phi}=\max _{t \geq 0}\{s t-\Phi(t)\} \text { for } s \geq 0
$$

It is possible to prove that $\tilde{\Phi}$ is also a N -function. The functions $\Phi$ and $\tilde{\Phi}$ are complementary to each other, that is, $\tilde{\tilde{\Phi}}=\Phi$.

Given an open set $A \subset \mathbb{R}^{N}$, we define the Orlicz space associated with the $N$-function $\Phi$ as

$$
L^{\Phi}(A)=\left\{u \in L_{l o c}^{1}(A) ; \int_{A} \Phi\left(\frac{|u|}{\lambda}\right)<+\infty, \quad \text { for some } \lambda>0\right\}
$$

The space $L^{\Phi}(A)$ is a Banach space endowed with Luxemburg norm given by

$$
\|u\|_{\Phi}=\inf \left\{\lambda>0 ; \int_{A} \Phi\left(\frac{|u|}{\lambda}\right) \leq 1\right\}
$$

We would like to point out that in Orlicz spaces we also have a Hölder and Young type inequalities, namely

$$
s t \leq \Phi(t)+\tilde{\Phi}(s), \quad \forall s, t \geq 0
$$

and

$$
\left|\int_{A} u v\right| \leq 2\|u\|_{\Phi}\|v\|_{\tilde{\Phi}}, \quad \forall u \in L^{\Phi}(A) \quad \text { and } \quad u \in L^{\tilde{\Phi}}(A) .
$$

Moreover, for each $\varepsilon>0$, it holds

$$
\begin{equation*}
s t \leq \Phi\left(C_{\varepsilon} t\right)+\varepsilon \tilde{\Phi}(s), \quad \forall s, t \geq 0 \tag{C.1}
\end{equation*}
$$

for some positive $C_{\varepsilon}>0$. When $\Phi, \tilde{\Phi} \in\left(\Delta_{2}\right)$, the space $L^{\Phi}(A)$ is reflexive and separable. Furthermore, the $\Delta_{2}$-condition yields that

$$
L^{\Phi}(A)=\left\{u \in L_{l o c}^{1}(A) ; \int_{A} \Phi(|u|)<+\infty\right\}
$$

and

$$
u_{n} \rightarrow u \text { in } L^{\Phi}(A) \Leftrightarrow \int_{A} \Phi\left(\left|u_{n}-u\right|\right) \rightarrow 0
$$

We would like to mention an important relation involving $N$-functions related with the $\left(\Delta_{2}\right)$ condition. Let $\Phi$ be a $N$-function of $C^{1}$ class and $\tilde{\Phi}$ its conjugate function. Suppose that

$$
\begin{equation*}
1<l \leq \frac{\Phi^{\prime}(t) t}{\Phi(t)} \leq m<N, \quad t \neq 0 \tag{C.2}
\end{equation*}
$$

then $\Phi, \tilde{\Phi} \in\left(\Delta_{2}\right)$. It is very important to point out that, when $\Phi, \tilde{\Phi} \in\left(\Delta_{2}\right)$, it holds

$$
{\overline{C_{0}^{\infty}(A)}}^{\|\cdot\|_{\Phi}}=L^{\Phi}(A),
$$

for any open set $A \subset \mathbb{R}^{N}$.
Finally, setting the functions

$$
\xi_{0}(t):=\min \left\{t^{l}, t^{m}\right\} \text { and } \xi_{1}(t): \max \left\{t^{l}, t^{m}\right\}, \quad t \geq 0
$$

it is well known that under the condition (C.2) one has

$$
\begin{equation*}
\xi_{0}\left(\|u\|_{\Phi}\right) \leq \int_{A} \Phi(u) \leq \xi_{1}\left(\|u\|_{\Phi}\right) \tag{C.3}
\end{equation*}
$$

We finish this section by recalling a Brezis-Lieb type result involving N-functions found in [32, Theorem 2]

Proposition C. 1 (A Brezis-Lieb type result) Suppose $\Phi$ is a $N$-function with $\Phi \in\left(\Delta_{2}\right)$. Let $\left(g_{n}\right)$ be a sequence in $L^{\Phi}(A)$ satisfying:
i) $\left(g_{n}\right)$ is a bounded sequence in $L^{\Phi}(\Omega)$;
ii) $g_{n}(x) \rightarrow 0$ a.e. in $A$.

Then, for each $w \in L^{\Phi}(A)$,

$$
\int_{A}\left|\Phi\left(g_{n}+w\right)-\Phi\left(g_{n}\right)-\Phi(w)\right|=o_{n}(1) .
$$

## C. 2 A special example of N -function

Here we prove that the function $F_{1}$ in (2.2), used in the decomposition

$$
F_{2}(t)-F_{1}(t)=\frac{1}{2} t^{2} \log t^{2}
$$

is a N -function such that $F_{1}, \tilde{F}_{1} \in\left(\Delta_{2}\right)$.
Fix a small $\delta>0$ and recall the definition of $F_{1}$.

$$
F_{1}(s):=\left\{\begin{array}{lrl}
0, & s & =0  \tag{C.4}\\
-\frac{1}{2} s^{2} \log s^{2}, & 0<|s| & <\delta \\
-\frac{1}{2} s^{2}\left(\log \delta^{2}+3\right)+2 \delta|s|-\frac{\delta^{2}}{2}, & |s| \geq \delta
\end{array}\right.
$$

The following proposition is the main result of this section.
Proposition C. 2 The function $F_{1}$ is a $N$-function. Furthermore, it holds that $F_{1}$, $\tilde{F}_{1} \in\left(\Delta_{2}\right)$.

Proof. A direct computation shows that $F_{1}$ verifies $\left.i\right)-i v$ ) of the Definition C.1. Now, in order to finish the proof we will show that $F_{1}$ satisfies the relation (C.2). First of all, notice that

$$
F_{1}^{\prime}(s):=\left\{\begin{array}{lr}
-\left(\log s^{2}+1\right) s, & 0<s<\delta \\
-s\left(\log \delta^{2}+3\right)+2 \delta & s \geq \delta
\end{array}\right.
$$

Next, we will analyze separately the cases $0<s<\delta$ and $s \geq \delta$.
Case 1: $0<s<\delta \approx 0^{+}$.
In this case,

$$
\frac{F_{1}^{\prime}(s) s}{F_{1}(s)}=2+\frac{1}{\log s},
$$

which implies the existence of $l_{1}>1$ satisfying

$$
\begin{equation*}
1<l_{1} \leq \frac{F_{1}^{\prime}(s) s}{F_{1}(s)} \leq m_{1}:=\sup _{0<s<\delta}\left(2+\frac{1}{\log s}\right) \leq 2 \tag{C.5}
\end{equation*}
$$

for $\delta$ small enough.
Case 2: $s \geq \delta$.
In this case,

$$
\frac{F_{1}^{\prime}(s) s}{F_{1}(s)}=\frac{-\left(\log \delta^{2}+3\right) s^{2}+2 \delta s}{-\frac{1}{2}\left(\log \delta^{2}+3\right) s^{2}+2 \delta s-\frac{1}{2} \delta^{2}}
$$

From this,

$$
\sup _{s \geq \delta} \frac{F_{1}^{\prime}(s) s}{F_{1}(s)} \leq \sup _{s \geq \delta}\left(\frac{-\left(\log \delta^{2}+3\right) s^{2}+2 \delta s+\left(2 \delta s-\delta^{2}\right)}{-\frac{1}{2}\left(\log \delta^{2}+3\right) s^{2}+2 \delta s-\frac{1}{2} \delta^{2}}\right) \leq 2 .
$$

Since

$$
\lim _{s \rightarrow+\infty} \frac{F_{1}^{\prime}(s) s}{F_{1}(s)}=2 \quad \text { and } \quad \frac{F_{1}^{\prime}(s) s}{F_{1}(s)}>1, \quad \forall s>0
$$

one gets

$$
1<\inf _{s>0} \frac{F_{1}^{\prime}(s) s}{F_{1}(s)}
$$

The last inequalities ensure the existence of $l \in(1,2)$ such that

$$
\begin{equation*}
1<l \leq \frac{F_{1}^{\prime}(s) s}{F_{1}(s)} \leq 2, \quad \forall s>0 \tag{C.6}
\end{equation*}
$$

As $F_{1}$ is an even function, the sentence above holds for any $s \neq 0$ and the proof is finished.

Given an open set $\Omega \subset \mathbb{R}^{N}$, by the remarks in the previous section, the last proposition assures that

$$
{\overline{C_{0}^{\infty}(\Omega)}}^{\|\cdot\|_{L}^{F_{1}}(\Omega)}=L^{F_{1}}(\Omega),
$$

as well as that the Orlicz space $L^{F_{1}}(\Omega)$ is a reflexive and separable Banach space.

## Bibliography

[1] Adams, A., Fournier, J.F.: Sobolev Spaces, 2nd ed., Academic Press (2003). 125, 142
[2] Alves, C. O., Ambrosio, V., Torres Ledesma, C. E.: An existence result for a class of magnetic problems in exterior domains, Milan J. Math., (2021), https://doi.org/10.1007/s00032-021-00340-z 10, 114
[3] Alves, C. O., Molica Bisci, G., Torres Ledesma, C. E.: Existence of solutions for a class of fractional elliptic problems on exterior domains, J. Differential Equations (2019), https://doi.org/10.1016/j.jde.2019.11.068 10, 95
[4] Alves, C. O., Carrião, P.C., Medeiros, E.S.:Multiplicity of solutions for a class of quasilinear problem in exterior domains with Neumann conditions, Abstract and Applied Analysis, Hindawi, 3, 251-268, (2004) 10, 95, 103, 105, 123
[5] Alves, C. O., da Silva, A. R.: Multiplicity and concentration behavior of solutions for a quasilinear problem involving $N$-functions via penalization methods, Electron. J. Diff. Equ., 158, 1-24, (2016) 63, 69
[6] Alves, C.O., da Silva, I.S.: Existence of a positive solution for a class of Schrödinger logarithmic equations on exterior domains, submitted. 6, 10, 95, 96
[7] Alves, C.O., da Silva, I.S.: Existence of multiple solutions for a Schrödinger logarithmic equation via Lusternik-Schnirelman category, to appear in Anal. App. $6,10,60,131$
[8] Alves, C.O., da Silva, I.S., Molica Bisci, G.: New minimax theorems for lower semicontinuous functions and applications. to appear in ESAIM Control Optim. Calc. Var. 5, 16
[9] Alves, C.O., de Freitas, L. R.: Existence of a Positive Solution for a Class of Elliptic Problems in Exterior Domains Involving Critical Growth, Milan J. Math. 85, 309-330, (2017) 10, 95, 118
[10] Alves, C.O., de Morais Filho, D.C.: Existence and concentration of positive solutions for a Schrödinger logarithmic equation, Z. Angew. Math. Phys. 69, 144165 , (2018) $2,6,7,8,10,36,37,38,39,45,50,59,60,75,96,128,131$
[11] Alves, C.O., Ji, C.: Existence and concentration of positive solutions for a logarithmic Schrödinger equation via penalization method, Calc. Var. 59, 21 (2020). https://doi.org/10.1007/s00526-019-1674-1 6, 7, 8, 10, 36, 59, 60, 69, 72, 75, 78, 80, 85, 86, 96, 131
[12] Alves, C.O., Ji, C.: Multi-peak positive solutions for a logarithmic Schrödinger equation via variational methods. Isr. J. Math. (2023). https://doi.org/10.1007/s11856-023-2494-8 2, 6, 7, 8, 59, 60, 66, 105
[13] Alves, C.O., Ji, C.: Multiple positive solutions for a Schrödinger logarithmic equation. Discrete and Continuous Dynamical Systems. 40 (5), 2671-2685, (2020) 2, 6, 7, 8, 59
[14] Alves, C.O., Figueiredo, G.M.: Existence and multiplicity of positive solutions to a p-Laplacian equation in $\mathbb{R}^{N}$, Differential and Integral Equations, 19, 143-162, (2006) 9, 89, 93
[15] Alves, C.O., Figueiredo, G.M., Pimenta, M.T.O.: Existence and profile of groundstate solutions to a 1-Laplacian problem in $\mathbb{R}^{N}$, Bull. Braz. Math. Soc., New Series DOI 10.1007/s00574-019-00179-4 6
[16] Alves, C.O., Gonçalves, J.V., Santos, J.A.: Strongly nonlinear multivalued elliptic equations on a bounded domain, J. Glob. Optim. 58, 565-593, (2014) 2, 39
[17] Alves, C.O., Pimenta, M.T.O.: On existence and concentration of solutions to a class of quasilinear problems involving the 1-Laplace operator, Calc. Var. 56, 143 (2017). https://doi.org/10.1007/s00526-017-1236-3 6, 53
[18] Alves, C.O., Torres Ledesma, C. E.:Fractional elliptic problem in an exterior domains with nonlocal Neumman condition, Nonlinear Anal., 195, June (2020), 111732, https://doi.org/10.1016/j.na.2019.111732 10, 95
[19] Ambrosetti A., Rabinowitz P.H., Dual variational Methods in critical point theory and applications, J. Funct. Anal. 14(1973), 349-381 64, 70
[20] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, (2000). 54
[21] An, X.:Semiclassical states for fractional logarithmic Schrödinger equations. arXiv:2006.10338v3 [math.AP] 10
[22] Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, MPS-SIAM, Philadelphia (2006) 54
[23] Bartsch, T.: Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal.TMA 20, 1205-1216, (1993) v, vi, 3, 14, 15, 23, 27
[24] Bartsch, T.: Topological Methods for Variational Problems with Symmetries, Lectures Notes in Math. 1560, Springer, (1993) 28, 136
[25] Bartsch, T., Willem, M.: On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc. 123, 3555-3561, (1995) 3, 4, 15, 18, 23
[26] Batkam, C. J., Colin F.: Generalized Fountain Theorem and applications to strongly indefinite semilinear problems, J. Math. Anal. Appl. 405, 438-452, (2013) 3, 15
[27] Benci, V., Cerami, G.:Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal. 99, 283-300, (1987) 10, 95, 96, 104, 105, 114, 117, 118, 123
[28] Bereanu, C., Jebelean, P.: Multiple critical points for a class of periodic lower semicontinuous functionals, Discrete Contin. Dyn. Syst. 33, 47-66, (2013) 21
[29] Bernardini, C., Cesaroni, A.: Boundary Value Problems For Choquard Equations. (2023), https://doi.org/10.48550/arXiv.2305.09043 10
[30] Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics, Ann. Physics 100, 62-93, (1976) 96
[31] Botelho, G., Pellegrino, D., Teixeira, E.:Fundamentos da Análise Funcional, $2^{\text {a }}$ ed., Rio de Janeiro: SBM, (2015) 138, 139
[32] Brezis H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88(3) (1983), 486-490. 144
[33] Cao, D.:Multiple solutions for a Neumann problem in an exterior domain, Comm. Partial Differential Equations, 18, 687-700, (1993) 10, 95
[34] Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities: Comparison Principles and Applications, Springer, New York, (2007) 3, 35, 132
[35] Cerami, G.: Un criterio de esistenza per i punti critici su varietá illimitate. Istit. Lombardo Acad. Sci. Lett. Rend. A 112, 236-332, (1978). 121
[36] Chang, K.C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80, 102-129 (1981). 2, 5, 35, 38, 39, 132
[37] Chang, K.: The spectrum of the 1-Laplace operator, Commun. Contemp. Math. 9(4), 515?543 (2009). 6
[38] Cheng, B., Wu, X., Liu, J.: Multiple solutions for a class of Kirchhoff type problems with concave nonlinearity. Nonlinear Differential Equations and Applications NoDEA, 19(5), 521?537, (2011). doi:10.1007/s00030-011-0141-2 128
[39] Clark, D.C., A variant of the Ljusternik-Schnirelman theory, Indiana Univ. Math. J. 22, 65-74 (1972). 5
[40] Clarke, F.H.: Generalized gradients and applications, Trans. Amer. Math. Soc. 205, 247-262, (1975) 35, 132
[41] Clarke, F.H.: Optimization and Nonsmooth Analysis, Wiley, New York, (1983) 2, 5, 35, 132, 133
[42] Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation, Nonlinear Anal. 7, 1127?1140, (1983) 8
[43] Cingolani, S., Lazzo, M.: Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Topol. Methods. Nonl. Analysis, 10, 1-13, (1997) 9, 90, 91, 93
[44] d'Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation. Commun. Contemp. Math. 16, 1350032 (2014) 59, 78, 96, 101
[45] Dai, G.: Nonsmooth version of Fountain theorem and its application to a Dirichlettype differential inclusion problem, Nonlinear Anal., 72, 1454-1461, (2010) 2, 4, 15
[46] da Silva, I.S.: Sobre Princípios Minimax para uma Classe de Funcionais Semicontínuos Inferiormente, Mest. Dissertação, UFCG, (2020).http://mat.ufcg.edu.br/ppgmat/banco-de-dissertacoes/ 27
[47] Degiovanni, M., Magrone, P.: Linking solutions for quasilinear equations at critical growth involving the 1-Laplace operator, Calc. Var. 36, 591-609 (2009) 54
[48] Degiovanni, M., Zani, S.:Multiple solutions of semilinear elliptic equations with one-sided growth conditions. Nonlinear operator theory, Math. Comput. Model., 32, 1377-1393 (2000) 54
[49] Demengel, F.: On some nonlinear partial differential equations involving the 1Laplacian and critical Sobolev exponent, ESAIM Control Optim. Calc. Var. 4, 667686 (1999). 6
[50] del Pino, M., Dolbeault, J.: The optimal Euclidean Lp-Sobolev logarithmic inequality, J. Funct. Anal. 197, 151-161, (2003). 66
[51] del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded domains. Cal. Var. Partial Differ. Equ. 4, 121-137 (1996) 1, 60
[52] Duvaut, G.; Lions, J. L. Inequalities in Mechanics and Physics. Berlin: Springer, (1976) 2
[53] Ekeland, I.: Nonconvex Minimization Problems, Bull. Amer. Math. Soc., 443-474, (1979) 23
[54] Esteban, M.: Nonsymmetric ground state of symmetric variational problems, Comm. Pure Appl. Math., XLIV, 259-274, (1991) 95
[55] Evans, L. C.: Partial differential equations, American Mathematical Society, United States of American, (1998) 138
[56] Figueiredo, G. M.: Multiplicidade de soluções positivas para uma classe de problemas quasilineares, Doct. dissertation, Unicamp, (2004) 69
[57] Figueiredo, G. M., Pimenta, M. T. O.: Strauss' and Lions' type results in BV (RN) with an application to an 1-Laplacian problem, Milan J. Math, 86, Vol. 1, 15-30, (2018) 53
[58] Figueiredo, G.M., Pimenta, M.T.O., Nodal solutions to quasilinear elliptic problems involving the 1-Laplacian operator via variational and approximation methods, Indiana Univ. Math. J., (2022), https://api.semanticscholar.org/CorpusID:219699980 53
[59] Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on $\mathbb{R}^{N}$, Funkcial. Ekvac. 49, 235267 (2006) 142
[60] Gu, L., Zhou, H.: An improved fountain theorem and its application, Adv. Nonlinear Stud. 17, 727 -738, (2016) 3, 15
[61] Heinz, H.: Free Ljusternik-Schnirelman Theory and the Bifurcation Diagrams of Certain Singular Nonlinear Problems, J. Differential Equations 66, 263-300, (1987) v, vi, 5, 15, 17, 29
[62] Ji, C., Szulkin, A., A logarithmic Schrödinger equation with asymptotic conditions on the potential. J. Math. Anal. Appl. 437, 241-254, (2016) 2, 6, 7, 8, 36, 37, 45, 46, 47, 59, 60, 96
[63] Kawohl, B., Schuricht, F.: Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem, Commun. Contemp. Math. 9(4), 525-543 (2007) 6, 54, 55
[64] Kobayashi, J., Ôtani, M.: The principle of symmetric criticality for nondifferentiable mappings, J. Funct. Anal., 214, 428-449, (2004) 42
[65] Kryszewski, W. and Szulkin, A.: Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. in Differential Equations, vol. 3, no. 3, 441-472 (1998). 15
[66] Li, G., Zheng, G.F.: The existence of positive solution to some asymptotically linear elliptic equation in exterior domains, Rev. Mat. Iberoamericana, 22, no 2, 559-590, (2006) 10
[67] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I, Springer, Berlin, (1977) 46
[68] Liu, D.: On a p-Kirchhoff equation via Fountain Theorem and Dual Fountain Theorem, Nonlinear Anal. 72, 302-308, (2010) 3
[69] Mancini, G.; Musina, R.: Hole and Obstacles, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4, 323-345, (1988) 2, 6
[70] Molino Salas, A., Segura de León, S.: Elliptic equations involving the 1-Laplacian and a subcritical source term, Nonlinear Anal., 168, 50?66, (2018) 6
[71] Motreanu, D., Panagiotopoulos, P. D.: Minimax Theorems and Qualitative Properties of The Solutions of Hemivariational Inequalities, Springer Science + Business Media Dordrecht, (1999) 3, 35, 132
[72] Nachbin, L.: The Haar Integral, D. Van Nostrand Company, Canada, (1965) 18, 136, 137, 138
[73] Ortiz Chata, J. C., Pimenta, M. T. O.: A Berestycki-Lions type result to a quasilinear elliptic problem involving the 1-laplacian operator, J. Math. Anal. Appl. doi.org/10.1016/j.jmaa.2021.125074. 6
[74] Peral Alonso, I.: Multiplicity of solutions for the p-laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, 1997. 51
[75] Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Application to Diferential Equations. American Mathematical Society, CBMS, 65, United States of American, (1986). 1, 3, 14, 27, 28
[76] Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270-291 (1992) 1
[77] Rao, M.N., Ren, Z.D.: Theory of Orlicz Spaces, Marcel Dekker, New York (1985) 142
[78] Sun, J.: Infinitely many solutions for a class of sublinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 390, 514-522, (2012) 3
[79] Squassina, M., Szulkin, A.:Multiple solution to logarithmic Schrödinger eqautions with periodic potential, Calc. Var. 54, 585-597 (2015) 2, 6, 7, 8, 59, 60, 75
[80] Shuai, W. Multiple solutions for logarithmic Schrödinger equations, Nonlinearity 32, 2201-2225, (2019) 7, 102, 103
[81] Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 77-109 (1986) v, vi, 2, 3, 4, 5, 6, 14, 15, 16, 17, 19, 20, 21, 26, 27, $28,30,31,32,33,132,134$
[82] Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191 ?201 (1984) 78, 101, 131
[83] Willem, M.: Minimax Theorems, Birkhäuser, Boston, (1996) 3, 4, 9, 14, 15, 18, $23,41,42,47,59,73,79,87,99,112,120,127,136,137$
[84] Zloshchastiev, K. G.:Logarithmic nonlinearity in the theories of quantum gravity: origin of time and observational consequences. Grav. Cosmol. 16, 288-297 (2010) 7
[85] Zou, W.: Variant fountain theorems and their applications, Manuscripta Math. 104, 343-358 (2001) 3, 15


[^0]:    ${ }^{\dagger}$ Este trabalho contou com apoio financeiro da CAPES

