
Classifying Code Smell Reviews with Semantic Search

Carlos Henrique Gonçalves Ribeiro
Federal University of Campina Grande

Campina Grande, Brazil

carlos.ribeiro@ccc.ufcg.edu.br

João Arthur Brunet Monteiro
Federal University of Campina Grande

Campina Grande, Brazil

joao.arthur@computacao.ufcg.edu.br

ABSTRACT

Background: Code smells refer to patterns in source code that

deviate from established design principles. During code review,

developers have the opportunity to identify and correct these smells,

thereby enhancing the overall quality of the codebase. Further

examination of the discussions within code reviews can reveal

valuable insights about how code smells are discussed. Aim: In

order to enable future research to better understand developers

behavior regarding code smells, we set out to build a dataset of

code-smell related discussions. In practice, we want to classify

comments in two categories: code smell comments and non code

smell comments. Method: To do so, we conducted an experiment

that leveraged semantic search as a classiication technique. The

training data was scraped from three popular open source GitHub

repositories and consisted of over 100,000 entries. Results: As a

result, we have automatically classiied 4,058 review comments as

being code smell related. Although employing a novel technique

and disposing of limited resources we could achieve a precision of

0.41 for the task of classiication.

KEYWORDS

Code Smells, Code Review, Semantic Search, Classiication.

1 INTRODUCTION

Code smells refer to patterns in source code that deviate from estab-

lished design principles [2]. These deviations can be an indication

of problems in the software development process, making them

crucial to be addressed. During code review, developers have the

opportunity to identify and correct these smells, thereby enhancing

the overall quality of the software. Understanding how developers

identify, discuss, and address these code smells can provide valuable

insights for future research.

In order to enable future research to better understand developers

behavior regarding code smells, we set out to build a dataset of

code smell related discussions. This dataset can be used for various

purposes, including training machine learning models aimed at

automating software development processes and preempting the

accumulation of code smells in future source code.

In a recent study by Fregnan et al [3]. it was analyzed how well

a machine learning-based technique can automatically classify re-

view changes. Subsequently, in Turzo et al. [9], the authors utilized

Deep Neural Network to perform classiication. By leveraging code

context, comment text, and a set of code metrics they were able to

reach the best accuracy of 59.3% with a model using CodeBERT.

Our methodology involved an experiment using semantic search

as a classiication technique. We gathered training data by scrap-

ing reviews from three popular open-source GitHub repositories:

Neovim1, Keycloak2 and gRPC3. Using manually labeled data col-

lected in Vitorino et al. [10], we embedded 3,798 code smell com-

ments into a vector database. For each unclassiied entry, we queried

the database for the most similar entry and recorded the distance.

Entries with distances shorter than a predeined threshold were clas-

siied as code smell reviews. Both manual and automatic validation

were conducted to acquire results.

In this study, we have assembled a dataset containing 7,856,

between manually (3,798) and automatically classiied (4,058), code

review comments that discuss code smells. Both the dataset of

manually classiied4 and ML-classiied reviews5, as well as the

scraping script6 are made publicly available.

2 BACKGROUND

This section serves the purpose of explaining key concepts for this

research, such as code smells, code review and semantic search.

2.1 Code Smells

Code smells, according to Martin Fowler [2], are usually the symp-

toms of underlying problems in software systems. Some of the most

frequent code smells are:

• Long Method:Methods that are too long, are usually hard

to understand, maintain, and reuse.

• Data Clumps: Groups of variables that are frequently used

together should be encapsulated into their own class.

• Shotgun Surgery: When a change in one part of the code-

base requires many small changes across multiple classes,

indicating poor encapsulation and high coupling.

• Large Class: Classes that have too many responsibilities

violate the Single Responsibility Principle.

• Primitive Obsession: Lack of domain-speciic abstrac-

tions, can lead to code duplication.

• Feature Envy: If method in one class uses excessive data

from another class it probably belongs there instead.

• Switch Statements: The presence of switch or case state-

ments, might point to a violation of the Open/Closed Prin-

ciple.

• DuplicatedCode: Portions of code that are identical, which

can diicult to maintenance and lead to inconsistency.

• Long Parameter List: Methods or functions that take too

excessive parameters, makes code hard to read.

1https://github.com/neovim/neovim
2https://github.com/keycloak/keycloak
3https://github.com/grpc/grpc
4https://drive.google.com/ile/d/1c4jOnaSmxsIG9ESeWbrs02B4MyVG4nJm/view?
usp=sharing
5https://drive.google.com/drive/folders/1lQitzzkX5JtdRf0QLmaK5ziTEnNQrTbW?
usp=sharing
6https://github.com/carloshgr/snif

Carlos Henrique Gonçalves Ribeiro and João Arthur Brunet Monteiro

Sentence 1 It seems this method is not used and can be removed

Sentence 2 This method is no longer needed.

Cosine Distance 0,231611490249634

Table 1: Cosine distance between sentence embeddings

Here’s an example of what a switch statement code smell might

look like in Java:

pu b l i c c l a s s PaymentProcessor {

p u b l i c vo id processPayment (Payment p) {

sw i t ch (p . getType ()) {

c a s e CREDIT_CARD :

c red i tCardPayment (p) ;

b reak ;

c a s e DEBIT_CARD :

deb i tCardPayment (p) ;

b reak ;

c a s e PAYPAL :

payPalPayment (p) ;

b reak ;

d e f a u l t :

throw new Excep t i on () ;

}

}

p r i v a t e vo id c red i tCardPayment (Payment p) {

/ / Log i c to p r o c e s s c r e d i t c a rd payment

}

p r i v a t e vo id deb i tCardPayment (Payment p) {

/ / Log i c to p r o c e s s d e b i t c a rd payment

}

p r i v a t e vo id payPalPayment (Payment p) {

/ / Log i c to p r o c e s s PayPa l payment

}

}

The code above violates the Open/Closed Principle: Adding a

new payment method requires modifying the PaymentProcessor

class, which can lead to it becoming bloated and harder to maintain

over time.

However, it’s important to note that not all code smells auto-

matically denote problematic code. For example, while a large class

might initially appear concerning, its presence may be justiied if

splitting it into smaller classes would decrease cohesion elsewhere.

The identiication and interpretation of code smells require nuanced

judgment and context-speciic analysis.

When code smells are correctly identiied and addressed, there is

an increase in code readability and maintainability [7, 8]. Moreover

a decrease in software failure is to be expected. [5]

2.2 Code Review

Code review is a cornerstone practice in modern software engineer-

ing aimed at enhancing the overall quality of code artifacts. Through

systematic examination and critique, code review endeavors to un-

earth bugs, ensure quality assurance, promote standardization, and

facilitate knowledge sharing among programmers.

In essence, code review acts as a safeguard against the prolifera-

tion of code smells, ofering a structured framework for engineers

to detect, discuss, and address potential issues in the codebase. By

harnessing the collective expertise of team members, code review

serves as a crucial mechanism for maintaining code integrity and

fostering continuous improvement.

Code Review has achieved it’s current form with the rise of

version control systems like Git7 and GitHub8. Tools like those

allow cooperation to occur through pull requests, where code can

be discussed, veriied and approved or disapproved. [6]

2.3 Semantic Search

In parallel, the realm of information retrieval has witnessed the

emergence of semantic search techniques as a means of enhanc-

ing search engine performance. Unlike traditional lexical searches,

which rely solely onwordmatching, semantic searches delve deeper

by incorporating meaning and context into query analysis.

Bast et al. [1] divides semantic search in two, based in the kind of

data used: search on text (natural language) and search on knowl-

edge bases. Furthermore, the authors also divide semantic search by

the type of query: keyword, structured and natural language. This

study is focused in search on text using natural language queries.

According to Gao et al. [4] the following steps are encompassed

by semantic search: First, the construction of a knowledge base.

This involves transforming texts into real number vectors through

an embedding model. Subsequently, fetching relevant information

from this repository by comparing it with the user’s query.

Embeddings represent sentences as a vectors. Ideally, sentences

that have the same meanings have similar embeddings. By comput-

ing similarities between vectors representing query semantics and

document content, semantic search algorithms ofer more nuanced

and contextually relevant search results.

The similarities between vectors will be calculated using the

cosine distance:

� (�,�) = 1 − ��� (Θ) = 1 −
� · �

∥ � ∥∥ � ∥

In the above formula, d is a function that takes two sentence em-

beddings x and y and calculates the cosine distance between them.

Furthermore, Θ is the angle between the two vectors, a smaller

angle meaning that the sentences are more similar.

Table 1 displays two code review comments and the cosine dis-

tance calculated between their respective embeddings. Embeddings

themselves are not shown due to their high dimensionality.

7https://git-scm.com/
8https://github.com/

Classifying Code Smell Reviews with Semantic Search

Figure 1: Construction of the vector database

3 METHOD

This section describes the methodology employed to build the code

smell reviews database, from the data mining to the automatic

classiication.

Figure 2: Automatic classiication process

The initial step in this process, as depicted in Figure 1, involved

building the vector database. Initially, the comments are gathered

from online repositories via GitHub REST API9. A subset of these

comments undergo manual classiication by a team of software

engineers. The manually classiied comments are embedded into a

vector database.

The automatic classiication process is depicted in Figure 2. It

consists of querying the vector database, saving the distance for

each query, and iltering the queries based on a distance threshold.

Code smell rich databases are highlighted.

Each following section contains a detailed description of one of

the methodology steps.

3.1 Data Collection

Intending to gather raw data for classiication, we opted for the

GitHub REST API, due to its simplicity and availability. GitHub’s

API ofers three kinds of comment views: comments on a speciic

commit within the pull request, comments on the pull request as

a whole and comments on a speciic line within the pull request.

Conlicts in the manual classiication phase were resolved by in-

specting the source code, therefore we focus on comments on a

speciic line within the pull request.

9https://docs.github.com/en/rest?apiVersion=2022-11-28

We collected comments from three open-source repositories:

Neovim, Keycloak and gRPC. The projects were selected based on

criteria such as popularity, amount of pull requests and variety of

programming languages used.

To interact with the API, we developed snif, a script in Golang

that leverages concurrency without incurring in penalties from the

API. All of the raw data, consisting of 104,321 review comments,

are also made publicly available10.

3.2 Manual Classiication

This phase was conducted as a part of another study, of which the

author of this work was a participant. An overview of the steps

followed to obtain the manually labeled data is provided below,

while the detailed methodology can be found at Vitorino et al.

[10] This labeled data will be used within this work to allow the

automatic classiication.

3.2.1 Manual Independent Analysis.

The irst step of the manual classiication phase consisted of a

qualitative study involving 26 developers. The developers were

divided in 13 pairs, each independently analyzing a subset of 1,450

comments. By the end of this step, the group classiied a total

of 18,850 comments, of which 4,563 comments were identiied as

related to code smells.

3.2.2 Manual Simultaneous Analysis.

To conirm previous indings, as well as resolving conlicts, two

experienced developers carried out a new qualitative analysis. They

examined entire comment threads and source code as necessary to

simultaneously and manually analyze the results. At the conclusion

of this process a total of 3,798 comments remained.

3.2.3 Data Limitations.

The manually classiied dataset used in this study was analyzed

and compiled in the context of a diferent study. Therefore, it lacks

some information that could be useful to us. For example, all entries

in the database belong to the same class: code smell comments.

10https://drive.google.com/drive/folders/1eaSEXzyEsjdcJkJz8xVS8vob7VXN77sO?

usp=sharing

Carlos Henrique Gonçalves Ribeiro and João Arthur Brunet Monteiro

This limitation prevents us, for example, from automatically

measuring precision. The measurement of precision in this article

is done manually, by the author. Given the diiculty of measuring

performance we could not optimize our classiication technique

based on the f1-score.

3.3 Automatic Classiication

After acquiring the labeled data, we proceeded to classify the re-

maining entries. For that purpose we chose an innovative approach

that leveraged semantic search as a classiication technique.

Figure 3 displays a histogram of the distances of the queries for

each project. We can see that the three of them follow a normal

distribution with a mean around 0.45.

Figure 3: Frequency distribution of distances for each project

We provide the dataset containing all unclassiied entries along

with their corresponding distances prior to the iltering process as

future research might beneit from choosing other threshold values.

3.3.1 Semantic Search.

Initially, we embedded all manually labeled data and imported them

into a vector database. Afterwards, for each unclassiied comment,

we queried the database for the most similar entry. As a result,

for each comment requiring classiication, we obtained the nearest

entry in the database along with the cosine distance between the

two.

3.3.2 Threshold Selection.

In order to classify the comments, we needed to separate between

two groups, code smell comments and non-code smell comments.

To do so, we needed to choose a distance threshold.

Our aim during the threshold selection was to minimize the

number of false positives in the dataset, whilst growing it as much

as possible. With that in mind, we manually analyzed the distribu-

tion of distances between the entries in the dataset. After careful

consideration, we identiied a threshold value of 0.3 as optimal

for our classiication task. This threshold value was chosen based

on its ability to yield the highest recall rate while maintaining a

satisfactory level of precision.

3.3.3 Filtering.

In order to separate the two groups, we iltered entries based on

our distance threshold (0.3): entries with distances to their closest

entry in the database shorter than the threshold were classiied as

code smell reviews whereas entries with a distance greater than

the threshold were classiied as non code smell reviews.

3.3.4 Resources.

Our experiment was executed in Google Colab1111, utilizing re-

sources available for Colab Pro+ users. Speciically, an NVIDIA

A100 40 GB PCIe GPU Accelerator12 along with 84 GB of RAM and

200 GB of disk space.

3.3.5 Tools.

As discussed before, we embedded the comments using amodel. The

model we chose for this task was all-mpnet-base-v212. all-mpnet-

base-v2 is the best pretrained model provided by the Sentence-

Transformers library. According to the Sentence-Transformers bench-

marks all-mpnet-base-v2 achieves 69.57 points of performance in

encoding sentences over 14 tasks from diferent domains and 57.02

points on 6 diverse tasks of semantic search. Even so, all-mpnet-

base-v2maintains a low resource consumption, being able to encode

about 2800 sentences/sec on a V100 GPU and being only 420 MB

in size13. The code used to run the experiment is made publicly

available.14

Moreover, for storing and querying the embeddings we utilized

Chroma15, an open-source embedding database. Chroma prioritizes

simplicity, making easy embed documents and queries along with

storing and searching embeddings.

4 RESULTS

The following section describes the results and analysis of the

experiment.

4.0.1 Automatic Validation.

Aiming to measure the quality of the generated dataset, we sepa-

rated 30% (1,140 entries) of the manually classiied data for auto-

matic validation. We then queried the database and recorded the

distances, similarly to how we did for the unclassiied entries. A

total of 155 entries had distances shorter than the selected threshold

(0.3) and were correctly classiied as code smell comments.

With that in hand we were able to calculate the recall:

������ =
155

1140

������ ≈ 0.13

By choosing such a low threshold, recall was greatly afected. It

was, however, necessary, given our objective of creating a dataset

as free from false positives as possible.

As alluded to above, the entries in the manually classiied dataset

belong to only one class: code smell comments. This makes it im-

possible to automatically measure precision for both classes. A

11https://colab.research.google.com/
12https://huggingface.co/sentence-transformers/all-mpnet-base-v2
13https://www.sbert.net/docs/pretrained_models.html
14https://colab.research.google.com/drive/1ib0ucfTl71r9dRw9behgZ7535PI9xaX_
?usp=sharing
15https://www.trychroma.com/

Classifying Code Smell Reviews with Semantic Search

measurement of precision was done manually by the author of this

work and is described in the following section.

4.0.2 Manual Validation.

With the automatic classiied entries in hand, we proceeded to

perform amanual validation. The author of this work took a random

sample of 10% (404 entries) of the classiied entries and checked

if they were indeed code smell related. Table 2 displays precision

results for each of the three projects.

Precision

Neovim 0.52

gRPC 0.39

Keycloak 0.35

Aggregate 0.41

Table 2: Precision of our classiication technique for each

project

This phase was conducted solely by the author of this work. The

spreadsheets in which results were annotated are made publicly

available16.

5 DISCUSSION & FUTUREWORK

There are many reasons for why the results may not be optimal.

Working on these issues is an opportunity for future research. First,

the data is not as clean as it could be. Several comments include

snippets of code, URLs, paths to iles and so on. Those less mean-

ingful portions might degrade the performance of the model and

reduce the quality of the generated embeddings.

Furthermore, it is still not clear if the model we employed for

embedding the text is a good it for our domain. Larger, more robust

LLMs such as Meta’s Llama 217 or Mistral 7B18 may perform better

at the cost of greater resource consumption.

Additionally, the choice of similarity metric utilized in our anal-

ysis presents another opportunity for exploration. While we relied

on the cosine distance in our experiments, alternative metrics such

as the euclidean distance and dot product similarity warrant inves-

tigation to assess their potential impact on result quality. Conduct-

ing comparative experiments with diferent similarity measures

could elucidate the most suitable approach for our speciic task and

dataset.

Lastly, while semantic search holds promise for information

retrieval tasks, its applicability to classiication tasks remains un-

certain. Future research could delve into comparative analyses,

contrasting the performance of semantic search with traditional

machine learning approaches such as K-nearest neighbors (KNN)

and decision trees.

6 THREATS TO VALIDITY

The following section points out factors that might undermine the

accuracy, reliability, and generalizability of our research indings.

16https://drive.google.com/drive/folders/1I87Eu6SfGbmqyswpaEH_ZncF2YZ5kuJx?
usp=sharing
17https://llama.meta.com/llama2
18https://mistral.ai/news/announcing-mistral-7b/

6.1 Internal Validity

Internal validity refers to the extent to which a study accurately

demonstrates a causal relationship between variables by ruling out

alternative explanations. We can enumerate the following factors

as potential threats to the internal validity of our study:

• Selection bias: The dataset was constructed using data

from only three repositories, that may not represent the

whole population of code reviewers.

• Feature selection bias: The embeddings may not be a

good representation of the textual data.

• Algorithmic bias: Semantic search may not be a good it

for classiication tasks.

6.2 Construct Validity

Construct validity refers to the degree to which a measurement

tool or research study accurately assesses or represents the abstract

concept or theoretical construct it claims to measure. One possible

threat to the construct validity of our study is:

• Ground Truth Annotation: The code smell labels as-

signed to the manually classiied dataset may be subjective

and prone to annotation errors or disagreements among

human annotators, leading to inconsistencies in the evalua-

tion.

6.3 Statistical Conclusion Validity

Statistical conclusion validity pertains to the accuracy and appropri-

ateness of the statistical analyses conducted in a research study and

the subsequent conclusions drawn from those analyses. A potential

statistical defect present in our work is:

• Validation sample: Our manual validation sample might

not be a good representation of the whole population of

classiied comments.

7 CONCLUSION

We can conclude that code smells are still a rare topic of discussion

during code review. Moreover, detecting code smell reviews still

proves a hard challenge for machine learning algorithms to solve

in the current state of research.

We hope that future research can leverage the dataset we pro-

duced for further improvement of machine learning techniques in

the context of software engineering. Our dataset can be used for var-

ious purposes such as training data for classical machine learning

algorithms and ine-tuning data for Large Language Models.

Beyond that, the data we’ve gathered can be a rich source of

insights that future descriptive analysis can explore. Understanding

the nuances of engineers behavior during code review is a theme

still unexplored by current research.

REFERENCES
[1] Hannah Bast, Björn Buchhold, and Elmar Haussmann. 2016. Semantic Search on

Text and Knowledge Bases. Foundations and Trends® in Information Retrieval 10,
2-3 (2016), 119ś271. https://doi.org/10.1561/1500000032

Carlos Henrique Gonçalves Ribeiro and João Arthur Brunet Monteiro

[2] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley.

[3] Enrico Fregnan, Fernando Petrulio, Linda Di Geronimo, and Alberto Bacchelli.
2022. What happens in my code reviews? An investigation on automatically
classifying review changes. Empirical Software Engineering 27, 4 (14 Apr 2022),
89. https://doi.org/10.1007/s10664-021-10075-5

[4] Yilin Gao, Sai Arava, Yancheng Li, and James Jr. 2024. Improving the Capabilities
of Large Language Model based Marketing Analytics Copilots with Semantic
Search and Fine-Tuning. International Journal on Cybernetics Informatics 13 (03
2024), 15ś31. https://doi.org/10.5121/ijci.2024.130202

[5] Haiyang Liu, Yang Zhang, Vidya Saikrishna, Quanquan Tian, and Kun Zheng.
2024. Prompt Learning for Multi-Label Code Smell Detection: A Promising
Approach. arXiv:cs.SE/2402.10398

[6] Stacy Nelson and Johann Schumann. 2004. What makes a code review trustwor-
thy?. In 37th Annual Hawaii International Conference on System Sciences, 2004.
Proceedings of the. IEEE, 10śpp.

[7] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. On the difuseness and the impact on
maintainability of code smells: a large scale empirical investigation. Empirical
Software Engineering 23, 3 (01 Jun 2018), 1188ś1221. https://doi.org/10.1007/
s10664-017-9535-z

[8] Zéphyrin Soh, Aiko Yamashita, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2016.
Do Code Smells Impact the Efort of Diferent Maintenance Programming Activ-
ities?. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. 393ś402. https://doi.org/10.1109/SANER.
2016.103

[9] Asif Kamal Turzo, Fahim Faysal, Ovi Poddar, Jaydeb Sarker, Anindya Iqbal, and
Amiangshu Bosu. 2023. Towards Automated Classiication of Code Review
Feedback to Support Analytics. In 2023 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). 1ś12. https://doi.org/
10.1109/ESEM56168.2023.10304851

[10] Marcelo Vitorino. 2024. How developers discuss Code Smells during Code Review:
A replication. Master’s thesis. Universidade Federal de Campina Grande.

	Abstract
	1 Introduction
	2 Background
	2.1 Code Smells

	2.2 Code Review
	2.3 Semantic Search
	3 Method
	3.1 Data Collection
	3.2 Manual Classification

	3.3 Automatic Classification
	4 Results
	5 Discussion & Future Work
	6 Threats to Validity
	6.1 Internal Validity
	6.2 Construct Validity
	6.3 Statistical Conclusion Validity

	7 Conclusion
	References

