RDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO

Universidade Federal da Paraíba ESCOLA POLITÉCNICA Campina Grande -- Paraíba - Brasil

CPG

ANDRÉ LUIZ MORELATO FRANÇA CAVIDADES RETANGULARES

A MICROONDAS

F814c França, André Luiz Morelato. Cavidades retangulares e microondas / André Luiz Morelato França. - Campina Grande, 1972. 77 f. Dissertação (Mestrado em Ciências) - Escola Politécnica da Universidade Federal da Paraíba, 1972. "Orientação: Prof. Dr. Paavo A. Vuorinen". Referências. 1. Ondas Elétricas. 2. Microondas. 3. Iris Retangulares - Dispositivo de Acoplamento. 4. Linhas de Transmissão -Modelo. I. Vuorinen, Paavo A. II. Escola Politécnica da Universidade Federal de Campina Grande (PB). III. Título CAVIDADES RETANGULARES A MICROGNDAS

ANDRE LUIZ MORELATO FRANÇA

TESE SUBMETIDA AD CORPO DOCENTE DA COORDENA ÇÃO DOS PROGRAMAS DE POS-GRADUAÇÃO EM ENGE-NHARIA DA ESCOLA POLITECNICA DA UNIVERSIDA-DE FEDERAL DA PARAIBA COMO PARTE DOS REQUI-SITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIENCIAS.

7.

0

ORIENTADOR: P. A. VUORINEN

CAMPINA GRANDE ESTADO DA PARAIBA - BRASIL DEZEMBRO DE 1972

RESUMO

Análise de cavidades retangulares a micro-ondas através de um modélo de linha de transmissão. São analisadas cavidades terminais e de transmissão utilizando-se iris retangulares como disp<u>o</u> sitivo de acoplamento. São ainda desenvolvidos métodos de medida da susceptâ<u>n</u> cia da iris e dos parâmetros das cavidades.

ABSTRACT

Microwave rectangular cavities are treated by a transmission line model. The model concerns one-port and transmission cavities using rectangular iris as a coupling device. Methods of measuring iris' susceptance and cavity's parameters are developed too.

INDICE

1.	INTRODUÇÃO	1
2.	ANALISE DE CAVIDADES RETANGULARES POR TEORIA DE CAMPO	3
	2.1 Frequência de Ressonância	3
	2.2 Fatôres de Qualidade	4
з.	A EXCITAÇÃO DA CAVIDADE	9
	3.1 Escolha do Acoplamento	9
	3.2 Iris Retangular como Susceptância	9
	3.3 Determinação Experimental de B _n	10-
	3.4 Métodos de Medida de COE	12
	3.5 Correção do Coeficiente de Onda Estacionária	15
	3.6 Resultados Experimentais	16
4.	UM MODELO DE LINHA DE TRANSMISSÃO PARA CAVIDADES TER-	
	MINAIS	11
	4.1 Ressonância	11
	4.2 Acoplamento Crítico	21
	4.3 Susceptância Crítica com Perdas	23
	4.4 Subacoplamento e Superacoplamento	24
	4.5 Fator de Qualidade, Q	30
	4.6 Fator de Qualidade Descarregado, Qu	31
	4.7 Fator de Qualidade Externo, QE	32
	4.8 Fator de Qualidade Carregado, QL	34
	4.9 Potência Absorvida, Pa	35
	4.10 Potencia Refletida, Pr	41
	4.11 Coeficiente de Onda Estacionária na Ressonân- cia, S _r	43
	4.12 Determinação Experimental dos Parâmetros da Ca- vidade	44
5.	APLICAÇÃO DO MODELO A CAVIDADES DE TRANSMISSÃO	47
	5.1 Ressonância	47
	5.2 Acoplamento Crítico	51
	5.3 Fator de Qualidade Descarregado, Qu	53

5.4 Fator de Qualidade Externo, Q _E	53
5.5 Fator de Qualidada Carregada, 9	54
5.6 Potancia Absorvida pelo Sistema, Ps	55
5.7 Potência Refletida, P _r	50
5.8 Potência Transmitida, P _t	61
5.9 Coeficiente de Onda Estacionária - na Ressonân-	53
5.10 Perda de Inserção, PI	65
5.11 Beterminação Experimental dos Parâmetros da C <u>a</u> vidade	66
6. CONCLUSÃO	69
APENDICE I: Cálculo da Energia Média Armazenada no Ca <u>m</u> po Elétrico do Modo TE _{nmo}	70
APENDICE II: Relações entre Gndas, Voltagens e Corren- tes em uma Junção	72
APENDICE III: Cálculo da Atenuação Total na Cavidade no Mode TE ₁₀	74
BIBLIOGRAFIA	77

•

iv

LISTA DE SIMBOLOS

.

a	1. dimensão maior da seção reta da cavidade
	2. onda incidente
	3. constante auxilier
A	constante auxiliar
. d	1. dimensão menor de seção reta de cavidade
	2. onda refletida
	3. constante auxiliar
В	1. susceptância
	2. constante auxiliar
Bn	susceptância normalizada
B _{nc}	susceptância normalizada crítica
c	velocidade da luz no espaço livre
d	dimensão menor da iris retangular
di	oistância da ponta de prova à iris
D	dimensão maior da íris retangular
ex,ey,ez	componentes transversais do campo elétrico
Ex,Ey,Ez	componentes retangulares do campo elétrico
Ex,Ey,Ez f	componentes retangulares do campo elétrico frequência (hertz)
Ex,Ey,Ez f f _r	componentes retangulares do campo elétrico frequência (hertz) frequência de ressonância
Ex,Ey,Ez f f F	componentes retangulares do campo elétrico frequência (hertz) frequência de ressonância constante auxiliar
Ex,Ey,Ez f f F G	componentes retangulares do campo elétrico frequência (hertz) frequência de ressonância constante auxiliar condutância
Ex,Ey,Ez f f f F G h _x ,h _y ,h _z	componentes retangulares do campo elétrico frequência (hertz) frequência de ressonância constante auxiliar condutância componentes transversais do campo magnético
Ex,Ey,Ez f f f F G h _x ,h _y ,h _z Hx,Hy,Hz	componentes retangulares do campo elétrico frequência (hertz) frequência de ressonância constante auxiliar condutância componentes transversais do campo magnético componentes retangulares do campo magnético
Ex,Ey,Ez f f f F G h _x ,h _y ,h _z H _x ,h _y ,h _z H _x ,H _y ,H _z i	componentes retangulares do campo elétrico frequência (hertz) frequência de ressonância constante auxiliar condutância componentes transversais do campo magnético componentes retangulares do campo magnético corrente
Ex,Ey,Ez f f _r F G h _x ,h _y ,h _z H _x ,H _y ,H _z i i ⁺	componentes retangulares do campo elétrico frequência (hertz) frequência de ressonância constante auxiliar condutância componentes transversais do campo magnético componentes retangulares do campo magnético corrente corrente incidente
Ex,Ey,Ez f f f F G h _x ,h _y ,h _z H _x ,h _y ,h _z H _x ,H _y ,H _z i i i ⁺	componentes retangulares do campo elétrico frequência (hertz) frequência de ressonância constante auxiliar condutância componentes transversais do campo magnético componentes retangulares do campo magnético corrente corrente incidente corrente refletida
Ex,Ey,Ez f f F G h _x ,h _y ,h _z H _x ,h _y ,h _z H _x ,H _y ,H _z i i i k	componentes retangulares do campo elétrico frequência (hertz) frequência de ressonância constante auxiliar condutância componentes transversais do campo magnético componentes retangulares do campo magnético corrente corrente incidente corrente refletida fator de acoplamento modificado
Ex,Ey,Ez f f f F G h _x ,h _y ,h _z H _x ,h _y ,H _z i i i ⁺ i ⁻ k k	componentes retangulares do campo elétrico frequência (hertz) frequência de ressonância constante auxiliar condutância componentes transversais do campo magnético componentes retangulares do campo magnético corrente corrente incidente corrente refletida fator de acoplamento modificado número de onda para o espaço livre
Ex,Ey,Ez f f f F G h _x ,h _y ,h _z H _x ,h _y ,h _z H _x ,h _y ,H _z i i i+ i ⁺ k k k o k c	componentes retangulares do campo elétrico frequência (hertz) frequência de ressonância constante auxiliar condutância componentes transversais do campo magnético componentes retangulares do campo magnético corrente corrente incidente corrente refletida fator de acoplamento modificado número de onda para o espaço livre número de onda de corte

V

lr	comprimento da cavidade na ressonância
n,m,p	Indices de modos TE ou TM
Pa	potência absorvida pela cavidade
Pares	potência absorvida pela cavidade na ressonência
PE	potência dissipada no circuito externo
Pf	potência dissipada na parade final da cavidade
Pinc	potência incidente
PI	perda de inserção
PIr	perda de inserção na ressonância
PL	potência dissipada na cavidade ou no guia
Po	1. potência transmitida no guia
	2. potência fornecida pela fonte
Pr	potência refletida pela cavidade
Prres	potência refletida pela cavidade na ressonância
Ps	potência absorvida pelo sistema cavidade-carga
Pt	potência transmitida pela cavidade
Ρ	potência média numa seção reta da cavidade
ΨE	fator de qualidade externo
QL	fator de qualidade carregado
QU	fator de qualidade descarregad
r	constante auxiliar
R _m	resistência superficial
S	coeficiente de onda estacionária (CDE)
5 _m	COE medido
Sreal	COE real
Sr (c)	COE na ressonância
[5]	matriz de espalhamento
⁵ ij	elementos da matriz de espalhamento
Jij	elementos da matriz de espainamento modificada
V v	atenuação total na cavidade
v,v	
-	Voltagem incldente
V	voltagem refletida

vi

✓g velocidade de grupo ✓p velocidade de fase W_a energia armazenada na cavidade W_e energia média armazenada no campo elétrico

energia média armazenada no campo magnético Wh × constante auxiliar coordenadas retangulares ×,y,z X constante auxiliar Yc admitância de carga Y. admitância de entrada Yn admitância característica Zn impedância normalizada impedância característica Za X constante de atenuação do. constante de atenuação "média" coeficiente de atenuação devido as paredes finais QE atenuação total de ida e volta d-B constante de fase Br constante de fase na ressonância Г coeficiente de reflexão L. coeficiente de reflexão na ressonância 8 constante de propagação Aw faixa de passagem 5 profundidade de penetração .3 constante dielétrica do espaço livre θ comprimento elétrico entre a iris e os planos, de referência Ngcomprimento de onda guiada 20 comprimento de onda no espaço livre comprimento de onda de ressonância no espaço li-7or vre Juo permeabilidade magnética do espaço livre J condutividade Ø comprimento elétrico da cavidade

vii

frequência angular (radianos/segundo) frequência angular de ressonância

.

.ω ω_Γ 1. INTRODUÇÃO

O estudo de cavidades ressonantes é, em geral, rea lizado através de modêlos de circuitos a parâmetros concentrados. Circuitos RLC são normalmente utilizados e permitem obter os principais parâmetros da cavidade com relativa facilidade.

Porém, êste tipo de modêlo só funciona bem quando se trata de cavidades de alto Q ou de cavidades especiais (por exemplo: do tipo de reentrâncias com dimensões muito menores que um comprimento de onda). Além disso, o modêlo falha quando se analisa o comportamento sob regime transitório.

A fim de contornar o problema se utiliza então, um modêlo de linha de transmissão. E comum encontrarmos em traba lhos e na literatura a coexistência dos dois pontos de vista,on de o modêlo de linha de transmissão é usado a medida que o primeiro modêlo já não satisfaz. Isto evidentemente causa uma certa confusão para quem se inicia no assunto.

 χ O objetivo do presente trabalho é desenvolver um modêlo para cavidades a micro-ondas que se apoie sòmente em con ceitos inerentes a uma linha de transmissão. As descontinuidades serão representadas por admitâncias em paralelo. Com êsse modêlo unificado pretendemos evitar as limitações do modêlo de circuitos a parâmetros concentrados e também contribuir para que o estudo de cavidades e outros dispositivos a micro-ondas possa ser feito através desta abordagem devido as suas facilidades d<u>i</u> dáticas.

Abordamos ainda o problema dos acoplamentos da cavidade que no caso são realizados através de iris retangulares centrais e também procuramos desenvolver métodos de medida que permitissem conhecer experimentalmente, com o máximo de facilidade, todos os parâmetros que determinam a cavidade.

No cap. 2 apresentamos o clássico estudo de cavida de sem acoplamento por teoria de campo, para permitir comparações e por razões didáticas. O estudo de cavidades reais, com dispositivos de acoplamento, por teoria de campo torna-se bastante complexo recorrendo-se então aos modêlos.

O cap. 3 trata das iris retangulares como dispositivo de acoplamento que são particularmente eficientes para o modo dominante TE_{10} . Mostramos que as iris podem ser consideradas como susceptâncias em paralelo e analisamos ainda os métodos de medida dessa susceptância.

No cap. 4 o modêlo de linha de transmissão é desen volvido para cavidades terminais enquanto que no cap. 5 fazemos uma aplicação do modêlo à cavidades de transmissão. Convém frizar que o modêlo é apresentado considerando-se o modo dominante TE_{10} contudo sem perda de generalidade.

O trabalho contém ainda três apêndices visando esclarecer alguns tópicos, os quais, se incluidos no texto o sobrecarregaria. 2. ANALISE DE CAVIDADES RETANGULARES POR TEORIA DE CAMPO

2.1 Frequência de Ressonância

Considerando-se uma secção de um guia de onda re tangular com um curto circuito em z=O temos a formação de onda estacionária como mostra a fig. 2.1:

3

Podemos colocar outro curto em z=l, onde $l = p \lambda_g/2$, e p=1,2,3... sem alterar a onda estacionária já que as compone<u>n</u> tes tangenciais Ex e Ey são nulas. Construimos então uma cavid<u>a</u> de retangular.

fig. 2.2

Para o cálculo da frequência de ressonância da cavidade usamos a teoria de campo para guias de onda. Para os modos TE e TM tôdas as componentes de campo elétrico e magnético podem ser tiradas das equações de onda transversais:

$$\nabla_{t} h_{2}(x,y) + (k_{0}^{2} - \beta_{nm}^{2}) h_{3}(x,y) = 0 \quad \nabla_{t}^{2} e_{3}(x,y) + (k_{0}^{2} - \beta_{nm}^{2}) e_{3}(x,y) = 0 \quad (2.1)$$

onde
$$k_o^2 - \beta_{nm}^2 = k_{cnm}^2 = \left(\frac{nT}{a}\right)^2 + \left(\frac{mT}{b}\right)^2$$
 (2.2)
e $k_o = \frac{2TF}{a}$ (2.3)

Como na cavidade $l = p \lambda g/2$ devemos ter Bnml = pTT

e portanto

$$\beta_{nm} = \frac{p_{11}}{2} p = 1, 2, 3...$$
 (2.4)

Combinando 2.2), (2.3) e (2.4) temos

$$f_{r} = \frac{c}{2} \left[\left(\frac{n}{a} \right)^{2} + \left(\frac{m}{b} \right)^{2} + \left(\frac{p}{\lambda} \right)^{2} \right]^{\frac{1}{2}}$$
(2.5)

Os índices n,m,p referem-se aos particulares modos TE e TM correspondendo ao número de lobos $(\frac{\lambda \gamma}{2})$ do diagrama de onda estacionária nas direções x,y,z.

A fim de visualizarmos, para uma dada cavidade, os modos e frequências que podem ressoar construimos, na fig.(2.3), uma carta de modos que nada mais é do que a equação (2.5) em gráfico conveniente. A carta de modos foi construida para um guia de ondas WR90 dando destaque à região da faixa X (8,2 -12,5 GHz) que é a normalmente utilizada em pesquisa.

2.2 Fatôres de Qualidade

Nesta secção calcularemos o fator de qualidade de<u>s</u> carregado, Q_U que leva em conta sòmente as perdas internas da cavidade. Acharemos as expressões gerais de Q_U para os modos TE_{n,m,p} e TM_{n,m,p}.

4

onde w_r = freq. ang. de ressonância Wa = energia armazenada na cavidade PL = potência dissipada na cavidade

A solução da equação de onda transversal para 05 modos $TE_{n,m,p}$ admitindo variação em z da forma $e^{-j\beta z}$ nos dá:

$$H_{3} = A_{nm} \cos \frac{\pi \Pi x}{a} \cos \frac{\pi \Pi y}{b} e^{\mp j\beta nm Z}$$

$$H_{z} = \pm j \frac{\beta_{nm}}{K_{nm}^{2}} A_{nm} \frac{n\Pi}{a} \sin \frac{\pi \Pi x}{a} \cos \frac{m\Pi y}{b} e^{\mp j\beta nm Z}$$

$$H_{y} = \pm j \frac{\beta_{nm}}{K_{nm}^{2}} A_{nm} \frac{m\Pi}{b} \cos \frac{n\Pi x}{a} \sin \frac{m\Pi y}{b} e^{\mp j\beta nm Z}$$

$$H_{y} = \pm j \frac{\beta_{nm}}{K_{nm}^{2}} A_{nm} \frac{m\Pi}{b} \cos \frac{n\Pi x}{a} \sin \frac{m\Pi y}{b} e^{\mp j\beta nm Z}$$

$$E_{x} = Z_{h,nm} A_{nm} j \frac{\beta_{nm}}{K_{nm}^{2}} \frac{m\Pi}{b} \cos \frac{n\Pi x}{a} \sin \frac{m\Pi y}{b} e^{\mp j\beta nm Z}$$

$$E_{y} = -Z_{h,nm} A_{nm} j \frac{\beta_{nm}}{K_{nm}^{2}} \frac{n\Pi}{a} \sin \frac{n\Pi x}{a} \cos \frac{m\Pi y}{b} e^{\mp j\beta nm Z}$$

$$A_{x} = g_{y} = -Z_{h,nm} A_{nm} j \frac{\beta_{nm}}{K_{nm}^{2}} \frac{n\Pi}{a} \sin \frac{n\Pi x}{a} \cos \frac{m\pi y}{b} e^{\mp j\beta nm Z}$$

onde Anm é uma constante de proporcionalidade e 4h, nm=ko4o/3nme

 $Z_0=E_X/H_y$. Na ressonância $W_a=2W_e=2W_h$ onde $W_e=\frac{\varepsilon_0}{4}\int_V E_{\cdot}E^*dv$ é a energia média armazenada no campo elétrico e $W_h=\frac{\mu_0}{4}(H_{\cdot}H^*dv)$ é a energia média armazenada no campo magnético.

Portanto (Apândice I):

$$W_{e} = \frac{\varepsilon_{o} \left(\frac{2A^{+} Z_{o} k_{o}}{k_{enm}^{2}}\right)^{2} \left(\frac{abl}{8}\right) \left[\left(\frac{n \pi}{a}\right)^{2} + \left(\frac{m \pi}{b}\right)^{2}\right] \quad (2.6)$$

Por outro lado $P_L = R_m/2 \iint_{Sm}^2 dS$ onde $R_m = 1/s\sigma$ é a parte real da impedância de superficie e δ é a profundidade de penetração devida ao efeito pelicular.

A potência dissipada nas superficies internas da cavidade tem três parcelas correspondentes à potência dissipada nas paredes horizontais, laterais e finais.

$$P_{L} = R_{M/2} \left[\iint_{0}^{a,b} (H_{x}H_{x}^{*} + H_{y}H_{y}^{*}) dxdy + \iint_{0}^{a,l} (H_{x}H_{x}^{*} + H_{z}H_{z}^{*}) dxdz + \\ \iint_{0}^{b,l} (H_{y}H_{y}^{*} + H_{z}H_{z}^{*}) dydz \right] = P_{L_{1}} + P_{L_{2}} + P_{L_{3}} \\ + \iint_{0}^{b,l} (H_{y}H_{y}^{*} + H_{z}H_{z}^{*}) dydz = P_{L_{1}} + P_{L_{2}} + P_{L_{3}}$$

Usando as expressões abaixo para as componentes do campo magnético:

$$H_{g} = -2jA^{+}\cos\frac{n\pi x}{a}\cos\frac{m\pi y}{b}\sin\frac{p\pi z}{2}$$

$$H_{r} = \pm 2jA^{+}\frac{B}{k^{2}}\frac{n\pi}{a}\sin\frac{n\pi x}{a}\cos\frac{m\pi y}{b}\cos\frac{p\pi z}{2}$$

$$H_{y} = \pm 2jA^{+}\frac{B}{k^{2}}\frac{m\pi}{b}\cos\frac{n\pi x}{a}\sin\frac{m\pi y}{b}\cos\frac{p\pi z}{2}$$

e efetuando as integrações vem:

$$P_{L} = R_{m} (2A^{+})^{2} \left\{ \left(\frac{\beta}{k^{2}}\right)^{2} \left(\frac{ab}{4}\right) \left[\left(\frac{n\pi}{a}\right)^{2} + \left(\frac{m\pi}{b}\right)^{2} \right] + \left(\frac{a\ell}{4}\right) \left[\left(\frac{\beta}{k^{2}}\right)^{2} \left(\frac{n\pi}{a}\right)^{2} + 1 \right] + \left(\frac{b\ell}{4}\right) \left[\left(\frac{\beta}{k^{2}}\right)^{2} \left(\frac{m\pi}{b}\right)^{2} + 1 \right] \right\}$$

Lembrando de (2.2) e que $k_0^2 = k_c^2 + (p \pi / l)^2$ e ainda fazendo n/a=q, m/b=r e p/g=t a potência dissipada fica:

$$P_{L} = R_{m} (A^{+})^{2} \left\{ \frac{ab(q^{2}+r^{2})t^{2} + al(q^{2}t^{2} + (q^{2}+r^{2})^{2}) + bl(r^{2}t^{2} + (q^{2}+r^{2})^{2})}{(q^{2}+r^{2})^{2}} \right\}$$
(2.7)

Retomando a expressão (2.6) para W_e e lembrando que $Z_0 = \sqrt{\frac{\mu_0 \kappa_0}{k_0}}$, $\kappa_0^2 = (nT/a)^2 + (mT/b)^2 + (pT/b)^2 e \lambda_0 = 2T/k_0$ temos:

$$W_{e} = \frac{abl(A^{+})^{2}}{\lambda_{or}^{2}(q^{2}+r^{2}) w_{r} \delta^{2} \sigma}$$
(2.8)

$$Q_{U} = \frac{2\omega_{r}We}{P_{L}}$$

$$= \frac{abl\lambda_{or}}{4\delta} \frac{(q^{2}+r^{2})(\sqrt{q^{2}+r^{2}+t^{2}})^{3}}{ab(q^{2}+r^{2})t^{2}+al[q^{2}t^{2}+(q^{2}+r^{2})^{2}]+bl[r^{2}t^{2}+(q^{2}+r^{2})^{2}]}$$

Essa última expressão é mais comumente escrita:

$$\frac{\delta Q_{U}}{\lambda_{or}} = \frac{abl}{4} \frac{(q^{2} + r^{2})(\sqrt{q^{2} + r^{2} + t^{2}})^{3}}{ab(q^{2} + r^{2})t^{2} + al[q^{2}t^{2} + (q^{2} + r^{2})^{2}] + bl[r^{2}t^{2} + (q^{2} + r^{2})^{2}]}$$
(2.9)

Para os modos TM nmp, de maneira totalmente anàloga, obtemos:

$$\frac{S \Theta \upsilon}{\lambda_{or}} = \frac{abl}{4} \frac{(q^2 + r^2) \sqrt{q^2 + r^2 + t^2}}{q^2 b(a+l) + r^2 a(b+l)}$$
(2.10)

Para uma cavidade constituida por uma seçção de guia WR90 de 2,14 cm de comprimento, ressoando a 9600 MHz com o modo TE₁₀₁ obtemos um valor típico de Q_U= 3500. Admitimos δ = 10⁻⁴ cm.

3. A EXCITAÇÃO DA CAVIDADE

3.1 Escolha do acoplamento

Entre os tipos usuais de acoplamento - ponta de prova, espira e abertura, escolhemos o último tipo pela facilidade de construção e manipulação quando se trabalha com cavidades construidas a partir de guias de onda.

A abertura pode ter diferentes formas, mas quando se observa a configuração de campos do modo dominante TE₁₀, fica evidente que a forma de iris retangular é a mais eficiente.

fig. 3.1 - mostrando a configuração de campos para TE₁₀ e acoplamento usando iris retangular.

Para o modo considerado temos as componentes Ey, Hx e Hz variando respectivamente com sen ($\pi x/a$), sen ($\pi x/a$) e cos ($\pi x/a$). Portanto a colocação da fenda no centro permite um forte acoplamento magnético.

3.2 Iris retangular como susceptância

Uma descontinuidade formada por uma chapa de metal com fenda central pode ser considerada, em têrmos de circuito equivalente, como uma susceptância em paralelo. Supomos com . isso que no acoplador não há perdas, funcionando portanto como elemento puramente reativo.

Encontramos na literatura uma expressão, desenvolvida por Lewin com a ajuda da teoria de campo, que nos dá a su<u>s</u> ceptância normalizada, B_n em função das dimensões da iris e da frequência:

$$B_{n} = \frac{B}{Y_{0}} = -\left(\frac{\lambda_{q}}{\alpha}\right) \cot^{2}\left(\frac{\pi D}{2\alpha}\right) + \left[\frac{\pi \left(\alpha^{2} - D^{2}\right)}{4aD\cos\left(\frac{\pi D}{2a}\right)}\right]^{2} \left[\frac{\left(1 - \frac{\lambda_{0}^{2}}{4D^{2}}\right)}{\left(1 - \frac{\lambda_{0}^{2}}{4a^{2}}\right)}\left(\frac{4b}{\lambda_{q}}\right) \log \csc\left(\frac{\pi d}{2b}\right) + \left(\frac{\lambda_{q}}{aD^{2}}\right) \left(\frac{b^{2}}{3} + \frac{d^{2}}{2} - \frac{8bd}{\pi^{2}}\right)\right]$$
(3.1)

onde λ_{q} é o comprimento de onda no guia, λ_{o} o comprimento de onde no espaço livre e as dimensões da iris são mostradas na fig<u>u</u> ra 3.2 . Note que o primeiro têrmo da expressão é corresponden-

fig. 3.2 - mostrando as dimensões da iris. te à parte indutiva da iris enquanto que o têrmo envolvendo logaritmo corresponde à parte capacitiva. Nas figuras 3.3 e 3.4 temos plotada a variação de B_n em função da frequência usando D como parâmetro. Os gráficos permit<u>e</u> nos observar que embora na faixa X a iris seja indutiva, ela pode

tornar-se capacitiva após ocorrer uma ressonância em Bn=O.

3.3 Determinação experimental de Bn

Nêste item desenvolveremos um método que permite a determinação experimental de B_n através de medidas do coeficie<u>n</u> te de onda estacionária.

Para tanto consideramos uma secção de guia de onda terminado com a iris e seus dois circuitos equivalentes mostrados na figura 3.5 .

fig. 3.5 - mostrando os circuitos equivalentes,usando LT, de uma secção de guia terminado com iris retangular.

Note que estamos considerando linha de transmissão e iris sem perdas.

O modélo da fig. 3.5 (b) nos permite escrever:

$$Y_e = \frac{G + j \tan \beta \ell}{1 + j G \tan \beta \ell}$$

Ora, como os modêlos são equivalentes devemos ter

$$\frac{G+jtan\beta l}{1+jGtan\beta l} = 1+jBn$$

Donde

$$\left|B_{n}\right| = \frac{G-1}{\sqrt{G}}$$
(3.2)

Mostraremos agora que o coeficiente de onda estaci onária em uma linha de transmissão carregada com G é numèricamente igual ao valor de G.

11

Considerando a figura 3.6 temos:

$$\Gamma = \frac{1/G - 1}{1/G + 1} = \frac{G - 1}{G + 1}$$

$$s = G$$

$$S = G$$

como queriamos mostrar. Então, numêricamente

$$|B_n| = \frac{S-1}{\sqrt{5}}$$

(3.3)

Portanto podemos medir a suscertância equivalente da iris através de medida do coeficiente de onda estacionária, COE causada por reflexões na íris. Com isso perdemos informação sôbre o sinal da susceptância que pode porém ser determinado através de medida da posição do primeiro ponto de mínimo.

3.4 Métodos de medida de COE

A ordem de grandeza do coeficiente de onda estaci<u>o</u> nária que precisamos medir varia bastante com as dimensões da iris chegando a ficar muito grande (~400) com aberturas menores. Portanto os métodos de medida deverão ser apropriados para altos COE.

Faremos agora uma rápida análise dos métodos usuais de medida de onda estacionária e uma descrição mais detalh<u>a</u> da do método adotado.

(a) O método convencional utilizando um medidor comum de onda estacionária é inadequado devido à dificuldade de se medir com precisão grandezas muito diferentes em magnitude. Certamente as medidas não serão feitas sob a mesma lei do cristal do detetor.

(b) O método do duplo mínimo é preciso quando o nivel de um ponto de mínimo é aproximadamente 10 db acima do ruído, o que não acontece quando temos muito grandes coeficientes de onda estacionária.

(c) Poderíamos contornar êsse problema usando um método semelhante, o método do duplo máximo. Infelizmente a pre sença da ponta de prova em um ponto de máximo afeta enormemente a configuração de onda estacionária, invalidando o método. Ele é normalmente utilizado com ponta de prova magnética ("loop").

(d) Um método alternativo é o <u>método heteródino</u>
 que usa o cristal do detetor como conversor. A fig. 3.7 mostra
 o diagrama de blocos do método:

fig. 3.7 - mostrando diagrama de blocos usado para se medir altos COE através de uma heterodinagem.

Providenciando que a saida do oscilador local seja bem maior que o sinal da ponta de prova teremos uma deteção bem linear. Com êsse método podemos medir com precisão COE da ordem de 1000. (e) Devido a falta de equipamentos adequados opt<u>a</u> mos pelo <u>método do atenuador calibrado</u>, bastante preciso e simples.

fig. 3.8 - mostrando o diagrama de blocos usado para medir a susceptância da iris usando atenuador calibrado.

Rápida descrição do procedimento:

§ Inicialmente, sem qualquer atenuação, procura-se um ponto de mínimo na linha fendida através do indicador.

§ Deve-se agora introduzir atenuação ao mesmo tempo em que se procura um ponto de máximo de tal maneira que o me didor de onda estacionária indique o mesmo ulor do ponto de mí nimo.

§ Lê-se então o valor do COE em db no atenuador ca librado.

§ Para transformar COE em db em COE númérico usa-se o gráfico da fig. 3.9 .

A vantagem dêste método é que se elimina o êrro introduzido pelo detetor pois as medidas são feitas no mesmo nivel de tensão e portanto independem da lei do cristal.

3.5 Correção do Coeficiente de Onda Estacionária

Se o COE é muito grande, não podemos desprezar O efeito de atenuação pois esta causará sensíveis perturbações em seu valor. Felizmente é possível corrigirmos com facilidade tal perturbação.

De maneira geral

$$S = \frac{|V| max}{|V| min}$$

$$V = V^+ e^{-\delta_3} [1 + \Gamma e^{2\delta_3}]$$

e l'é o coeficiente de reflexão na iris.

$$|V|_{mox.} = |V^+ e^{-\delta_3}| (1 + |\Gamma| e^{2\alpha_3})$$
$$|V|_{min.} = |V^+ e^{-\delta_3}| (1 - |\Gamma| e^{2\alpha_3})$$

pois z=- d; . Como e-2adi = 1-2ad;

Portanto fig. 3.10 - mostrando a posição da ponta de pr<u>o</u>

onde

donde
$$S = \frac{1+|r|e^{-2\alpha i d_i}}{1-|r|e^{-2\alpha i d_i}}$$

va em relação a iris.

ponta de prova

iris

3

$$S_{m} \cong \frac{1 + |\Gamma|(1 - 2\alpha d_{i})}{1 - |\Gamma|(1 - 2\alpha d_{i})}$$

que é o. 5 medido, contendo a informação sôbre a descontinuidade (iris) mais a perturbação devido à atenuação.

Como ainda

$$|\Gamma| = \frac{S_{real} - 1}{S_{real} + 1}$$

Donde

$$S_{real} \cong \frac{S_m - \alpha d_i}{1 - S_m \alpha d_i} \quad \alpha d_i \ll 1$$
 (3.4)

A equação (3.4) é plotada na fig. 3.11 para valôres típicos de $g = 2,0\times10^{-4}$ nepers/cm e $d_i = 5$ cm. Ela evidencia a discrepância entre os valôres real e medido quando o valor de 5 aumenta.

3.6 Resultados experimentais

Finalmente apresentamos alguns resultados experimentais obtidos com iris retangulares de alumínio com cêrca de 1 mm de espessura.

D (mm)	COE medido	COE corrigido	B _n	B _n teórico
7	315	460	-21,4	-57,5
9	90	100	- 9,9	-19,2
11	25	25	- 4,8	- 7,2
13	5	5	- 1,8	- 2,6
15	1,6	1,6	- 0,5	- 0,6 .
17	1,8	1,8	+ 0,6	+ 0,4
19	2,9	2,9	+ 1,2	+ 0,9

Tabela 3.1. - mostrando os resultados de medidas de susceptância de iris retangulares pelo método do atenuador calibrado. (=2 cm e f=9748 MHz.

O sinal da susceptância foi encontrado através da posição do primeiro mínimo. É feita uma comparação da susceptân cia medida com o valor teórico encontrado com a expressão (3.1) . mostrando que os resultados experimentais são razoáveis.

4. UM MODELO DE LINHA DE TRANSMISSÃO PARA CAVIDADES TERMINAIS.

4.1 <u>Ressonância</u>

Já sabemos do capítulo anterior que a iris retangu lar de acoplamento pode ser considerada como uma susceptância em paralelo. Consequentemente o circuito de micro-ondas da fig. 3.1 pode ser representado por um circuito de linha de transmissão equivelente mostrado na fig. 4.1 .

fig. 4.1 - modêlo de linha de transmissão para uma cavidade terminal.

Analisaremos inicialmente o acoplamento como uma junção, através de sua matriz de espalhamento. No plano da junção podemos escrever:

fig. 4.2 - mostrando ondas incidentes e refletidas na iris.

[]	Sn	SIZ
[S]=	Siz	Su

Portanto $\begin{cases} b_1 = S_{11}a_1 + S_{12}a_2 \\ b_2 = S_{12}a_1 + S_{11}a_2 \end{cases}$ (4.1) Como a cavidade é terminada em

curto-circuito temos

$$a_2 = -b_2 e^{-2\beta l}$$
 (4.2)

onde l é o comprimento de cavidade e $\delta = \alpha + j\beta$ é a constante de propagação.

Usando (4.2) para eliminar a2 em (4.1), podemos es

crever:

$$b_{i} = \left[\frac{S_{i1}^{2} - S_{i2}^{2} + S_{i1}}{S_{i1} + e^{2\partial \ell}}\right] a_{i} \qquad (4.3)$$

$$b_2 = \left[\frac{S_{12}}{1 + S_{11} e^{-2\delta \ell}} \right] a_1 \qquad (4.4)$$

Devemos expressar agora os parâmetros da matriz e<u>s</u> palhamento em função da susceptância em paralelo. Com referência à fig. 4.3 podemos escrever: (Apêndice II) _{A, Anterra}a

iz= (b2-a2)

$$v_1 = \sqrt{Z_0} (a_1 + b_1)$$
 $v_2 = \sqrt{Z_0} (a_2 + b_2)$

(a1-b1)

fig. 4.3 - mostrando a relação entre ondas, tensões e correntes na susceptância.

Do circuito vemos que v1=v2 e i1-i2=jBv2 e portan-

to

$$a_1 + b_1 = a_2 + b_2$$

 $(a_1 - b_1) - (b_2 - a_2) = jBZ_0 (a_2 + b_2)$

Com algumas operações algébricas podemos colocar as equações acima na forma das equações (4.1) para mostrar que

$$S_{II} = \frac{-iB_n}{2+iB_n}$$
 $S_{IZ} = \frac{2}{2+iB_n}$ (4.5)

onde B_n= B/Y_o é a susceptância em paralelo normalizada. Das figuras 3.3 e 3.4 notamos que B_n é indutiva ou seja, negativa e cresce à medida que a fenda diminui de tamanho. Portanto $S_{11} \longrightarrow -1$ e $S_{12} \longrightarrow 0$ que são os valôres encontrados para um curto-circuito.

Podemos agora ascrever as equações (4.3) e (4.4)em função de B_n usando as equações (4.5).

$$b_{1} = \left[\frac{B_{n}^{2} + 4 + jB_{n}(2 + jB_{n})e^{2\vartheta \ell}}{jB_{n}(2 + jB_{n}) - (2 + jB_{n})e^{2\vartheta \ell}} \right] a_{n}$$

$$b_2 = \frac{\frac{2}{2+jB_n}}{1-\frac{jB_n}{2+jB_n}} = \frac{2\delta \ell}{2\delta \ell}$$

$$Como B_n^2 + 4 = (jB_n + 2)(2 - jB_n) \text{ vem}$$

$$b_{1} = \left[\frac{(2-jB_{n}) + jB_{n} e^{2\delta \ell}}{jB_{n} - (2+jB_{n})e^{2\delta \ell}} \right] a_{1} \qquad (4.6)$$

$$b_2 = \left[\frac{2}{2+jB_n(1-e^{-2\vartheta L})}\right]a_1$$
 (4.7)

Para obtermos uma forma um pouco mais compacta, mul tiplicamos e dividimos por e-32

$$\mathbf{b}_{i} = \begin{bmatrix} -\frac{e^{-\delta l} + jB_{n} \operatorname{senh}(\delta l)}{e^{\delta l} + jB_{n} \operatorname{senh}(\delta l)} \end{bmatrix} a_{i} \qquad (4.8)$$

$$b_{2} = \left[\frac{e^{\vartheta \ell}}{e^{\vartheta \ell} + jB_{n} \operatorname{senh}(\vartheta \ell)} \right] a_{1} \qquad (4.9)$$

Podemos agora definir <u>ressonância</u>. Dizemos que a cavidade está em ressonância quando $|b_2|$ assume um valor máximo e está em anti-ressonância quando $|b_2|$ é mínimo. Supondo B_n , Ae a frequência fixos, pretendemos achar as condições de ressonância e anti-ressonância.

Tomando |b₂|, derivando em relação a l e igualando a zero obtemos:

$$\left(1+\frac{2\alpha}{\beta B_n}\right)$$
 sen $(2\beta \ell)+\left(\frac{\alpha}{\beta}-\frac{2}{3n}\right)\cos(2\beta \ell)=C$

Porém, prestando atenção à gama de variação de α' , β e B_n podemos assumir valôres típicos de $\alpha' = 0,1$ nepers/m, $\beta = 150/m$ (para faixa X) e B_n=10 e mostrar que

$$\frac{2\alpha}{\beta B_n} \ll 1 = \frac{\alpha}{\beta} \ll \frac{2}{B_n}$$

de tal forma que a condição de ressonância fica:

$$\tan 2\phi = \frac{2}{B_n}$$
 (4.10)

onde Ø=Bl .
A expressão (4.10) permite-nos escrever de maneira

geral:

$$2\beta l = 2nT + \tan^{-1}\left(\frac{2}{Bn}\right)$$

Donde, explicitando (e lembrando que B_n normalme<u>n</u> te é negativa temos:

$$L = \frac{\lambda_{g}}{2!\Gamma} \left(nT - \frac{1}{2} \tan^{-1} \frac{2}{|B_{n}|} \right)$$
(4.12)

O número n indica a ordem de ressonância. Se B_n t<u>i</u> ver sinal positivo (capacitiva) há inversão no sinal de fórmula. Normalmente 2/B_n é próximo de zero e podemos dizer

que '

$$2\emptyset = 2n\pi n - 1, 2, 3, ...$$
 (4.12)

$$2\emptyset = (2n+1) | \overline{1} n = 0, 1, 2, \cdots$$
 (4.13)

são soluções aproximadas de (4.10). A equação (4.12) faz com que $|b_2|$ seja máximo e portanto corresponde a uma condição de ressonância. A equação (4.13) faz com que $|b_2|$ se torne minimo e corresponde a uma condição de anti-ressonância.

Note que, desde que B_n não seja muito pequena (fe<u>n</u> da grande), as frequências de ressonância e anti-ressonância não serão muito diferentes daquelas encontradas para uma cavid<u>a</u> de ideal de mesmo comprimento. Devido a esta pequena diferença não é fácil verificar diretamente a validade de (4.10) através de uma montagem experimental com equipamentos usuais. Porém, i<u>s</u> to pode ser feito indiretamente entrando com considerações sôbre os fatôres de qualidade da cavidade.

4.2 Acoplamento crítico

Já sabemos que na ressonância $|b_2|$ é máximo e $|b_1|$ é mínimo ou seja a onda refletida é mínima. Será que é possivel escolhermos B_n tal que b₁=0? Mostraremos que sim. Nessa situação não existe onda refletida, podemos dizer que a cavidade está casada ao gerador e tôda potência incidente é absorvida por esta última. Dizemos então que o acoplamento é <u>crítico</u> e chamamos a susceptância necessária pare tal de <u>susceptância crítica</u>, B_{nc}.

Tomando a equação (4.6) e desenvolvendo:

$$b_{n} = \left[\frac{(2-iB_{n})+iB_{n}}{jB_{n}-(2+jB_{n})}e^{2\alpha \ell}(\cos 2\phi + j \sin 2\phi)\right]a_{n}$$

Dividindo em cima e baixo por cos 2 ϕ , lembrando que l/cos 2 ϕ = sec 2 ϕ = $\sqrt{1+\tan^2 2\phi}$ e que a condição de ressonância é tan 2 ϕ = 2/B_n podemos escrever:

$$b_{n} = \left[\frac{(2-jB_{n})\sqrt{1+\frac{4}{B_{n}^{2}}} + jB_{n}e^{2\alpha l}(1+j\frac{2}{B_{n}})}{jB_{n}\sqrt{1+\frac{4}{B_{n}^{2}}} - (2+jB_{n})e^{2\alpha l}(1+j\frac{2}{B_{n}})} \right] a_{n}$$

Tomando o numerador e separando em partes real e imaginária:

numerador=
$$\left(2\sqrt{1+\frac{4}{B_{n}^{2}}}-2e^{2\alpha l}\right)+jB_{n}\left(e^{2\alpha l}-\sqrt{1+\frac{4}{B_{n}^{2}}}\right)$$

Para termos b1=0 devemos ter:

$$\sqrt{1+\frac{4}{Bn^2}} = e^{2\alpha l}$$
 (4.14)

Donde, explicitando Bn, vem:

$$B_{nc} = \frac{2}{\sqrt{e^{4\alpha l} - 1}}$$
 (4.15)

A equação (4.15) determina o valor da susceptância para que o acoplamento seja crítico, dados o comprimento da cavidade e o coeficiente de atenusção. A fig. 4.4 mostra a equação (4.15) plotada em função do comprimento da cavidade usando o valor típico de 0 = 5,5 db/100 ft. = 2,07 x 10⁻⁴ nepers/cm que é um valor médio para um guia de latão na faixa X.

4.3 Susceptância crítica com perdas

A equação (4.15) não leva em consideração as perdes nas paredes que fecham a cavidade. Essas perdas deverão ser levadas em conta se desejarmos uma determinação mais precisa de B_{nc}. Para isso escrevemos (4.15) na forma

$$B_{n_c} = \frac{2}{\sqrt{e^{2(2\alpha \ell)} - 1}}$$

onde 202 6 a atenuação completa devido as paradas do guia.

Da definição de coeficiente de atenuação, Q =PL/2Po onde PL é potência dissipada por unidade de comprimento no guia e P_n é e potência transmitida, temos:

$$2\alpha l = \frac{P_{L}l}{P_{0}}$$

Podemos definir para as paredes finais um outro coeficiente de atenuação $O_{f} = P_{f}/P_{o}$ onde P_{f} é a potência perdida na parede final.

Portanto a atenuação total na cavidade T é dada por $T = 2\alpha \ell + 2\alpha \varsigma$.

Ou seja

$$T = \frac{P_{L}l + P_{f}}{P_{o}}$$

E então

$$B_{m_c} = \frac{2}{\sqrt{e^{2T} - 1}}$$
(4.16)

Efetuando-se o cálculo de T para o modo dominante TE₁₀ (Apéndice III) encontramos:

$$T = \frac{4\pi^{2}R_{m}}{\omega\mu_{0}\beta a^{3}b} \left\{ \frac{a^{3}b\beta^{2}}{2\pi^{2}} + l\left[b + \frac{a}{2}\left(1 + \frac{\beta^{2}a^{2}}{\pi^{2}}\right)\right] \right\} (4.17)$$

A equação (4.16) também está plotada na fig. 4.4. O material do guia é latão de $\sigma = 15 \times 10^6$ mhos/m e a frequência <u>u</u> tilizada é de 9750 MHz. Note que, como seria de se esperar, as perdas nas paredes finais têm seu efeito muito reduzido quando o comprimento da cavidade aumenta.

4.4 Subacoplamento e Superacoplamento

Anteriormente analisamos o caso de acoplamento cr<u>i</u> tico na frequência de ressonância. Faremos agora uma análise m<u>a</u> is geral usando o conceito de coeficiente de reflexão, [].

fig. 4.5 - mostrando os novos planos de referência. A fim de tornar o tratamento matemático mais simples vamos deslocar os planos de ref<u>e</u> rência de um ângulo necessário para que os coeficientes $S_{11} \in S_{22}$ sejam reais e negat<u>i</u> vos.

24

Portanto a nova matriz de espalhamento será:

$$\begin{bmatrix} S_{11}^{1} & S_{12}^{1} \\ S_{12}^{1} & S_{12}^{1} \end{bmatrix} = \begin{bmatrix} S_{11}e^{-2j\theta} & S_{12}e^{-2j\theta} \\ S_{12}e^{-2j\theta} & S_{12}e^{-2j\theta} \\ S_{12}e^{-2j\theta} & S_{22}e^{-2j\theta} \end{bmatrix}$$

Tomando 5₁₁ e separando nas partes real e imaginá-

ria:

1.8.

· · ·

. .

$$S'_{ii} = \frac{1}{4+B_n^2} \left[-(B_n^2 \cos 2\theta + 2B_n \sin 2\theta) + j(B_n^2 \sin 2\theta - 2B_n \cos 2\theta) \right]$$

Fazendo a parte imaginăria igual a zero vem: que B_nsen29=2cos29 e lembrando que cos² 20 + sen² 20 = 1 temos:

$$S_{n}' = \frac{-|B_{n}|}{\sqrt{B_{n}^{2}+4}}$$

(4.18)

Da mesma maneira temos

$$S_{12}^{\prime} = \frac{\pm 2i}{\sqrt{B_{n}^{2} + 4}}$$
(4.19)

Por definição, o coeficiente de reflexão no plano

(1) 6:

$$\Gamma = \frac{b_{1}}{a_{1}} = \frac{S_{11}^{2} - S_{12}^{2} + S_{11}^{2} e^{\alpha_{T}} e^{j2\beta}}{S_{11}^{2} + e^{\alpha_{T}} e^{j2\beta}}$$

de acôrdo com a expressão (4.3). Convém notar que a atenuação total de ida e volta, α_{τ} não é igual a $2\alpha\ell$ e que o comprimento elétrico do final de cavidade ao plano (2), β não é igual a $\beta\ell$. Substituindo S₁₁ e S₁₂ e considerando B_n sempre positiva, o coeficiente de reflexão fice:

$$\Gamma = \frac{\sqrt{B_n^2 + 4} - B_n e^{\alpha_T} (\cos 2\emptyset + j \sin 2\emptyset)}{-B_n + \sqrt{B_n^2 + 4} e^{\alpha_T} (\cos 2\emptyset + j \sin 2\emptyset)}$$

Donde racionalizando e simplificando:

$$\Gamma = -\left[\frac{B_{n}\sqrt{B_{n}^{2}+4}(e^{2\alpha_{T}}+1) - (e^{\alpha_{T}}\cos 2\phi)(2B_{n}^{2}+4) + j(4e^{\alpha_{T}}\sin 2\phi)}{B_{n}^{2}+e^{2\alpha_{T}}(B_{n}^{2}+4) - 2B_{n}e^{\alpha_{T}}\sqrt{B_{n}^{2}+4}\cos 2\phi}\right]$$
(4.20)

A expressão (4.20) mostra que o coeficiente de reflexão é um número complexo que pode ser escrito $\Gamma = -(X + jY)$, onde X e Y são facilmente conhecidos.

Por outro lado, considerando o circuito equivalente da fig. 4.6 podemos dizer que a impedância normalizada no plano (1) é:

26

fig. 4.6 - mostrando a cavidade e o acoplamen to considerados como uma impedância equivalente.

$$Z_n = r + jx = \frac{1 + (-X - jY)}{1 - (-X - jY)}$$

Separando nas partes real e imaginária e após algum trabalho algébrico chegamos a:

 $\left[X - \left(-\frac{r}{r+1}\right)^{2} + Y^{2} = \left(\frac{1}{r+1}\right)^{2}\right]$

Esta expressão mostra que para r constante o coef<u>i</u> ciente P assumirá valôres numa circunferência de centro (-r/r+1) no eixo real e de raio (1/r+1). Este comportamento é mostrado em detalhes na fig. 4.7.

Com a mudança dos planos de referência a condição de ressonância fica

$$sen 20 = 0$$

 $cos 20 = 1$

pois Ø=nTT . Aplicando essa condição à expressão (4.20) temos:

$$\Gamma = \frac{-B_{n}\sqrt{B_{n}^{2}+4}(e^{2\alpha_{T}}+1)+e^{\alpha_{T}}(2B_{n}^{2}+4)}{(B_{n}-e^{\alpha_{T}}\sqrt{B_{n}^{2}+4})^{2}}$$
(4.21)

Portanto o coeficiente de reflexão na ressonância é real, o que é destacado na figura palos pontos cheios no ei-

fig. 4.7 - mostrando o comportamento do coeficiente de reflexão quando a frequê<u>n</u> cia varia.

xo real. A equação (4.14) nos mostra que a condição de acopla mento crítico é $e^{q_T} = \sqrt{1 + 4/B_{nc}^2}$. Tal condição tornará nulo o coeficiente de reflexão na ressonância, como era esperado.

Se $B_n > B_{nc}$ então $e^{\alpha r} > \sqrt{1 + 4/B_n^2}$ e Γ_r será n<u>e</u> gativo. Nêsse caso dizemos que a cavidade está <u>subacoplada</u>.

Se $B_n < B_{nc}$ então $e^{\alpha_T} < \sqrt{1 + 4/B_n^2}$ e \prod_r será positivo e e cavidade está <u>superacoplade</u>.

A fim de permitir uma visão geral, tôda a informação é sintetizada numa tabela.

28

subacoplamento	ſ, <o< th=""><th>01T x /1+4/B²n</th><th>^Bn ⟩ ^Bnc</th><th>iris pequena</th></o<>	01T x /1+4/B ² n	^B n ⟩ ^B nc	iris pequena
acoplamento crítico	[r=0	$e^{\alpha_{T}} \sqrt{1+4/B_{n}^{2}}$	B _n = B _{nc}	iris média
superacoplamento	Fr>0	$e^{\alpha_{T}}\sqrt{1+4/B_{n}^{2}}$	^B n < ^B nc	iris grande

Tabela 4.1 - comparando os tipos de acoplamento de uma cavidade ressonante a micro-ondas.

29

No caso de superacoplamento a fase varia continuamente de +180° a -180°. No acoplamento crítico a fase é descontinua com duas possibilidades: a superior correspondendo ao caso limite de subacoplamento e o inferior ao caso limite de superacoplamento. No caso de subacoplamento a fase varia com máximos e mínimos em tôrno de +180°.

As curvas da figura 4.8 justificam um método de de terminar se uma dada cavidade está sub ou superacoplada:

§ Localize um ponto de mínimo com a frequência abaixo da ressonância;

§ Acompanhe a variação do ponto de mínimo quando a frequência é aumentada em direção a ressonância e após passar por ela;

§ Se o mínimo se deslocar continuamente em direção à carga, a cavidade está superacoplada. Se o mínimo se desloca inicialmente em direção à carga, depois retorna na direção do gerador e novamente vai em direção à carga, a cavidade está subacoplada.

4.5 Fator de Qualidade, Q

Numa cavidade, como em todo sistema ressonante, é de vitel importância o conhecimento de seu fator de qualidade. De maneira geral podemos definir Q como segue:

Q = _____energia armazenada na cavidade energia dissipada por radiano na cavidade

w=w_

ou de mansira equivalente e mais operacional:

$$Q = \frac{w_r Wa}{P_L}$$

onde W, é a frequência angular de ressonância, Wa é a energia

BIBLIOTECA CENTRO DE CIÊNCIA E armazenada na cavidade e PL é a potência dissipada na cavidade.

4.6 Fator de Qualidade Descarregado, QU

As ondas incidente e refletida têm uma potência mé dia P que é a e energia média cruzando uma dada seção reta em um segundo. Podemos então escrever que a energia armazenada na cavidade é:

$$W_a = \frac{2Pl}{v_g}$$

onde 21/vg é o tempo de ida a volta a v_g é a velocidade de grupo.

Da definição da constante de atenuação 🔿 temos:

$$\alpha = \frac{P_L/L}{2P}$$
 donde $P_L = 2P\alpha L$

Para o caminho de ida e volta temos:

$$R = 4Pal = 2Pa_{\tau}$$
 onde $a_{\tau} = 2al$.

Portanto aplicando a definição do item enterior:

$$Q_u = \left(\frac{2l}{d_T}\right) \frac{\pi f_r}{v_g}$$

Lembrando que $v_g v_p = c^2$ onde v_p é a velocidade de fase e que $v_p = \omega/\beta$ temos:

$$Q_{u} = \left(\frac{2\ell}{\alpha_{T}}\right) \frac{\Pi f_{r} \omega_{r}}{c^{2} \beta}$$

Como ainda B= 211/20 e c=fr20 vem:

$$Q_{0} = \left(\frac{2\ell}{d_{T}}\right) \frac{\pi \lambda_{g}}{\lambda_{o}^{2}}$$
(4.22)

Esta fórmula é muitas vêzes escrita:

$$Q_{U} = \left(\frac{T\Gamma}{\alpha_{a}}\right) \frac{\lambda_{g}}{\lambda_{0}^{2}}$$
(4.23)

onde $\alpha_{q} = \frac{\alpha_{T}}{2\ell}$ pode ser considerada como uma constante de atenuação "média". Determinando-se Q_U experimentalmente podemos m<u>e</u> dir α_{Q} . Porém, pela sua própria definição, não podemos medir Q_U diretamente. Isto deve ser feito por medida indireta através do fator de qualidade externo.

4.7 Fator de Qualidade Externo, QF

A fim de fazermos medidas, é necessário o acoplamento a circuitos externos à cavidade que dissiparão energia. Essas perdas são consideradas através a definição do fator de qualidade externo, Q_r:

Pela definição acima o Q_E de uma cavidade sob acoplamento critico seria infinito já que não há energia dissipada no circuito externo. Esta dificuldade, que denota o artificia-liemo da definição, é normalmente contornada considerando-se a energia dissipada no circuito externo guando a fonte é desligada.

32

Portanto escrevemos:

A potência dissipada no circuito externo é:

$$P_{E} = \frac{1}{2} \left| b_{1E} \right|^{2} = \frac{1}{2} \left| S_{12} a_{2} \right|^{2} = \left| S_{12} \right|^{2} p$$

pois $P = 1/2 | a_2 |^2$.

Então:

$$Q_{\rm E} = \frac{w_{\rm F}(2Pl/v_{\rm g})}{|S_{12}|^2} P$$

Donde:

14 x

$$Q_{e} = \left(\frac{2\ell}{|S_{12}|^2}\right) \frac{2\pi \lambda_{q}}{\lambda_{p}^2}$$
(4.24)

A expressão acima é frequentemente escrita:

$$Q_{E} = \left(\frac{2\Pi}{k^{2}}\right) \frac{\lambda_{g}}{\lambda_{o}^{2}}$$
(4.25)

onde $k^2 = |S_{12}|^2/2\ell$ é o fator de acoplamento modificado para incluir o efeito do comprimento da cavidade.

É interessante notar que sob acoplamento critico, a equação (4.14) nos dá:

$$1+\frac{4}{B_h^2}=e^{\alpha_T}$$

Supondo-se α_{τ} pequenos e B_n grandes, que é a situação normal, podemos aproximar:

$$e^{\alpha_{T}} \cong 1 + \alpha_{T}$$
 $e \sqrt{1 + \frac{4}{B_{n}^{2}}} \cong 1 + \frac{2}{B_{n}^{2}}$

Portanto

$$d_T \simeq \frac{2}{B_p^2}$$

Por cutro lado, a equação (4.5) nos mostra:

$$S_{12} = \frac{2}{2+jB_n}$$
 donde $|S_{12}|^2 = \frac{4}{4+B_n^2} \approx \frac{4}{B_n^2}$

para B_n grandes.

Podemos então concluir que em primeira aproximação:

$$2\alpha_{\rm T} = |S_{12}|^2$$
 (4.26)

Isto implica que sob a condição de acoplamento critico a potência dissipada no interior da cavidade e a potência perdide no circuito externo são iguais e consequentemente $Q_{F}=Q_{H}$.

4.8 Fator de Qualidade Carregado, Q

Quando estão presentes perdas internas e externas, o fator de qualidade é chamado fator de qualidade carregado, Q_i:

Q_= energia armazena na cavidade energia dissipada por radiano nos circuitos interno e externo

W=Wr

Das definições de Q_U, Q_E e Q_L é evidente que

$$\frac{1}{Q_L} = \frac{1}{Q_U} + \frac{1}{Q_E}$$

Então

$$Q_{L} = \left(\frac{2\pi}{\kappa^{2} + 2\alpha_{a}}\right) \frac{\lambda_{y}}{\lambda_{0}^{2}}$$
(4.27)

4.9 Potência Absorvida, Pa

A potência absorvida pela cavidade pode ser dada

por:

$$P_{a} = P_{o}(1 - |\Gamma|^{2})$$
(4.28)

onde Po é a potência constante fornecida pela fonte e 🖊 é o coeficiente de reflexão que pode ser escrito como no item 4.4:

$$\Pi = \frac{\sqrt{B_{n}^{2} + 4} - B_{n}e^{\alpha_{T}}(\cos 2\emptyset + j \sin 2\emptyset)}{-B_{n} + \sqrt{B_{n}^{2} + 4}e^{\alpha_{T}}(\cos 2\emptyset + j \sin 2\emptyset)}$$

Tomando a expressão acima, dividindo ambos os membros por $\sqrt{B_n^2+4}$ a fazendo $B_n/\sqrt{B_n^2+4} = a$ temos:

$$\Gamma = \frac{1 - a e^{\alpha_{T}} (\cos 2\emptyset + j \sin 2\emptyset)}{-a + e^{\alpha_{T}} (\cos 2\emptyset + j \sin 2\emptyset)}$$

Tomando o módulo e elevando ao quadrado fica:

$$|\Gamma|^{2} \frac{(1 - ae^{\alpha_{T}}\cos 2\phi)^{2} + (ae^{\alpha_{T}}\sin 2\phi)^{2}}{(e^{\alpha_{T}}\cos 2\phi - a)^{2} + (e^{\alpha_{T}}\sin 2\phi)^{2}}$$

Substituindo essa última expressão na equação..... (4.28) e após alguma manipulação algébrica chegemos a

$$P_{a} = \frac{(1-a^{2})(e^{2d_{T}}-1)P_{o}}{a^{2}+e^{2d_{T}}-2ae^{d_{T}}\cos 2\phi}$$
(4.29)

Consideremos agora, o têrmo cos 20 mais detalhada

mente.

Se supomos que $\phi \cong \beta \ell$ podemos escrever: $\cos 2\phi \approx \cos 2\beta \ell$ e lembrando que $(\beta^2 = \omega^2 \mu_0 \epsilon_0 - (T/\alpha)^2$ vem:

$$\cos 2\varphi \approx \cos 2\ell \sqrt{(\omega_r \pm \delta \omega)^2 \mu_0 \varepsilon_0 - (T/a)^2}$$

onde w_r é a frequência angular de ressonância.

Portanto

$$\cos 2\not{p} \simeq \cos 2\ell \sqrt{\omega_r^2 \left(1 \pm \frac{2\Delta\omega}{\omega_r}\right)} \mu_{oEo} - (\pi/a)^2 \qquad (4.30)$$

pois Aw/wr K1.

Escrevendo a equação (4:30) na forma

cos20= cos22 Br/1= x/pr

onde x= $w_r^2 \mu_0 \xi_0 2 \Delta w/w_r$ e β_r é a constante de fase na ressonancia e desenvolvendo o radical em série obtemos

$$\cos 2\beta \equiv \cos 2\beta_{\rm F} (1 \pm x/2\beta_{\rm F})$$

desprezando os têrmos de ordem superior. Portanto

$$\cos 2\phi = \cos(2\beta_r l \pm x l/\beta_r) \equiv \cos(x l/\beta_r)$$

pois $\beta_{r}l = 2TT$ na ressonância. Ainda

$$\cos 2\phi \approx \sqrt{1 - (x \ell_{\beta r})^2} \approx 1 - x^2 \ell_2^2 \beta_r^2$$

observando que $\times L/\beta_r/(l)$. Tomando a expressão anterior, substituindo o valor de x e lembrando que $k_0^2 = (2\pi)^2/\lambda_0^2 = w_r^2 \mu_0 \varepsilon_0$ obtemos:

$$\cos 2\phi = 1 - F$$
 (4.31)

onde F = $2(\Pi R)^2 (\lambda_g/\lambda_o^2)^2 (2\Delta w/\omega_r)^2$.

Retornando à expressão (4.29) que nos dá a potência absorvida, focalizaremos seu denominador:

denom. Pa =
$$e^{2a_{T}} + a^{2} - 2ae^{a_{T}}(1-F)$$

= $(e^{a_{T}} - a)^{2} \left[1 + \frac{2ae^{a_{T}}F}{(e^{a_{T}} - a)^{2}} \right]$

usando a equação (4.31).

Relembrando que a= $B_n/\sqrt{B_n^2+4}$ e $|S_{12}| = 2/\sqrt{B_n^2+4}$ te mos

$$\alpha = \sqrt{1 - |S_{12}|^2} \cong 1 - (|S_{12}|^2/2)$$

pois |512 1 1.

Também para pequena atenuação podemos escrever:

$$e^{\alpha_T} \cong 1 + \alpha_T$$

Donde

$$e^{a_{T}} - a = \frac{2a_{T} + |S_{12}|^{2}}{2}$$

E portanto

denom. Pa =
$$\left(\frac{2\alpha_T + |S_{12}|^2}{2}\right)^2 \left[1 + \frac{2\left(1 - \frac{|S_{12}|}{2}\right)\left(1 + \alpha_T\right)F}{\left(\frac{2\alpha_T + |S_{12}|^2}{2}\right)^2}\right]$$

Usando as relações anteriormente deduzidas na ex pressão da potência absorvida obtemos:

$$P_{a} \approx \frac{|S_{12}|^{2} 2\alpha_{T} P_{0}}{\frac{(2\alpha_{T} + |S_{12}|^{2})^{2}}{4}} \left[1 + \frac{2(1 - \frac{|S_{12}|^{2}}{2})(1 + \alpha_{T}) F}{\frac{(2\alpha_{T} + |S_{12}|^{2})^{2}}{4}} \right]$$

Dividindo por 42² o numerador e o denominador vem:

$$P_{a} = \frac{\frac{|S_{12}|^{2}}{2\ell} \frac{2\alpha_{T}}{2\ell} 4P_{o}}{\left(\frac{2\alpha_{T}}{2\ell} + \frac{|S_{12}|^{2}}{2\ell}\right)^{2}} \left[1 + \frac{8F}{\left(\frac{2\alpha_{T}}{2\ell} + \frac{|S_{12}|^{2}}{2\ell}\right)^{2}} 4\ell^{2}\right]}$$

Recordando os resultados dos itens 4.6, 4.7 e 4.8, escritos abaixo em forma conveniente:

$$\frac{|S_{12}|^2}{2\ell} = \kappa^2 = \frac{2\Pi}{Q_E} \frac{\lambda_g}{\lambda_o^2}$$
$$\frac{2d_T}{2\ell} = 2d_a = \frac{2\Pi}{Q_U} \frac{\lambda_g}{\lambda_o^2}$$
$$\kappa^2 + 2d_a = \frac{2\Pi}{Q_L} \frac{\lambda_g}{\lambda_o^2}$$

-

e aplicando-os na aquação (4.32) obtemos finalmente:

$$P_{a} = \frac{4P_{e}Q_{L}^{2}}{Q_{U}Q_{E}} \frac{1}{\left[1 + Q_{L}^{2} \left(2\Delta w/w_{r}\right)^{2}\right]}$$
(4.33)

O comportamento em frequência da potência absorvida é esquematizado na figura 4.9.

fig. 4.9 - esquematizando o comportamento em frequência da potência <u>a</u> bsorvida em uma cavidade terminal.

Na ressonância $\Delta w=0$ e $Pa_{ros} = 4Q_{L}^{2}P_{0}/Q_{U}Q_{E}$. Os pontos de meia potência são obtidos quando:

 $Q_{L}^{2}(2\Delta w/\omega_{r})^{2} = 1 \implies Q_{L} = \omega_{r}/2\Delta w$

Esta última expressão mostra que se fôr possível amostrar a potência absorvida pela cavidada, sem carregé-la dema-

The Conner of A state of a second

The state of

1. 14 6

siadamente, a largura de faixa da curva de P_a nos pontos de -3 db dará, junto com a frequencia de ressonância, uma medida de Q_l.

Assumindo conhecida a potência da fonte e lembrando que quaisquer dois fatôres de qualidade determinam o terceiro e se fôr possível ainda uma medida de P_a na ressonância, então a cavidade está inteiramente resolvida.

Porém, a potência do gerador não é geralmente conhecida e a experiência descrita acima determinará Q_L e f_r sòmente.

Por outro lado não é desejável inserir-se pontas de prova ou "loops" na cavidade para amostrar a potência absorvida, mesmo que isto tenha pequeno efeito de carregamento.

4.10 Potência Refletida, P_

The section

12:13

Podemos evitar isto, considerando a potência refl<u>e</u> tida pela cavidade, que é fàcilmente medida através de um cacoplador direcional.

Deade que Pr= Po-Pa escrevemos:

$$P_{r} = P_{o} \left\{ 1 - \frac{4Q_{L}^{2}}{Q_{U}Q_{E}} \frac{1}{\left(1 + Q_{L}^{2}(2\Delta w/w_{r})^{2}\right)} \right\}$$
(4.34)

A figura 4.10 mostra sequematicamente a variação da potência refletida com a frequência.

1.4.4.

fig. 4.10 - esquematizando o comportamento em frequência da potência refletida em uma cavidade terminal.

Na ressonância △ w=0 e a potência refletida fica:

$$P_{\rm res} = \left(1 - \frac{4Q_{\rm L}^2}{Q_{\rm U}Q_{\rm E}}\right) B$$

Longe da ressonância temos P_r=P_o como indicado na figura. Note que a profundiade da curva é proporcional à potência absorvida.

Portanto medindo a largura de faixa da curva acima e com o valor da frequencia de ressonância,medimos o valor de Q_L. Como antes, medindo-se ainda a potência refletida na ressonância determinamos a cavidade completamente.

Na prática, porém, a potencia refletida na ressonância pode tornar-se extremamente pequena dificultando medidas precisas. Além do mais, o cristal do detetor pode ser não linser em tôda a faixa de operação, já que a variação á muito

ci

grande.

4.11 Coeficier de Onda Estacionária na dessonância, Sr

Estr ficuldade pode ser contornada medindo-se o coeficiente de c estacionária na ressonância.

Por finição:

$$S_r \triangleq \frac{1+|\Gamma_r|}{1-|\Gamma_r|}$$

E como $|\Gamma_r| = (1 - ae^{\alpha_T})/(-a + e^{\alpha_T})$ temos:

$$S_{r} = \frac{\binom{\alpha_{r}}{e^{+}+1} - \alpha(e^{\alpha_{r}}+1)}{(e^{\alpha_{r}}-1) + \alpha(e^{-}-1)}$$

Fazendo as aproximações:

$$e^{\alpha_{T}} = 1 + \alpha_{T} e 1 - \alpha = |S_{12}|^{2}/2$$

e lembrando que: 1+2 = arki e Gizi² << 1 temos:

$$S_{+} \cong \frac{|S_{12}|^2/2l}{2q_{T}/2l} = \frac{Q_{U}}{Q_{E}}$$

considerando as expressões (4.22) e (4.24).

Lembrando ainda que $Q_E = Q_L Q_U / Q_U - Q_L$ escrevemos final

mente:

(4.35)

4.12 Determinação Experimental dos Parâmetros da Cavidade.

A figura 4.11 mostra um circuito de micro-ondas adequado para a medida dos parâmetros que resolvem completamente a cavidade. Medimos diretamente f_r , Q_L e S_r .

Devemos usar um gerador de varredura que providencie potência constante em tôda a faixa de operação e que contenha uma saída externa de varredura (dente de serra) que deverá ser ligada à entrada X do osciloscópio. O primeiro isolador casa a fonte enquanto os outros dois isolam a cavidade em teste da cavidade de referência. Um "T mágico" é usado para distribuir igualmente a potência do gerador e tem o braço do plano E casado. Qualquer acoplador direcional conveniente pode ser usado em seu lugar.

a) Medida de f_r: A ressonância é localizada ajustando-se a frequência e procurando-se um mínimo na potência refletida medida com o acoplador direcional. Tal mínimo é fácil de localizar pois é independente de fase. Já a localização do ponto de mínimo no medidor de onda estacionária é trabalhoso pois os máximos e mínimos estão sempre mudando, assim como, a potência da fonte em muitos casos. Com uma conveniente varredura a figura 4.10 aparecerá no canal 2 do osciloscópio, com o eixo vertical propor cional à potência refletida e o eixo horizontal proporcional a frequência. A cavidade de referência deve então ser ajustada até que uma figura similar apareça no canal 1. Quando as duas figuras estiverem alinhadas, as frequências os ressonância serão idênticas e desde que a cavidade de referência é calibrada, o primeiro parâmetro é determinado.

b) <u>Medida de Q</u>: Para medi-lo devemos medir a largura de fai xa entre os pontos de -3 db. Colocando-se o atenuador de precisão em O db e ajustando-se o mínimo da curva da potência refletida a um valor conveniente, como indicado pela linha a-a na fi gura 4.12, inserimos 3 db de atenuação até a curva encontrar a linha b-b. Ajusta-se agora a cavidade de referência até que o mínimo da curva atinja a linha b-b. Voltamos o atenuador a O db e ajustamos a cavidade de referência até que o ponto T coincida com o ponto x. Anotamos a leitura da cavidade de referência até que o ponto T coincida com y.e anotamos e sua leitura. A diferença en

45

fig. 4.12 - mostrando, na tela do osciloscópio, o procedimento para a medida de Q_1 .

tre as duas frequências lidas dará a largura de faixa. Se o valor de Q_L é alto, a curva será muito aguda e será mais conveniente medir a largura de faixa com atenuações de 6 ou 10 db.

c) <u>Medida de S_r</u>: Finalmente, para medirmos S_r, desligamos a varredura e fazemos a medida com ajuda da linha fendida e do <u>a</u> tenuador calibrado. (Método do atenuador calibrado, cap. 3).

5. APLICAÇÃO DO MODELO A CAVIDADES DE TRANSMISSÃO

Nêste capítulo aplicaremos o modêlo ao caso de uma cavidade em que a parede final é substituida por outra iris,for mando uma cavidade de transmissão.

(b)

fig. 5.1 - (a) - cavidade de transmissão; (b) - modêlo de linha de transmissão para uma cavidade de transmissão.

5.1 <u>Ressonância</u>

A colocação de outra iris certamente mudará a condição de ressonância, a qual procuraremos usando o mesmo procedimento do capítulo anterior.

Consideramos inicialmente que as duas iris sejam

iguais, B_{n1}=B_{n2}=B_n. Além disso consideramos que a cavidade tem uma terminação casada. (fig. 5.2)

fig. 5.2 - mostrando as ondas incidentes e refletidas nas iris.

No plano da junção (1) podemos escrever:

b,		Sn	Siz	a
	1002			
b2		Siz	SI	az

Enquanto no plano da junção (2):

Ainda devem ser levadas em conta as relações:

$$a_2 = b_3 e^{-\delta l}$$

 $a_3 = b_2 e^{-\delta l}$

para, após algumas manipulações, obtermos:

$$b_{1} = \frac{S_{11} - (S_{11}^{2} - S_{12}^{2}) S_{33} e^{-2\vartheta \ell}}{1 - 5_{1} S_{33} e^{-2\vartheta \ell}} a_{1}$$
(5.1)

$$b_2 = \left[\frac{S_{12}}{1 - S_{11}S_{33}e^{-2\theta}} \right] a_1 \qquad (5.2)$$

onde $S_{11}=S_{33}=-jB_n/2+jB_n = S_{12}=S_{34}=2/2+jB_n$ como no capítulo anterior.

Tomando a expressão (5.2) e desenvolvendo temos:

$$b_{z} = \left\{ \frac{2(2+jB_{n})}{\left[4 - B_{n}^{2}(1 - \bar{e}^{2\alpha \ell}\cos 2\phi)\right] + j\left[B_{n}(4 - B_{n}\bar{e}^{2\alpha \ell}\sin 2\phi)\right]} \right\} a_{n}$$

onde $2\emptyset = 2\beta \ell$. Novamente aplicando a definição de ressonância ch<u>e</u> gamos a: $(d|b_2|/dl = 0)$

$$(4/B_n - B_n - 4\alpha/\beta) \sin 2\beta \ell + (4\alpha/\beta B_n - B_n\alpha/\beta + 4) \cos 2\beta \ell + \alpha/\beta B_n(1 - 2\alpha' \ell) = 0$$

Usando valôres típicos de $\alpha = 0,1$ nepers/m, $\beta = 150$ rad/m e Bn=10 a condição de ressonância se reduz a:

$$(-B_n)$$
 sen 2 pl + 4 cos 2 pl = 0

Donde

$$\tan 2\phi = \frac{4}{B_n}$$
(5.3)

Consideramos agora, a cavidade acoplada com iris de tamanhos diferentes ou seja $B_{n1} \neq B_{n2}$.

Será bem mais simples encontrarmos a condição de ressonância, deslocando-se os planos de referência como mostrado na fig. 5.3.

fig. 5.3 - mostrando os planos de referência deslocados de $\theta_1 = \theta_2 \cdot \theta_{n_1} \neq \theta_{n_2}$.

Já sabemos do capítulo anterior que para os coefic<u>i</u> entes S₁₁ e S₃₃ tornarem-se reais e negativos devemos ter:

$$\Theta_1 = \frac{1}{2} \tan^2 \frac{2}{Bn_1} e \Theta_2 = \frac{1}{2} \tan^2 \frac{2}{Bn_2}$$

Então, em têrmos de comprimento elétrico:

$$2\beta l = 2nTT + 2\Theta_1 + 2\Theta_2$$

Donde

$$\tan 20 = \frac{2}{B_{n_1}} + \frac{2}{B_{n_2}}$$
(5.4)

que é a condição de ressonância quando as iris são diferentes. Quando B_{nl=}B_{n2}=B_n obtemos a condição (5.3).

Explicitando 🛛 para que haja ressonância temos:

$$l_{r} = \frac{\lambda_{q}}{2\Pi} \left(n\Pi - \frac{1}{2} t_{pn} - \frac{1}{B_{n_{i}}} - \frac{1}{2} t_{pn} - \frac{1}{B_{n_{2}}} \right)$$
(5.5)

supondo B_{nl} e B_{n2} indutivas. Com susceptância capacitivas o sinal deve ser trocado.

Se quisessemos obter o comprimento para ressonância diretamente da condição (5.3) obteriamos:

$$l = \frac{\lambda_{9}}{2\pi} \left(nT - \frac{1}{2} \tan^{-1} \frac{4}{B_{n}} \right)$$

enquanto que a expressão (5.5) para B_{n1}=B_{n2}=B_n nos dá:

$$l = \frac{\lambda_0}{2\Pi} \left(n\Pi - t_0 n \Pi - \frac{1}{2} \right)$$

Esta aparente discrepância é contornada se lembra<u>r</u> mos que para as ordens de grafideza consideradas (B_n≥10) pode--se confundir o arco com sua tangente e portanto

$$\frac{1}{2} \tan^2 \frac{4}{Bn} \cong \tan^2 \frac{2}{Bn}$$

A diferença que esta aproximação causa em 2 é menor ou igual à precisão que se tem em equipamentos normais de microondas.

5.2 Acoplamento Crítico

Nesta seção procuraremos quais as condições para acoplamento crítico ou seja a cavidade casada ao gerador. Para facilidade de análise, consideramos ainda os planos de referência deslocados das iris como na figura 5.3. O coeficiente de reflexão, no plano (1) 6:

$$\Gamma \Delta \frac{b_{1}}{a_{1}} = \frac{S_{11}^{12} - (S_{11}^{12} - S_{12}^{12}) S_{33}^{2} e^{-\alpha_{T}} e^{-j2\varphi}}{1 - S_{11}^{12} S_{33}^{2} e^{-\alpha_{T}} e^{-j2\varphi}}$$
(5.6)

onde $S_{ii} = -|B_{n_i}|/|B_{n_i}^2+4$, $S_{i2} = \pm 2j/|B_{n_i}^2+4$, $S_{33}^2 = -|B_{n_2}|/|B_{n_2}^2+4$ $\neq \beta \neq \beta 2$ é o comprimento elétrico entre os planos (2) e (3). Supondo inicialmente a igualdade das iris e apli-

cando a condição de ressonância (cos 2 ϕ =1 e sen 2 ϕ =0) o coeficiente de reflexão fica:

Portanto para haver acoplamento critico (| =0) com iris iguais é necessário que (=0 ou seja que as perdas internas da cavidade sejam negligenciáveis. Caso contrário, | é sempre negativo ou seja a cavidade está sub-acoplada.

Apenas para ilustrar, calculamos $\int para os valô$ res tipicos de B_n=10, <math>A = 0,1 nepers/m e L = 10 cm, o que dá:

Se B_{n1}#B_{n2} o coeficiente de reflexão fica:

 $\Gamma = \frac{\left[(-B_{n_1})/\sqrt{B_{n_1}^2 + 4}\right] - \left[(-B_{n_2})/\sqrt{B_{n_2}^2 + 4}\right] e^{-2\alpha \ell}}{1 - (B_{n_1}/\sqrt{B_{n_1}^2 + 4})(B_{n_2}/\sqrt{B_{n_2}^2 + 4}) e^{-2\alpha \ell}}$

Portanto não é possível obtermos acoplamento crítico com duas iris diferentes. Se por alguma razão é obrigató rio o uso de iris desiguais pode-se conseguir aproximadamente <u>a</u> coplamento crítico impondo-se $B_{n2} \gg B_{n1}$ já que quando $B_{n2} \longrightarrow 00$ a segunda iris tende a um curto e retornamos ao problema analisado no capítulo 4.

Então com $B_{n2} \gg B_{n1} = B_{n1} = 2/(e^{4\alpha \ell} - 1)^{1/2}$ obteremos <u>a</u> proximedamente acoplamento crítico.

5.3 Fator de Qualidade Descarregado, Qu

Evidentemente o fator de qualidade descarregado i<u>n</u> depende dos acoplamentos e será aquêle mesmo encontrado para c<u>a</u> vidades terminais.

$$Q_{U} = \frac{TT}{\alpha a} \frac{\lambda_{g'}}{\lambda_{o}^{2}}$$
(5.7)

5.4 Fator de Qualidade Externo, QF

Considerando-se a energia dissipada no circuito ex

terno, quando a fonte é desligada, teremos duas parcelas: a energia dissipada em direção ao gerador e a energia dissipada em direção à carga casada. Portanto teremos um fator de qualidade de entrada Q_{E1} e outro de saida Q_{E2}.

Analògamente ao que é feito na seção 4.3 podemos escrever:

$$Q_{E_{i}} = \frac{2\Pi}{k_{i}^{2}} \frac{\lambda_{y}}{\lambda_{o}^{2}}$$
(5.8)

$$Q_{E_2} = \frac{2\pi}{k_2^2} \frac{\lambda_{g'}}{\lambda_0^2}$$
(5.9)

onde $k_1^2 = |S_{12}|^2/2\ell = k_2^2 = |S_{34}|^2/2\ell$.

5.5 Fator de Qualidade Carregado, Q

O fator de qualidade carregado pode ser fàcilmente achado com a ajuda das expressões precedentes para Q_U , Q_{E1} , Q_{E2} e de que $Q_L^{-1} = Q_U^{-1} + Q_{E1}^{-1} + Q_{E2}^{-1}$. Donde

$$Q_{L} = \frac{2\pi}{(2\alpha_{a} + k_{1}^{2} + k_{2}^{2})} \frac{\lambda_{a}}{\lambda_{o}^{2}}$$
(5.10)

Se a cavidade for simétrica, então k1=k2 donde:

$$Q_{L} = \frac{TT}{(da + k^{2})} \frac{\lambda_{q}}{\lambda_{0}^{2}}$$

$$Q_{L} = \frac{1}{2}Q_{E_1} = \frac{1}{2}Q_{E_2} = \frac{T}{k^2} \frac{\lambda_{q}}{\lambda_{p}^2}$$

5.6 Potência Absorvida pelo Sistema, Pa

Chamamos de potência absorvida pelo sistema, a potência absorvida pela cavidade pròpriamente mais a potência que é transmitida até a carga e dissipada por esta:

Considerando P_o a potência constante fornecida pela fonte teremos:

$$P_{s} = P_{o}\left(1 - |\Gamma|^{2}\right)$$

Tomando a equação (5.6) e substituindo 5₁₁, 5₁₂ e S₃₃ pelos seus valôres obtamos:

$$\Gamma = \frac{\left[(-B_{n_1})/\sqrt{B_{n_1}^2 + 4}\right] + \left[\left(\frac{B_{n_2}}{B_{n_2}^2 + 4}\right)e^{-a_T}\left(\cos 2\phi - j \sin 2\phi\right)}{1 - \left(\frac{B_{n_1}}{B_{n_1}^2 + 4}\right)\left(\frac{B_{n_2}}{B_{n_2}^2 + 4}\right)e^{-a_T}\left(\cos 2\phi - j \sin 2\phi\right)}$$

onde $B_{n1} > 0 > B_{n2} > 0$.
Fazendo A= $B_{n1}/B^2 + 4$ e B= $B_{n2}/B^2 + 4$ a equação anterior fica:

$$\Gamma = \frac{(-A) + Be^{-\alpha_{T}}(\cos 2\phi - j \sin 2\phi)}{1 - ABe^{-\alpha_{T}}(\cos 2\phi - j \sin 2\phi)}$$

Donde

$$\left|\Gamma\right|^{2} \frac{\left[\left(-A\right) + Be^{-\alpha_{T}}\cos 2\phi\right]^{2} + \left[Be^{-\alpha_{T}}\sin 2\phi\right]^{2}}{\left[1 - ABe^{-\alpha_{T}}\cos 2\phi\right]^{2} + \left[ABe^{-\alpha_{T}}\sin 2\phi\right]^{2}}$$

E portanto:

$$\frac{P_{\rm S}}{P_{\rm O}} = \frac{(B^2 e^{-2\alpha_{\rm T}} - 1)(A^2 - 1)}{1 + A^2 B^2 e^{-2\alpha_{\rm T}} - 2AB e^{-\alpha_{\rm T}} \cos 2\phi}$$
(5.11)

Como já visto anteriormente na seção 4.9:

 $\cos 2\phi = 1 - F$

onds $F = \left(\frac{\lambda_{q}}{\lambda_{o^{2}}}\right)^{2} 2 \left(\Pi \ell\right)^{2} \left(\frac{2\Delta \omega}{\omega_{r}}\right)^{2}$.

Desenvolvendo o denominador de (5.11) temos:

denom.
$$\frac{P_{o}}{P_{o}} = (1 - ABe^{\alpha_{T}})^{2} \left[1 + \frac{2ABe^{-\alpha_{T}}F}{(1 - ABe^{-\alpha_{T}})^{2}} \right]$$

Por outro lado

$$A^{2}-1 = \frac{B_{n_{1}}^{2}}{B_{n_{1}}^{2}+4} - 1 = \frac{-4}{B_{n_{1}}^{2}+4} = -|S_{12}|^{2}$$

Daí podemos ascrever:

$$A = \sqrt{1 - |S_{12}|^2} \cong 1 - \frac{|S_{12}|^2}{2} \qquad |S_{12}|^2 \ll 1.$$

Anàlogamente

$$B = \sqrt{1 - |S_{34}|^2} \simeq 1 - \frac{|S_{34}|^2}{2} |S_{34}|^2 \ll 1.$$

Então podemos fazer a aproximação:

$$1 - ABe^{-\alpha_{T}} \cong \frac{2\alpha_{T} + |S_{12}|^{2} + |S_{34}|^{2}}{2}$$

se levarmos em conta que e^{- α_{r}} 1 para pequenas atenuações e que $|S_{12}|^2|S_{34}|^2 \ll 1$.

Podemos simplificar também o numerador mostrando que

$$(B^2 e^{-2\alpha_T} - 1)(A^2 - 1) \approx 2\alpha_T |S_{12}|^2$$

pois B^2 é muito próximo de l e $e^{-2\kappa_T} \approx 1-2\alpha_T$.

Entrando com tôdas essas considerações na equação (5.11) obtemos:

$$P_{s} = \frac{8\alpha_{T} |S_{12}|^{2} P_{s}}{(2\alpha_{T} + |S_{12}|^{2} + |S_{34}|^{2})^{2} \left[1 + \frac{8F}{(2\alpha_{T} + |S_{12}|^{2} + |S_{34}|^{2})^{2}}\right]}$$

Dividindo e multiplicando por 42² temos:

Lembrando ainda as expressões:

$$Q_{U} = \frac{TT}{\alpha a} \frac{\lambda g}{\lambda_{o}^{2}}$$
(5.7)
$$Q_{E} = \frac{2TT}{K_{i}^{2}} \frac{\lambda g}{\lambda_{o}^{2}}$$
(5.8)

$$Q_{E_2} = \frac{2\Pi}{k_2^2} \frac{\lambda_g}{\lambda_0^2}$$

$$Q_L = \frac{2\Pi}{2\eta_a + k_1^2 + k_2^2} \frac{\lambda_g}{\lambda_0^2}$$
(5.9)
(5.9)
(5.10)

e usando o valor de F obtemos finalmente:

$$P_{s} = \frac{4Q_{L}^{2}P_{o}}{Q_{U}Q_{E_{i}}\left[1+Q_{L}^{2}\left(\frac{2\Delta\omega}{\omega_{r}}\right)^{2}\right]}$$
(5.12)

A potência absorvida pelo sistema cavidade-carga casada tem o comportamento mostrado na figura 5.4.

fig. 5.4 - mostrando o comportamento em frequência da potência absorvida por uma cavidade de transmissão. 59

Exatamente como na cavidade terminal, os pontos de -3 db da curva da figura 5.4 darão uma medida de Q_i.

5.7 Potência Reflatida, Pr

A potência refletida por uma cavidade de transmissão com iris diferentes é dada por:

$$P_{\rm F} = P_{\rm S} \left\{ 1 - \frac{4Q_{\rm L}^2}{Q_{\rm U}Q_{\rm E_{\rm I}} \left[1 + Q_{\rm L}^2 \left(\frac{2\Delta\omega}{\omega_{\rm F}} \right)^2 \right]} \right\}$$
(5.13)

A potência refletida, como já analisado no ítem 4.6 é de grande importância devido à facilidade com que é medida e cujo comportamento é mostrado na figura 5.5.

fig. 5.5 - mostrando o comportamento em frequência da potência refletida por uma cavidade de transmissão alimentada com potência constante Po. Novamente aqui, os pontos de -3 db determinam Q. .

5.8 Potência Transmitida, Pt

Potência transmitida é a potência entregus pela ca vidade à carga casada. Podemos exprimí-la por:

$$P_t = \frac{1}{2} |b_4|^2 = \frac{1}{2} |S_{34}^i a_3|^2$$

Usando as expressões da seção 5.1 podemos escrever:

$$P_{t} = \frac{1}{2} \frac{\left(\frac{S_{12}'S_{34}'e^{-\alpha_{T}/2}e^{-j\emptyset}}{1-S_{4}'S_{33}'e^{-\alpha_{T}}e^{-j2\emptyset}}\right)^{2}}{(5.14)}$$

Lembrando que

$$S'_{11} = (-Bn_1)/(Bn_1^2 + 4)^{1/2} = -A$$

 $S'_{33} = (-Bn_2)/(Bn_2^2 + 4)^{1/2} = -B$

e que

$$|S_{12}| = 2/(B_{11}^2 + 4)^{1/2} = |S_{12}|$$

 $|S_{34}| = 2/(B_{12}^2 + 4)^{1/2} = |S_{34}|$

a expression (5.14) fice:

$$P_{t} = \frac{1}{2} \frac{|S_{12}|^{2} |S_{34}|^{2} e^{\alpha_{T}} |\partial_{1}|^{2}}{|1 - ABe^{\alpha_{T}} (\cos 2\phi - j \sin 2\phi)|^{2}}$$

Manipulando esta última expressão e admitindo que cos 20 z cos 262 e $\alpha_r = 2\alpha 2$ chegamos a:

$$P_{t} = \frac{|S_{12}|^{2} |S_{34}|^{2} e^{-\alpha_{T}} P_{0}}{(1 - ABe^{-\alpha_{T}})^{2} \left[1 + \frac{2ABe^{-\alpha_{T}} F}{(1 - ABe^{-\alpha_{T}})^{2}}\right]}$$

onde P_o= 1/2 |a₁|² é a potência constante fornécida pela fonte. Fazendo as mesmas considerações e aproximações do ítem 5.6, encontramos e expressão final para a potência transm<u>i</u> tida:

$$P_{t} = \frac{4Q_{L}^{2}P_{o}}{\Theta_{E_{t}}Q_{E_{2}}\left[1+Q_{L}^{2}\left(\frac{2\Delta\omega}{\omega_{F}}\right)^{2}\right]}$$
(5.15)

A figura 5.6 mostra o comportamento da potência transmitida com a frequência.

fig. 5.6 - mostrando o comportamento em frequência da potência transmitida em uma cavidade de transmissão não-simétrica.

Como mostra a curva, é possível a medida de Q_L e f_r com uma amostragem de P_t. Aliás, é preferível utilizar-se P_t a P_r pois a primeira é de maior intensidade e evita problemas de ruído.

5.9 <u>Coeficiente de Onda Estacionária na Ressonância</u>, S_r

E necessário, como será mostrado mais tarde, que tenhamos uma medida do coeficiente de onda estacionária na ressonância para que todos os parâmetros da cavidade sejam determ<u>i</u> nados.

Por definição:

$$S_r = \frac{1+|\Gamma_r|}{1-|\Gamma_r|}$$

Explicitando o valor de |["_ | temos:

$$|\Gamma_r| = \frac{(-A) + Be^{-\alpha_r}}{1 - ABe^{-\alpha_r}}$$

Donde

$$S_{r} = \frac{(1-A)(1+Be^{-\alpha_{T}})}{(1+A)(1-Be^{-\alpha_{T}})}$$

Vamos simplificar a expressão anterior admitindo

que:

$$1+A \equiv 2$$

 $\alpha_r \ll 1$
 $|S_{12}|^2 \ll 1$
 $|S_{34}|^2 \ll 1$

' O que dá:

$$S_{r} = \frac{\frac{|S_{12}|^{2}}{2\ell}}{\frac{|S_{34}|^{2}}{2\ell} + \frac{2d_{T}}{2\ell}} = \frac{k_{1}^{2}}{k_{2}^{2} + 2d_{a}}$$

dividindo numerador e denominador por 24.

Somando e subtraindo k_1^2 do denominador e lembrando as expressões (5.7), (5.8), (5.9) e (5.10) obtemos:

$$S_{r} = \frac{Q_{L}}{Q_{E_{i}} - Q_{L}}$$
(5,16)

5.10 Perda de Inserção, PI

Por definição, perda de inserção é a razão entre a potência incidente na cavidade e a potência transmitida.

$$PI = \frac{P_0}{P_t}$$

Usando a relação (5.15) temos:

$$PI = \frac{P_0}{4Q_L^2 P_0} \frac{4Q_L^2 P_0}{Q_{E_1}Q_{E_2} \left[1 + Q_L^2 \left(\frac{2\Delta \omega}{\omega_r}\right)^2\right]}$$

Donde

$$PI = \frac{Q_{E_1}Q_{E_2}\left[1 + Q_L^2\left(\frac{2\Delta\omega}{\omega_r}\right)^2\right]}{4Q_L^2}$$
(5.17)

O comportamento em frequência da perda de inserção é esquematizado na figura 5.7.

fig. 5.7 - mostrando o comportamento em frequência da perda de inserção de uma cavidade de transmissão assimétrica.

Normalmente PI é dada em decibéis. Portanto:

$$PI(db) = 10 \log \frac{P_0}{Pt}.$$

5.11 Determinação Experimental dos Parâmetros da Cavidade

Uma cavidade de transmissão não-simétrica $(B_{n1} \neq B_{n2})$ tem os seguintes parâmetros a serem determinados experimentalmen te: f_r, Q_L, Q_U, Q_{E1} e Q_{E2}. Os dois primeiros são medidos diretamente da mesma maneira que para uma cavidade terminal, com a ún<u>i</u> ca diferença de se utilizar a potência transmitida em vez da potência refletida. Os outros parâmetros são encontrados através de uma medida do coeficiente de onda estacionária na ressonância, uma medida de PI na ressonância e a relação:

$$Q_L = Q_u + Q_{E_1} + Q_{E_2}$$

fig. 5.8 - mostrando um circuito de micro-ondas conveniente para completa determinação experimental dos parâmetros de uma cavidade de transmissão. Apenas para dar uma idéia de conjunto repetimos aqui as expressões:

$$S_r = \frac{Q_L}{Q_{E_1} - Q_L}$$
 $PI_r = \frac{Q_{E_1} Q_{E_2}}{4Q_L^2}$

Se a cavidade for simétrica (B =B) elimina- se um dos parâmetros (Q_{E1}=Q_{E2}) e portanto podemos dispensar uma das medidas complementares.

Um circuito para medirmos todos os parâmetros da cavidade é mostrado na figura 5.8. O procedimento para a medida de f_r e Q_L é o mesmo descrito no ítem 4.12, tomando-se o cuida-do de inverter o sinal do canal 2 no osciloscópio. A medida de S_r também não traz nenhum problema.

A medida da PI deve ser feita da seguinte maneira: (método da substituição)

a) Com a varredura desligada e o gerador na f_r , ajustamos o atenuador até que o traço vertical que aparece no osciloscópio atinja um valor conveniente;

b) Anotamos êste valor inicial do atenuador de precisão;

c) Retiramos agora a cavidade sob teste de tal forma que o sinal passe direto ao acoplador direcional;

d) Inserimos atenuação até que a tensão lida no osciloscópio
 volte a posição original;

e) A diferença entre o valor final e o inicial dará a PI em db.

6. CONCLUSÃO

Queremos dizer a titulo de conclusão apenas que os resultados encontrados na aplicação do modêlo de linha de transmissão são semelhantes à análise feita através de circuitos a parâmetros concentrados sendo que o grave inconveniente do comportamento transitório se desfaz pois o modêlo desenvolvido, levando em conta propagação de ondas, não cria dificulda des nêste aspecto. A análise do comportamento do modêlo à exc<u>i</u> tações não-constantes e sua comprovação experimental não eram objetivos do presente trabalho e deixamo-as como sugestão a um trabalho futuro.

Quanto à aplicações práticas do modêlo não precisamos dizer da importância do uso de cavidades em amplificadores, osciladores e outros dispositivos a micro-ondas. O modêlo permite, com relativa facilidade, o projeto e determinação experimental dos parâmetros da cavidade. Além disso serve como subsídio ao projeto de filtros faixa larga (sucessão de cavid<u>a</u> des de transmissão).

Finalmente vemos a possibilidade de se estender, com vantagens, êste țipo de abordagem a outros dispositivos a micro-ondas com junções.

APENDICE I: CALCULD DA ENERGIA MEDIA ARMAZENADA NO CAMPO ELETRI CO DO MODO TE nmpº

A energia média armazenada em um campo elétrico é expressa por:

Se substituirmos E e E^{*} pelas respectivas expressões para o modo IE_{nmp} ressonante na cavidade e resolvemos em seguida e integral, obtemos a energia média armazenada na forma elétrica numa cavidade ressonante em tal modo.

 $W_e = \frac{\varepsilon_o}{4} \int_V \varepsilon \cdot \varepsilon^* dV$

Como o modo TE_{nmp} tem componentes E_{Σ} e Ey a expressão de W_e fica:

$$We = \frac{\varepsilon_0}{4} \left[E_x \cdot E_x^* dV + \frac{\varepsilon_0}{4} \right] E_y \cdot E_y^* dV = We_1 + We_2$$

Calcularemos inicialmente W_{el}. Tomando E_x (seção 2.1) podemos escrever que:

onde A+ e A são constantes de proporcionalidade.

A fim de satisfazer as condições de contôrno em z=0 e $z=\ell$ ($E_{\rm I}=0$) escolhemos $A^+=A^-$.

Portanto:

$$A^{\dagger} e^{j\beta z} + A^{-} e^{j\beta z} = A^{\dagger} (e^{-j\beta z} - e^{j\beta z}) = -2jA^{\dagger} \operatorname{sen} \beta z$$

70

Então E_X fica:

$$E_{x} = 2 Zhnm A^{+} \frac{\beta_{nm}}{\kappa_{nm}^{2}} \frac{mT}{b} \cos \frac{nTx}{a} \sin \frac{mTy}{b} \sin \frac{pTy}{a}$$

Usando essa última expressão para calcular W_{el} e lembrando que Z_{hnm}= Zoko/(3 temos:

$$We_{i} = \frac{\varepsilon_{o}}{4} \iiint \left(\frac{2A^{+} z_{o} k_{o}}{k_{enm}^{2}} \right)^{2} \left(\frac{m\pi}{b} \right)^{2} \cos^{2} \frac{m\pi}{a} \operatorname{sen}^{2} \frac{m\pi}{b} \operatorname{sen}^{2} \frac{p\pi z}{b} dx dy dz$$

Resolvendo a integral tripla obtemos finalmente:

$$We_{I} = \frac{\varepsilon_{o}}{4} \left(\frac{2A^{+} z_{o} k_{o}}{k_{c}^{2} m}\right)^{2} \left(\frac{a b \ell}{8}\right) \left(\frac{m T}{b}\right)^{2}$$
(I.1)

Procedendo de maneira totalmente análoga com respeito a W_{e2} obtemos:

$$We_{2} = \frac{\varepsilon_{0}}{4} \left(\frac{2A^{+}Z_{0}k_{0}}{k_{c}^{2}n_{m}}\right)^{2} \left(\frac{abl}{8}\right) \left(\frac{n\Pi}{a}\right)^{2}$$
(1.2)

Combinando (I.1) e (I.2) chegamos a:

$$We = \frac{\varepsilon_0}{4} \left(\frac{2A^+ Z_0 K_0}{k_{cnm}^2}\right)^2 \left(\frac{ab\ell}{8}\right) \left[\left(\frac{nT}{a}\right)^2 + \left(\frac{mT}{b}\right)^2\right]$$
(2.6)

APENDICE II: <u>RELAÇÕES ENTRE ONDAS</u>; <u>VOLTAGENS E CORRENTES EM UMA</u> JUNÇÃO.

Numa junção, o conceito de onda incidente diz respeito, usualmente, a um número complexo proporcional ao campo elétrico transversal complexo incidente. Da mesma maneira podemos conceituar a onda refletida. Costuma-se também utilizar ondas normalizadas em relação à impedância característica.

Porém, preferimos, por facilidade, lançar mão dos conceitos de voltagem e corrente que por definição são grandezas proporcionais ao campo elétrico transversal. Essas definições podem ser fácilmente encontradas na literatura citada.

Devemos então procurar relações entre voltagens, correntes e ondas de tal modo a assegurar a proporcionalidade e<u>n</u> tre estas últimas e a componente transversal do campo elétrico.

Podemos então considerar a potência incidente na junção, que normalmente permanece constante, e escrever que:

$$P_{inc.} = \frac{1}{2} v^+ i^{+*}$$

onde v⁺ e i^{+*}são a voltagem incidente e o conjugado da corrente incidente, respectivamente.

Lembrando que, por definição, v*/i*=Zo vem que:

$$P_{\text{inc.}} = \frac{1}{2} Z_0 i^{+} i^{+} = \frac{1}{2} Z_0 |i^{+}|^2$$

Pôsto isto, podemos definir onda incidente <u>a</u> como um número complexo tal que:

$$\operatorname{Pinc.} = \frac{1}{2} Z_0 |i^{\dagger}|^2 \equiv \frac{1}{2} a a^{\dagger} = \frac{1}{2} |a|^2 \qquad (11.1)$$

Portanto

$$|a|^2 = Z_0 |i^+|^2$$
 (11.2)

De maneira análoga, podemos definir onda refletida <u>b</u> como um número complexo tal que:

$$P_{\text{refl.}} = \frac{1}{2} (-Z_0) |\mathbf{i}|^2 \equiv \frac{1}{2} bb^* = \frac{1}{2} |b|^2 \qquad (11.3)$$

onde P_{refl.=}(1/2)v⁻i⁻ e v⁻/i⁻= -Z₀ (o sinal negativo aparece porque os campos trocam de sentido) sendo que v⁻ e i⁻ representam a voltagem e corrente refletidos.

Portanto

$$|b|^2 = -Z_0 |i|^2$$
 (11.4)

De (II.2) e (II.4) vem que:

Como ainda $v(z) = v^+ + v^-$ substituimos e achamos: $i(z) = i^+ + i^-$

$$v(z) = \sqrt{Z_0} (a+b)$$

$$i(z) = \frac{1}{\sqrt{Z_0}} (a-b)$$

(11.5).

APENDICE III: CALCULO DA ATENUAÇÃO TOTAL NA CAVIDADE NO MODO TE10.

A atenuação total na cavidade, T é expressa por:

$$T = \frac{P_{L}l + 2P_{f}}{P_{0}}$$
(111.1)

Teremos inicialmente que calcular, para o modo dominante TE₁₀, a potência dissipada nas paredes do guia, P_L. Isto pode ser feito com o auxílio da equação:

$$R = \frac{R_m}{2} \int |J|^2 dS$$

. . 1

onde $R_m = \sqrt{\omega \mu_0/20}$ é a resistência superficial e $J = |H_t|$ é a densi dade superficial de corrente.

Usando as componentes de campos:

$$H_{z} = A \cos \frac{\pi x}{a}$$

$$H_{z} = \frac{i\beta a}{\pi} A \sin \frac{\pi x}{a}$$

$$E_{y} = -\frac{j\omega \mu_{o} a}{\pi} A \sin \frac{\pi x}{a}$$

as perdas por aquecimento nas paredes do guia são:

$$2\left[\frac{R_{m}}{2}\int_{0}^{b}\int_{0}^{l}A^{2}\cos^{2}(\frac{\pi}{a})dydz\right] = R_{m}A^{2}bl \quad (\text{paredes laterais})$$

$$\operatorname{R_{m}}\left[\iint_{0}^{a}\left(\frac{\beta a}{\pi}\right)^{2}A^{2}\operatorname{sen}^{2}\left(\frac{\pi x}{a}\right)dxdz + \iint_{0}^{a}A^{2}\cos^{2}\left(\frac{\pi x}{a}\right)dxdz\right] = 00$$

= $R_m A^2 \frac{al}{2} \left(1 + \frac{\beta^2 a^2}{T^2}\right)$ (paredes superiores e inferiores)

Donde

$$P_{L} = R_{m} A^{2} \ell \left[b_{+} \frac{a}{2} \left(1 + \frac{\beta^{2} a^{2}}{\pi^{2}} \right) \right] \qquad (111.2)$$

Nas paredes finais, por outro lado, temos:

$$2P_{f} = R_{s} \iint \left(\frac{\beta a}{\pi}\right)^{2} A^{2} \operatorname{sen}^{2} \left(\frac{\pi x}{a}\right) dx dy = \frac{R_{m} \beta^{2} a^{3} b A^{2}}{2\pi^{2}}$$
(111.3)

Finalmente, a potência transmitida é dada por:

$$P_0 = \frac{1}{2} \int_{S} E x H^* dS = \frac{1}{2} \int_{0}^{ab} (-E_y H_x^*) dx dy$$

Substituindo os campos temos:

$$P_{0} = \frac{1}{2} \iint_{0}^{a b} \frac{\omega \mu_{0} a^{2} A^{2} \beta}{\pi^{2}} \operatorname{sen}^{2} \left(\frac{\Pi x}{a} \right) dxdy = \frac{\omega \mu_{0} a^{3} b \beta A^{2}}{4 \pi^{2}} \quad (111.4)$$

Aplicando (III.2), (III.3) e (III.4) em (III.1), concluimos que:

$$T = \frac{4\pi^{2}R_{m}}{\omega\mu_{0}\beta a^{3}b} \left\{ \frac{a^{3}b\beta^{2}}{2\pi^{2}} + l \left[b + \frac{a}{2} \left(1 + \frac{\beta^{2}a^{2}}{\pi^{2}} \right) \right] \right\}$$
(4.17)

76

BIBLIOGRAFIA

ALTMAN, J. L. - <u>Microwave Circuits</u> - D. Van Nostrand, New York, 1964.

CHEN, T. S. - Wavequide Resonant-iris Filters with very Wide Passband and Stopbands - Electronics, Vol. 21, Nº 5, pp. 401-421, 1966.

COLLIN, R. E. - Foundations for Microwave Engineering - McGraw--Hill, New York, 1966.

GINZTON, E. L. - <u>Microwave Measurements</u> - McGraw-Hill, New York, 1957.

MICROWAVE ENGINEERS' TECHNICAL & BUYERS' GUIDE, Horizon House-Microwave Inc., Massachusetts, 1970.