
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

JOSÉ GLAUBER BRAZ DE OLIVEIRA

AN EMPIRICAL STUDY OF THE RELATIONSHIP BETWEEN

REFACTORINGS AND MERGE CONFLICTS IN JAVASCRIPT

REPOSITORIES

CAMPINA GRANDE - PB

2024

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

An Empirical Study of the Relationship Between

Refactorings and Merge Conicts in Javascript

Repositories

José Glauber Braz de Oliveira

Dissertação submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina Grande -

Campus I como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Software Engineering

Melina Mongiovi

Sabrina Souto

Campina Grande, Paraíba, Brasil

©José Glauber Braz de Oliveira, 14/12/2023

–

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

POS-GRADUACAO EM CIENCIA DA COMPUTACAO
Rua Aprígio Veloso, 882, Edifício Telmo Silva de Araújo, Bloco CG1, - Bairro

Universitário, Campina Grande/PB, CEP 58429-900
Telefone: 2101-1122 - (83) 2101-1123 - (83) 2101-1124
Site: http://computacao.ufcg.edu.br - E-mail: secretaria-

copin@computacao.ufcg.edu.br / copin@copin.ufcg.edu.br

FOLHA DE ASSINATURA PARA TESES E DISSERTAÇÕES

JOSÉ GLAUBER BRAZ DE OLIVEIRA

AN EMPIRICAL STUDY OF THE RELATIONSHIP BETWEEN
REFACTORINGS AND MERGE CONFLICTS IN JAVASCRIPT

REPOSITORIES

Dissertação apresentada ao Programa
de Pós-Graduação em Ciência da
Computação como pré-requisito para
obtenção do título de Mestre em
Ciência da Computação.

Aprovada em: 14/12/2023

 Profa. Dra. MELINA MONGIOVI BRITO LIRA, UFCG, Orientadora

 Profa. Dra. SABRINA DE FIGUEIRÊDO SOUTO, UEPB, Orientadora

 Prof. Dr. EVERTON LEANDRO GALDINO ALVES, UFCG, Examinador
Interno

 Prof. Dr. LEOPOLDO MOTTA TEIXEIRA, UFPE, Examinador Externo

Documento assinado eletronicamente por MELINA MONGIOVI CUNHA
LIMA SABINO, PROFESSOR(A) DO MAGISTERIO SUPERIOR, em
19/12/2023, às 12:19, conforme horário oficial de Brasília, com fundamento
no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por EVERTON LEANDRO GALDINO
ALVES, PROFESSOR 3 GRAU, em 19/12/2023, às 14:25, conforme horário
oficial de Brasília, com fundamento no art. 8º, caput, da Portaria SEI nº 002,
de 25 de outubro de 2018.

SEI/UFCG - 4090330 - PRPG-Folha de Assinatura para... https://sei.ufcg.edu.br/sei/documento_consulta_extern...

1 of 2 21/03/2024, 19:55

Documento assinado eletronicamente por Leopoldo Motta Teixeira,
Usuário Externo, em 20/12/2023, às 11:36, conforme horário oficial de
Brasília, com fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de
outubro de 2018.

Documento assinado eletronicamente por Sabrina de Figueiredo Souto,
Usuário Externo, em 20/12/2023, às 16:44, conforme horário oficial de
Brasília, com fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de
outubro de 2018.

A autenticidade deste documento pode ser conferida no site https://
sei.ufcg.edu.br/autenticidade, informando o código verificador 4090330 e o
código CRC 4840CCD6.

Referência: Processo nº 23096.092249/2023-11 SEI nº 4090330

SEI/UFCG - 4090330 - PRPG-Folha de Assinatura para... https://sei.ufcg.edu.br/sei/documento_consulta_extern...

2 of 2 21/03/2024, 19:55

Abstract

Maintenance activities are crucial to prolong the lifecycle of a software. An important ac-

tivity during software maintenance is refactoring, which is a transformation that improves

the quality of the internal structure of the code without changing its behavior. During soft-

ware development, Version Control Systems (VCS) are used to integrate changes made by

developers. These integration procedures, known as merge processes, may result in conicts

if changes are made in the same place in the code. This work aims to analyze the possible

relationship between refactorings and merge conicts in JavaScript code. We analyzed 76

JavaScript repositories, including 81,856 merge scenarios, which 6,356 of them have con-

icts. We discovered a moderate positive correlation between the number of conicts les/-

conicting regions and relationship/number of refactoring. For the second research question

we found that the refactoring types Internal move, Move and Rename are more related to

the conicting areas, as well as a moderate correlation between the number of conicts and

the number of types of refactoring performed. 8 types of refactorings were identied at the

conicting le level and also at the conict region level. Through statistical analysis, the

relationship between the number of refactoring types and the number of conicts was the

strongest found result in our study. In addition to our automatic analysis, a manual study was

conducted that analyzed 535 evolutionary commits, verifying that 447 (84%) of these were

classied as oss refactoring because they had other types of modications involved in the

process. 88 evolutionary commits analyzed were classied as pure refactoring, representing

16% of evolutionary commits that only have refactoring actions.

i

Resumo

Atividades de manutenção são cruciais para prolongar o ciclo de vida de um software. Uma

atividade importante durante a manutenção de software é a refatoração, que é uma transfor-

mação que melhora a qualidade de um programa sem alterar seu comportamento. Durante o

desenvolvimento de software, Sistemas de Controle de Versão (SCV) são utilizados para inte-

grar as mudanças feitas pelos desenvolvedores. Esses procedimentos de integração, conheci-

dos como processos de mesclagem, podem resultar em conitos se forem feitas alterações

no mesmo lugar do código. Este trabalho tem por objetivo analisar a possível relação entre

refatorações e conitos de mesclagem em código JavaScript. Analisamos 76 repositórios

JavaScript, incluindo 81.856 cenários de mesclagem, dos quais 6.356 apresentam coni-

tos. Nós descobrimos uma correlação positiva moderada entre o número de arquivos de

conitos/regiões em conito e relação/número de refatorações. Para a segunda questão de

pesquisa descobrimos que os tipos de refatoração Internal move, Move e Rename estão mais

relacionados às áreas conitantes, bem como correlação moderada entre o número de coni-

tos e o número de tipos de refatoração realizadas. Através de análises estatísticas, a relação

entre o número de tipos de refatorações e o número de conitos foi o mais forte encontrado

em nosso estudo. 8 tipos de refatorações foram identicados ao nível dos arquivos coni-

tantes e a nível de região de conito. Além da nossa análise automática para as QP1 e QP2,

foi realizado um estudo manual para a QP3 que analisou 535 commits, vericando que 447

(84%) destes foram classicados como oss refactoring, possuindo outros tipos de modi-

cações envolvidas no processo. 88 commits evolutivos analisados foram classicados como

pure refactoring, representando 16% dos commits evolutivos.

ii

Agradecimentos

Toda essa jornada foi desaadora. Foram muitos dias de altos e baixos, descobertas e inse-

guranças, memórias de aprendizado e carinho. Inicio agradecendo a Deus e a mim mesmo

por não ter desistido desse caminho, o caminho da educação que liberta e faz crescer. Cresce

dentro de mim o orgulho e a vontade de alcançar sempre mais. Foi uma experiência incriv-

elmente graticante!

Não posso deixar de expressar minha profunda gratidão à minha família, a base de tudo.

Desde cedo, ela me ensinou os valores da vida e a correr atrás do que é meu, sendo sem

dúvida a minha maior rede de apoio. Obrigado, painho Gildo, mainha Cosma, minhas irmãs

Kallyse e Camila, e meus sobrinhos Duda, Aninha e Bê, por todo o amor recebido durante

esse processo. Esta vitória é nossa!

Quero estender meus agradecimentos às minhas orientadoras, Professora Melina Mon-

giovi e Professora Sabrina Souto, por toda a ajuda, ensinamento, paciência e suporte nessa

jornada. Esta vitória é nossa, e foi um prazer trabalhar junto com vocês. Vocês são excep-

cionais no ensino e orientação, e espero que o futuro nos reserve muitas trocas de conheci-

mento! Obrigado por essa rede de apoio.

Agradeço também a todos que me acompanharam nessa jornada, tanto prossional

quanto pessoal, em especial Helder e Samara, obrigado por todo o amor recebido! Vocês

tornam esse caminho muito mais leve. Sem o apoio e as palavras de encorajamento, essa

jornada seria muito mais difícil. Quem tem um amigo tem tudo, e saibam que guardo cada

um de vocês em meu coração.

Por m, agradeço ao universo e a todos que enviaram boas energias e força para a con-

clusão deste ciclo. Que venham mais experiências no ensino e pesquisa, levando e gerando

conhecimento por onde passar.

iii

Contents

1 Introduction 1

1.1 Problem . 2

1.2 Objectives . 4

1.3 Contributions . 6

1.4 Structure . 6

2 Background 8

2.1 Merge . 8

2.1.1 How does the GitHub merge? A three-way merge 8

2.1.2 Merge Conicts . 9

2.2 Refactorings . 10

2.2.1 Refactoring actions in JavaScript 12

2.3 Refactorings versus Merge Conicts . 33

3 Exploring the relationship between Refactorings and Merge Conicts 35

3.1 Methodology . 36

3.1.1 Methodological study for RQ1: Analyzing the Relationship between

Refactorings and Merge Conict 36

3.1.2 Methodological study for RQ2: Analyzing the Relationship between

Refactorings Types and Merge Conicts 40

3.2 Study Setup . 41

3.2.1 Selection of JavaScript repositories 41

3.2.2 Creation of scripts to collect text data information 42

3.2.3 Initialization and conguration of the RefDiff 2.0 refactoring tool . 42

iv

CONTENTS v

3.2.4 Execution environment . 42

3.3 Results . 43

3.3.1 Descriptive analysis . 43

3.3.2 Answering RQ1: Is there a relationship between refactoring and

merge conicts in JavaScript programs? 52

3.3.3 Answering RQ2: What refactoring patterns relate most to merge

conicts in JavaScript programs? 56

3.4 Discussion . 60

3.5 Threats to Validity . 62

3.5.1 Internal Validity . 62

3.5.2 External Validity . 63

3.5.3 Constructor Validity . 63

3.5.4 Conclusion Validity . 64

4 An examination of commit evolutionary: oss or pure refactoring? 65

4.1 Methodology . 66

4.1.1 Methodological study for RQ3: Analyzing the content of evolution-

ary commit (oss and pure refactoring) 66

4.2 Results . 68

4.2.1 Answering RQ3: The evolutionary commits that made conicting

code contain only refactorings (pure refactoring) or other modica-

tions (oss refactoring)? . 70

4.3 Discussion . 71

4.4 Threats to Validity . 72

4.4.1 Internal Validity . 73

4.4.2 External Validity . 73

4.4.3 Constructor Validity . 73

4.4.4 Conclusion Validity . 73

5 Related Work 75

CONTENTS vi

6 Conclusions 78

6.1 Future work . 81

A Appendix of study 86

List of Figures

2.1 Common ancestor. 9

2.2 Branch. 9

2.3 Long method and Extract refactoring example 11

2.4 Speculative Generality and Inline refactoring example 11

2.5 Code smells and respectively refactoring examples 12

2.6 Rename function refactoring example . 15

2.7 Another rename function refactoring example 15

2.8 Inline function refactoring example . 17

2.9 Another inline function refactoring example 18

2.10 Extract function refactoring example . 19

2.11 Move function refactoring example . 21

2.12 Move rename function refactoring example 23

2.13 Extract Move function refactoring example 24

2.14 Internal Move function refactoring example 26

2.15 Another Internal Move function refactoring example 27

2.16 Internal Move Rename function refactoring example 28

2.17 Move le refactoring example . 29

2.18 Rename le refactoring example . 30

2.19 Move Rename le refactoring example . 31

2.20 Move class refactoring example . 32

2.21 Rename class refactoring example . 33

3.1 Methodology for analyzing the relationship between refactorings and merge

conicts . 37

vii

LIST OF FIGURES viii

3.2 Methodology for analyzing the relationship between refactoring types and

merge conicts . 40

3.3 Initial metrics of selection repositories Javascript 45

3.4 Dispersion metrics about merge commits and merge commits with conicts 46

3.5 Correlation Matrix with metrics selection 47

3.6 Dispersion metrics about conicting les and conicting regions 48

3.7 Dispersion metrics about relationship research variables for RQ1 49

3.8 Dispersion metrics about the number of refactorings in research variables for

RQ1 . 50

3.9 Metric: number of conicts . 51

3.10 Example of collected conict . 51

3.11 Example of collected region conict . 52

3.12 Example of collected refactoring in conict le and region conict 52

3.13 Dispersion graph of variables (relationship/conicts) of QP1 53

3.14 Dispersion graph of variables (nº of refactorings/conicts) of QP1 54

3.15 Dispersion graph of scenarios involved in merge conict 55

3.16 Violinplot to types of refactoring involved in conicting le 57

3.17 Violinplot to types of refactoring involved in conicting regions 58

3.18 Dispersion graph of the relationship between the type of refactorings and

conicting variables . 59

3.19 Correlation between quantity type of refactorings and conicting le/region 60

4.1 Methodology for manual analysis of content by evolutionary commit 67

4.2 Example of pure evolutionary commit involved in conict 69

4.3 Example of oss evolutionary commit involved in conict 70

4.4 Dispersion of evolutionary commits oss/pure of QP3 71

List of Tables

3.1 Descriptive analysis of metrics repository selection 37

3.2 Descriptive analysis of metrics repository selection 40

3.3 Descriptive analysis of metrics repository selection 44

3.4 Descriptive analysis of variables refactorings and conicts 44

3.5 Descriptive analysis of variables of study 55

3.6 Number of Relationship x Conict . 56

3.7 Number of refactorings x Conict . 56

3.8 Descriptive refactorings relationship founded in conicting le and conict-

ing regions . 59

3.9 Number of Type of refactorings x Conict 60

4.1 Descriptive analysis of metrics repository selection 67

ix

Chapter 1

Introduction

Maintenance activities are essential throughout the software life cycle to prolong its usability.

Meir Lehman [16] emphasizes the constant need for software adaptation. Failure to adapt

leads to software being unable to meet its intended demands, resulting in a loss of quality

over time. Lehman also asserts that preventive maintenance in the source code is necessary to

enhance systems for future maintenance. This can involve replacing poorly structured code

and implementing design patterns to improve scalability and minimize errors in the system

[16].

According to William Opdyke [21], one example of maintenance activity is refactoring,

which is the process of code reorganization to improve quality without altering its behavior,

so if the program had some functionalities before the refactoring these may have the same

result that had before the refactoring. These modications to the source code are imple-

mented throughout the software evolution process. To integrate changes into the product and

facilitate its growth and evolution over time, it is crucial to track and document every action

taken during the process. This ensures that the entire code change history is preserved at

each stage of development.

Version Control Systems (VCS) play a crucial role in software evolution. In the study

conducted by Santos and Murta [6], VCS are highlighted as dedicated tools for managing

software development, offering various benets such as storing development history and

facilitating version recovery. They also enable developers to integrate local changes into a

global environment, simplifying the code integration process.

GitHub, as mentioned by Cosentino et al. [5], is a widely adopted VCS that has experi-

1

1.1 Problem 2

enced signicant growth, from 150,000 hosted projects in 2009 to 35 million hosted projects

in 2015. They also highlighted that GitHub brings many resources that facilitate contribution

and social integrations in the project. Achilleas Pipinellis [22] explains that GitHub’s func-

tionality revolves around branches. These branches serve as copies of the main repository

and provide a space to implement sets of changes without affecting the main version of the

product located in the main branch.

During the code integration process, merge operations are performed to combine changes

made in different branches by individual developers into the nal product [28]. However,

these merge operations are not always successful, and conicts can arise if developers at-

tempt to integrate changes that modify the same portion of the code. Such conicts can have

a direct impact on the productivity of the development team because it is necessary extra

effort to x these problems, which sometimes may be simple, but in bigger systems might

be complex [26]. To address this issue, GitHub employs mechanisms to detect and notify

developers of conicts that arise during code integration, thereby facilitating the resolution

of conicting changes.

In the given context, the study conducted by Mahmoudi et al. [17] focused on examining

whether altering the code structure through refactoring actions could potentially result in

merge conicts. This is because the non-structural merge process typically considers the

textual positions of the changes made. The study specically analyzed Java programs and

discovered that approximately 22% of the investigated refactorings were associated with

merge conicts.

There is a substantial amount of research dedicated to refactorings and merge processes

specically in the context of Java. The language’s versatility and robustness have generated

signicant academic interest, leading to a substantial number of studies and research in this

area [19], [11], [23], [12], [1], [14].

1.1 Problem

As new programming languages emerge with distinct characteristics, such as type check-

ing, execution environments, and other factors, it becomes crucial to analyze these variables

about the specic context of the emerging languages. This analysis allows for a deeper

1.1 Problem 3

understanding of their unique characteristics and facilitates the application of appropriate

approaches in each specic language context.

At the same time, JavaScript has been gaining popularity as a well-accepted language

among development teams, becoming a favored language in many development projects

and being heavily utilized for web programming. It is currently among the top 10 most

popular programming languages and was even declared the "Language of the Year" in 2014

1. According to Johannes et al. [15], the fact that JavaScript is used both server-side and

client-side has increased its popularity and highlighted the need for studies on code smells

and refactorings specic to this language.

Despite JavaScript gaining signicant popularity and being a widely adopted language

among development teams, the research landscape in the eld of JavaScript is not in the

same rhythm observed in adoption development language numbers, gaining greater signi-

cance in recent years. The increasing popularity of JavaScript has led to the observation that

developers often adopt poor programming practices within the language. Barros and Adachi

[4] conducted a study that examined 26 different types of code smells across eight studies

published between 2013 and 2020. Their ndings showed that studies are needed to analyze

the impact of bad design choices on systems developed in this language. The study by Silva

et al. [24] addressed a specic refactoring type found in JavaScript les, known as "Internal

Move."

These works further emphasize the importance of conducting comprehensive studies on

software quality for other programming languages, especially from different programming

paradigms. JavaScript, for example, has different challenges compared to other languages,

scope-related issues like closures, a fragmented execution and development ecosystem due

to the multitude of frameworks and libraries supporting the language, asynchronous man-

agement, and more. The high popularity results in the availability of numerous frameworks

that contribute to the development environment in the language. Moreover, JavaScript is an

interpreted, dynamic language widely used in web browsers [9], factors that contribute to

a variety of programming practices in this environment. All these factors that differentiate

JavaScript from other languages make both the merge processes and the continuous improve-

ment of the system’s design challenging. It highlights the need to comprehend the unique

1https://www.tiobe.com/tiobe-index/javascript/

1.2 Objectives 4

characteristics of each language and adapt refactoring and merge approaches accordingly to

effectively address their specic challenges.

Considering the growing adoption of JavaScript among development teams, it is essen-

tial to investigate the correlation between refactoring and merging conicts in this language.

Such exploration can provide valuable insights to academia and developers regarding po-

tential refactorings that may lead to conicts during integration. Researchers can analyze

whether methodologies previously applied in other studies for other programming languages

can be replicated for new languages. Simultaneously, they can identify new research prob-

lems stemming from this work, addressing both merge conicts and refactoring actions, and

exploring the correlation between these variables. For developers, this study can serve as a

guide for discussions on refactoring and code merging practices, considering limits on the

number of refactorings to be performed in a single commit and identifying patterns of refac-

toring that may pose increased risks when executed together in a code integration context.

By analyzing these conict regions and to recognizing performed refactorings within them,

our study contributes to verifying whether the refactoring indeed caused the merge problem,

offering a starting point for further investigation into the relationship between refactorings

and merge conicts in future work.

1.2 Objectives

Given the complexity of our research problem, our objective is to conduct an empirical study

to investigate the presence of refactorings in conicting codes and to examine the types of

refactorings involved in this process. For our study, we selected 76 JavaScript repositories

from a list of repositories mentioned in the studies conducted by Silva et al. [24] and Tavares

et al [26], and other random repositories found by quickly searching for JavaScript reposi-

tories. We collected information on merge conicts and identied refactoring actions within

the conicting les and their corresponding exact local conict, which we will call by con-

ict regions. The collected variables of this relationship are intended to address the research

questions outlined below.

1.2 Objectives 5

• Is there a relationship between refactoring and merge conicts in JavaScript pro-

grams?

By identifying refactoring actions within conicting les and their respective conict-

ing regions, it may be possible to gather evidence and initiate discussions that can

substantiate the relationship between these variables. This analysis allows for a deeper

understanding of how refactoring activities may contribute to or interact with merge

conicts in JavaScript programs.

• What refactoring patterns relate most to merge conicts in JavaScript programs?

Given the presence of refactorings within conicting JavaScript les and their respec-

tive conicting regions, it is important to discuss which types of refactorings occur and

how often they occur within the analyzed region. This study can suggest potentially

more risky refactorings to be performed in a code integration context.

• The evolutionary commits that made conicting code contain only refactorings

(pure refactoring) or other modications (oss refactoring)?

When analyzing the commits evolution, through evolutionary commits, it is possible

to trace the modications in each commit that have contributed to one or more conict

regions. The main objective is to discuss evolutionary commits that only have refactor-

ings (pure refactoring), as opposed to those that have other changes, with refactoring

actions (oss refactoring). The aim is to understand how the content of evolution-

ary commits effectively inuenced conicts, determining whether refactoring actions

present in these commits have a signicant role in merge conicts.

This study provides valuable insights into the impact of refactorings on JavaScript code

integration processes. By analyzing the potential relationship between refactorings and

merge conicts, the study contributes to a robust discussion on the factors that can inuence

conict occurrences. Additionally, by identifying the types of refactorings more commonly

associated with conict regions, the study highlights the importance of careful consideration

when performing refactorings. These ndings prompt developers to pay closer attention to

the types of refactorings they apply, leading to improved code integration practices.

1.3 Contributions 6

1.3 Contributions

In summary, the main contributions of this work are:

• Empirical analysis of the relationship between refactorings and merge conicts in

JavaScript code [20];

• Identication of refactorings patterns in JavaScript that is more related with merge

conicts [20];

• Analysis of oss and pure refactorings in evolutionary commits that make region con-

icts;

• Discussion and examples about JavaScript refactorings in Background Section 2.2;

In this work, we executed an empirical analysis between refactoring actions and merge

conicts. We analyzed 76 JavaScript repositories with at least one conict in the .js le and

found 81,856 merge commits with a subset of 6,356 merge commits with conicts. We found

4,206 conicts and 7,821 conict regions.

Subsequently, our study found the most common types of refactorings within conict re-

gions, which are Internal move, Move and Rename. This study contributed to the discussion

about the number of types of refactoring performed in only commit, showing results that

suggest a correlation between this and the occurrence of conicts.

A sample of evolutionary commits shows us that oss refactoring is applied in 84%

of evolutionary commits analyzed and pure refactoring is applied in 16%, showing that a

majority of repositories made other modications together with refactoring actions.

1.4 Structure

Our study is structured as follows: Chapter 2 provides an overview of the background of

this work, exploring concepts such as merge, refactorings, and their relationship. Chapter

3 introduces our rst study, which explores the relationship between merge conicts and

refactoring. Chapter 4 discusses our second study, focusing on the manual analysis of evo-

lutionary commits. Within these two chapters, we will discuss the adopted methodology,

1.4 Structure 7

execution setup, obtained results, and identied threats to validity. Chapter 5 examines re-

lated academic works that are closely aligned with our study. Finally, Chapter 6 concludes

our work by showing its contributions and discussing plans for future research.

Chapter 2

Background

To enhance comprehension of the research eld, this section will be expanded through a

narrative review. The following sections discuss merge processes, refactorings, as well as

studies that have already investigated the relationship between refactoring and merge con-

icts. The research of the readings was made based on the knowledge already acquired about

relevant articles in the area.

2.1 Merge

Version Control Systems (VCS) manage and merge different code versions through some

algorithms and approaches, with the so-called merge processes [6]. Each new change in the

code is developed in a new branch, and it is sent to this branch through the commit, which

represents the action of sending the local modications to the VCS. How the developed code

is merged with the main branch is done by Git [5] through the Three-way merge algorithm,

which according to Mens [18] is a code merge process that has more than two artifacts to be

merged, a common ancestor, bringing more precision in the merge result.

2.1.1 How does the GitHub merge? A three-way merge

This process is based on three main artifacts, as shown in Figure 2.1, base, left and right,

where left and right are the parent commits of the merge commit. The base represents the

main branch code at the time the secondary branches were performed, and the right and left

8

2.1 Merge 9

represent everything that was developed in the branches.

Figure 2.1: Common ancestor.

For each modied code entity there is a merge scenario which is the set (base, right

and left). As we can see in Figure 2.2, branch r2 is called the base as well as the common

ancestor. The left is identied as r2.2 and the right as r3, resulting in the merge being r4.

Figure 2.2: Branch.

2.1.2 Merge Conicts

During the code integration process, there is a possibility that this activity may not be suc-

cessful, bringing merge conicts results and requiring extra effort to resolve these issues. As

previously discussed, the most widely used Version Control System, GitHub, employs an

unstructured merge approach, which identies conicts when changes in the same le and

region lines are made by different developers. According to Mahmoudi et al. [17], current

VCS may not be capable of detecting and resolving conicts automatically, leading to the

well-known merge conicts that can be classied into six types:

• Add/Add: When both parents (left and right) of merge commit add a new le with the

same name but different context;

2.2 Refactorings 10

• Content: When both parents (left and right) of merge commit applied changes in the

same le at the same position;

• Modify/Delete: When P1 modify one le and P2 delete this le;

• Rename/Add: When P1 rename one le and P2 creates new le with the same name;

• Rename/Delete: When P1 rename one le and P2 delete this le;

• Rename/Rename: When both parents of merge commit rename the same le with

different names.

2.2 Refactorings

To discuss software evolution it is necessary to show that refactorings are essential to a better

growth of software. Opdyke is the rst researcher to dene the term "refactoring", character-

izing this as an evolutionary change that will prepare the software for future changes, making

it more effective and secure to do what it needs to do. He also discusses that having software

with reusable design is a result of many improved actions of design, in other words, it is a

continuous process that always must exist in software development [21].

The term "refactoring" quickly became popular in the computational eld. Flower made

a signicant contribution to popularizing the term with their study [10], which dened the

refactoring process, dened best practices and specied the appropriate time and place to

improve code. By analyzing a lot of code of various projects, Flower began to identify

structures that "called out" to be restructured, and thus identied that the correct place to

start refactoring is where the code has code smells.

In their work, Walter et al. [29] dene code smells as symptoms of design problems in the

code structure that can hinder software maintenance. The study provides a solid analysis of

the relationship between introducing bad design choices in the system and the consequences

that arise as the code grows and needs to be integrated with changes made by developers.

Previous studies have already shown that conicts during the integration process can intro-

duce bugs into the system, but it has not yet been discussed how bad design choices can lead

to possible merge conicts. The results demonstrate that entities with certain types of code

2.2 Refactorings 11

smells are more likely to have errors. This study emphasizes the importance of considering

design choices during development to reduce the likelihood of merge conicts and improve

software maintainability.

As discussed earlier, code smells are symptoms of design problems, and the article cited

above provides a foundation for introducing the discussion on refactoring. In this regard, the

gures below illustrate examples of code smells taken from the website "Refactoring Guru"1,

found in code, and the respective refactorings performed to remove these problems.

Figure 2.3: Long method and Extract refactoring example

Figure 2.4: Speculative Generality and Inline refactoring example

In Figure 2.3 we can see an example of LongMethod code smell, that dened as a method

with many functionalities. By side, there is an example of refactoring the Extract Method

that can be done to resolve the Long Method code smell. Another example of code smell

and refactoring applied can be analyzed in Figure 2.4 which shows a Speculative Generality

1https://refactoring.guru/pt-br/

2.2 Refactorings 12

code smell and an Inline refactoring, that simplies your code by keeping only the essential

methods, making it easier to understand.

The study by Sousa et al. [25] mined 50 projects, discussing and presenting results on

types of structural refactorings, and analyzing when and for what purpose they are applied.

The study presents Figure 2.5, which identies types of code smells and refactorings that can

be used to address them.

Figure 2.5: Code smells and respectively refactoring examples

To analyze the impact of refactoring on developing systems, there are studies focused on

discussing refactoring collection tools. One such example is the study by Silva et al. [24],

which presents a multi-language refactoring detection tool called RefDiff 2.0. The paper

presents excellent results regarding the correctness of the tool, as well as several types of

refactorings for various languages, without being limited to the syntax of the language.

2.2.1 Refactoring actions in JavaScript

In this section, we explore some examples and discussions about the types of refactorings

collected in JavaScript language.

REFACTORINGS RELATED TO FUNCTIONS

Languages that allow object-oriented programming are based on abstracting real-world con-

cepts into the computational world. JavaScript is an example of language that enables this

2.2 Refactorings 13

implementation, and each object is represented by a combination of properties and meth-

ods. In JavaScript, methods are known as functions, which are created to encapsulate a set

of instructions and perform a specic task within the code. The construction of a function

involves specifying a name and a set of parameters that the function may or may not take.

In this section, we will discuss a set of refactorings that were identied by the RefD-

iff 2.0 tool [24] and performed in JavaScript code repositories, which are the same as in this

study. The following refactorings are related to RENAME, EXTRACT, INLINE, and MOVE

FUNCTION. In addition to detecting these four types of refactorings mentioned above, the

tool also identied the composite refactoringMOVE RENAME FUNCTION, which involves

combining the MOVE and RENAME refactorings. Furthermore, within refactorings involv-

ing functions, the tool detected a type of refactoring called INTERNAL MOVE.

The refactorings mentioned above, found in JavaScript code, will be discussed and an-

alyzed in each subsection below, in comparison with Fowler’s literature, where he demon-

strates the motivation, instructions, and illustrative examples of refactorings he identied in

his work [10].

RENAME FUNCTION

1. Motivation

Choosing a name for a function is a signicant task, as it is very benecial for devel-

opers to look at a function’s name and identify its role within the analyzed class/le.

Just like naming, identifying attributes that will be used within the scope of a function

is an essential activity. Fowler [10] characterizes function attributes as the gateway to

the rest of the code of this function, and through them, it becomes possible to identify

the function’s scope.

Renaming functions is a necessary activity for software maintenance, as functions

represent actions performed within contexts, and these contexts may change during

the software’s lifecycle due to evolving requirements. Consequently, functions need to

be modied as part of this evolution.

2. Step-by-step process of applying refactoring

As Fowler explains in his work [2], a RENAME in JavaScript follows the same appli-

2.2 Refactorings 14

cation pattern. Fowler argues that this refactoring is generally simple, but depending

on the nomenclature of the method for modication, it can be best carried out in two

main ways: the simple procedure and the migration procedure.

In the simple step-by-step procedure, the following points are:

(a) If the refactoring is just changing the name of the function, change the method

declaration to the new desired name;

(b) Find all references to the old statement and replace them with the new call;

(c) Test.

If changing a function declaration involves removing an attribute:

(a) Check whether the attribute to be removed is referenced in the function body, if

so, evaluate the impact of removing the attribute and the code snippet;

(b) Repeat procedures (b) and (c) of the simple procedure;

(c) Test.

If changing the declaration of a function involves adding an attribute:

(a) Check the impact of adding a new attribute to the function body;

(b) Repeat procedures (b) and (c) of the simple procedure;

(c) Test.

If the refactoring to be carried out is done in a function that is heavily referenced in

the code, which makes it difcult to carry out quickly, Fowler argues that the process

to be carried out is through migration, which is highlighted in the following points:

(a) Creating a new role with a provisional name;

(b) Perform the EXTRACT FUNCTION refactoring to remove the content for the

new function from the function body;

(c) If the new function requires the addition or removal of new parameters, use steps

(b) and (c) of the simple procedures;

2.2 Refactorings 15

(d) Apply INLINE FUNCTION refactoring to the old function;

(e) Replace calls to the new function gradually, observing each context in which it

applies;

(f) Test;

3. Example of JavaScript

In the example in Figure 2.62 below, we can nd a refactoring in the name of the

function into cong.js le. This refactoring involved changing the function’s name

from "getChannelDisplayName" to "getAppName."

Figure 2.6: Rename function refactoring example

As previous example, Figure 2.73 illustrates another application of the RENAME

FUNCTION refactoring in JavaScript code, changing name of function from "get-

MaximumSize" to "getMaximumWidth."

Figure 2.7: Another rename function refactoring example

2https://github.com/atom/atom/commit/bf9fac27cf626a2d0a46de526af6662199edc984
3https://github.com/chartjs/Chart.js/commit/997a216b5008e33c9a9e01b5b5ac89c6536b9883

2.2 Refactorings 16

INLINE FUNCTION

1. Motivation

Identifying the context of a function and deciding what will be implemented within

that context is a process that requires a programmer’s careful attention. This needs

to avoid implementing too many functionalities within the function’s scope, which

can lead to excessive indirection within the developed function. Indirection is the

act of referencing something indirectly, and in the programming context, we can use

delegation as an example of indirection [10]. Functions with excessive delegation

to other functions can confuse the ow of data, as well as the comprehension and

readability of the code.

The INLINE refactoring is performed when a function delegates a lot of its work to

other functions, which have contexts that could be integrated into the delegating func-

tion without compromising its readability and functionality [10]. The function invokes

the delegated function that can be merged with it without compromising code quality

and functionality. Similar to Fowler’s study, which demonstrates the applications of

INLINE refactorings in Java code, the following sections illustrate INLINE refactor-

ings in JavaScript code, highlighting that the motivation for refactoring and the steps

involved are consistent across both languages.

2. Step-by-step process of applying refactoring

According to Fowler, it is important to follow a step-by-step guide to perform this

refactoring. We can follow the same logic for JavaScript, highlighted in the following

points:

(a) Check the responsibility that the function to be removed has within the code

structure. If the method is polymorphic, this type of refactoring is not appro-

priate, since polymorphic methods tend to have different responsibilities, which

makes it difcult to carry out this type of refactoring.

(b) Identify how the context of the function removed can be introduced into the target

context.

2.2 Refactorings 17

(c) Carry out the introduction of the new context carefully. If the source function is

large, it is recommended that the code is tested when making each change;

(d) After introducing the contexts into the new function, test and replace the calls to

the removed function with calls to the target function, to correctly verify that the

data ow has not been changed.

3. Example of JavaScript

Figure 2.84 illustrates the application of an INLINE refactoring in JavaScript code. We

can observe that the constructor of the EventEmitter class made a call on line 63 to the

loadDataOverProcessBoundary function, which existed from lines 154 to 162. The

refactoring process involved integrating the content of the delegated function, load-

DataOverProcessBoundary, into the constructor’s body and eliminating the function,

transferring its responsibility to the new location in the code, which is the constructor.

Figure 2.8: Inline function refactoring example

4https://github.com/refdiff-study/atom/commit/7ce5b000e448552bb4ba9556c8f38ccfef127162

2.2 Refactorings 18

Another example of inline refactoring can see in Figure 2.95 in which the function

"getOnlyList" was removed, and its content was incorporated into the place where it

was previously called, now passed as a parameter to the "babelRegisterOnly" function.

Figure 2.9: Another inline function refactoring example

EXTRACT FUNCTION

1. Motivation

Extracting a part of code from an inappropriate context is a common task for almost

every programmer. This happens because requirements change and evolve throughout

the software’s lifecycle, resulting in improvements to existing code. Functions encap-

sulate parts of the code, as discussed earlier. Just as it’s possible to delegate too much

within a function, it’s also possible for a function to have too many responsibilities

within a class or context, resulting in rigid and much harder-to-maintain code. Ac-

cording to Fowler [10], if you spend too much time guring out what a function does,

it’s time to break that function into smaller parts.

The EXTRACT refactoring is performed to avoid a method having too many respon-

sibilities and to enhance its readability. The refactorings identied by the RefDiff

2.0 tool [24] for JavaScript code follow a similar pattern to the contexts outlined in

Fowler’s study [10].

2. Step-by-step process of applying refactoring

We can follow the same logic for JavaScript, highlighted in the following points by

Fowler[10]:

(a) Create a new function with a name that clearly denes its context;

5https://github.com/refdiff-study/atom/commit/7ce5b000e448552bb4ba9556c8f38ccfef127162

2.2 Refactorings 19

(b) Copy the code from the source function to the destination function;

(c) Check the code snippets in the function that need information that is in the scope

of the source function and pass them as parameters;

(d) Replace the code extracted with the call to the new function in the source func-

tion;

(e) Test.

(f) Look for other code snippets with similar behavior to the extracted code and

check if it is possible to apply INLINE FUNCTION refactoring;

3. Example of JavaScript

Figure 2.106 show an example of refactoring Extract. In this example we can see a part

of the code in red is removed from the source local and pasted in the target local, the

function checkRight. We can see a call by this new function that already has a code

extracted in the green local to the source local.

Figure 2.10: Extract function refactoring example

6https://github.com/usablica/intro.js/commit/cd2ec800d52c69604f5e5545e125d377e1e73267

2.2 Refactorings 20

MOVE FUNCTION

1. Motivation

A good code design practice consists of promoting the modularization of software

parts, that results in more reusable code (modules) that relate to each other, facilitat-

ing the division of functions within the code and better error detection. The developer

needs to understand the context in which each code entity was created, its composition,

e.g. attributes and methods. With software evolution, these contexts can be changed

and MOVE type refactorings may be necessary to promote better code, adapting func-

tions and even les to new contexts.

2. Step-by-step process of applying refactoring

We can follow the same logic for JavaScript, highlighted in the following points by

Fowler [10]:

(a) Identication of regions that use this function;

(b) This step consists of deciding whether only this function will be subject to this

type of refactoring or whether the elements that use it will also need to be moved;

(c) Check whether the function to be moved is polymorphic, if so, it is necessary to

be careful with super and sub classes when performing refactoring;

(d) Move the function to the new context;

(e) Carry out all necessary adaptations to the new job location. If the function has

parameters, these are passed when calling the function and the name can be mod-

ied if necessary to adapt to a new context, but it would be a compound refactor-

ing: MOVE RENAME;

(f) Identify source contexts that reference the location of the function and that will

reference the location of the newly moved function;

(g) Test.

3. Example of JavaScript

2.2 Refactorings 21

The MOVE refactoring performed in the react repository in the Figure 2.11 7 demon-

strates the addComands function being moved from the hash_handler.js le to the com-

mand_manager.js le.

Figure 2.11: Move function refactoring example

MOVE RENAME FUNCTION

1. Motivation

As previously discussed, it is common for part of the code not to have more scope into

7https://github.com/ajaxorg/ace/commit/6381f3e048506d5f0e2b8b1da81551d6ff1bd9a4

2.2 Refactorings 22

the context initially inserted due to the constant evolution of the software. This refac-

toring is a combination of two previously discussed refactorings MOVE FUNCTION

and RENAME FUNCTION and is applied when it is wanted to change a function

location and rename the composition of its name.

2. Step-by-step process of applying refactoring

The application of this refactoring consists of combining the MOVE FUNCTION

refactoring and the RENAME FUNCTION:

(a) Identify the region from which the source function will be extracted. It is im-

portant to check the entire context to know whether elements that the function

interacts with will also need to be moved;

(b) Check whether the function chosen to be moved and renamed is polymorphic, if

so, it is important to check all the places where the old function was called;

(c) Perform MOVE refactoring;

(d) Perform RENAME refactoring;

(e) Test.

3. Example of JavaScript

In Figure 2.128 it is possible to see an example of refactoring Move Rename.

We can see a function saveAsUnipackage that was moved from tools/package.js to

tools/unipackageclass.js and renamed to saveToPath.

8https://github.com/meteor/meteor/commit/1bf4ffba803f95f9383f5d2ed5929726b659670c

2.2 Refactorings 23

Figure 2.12: Move rename function refactoring example

EXTRACT MOVE FUNCTION

1. Motivation

The motivation for this refactoring is extracting a portion of code that no longer be-

longs to the context of a previously dened function and moving it to a new con-

text. This process also involves changing the function’s name to better align with the

evolved code in new contexts.

2. Step-by-step process of applying refactoring

The application of this refactoring consists of combining the EXTRACT FUNCTION

2.2 Refactorings 24

refactoring and the MOVE FUNCTION:

(a) Identify the region from which the source function will be extracted. It is im-

portant to check the entire context to know whether elements that the function

interacts with will also need to be moved;

(b) Check whether the function chosen to be extracted and moved is polymorphic, if

so, it is important to check all the places where the old function was called;

(c) Perform EXTRACT refactoring;

(d) Perform MOVE refactoring;

(e) Test.

3. Example of JavaScript

In Figure 2.139 it is possible to see an example of refactoring Extract Move Rename.

We can see part of the code function location going to function toKeyValue that its

new name in different les.

Figure 2.13: Extract Move function refactoring example

9https://github.com/angular/angular.js/commit/d717020911a350a5ea3c0a985c57d56c8fcad607

2.2 Refactorings 25

During data extraction, a refactoring caught in JavaScript codes was observed, which is

captured by the tool but there is no discussion in the study by Silva et al. [24]. This refac-

toring is called by tool RefDiff 2.0 as INTERNAL MOVE and its results will be discussed

in the next subsection.

INTERNAL MOVE FUNCTION

1. Motivation

This refactoring consists of removing a specic piece of code that is in a code scope

and inserting it into a more internal/external scope. According to the analysis of the

study by Silva et al. [24] and the analysis of those researched in the study, we veried

that this refactoring is due to the need to adapt only a part of the code to a new scope,

within the same le. This type of refactoring happens a lot in nested functions, being

more common in languages that allow this type of code scope.

2. Step-by-step process of applying refactoring

The application of this refactoring consists of the following steps:

(a) Identify the region from which the innermost code snippet will be extracted. It is

important to check the entire context to know whether elements that the function

interacts with will also need to be moved;

(b) Move the code snippet to the new scope in the same le;

(c) Test.

3. Example of JavaScript

In the example in Figure 2.1410 we can see an example of Internal Move refactoring. In

the specic context, the function onreadystatechange was in the scope inside the if context,

after refactoring the function was moved to another scope the else if.

We can see another example below in Figure 2.1511 where the function defaultNega-

tiveCompare was in the scope Expectation.prototype.wrapCompare but after refactoring this

10https://github.com/requirejs/requirejs/commit/5463c8f5940c05427289afa106f5748b35542aee
11https://github.com/jasmine/jasmine/commit/533bda5d2400755a1ef49bfd59712af1f620496e

2.2 Refactorings 26

Figure 2.14: Internal Move function refactoring example

function was in the Expectation.prototype.instantiateMatcher, these modication was per-

formed in the same le.

INTERNAL MOVE RENAME FUNCTION

1. Motivation

This refactoring consists of a match of Internal Move refactoring and Rename refac-

toring. It begins with the desire to change a function within a specic scope and also

change its name.

2. Step-by-step process of applying refactoring

The application of this refactoring consists of the following steps:

2.2 Refactorings 27

Figure 2.15: Another Internal Move function refactoring example

(a) Implementation of refactoring Internal Move;

(b) Implementation of refactoring Rename;

(c) Test.

3. Example of JavaScript

As depicted in Figure 2.1612, we observe the change of scope for the Call function,

and its name is now MixinCall.

REFACTORINGS RELATED TO FILES

A .js le is a text le that contains a set of lines that will JavaScript code. The entire le

will t into a context within the code and can be part of different layers of the software,

such as models, controllers, etc. Given their location in the code, these les can contain sets

of functions, attributes, classes, interfaces, among others. Moving a le represents moving

the entire set that made this le. Just like moving a le, renaming is to adapt this le to

12https://github.com/less/less.js/commit/16746e9b1eca8e5cbf0b2fb9f8e412a5ad26e95a

2.2 Refactorings 28

Figure 2.16: Internal Move Rename function refactoring example

a new context or even to the context itself in which the name initially given is no longer

representative. The next subsections will discuss MOVE and RENAME refactorings to les

and MOVE RENAME composite refactoring. These types of refactorings will be discussed

in our study based on the classications discussed in the Fowler study [10].

MOVE FILE

1. Motivation

When deciding to move a le, the programmer intends to add information to a new

context, so the programmer needs to identify if this entire le set will be necessary and

is coherent to be in the new context.

2. Step-by-step process of applying refactoring

We can follow the same logic for JavaScript, highlighted in the following points by

Fowler [10]:

(a) Identication of the regions that use this le;

(b) Move the le to the new context;

(c) Performs all necessary adaptations to the new location of the les. This step

consists of checking all imports that were directed to the old le location and

adapting them to the new le location;

2.2 Refactorings 29

(d) Test.

3. Example of JavaScript

In the example in Figure 2.1713, we can see an example of the MOVE refactoring

le that the tool detected by moving the entire le from the src/moveToAngularCom/-

Model.js directory to the destination directory src/delete/Model.js.

Figure 2.17: Move le refactoring example

RENAME FILE

1. Motivation

When renaming a le, the programmer wants to adapt this le that belonged to a

context that changed its intention, so it needs to identify if the new le name will be

representative of the context.

2. Step-by-step process of applying refactoring

We can follow the same logic for JavaScript, highlighted in the following points by

Fowler [10]:

(a) Identication of the regions that use this le;

(b) Renaming the le name;

(c) This step consists of checking all imports that were directed to the old le loca-

tion and adapting them to the new le location;

(d) Test;

13https://github.com/angular/angular.js/commit/11a6431f8926c557f3c58408dacc98466e76cde1

2.2 Refactorings 30

3. Example of JavaScript

In the example in Figure 2.18 14 below we can see an example of le renaming, chang-

ing the name createError.spec.js to AxiosError.spec.js in Javascript code from the Ax-

ios repository.

Figure 2.18: Rename le refactoring example

MOVE RENAME FILE

1. Motivation

This refactoring consists of executing two refactorings together, MOVE FILE and RE-

NAME FILE. When changing a context le, there may be a need to also change its

name, resulting in this composite refactoring.

2. Step-by-step process of applying refactoring

We can follow the same logic for JavaScript, highlighted in the following points by

Fowler [10]:

(a) Application of the MOVE FILE refactoring steps;

(b) Application of the RENAME FILE refactoring steps;

(c) Test;

14https://github.com/axios/axios/commit/7f1236652adb813ff884be008fe73ddf0590c664

2.2 Refactorings 31

3. Example of JavaScript

In the example in Figure 2.1915 we can see the application of a compound refactoring

called MOVE RENAME on a le. You can see that the le initially called ReactDOM-

FrameScheduling.js now has a new name ReactScheduler.js and a new directory.

Figure 2.19: Move Rename le refactoring example

REFACTORINGS RELATED TO CLASSES

The next refactorings that were identied by the tool are related to the JavaScript versions

that the software was developed. Classes before the ES6 (JavaScript 5) version could be

abstracted and represented by creating functions, and these represented the same functional-

ity. Starting with ES6, it was possible to create a class instance to better represent an object

in JavaScript. The motivation for refactoring MOVE and RENAME CLASS is the adapta-

tion of classes to a context that has evolved until the name initially chosen is no longer so

representative.

MOVE CLASS

1. Motivation

Adaptation of an already developed class to a new context, to promote better code

modularity.

2. Step-by-step process of applying refactoring

(a) Identication of regions that use this class;

(b) Transporting the class to the new context;

(c) Carry out all necessary adaptations to the new classroom location.

15https://github.com/refdiff-study/react/commit/999b656ed1c94b00fcfd043f54e18ade7553dee0

2.2 Refactorings 32

(d) Identify source contexts that reference the location of the old class and that will

reference the new location of the moved class;

(e) Test.

3. Example of JavaScript

The gure 2.2016 represents an example of refactoring move class, that moves Natu-

ralModuleIdsPlugin from lib to lib/ids source.

Figure 2.20: Move class refactoring example

RENAME CLASS

1. Motivation

Adaptation of the name of the developed code class to an evolving context, to promote

a better understanding of the code.

16https://github.com/refdiff-study/react/commit/999b656ed1c94b00fcfd043f54e18ade7553dee0

2.3 Refactorings versus Merge Conicts 33

2. Step-by-step process of applying refactoring

The application of this refactoring follows these next steps:

(a) Identication of regions that use this class;

(b) Renaming the class name;

(c) This step consists of checking all imports that were directed to the old class and

adapting them to the new name class;

(d) Test.

3. Example of JavaScript

The gure 2.2117 represents the application of refactoring RENAME classes in

JavaScript code, renaming the class that was previously called TreeSitterHighlight-

Iterator to LanguageLayer.

Figure 2.21: Rename class refactoring example

2.3 Refactorings versus Merge Conicts

The study [17] was the rst to analyze the relationship between refactorings and merge con-

icts. This work aimed to investigate the extent to which these two variables are related,

discussing whether conicts involving refactorings are more difcult to solve and which

types of refactorings are more prone to errors. The methodology of the study selected Java

code repositories and, for each repository, identied the conict regions and the previous

modications that led to the conict, known as evolutionary commits. After identifying the

17https://github.com/atom/atom/commit/e60f0f9b6084e220b2b54cf4218fdf31f9733bd9

2.3 Refactorings versus Merge Conicts 34

evolutionary commits, the study focused on searching for refactorings in those commits and

relating them to the conict regions to determine whether there is a relationship between

the research variables, refactorings, and merge conicts. The study found that about 22% of

refactoring actions were involved in merge conicts and also obtained results on which types

of refactorings are more related to conicts.

Similar to Mahmoudi et al. study [17], Oliveira et al. [20] was the rst to analyze the

presence of refactoring actions in conicting code for JavaScript. The study shows that ap-

proximately 7% of the analyzed scenarios involved refactoring actions in conicting les,

with 4% of them exhibiting refactoring at the conict region level. Moreover, a moderate

and positive correlation was found between the quantity of refactoring types and the number

of conicts, suggesting a potential insight into the limit of refactorings to be performed in

a single commit. Move and Internal Move refactorings were the most commonly associ-

ated with conicting les and conict regions, explaining a discussion about Internal Move,

a refactoring type related to scope and more connected to languages with specic structural

features, such as the ability to develop nested functions. This study serves as an initial explo-

ration of the relationship between refactorings and merge conicts, prompting discussions on

the need for advancements in methodologies applied to other languages and the development

of better tools for JavaScript. This study stands out from previous research by addressing this

relationship in a popular language that had not been extensively explored, showing types of

refactorings most associated with merge conicts. Additionally, it contributes to a data set

containing oss and pure refactoring in JavaScript code commits.

Chapter 3

Exploring the relationship between

Refactorings and Merge Conicts

To analyze the relationship between refactoring actions and merge conicts in JavaScript

code, we performed a study to analyze the presence of refactorings in merge scenarios that

involved conicts. This verication was performed at the le and conict region levels. This

chapter aims to discuss the entire methodological process adopted, results, and implications

for the rst and second research questions.

Initially, we discuss the methodology of our study to address the rst two research ques-

tions. Two studies were performed, which are presented, with the input and output variables,

in Section 3.1. Subsequently, in Section 3.2, we discuss the preparation of our environment

and what was developed to collect the variables for our research. With the collection of this

data, Section 3.3 covers everything from the descriptive analysis of the data to examples of

the variables, culminating in the section dedicated to addressing the research questions.

Presenting the data, Section 3.4 explores the implications of the values found through

statistical analyses, pointing out the points of contribution from our study. To conclude, we

discuss the threats to the validity of our methodological process in Section 3.5.

The studies conducted in this chapter aim to answer the following Research Questions:

• RQ1: Is there a relationship between refactoring and merge conicts in JavaScript

programs?

• RQ2: What refactoring patterns relate most to merge conicts in JavaScript programs?

35

3.1 Methodology 36

The methodology for the rst research question involves obtaining the evolutionary com-

mits that contributed to the conict regions and extracting any refactorings present in these

commits, if they exist. This allows us to examine the history of changes leading up to the con-

icts and analyze the role of refactorings in their occurrence. The methodology for the sec-

ond research question aims to identify patterns in the relationships between refactorings and

merge conicts. This involves analyzing the data gathered from the rst research question

to uncover any recurring patterns or trends. This analysis helps us gain a deeper understand-

ing of the potential relationship between specic types of refactorings and the likelihood of

conicts during code integration.

Next, each stage of the methodology for collecting and analyzing evolutionary commits

is detailed.

3.1 Methodology

In this section, we present the methodology for our rst two research questions. In addition

to the overall gure illustrating each step, we provide tables detailing the inputs and outputs

of each stage.

3.1.1 Methodological study for RQ1: Analyzing the Relationship be-

tween Refactorings and Merge Conict

We used the methodology based on the study of Mahmoudi et al. [17] to collect the presence

of refactorings in conicting les and their respective conict regions. It is based on the

analysis of evolutionary commits. These commits represent the evolution of code present

in the merge commits parents. Extracting evolutionary commits was executed through the

terminal interface itself, using Git commands, while the part of collecting refactorings was

extracted using the RefDiff 2.0 tool from the study by Silva et al. [24]. The choice of this

tool was made because, up to the data collection moment, it was the only one that collected

refactoring actions performed in JavaScript code. To better illustrate the metrics that were

being used as inputs and outputs in each activity of the QP1 methodology, Figure 3.1 and

Table 3.1 have been developed, with a description of each step provided subsequently.

3.1 Methodology 37

Table 3.1: Descriptive analysis of metrics repository selection

Activity Description Input Output

1
Mining JavaScript code reposito-

ries
Mining metrics Repository of Javascript code

2
Mining merge commit informa-

tion
Repository of Javascript code Conict commit hash

3 Detecting conicting regions Parents of conicting commits
Conicting regions of each merge

scenario

4
Extracting evolutionary commits

that built conicts

Conicting regions of each merge

scenario

Change regions of evolutionary

commits

5
Collecting refactoring actions in

evolutionary commits

Hash of commits extracted by

evolutionary commits
Refactorings done in this commit

6

Detecting the relationship be-

tween refactoring actions and

conict regions

Local of conict code and local of

refactoring change

Validation if there is overlapping

between refactoring and region

change

Figure 3.1: Methodology for analyzing the relationship between refactorings and merge

conicts

3.1 Methodology 38

1) Mining JavaScript code repositories

The initial stage of this work consisted of selecting the repositories that would be used as

the subject of the study (rst step of Figure 3.1). To do this, we selected related works that

had already analyzed JavaScript projects and their characteristics, such as the studies by [24]

and [26]. Next, we used two main metrics to select the most representative repositories for

our study: the number of developers involved and the total number of commits. Based on

these metrics, we selected a sample of 50 repositories and subsequently extracted the merge

commits related to the project under analysis.

2) Mining merge commit information

After the process of extracting merge commits from the repository, this stage aimed to rene

the sample by selecting only merge scenarios that have at least one conicting le (second

step of Figure 3.1). We developed a script to take the total merge scenarios as input and

return only the conicting scenarios. The main idea of this stage is to perform the merge

between P1 and P2, which represents the left and right commits, i.e., the parent commits of

the merge commit. Using the commands "git checkout P1", "git merge P2", and "git diff

-U0", the interface returns the entire result of the merge process, highlighting which les

have at least one conict region. The "git diff -U0" command returns the difference between

the merged commits without adding blank lines.

3) Detecting conicting regions

Identifying conicting regions within conicting les after the merge process is the goal

of this stage. The third step in Figure 3.1 demonstrates the process of identifying these

regions of conict. The command "git diff -U0" is used to return these regions. The merge

commit (MC) is identied with the symbol "@@@...@@@". This symbol consists of three

pairs, where the rst two represent the location of the conicting code in the respective

parent commits, P1 and P2. By identifying the conict regions in the parent commits of

the merge commit, it is possible to determine the evolutionary commits that contributed to

the construction of each of these regions. This will be detailed in the next stage of the

methodology.

3.1 Methodology 39

4) Extracting evolutionary commits that built conicts

During this stage of the methodology (fourth step of Figure 3.1), the focus was on collecting

information about the commits that contributed to the construction of the code in conict

regions, i.e., the commits that introduced changes in the parent commits of each merge com-

mit. Using the identied change regions within each parent commit of the merge commit, we

executed the commands "git log -L start(P1), end(P1): le P2..P1" and "git log -L start(P2),

end(P2): le P1..P2". These commands take as input parameters the start and end of the

change region in the respective parent, as well as the conicting le path. The output of this

command includes all the commits that contributed to the construction of the conict region.

The result of executing this command would be all the commits that are between P1 and its

common ancestor and that were part of the evolution of the parent commit. With these com-

mits that contributed to the parent commits, it is possible to run the refactoring tool for each

commit and identify if any refactoring was performed within it. Additionally, during this

stage of the methodology, we collected the data using scripts that we developed. This data is

essential for the study as it represents the number of conicts and conict regions of .js les

being analyzed. Data such as the total number of conicts, conict regions, and analyzed .js

les are collected in this stage to be used for the correlation of the research variables.

5) Collecting refactoring actions in evolutionary commits

When evaluating the history of source code, identifying evolutionary commits, as seen in the

previous step, is an essential task. In the fth step of Figure 3.1, we use RefDiff 2.0 tool [24]

to identify refactorings within these commits, as well as indicate in which region of the le

the change was made and what refactoring type was applied. By providing accurate informa-

tion about refactorings performed on the source code, RefDiff 2.0 facilitates the discussion

of design problems in the code, as the application of refactoring begins with a bad smell in

the code. Therefore, it is possible to better understand how the code has evolved through the

action of refactorings.

3.1 Methodology 40

6) Detecting the relationship between refactoring actions and conict regions

Finally, when collecting refactorings within evolutionary commits, it is necessary to verify

the presence of refactorings within the conicting le and the conict regions collected in

step 3, to identify whether they are related by overlapping lines (sixth step of Figure 3.1). At

the end of this step, all relationships between refactorings and merge conicts at the level of

the conicting le and the level of the conicting region are collected.

3.1.2 Methodological study for RQ2: Analyzing the Relationship be-

tween Refactorings Types and Merge Conicts

In this section, we describe the methodology used to analyze the relationship between refac-

toring types and merge conicts demonstrated in Figure 3.2. Table 3.2 illustrates the metrics

that were used as inputs and outputs.

Table 3.2: Descriptive analysis of metrics repository selection

Activity Description Input Output

1
Summary of refactorings types in Merge

commits with conicts

Data with refactorings types founded in

conicts

Summary of refactorings types

founded

2

Statistical analysis of types of refactor-

ings in the conicting les and conict

regions

Variables: Refactoring types and conict-

ing regions
Statistical correlation tests

Figure 3.2: Methodology for analyzing the relationship between refactoring types and merge

conicts

3.2 Study Setup 41

1) Summary of refactorings types in Merge Commits with conicts

The objective of this stage is to collect information about the most common types of refactor-

ing that are involved in conicting les and conict regions. Identifying the most common

types of refactoring that are most often involved in merge conicts can be very useful in en-

suring the integrity of the code in a repository. By collecting this information, it is possible to

better understand which refactorings can lead to conicts, allowing tag preventive measures

to be taken to avoid them.

2) Statistical analysis of types of refactorings in the conicting les and conict regions.

To obtain quantitative analyses, statistical tests of correlation will also be performed in this

stage between the study variables, which are: the occurrence of refactoring types and merge

conicts, to identify possible relationships between them at a statistical level.

3.2 Study Setup

This section describes the preparation of our environment for conducting the study for RQ1

and RQ2, including the selection of initial metrics and the information on the local where

the experiment was conducted.

3.2.1 Selection of JavaScript repositories

We selected the most repositories from a list of repositories analyzed in previous studies,

such as [24] and [26]. These studies focused on the analysis of refactorings and conict

analysis, respectively, and had evaluation datasets with lists of repositories analyzed. To

select also new repositories, we conducted a search on GitHub for JavaScript repositories,

choosing them based on the initial metrics we identied. To select the repositories for our

study, we used metrics that emphasize the importance of selecting good inputs for empirical

studies. Specically, we used the number of contributors and the number of commits as our

selection criteria. We believe repositories with high values for these metrics are more likely

to have merge conicts.

3.2 Study Setup 42

3.2.2 Creation of scripts to collect text data information

To gather the necessary data for the study, we developed ve Python scripts that collected

information on merge scenarios and important evolutionary commits, such as the location

of conict regions. These scripts were developed using version 3.0 and included ve main

functions:

• Collection of conict scenarios ;

• Collection of information on conicting commits;

• Collection of the relationship between refactorings and conicting les and conict

regions;

• Collection of conict information by merge scenario;

• Collection of information on types of refactorings.

A manual inspection was performed through manual tests to validate the obtained data.

All the material developed and extracted from the scripts is available in the repository 1,

complete with step-by-step instructions for their execution.

3.2.3 Initialization and conguration of the RefDiff 2.0 refactoring tool

To collect information related to refactorings, we used the Ref Diff 2.0 tool from the study

[24]. This tool is multilingual, meaning it can detect these actions for many programming

languages. In our study, we used the plugin developed by the study team for JavaScript

codes. The tool was executed in Eclipse and congured through Maven artifacts.

3.2.4 Execution environment

To perform data analysis, we used a computer with an i5 processor with 4 cores at 2.30GHz

and 12 gigabytes of memory. The average internet connection was 130 Mbps.

1https://github.com/joseglauberbo/data_mestrado_dissertacao

3.3 Results 43

3.3 Results

In this chapter, we explore the methodological aspects addressed in our study for RQ1 and

RQ2. In Section 3.3.1, we present a descriptive analysis of the data, emphasizing measures

of central tendency. The purpose is to provide a more detailed description of the variables in

our study. Our goal is to present, from the outset, the selection of initial metrics to the key

variables, such as refactorings, merge conicts, and their relationship. We further explore the

discussion of the chosen variables, interpreting the values found in the previous section and

providing concrete examples of our data found. In Sections 3.3.2 and 3.3.3 we answered our

research questions based on the ndings obtained during the study. In Section 3.4, we discuss

our ndings, assess the hypotheses, and draw conclusions. Concluding the discussion, in

Section 3.5, we present threats to the validation of our study, based on the methodology

applied in the research questions.

Initially, we selected 100 JavaScript code repositories, from which 76 have at least one

merge conict in the Javascript le (les with .js). These 76 repositories were made by

31,329 contributors and all of these have 547,421 commits. A total of 81,856 merge scenarios

were examined. Among them, 6,356 were found to have at least one merge conict. Only

conicts occurring in .js les were considered, while conicts in conguration les (such

as build les and readme les) and test les were disregarded. As a result, a total of 4,206

valid merge conicts were included in the analysis. Within these valid merge conicts, a

total of 7,821 conict regions were identied. From the evolutionary commits, the RefDiff

tool collected 2,961 refactorings applied within les involved in conicts. Also, out of these

refactorings, 1,236 were specically applied within the conict regions themselves. This tool

captured various types of refactorings, including Rename, Move, Extract, Inline, Internal

Move, Move Rename and Extract Move.

3.3.1 Descriptive analysis

Table 3.3 and Table 3.4 show some measures of central tendency and dispersion of the data,

such as standard deviation, the minimum and maximum value of the set, and quartiles by the

variables of our study.

The variables analyzed in the study encompass repository selection metrics as well as

3.3 Results 44

Table 3.3: Descriptive analysis of metrics repository selection

Variable Mean SD Min Max Q1(25%) Q2(50%) Q3(75%)

Nº of contributors 412.22 702.78 12 4704 104.25 214.5 372

Nº of commits 7202.9 10313.9 392 41503 1883.75 3024.5 7459.25

Nº of merge scenarios 1077.05 1817.13 35 9181 201.75 413 738.5

Nº of merge scenarios with conict 83.63 140.73 3 710 14.75 25.5 71

Table 3.4: Descriptive analysis of variables refactorings and conicts

Variable Mean SD Min Max Q1(25%) Q2(50%) Q3(75%)

Nº conicts .js 55.34 98.1 1 649 9 18.5 62.2

Nº conicting regions 102.9 189.2 2 1263 12.7 34.5 105.7

Nº refactorings (conicting les) 38.9 62.7 0 306 2 9 49.7

Nº refactorings (conicting regions) 16.2 32.1 0 194 0 2 13.2

Nº relationship (refactorings and conicting les) 227.1 838.5 0 6846 4 13.5 117.5

Nº relationship (refactorings and conicting re-

gions)

24.8 61.5 0 387 0 3 18.25

variables representing merge scenarios, conicts, and conict regions. The selection of

repositories with a wide range of data allows for the examination of whether the study’s

ndings apply to both large and small repositories, with a large or small number of merge

scenarios. The inclusion of outliers in the analysis further highlights the dispersion of the

data and provides additional insights into the variations observed in the variables. By consid-

ering repositories with diverse characteristics, the study aims to enhance the generalizability

and robustness of its results. Table 3.4 provides a comprehensive visualization of the two

main research variables in the study, which are conicts and refactorings. These variables

were obtained through the examination of their evolutionary commits. Figure 3.3 shows

dispersion metrics for selection repositories and the next section analyzes these variables.

To select repositories with a high number of merge and conict scenarios, we chose to

use the metrics "number of contributors" and "number of commits" as initial criteria. When

analyzing the data presented in Table 3.3, we observed that our repositories had, on aver-

3.3 Results 45

Figure 3.3: Initial metrics of selection repositories Javascript

3.3 Results 46

Figure 3.4: Dispersion metrics about merge commits and merge commits with conicts

age, 412 contributors, ranging from a minimum of 12 to a maximum of 4,704. The notable

dispersion of this data is positive, as it provides a comprehensive and meaningful represen-

tation for our analysis. To the number of commits metric, we found that the repositories

analyzed had an average of 7,202 commits, with a wide dispersion of data, ranging from 392

to 41,503. This diversity suggests that our selection encompasses repositories of different

sizes and stages of development, covering large, small, and medium projects.

Choosing these two initial metrics, each repository had the number of merge commits

and merge commits with conicts collected, starting the fundamental point for our study.

The repositories presented around 1,077 merge scenarios, showing a notable dispersion of

data. Of these scenarios, it was found that the mean is 83 scenarios with conicts, with

repositories having only 3 conict scenarios while others with 710 scenarios. It is important

to highlight that all variables selected so far have exhibited signicant dispersion in the data

3.3 Results 47

collected.

A correlation analysis was carried out between these variables, as illustrated in Figure

3.5. This analysis allows us to evaluate whether the two initial metrics chosen were effective

in selecting repositories that contain representative merge scenarios.

Figure 3.5: Correlation Matrix with metrics selection

A clearer correlation emerges between these variables, suggesting that as the number of

contributors and commits in the repository increases, the likelihood of encountering more

merge scenarios and conicts also rises.

Figures 3.6, 3.7, 3.8 show us how our research questions variables are disperse. Given

that our study focuses on the relationship between refactoring action and conicts that occur

in merge scenarios, both at the le level and at the conict region level, this subsection has the

objective to provide insight into what was discovered for the variables "number of conicts

.js", "number of conict regions", "number of refactorings in conicting les", "number of

refactorings in conicting regions", "number of the relationship between refactorings and

conicting les" and "number of the relationship between refactorings and conict regions".

As shown in Table 3.4 and Figure 3.6, we observed signicant variability in the reposito-

ries, ranging from those with only one conicting le to those with as many as 649 conicting

les. Additionally, we found repositories that contain from 2 to 1,279 conict regions.

3.3 Results 48

Figure 3.6: Dispersion metrics about conicting les and conicting regions

As evidenced in the Figures 3.7, there is a higher presence of relationships at the level

of conicting les compared to the level of conict regions. In the context of conicting

les, scenarios of merge are identied, reaching up to 7,000 relationships with detected

refactorings. Upon analyzing the boxplot, it is observed, through the median, that 50% of the

data falls below approximately 13 relationships, while the average number of relationships

is around 227. When we check at the conict region level, we have a smaller quantity of

relationships identied. Through our data, a disparity has been noted, which can be attributed

to the randomness and diversity inherent in our repositories.

3.3 Results 49

Figure 3.7: Dispersion metrics about relationship research variables for RQ1

Similar to the charts illustrating the number of relationships between refactorings and

merge conicts, graphs were generated to represent the dispersion of the number of refac-

torings in conicting les and conict regions. Concerning the number of relationships, the

number of refactorings exhibited lower values, but with a signicant dispersion and little

presence of outliers, indicating a more balanced distribution at the conicting le level.

3.3 Results 50

Figure 3.8: Dispersion metrics about the number of refactorings in research variables for

RQ1

3.3 Results 51

In the following gures, it is possible to check conict situations and conict regions

captured by the methodology adopted. In this Figure 3.9, it is possible to observe the moment

in which we identify the conicting les in each merge scenario. In the case of the mentioned

example, two les have merge conicts: the test/test-async.js le and the lib/async.js le. To

illustrate the example, we will choose the lib/async.js le, since it is an executable le in .js

format. Later, in Figure 3.10, we present an example of a conict region collected in this

specic scenario.

Figure 3.9: Metric: number of conicts

Figure 3.10: Example of collected conict

3.3 Results 52

After collecting this conict region, we identied the commit that was responsible for

introducing this content into the source code, as we can see in Figure 3.11.

Figure 3.11: Example of collected region conict

The tool captures a RENAME refactoring that occurred in the forEachLimit function on

line 147, being renamed to eachLimit on line 149, as illustrated in Figure 3.12.

Figure 3.12: Example of collected refactoring in conict le and region conict

Given the examples above, our script identies that for this merge scenario, there is a

relationship between the RENAME refactoring action and the conicting le and the conict

region, since the refactoring was introduced in an evolutionary commit that made exactly the

location of the region of conict.

3.3.2 Answering RQ1: Is there a relationship between refactoring and

merge conicts in JavaScript programs?

After collecting variables related to the number of conicts, conict regions, and refactoring

actions, we also collected the variable that represents the relationship between these vari-

ables, i.e., if there was at least one overlapping line between the location of the refactoring

application and the location of the conict, there is a relationship between both variables.

Given this, out of the 76 repositories and 6,356 conict scenarios analyzed, 17,271 rela-

tionships between refactoring actions and conicting les were found. By restricting the

3.3 Results 53

application of refactoring at the level of conict regions, 1,888 relationships were found at

the le level, these relationships are in Figure 3.13.

We also collected how many instances of refactorings were found in these conicting

scenarios, both at the le level and at the conict region level. 2,961 were found instances of

refactorings in conicting les, 1,236 of which are also related to the region of conict. The

results can be seen in Figure 3.14.

Figure 3.13: Dispersion graph of variables (relationship/conicts) of QP1

3.3 Results 54

Figure 3.14: Dispersion graph of variables (nº of refactorings/conicts) of QP1

The study identied 465 merge scenarios that have at least one relationship between the

refactoring and the conicting le, and of these, 253 have at least one relationship at the

level of conict region, representing 7% and 4% of the sample, respectively. Figure 3.15

represents how these data are distributed.

It can be observed that there are a low number of scenarios that have at least one rela-

tionship between the refactoring action and the conicting le and its conict region. To

better analyze the relationship between these main variables of the research, the correlation

between the number of conicting les/regions and the quantity of this relationship was an-

alyzed. Similarly, the correlation between the number of conicting les/regions and the

number of refactorings found in these scenarios was also examined. Table 3.5 shows some

3.3 Results 55

Figure 3.15: Dispersion graph of scenarios involved in merge conict

correlation relationships between them.

Table 3.5: Descriptive analysis of variables of study

Correlation Nº of conicts .js Nº of region conicts .js

Nº of relationship between refactorings and con-

icting les

0.55 0.61

Nº of relationship between refactorings and con-

icting regions

0.5 0.6

Nº of refactorings in conicting le 0.56 0.60

Nº of refactorings in conicting region 0.54 0.58

As observed, both relationships show a moderate positive correlation. In addition to the

correlation analysis, a linear regression model was developed between both analyses. Our

study developed linear regression models, where the dependent variable (Y) was dened as

the "number of conicting les/conicting regions", and the independent variable (X) was

dened as the "number of relationships between refactorings and conicting le/number of

relationships between refactorings and conicting regions". These results can be analyzed in

Table 3.6. When we now consider the linear regression model with the independent variable

being the "number of refactorings", we observe different results in Table 3.7.

3.3 Results 56

Table 3.6: Number of Relationship x Conict

Relationship x Conict Conicting le Conicting region

regression-model y = 49.1 + 0.027X y = 89.6 + 0.53X

p-value 0.042 0.13

r-squared 0.055 0.03

Table 3.7: Number of refactorings x Conict

Number of refactorings x Conict Conicting le Conicting region

regression-model y = 36 + 0.49X 79.6 + 1.43X

p-value 0.005 0.03

r-squared 0.10 0.05

Both discussions about these linear regressions are in Section 3.4.

3.3.3 Answering RQ2: What refactoring patterns relate most to merge

conicts in JavaScript programs?

For this research question, information was collected on the types of refactorings present in

scenarios that involve conicts. A total of 2,961 instances of refactorings were found through

the RefDiff 2.0 tool that was performed on les involved in conicts, of which 1,236 were

found within conict regions. All eight types of refactorings that were analyzed in this study

were found at the le level of conicting les and region conicts.

For each relationship found between a conicting le/conict region, there is an asso-

ciated refactoring. Table 3.8 shows the frequency with which each type of refactoring was

related to each of the conicts and Figure 3.16 and 3.17 are graphics dispersion about how

these data are distributed.

We can observe a notable disparity in the dispersion of data associated with the type of

refactoring in the repositories. Although Internal Move was the most associated refactoring

in conicting areas, the scatterplots above indicate that Move refactoring is the most widely

distributed among repositories, also presenting a smaller presence of outliers. Internal move

3.3 Results 57

Figure 3.16: Violinplot to types of refactoring involved in conicting le

3.3 Results 58

Figure 3.17: Violinplot to types of refactoring involved in conicting regions

3.3 Results 59

Table 3.8: Descriptive refactorings relationship founded in conicting le and conicting

regions

Refactoring Type Relationship Number in conicting les Relationship Number in region conicts

Rename 2098 243

Move 3760 913

Inline 626 50

Extract 1713 203

Internal Move 8366 454

Extract Move 734 57

Move Rename 225 29

Internal Move Re-

name

139 23

and move conicts were the most commonly found when analyzing the conicting le and

conict region levels. Below, statistical information about the data, as well as correlations,

will be presented.

Similarly to what was done for RQ1, it is desired to verify the correlation between vari-

ables related to conicts and the variable "number of refactoring types involved in the con-

ict". This verication was conducted at the level of conicting les and also at the level of

conicting regions and is presented in Figure 3.19.

Figure 3.18: Dispersion graph of the relationship between the type of refactorings and con-

icting variables

A moderately positive correlation is observed between the variables analyzed. In the

3.4 Discussion 60

same way, as we addressed in the rst research question, we conducted a linear regression

between the analyzed variables. the results can be veried in Table 3.9. First, in Figure 3.18

are dispersion graphics that show the correlation between variables.

Figure 3.19: Correlation between quantity type of refactorings and conicting le/region

Table 3.9: Number of Type of refactorings x Conict

Nº Type Refactorings x Conict Conicting le Conicting region

regression-model y = 12.12+ 13.4X y = 26.534 + 37.691X

p-value 0.003 0

r-squared 0.11 0.18

For this regression model, we dene the dependent variable (Y) as the "number of con-

icts/conict regions" and the independent variable as the "number of refactoring types in

conicting les/conicting regions". The results of this regression linear will be analyzed in

Section 3.4.

3.4 Discussion

In summary, our study found that from 6,356 conicting scenarios, 465 merge scenarios

have at least one relationship between a conicting le and a refactoring action, around 7%

of our total scenarios. Analyzing at the conict region level, there are 253 conict scenarios,

representing around 4% of our sample.

3.4 Discussion 61

When analyzing the results in Table 3.6, we observed that, when considering the impact

of refactoring relationships in conicting les, the p-value allows us to reject the null hypoth-

esis, indicating the existence of a signicant effect of the variable X over Y. The coefcient

of determination (r-squared) reveals that variable X explains 5.5% of the variation in the data

for variable Y. However, when examining the relationship at the conict region level, we did

not nd sufcient statistical evidence to reject the null hypothesis, suggesting the lack of a

signicant relationship between the variables.

When we now consider the linear regression model with the independent variable being

the "number of refactorings", we observe different results. At the conicting le level, the

p-value is notably low (0.005), indicating a signicant relationship between the variables,

with the independent variable explaining 10% of the variation in the dependent variable.

However, at the conict region level, we observed a more modest impact, with variable Y

inuencing up to 5% on variable X.

Summary 3.4.1. Results for RQ1

Through correlation and linear regression studies, our study demonstrates a bigger

correlation between refactoring and conicts at the level of conicting les. This

nding highlights the relevance of in-depth analysis of specic relationships between

variables for a more complete understanding of the results, in addition to suggesting

analyses regarding the impact of refactoring on the structure of the entire conicting

le.

Our study also focused on analyzing the number of refactoring instances that were re-

lated to conict. 2,961 instances of refactorings collected by RefDiff 2.0 were found,

of which 1,236 were also in conict regions. Our statistical analyses showed a moder-

ate correlation between the variables, showing a possible inuence between the num-

ber of refactorings performed in the merge scenario and the number of conicts that

may occur, suggesting a deeper study of the relationship between the variables for

better results.

To analyze not only the relationship between refactorings and conicts, our study also

uncovered results related to the types of refactorings performed within these areas. Through

the relationships found in RQ2, our study found that Internal move, Move, and Rename are

3.5 Threats to Validity 62

the types of refactorings most related to merge conicts, both at the conicting le level and

the conict region. When conducting the study we found that many conicts had more than

one type of refactoring carried out. All 8 types of refactorings that the tool can collect in

conicting les and conict regions were found.

When analyzing the results at the level of conicting le and conicting region in Table

3.9, we observed the two low values for the p-value, indicating that, in both cases, we can

reject the initial null hypothesis that stated the non-existence of a signicant relationship

between the variables. We can therefore consider that there is a signicant variance between

them. When examining the R2 value, we nd that, at the conicting le level, approximately

11% of the variance in variable Y is explained by variable X, while at the conict region

level, this value is around 18%.

Summary 3.4.2. Results for RQ2

Through statistical analysis, we found promising results that demonstrate that the

number of types of refactorings involved in the process can be directly related to the

occurrence of the conict in a merge scenario, this represented the most substantial

relationship found in our study. In addition found that Internal Move, Rename, and

Move types are most associated with merge conicts, both at the le level and the

conict region level.

3.5 Threats to Validity

This section will present the threats to validity that were identied during the methodology

of our study.

3.5.1 Internal Validity

Throughout our investigation, we noted certain inconsistencies in the functionality of the

RefDiff 2.0 tool. The main issue challenge is the tool’s incapacity to scrutinize refactoring

actions within merge commits, coupled with some false positives and false negatives. The

RefDiff study reported precision and recall of 91% and 88%, respectively, in identifying

refactoring actions in JavaScript code [24]. In the context of evolutionary commits, our nd-

3.5 Threats to Validity 63

ings indicate that the RefDiff tool faced challenges during the refactoring collection phase

in certain instances. This was attributed to the distinctive characteristics of these commits,

such as certain text formatting within the commit, resulting in parser errors.

In our study, our specic emphasis was placed on the analysis of les directly implicated

in conicts. Since the beginning, we opted for an approach exclusively dedicated to exam-

ining refactorings within the conicted les. This strategic choice was largely shaped by

the constrained tooling support accessible for JavaScript. To evaluate the inuence of refac-

torings in non-conicting les would have demanded substantial resources, both in terms

of memory and time. The insufcient tooling support available for these les would have

placed a substantial burden on the assessment process.

3.5.2 External Validity

Our study is limited to the size of a selected sample, and therefore, the results presented here

cannot be generalized to all JavaScript repositories. The conduct of our study on a limited

number of repositories is due to the lack of suitable tools to streamline and automate the

process.

Even with the selection of initial metrics, there is no guarantee that we chose the best

repositories for evaluation. Extensive repositories may have a reduced number of conicts,

as other characteristics, such as those related to the team, can inuence these variables. The

process of collecting refactorings is also a relatively time-consuming procedure and requires

specic congurations, making its application to larger datasets more challenging.

3.5.3 Constructor Validity

When analyzing some merge scenarios, we observed the presence of untraceable commits,

known as dangling commits, which lack references to any branch. These commits pose a

threat to our study, as it is not always possible to extract the entire content of the conict

region when it contains dangling commits. In the context of refactorings, it is important to

note that there is more than one way to perform the same type of refactoring. This variability

can pose a threat to our study, compromising the effectiveness of refactoring detection by the

RefDiff 2.0 tool. Due to the methodology of our study, the quantity of untraceable commits

3.5 Threats to Validity 64

was not collected, providing a potential avenue for future research.

A crucial aspect of our study aims to identify conicts within the software source code.

During code merging in Git, all les involved in conicts are included, and not all of these

les are executable JavaScript les with the .js extension. We observed the presence of

various les, such as congurations, READMEs, and test les, among others. This diversity

poses a threat to the validity of our study, as our focus is on identifying conicts in executable

JavaScript code les, typically developed by programmers.

It is important to show that we also encountered minied les, which is a compression

process to enhance speed and save space. Although these les are automatically generated,

they have the .js extension. To address these challenges, we applied a lter to our data,

considering only les with the .js extension. Additionally, for minied les with the .js

extension, we implemented a lter that checks whether the name follows a typical naming

pattern for minied les, if there, we discard this le. This strategy ensured that we captured

the most representative set of executable .js les in our analysis.

Similar to Mahmoudi et al.’s study [17], our research aims to identify refactoring actions

in conicting code. However, it is essential to note that the inuence of refactoring on

conicts cannot be conclusively asserted without a more in-depth analysis of the conict

content.

3.5.4 Conclusion Validity

The present study encounters challenges regarding the validity of its conclusions, with a spe-

cic emphasis on researcher bias. When selecting variables to address the research questions,

there is a possibility of choosing variables that may not provide the best answers for our con-

clusion. To mitigate this issue, meetings and discussions were conducted to determine which

variables to analyze, drawing on variables from other existing studies.

Chapter 4

An examination of commit evolutionary:

oss or pure refactoring?

The third research question analyzes the content of the commits that created the conict,

so it is possible to verify whether this content is composed only of refactorings or other

modications, thus making it possible to better analyze the contribution of refactoring to the

merge conict.

To begin, in Section 4.1, we discuss the methodology employed in this study, which

involves a systematic manual analysis. Figure 4.1 provides an overview of the methodology

used to address the third research question, highlighting the steps involved in each process.

Following that, in Section 4.2, we present the results used to answer our research question.

In Section 4.3, we will present discussions of our previously presented results, and in Section

4.4, we conclude with a study’s validity threats.

We answer the following research question:

• RQ3: The evolutionary commits that made conicting code contain only refactorings

(pure refactoring) or other modications (oss refactoring)?

Next, each stage of the methodology for collecting and analyzing evolutionary commits

is detailed.

65

4.1 Methodology 66

4.1 Methodology

In this section, we will present the methodology for our third research question. In addition

to the overall gure illustrating each step, we will provide tables detailing the inputs and

outputs of each stage.

4.1.1 Methodological study for RQ3: Analyzing the content of evolu-

tionary commit (oss and pure refactoring)

Through methodology 1, we identied the evolutionary commits that built the region con-

icts. At the moment, our study veries the occurrence of refactoring actions in regions of

conict by comparing edited lines in the evolutionary commit and the output of RefDiff 2.0

that indicates the location of the refactoring action. To get value for our study we decided

to adopt a strategy that analyzes the content of of the evolutionary commit code involved

in conict through a manual analysis, to check whether evolutionary commits have only

refactorings in their code sent or which are also composed of other types of modications.

It is essential to discuss that when implementing the methodology for the third research

question, we conducted a systematic analysis, without including automatic semantic anal-

ysis. The decision to perform this analysis manually was driven by a lack of knowledge

regarding tools capable of automating this task, due to limitations in studies within the

JavaScript domain. The step-by-step methodology is detailed in Figure 4.1 and the next

subsections.

To better illustrate the metrics that be used as inputs and outputs in each activity of the

RQ3 methodology, the following Table 4.1 has been developed, with a detailed description

of each step provided subsequently.

4.1 Methodology 67

Table 4.1: Descriptive analysis of metrics repository selection

Activity Description Input Output

1
Select a sample of evolutionary com-

mit
Extracted data evolutionary commits

Sample of evolutionary commits and

variables - quantity of les involved

evolutionary commits and quantity of

les collected by RefDiff 2.0

2

Compare refactorings by RefDiff 2.0

and GitHub interface and looking for

others changes

Sample of evolutionary commits and

collected variables
Metrics about evolutionary commits

3
Categorizing oss and pure evolu-

tionary commit
Evolutionary commits analyzed

Summary of oss and pure refactor-

ing evolutionary commits

Figure 4.1: Methodology for manual analysis of content by evolutionary commit

Select a sample of evolutionary commit

In this initial stage of the methodology, a stratication was executed on our data regarding

evolutionary commits. As we already know the modications of each commit evolutionary

by merge scenario, we choose a representative sample by sample calculator 1 that considers

1https://comentto.com/calculadora-amostral/

4.2 Results 68

64 repositories from 76 that we have, this value guarantees a signicant sample with a sig-

nicance of 95%. From these 64 repositories we selected a sample of evolutionary commits

that have at least one refactoring.

Compare refactorings by RefDiff 2.0 and GitHub interface and looking for other

changes

At this stage of our methodology, we extract from these commits in the GitHub interface how

many les were involved in the merge and how many les were collected by the RefDiff 2.0

tool with refactoring actions. We look for the refactorings collected by RefDiff 2.0 and any

relationships that exist with them. Soon after, we look for other modications that are not

related to refactoring. With this, we collect the variables: the number of les involved in the

merge scenario, the number of les involved by RefDiff, the number of refactorings collected

by the tool, and the number of other changes identied by the GitHub interface.

Categorizing oss and pure evolutionary commit

For our study, we established the classication of "oss refactoring" for any modication

that was not identied as refactoring by RefDiff 2.0 or, even if not found, t the denitions

in Section 2. We considered a modication as "pure refactoring" only when the evaluated

commit exclusively contained refactoring operations. We dened that the scope of analysis

would be the evolutionary commit since, from the outset, it is used as our primary object

for collecting information on the variables. Any addition of functionalities, test les, build

les, and minied les will be classied as "oss refactoring" if included in the evolutionary

commit.

4.2 Results

The variables collected at this stage of our study helped us identify which changes were in-

volved in the commit that created the conict. For each repository and each evolutionary

commit we collected the metrics: "the number of les identied with refactoring by RefDiff

2.0", "number of modied les identied in the source code in the GitHub interface", "num-

ber of refactorings identied by RefDiff", "number of other modications identied in the

4.2 Results 69

source code in the GitHub interface". With these variables collected through our methodol-

ogy described previously, we were able to identify which commits in our sample were oss

or pure refactoring.

It is worth mentioning that as it was a manual analysis, we were careful to analyze the

refactorings and modications involved in the process, so whenever we identied false spu-

rious errors (refactorings collected by RefDiff) they were disregarded from our study, to

obtain good accuracy of our results. In Figure 4.2 below we can identify an example of a

pure refactoring commit. We can verify that in this commit only one le was modied with

only the Rename refactoring modication.

Figure 4.2: Example of pure evolutionary commit involved in conict

For the evolutionary commit oss refactoring, according to our denition, we considered

everything that was not a .js le and was not related to refactoring as an extra modication.

4.2 Results 70

Commits with modications to HTML les, build, tests, minimized les, CSS, etc. were

considered as extra changes, in addition to changes that were not refactorings identied by

RefDiff and were not within the scope of refactorings that we dened in the Background

section. In Figure 4.3 we can see an example of an evolutionary oss refactoring commit.

Figure 4.3: Example of oss evolutionary commit involved in conict

4.2.1 Answering RQ3: The evolutionary commits that made conicting

code contain only refactorings (pure refactoring) or other modi-

cations (oss refactoring)?

Given all of our correlation analysis between the refactoring and merge conicts variables,

our third research question has focused on examining the content of these regions through the

4.3 Discussion 71

evolutionary commits. The study analyzed a sample of evolutionary commits to determine

whether they were generated through "oss refactoring" or "pure refactoring", allowing for

better identication of refactoring’s responsibility for the conict. A manual analysis was

performed on 64 of the 76 repositories in our sample, covering 535 evolutionary commits.

Of these, 448 commits are "oss refactoring" (84%), and 87 are "pure refactoring" (16%).

The distribution of data by repository is shown in Figure 4.4. Of the 64 repositories to this

question, 33 have all the evolutionary commits involved in the conict process classied as

oss, which represents more than 50% of our sample of repositories.

Figure 4.4: Dispersion of evolutionary commits oss/pure of QP3

4.3 Discussion

During the manual analysis of our study, we were able to check the instances of refactorings

and their applications in the commit on the GitHub interface. It was found that the tool

considered some modications to the build le as refactorings. For our study, we did not take

these instances, to have a more accurate classication of oss and pure refactoring. Our study

did not evaluate if the program’s behavior was preserved after executing the refactoring, this

was because we did not have tools for this analysis, in summary, we checked if there was a

relationship between the tool’s output and the modications involved in the interface, or if

there are any instance followed the refactoring pattern dened in the Background section.

A point highlighting is that many evolutionary commits have other modications made

4.4 Threats to Validity 72

along with refactorings, like build and test les being the most predominant. Another very

recurring modication seen was conguration les (les that are not .js) indicating future

work that analyzes the conguration setup of the JavaScript code and the occurrence of

conicts.

This manual analysis allowed us to identify that many of the scenarios previously inves-

tigated in QP1 and QP2 include other modications in their evolutionary commits, as per

the sample used in QP3. It was found that only about 16% of these analyzed commits ex-

clusively contain refactoring operations. This nding provides an intriguing starting point

for future research, as it enables the analysis of scenarios with pure refactorings, allowing

the identication of whether refactoring was indeed the cause of the conict. Additionally,

our study contributed to the creation of a dataset containing oss and pure refactoring in

JavaScript, establishing a valuable foundation for future investigations.

Based on the results found in our study, we can observe the need to explore the true

cause-and-effect relationship between these variables. Our manual study identied many

oss refactoring commits, so it is crucial to investigate what other modications these are

and whether they could have been the cause of the conict. As future work, we can suggest

the development of discussions on programming best practices and the necessary tools for

exploring oss and pure refactoring in JavaScript.

Summary 4.3.1. Results for RQ3

To analyze the content of analyzed conicts, our manual analysis found that of the

535 evolutionary commits analyzed, 448 of them were classied as oss refactoring

and 87 as pure refactoring, 84%, and 16% respectively. Most of the repositories ana-

lyzed (52%) had all evolutionary commits as oss, demonstrating a large load of other

modications that are performed together with refactoring actions.

4.4 Threats to Validity

This section will present the threats to validity that were identied during the method- ology

of our study.

4.4 Threats to Validity 73

4.4.1 Internal Validity

During the manual analysis, we examine the refactorings identied by the tool and the pres-

ence of other modications, which may or may not follow the refactoring pattern dened in

the Background section. This approach introduces a threat to internal validity as the analyses

are based on the subjective knowledge of the researcher, potentially introducing bias. Man-

ual analysis inherently carries risks, as an automated approach based on accurate metrics

may bring more consistent results.

4.4.2 External Validity

As the analysis is conducted manually, our study is conned to a specic sample, and the

results cannot be generalized due to the limited size of the sample. To mitigate this issue,

we applied a calculation to obtain a sample with 95% condence, providing a more robust

foundation for our conclusions.

4.4.3 Constructor Validity

Our study chose to perform an analysis of "oss" and "pure refactoring" through evolutionary

commits. If we wanted to examine more rigorously the inuence of refactoring on conicts,

we could have adopted an analysis at the level of the conict, considering that the scope of

the evolutionary commit is more comprehensive. This choice impacts construct validity, as

the granularity of the analysis can inuence the interpretation of results.

4.4.4 Conclusion Validity

The present study faces challenges related to the validity of its conclusions, particularly high-

lighting the bias associated with the number of analyzed repositories and researcher bias.

The drawn conclusions relied on the researcher’s expertise and were derived through a man-

ual analysis. To mitigate the inherent bias in manual analysis, the study was systematically

conducted, focusing on the identication of refactorings without considering whether they

preserved the code’s semantics. It is important to acknowledge that the study has limitations

due to the absence of JavaScript tools capable of automating these processes, underscoring

4.4 Threats to Validity 74

the need for future developments in this area.

Chapter 5

Related Work

This section presents several studies that provide a solid base for our study. This research has

two main variables, refactorings and merge conicts, so this chapter will focus in to show the

contributions of these variables in this area. About refactorings, it is essential to show studies

that discuss the beginning of the problem, where the necessity of the refactorings comes up,

like bad smells. Furthermore, it presents studies that have techniques to analyze refactoring

actions in software programs. On the other side, about merge conicts, we have studies that

discuss techniques to merge code without conicts, and consequences if a conict exists.

There are a few studies that investigate the relationship between these two variables, and our

study comes to an evolution about the investigation and refactoring and merging conict in

Javascript code.

There are a lot of studies to language Java that discuss bad smells like your begin and

consequences [29], [25]. Barros and Adachi in their study [4] have a mapping investigation

about code smells in Javascript code, verifying if the bad smells were dened and this de-

nition. This study analyzes 8 different works published between 2013 and 2020, identifying

26 different types of bad smells that have been dened for the Javascript language and how

these bad smells as evolved. Similarly, the study of Johannes et al. [15] has a large-scale

empirical study about code smells. This study focuses on extracting code smells in reposi-

tories, resulting in 12 types of code smells in 1807 releases. The main contribution of this

study was a better investigation of how the code smell persists in the system. The researchers

found that les without code smells have hazard rates of at least 33% than les with code

smells, in addition to discussing types of refactorings that are most involved with problems.

75

76

Both studies are important to our research because they bring the beginning of the discussion

of refactorings, since Fowler [10] discusses that the exact moment to apply refactoring is at

the start of code smell.

Martin Fowler in his study [10] brings a signicant contribution to the denition of refac-

torings, showing ways to make a design code better. This study is very important because is

the rst to classify and discuss patterns and step by step to make a better refactoring. There

is a large of refactorings that he presents in his study, refactorings like extract, inline, move

and rename. These types of refactorings are present in our study, but analyzed in Javascript

code. Base of denitions brought to Fowler, Opdyke et al. [21] show more about refac-

toring actions applied in object-oriented frameworks, showing how to automatically apply

these, detailing three of the most complex refactoring and designing constraints needed in a

refactoring. Studies like [7], [8], [27] present discussions about the process to apply refac-

torings automatically, some proposes are tools that implement JavaScript refactorings based

on pointer analysis, others have an approach based in a static analysis.

Silva et al. in their study [24] proposed a multi-language refactoring detection tool -

RefDiff 2.0. Different from the other tools in academics, RefDiff 2.0 is specic to detect

actions refactorings applied by developers in a software evolution. This tool is the rst to

collect these information about refactoring to Javascript code, and it will be used in our study.

They have signicant precision and recall to Java, Javascript and C languages, detecting

refactorings like move, rename, extract and inline. To Javascript the tool has a precision and

recall of 91% and 88% respectively.

To merge processes, there a substantial studies that provide a better explanation of tech-

niques merging. Mens in his study [18] provides a state-of-the-art about software merging,

he discusses the technique of two-way and three-way merging, also textual, syntactic, seman-

tic and structural merging. In this work, he shows that 90% that all merge scenarios need

unstructured merge (textual) because of they simplicity and only 10% need more complex

merge, like semi-structured or structured merge, also discusses that all VSCs uses textual

merge because have more efciency, scalability and accuracy. Tavares et al. [26] analyzing

the benets of using semi-structured merge instead of unstructured in Javascript code, ana-

lyzing by the perspective of true positives and false positives. In repositories that he analyzed

merge techniques, he found that the semistructured merge tool JSFSTMerge reports fewer

77

spurious conicts than unstructured merge, but this gain this smaller than semistructured

merge tool to Java code, showing that this area of merge tools in Javascript code needs more

studies to better results. Ghiotto et al. in their study [13] introduce a search-based approach

algorithm to minimize conicts merge. Additionally, Apel et al. in [3] presented developed

tools for Java, C# and Python to reduce the number of conicts.

Ahmed et al. in [2] presents an empirical examination of the relationship between code

smells and merge conicts. Their objective was to analyze if entities that contain certain

types of code smells are more prone to be involved with merge conicts. Additionally,

they investigated if these "smelly" entities are also associated with other types of changes.

To achieve this, they mined 143 repositories from GitHub. The results of their study re-

vealed that poor design choices have a signicant impact on maintainability, merge opera-

tions, and the overall quality of the resulting code. Specically, they found that two code

smells, namely Blob Operation and Internal Duplication, were the most frequently associ-

ated with merge conicts. This research shows the importance of identifying code smells

and showing design decisions to mitigate the occurrence of merge conicts.

Mahmoudi et al. in their study [17] was the rst study to verify the relation between

refactorings and merge conicts. In their paper, they perform an empirical study in almost

3000 well-engineered open-source Java software repositories and collect 15 popular refactor-

ing types. The ndings revealed that a signicant portion, specically 22%, of the observed

merge conicts involved refactoring operations. Furthermore, the study identied the Ex-

tract Method as a particularly problematic refactoring type involving merge conicts. This

shows that caution must be exercised when applying this specic refactoring technique to

avoid potential conicts during the merging process. Both studies cited were developed by

Java because of the specied characteristics of language and its popularity, a portion of our

study follows the methodology of Mahmoudi et al. study [17], involving the collection of

evolutionary commits by identifying conict regions. However, our focus is focused on the

JavaScript language.

Chapter 6

Conclusions

Throughout the software evolution process, a series of activities are constantly performed to

enhance its quality. One example of these activities is refactoring, which seeks to improve

the quality of the internal code structure. It is crucial to perform these preventive actions

throughout the software’s entire lifecycle. Due to the need for code integration during this

lifecycle, code merges come into play. These merges are facilitated by Version Control Sys-

tems, enabling the incorporation of local code into a global context, thus promoting software

evolution. However, these merges are not always successful, leading to well-known merge

conicts. In-depth studies have been conducted to analyze aspects related to code design, the

identication of code smells, as well as the execution of refactoring actions in source code,

and how these elements can impact the occurrence of merge conicts.

In this work, we present an empirical study that provides initial insights into the occur-

rence of refactorings in JavaScript code conicts. The rst part of this study aims to analyze

the presence of refactoring actions in conicting les and conict regions, identifying which

types are more closely related to the conicting area through the analysis of evolutionary

commits, and examining the commits that contributed to the conict region. In the second

stage of our investigation, we focus our analysis on the content of evolutionary commits,

adopting a perspective that distinguishes between "oss refactoring" and "pure refactoring."

This multifaceted approach offers a deeper understanding of the dynamics of refactoring

amid code conicts in JavaScript projects.

To examine the occurrence of refactorings in conicts, we developed a quantitative ap-

proach that traced the origin and destination of refactorings, checking the edited lines during

78

79

conicts. We identied the presence of refactorings in conicts when there was a match

between these lines. In addition to assessing this alignment between lines, our study also

quantied the number of instances of refactorings in these conicting areas. The collection

of this data was facilitated through scripts developed for extraction in the selected JavaScript

repositories. These scripts were responsible for extracting metrics that addressed the research

questions outlined in Chapter 3.2.2.

For the rst part of the study, we identied that approximately 7% of merge scenarios

involve at least one refactoring action in conicting les. Of these, 4% exhibit this refac-

toring at the level of the conict region. Our statistical analyses revealed a moderate and

positive correlation between refactoring and conicts, at the le and conict region levels,

approximately 0.6 in a Spearmann correlation. When applying simple linear regressions, we

established the null hypothesis of no relationship between the analyzed variables, meaning

that the presence of refactoring would not inuence merge conicts. However, upon exam-

ining the number of relationships between refactoring and conicts at the level of conicting

les, we could reject the null hypothesis, indicating that about 5% of the data in the depen-

dent variable Y (number of conicts) is explained by the independent variable X (number of

relationships). When analyzing the conict region level, we found no evidence of a signi-

cant correlation.

In the context of the quantities of instances of refactorings within the conicting le and

conict region, we could reject the null hypothesis in both cases, suggesting a signicant re-

lationship between the variables. The R-squared value obtained indicates that approximately

10% of the data in the dependent variable X (number of conicts) is explained by the inu-

ence of the independent variable (number of instances of refactorings), while at the conict

region level, we nd a scenario where 5% of the data is explained by the independent vari-

able. These results suggest an initial relationship between conicts and refactorings when

analyzed from the perspective of line overlap. Despite the variability of the data regarding

the inuence of the independent variable on the dependent variable not being substantial,

these results indicate an inuence that serves as a starting point for future studies on this

relationship in JavaScript code.

Still, within our rst study, we conducted a quantitative analysis to quantify the types of

refactorings found in the relationships established in Research Question 1 (RQ1). The types

80

of refactorings "Internal Move," "Move," and "Rename" stood out as the most associated

with the identied conicts. The distinctive aspect of our study lies in the realization that

"Internal Move" is the type of refactoring most related to conicts. This type of refactoring

was frequently observed in JavaScript code due to the specic characteristics of the language,

which allow for the nesting of functions. In addition to discovering the types most associated

with conicts, similar to the static analyses of RQ1, we found a signicant correlation be-

tween the number of types of refactorings and the occurrence of conicts, both at the level of

conicting les and at the level of conict regions. For the dependent variable Y (number of

conicts), it was found that approximately 11% of the data is explained by the independent

variable X (number of types of refactorings). Analyzing the independent variable Y as the

number of conict regions, we found that about 18% of the data is explained by the indepen-

dent variable X. These results indicate a stronger association between the study variables,

representing a possible relationship between the number of different types of refactorings

and the occurrence of conict. These ndings serve as a starting point for discussions on the

threshold of types of refactorings in a commit.

Given the statistical evidence revealed in the rst part of our study, the second phase

focuses on a qualitative analysis, where we manually examine a portion of our sample of

evolutionary commits. The objective is to identify which of these commits consist exclu-

sively of refactorings and which also include other modications. By analyzing the content

of these evolutionary commits, we gain a more in-depth perspective to determine whether

the conict may have been caused by refactoring or other external factors. The analysis cov-

ered 535 evolutionary commits, and approximately 84% of them were identied as "oss

refactoring," meaning they include elements beyond refactorings, such as bug xes, con-

guration commits, addition of tests, among others. Our study regarding the collection of

"oss" and "pure refactoring" was an initial experiment, given the signicant lack of tools

that delve more deeply into the inuence of refactoring in JavaScript code. Therefore, our

study does not evaluate whether refactoring preserves or alters the code’s behavior; instead,

it was conducted in a way that involves manual analysis of the presence of refactorings or

other modications. Despite being an experimental study, conducted manually and suscep-

tible to human errors, we identied that a signicant portion of our commits (84%) involved

in conicts is replete with other modications. It is crucial to assess the commits identied

6.1 Future work 81

as "pure refactoring" and, from that, determine whether they were indeed the causes of the

conicts. We emphasize that a relevant discovery of our study was the presence of many

build les and congurations involved in conicts in JavaScript projects, and many of them

are present in commits classied as "oss refactoring." This highlights the importance of

studies investigating the relationship between other modications performed in conjunction

with refactorings and the identied conicts.

6.1 Future work

This work represents a signicant starting point in the discussion of the relationship between

merge conicts and refactoring actions in JavaScript code, showing a positive correlation

between these variables. It is the rst study to analyze this interaction with Javascript code,

contributing to the initial understanding of this dynamic. It is crucial to acknowledge that

the results found in this research cannot be generalized due to the nature of the statistical

analysis conducted on a specic sample. Therefore, we emphasize the need for future studies

to rene this initial discussion. Subsequent research can use the methodology of this study

as a foundation and expand to more comprehensive samples.

During the data collection phase regarding refactorings in conicts, we identied a chal-

lenge related to the lack of specic tools and methodological discussions for the JavaScript

language. This underscores the importance of studies that rene techniques already em-

ployed in other languages and propose new approaches for tools supporting these analyses.

A valuable direction for future research would be the development of more advanced refac-

toring collection tools capable of detecting a broader range of refactoring types, leading to

more robust results.

Furthermore, a pertinent aspect for future investigations would be to extend the discus-

sion on merge conicts beyond the traditional three-way merge, analyzing the perspective of

merge strategies and the number of conicts generated.

For future work, it is crucial to have dedicated automated tools for the analysis of "oss"

and "pure refactoring" in JavaScript code. This advancement in tools would provide a more

comprehensive insight into the true inuence of refactoring on merge conicts, contributing

to the knowledge base in this research area.

Bibliography

[1] Paola Accioly, Paulo Borba, and Guilherme Cavalcanti. Understanding semi-structured

merge conict characteristics in open-source java projects. Empirical Software Engi-

neering, 23:2051–2085, 2018.

[2] Iftekhar Ahmed, Caius Brindescu, Umme Ayda Mannan, Carlos Jensen, and Anita

Sarma. An empirical examination of the relationship between code smells and merge

conicts. In 2017 ACM/IEEE International Symposium on Empirical Software Engi-

neering and Measurement (ESEM), pages 58–67. IEEE, 2017.

[3] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Christian Kästner.

Semistructured merge: rethinking merge in revision control systems. In Proceedings of

the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations

of software engineering, pages 190–200, 2011.

[4] Aryclenio Xavier Barros and Eiji Adachi. Bad smells in javascript-a mapping study.

In Anais do IX Workshop de Visualização, Evolução e Manutenção de Software, pages

1–5. SBC, 2021.

[5] Valerio Cosentino, Javier L Cánovas Izquierdo, and Jordi Cabot. A systematic mapping

study of software development with github. Ieee access, 5:7173–7192, 2017.

[6] Rafael de Souza Santos and Leonardo Gresta Paulino Murta. Evaluating the branch

merging effort in version control systems. In 2012 26th Brazilian Symposium on

Software Engineering, pages 151–160. IEEE, 2012.

[7] Asger Feldthaus, Todd Millstein, Anders Møller, Max Schäfer, and Frank Tip. Tool-

supported refactoring for javascript. In Proceedings of the 2011 ACM international con-

82

BIBLIOGRAPHY 83

ference on Object oriented programming systems languages and applications, pages

119–138, 2011.

[8] Asger Feldthaus and Anders Møller. Semi-automatic rename refactoring for javascript.

ACM SIGPLAN Notices, 48(10):323–338, 2013.

[9] David Flanagan and Gregor M Novak. Java-script: The denitive guide, 1998.

[10] Martin Fowler and Kent Beck. Refactoring: Improving the design of existing code. In

11th European Conference. Jyväskylä, Finland, 1997.

[11] Robert Fuhrer, Frank Tip, Adam Kieżun, Julian Dolby, and Markus Keller. Efciently

refactoring java applications to use generic libraries. In ECOOP 2005-Object-Oriented

Programming: 19th European Conference, Glasgow, UK, July 25-29, 2005. Proceed-

ings 19, pages 71–96. Springer, 2005.

[12] Alejandra Garrido and José Meseguer. Formal specication and verication of java

refactorings. In 2006 Sixth IEEE International Workshop on Source Code Analysis and

Manipulation, pages 165–174. IEEE, 2006.

[13] Gleiph Ghiotto, Leonardo Murta, and Marcio Barros. A caminho de uma abordagem

baseada em buscas para minimização de conitos de merge. In IV Workshop em En-

genharia de Software baseada em Buscas.

[14] Gleiph Ghiotto, Leonardo Murta, Márcio Barros, and Andre Van Der Hoek. On the

nature of merge conicts: a study of 2,731 open source java projects hosted by github.

IEEE Transactions on Software Engineering, 46(8):892–915, 2018.

[15] David Johannes, Foutse Khomh, and Giuliano Antoniol. A large-scale empirical study

of code smells in javascript projects. Software Quality Journal, 27:1271–1314, 2019.

[16] Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry, and Wladyslaw M

Turski. Metrics and laws of software evolution-the nineties view. In Proceedings Fourth

International Software Metrics Symposium, pages 20–32. IEEE, 1997.

[17] Mehran Mahmoudi, Sarah Nadi, and Nikolaos Tsantalis. Are refactorings to blame?

an empirical study of refactorings in merge conicts. In 2019 IEEE 26th International

BIBLIOGRAPHY 84

Conference on Software Analysis, Evolution and Reengineering (SANER), pages 151–

162. IEEE, 2019.

[18] Tom Mens. A state-of-the-art survey on software merging. IEEE transactions on

software engineering, 28(5):449–462, 2002.

[19] Michael Mohan and Des Greer. A survey of search-based refactoring for software

maintenance. Journal of Software Engineering Research and Development, 6(1):1–52,

2018.

[20] José Glauber Oliveira, Melina Mongiovi, and Sabrina Souto. An empirical study of

the relationship between refactorings and merge conicts in javascript code. In Pro-

ceedings of the XXXVII Brazilian Symposium on Software Engineering, pages 89–98,

2023.

[21] William F Opdyke. Refactoring object-oriented frameworks. University of Illinois at

Urbana-Champaign, 1992.

[22] Achilleas Pipinellis. GitHub essentials, volume 2. Packt Publishing, 2015.

[23] Max Schäfer and Oege De Moor. Specifying and implementing refactorings. In Pro-

ceedings of the ACM international conference on Object oriented programming systems

languages and applications, pages 286–301, 2010.

[24] Danilo Silva, Joao Paulo da Silva, Gustavo Santos, Ricardo Terra, and Marco Tulio

Valente. Refdiff 2.0: A multi-language refactoring detection tool. IEEE Transactions

on Software Engineering, 47(12):2786–2802, 2020.

[25] Leonardo Sousa, Willian Oizumi, Alessandro Garcia, Anderson Oliveira, Diego

Cedrim, and Carlos Lucena. When are smells indicators of architectural refactoring

opportunities: A study of 50 software projects. In Proceedings of the 28th Interna-

tional Conference on Program Comprehension, pages 354–365, 2020.

[26] Alberto Trindade Tavares, Paulo Borba, Guilherme Cavalcanti, and Sérgio Soares.

Semistructured merge in javascript systems. In 2019 34th IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 1014–1025. IEEE, 2019.

BIBLIOGRAPHY 85

[27] Kristín Fjóla Tómasdóttir, Mauricio Aniche, and Arie Van Deursen. The adoption of

javascript linters in practice: A case study on eslint. IEEE Transactions on Software

Engineering, 46(8):863–891, 2018.

[28] Gustavo Vale, Angelika Schmid, Alcemir Rodrigues Santos, Eduardo Santana

De Almeida, and Sven Apel. On the relation between github communication activ-

ity and merge conicts. Empirical Software Engineering, 25:402–433, 2020.

[29] Bartosz Walter, Francesca Arcelli Fontana, and Vincenzo Ferme. Code smells and their

collocations: A large-scale experiment on open-source systems. Journal of Systems and

Software, 144:1–21, 2018.

Appendix A

Appendix of study

All the data, scripts, setup, and execution details pertaining to the three research questions

addressed in this study are accessible in the following repository:

• Study Setup in GitHub: <https://github.com/joseglauberbo/data_mestrado_dissertacao>

86

