

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Thúlio Ícaro Castro Carvalho

EVALUATION OF CACHE USAGE ON ECOMMERCE CATALOGS OF
MULTITENANT PLATFORMS

CAMPINA GRANDE - PB

2023

Thúlio Ícaro Castro Carvalho

EVALUATION OF CACHE USAGE ON ECOMMERCE
CATALOGS OF MULTITENANT PLATFORMS

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

Orientador: João Arthur Brunet Monteiro

CAMPINA GRANDE - PB

2023

Thúlio Ícaro Castro Carvalho

EVALUATION OF CACHE USAGE ON ECOMMERCE

CATALOGS OF MULTITENANT PLATFORMS

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

BANCA EXAMINADORA:

João Arthur Brunet Monteiro
 Orientador – UASC/CEEI/UFCG

Roberto Medeiros de Faria
Examinadora – UASC/CEEI/UFCG

Francisco Vilar Brasileiro

Professor da Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 28 de junho de 2023.

CAMPINA GRANDE - PB

ABSTRACT

A common requirement for ecommerce platforms is the management of product catalogs. On large,

multitenant, catalogs, the managing latencies is a challenge, and caching is usually employed to

enhance performance. By observing a catalog solution of a large ecommerce company, we identified

what engineers thought was a sub-optimal cache system. Based on previous experience, the

engineers of the company believe that the characteristics of the workload impact cache

performance. This work aims to verify this belief. We use traces collected from production incoming

requests to analyze and understand the workload characteristics, as well as relate them with the

cache behavior.

AVALIAÇÃO DO USO DE CACHE EM CATÁLOGOS DE
ECOMMERCE DE PLATAFORMAS MULTILOCATÁRIOS

RESUMO

Um requisito comum para plataformas de comércio eletrônico é o gerenciamento de catálogos de
produtos. Em catálogos grandes e multilocatários, o gerenciamento de latências é um desafio, e o

cache geralmente é empregado para melhorar o desempenho. Ao observar uma solução de catálogo
de uma grande empresa de comércio eletrônico, identificamos o que os engenheiros consideravam
um sistema de cache abaixo do ideal. Com base na experiência anterior, os engenheiros da empresa

acreditam que as características da carga de trabalho impactam o desempenho do cache. Este
trabalho tem como objetivo verificar essa crença. Usamos rastreamentos coletados de solicitações
recebidas de produção para analisar e compreender as características da carga de trabalho, bem

como relacioná-las com o comportamento do cache.

Evaluation of Cache Usage on Ecommerce Catalogs of
Multitenant Platforms

Thúlio Ícaro Castro Carvalho
thulio.carvalho@ccc.ufcg.edu.br

Universidade Federal de Campina Grande
(UFCG) Campina Grande, Paraíba, BR

Thiago Emmanuel Pereira
temmanuel@computacao.ufcg.edu.br

Universidade Federal de Campina Grande
(UFCG) Campina Grande, Paraíba, BR

Daniel Fireman
daniel.fireman@ifal.edu.br

Instituto Federal de Alagoas
Maceió - AL, BR

ABSTRACT
A common requirement for ecommerce platforms is the
management of product catalogs. On large, multitenant, catalogs,
the managing latencies is a challenge, and caching is usually
employed to enhance performance. By observing a catalog
solution of a large ecommerce company, we identified what
engineers thought was a sub-optimal cache system. Based on
previous experience, the engineers of the company believe that the
characteristics of the workload impact cache performance. This
work aims to verify this belief. We use traces collected from
production incoming requests to analyze and understand the
workload characteristics, as well as relate them with the cache
behavior.
Keywords
ecommerce, cache, multitenancy

1. INTRODUCTION

Ecommerce refers to the trading of goods and services on the
internet. It has been growing alongside the growth of the internet
and its userbase. According to the Annual Retail Trade Survey, in
2020, ecommerce sales in the US increased by 43% [3]. One of
the most important metrics for ecommerces is sales conversion
rate - nearly 40% of ecommerce marketers polled by Databox
cited conversion rate as the most important ecommerce key
performance indicator [1,2]. Website performance has a large,
measurable effect on conversion rates. Studies have consistently
shown that fast page speed will result in a better conversion rate
[4]. Given the current context, many ecommerce companies are
raising awareness about the efficiency of their online systems, and
good usage of web caching techniques can help them achieve
better performance by reducing access latencies [5].

Caching web content helps improve upon the responsiveness of
websites by reducing the load on backend resources and network
congestion [6]. A cache system sits between a client and an
application and keeps copies of the content maintained by the
application. If a client requests content that the cache has stored, it
returns the content directly, without contacting the origin server.
When content is retrieved directly from the cache system, one has
a cache hit, otherwise when content is not cached and needs to be
recovered to the application, one has a cache miss. Increases in
the hit ratio can significantly impact a system’s performance. For

instance, increasing the cache hit by just 1% from 98% to 99%
halves the number of requests going to the application.

Many alternatives exist to help optimize cache performance, such
as scaling the cache cluster [7,8], tuning the cache internals such
as the eviction policy [8,9], among others. Nevertheless,
characterizing and understanding the application’s workload
allows studying of traffic patterns and cache access patterns [8],
which ultimately allows engineers to take well-based decisions
on how to optimize their cache solutions. Apart from that, the
context of large ecommerce companies presentes challenges for
engineers designing caching solutions - the products catalog, a
key aspect of an ecommerce website, might be built using a
multitenant architecture (i.e. multiple independent stores with
different traffic patterns operate on the same shared environment).

Designing efficient caches in an multitenant environment is a
challenge for caching systems. Some of the well-known
challenges are lack of performance isolation, lack of
customization and waste of system resources [10], and they are
specially challenging for ecommerce companies, since an
inefficient cache design might ultimately hinder the latency
perceived by users [5], degrading conversion rates [4].

Benchmarks such as [11] and [12] offer great resources and
insights about the characteristics of ecommerce workloads and
their performance impacts. However, no work has yet been done
regarding the characterization and analysis of cache workloads in
multitenant catalog applications for ecommerce.

To help fill this gap, in this work, we focus on characterizing the
workload of a large product catalog that handles billions of
requests every day of our ecommerce partner company. In order to
understand the workload characteristics, we collect traces of a
passively instrumented cache cluster that lies in front of a search
engine for product index catalogs. We learn relevant
characteristics of this system such as concentration of requests in
tenants and help outline the general behavior of the caching
architecture.

2. RELATED WORK

Computing systems heavily rely on caching systems for
optimizing. The way that some applications rely on cache is so
significant that a downtime on caching systems can partially or
completely shutdown an application’s ability of providing for
users.

The most important metric about cache is the hit ratio. It
represents the ratio of hits among all incoming requests on the
system. A hit means that the cache returned the response for an
user’s request without sending the request to the underlying
application.

The focus of cache optimization resides in improving cache’s hit
ratio. Understanding the nature of the underlying application and
the behavior of the userbase are primordial in order to optimize hit
ratios. Different types of problems express different patterns of
recurring requests that can have its responses stored for quick
delivery to users. Therefore, in order to characterize a cache
system, it’s crucial to understand the workload that it is subjected
to.

Techniques like tracing requests are used to gather request
workloads, which can then be used as object of analysis, which
can provide several insights about how the problem that the
application and cache system tries to work over work [14, 11, 12].

Given the workload / trace of a certain cache system, one can then
statistical tools in order to get a better view on the inner workings
of a cache system. Exploratory analysis, predictive analysis and
modeling are examples of approaches that can help us to gather
those information pieces [14].

Works such as [11] and [12] have identified characteristics of
typical ecommerce workloads and defined methodologies to
benchmark such systems. However, no work has been done in the
characterization of workloads given multitenant business models.

3. CONTEXT

Our partner company focuses on providing software solutions that
target ecommerce problems. An ecommerce company such as our
partner needs to store thousands of products for your clients.
Therefore, having a reliable product catalog is paramount for
customer satisfaction.

In our use-case, a product catalog is a service that allows it’s users
(i.e. stores) to create, remove, update and delete products. It
should also allow (and be fast in doing so) the stores’ users to
retrieve information about products. Additional features such as
ranked retrieval, spell checking queries, etc. are also important to
deliver quality informations and products to the users.

When a user makes a query to the product catalog, it will first hit
the edge cache systems. If the request misses on the edge layer, it
will ultimately be forwarded to the cache level that lies before the
catalog’s search API. At this level, a request might or might not be
forwarded to the underlying backend. In this work, we focus on
characterizing the workload that arrives on the API Cache (closest
to the underlying search backend).

4. METHODOLOGY

The methodology for characterizing the workload in this work
must includes two steps: 1 - Workload Collection, 2 - Analysis.

In order to collect the workload we need to understand what type
of information we want and where we can find the information we
want.

It’s of utmost importance gathering a series of informations about
requests that happened in a time-frame. We need to know what
was the cache response for each request, the timestamp it arrived
at the cache system and the tenant issued by the request. One
approach to get this information is to create a process that acts as
a proxy between the user and the requested host, and logs
incoming requests and responses. This approach is very time
consuming and has the risk of slowing down incoming requests.

Fortunatel, some caching servers such as NGINX [13] allows us
to instrument in order to track whether or not requests ended up
being hit or a miss on the cache. That’s the approach we decided
to use.

In order to get which tenant is issued in the request, we first need
to understand how tenants are represented in the search engine.
For this company use-case, each tenant is identified by an unique
ID that is usually added to any queries on the catalogs, via search
parameters.

When a company that deals with millions of requests per minute
chooses to store logs for incoming requests in a database, the
amount of storage these logs are going to take is a huge concern.
In our partner company, engineers decided to only store a sample
of the logs for incoming requests. For our case, this means that
only a fraction of all requests have its logs persisted on a database.

In our work, we decided to use the database’s API to get logs for
requests in a timeframe. We wrote a script that would make
several requests to the API in order to get all the logs in a
specified time-frame. There was a need to make multiple requests
because getting all the logs in a large time-frame could transmit a
large amount of data at once, and we didn’t want to stress the
system while collecting logs.

5. RESULTS

We collected a trace in the interval of 4th of May, 2022, 08:56 am
to 09:43 am. It represented a fraction of all the requests that
arrived at the cache during the time frame. Some relevant
characteristics are further discussed in this section.

5.1 What metrics should we look at?

When exploring the trace, one of the most important things is to
understand which metrics to look at to get a better understanding
of how the system behaves. Since hit rate is important for caching
services, this is the metric we’ll look at the most. Apart from the
hit rate, we also know that multitenancy is an important and
challenging characteristic of our system. For this reason, we’ll try

to understand more about how the tenants are distributed and what
are the implications of this distribution.

5.2 Hit Ratio

When using Time To Live (TTL) as an eviction policy in an
NGINX cache, there’s the option of providing stale data to
requests that arrived shortly after a time threshold. When using
the staleness feature, a request that arrives on the cache requesting
a stale item will immediately return, to the user, the cached stale
data. After that, the cache will update the staled cache item by
sending an asynchronous request to the underlying backend.

With the staleness feature, understanding Hit Rate gets a bit more
complicated. From the perspective of the underlying backend,
there is no difference between a Miss or a Stale request. However,
for the end user, there is no difference between a Hit or a Stale
request - apart from having stale data. This means that each
perspective can adopt different views of the hit rate. The end user
will interact with the system as if it’s hit rate is the sum of hits and
stale occurrences, while the backend will interact with the cache
as if it’s hit rate is just the amount of actual hits - not considering
staled responses. We chose to focus on this analysis considering
the hit ratio from the backend perspective.

In our cache trace, the amount of each type of cache response is
described below.

Response Type Ratio (%)

HIT 55

MISS 14

STALE 30

UPDATING < 1

The 55% hit ratio, however, isn’t stable over time. In the
time-frame of our analysis, the standard deviation was around 7%
of the mean. This behavior can be seen below.

5.3 Multitenancy
Apart from understanding the Hit Rate behavior, it is important to
analyze the behavior of multitenancy and understand its possible
impacts in the cache. In order to get insights on this aspect, we
chose to analyze how some metrics relate to the tenants.

At first, we learn how the requests are distributed between tenants
- this shows us the popularity of the tenants.

This plot shows us the distribution of requests by tenants. We can
see that some tenants are very popular while most are responsible
for few requests. In summary, there’s a high concentration of
requests in few tenants - and we can verify how many tenants are
responsible for how many requests, as seen with some examples
in the next table.

% of tenants % of total requests

1% 39%

10% 76%

We can’t, however, correlate this high concentration with the hit
ratio of the tenants, as seen below (correlation coefficient of 0.09).

6. CONCLUSION

We now understand how a typical ecommerce product catalog
cache behaves. Some key takeaways are:

6.1 High concentration of requests in
tenants
In summary, few tenants are responsible for most requests. This
means, in practice, that there are few stores (i.e. tenants, in our
context) that are more famous than others - and they account for
most traffic. A good statistic that illustrates this is that the top
10% most popular tenants are responsible for 76% for all requests.
A high concentration like this might mean for some caching
systems that there is room for improvement with a tenant-aware
approach. For our partner company case, there isn’t correlation
between popularity of tenants and the hit ratio of tenants.

6.2 Summary of cache behavior aspects

Relevant Numbers

Hit Ratio 55%

Hit Ratio Variation
Coefficient

7%

Stale Ratio 30%

We analyzed the requests distribution over time and learned that
hit ratio varies with a standard deviation of 7% of the mean.

6.3 Threats to validity

In our work, we analyzed only a sample of the real workload that
arrives at the caching system. We understand that this limitation of
our data limits the range of analysis we can execute. Further work

can be done in order to understand whether or not using the full
dataset would change any of the insights.

7. REFERENCES
[1] 15 Critical Ecommerce Metrics You Must Track in 2022.

Available in:
https://www.shopify.com/blog/basic-ecommerce-metrics

[2] The Most Important Ecommerce KPIs for Tracking &
Growing Sales. Available in:
https://databox.com/ecommerce-kpis

[3] Annual Retail Trade Survey Shows Impact of Online
Shopping on Retail Sales During COVID-19 Pandemic.
Available in:
https://www.census.gov/library/stories/2022/04/ecommerce-s
ales-surged-during-pandemic.html

[4] How website performance affects conversion rates. Available
in:
https://www.cloudflare.com/learning/performance/more/web
site-performance-conversion-rates/

[5] Aggarwa, Wolf, Yu. Caching on the World Wide Web

[6] Web Caching. Available in:
https://aws.amazon.com/caching/web-caching/

[7] Nishtala R. et al. Scaling Memcache at Facebook

[8] Huang Q. et al. An Analysis of Facebook Photo Caching

[9] Beckmann, Chen, Cidon. LHD: Improving Cache Hit Rate
by Maximizing Hit Density

[10] Stefanovici et al. Software-Defined Caching: Managing
Caches in Multi-Tenant Data Centers

[11] Hariharan R., Sun N., Workload Characterization of
SPECweb2005

[12] Wayne D. Smith. TPC-W*: Benchmarking An Ecommerce
Solution

[13] NGINX. Available in: https://www.nginx.com/

[14] Dror G. Feitelson, Workload Modeling for Computer
Systems Performance Evaluation

https://www.shopify.com/blog/basic-ecommerce-metrics
https://databox.com/ecommerce-kpis
https://www.census.gov/library/stories/2022/04/ecommerce-sales-surged-during-pandemic.html
https://www.census.gov/library/stories/2022/04/ecommerce-sales-surged-during-pandemic.html
https://www.cloudflare.com/learning/performance/more/website-performance-conversion-rates/
https://www.cloudflare.com/learning/performance/more/website-performance-conversion-rates/
https://aws.amazon.com/caching/web-caching/
https://www.nginx.com/

