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Abstract

In this work, we take the Brans-Dicke theory as the fundamental
theory of gravity, considering that the spacetime is static and spheri-
cally symmetric, making no assumptions about the isotropy of internal
pressures of the source generating the gravitational field. We employ the
weak field approximation in order to derive formulae for the refractive
index associated with the adopted spacetime. Then, we calculate the
expression of the spacetime refractive index for the global monopole.
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1 Introduction

Einstein was the first to suggest the idea of the analogy between the grav-
itational field and a refractive medium [6]. Indeed, considering the General
Relativity theory, the gravitational field, in relation to the propagation of
light, can be interpreted as a medium with refractive index n [8, 9].

On the other hand, there are alternative theories of gravity [11]. One of
the most popular is the Brans-Dicke scalar-tensor theory [4], which is the more
simplest generalization of Einstein’s theory of gravity, with the gravitational
effects described by the spacetime metric g,5 and also by a scalar field ¢. We
must note that the interest in the alternative theories of gravity occurs in many
cases because the high-energy theories, seeking the quantization of gravity or
its unification with the other interactions, generally make predictions that
diverge from General Relativity; the scalar-tensor theories, for instance, natu-
rally incorporate elements of string theory, such as a dilaton-like gravitational
scalar field [7].

In this work, let us obtain the expression of a refractive index n in the
context of the Brans-Dicke theory; this index simulates gravitational effects
of a static spherically symmetric spacetime possessing a source with non-zero
pressures. Then, as an application, we calculate n for the global monopole
spacetime [1, 5]. Such monopoles present Goldstone fields whose energy den-
sity decreases with 772, so that the energy of the monopole varies linearly
with r. This suggests that global monopoles can produce appreciable gravita-
tional effects. A striking feature is that the curved spacetime generated by the
monopoles has a solid angle deficit in the hypersurfaces t = constant, being
the area of a sphere of radius r in this space different from 47r2.

The paper is organized as follows: in Section 2, we get the solution of
Brans-Dicke equations for a static metric with spherical symmetry considering
the weak field approximation, given that the source of gravitational field has
radial and transverse internal pressures. In Section 3, we show the expression of
the spacetime refractive index. Then, in Section 4, we calculate the refractive
index associated with the global monopole spacetime. Finally, Section 5 is
devoted to our conclusions.

2 Static Spherically Symmetric Solution

The Brans-Dicke field equations are given by

81 w 1
Gap = ETaﬁ + E(¢,a¢,/5 - §9aﬁ¢,u¢’“) +

1

5(%as — gasl®), (1)
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2ot 2
where w is the scalar field coupling constant, T' = T“, and we use units in
which ¢ = 1.

Let us consider the weak field approximation, in which g,5 = 7ag + hag,
being 7,4 the flat spacetime metric and h,5 a small perturbation term, so that
we keep only first-order terms in h,3. Besides, we take ¢ = ¢¢ + €, where ¢g
is constant and ¢ = £(z) is also a small perturbation term with | £/¢g |< 1.

Thus, the field equations, using the Brans-Dicke gauge (h%s — %5a[3h);a =
3¢, " and considering the static case, reduce to [2]

O¢ =

2 —1 w1
hap = —16 Tos — 0l | 3
Vohag ™o |Tap = 5 =58 (3)
8l
Vie=——, 4
° T 9 +3 )
being h = h*,. And more, with the definition
_ 1 .
hcxﬂ = ha,B - 577th - 5¢0 Nag (5)
the equation (3) becomes
V2has = —167GoTag, (6)

with Gy = (%) G = ¢,", where G is the Newton’s gravitational constant
[4].

Now, we consider a spherically symmetric weak field for which the energy-
momentum tensor is given by [3]

p(r) 0 0 0
0  pe(r) 0 0
Top = 0 0 p(r)r? 0 ’ (7)
0 0 0 p(r)r?sin®*6

where p is the energy density, p, and p, are the radial and transverse pres-
sures, respectively; at the origin, we have p,(0) = p;(0). Therefore, with the
conservation condition

Taﬁ;ﬁ =0, (8)

we obtain

2[pr(r) — pi(r)]

TV = 0,pi(r) + =0, (9)

or
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plr) = o) + 50, (r), (10)

because 1,5 = diag(—1,1,r% r?sin#) in spherical polar coordinates.
Also, one can define

Fo(r) 0 0 0
= 0  F.(r) 0 0
frag = 0 0  F(r)r 0 ’ (11)
0 0 0 Fi(r)r?sin® 6

with F,.(0) = F;(0). Now, the Brans-Dicke gauge will be written as h*%.5 = 0.
Thus, for similarity with the equations (7) and (8), we have immediately

F(r) = Fr) + 5ro, B (1) (12)

To solve the field equations (6), we must have

Lo(r) 0 0 0
- - 0 L.(r 0 0
VQha,B = hcxﬂwﬂ = 0 é ) Lt<7’)7”2 0 ) (13)
0 0 0 Li(r)r?sin® 0
where
1 2
LQ(T’) = ﬁar(r &Fo), (14)
1 F. — F, 1
L(r) = =0,(r*0,F,) — 4 ( L t) = —0,(r'0.F,), (15)
r T r
1 Fr - Ft
Li(r) = ﬁ@(rzarFt) + 2 ( = ) . (16)

Then, using (6) and (7), we find

. 2w+ 3 9 _9

Fy = —16m (Qw +4) G/ {/ pr dr] r=dr, (17)
_ 2w+ 3 4 4

F, =—167 (Qw +4) G/ [/prr dr} rdr. (18)

The function F}; can be easily obtained from (12) and (18). On the other hand,
e can be obtained from (4). So, in agreement with (7), we have

1 d de 1
—— { 2 ] = (—=p +pr + 2p1),

r2 dr " dr| ~ 2w+ 3
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and the solution

87 9 9
8_2w+3/[/( P+ pr+ 2p)redr| r2dr. (19)

We obtain the formal solution of the Brans—Dicke field equations for a static
metric with spherical symmetry. Let us check the consistency of the solution
by getting the gravitational field produced by a point of mass M, for which

p=M§T), pr=p =0. (20)
In this case, according to (17), (18) and (12), we get

Fy = —167 (2"” i 3) GM/ [/ r25(7)dr] r2dr,  F,=F,—=0. (21)

2w+4
Since 6(77) = o) , it follows that
A2
AGM (2
R - G (w—|—3)‘ (22)
r 2w+ 4
And also, from (19), the scalar field is
2M
= 2
c (2w + 3)r (23)
Then, considering the equations (5) and (21)-(23), we find
2GM
hop = —, (24)
r
w+1 .
h11 = hoo (m) , hay = hiyr®, hgg = hyyr?sin® 6. (25)

This is the solution for a central body in the context of the Brans-Dicke theory
[4].

3 Refractive Index

For light propagation in a static spacetime, we define the 3x3 refractive index
tensor as [3]

1

1=
Tlij = (1 —+ —hoo)(sl']' + 5

2
so that the refractive index is given by

n = nij];’iffj, (27)



500 Antoénio F. Leitao, A. Barros and Edmundo M. Monte

where ||k|| = 1/ 5ij];‘ifﬁj — 1 and the 3-vector k indicates the direction of the
light propagation.
Now, written in terms of spherical polar coordinates, the condition d;; kiki =
1 takes the form
Bk + 2k 2 sin? 0K3ES = 1. (28)
On the other hand, considering the equation (11), the calculation of n;; leads
to

1 1
nyp = 1+ §F0 + §Fr7 (29)
11,
nge = 1+ §F0 + §Ft re, (30)
1 1 9 . o
nss = [ 1+ §F0 + §Ft r<sin” 6. (31)

Thus, with the aid of the equations (28)-(31), one can obtain the expression for
the refractive index when the metric is static and possesses spherical symmetry:

1 1 PO A o
n=1+ R+ (Frkzlkl + Fr?k2k? + Fy? sin? 0k3k3) . (32)

As an application, we consider a beam of light propagating in the plane
¢ = o. If the light rays go through a coordinate point 7, making an angle
1 with respect to the 7 direction, then k = cos 7T + sinf. In this case, the
refractive index reads

1 1
n(r,y) =1+ §F0 + 5 (Fr cos® 1) + F) sin® ¢) ) (33)

Using (12), we still obtain

1 1
n(r,y) =1+ §(Fo + F.)+ ZT&"F’" sin? 1. (34)

4 Refractive Index Associated with Global Monopole
Spacetime

The energy-momentum tensor that expresses the global monopole configura-
tion is:
. n?  n? .
TMZ/ = dl@g <_§7 _ﬁa 07 0) = dzag<_papraptapt)7 (35)

being 7 the energy scale of symmetry breaking. Hence, can be calculated from
(17) and (18) that

2w+ 3 9, T
Fy=-1 In —
0 6 <2w +4) Gn®ln - (36)
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167w (2w + 3 T
F,=— Gn?1ln — 37
3 <2w—|—4) " nro’ (37)

where 7 is constant. Therefore, substituting (36) and (37) into the equation
(34), one obtains

B 167 (2w + 3 9 sin2¢_ T
n(r,y) =1+ 3 <2w+4)Gn[ 1 lnro] (38)

If the global monopoles exist, they could be detected by means of effects such
as the gravitational lenses [10], so that the refractive index associated with
monopole spacetime would be given by (38).

In the limit w — oo, the equation (38) must be reduced for the expression
of the refractive index in General Relativity [11]. Thus, we have
167 , , [sin® % r
3 Gn { 1 In T‘_o] .

TLGR(T, w) = 1 + (39)

The factor % is responsible by discrepancies between the predictions of the
two theories. It represents the contribution of the Brans-Dicke scalar field,

since that if € # 0 in (19) then w is finite.

5 Conclusion

We consider static metrics in the context of the Brans-Dicke theory, obtaining
the solution with spherical symmetry, including the effect of internal pressures
of the gravitational sources. Then, in the development of an analogy for the
gravitational field acting as an optical medium, we find an expression for the
refractive index, which also incorporated the effect of the Brans-Dicke scalar
field. After, as an application, it was exhibited the spacetime refractive index
for the global monopole; in the limit w — oo, the corresponding expression for
the refractive index in the General Relativity theory was obtained.
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