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RESUMO

Modelos preditivos em aprendizado de máquina e processos de descoberta de conhecimento em

bases de dados, particularmente em domínios como o basquete, são inestimáveis para obter insights

sobre o desempenho dos jogadores. Este estudo compara abordagens de aprendizado de máquina

supervisionado (modelos de caixa preta e caixa branca, incluindo métodos de conjunto) para analisar

dados estatísticos de jogadores de basquete universitário (NCAA). Nosso objetivo é identificar

jogadores da NCAA com alto potencial para sucesso na NBA, determinar quais características dos

jogadores mais influenciam as decisões de seleção e como esses modelos chegam a tais conclusões

para comparar seus desempenhos e a explicabilidade associada. Esta tarefa é desafiadora devido a

fatores além das estatísticas, como o contexto do jogador e as considerações do elenco da equipe

durante a seleção. O objetivo principal é fornecer aos tomadores de decisão insights cruciais para a

seleção de jogadores, ajudar na melhor avaliação de jogadores e desenvolver jovens talentos

enfatizando aspectos-chave do jogo. Comparamos os resultados de modelos de predição

interpretáveis com níveis satisfatórios de precisão. Equilibrando interpretabilidade e precisão

preditiva, empregamos métodos de classificação de caixa branca, caixa preta e de conjunto, como

Árvores de Decisão, Regressão Logística, Máquina de Vetores de Suporte, Perceptron Multicamadas,

Floresta Aleatória e XGBoost. Além disso, algoritmos genéticos foram usados para reduzir o conjunto

de características de cada modelo, retendo apenas as características mais impactantes. Comparado

aos procedimentos padrão sem seleção de características, todos os modelos mostraram desempenho

melhorado. Encontramos diferenças mínimas na precisão preditiva entre os melhores modelos de

caixa branca e caixa preta. A combinação de algoritmos genéticos e regressão logística superou a

precisão preditiva de outros modelos, reduzindo significativamente as características e melhorando a

interpretabilidade dos resultados. A análise também destaca as características mais influentes no

modelo e como os modelos chegaram a tais conclusões.



A MACHINE LEARNING APPROACH COMPARING

PREDICTIVE PERFORMANCE AND INTERPRETABILITY OF

MODELS FOR PREDICTING SUCCESS OF NCAA BASKETBALL

PLAYERS TO REACH NBA

ABSTRACT

Predictive models in machine learning and knowledge discovery in database processes, particularly in

domains like basketball, are invaluable for gaining insights into player performance. This study

compares supervised machine learning approaches (black-box and white-box models, including

ensemble methods) to analyze statistical data from college basketball players (NCAA). We aim to

identify NCAA players with high potential for NBA success, determine which player characteristics

most influence selection decisions, and how these models have such conclusions to compare their

performances and the associated explainability. This task is challenging due to factors beyond

statistics, such as player context and team roster considerations during selection. The main objective

is to provide decision-makers with crucial insights for player selection, aid in better player

assessment, and develop young talents by emphasizing key game aspects. We compare interpretable

prediction model results with satisfactory accuracy levels. Balancing interpretability and predictive

accuracy, we employ white-box, black-box, and ensemble classification methods like Decision Trees,

Logistic Regression, Support Vector Machine, Multi-Layer Perceptron, Random Forest, and XGBoost.

Additionally, genetic algorithms were used to reduce each model's feature set, retaining only the

most impactful features. Compared to standard procedures without feature selection, all models

showed improved performance. We found minimal differences in predictive accuracy between the

best white-box and black-box models. Genetic algorithms and logistic regression combination

outperformed other models' predictive accuracy while significantly reducing features and enhancing

result interpretability. The analysis also highlights the most influential features in the model and how

models came to such conclusions.
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ABSTRACT
Predictive models in machine learning and knowledge
discovery in database processes, particularly in domains like
basketball, are invaluable for gaining insights into player
performance. This study compares supervised machine learning
approaches (black-box and white-box models, including
ensemble methods) to analyze statistical data from college
basketball players (NCAA). We aim to identify NCAA players
with high potential for NBA success, determine which player
characteristics most influence selection decisions, and how
these models have such conclusions to compare their
performances and the associated explainability. This task is
challenging due to factors beyond statistics, such as player
context and team roster considerations during selection. The
main objective is to provide decision-makers with crucial
insights for player selection, aid in better player assessment, and
develop young talents by emphasizing key game aspects. We
compare interpretable prediction model results with satisfactory
accuracy levels. Balancing interpretability and predictive
accuracy, we employ white-box, black-box, and ensemble
classification methods like Decision Trees, Logistic Regression,
Support Vector Machine, Multi-Layer Perceptron, Random
Forest, and XGBoost. Additionally, genetic algorithms were
used to reduce each model's feature set, retaining only the most
impactful features. Compared to standard procedures without
feature selection, all models showed improved performance. We
found minimal differences in predictive accuracy between the
best white-box and black-box models. Genetic algorithms and
logistic regression combination outperformed other models'
predictive accuracy while significantly reducing features and
enhancing result interpretability. The analysis also highlights
the most influential features in the model and how models came
to such conclusions.

Keywords
Predictive models, Machine Learning, Feature Selection,
Genetic Algorithms, Interpretability.

1. INTRODUCTION
Decades of data collection exist for American basketball
leagues, but the widespread adoption of Artificial Intelligence
(AI) applied to performance improvement in this domain has
occurred only in recent years. Researchers now use data mining
and machine learning techniques to uncover factors that scouts
and other sports professionals may not immediately notice but
can lead to success with appropriate training.

This study applies the Knowledge Discovery in Databases
(KDD) process, mainly on machine learning algorithms, to data
and features from the National Collegiate Athletic Association
(NCAA) men's basketball datasets. The goal is to identify
players with the best odds of succeeding professionally and
understand why a machine learning algorithm would
recommend a particular athlete.

The NBA Draft is an annual event where NBA teams select
eligible players to join their rosters. It consists of two rounds,
with 60 players chosen in total. Each team has one pick per
round, with the draft order determined by a lottery system based
on teams' records from the previous season. Players typically
declare their intention to enter the draft after completing their
college eligibility.

Utilizing statistical data from NCAA matches is cost-effective
compared to other techniques like computer vision or scouting.
This method allows for analyzing every team and athlete in the
league since the data is collected after each match. The study
aims to automatically identify NCAA basketball players with a
good chance of reaching the NBA by applying supervised
machine learning techniques. Various classification methods,
including induction of Decision Trees (C4.5, C5.0, and CART
algorithms), Logistic Regression, Support Vector Machine, and
Multi-layer Perceptron (MLP), are used to compare predictive
accuracy and comprehensibility between black-box and
white-box models, as well as ensemble models, like Random
Forest and XGBoost.

The study's dataset contains redundant and irrelevant features
that could negatively impact decision-making. To address this,
genetic algorithms are used in the feature selection process to
filter player attributes that contribute the most to being chosen
by an NBA team. This approach aims to improve the predictive



accuracy of the models while reducing the number of features
needed for the models to explain the decision-making process.

The purpose of this study is to do an investigation process
considering the following research questions:

• RQ1 - Which classification techniques, among those with
reasonable accuracy, provide better explanations for decisions?

• RQ2 - Which classification techniques, among those studied,
exhibit the best predictive performance?

• RQ3 - Is there any model that provides a solution in the
domain that offers high quality in both accuracy and
explainability?

2. BACKGROUND
Most existing work on using machine learning models to
predict basketball performance has been conducted in a
statistical context. These efforts primarily focus on predicting
player performance and match outcomes in leagues such as the
NCAA and NBA. The work discussed here focuses explicitly
on predicting the success of NCAA basketball players in
reaching the NBA, using statistical data from their college
careers. More specifically, our approach emphasizes achieving
high prediction accuracy while also considering the
interpretability of the models. Therefore, this section provides
some background knowledge to help readers understand the key
concepts related to supervised machine learning techniques.

2.1 Supervised Machine Learning
In this study, we invested in a sample of techniques that
includes induction of Decision Trees, Logistic Regression as
single and white-box models, MLP and SVM as single and
black-box models, and Random Forest and XGBoost as
ensemble methods.

2.1.1 Decision Trees
Induction of decision trees is a supervised learning method used
for classification and regression tasks. They partition the feature
space into regions and make predictions based on the majority
class (for classification) or the average value (for regression) of
the training examples within each region. More specifically,
decision trees recursively partition the feature space into
regions based on feature values, each representing a decision
node. The tree selects the feature and split point at each
decision node that best separates the data into different classes
or values, typically using metrics like Gini impurity, entropy,
and information gain. Decision trees are easy to interpret and
visualize, making them popular for understanding and
explaining data. Among the main algorithms for building
decision trees are Classification And Regression Trees (CART)
[1] and C4.5 and C5.0, developed by Ross Quinlan [2].

2.1.2 Logistic Regression
It is a supervised learning algorithm used for binary
classification tasks. It utilizes the logistic (or sigmoid) function
to transform a linear combination of input features into a
probability value between 0 and 1 [3]. This probability indicates
the likelihood that a given input corresponds to one of two
predefined categories. The essential mechanism of Logistic
Regression is grounded in the logistic function's ability to
accurately model the probability of binary outcomes.

2.1.3 Support Vector Machines
SVM is a supervised learning algorithm used for classification
and regression tasks. SVM works by finding the hyperplane that
best separates the data points of different classes [4]. The
hyperplane is chosen to maximize the margin, i.e., the distance
between the hyperplane and the nearest data points from each
class, also known as support vectors. SVM can handle linear
and non-linearly separable data using kernel functions such as
linear, polynomial, radial basis function (RBF), etc.

2.1.4 Multi-Layer Perceptron
MLP is an artificial neural network consisting of at least three
layers of nodes: an input layer, one or more hidden layers, and
an output layer [5]. Each node, or neuron, in one layer, is
connected to every node in the subsequent layer, and each
connection has an associated weight. Each node uses a
nonlinear activation function, with sigmoid and ReLU functions
commonly used. MLPs can learn nonlinear models and are
trained using the backpropagation method. The MLP was a
crucial development in the history of neural networks.

2.1.5 Random Forest
It is an ensemble learning method that combines multiple
decision trees to improve predictive performance [6]. This
combination occurs during training and outputs the mode of the
classes (for classification) or the average prediction (for
regression) of the individual trees. Random Forest builds a
forest of decision trees by repeatedly selecting random subsets
of the training data and features. Each decision tree is trained on
a bootstrap sample of the original dataset (sampling with
replacement), and at each node, only a random subset of
features is considered for splitting. During prediction, each tree
in the forest independently makes a prediction, and the final
output is determined by aggregating the predictions of all trees
(e.g., majority voting for classification or averaging for
regression).

The main parameters of a Random Forest include the number of
trees in the forest, the node splitting criterion (such as Gini
impurity or entropy), the maximum tree depth, and the
minimum number of samples required to split a node. The
appropriate choice of these parameters is crucial for the model's
performance and generalization.

2.1.6 XGBoost (Extreme Gradient Boosting)
It is short for eXtreme Gradient Boosting, an optimized
implementation of gradient-boosting algorithms designed for
speed and performance [7]. Specifically, XGBoost is an
ensemble learning technique that builds a series of decision
trees sequentially, where each tree corrects the errors made by
the previous ones. It uses gradient boosting, which minimizes a
loss function by iteratively adding weak learners (decision
trees) to the ensemble. XGBoost is highly customizable and
allows for various hyperparameter tuning to optimize
performance. It incorporates regularization techniques, such as
shrinkage (learning rate) and pruning, to prevent overfitting.
XGBoost supports regression and classification tasks and is
known for its high accuracy and efficiency.



2.2 Genetic Algorithms for Attribute
Reduction

The application of genetic algorithms for attribute reduction in
datasets has proven significant in data mining. In an experiment
conducted by Babatunde et al. [8], a genetic algorithm was used
on a dataset with 100 attributes, successfully reducing the
dimensionality to only 11 attributes. The study compared two
methods, WEKA (Information Gain Ranking Filter) and
WEKA (CFS Subset Evaluator), which managed to reduce the
dataset to only 20 attributes. However, the genetic algorithm
outperformed these methods by achieving a more substantial
reduction to 11 attributes.

Furthermore, the author assessed the accuracy of several
machine learning models using the features generated by the
three models. The model that achieved the highest accuracy, at
94%, utilized the features generated by combining the genetic
algorithm with a Multi-Layer Perceptron.

2.3 Explainability
Explainability is one of the hot topics in Artificial Intelligence,
with the field named eXplainable Artificial Intelligence (XAI),
including interpretable machine learning. In general terms,
explainability and interpretability refer to the degree to which a
human can understand and trust the decisions made by a
machine-learning model. In supervised machine learning, where
models learn from labeled data, it is crucial to know how and
why the model arrives at its predictions. Here in the present
work, we are interested in identifying which features are
essential and how they contribute to the predictions, as well as
in understanding the overall behavior of the ML model.

The existing literature often overlooks the importance of
explainability associated with performance and selecting
different types of features to measure the result, as each type of
algorithm may return a different outcome. The intersection of
these features will highlight the characteristics that deserve
attention in the addressed problem. In what follows, we
summarize this subject, presenting its relevant concepts and
approaches.

Two categories of supervised machine learning techniques have
been discussed: white-box and black-box models. In white
boxes, it is assumed that the models are inherently interpretable
[9], where the model form admits valuable explanations of its
output without any post-processing. These models offer high
explainability because their decision-making process is simple
and directly tied to the input features. Examples of such models
include decision trees and logistic regression. There is specific
literature on developing and evaluating the performance of
inherently interpretable models.

On the other hand, black boxes refer to models whose behavior
is not directly understandable. They use algorithms where the
relationship between inputs and outputs is not easily
interpretable. Examples include MLP, SVM, XGBoost, and
random forests.

There are approaches and tools primarily aimed at the
interpretability of black-box models, which can also be used in
white-box models. For example, SHAP and LIME are two
well-known and widely used approaches, where SHAP comes
from SHapley Additive exPlanations and LIME stands for

Local Interpretable Model-agnostic Explanations [10]. They
were primarily developed to explain predictions of black-box
models. Thus, they offer valuable insights for explaining
black-box machine learning models and help improve their
interpretability by providing global and local explanations.
However, in white-box models like decision trees and logistic
regression that are already inherently interpretable, SHAP and
LIME can complement their interpretability by providing
additional insights into feature importance and local
explanations for individual predictions.

3. RELATED WORK

The field of machine learning applied to sports, including
basketball, has grown significantly in recent years, both in
research and in its application within teams. In North American
professional leagues like the NBA, extensive data collection
and analysis are standard practices for understanding the
probabilities of success for individual players and teams. Houde
and Matthew [11] conducted a study comparing different
models and metrics for predicting game outcomes based on data
from previous seasons. The present work is focused on
predictive modeling and performance analysis in basketball,
mainly considering the interpretability aspects of the models.

Mahmood et al. [12] analyzed the potential for specific players
to become up-and-coming stars in the NBA, using a concept
called Co-player, which refers to teammates or opponents who
played during a determined period. Co-player was found to be a
significant factor in predicting rising stars, with machine
learning algorithms such as Support Vector Machine (SVM),
Decision Tree CART, Maximum Entropy Markov Model
(MEM), Bayesian Network, and Naive Bayes. In the study,
some new attributes were created based on the preexisting
attributes in the databases. For example, the average Hollinger
Score of a player's Co-players was computed. At the end of the
study, the significance of these Co-player-related attributes in
aiding the prediction of rising stars was demonstrated.

Meanwhile, Albert et al. [13] proposed a hybrid approach called
ANN (Adaboost, Random Forest, and Multi-Layer Perceptron -
MLP) that feeds on the same dataset. According to the author,
this weighted combination of the three conventional models has
not been the subject of research, making it an innovative
approach to the problem of predicting stars in the NBA. This
combination was obtained from the individual results of various
tested machine learning models, and the mentioned three
models yielded better metrics in terms of sensitivity and
specificity. This ANN was constructed as a Recurrent Neural
Network (RNN) hidden layer. Upon retesting the proposed
model, the authors achieved a specificity of 90% and a
sensitivity of 80%. While the specificity decreased slightly
compared to the individual models, there was a significant
increase in sensitivity.

Additionally, Hsu et al. [14] focused on predicting the top
sixteen NBA teams by applying machine learning algorithms
based on player characteristics such as points, blocks, offensive
and defensive rebounds, and other game metrics. Models like
Polynomial Regression, Random Forest Regression, and
Support Vector Regression were employed to calculate players'
winning contributions to their teams, using the player efficiency
rating (PER) to measure player performance.



4. METHODOLOGY
This section presents the study design and the methods used to
prepare and process data, following the traditional pipeline.
Thus, it is divided into four subsections that represent the stages
of the Knowledge Discovery in Databases (KDD) process that
was addressed, namely: (i) Data Description, (ii)
Pre-Processing, (iii) Used Algorithms, and (iv) Evaluation
Metrics.

4.1 Data Description
The selected dataset contains registers from the period 2009 to
2021 of American university athletes who competed in the
NCAA [19]

• The database consists of 65 features and 65.039 instances
related to the athletes and the matches they played. Some of the
attributes found are:

• Attributes: The minutes played per game (Min), position, field
goals made (FGM), field goals attempted (FGA), 3-pointers
made (3 PTM), 3-pointers attempted (3 PTA), free throws made
(FTM), free throws attempted (FTA), offensive rebounds
(OREB), defensive rebounds (DREB), rebounds in general
(REB), assists (AST), steals (STL), blocks (BLK), personal
fouls (PF), points (PTS), and starter status (Starter if true,
reserve if false) are some of the attributes found in the database.

4.2 Pre-Processing
In our dataset analysis, we observed that it is unbalanced, with
the distribution shown in Table 1. We plan to address this
imbalance, using techniques such as resampling and weighted
loss functions during model training.

Label Number of samples in the
dataset

0 64,337

1 320

2 282

Table 1: Amount of samples for each label

The label 0 denotes the number of participants not selected to
play in the NBA. Label 1 represents individuals drafted in the
first round, the top thirty players with higher priority. Label 2
comprises players selected in the last thirty, with lower priority
than label 1. To balance the number of instances, we initially
tested both Undersampling and Oversampling techniques, but
they did not yield satisfactory prediction indexes. An alternative
approach was adopted, involving the following steps:

• Separation of all players belonging to label 1;

• Separation of all players belonging to label 2;

• Random selection of 1990 instances from a total

of 64,337.

As a result, a balanced dataset consisting of 2,592 instances was
obtained for further tests. The number of cases of undrafted
players was initially proposed to maintain the same proportion
of players in each label as in the last draft, when 243 declared
for it. However, only 60 were selected in one of the two rounds.

Pre-processing is a stage of KDD where several techniques are
applied to the data to improve the learning rates of the models.

Blum’s work [15] emphasizes the importance of feature
selection for machine learning models. This paper focuses on
the genetic algorithm combined with the predictive models
used.

We set the test size at 0.33, which means 33% of the data will
be in the testing partition, and the other 67% will be used for
the training partition.

4.3 Feature Selection Method
The proposed method can be visualized in Figure 1.

Figure 1: Method for Feature Selection

This framework utilizes a genetic algorithm, which is an
algorithmic framework. An individual undergoes genetic
operators in this framework, including one-point crossover,
inversion mutation, and elitist selection. After these genetic
operators, the chromosome is evaluated using a fitness function
incorporating a machine-learning algorithm. The termination
condition is then checked to determine if it has been met. If the
condition is met, the output will be a subset containing the
best-performing chromosomes. If not, the process is repeated.

4.4 Used Algorithms
The study[21] employed a variety of machine learning
algorithms to diversify the modeling approaches. These
included ensemble methods such as XGBoost and Random
Forest, tree-based approaches like C4.5, C5.0, and CART, and a
statistical model, Logistic Regression. Black-box algorithms
such as Support Vector Machine (SVM) and Neural Networks
with Multi-Layer Perceptron architecture were also utilized.
These algorithms were chosen to comprehensively understand
the dataset's behavior, considering performance and
comprehensibility metrics in different contexts.

Configuring hyperparameters is crucial for optimizing machine
learning algorithms. To identify the best hyperparameters for
the dataset context, we used GridSearch. This systematic
approach automates parameter-tuning by generating and
evaluating various parameter combinations. The combination
that best fits the dataset is the most suitable [16].

We present the best hyperparameter combinations obtained
through GridSearch for each algorithm.

4.4.1 Decision Tree CART
The hyperparameters adopted for Cart algorithms are these:

• Random state: 33

• Criterion: Gini

• Max depth: None

• Max features: None

• Min samples leaf: 1

• Splitter: best



4.4.2 Decision Tree C4.5 and Decision Tree C5.0
The hyperparameters GridSearch used for the feature selection
criterion were identical to those selected in the CART model.
The implications of this will be shown and discussed later in the
Result section.

4.4.3 Logistic Regression (LR)
In Logistic Regression, we adjusted the algorithm’s
hyperparameters using the following setup:

• Random state: 33

• Max iter: 500

• Solver: lbfgs

4.4.4 Support Vector Machine (SVM)
For more information on the algorithm's work, please refer to
[17] (Zhou, 2021). The following hyperparameter settings were
used:

• C: 0.001

• Gamma: Scale

• Kernel: Linear

4.4.5 Multi-Layer Perceptron (MLP)
The hyperparameters adopted for the MLP neural network are:

• Activation function: Rectified Linear Unit (ReLU)

• 2 Hidden layer sizes: (256 and 128 neurons, respectively)

• Learning rate init: 0.01

• Solver: Adam

• Max iter: 200

4.4.6 Random Forest
The setup adopted for the Random Forest algorithm included
the following:

• Random state: 33

• Max depth: 5

• Min Samples Leaf: 2

• Max features: sqrt

• n estimators: 100

4.4.7 XGBoost
The hyperparameters adopted for the XGBoost algorithm are:

• Random state: 33

•Learning rate: 0.2

• Max depth: 5

• Objective: multi:softprob

• n estimators: 100

4.4.8 Genetic Algorithm - GA
The settings adopted were:

• individual’s representation = binary

• length population = 50

• length chromosome = 13

• crossover rate = 75

• mutation rate = 30

The stopping criterion used was a counter that records the
number of generations the best individual found remained

unchanged. The algorithm ends if this individual is not
modified for ten consecutive generations. Otherwise, the stop
criterion counter will be reset, and the process will be repeated.

4.5 Test Environment
In the experiments, a Google Compute Engine instance with
approximately 12 GB of RAM and 108 GB of hard drive space
was used [18].

4.6 Evaluation Metrics
In this research, various metrics were employed to evaluate the
models, reflecting the different nature of the models and the
types of data under analysis. Different metrics were necessary
to capture the nuances of each model's performance in its
specific context.

4.6.1 Performance
The selected metrics for performance were Accuracy, Precision,
Recall, and F1 score as comparison measures between the
algorithms, aiming to evaluate the performance of each
algorithm according to the input parameters of each type of
feature selection.

4.6.2 Feature Relevance
For Random Forest and XGBoost models, feature importance is
critical to understanding how the model makes decisions. These
models assign an importance score to each feature based on
how much they contribute to reducing impurity or error in the
model's predictions. This score is calculated during the training
process and reflects the relative importance of each feature in
making accurate predictions. By analyzing the importance of
features, we can identify which features have the most
significant impact on the model's output and gain insights into
the underlying patterns in the data.

Logistic Regression, on the other hand, calculates feature
importance based on the absolute values of the coefficients
assigned to each feature in the model. These coefficients
represent the strength and direction of the relationship between
each feature and the target variable. Logistic Regression
measures each feature's overall importance in the model by
taking the average of the absolute coefficients across all classes.
This approach also allows us to identify the most influential
features in the model and understand how they contribute to the
model's predictions.

Permutation importance determines feature importance for
Support Vector Machine (SVM) models. This technique
evaluates the impact of each feature by randomly shuffling its
values and measuring the resulting change in the model's
performance. In SVMs with a linear kernel, the absolute
coefficients are used directly to determine feature importance.
However, for SVMs with nonlinear kernels, the average
absolute coefficients across classes are considered, providing
insight into the significance of each feature in the model's
decision boundaries.

Permutation importance was also computed for the Multi-Layer
Perceptron (MLP) model. This technique evaluates the
significance of each feature by permuting its values and
measuring the impact on the model's performance. Features
that, when permuted, cause the most significant decrease in
performance are considered more important.

By employing these techniques, we gained insights into how
each model makes predictions and which features are most



influential, enhancing the overall interpretability of the machine
learning models used in this study.

4.6.3 Interpretability
To evaluate the interpretability of our models, we employed the
LIME (Local Interpretable Model-agnostic Explanations)
technique. LIME offers detailed and accessible explanations
regarding the impact of each feature on predictions, providing
insights into each model's decision-making process. By
operating locally and analyzing individual predictions, LIME
becomes a powerful tool for understanding the rationale behind
machine learning models' decisions.

While calculating feature importance provides a general
overview of which features are most relevant to the model's
predictions, it lacks the depth and context provided by LIME.
LIME's model-agnostic nature allows it to offer local
explanations for individual predictions across various model
types, including Logistic Regression, SVM, and MLP models.
This approach enhances our ability to understand how these
models make decisions in specific instances, as it ensures a
consistent procedure for every model used, contributing to the
comparison of their interpretability and reliability.

Although the SHAP (Shapley Additive exPlanations) method is
commonly used for models like XGBoost and Random Forest
to quantify and visualize feature impacts, we opted not to use it
in this study. Instead, we focused on LIME due to its ability to
provide detailed and context-rich explanations for individual
predictions, which is crucial for understanding the
decision-making process of all models at a granular level and
for facilitating comparison.

5. RESULTS
This section presents the outcomes and contributions of the
Machine Learning-based Approach proposed in this study. The
section is divided into three subsections to systematically
describe the results of the algorithms discussed in subsection
4.4. We will begin by elaborating on the outcomes of the
genetic algorithm on the database, followed by an analysis of
the prediction results. Furthermore, the final subsection
analyzes the best predictive models' interpretability aspects,
using LIME to explore each model.

5.1 Genetic Algorithm and Feature
Selection

After the feature selection process, the genetic algorithm
successfully reduced the original 65 features to a subset of 28.
The selected attributes are as follows: ['GP', 'Min_per', 'usg',
'eFG', 'TS_per', 'ORB_per', 'DRB_per', 'AST_per', 'FTA',
'FT_per', 'twoPM', 'twoPA', 'ftr', 'adjoe', 'pfr', 'midmade',
'midmade+midmiss', 'midmade/(midmade+midmiss)',
'dunksmade', 'drtg', 'adrtg', 'dporpag', 'obpm', 'dbpm',
'mp', 'dreb', 'stl', 'pts'].

5.2 Algorithms and Predictive Performance
We evaluated the models using standard classification metrics,
including accuracy, precision, recall, and F1-score, as shown in
Table 2 and Figure 2.

As outlined in section 4.4.2, the hyperparameters for decision
tree-based models were consistent across all models. The
GridSearch configuration constrained the hyperparameter grid,
limiting the range of combinations and potentially leading to
similar outcomes for different models. This uniformity might

have been different with a larger grid. However, the decision to
work with fewer possibilities was justified by hardware
limitations for testing in the environment described in section
4.5.

Model Accuracy Precision Recall F1 Score

Random
Forest

85.98% 85.15% 85.98% 85.35%

MLP 85.75% 85.36% 85.75% 85.47%

XGBoost 83.29% 82.23% 83.29% 82.65%

SVM 82.48% 82.39% 82.48% 82.18%

LR 85.28% 84.33% 85.28% 84.76%

C4.5/C5.0
/CART

80.84% 79.89% 80.85% 80.27¨%

Table 2: Performance Metrics for the algorithms

Figure 2: Accuracy comparison of models

This uniformity, feature selection process, and the inherent
characteristics of these models resulted in identical predictive
outcomes. Although the primary focus of the study was to
evaluate the interpretability of the best-performing models
(none of which were decision tree-based), we found that the
format and significance were broadly similar when examining
the feature importance of the trees.

Among the models tested, Random Forest and Multi-Layer
Perceptron (MLP) demonstrated the highest accuracy, achieving
around 0.86. This indicates their ability to correctly classify
players' NBA success based on NCAA performance metrics.
Random Forest also showed high precision, recall, and
F1-score, indicating its effectiveness in identifying players with
a high likelihood of NBA success while minimizing false
positives.

Logistic Regression, SVM, and XGBoost also performed well,
with approximately 0.85, 0.82, and 0.83 accuracies,
respectively. These models showed competitive precision,
recall, and F1-score performance, highlighting their
effectiveness in predicting NBA success based on NCAA
performance metrics.

The strong performance of Random Forest can be attributed to
its ensemble learning nature, which combines multiple decision
trees to improve prediction accuracy. MLP, on the other hand, is



a type of artificial neural network that can capture complex
relationships in the data, leading to accurate predictions.

While Logistic Regression is a linear model and may not
capture complex relationships as effectively as ensemble or
neural network models, its performance indicates that it can be
just as effective and have balanced performance in predicting
NBA success based on NCAA performance metrics.

5.3 Results for Feature Importance
When examining the top features across various models,
"DPORPAG" (Defensive Points Over Replacement Per
Adjusted Game) emerged as consistently significant, suggesting
its crucial role in evaluating player performance. This metric
measures a player's defensive impact relative to a
replacement-level player, considering factors like blocks, steals,
and defensive rebounds.

Additionally, "AdjOE" (Adjusted Offensive Efficiency) and
"TReb" (Total Rebound Percentage) were also consistently
highlighted as essential features. AdjOE estimates a team's
offensive efficiency against an average Division I defense,
while TReb indicates the percentage of available rebounds a
player secured while on the court.

In summary, the features "DPORPAG," "AdjOE," and "TReb"
are key metrics in assessing player performance, with
DPORPAG specifically focusing on defensive contributions.

These metrics provide valuable insights into a player's
defensive prowess, offensive efficiency, and rebounding
abilities, aiding in comprehensive player evaluations.

5.4 Algorithms and Interpretability
The Local Interpretable Model-agnostic Explanations (LIME)
technique, employed to interpret the machine learning models
used in this study, obtained some interpretable explanations for
individual predictions of complex models.

This analysis underscores the importance of model
interpretability and how LIME can be a valuable tool in better
understanding the decisions of machine learning models in
different contexts.

5.4.1 Feature Influence in Determined Instances
Across all models, the number of games played (GP)
consistently emerges as a significant factor. However, its effect
varies, being negatively influential in MLP, Random Forest, and
XGBoost and positively influential in SVM and Logistic
Regression.

While minutes played percentage (Min_per) and usage rate
(usg) show varying degrees of influence across models, their
effects are inconsistent. For example, Min_per has a
consistently negative impact in MLP and Logistic Regression
but is not as influential in SVM, Random Forest, and XGBoost.
Similarly, usg harms MLP, SVM, and Random Forest, but its
influence is positive in Logistic Regression and XGBoost.
Effective field goal percentage (eFG) also exhibits divergent
impacts, which are negatively influential in SVM and Logistic
Regression but less so in other models.

5.4.2 Comparison Across Models
Each model provides unique insights into player prediction. For
example, SVM places high importance on GP and Min_per,
suggesting that consistent game participation and playing time
are crucial for predicting NBA success.

On the other hand, Logistic Regression emphasizes GP
positively but considers Min_per as a negative factor, indicating
a nuanced view of player performance factors.

These differences in feature importance highlight the need for a
nuanced approach to player evaluation. Decision-makers should
consider each model's specific context and priorities when using
them to inform player selection decisions.

6. CONCLUSION AND FUTURE WORK
Our Machine Learning-based Approach has yielded insightful
outcomes and contributed to predicting NCAA basketball
players' success in reaching the NBA [20]. The genetic
algorithm successfully reduced the feature set from 65 to 28,
showcasing its efficacy in feature selection. The selected
attributes encompass various player statistics, highlighting key
performance indicators for the NBA's success.

Random Forest and Multi-Layer Perceptron (MLP) emerged as
top performers when evaluating the predictive models,
achieving high accuracy rates. These models demonstrated
strong classification abilities, particularly in identifying players
with a high likelihood of NBA success while minimizing false
positives. However, Logistic Regression, support vector
machine (SVM), and XGBoost also performed well.

However, choosing the most suitable model should consider not
only performance or generalization but also the interpretability
aspect, which is even more valuable for selecting the best
strategy for the problem, considering that the previous metrics
were close.

The ensemble nature of Random Forest, where each tree
contributes to a portion of the final decision, makes it difficult
to understand how each variable influences the model's overall
output. For MLPs, the weights and connections between the
hidden layers are challenging to interpret, limiting an intuitive
understanding of the predictions.

Evaluating this tradeoff, the Logistic Regression model has an
advantage due to its simple structure and ability to produce
more intuitive predictions through coefficients.

An interesting observation is the consistency in feature
importance across different models. The features "dporpag,"
"adjoe," and "treb" emerged as consistently important in several
models, indicating their significant influence on the prediction
outcome. This underscores the importance of these player
characteristics in determining a player's success in reaching the
NBA.

In conclusion, applying the Local Interpretable Model-agnostic
Explanations (LIME) technique has provided valuable insights
into the decision-making processes of machine learning models
in predicting the success of NCAA basketball players in
reaching the NBA. The analysis revealed that while certain
features such as the number of games played (GP) consistently
play a significant role across models, the interpretation of other
features like minutes played percentage (Min_per), usage rate
(usg), and effective field goal percentage (eFG) varies widely
among different models. This underscores the importance of
model interpretability in understanding and utilizing machine
learning models effectively, especially in complex and
high-stakes decision-making scenarios such as player selection
for professional sports leagues.



Furthermore, the comparative analysis of the models highlights
the need for a nuanced approach to player evaluation,
considering each model's specific context and priorities. For
instance, while SVM emphasizes the importance of consistent
game participation and playing time, Logistic Regression offers
a more nuanced view by considering the percentage of minutes
as positive and negative influencers. These insights are crucial
for decision-makers in the basketball industry, providing them
with a deeper understanding of the critical factors driving player
success and guiding them in making more informed and
effective player selection decisions.

Overall, our study highlights the utility of machine learning in
analyzing NCAA basketball player data and offers valuable
insights for decision-makers in player selection and talent
development. The models' interpretability and performance
demonstrate the potential of such approaches in enhancing
decision-making processes in sports analytics.

In our immediate future work, we aim to enhance the validation
of our models by focusing on their high accuracy and
explainability in the context of monitoring selected players. We
seek to explore how the labels and player statistics for key
features translate into success in a professional setting, such as
the NBA. This effort will provide deeper insights into the
predictive capabilities of our models and their practical
application in real-world scenarios, ultimately contributing to
advancing player selection and talent development strategies.
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