
Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Aprimorando a Verificação de Conformidade em

Programas Baseados em Contratos

Alysson Filgueira Milanez

Dissertação submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina Grande -

Campus I como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Metodologia e Técnicas da Computação

Tiago Massoni e Rohit Gheyi

(Orientadores)

Campina Grande, Paraíba, Brasil

c©Alysson Filgueira Milanez, 06/06/2014

 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL DA UFCG

M637a

 Milanez, Alysson Filgueira.

 Aprimorando a verificação de conformidade em programas

baseados em contratos / Alysson Filgueira Milanez. – Campina

Grande, 2014.

 107 f. : il.

 Dissertação (Mestrado em Ciência da Computação) –

Universidade Federal de Campina Grande, Centro de Engenharia

Elétrica e Informática, 2014.

 "Orientação: Prof. Dr. Tiago Massoni, Prof. Dr. Rohit Gheyi.

 Referências.

 1. Programação por Contratos. 2. Verificação de Conformidade.

I. Massoni, Tiago. II. Gheyi, Rohit. III. Título.

 CDU 004.43(043)

"APRIMORANDO A VERIFICACAO DE CONFORMIDADE EM PROGRAMAS

BASEADOS EM CONTRATOS"

ALYSSON FILGUEIRA MILANEZ

DISSERTACAO APROVADA EM 06/06/2014 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y\f\

TIAGQlLIMA MASSONI, Dr., UFCG
Orientador(a)

ROHIT GHEYI, Dr., UFCG
Orientador(a)

RICARDO MASSA FERREIRA LIMA, Dr., UFPE
Examinador(a)

W I L I ±Mv-zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ft L i .
ERSOtf DE LUCENA A

RADE, D.Sc, UFCG

Examinador(a)

CAMPINA GRANDE - PB

Resumo

Teste é comumente usado para verificar conformidade em programas baseados em contrato;

uma vez que verificação por provas formais tem baixo poder de escalabilidade e análise

estática é, em alguns casos, limitada para identificar não-conformidades mais gerais. Ca-

sos de teste tradicionais, com dados de teste providos manualmente, podem ser ineficazes

para detectar não-conformidades sutis que surgem apenas após diversas criações e modi-

ficações nos objetos sob teste. Essas não-conformidades podem sinalizar bugs mais sutis,

diminuindo os benefícios de usar programas baseados em contrato. Casos de teste gera-

dos aleatoriamente com dados de teste gerados automaticamente, por outro lado, são uma

abordagem promissora quando testes mais substanciais são necessários. No presente tra-

balho, propomos e avaliamos uma abordagem, JMLOK 2.0, para detecção e categoriza-

ção de não-conformidades, no contexto de Java Modeling Language (JML). Nossa abor-

dagem objetiva auxiliar o programador no processo de correção de não-conformidades.

A detecção é suportada por uma abordagem de Testes Gerados Aleatoriamente (RGT).

E a categorização por uma abordagem baseada em heurísticas. Realizamos duas avali-

ações. Na primeira, realizamos uma avaliação de nossa abordagem para detecção de

não-conformidades e de nosso processo para categorização manual: detectamos 84 não-

conformidades em mais de 29 KLOC e mais de 9 K linhas de contratos JML (que iremos

nos referir como KLJML); aplicando nosso modelo de categorização manual, obtivemos

que a maioria das não-conformidades detectadas foram classificadas como erros de pós-

condição; também observamos que uma não-conformidade é detectada após 2.54 top-level

chamadas num caso de teste, em média, e que o número de chamadas internas ao caso de

teste que revela a não-conformidade é, em média, de 2.23, nos dando evidências da necessi-

dade de uma estrutura de testes mais elaborada para detecção de não-conformidades. Além

disso, comparamos nossa abordagem com JET, uma ferramenta existente para detecção de

não-conformidades em programas JML baseada em testes, utilizando um subconjunto dos

programas usados no primeiro estudo (6 KLOC e 5 KLJML). JMLOK 2.0 detectou 30

não-conformidades com cobertura Java de 78.44% e JML de 67.67%, enquanto que JET

detectou 9 não-conformidades cobrindo 47.97% de Java e 56.97% de JML. Na segunda,

realizamos uma avaliação da nossa abordagem automática de categorização: comparamos

i

a categorização manual e a automática e tivemos um valor de coincidências de 0.73 (con-

siderando as não-conformidades da primeira avaliação) indicando que há similaridade entre

as abordagens de categorização manual e automática; além disso, comparamos os resultados

da categorização automática com a categorização realizada por experts em JML e também

observamos alguma similaridade entre as abordagens.

ii

Abstract

Testing is commonly used to check conformance in contract-based programs, as verifica-

tion by formal proofs is hard to scale and static analysis is, sometimes, limited for detecting

general nonconformances. Traditional test cases, with manually-provided data, may be in-

effective in detecting subtle nonconformances that arise only after several instantiations and

modifications in objects under test. Those nonconformances may signalize more subtle bugs,

hindering the benefits of using contract-based programs. Random-generated tests with auto-

matic test data generation, on the other hand, is a promising approach when more substantial

testing is demanded. In this work, we propose and evaluate an approach, JMLOK 2.0, for

automatically detecting and categorizing nonconformances, in the context of Java Modeling

Language (JML). Our approach aims to help the programmer in the process of nonconfor-

mances correction. The detection is backed by Randomly-Generated Tests (RGT) approach.

And the categorization is backed by heuristics-based approach. We perform two evaluations.

First, we perform an evaluation of our detection approach and our manual categorization

process: we detected 84 nonconformances in over 29 KLOC and 9 K lines of JML contracts

(that we will refer as KLJML henceforth); applying our manual classification system we

got that most detected nonconformances were classified as postcondition errors; we also ob-

served that a nonconformance is detected after 2.54 top-level test case calls, in average, and

the number of internal calls within the faulty test case call is an average of 2.23, providing

evidence for the need of a more complex generated test structure in nonconformance detec-

tion; furthermore, we compare our approach with JET, an existing test-based approach for

detecting nonconformances in JML programs, using a subset of programs from first study

(6 KLOC and 5 KLJML). JMLOK 2.0 detected 30 nonconformances with Java coverage of

78.44% and JML coverage of 67.67%, while JET detected 9 nonconformances by covering

47.97% of Java and 56.97% of JML. Second, we perform an evaluation of our automatic cat-

egorization approach: we compare automatic and manual categorization and got a matches

value of 0.73 (considering the nonconformances from first evaluation) indicating similarity

between automatic and manual approaches; furthermore, we compare our results with the

categorization performed by voluntary JML experts and we also observed some similarity.

iii

Agradecimentos

Agradeço primeiramente a Deus, que me concedeu o dom da vida e por todas as bençãos

que me concedeu ao longo de toda a minha vida.

Aos meus pais: Severino do Ramo Milanez e Rozane F. Milanez; por apoiar e acreditar

nos meus sonhos e por sempre estarem ao meu lado, dando todo o apoio que necessito para

superar as barreiras e obstáculos que a vida me proporciona. Às minhas irmãs Laryssa e

Maxwellia, por sempre acreditarem em mim e torcerem pelo meu sucesso.

Meus sinceros agradecimentos aos orientadores e amigos Tiago e Rohit, que me aux-

iliaram durante essa jornada de pesquisa, sempre com muita dedicação, disponibilidade,

paciência, empenho, e vontade de ensinar e orientar. Sem eles esse trabalho não seria pos-

sível. Agradeço também pelas oportunidades concedidas.

Aos professores Adalberto Cajueiro, Patrícia Machado pelas sugestões e contribuições

neste trabalho. Aos professores Wilkerson de Lucena e Ricardo Massa por terem aceitado

o convite para participar da banca do presente trabalho bem como por todos os excelentes

comentários que nos proporcionaram insights para a continuação da nossa pesquisa.

Agradeço a todos os amigos e colegas do SPLab, que contribuíram para a realização

deste trabalho, com discussões e dicas que proporcionaram vários insights e bons momentos

de descontração.

Aos professores e funcionários do PPGCC e do SPLab. Aos JML experts que con-

tribuíram com o experimento para avaliar o conjunto de heurísticas que propusemos no

processo de categorização de não-conformidades. À CAPES pelo apoio e suporte finan-

ceiro fornecidos para o desenvolvimento deste trabalho. E por fim, a todas as pessoas que

contribuíram, direta ou indiretamente para o desenvolvimento deste trabalho.

iv

Conteúdo

1 Introdução 1

1.1 Problem . 2

1.1.1 Motivating Example . 2

1.1.2 Relevance . 3

1.2 Solution . 5

1.3 Evaluation . 7

1.4 Summary of Contributions . 9

1.5 Outline of the Dissertation . 10

2 Fundamentação Teórica 12

2.1 Formal Methods . 12

2.1.1 Formal Methods – Practice . 13

2.2 Design by Contract . 14

2.2.1 DBC – Concept . 14

2.2.2 Eiffel . 15

2.2.3 Spec# . 16

2.2.4 JML . 17

2.2.5 Conformance . 18

2.3 Software Testing . 20

2.3.1 Test Cases . 21

2.3.2 Oracles in DBC Context . 21

2.3.3 Tests Generation . 22

2.3.4 Conformance Testing . 24

v

CONTEÚDO vi

3 Uma abordagem para Detecção e Categorização de Não-conformidades em Pro-

gramas Baseados em Contratos 27

3.1 Randomly-Generated Tests Approach for Conformance Checking 28

3.1.1 Step 1 - Tests Generation . 28

3.1.2 Step 2 - Oracle Generation . 30

3.1.3 Step 3 - Tests Execution . 31

3.1.4 Step 4 - Grouping distinct Nonconformances 31

3.1.5 Step 5 - Results from Detection Phase 31

3.2 Heuristics-based Approach for Categorize Nonconformances 32

3.2.1 Categorization Model . 32

3.2.2 Categorization Overview . 35

3.2.3 Heuristics . 36

3.3 JMLOK 2.0 . 38

3.3.1 Step 1 - User interaction . 40

3.3.2 Step 2 - The Controller module 40

3.3.3 Step 3 - The Detector module . 40

3.3.4 Step 4 - The Categorizer module 43

3.3.5 JMLOK 2.0 Architecture . 45

3.3.6 Limitations . 46

4 Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades

em Programas Baseados em Contratos 48

4.1 Research Questions . 48

4.2 First study - RGT in Isolation . 50

4.2.1 Setup . 50

4.2.2 Results . 51

4.2.3 Discussion . 53

4.3 Second Study - JMLOK 2.0 versus JET 57

4.3.1 Setup . 57

4.3.2 Results . 57

4.3.3 Discussion . 58

CONTEÚDO vii

4.4 Threats to validity . 61

4.5 Answers to the research questions . 61

5 Avaliação da Categorização de Não-Conformidades 63

5.1 Research Questions . 63

5.2 First Study - Comparison between Manual and Automatic Categorization . 65

5.2.1 Setup . 65

5.2.2 Results . 65

5.2.3 Discussion . 67

5.3 Second Study - Comparison between Automatic and JML Experts Categori-

zation . 69

5.3.1 Setup . 69

5.3.2 Results . 70

5.3.3 Discussion . 72

5.4 Threats to Validity . 73

5.5 Answers to the research questions . 73

6 Considerações Finais 75

6.1 Conclusions . 75

6.2 Related Work . 77

6.2.1 Conformance Checking . 77

6.2.2 Categorization of Contract Violations 79

6.2.3 Automatic Test Generation . 80

6.3 Future Work . 81

A Manual Categorization Results on Contract-based Programs 91

B Automatic Categorization Results on Contract-based Programs 93

C Numbered Nonconformances 95

D Form to Evaluation of the Categorization Model 97

Lista de Figuras

1.1 The steps performed in our approach: 1- The code of the program is compi-

led. 2- Tests are generated with the compiled code in step 1. 3- Oracles are

produced from contracts. 4- Tests generated in step 2 are run against oracles

produced in step 3. 5- A filter distinguishes from all failures which distinct

nonconformances were detected. 6- A subset of heuristics to each noncon-

formance is selected based on its type. 7- Each subset is used together the

source code to choose a likely cause for the nonconformance. And finally,

all detect and categorized nonconformances are returned. 11

2.1 The Randoop test generation process. The process starts when are given the

following inputs: a list of classes under test, a time limit, and optionally a set

of properties to check. Then sequences of method calls are generated, exe-

cuted and examined; the feedback from the execution feeds back the process

until the time limit be reached. 24

3.1 The internal structure of the proposed RGT-based approach for nonconfor-

mances detection. As inputs are given the contract-based program, a direc-

tory of external libs (optional) and the time to tests generation (also optional,

default value = 10 seconds). 1- Tests are generated into the RGT engine. 2-

Oracles are produced from contracts. 3- Tests generated in step 1 are run

against oracles produced in step 2. 4- A filter distinguishes from all failu-

res which distinct nonconformances were detected. 5- The list of detected

nonconformances is returned. 29

viii

LISTA DE FIGURAS ix

3.2 Grouping nonconformances – this process receives as input a list of several

failures (some possibly equal), then the failures are compared and the filter

returns a set of distinct nonconformances (distinct faults). 32

3.3 Internal structure of the approach for nonconformances categorization. As

input are given the list of nonconformances and the source code. 1- a sub-

set of heuristics to each nonconformance is selected based on its type. 2-

Each subset is used together the source code to choose a likely cause for the

nonconformance. 3- The list of categorized nonconformances is returned. . 35

3.4 Heuristic for nonconformances from precondition type. 36

3.5 Heuristics for nonconformances from postcondition and evaluation types. . 37

3.6 Heuristics for nonconformances from invariant type. 38

3.7 Heuristics for nonconformances from constraint type. 39

3.8 The architecture of JMLOK 2.0 tool. There are 4 modules in this tool: UI,

Controller, Detector, and Categorizer. 39

3.9 The initial screen of the tool. In this screen the user can give the inputs

needed to use the tool. If no input is given, a message dialog warns the user

about the needed of at least the contract-based program to be given as input. 40

3.10 The screen resultant of Detection phase. In order to get the results of the

categorization, the user have to press the button Nonconformances. 44

3.11 Categorization screen presenting the results of JMLOK 2.0 tool. For each

nonconformance are presented: the type, the complete location (including

information of package, class, and method), the suggested likely cause, and

the test case with highlight in the line that reveals the nonconformance. . . 45

4.1 Nonconformances distributed between their types, for all experimental units. 53

4.2 Nonconformances distributed between their likely causes, for all experimen-

tal units. 55

Lista de Tabelas

3.1 Categorization model for nonconformances in contract-based programs. . . 33

4.1 Programs characterization in terms of Lines of Code (LOC) and Lines of

JML specification (LJML). 51

4.2 For each experimental unit we present the number of generated test cases,

test coverage, and all nonconformances detected, grouped by their types. . . 52

4.3 Likely Causes from detected nonconformances in the experimental units. . 54

4.4 Results of mean for breadth and depth metrics to each experimental unit and

for all nonconformances detected. 54

4.5 Comparison between JMLOK 2.0 and JET. For each experimental unit is

presented the number of tests generated by each tool, test coverage (Java and

JML), number and types of nonconformances. 58

5.1 matches results for each experimental unit and the mean of this metric. The

metric was obtained using the Equation 5.1. 66

5.2 Metrics matches and depth for each experimental unit. For Samples we cal-

culate the metrics for each package used – BoundedStack, stacks, dbc, misc,

and list. The Spearman’s coefficient (last line of table) indicates a strong

negative relation between these metrics. 67

x

LISTA DE TABELAS xi

5.3 Randomly selected nonconformances released to JML experts categorize.

The nonconformance number corresponds to the position of the nonconfor-

mance considering our 84 nonconformances – the counting starts in sample

programs (BoundedStack) and continues until the last nonconformance

discovered in TransactedMemory unit. Experimental Unit gives the

name of the experimental unit. Class and Method columns give information

about location of the nonconformance into the experimental unit. Finally,

column Type gives the type of the nonconformance. 70

5.4 Column # NC displays the nonconformance number (the number is the same

presented on Table 5.3). Column Type shows the nonconformances type.

For each Subject we present the Category and Likely Cause for each ca-

tegorized nonconformance. Finally, Automatic results shows the results of

our automatic categorization for each categorized nonconformance. The line

matches presents the matches metric for each Subject in comparison with

tool results. We use the following acronyms for type: pre for precondition,

post for postcondition, and inv for invariant; and for category: Spec for Spe-

cification error, Code for Code error, and Undef for Undefined. 71

6.1 Related Work about conformance checking. 79

6.2 Related Work about categorization approaches for contract violations. . . . 80

6.3 Related Work about automatic test generation. 81

A.1 Results of the manual categorization process on Sample Programs. Column

Experimental Unit shows the name of the experimental unit. Columns Class

and Method display the names of the class and the method, respectively,

where a nonconformance was detected. Column Category presents the ca-

tegory manually assigned to the discovered nonconformance. Column Type

exhibits the nonconformance’s type. Finally, column Likely Cause reveals

the likely cause manually assigned. 91

LISTA DE TABELAS xii

A.2 Results of the manual categorization process on Open-source Programs. Co-

lumn Experimental Unit shows the name of the experimental unit. Columns

Class and Method display the names of the class and the method, respec-

tively, where a nonconformance was detected. Column Category presents

the category manually assigned to the discovered nonconformance. Column

Type exhibits the nonconformance’s type. Finally, column Likely Cause re-

veals the likely cause manually assigned. 92

B.1 Results of the automatic categorization process on Sample Programs. Co-

lumn Experimental Unit shows the name of the experimental unit. Columns

Class and Method display the names of the class and the method, respec-

tively, where a nonconformance was detected. Column Category presents

the category manually assigned to the discovered nonconformance. Column

Type exhibits the nonconformance’s type. Finally, column Likely Cause re-

veals the likely cause automatically assigned. 93

B.2 Results of the automatic categorization process on Open-source Programs.

Column Experimental Unit shows the name of the experimental unit. Co-

lumns Class and Method display the names of the class and the method, res-

pectively, where a nonconformance was detected. Column Category presents

the category manually assigned to the discovered nonconformance. Column

Type exhibits the nonconformance’s type. Finally, column Likely Cause re-

veals the likely cause automatically assigned. 94

C.1 Numbered nonconformances for Sample Programs. 95

C.2 Numbered nonconformances for Open-source Programs. 96

Lista de Códigos Fonte

1.2 A test case that reveals the nonconformance present into GenCounter class . 3

1.1 GenCounter and MapMemory classes . 4

2.1 Example of DBC in Eiffel . 15

2.2 Example of DBC in Spec# . 17

2.3 Example of DBC in JML . 18

2.4 Test case that shows a nonconformance in updateCount method. 19

2.5 Code that presents a nonconformance in the client side – Case 2. 20

2.6 Oracle generated to updateCount method 23

2.7 Test case generated by Randoop . 25

3.1 Test generated by our approach from motivating example 29

3.2 Test case that reveals a nonconformance that we categorize as specification

error . 34

3.3 Test case that reveals a nonconformance that we categorize as code error . . 34

3.4 Test case that reveals a nonconformance that we categorize as undefined error 35

xiii

Capítulo 1

Introdução

Engenharia de Software [68] é um tema da Ciência da Computação que lida com todos os

aspectos relacionados com a produção de software – da fase de especifição do sistema até

a evolução e manutenção após o software estar em uso. Sistemas de software são abstra-

tos e intangíveis. Eles não são restringidos pelas propriedades dos materiais, governados

por leis físicas ou por processos de manufatura [68]. Isto pode simplificar a engenharia de

software, uma vez que não há limites naturais para o potencial do software. Contudo, por

conta da falta de restrições físicas, os sistemas de software podem rapidamente se tornar

complexos, difíceis de entender e caros para sofrerem modificações. Hoje em dia os sis-

temas de software estão presentes em nossas vidas, desde programas simples que usamos

para edição de documentos, a programas complexos para controle de tráfego aéreo, controle

de processos industriais, ou até mesmo sistemas que controlam o nível de medicamentos a

serem injetados em nossos corpos. Deste modo, a busca por confiabilidade em sistemas de

software tem aumentado e ganhado a atenção de diversas pessoas e organizações.

Programas baseados em contratos [34], uma solução baseada em linguagem na qual có-

digo e contratos são integrados em um único artefato, desempenham um importante papel no

contexto do desenvolvimento de sistemas de software confiáveis e de qualidade. Neste ce-

nário, a metodologia Design by Contract (DBC) [48] – Programação por Contratos – impõe

contratos (invariantes, pré-condições e pós-condições) que expressam direitos e obrigações

para módulos clientes e fornecedores. Os contratos regulando o comportamento do código

correspondente provê dados adicionais para verificação de conformidade. No contexto do

desenvolvimento de programas Java, a linguagem Java Modeling Language (JML) [43] é

1

1.1 Problem 2

uma notação para habilitar o uso de DBC (e correspondente conjunto de ferramentas), com

contratos como comentários junto ao código Java.

O restante deste capítulo tem a seguinte estrutura: primeiro apresentamos o problema que

motivou o desenvolvimento do presente trabalho (Seção 1.1); na Seção 1.2 discutimos acerca

da solução proposta para o problema; posteriormente na Seção 1.3 mostramos a avaliação

realizada; então na Seção 1.4 resumimos as principais contribuições deste trabalho; e por fim

na Seção 1.5 mostramos a estrutura desta Dissertação.

1.1 Problem

With contracts, early detection of nonconformances is highly desirable, as developers are

able to provide a more reliable account of correctness and robustness of the software writ-

ten [48]. Developers tend to apply automated approaches, although incomplete, as verifica-

tion by formal proofs is hard to scale.

For JML, there are basically two ways to automatically check conformance: statically,

with tools such as ESC/Java [29], ESC/Java2 [23], LOOP [7], and JACK [4]; and dynami-

cally, with tools such as JMLUnit [18], JMLUnitNG [74], JET [16], Korat [11] and FA-

JITA [1].

While static analysis tools can be useful for diagnosing a number of common errors (such

as null dereferences and invalid accesses to arrays), they may be limited for detecting general

nonconformances (those only arise in the runtime environment), furthermore they can pro-

duce false positives and false negatives. Test-based approaches present, on the other hand,

lower costs and higher precision in detecting conformance problems. Nevertheless, those

approaches present a number of limitations, mostly by falling short in providing (1) effective

and automatic test data generation; (2) comprehensive unit tests that fully exercise sequences

of calls to unveil subtle nonconformances (as seen in the example from Section 1.1); and (3)

a classification for the detected nonconformances.

1.1.1 Motivating Example

In this section, we present an example to illustrate the problem of conformance checking

in a contract-based program. In JML, contracts are written as qualified comments (Source

1.1 Problem 3

Code 1.1). The example is adapted from the experimental unit TransactedMemory (Sec-

tion 4.2.1) – visibility is omitted, for simplicity.

GenCounter represents a piece of information about some named tag, while

MapMemory represents a Java implementation of memory for smart cards. In our adap-

tation, these classes have a constructor and two methods: one for updating and another

for resetting values. JML method contracts are declared with keywords requires and

ensures, specifying pre- and postconditions, respectively. The invariant clause must

hold after constructor execution, and before and after every method call. The invariant in

GenCounter enforces that field cntGen must be in range [0, MapMemory.MAX]. The

\old clause is used to refer to pre-state of some value, the used in the postcondition refers

to pre-state value of cntGen.

The program in Source Code 1.1 is not in conformance with its contracts. GenCoun-

ter presents one nonconformance that can only be detected with a sequence of three

calls to MapMemory.updateMap with parameter m = true. In Source Code 1.2, a

test case reveals this problem. This problem may be solved by adding a precondition

to GenCounter.updateCount, testing whether the value of cntGen is less than

MapMemory.MAX. Regardless of where the bug is located (contract or code, or both), the

failure may only arise within a sequence of calls to two or more methods, called in a particu-

lar order. Therefore, nonconformances between contract and implementation may be subtle

to detect. And manually-provided test cases or data have a considerable low probability of

detecting this kind of nonconformance.

Código Fonte 1.2: A test case that reveals the nonconformance present into GenCounter

class

1 MapMemory mm = new MapMemory () ;

2 mm. updateMap (t rue) ;

3 mm. updateMap (t rue) ;

4 mm. updateMap (t rue) ;

1.1.2 Relevance

Since we use contract-based programs with the aim of obtaining software quality, any con-

tract violation must be detected and corrected to software quality be maintained and ensu-

1.1 Problem 4

Código Fonte 1.1: GenCounter and MapMemory classes

1 c l a s s GenCounter {

2 / /@ i n v a r i a n t 0 <= cntGen && cntGen <= MapMemory .MAX;

3 i n t cntGen ;

4 GenCounter () {

5 cntGen= 1 ; }

6 / /@ e n s u r e s (b == t r u e) ==>(cntGen == \ o l d (cntGen +1)) ;

7 void upda t e Coun t (boolean b) {

8 i f (b) { cntGen ++; }

9 }

10 / /@ e n s u r e s cntGen == 0;

11 void r e s e t C o u n t () {

12 cntGen= 0 ;

13 }

14 }

15

16 c l a s s MapMemory {

17 f i n a l s t a t i c i n t MAX = 3 , MSIZE = 1 0 ;

18 GenCounter g ;

19 boolean [] map ;

20 i n t pos ;

21 MapMemory () {

22 g = new GenCounter () ;

23 map = new boolean [MSIZE] ;

24 pos= 0 ; }

25 / /@ r e q u i r e s pos < MSIZE−1;

26 void updateMap (boolean m) {

27 map [pos ++] = m;

28 g . upda t eCoun t (m) ; }

29 / /@ e n s u r e s pos == 0;

30 void r e se tMap () {

31 map = new boolean [MSIZE] ;

32 g . r e s e t C o u n t () ;

33 pos= 0 ;

34 }

35 }

1.2 Solution 5

red [48]. Furthermore, considering the software life-cycle, an early detection and correction

of a fault is very important because reduces the cost of correction and maintains the software

quality [68]. Regardless of where the bug is located (contract or code, or both), some con-

tract violations may only arise within a sequence of two or more method calls, called in

a particular order. Therefore, nonconformances between contract and implementation may

be subtle to detect, and manually-provided test cases or data, like in JMLUnit [18] or in

JMLUnitNG [74] approaches or test cases with a single method call, like in JET [16] appro-

ach, have a considerable low probability of detecting this kind of nonconformance. Thus, an

approach that automatically detect and suggests a likely cause for contract violations can be

useful to software quality maintenance.

1.2 Solution

In this work, we propose and implement a RGT-based (Randomly-Generated Tests) approach

to detection and a model to categorize nonconformances in contract-based programs. Our

approach aims to help the programmer in the process of nonconformances correction.

In order to investigate the conformance of the contract-based programs, our approach

automatically generates and executes tests, comparing the test results with oracles (genera-

ted from the contracts). The generated tests are composed basically of sequences of calls to

methods and constructors under test. The test oracles are assertions from the contracts. Some

tools like jmlc, OpenJML – for JML, AutoTest – for Eiffel; perform this kind of transforma-

tion. So, the assertions present in the contracts are used as oracles to the test results. After

tests execution, the approach applies two filters: the first to distinguish test results between

meaningless [19] – meaningless are tests that violate preconditions in method entries (pre-

conditions violated directly by the test case) because the test generator approach does not

consider specifications in the process of test generation – and failures (contract violations,

inconsistencies between test results and oracles); the second to distinguish from all failu-

res those that are distinct nonconformances (faults). The second filter returns the distinct

nonconformances to be used in the process of automatic categorization of nonconformances.

Regarding to nonconformances categorization, we propose a three-level model compo-

sed by a category, a type and a likely cause. This model is implemented in a heuristics-based

1.2 Solution 6

approach to automatically suggests a categorization for nonconformances. The category

corresponds to the artifact in which probably occurs the nonconformance – source code or

contract. The type is given automatically by the assertion checker, and corresponds to the

part of JML that was violated - considering only visible behavior from the systems. The sug-

gested likely cause is given by specific heuristics derived from our experience in investigate

likely causes for nonconformances. Each heuristic is based on a set of possible errors that

can induce to a nonconformance revelation and it is related to the type of detected nonconfor-

mance. In our implementation we use a set of heuristics and the contract-based program – the

source code and its contract. Based on the contract-based program, the nonconformance type

and the corresponding set of heuristics; a likely cause is suggested to the nonconformance.

For example, regarding an invariant error, we suggest a likely cause following the heuristics

aforementioned: first check whether there are some field from the class that is not initiali-

zed into the constructor, the likely cause suggested is Code error; otherwise, check whether

there is the default precondition, or nothing, or whether there is at least one field modified

on method body; in either case, the likely cause suggested is Weak precondition; otherwise

Strong invariant is the suggestion. From the example in Section 1.1.1, in which there is a

nonconformance of invariant type, once the method GenCounter.updateCount does

not have an explicit precondition (it receives the default true) and the likely cause sugges-

ted is Weak precondition. After the categorization, a set of categorized nonconformances is

returned to the user.

JMLOK 2.0 is our implementation of this approach in the context of Java/JML pro-

grams (JMLOK 2.0 is an improvement of JMLOK [71]). While JMLOK was able to

generate tests and displays the test results between meaningless and relevant; JMLOK 2.0

is able to detect and categorize nonconformances and to display for the user only the dis-

tinct nonconformances detected and categorized. Our detection does not present for the user

false positives; whereas JMLOK presents. Furthermore, the user interface was improved

in the new version of the tool, providing to the user more information about the noncon-

formance that was detected. JMLOK 2.0 was developed following an adaptation of MVC

pattern: there is a view module – the User Interaction; a Controller module – that intermedi-

ates the communication between the View and the Model; and two modules that composes

the Model, one module to nonconformances detection and one module to nonconformances

1.3 Evaluation 7

categorization.

In detection module of the tool, the test generation is performed automatically and ran-

domly by Randoop [55] tool. Randoop is a feedback-directed test generator tool; and the

tests generated are composed by sequences of calls to methods and constructors under test.

We chose Randoop as RGT engine because this tool generates several sequences of calls

to the object under test in a given time limit. The oracles generation is performed by jmlc

compiler and JUnit is the framework used to tests execution. Afterwards the execution, two

filters are past: one to separate meaningless from relevant tests (tests that can reveals noncon-

formances – failures); the other to get only distinct nonconformances from all relevant tests

(get distinct faults from all failures). After these filters the set of distinct nonconformances

is returned to the categorization module. In the categorization module, the contract-based

program and a set of heuristics are used to suggest a likely cause for each nonconformance.

Subsequently the categorization, the results (the list of categorized nonconformances) are

sent to Controller module; then Controller sends the results to be presented for the user in

the UI. Figure 1.1 presents the steps performed in our approach for detect and categorize

nonconformances in contract-based programs.

1.3 Evaluation

We evaluated our approach in two experiments [5]. First we evaluate our detection appro-

ach and our manual categorization process in open-source contract-based programs (Chap-

ter 4). The experimental units consist of sample programs available in the JML web site1

and programs collected from some open-source JML projects. Second we evaluate our im-

plementation of the categorization model by means of a module to JMLOK 2.0 in the same

contract-based programs. Furthermore, we asked voluntary JML experts to manually catego-

rize 10 nonconformances (randomly selected using the R statistical tool [10]) and compare

their results with our heuristics to evaluate our model (Chapter 5).

In the first experiment, we observed that most of detected nonconformances in our ex-

perimental units are related to postcondition errors with likely causes stay between Weak

preconditions (mostly related to the lack of preconditions for the methods) and Code errors

1http://www.eecs.ucf.edu/~leavens/JML/examples.shtml

1.3 Evaluation 8

(mostly related to null fields). We also found that most nonconformances are hard to detect

without sequences of modifications into the object under test, with the results of metrics bre-

adth and depth. In this experiment we performed two experimental studies (studies one and

two). In study one, six open-source contract-based programs and a set of sample programs

(Section 4.2.1) amounting to 29 KLOC and 9 K lines of JML contracts (that we will refer

as KLJML henceforth) were subject to JMLOK 2.0, which detected 84 nonconformances

in total. In addition, we classified the detected nonconformances in terms of category, type

and their likely cause, employing our categorization model (Section 3.2.1). Most nonconfor-

mances were postcondition violations, and causes often fall between weak preconditions and

code errors. Even in small examples, developed for JML training, nonconformances were

found – mainly problems in contracts. We also observed that the breadth (position of the

top-level test case method call within which the violation occurs) and the depth (number of

internal calls until the nonconformance occurs) of test execution that discovers nonconfor-

mances are, in average, 2.54 and 2.23, respectively, showing evidence for the need of a more

complex generated test structure in nonconformance detection than only one modification in

the object under test.

In study two, using a subset of programs from the first study (details in Section 4.3),

the JET tool unveiled 9 nonconformances with Java instructions coverage of 56.97% and

JML instructions coverage of 47.97%, while the JMLOK 2.0 tool detected 30 by covering

78.44% of Java instructions and 67.67% of JML instructions; on the same experimental units.

We compared the tools concerning (1) the number of detected nonconformances and (2) total

block instructions coverage by tests, and found that the JMLOK 2.0 tool performs better

for both criteria. Furthermore, nonconformances detected by JET differ between repeated

executions, maybe due to the nature of its genetic algorithm, which is not observable in

JMLOK 2.0.

In the second experiment, we observed that although the automatic categorization had

good results in comparison with our manual results, in some cases only a manual inspection

of the code and specification is able to determine what caused the nonconformance. In this

experiment we also performed two others experimental studies (studies three and four).

In study three, we propose and collect a metric to compare our automatic categorization

with our manual results: matches – the ratio between the number of coincidences between

1.4 Summary of Contributions 9

manual and automatic categorization and the number of total categorized nonconformances

–, the metric value was 0.73, indicating that there is a good ratio of coincidences between

the two approaches to categorize nonconformances.

In study four, we asked voluntary JML experts to categorize 10 nonconformances ran-

domly selected and compare their results with ours. In this study we observed that our

heuristics-based approach is a little bit similar to results from manual analysis of voluntary

JML experts.

1.4 Summary of Contributions

The main contributions of this work are the follows:

• An approach to suggests a categorization for nonconformances in contract-based pro-

grams;

• An implementation of this approach, and an improvement of the conformance chec-

king performed by JMLOK – in JMLOK 2.0;

• Analysis of the most frequent nonconformance types and likely causes in our experi-

mental units;

• Analysis of breadth and depth of test execution to detect nonconformances in our

experimental units;

• A comparison of two test-based approaches to conformance checking in open-source

contract-based programs;

• Analysis of matches between our classification model and our automatic categorization

approach for nonconformances in our experimental units;

• A comparison between our automatic categorization approach and the categorization

performed by JML experts in contract-based programs.

1.5 Outline of the Dissertation 10

1.5 Outline of the Dissertation

The remaining parts of this document are structured as follows:

Chapter 2: Background This chapter provides the theoretical background necessary

to understand this work. Some concepts from Formal Methods, Design by Contract and

Software Testing are presented.

Chapter 3: An Approach for Detection and Categorization of Nonconformances in

Contract-Based Programs This chapter presents in details our approach for detection and

categorization of nonconformances in contract-based programs.

Chapter 4: Evaluating Random Test Generation for Detecting Nonconformances

in Contract-Based Programs This chapter presents an evaluation of our approach to con-

formance checking together our manual categorization of nonconformances detected, we

also present an analysis of breadth and depth of test execution to detect nonconformances.

Furthermore, a comparison with a tool to conformance checking is performed in terms of

number of detected nonconformances and test coverage. Automatic categorization of non-

conformances is not considered yet.

Chapter 5: Evaluating Categorization of Nonconformances This chapter presents an

evaluation of our automatic categorization approach in comparison with our manual catego-

rization model (baseline); we also present a comparison between our categorization and the

categorization performed by voluntary JML experts.

Chapter 6: Conclusions This final chapter presents conclusions, related works, and

prospects for future work.

1.5 Outline of the Dissertation 11

Figura 1.1: The steps performed in our approach: 1- The code of the program is compiled.

2- Tests are generated with the compiled code in step 1. 3- Oracles are produced from

contracts. 4- Tests generated in step 2 are run against oracles produced in step 3. 5- A filter

distinguishes from all failures which distinct nonconformances were detected. 6- A subset

of heuristics to each nonconformance is selected based on its type. 7- Each subset is used

together the source code to choose a likely cause for the nonconformance. And finally, all

detect and categorized nonconformances are returned.

Capítulo 2

Fundamentação Teórica

Este capítulo tem como objetivo principal prover a fundamentação teórica necessária para o

entendimento dos principais conceitos discutidos nesta dissertação. Serão apresentados con-

ceitos de Métodos Formais, com ênfase na metodologia Design by Contract e em verificação

de conformidade dos contratos; e conceitos de Teste de Software, com ênfase em geração de

testes.

2.1 Formal Methods

According to Gibbins [33], a formal system is a system whose notation and manipulation

rules are well-defined and based on mathematics theory. A formal method is a set of engi-

neering rigorous practices that are based on formal systems and applied to development of

engineering products, like software and hardware [33]. A formal language with a precise

and unambiguous semantic is needed as base to use a formal method.

Formal methods gathered more emphasis after the ‘software crisis’ [68], once formal

methods have a mathematical approach that allows the developers to specification, develop-

ment, and verification of a system. Furthermore, with the use of logic concepts from works

such as Hoare [38] or Dijkstra [27], it is possible to prove the correctness of a program using

the same precision of mathematical theorems.

Despite the usefulness of formal methods, they have some limitations, that already were

known by Hoare [38]. One of the main is the limitation on proofs – a proof is a demonstration

that one formal statement follows from another, however, the real world is not a formal

12

2.1 Formal Methods 13

system, so a proof does not show that, in real world, things will happen as we expect [36].

Another important limitation is that mistakes can be made – even within formalism, we can

make mistakes in doing proofs [36].

Concerning in languages used to formally specify systems, we present in this section

some languages and discuss the main features of a language for formal specification. For-

mal specification languages follow basically two approaches: an algebraic approach, used to

describe the system in terms of operations and their relationships; and a model-based appro-

ach, used to construct a model from the system with mathematical constructions, like set and

sequences; and in which operations are defined by the way they modify the system. Some

well known formal languages and methods are: Larch family [42], [35], Z specification

language [72] and Vienna Development Method (VDM) [9], [52].

2.1.1 Formal Methods – Practice

Woodcock et al. [73] present a study about the use of formal methods in industry. They show

the main benefits of formal methods application and show that, although formal methods are

not widely used, the use has been increasing mainly after the creation of the Verified Software

Initiative1. Despite the benefits of formal methods to software development, their use in

industry is not widely spread yet, maybe because formal methods are hard to scale for big

systems. But according to Clarke and Wing [21] this scenario is changing in the last years

through the tools improvement and development to support specification and verification.

Also according to Clarke and Wing [21], the use of formal methods has been intensified in

companies like Microsoft, Praxis, Intel, Cisco, Sony Co., IBM, Rolls-Royce, and Cadence.

Furthermore, methodologies like Design by Contract [46] helps to increase the use of formal

methods in software development.

Once testing is a common practice to get some confidence about the program behavior

and, on the other hand, formal methods have been used to formally check the software cor-

rectness; Hierons et al. [37] present an investigation about the benefits from the use of formal

methods together with tests. Following ideas from the Design by Contract methodology the

alignment between formal methods and tests has increased mainly by the use of tools that

1https://sites.google.com/site/verifiedsoftwareinitiative/

2.2 Design by Contract 14

generate tests to conformance check between programs and their contracts (formal specifi-

cations).

2.2 Design by Contract

In this section we present Design by Contract in details and discuss about this methodology

for Eiffel, Java, and C# languages. Furthermore, we present the concept of conformance.

2.2.1 DBC – Concept

Contract-based programs [34] incorporate a language-based solution that integrates contracts

and code into a single artifact. In this scenario, the Design by Contract (DBC) [46] is an ap-

proach that arose from formal methods, more specifically from Hoare’s triples [38]. This

methodology was developed with the aim of helping to construction of reliable and quality

software. The fundamental idea from this methodology is the existence of contracts (in-

variants, pre- and postconditions) between modules of a system that establishes rights and

obligations for both parts: clients and suppliers. So, clients have to guarantee some condi-

tions before call a supply; suppliers, on the other hand, have to guarantee some properties

(results from their executions) for their clients.

With DBC methodology we have the advantage that contracts are executable; so, they

can be executed to conformance check, allowing the responsibility attribution of contract

violation – if the violation occurred in client side or in supplier side. Furthermore, contracts

present abstractions of the methods behavior. In general, contracts are written in the same

language of program source code.

The notation of Hoare’s triple used in contracts: P {Q} R, means that there is a required

connection between a precondition (P), a program (Q) and a description of the result of its

execution (R). According to Hoare [38], this may be interpreted as: “If the assertion P is true

before initiation of a program Q, then the assertion R will be true on its completion”.

The main languages that implements the DBD methodology are: Eiffel [47], Spec# [3]

and JML [43]. In the followings sections we present some details about each language.

2.2 Design by Contract 15

2.2.2 Eiffel

The Eiffel language [47] was created by Bertrand Meyer in mid-1980s, as an object-oriented

programming language focused on development of software quality. The language was used

by Meyer [48] to illustrate the fundamental concepts from Design by Contract methodology

- like pre- and postconditions and invariants. The language syntax is very similar to Pascal2

and ALGOL3 syntax. Eiffel method contracts are declared with keywords require and ensure,

specifying pre- and postconditions, respectively. A class invariant clause must hold after

constructor execution, and before and after every method call. The old clause is used to refer

to pre-state of some value.

In Source Code 2.1 we present an example of a program written in Eiffel to specify the

method updateCount from class GenCounter, one class from the motivating example

(Section 1.1.1) – the remainder of the example is specified in a similar way to JML specifi-

cation. In this example, the postcondition – clause ensure declares that the value of cntGen

field must be increased in one if b parameter is equals True, and the old clause used in the

postcondition refers to pre-state value of cntGen.

Código Fonte 2.1: Example of DBC in Eiffel

1 c l a s s GenCounter

2 f e a t u r e

3 cntGen : INTEGER i s 0

4

5 upda t eCoun t (b : BOOLEAN) i s

6 do

7 i f b = True

8 then cntGen := cntGen + 1

9 ensure

10 b = True i m p l i e s cntGen = old cntGen + 1

11 end

Concerning tool support, AutoTest [49] is a collection of tools that automate the testing

2http://www.pascal-programming.info/index.php
3http://groups.engin.umd.umich.edu/CIS/course.des/cis400/algol/algol.

html

2.2 Design by Contract 16

process for Eiffel programs. In AutoTest the contracts are used as oracles to expected outputs

for conformance checking of the programs; furthermore, AutoTest uses a randomly-guided

tests generation (ARTOO [20]) and supports mixing manual and automated test. Besides

AutoTest, there is the EiffelStudio4. EiffelStudio is an Integrated Development Environment

(IDE), a software application that provides comprehensive facilities to computer program-

mers for software development, powered by the Eiffel language.

2.2.3 Spec#

Spec# [3] is an extension to the object-oriented language C# to support Design by Contract.

Spec# extends the system of types from C# to include non-null types and verified exceptions.

Furthermore, provides constructions to contract specifications for methods as preconditions,

postconditions, and invariants. Spec# method contracts are declared with keywords requires

and ensures, specifying pre- and postconditions, respectively. A class invariant clause must

hold after constructor execution, and before and after every method call. The old clause is

used to refer to pre-state of some value.

The development of the language had a similar purpose of the development of Eiffel, the

main motivation to Spec# development was quality software construction with a viable cost.

In Source Code 2.2 we present the implementation of updateCount method from

GenCounter class using Spec# language. The postcondition – clause ensures declares that

the value of cntGen field must be increased in one if b parameter is equals true; the old

clause used in the postcondition refers to pre-state value of cntGen.

Concerning tool support, Spec# compiler [3] is integrated into the Microsoft Visual Stu-

dio development environment for the .NET platform. The compiler statically enforces non-

null types, emits run-time checks for method contracts and invariants, and records the con-

tracts as metadata for consumption by downstream tools. And Boogie [2] is the Spec# static

program verifier, this tool generates logical verification conditions from a Spec# program.

Internally, Boogie uses an automatic theorem prover that analyzes the verification conditions

to prove the correctness of the program or find errors in it.

4https://www.eiffel.com/eiffelstudio/

2.2 Design by Contract 17

Código Fonte 2.2: Example of DBC in Spec#

1 c l a s s GenCounter {

2 i n t cntGen = 0 ;

3 p u b l i c vo id upda t eCoun t (bool b)

4 e n s u r e s (b == t rue) ==> (cntGen == o l d (cntGen) + 1) ;

5 {

6 i f (b) {

7 cntGen ++;

8 }

9 }

10 }

2.2.4 JML

In the context of Java development, the Java Modeling Language (JML) [43] is a DBC-

enabling notation (and corresponding toolset), with contracts as comments within Java code.

JML has syntax very similar to Java, furthermore, extends some Java expressions (e.g. the

use of quantifiers) to specify behaviors and has some restrictions about Java constructions

like: side-effects, generic types, and Java annotations. JML mixes DBC approach from Eif-

fel [47] with the specification model-based approach from Larch family [35] of programming

languages, and some elements of calculus of refinement.

JML method contracts are declared with keywords requires and ensures, spe-

cifying pre- and postconditions, respectively. A class invariant clause must hold after cons-

tructor execution, and before and after every method call. A history constraint – constraint

clause is similar to invariants, but constraints define relationships that must hold for the com-

bination of each visible state and the next in the program’s execution. A \old clause is used

to refer to pre-state of some value.

In Source Code 2.3 we present the implementation of the updateCount method from

GenCounter class using JML language. In JML the postcondition is represented with

the clause ensures; the \old clause used in the postcondition refers to pre-state value

of cntGen. The spec_public clause is used to declares that the private field cntGen is

publicly visible in the specification context. JML has many other elements in addition to

2.2 Design by Contract 18

preconditions, postconditions, invariants, and constraints; the complete list of JML elements

is available at JML Reference Manual [44].

Código Fonte 2.3: Example of DBC in JML

1 p u b l i c c l a s s GenCounter {

2 p r i v a t e /∗@ s p e c _ p u b l i c @∗ / i n t cntGen = 0 ;

3 / /@ e n s u r e s (b == t r u e) ==>(cntGen == \ o l d (cntGen +1)) ;

4 p u b l i c upda t e Coun t (boolean b) {

5 i f (b) {

6 cntGen ++;

7 }

8 }

9 }

Concerning tool support for JML, there are basically three kinds of tools: runtime as-

sertion checkers (RAC) or JML compilers – like jmlc [17], jml4c [64], OpenJML [22],

or ajmlc [61]; dynamic and static conformance checking tools – like JMLUnit [18],

JMLUnitNG [74], JET [16], for dynamic conformance checking; and ESC/Java [29], ESC/-

Java2 [23], LOOP [7], JACK [4] for static conformance checking. With regard to JML

compilers, jmlc is like a Java compiler but add assertions into bytecode from contracts in

source code (contracts like preconditions, postconditions, invariants and history constraints).

jml4c is a JML compiler built by extending the Eclipse Java compiler; this compiler supports

Java 5 features such as generics. And OpenJML is the new compiler of JML, this compiler

is in development yet and intends to support the new features of Java language. As another

point of view, ajmlc is a seamless aspect-oriented extension to the JML design by contract

language, compatible with AspectJ. ajmlc cleans modularization/specification of crosscut-

ting contracts, such as preconditions and postconditions, while preserving documentation

and modular reasoning.

2.2.5 Conformance

With the DBC methodology arises the concept of conformance [16],[18] – when the code

does what the contract declares, in other words, the code satisfies its contract. When the

2.2 Design by Contract 19

conformance is broken there is a contract violation – called in the literature as nonconfor-

mance [16]. Once in DBC contracts, invariants, preconditions, and postconditions can be

specified in a way that can be verified by a compiler, any contract violation between cli-

ent and supplier modules can be detected immediately, allowing the construction of more

reliable systems.

A nonconformance can occurs in two cases:

1. When the client guarantees the preconditions and the supplier does not guarantee their

postconditions – a nonconformance in supplier side;

2. When the client does not guarantee the precondition from the supplier – a nonconfor-

mance in client side.

For example, the code presented in Source Code 1.1 is not in conformance with its con-

tract (Case 1 of nonconformance – the supplier does not return the expected result to its

client). Consider the following sequence of calls (Source Code 2.4):

Código Fonte 2.4: Test case that shows a nonconformance in updateCount method.

1 MapMemory mm = new MapMemory () ;

2 mm. updateMap (t rue) ;

3 mm. updateMap (t rue) ;

4 mm. updateMap (t rue) ; / / C o n t r a c t v i o l a t i o n here .

After three calls to updateMap method with true as parameter the invariant from Gen-

Counter class is violated. The problem occurs because the supplier allows that the client to

call updateMap several times and does not check anything about this call – in this case the

precondition from updateCount is true, meaning that all clients are accepted, and nothing

is required from clients.

As an example of nonconformance from Case 2, consider the Source Code 2.5. In this

Source Code we present a class that provides a function to divide two numbers (lines 2 to

7) in the supplier side and a instantiation and method call in the client side (lines 10 and

11). Line 11 shows a nonconformance in the client side, the precondition of div method is

broken.

In this work, we are considering only nonconformances from Case 1 – in the supplier

side, but we intend to extend our approach to work with client-side checking [59].

2.3 Software Testing 20

Código Fonte 2.5: Code that presents a nonconformance in the client side – Case 2.

1 / / s u p p l i e r s i d e

2 p u b l i c c l a s s M a t h O p e r a t i o n s {

3 / /@ r e q u i r e s y > 0 . 0 ;

4 p u b l i c double d i v (double x , double y) {

5 re turn x / y ;

6 }

7 }

8

9 / / c l i e n t s i d e

10 M a t h O p e r a t i o n s mo = new M a t h O p e r a t i o n s () ;

11 mo . d i v (3 . 5 , 0 . 0) ; / / C o n t r a c t v i o l a t i o n here .

2.3 Software Testing

Testing is an activity intended to discover system defects before it is put into use [68]. Re-

gardless test cannot guarantee that the system is defect free [25], they can be used to increase

the confidence in the system behavior; thus, tests have been used for years in software engi-

neering.

According to Sommerville [68], traditionally the testing process has two distinct goals:

to demonstrate to developer and customer that the software meets its requirements; and to

discover undesirable or incorrect situations, or does not conform to its specification. The first

goal leads to validation tests, checks the expected behavior from the system; the second, leads

to verification tests, checks if the software meets its stated functional and non-functional

requirements. In this work, the tests are used aiming the second goal: checking consistency

between code and contracts.

The testing process starts as soon as a requirement becomes available and continues

through all stages of the software development. In the software testing context, the concepts

of error, failure, and fault are widely used. According to Binder [8] and IEEE [24], an error

is a human action that results in a software fault; a failure is a manifested inability of a

system to perform a function; and a fault is defined as the absence of code or the presence of

incorrect code in a system software that causes the failure. In this work, a nonconformance

2.3 Software Testing 21

is considered as a fault.

Testing may be carried out at three levels of granularity [68]:

1. Unit testing, where individual program units or object classes are tested. Unit testing

should focus on testing the functionality of objects or methods.

2. Component testing, where several individual units are integrated to create composite

components. Component testing should focus on testing component interfaces.

3. System testing, where some or all of the components in a system are integrated and

the system is tested as a whole. System testing should focus on testing component

interactions.

Depending on the system under test, an approach to conformance checking can be used

in any level of granularity: unit testing, component testing, or system testing. The remainder

of this section presents some concepts about software testing that are needed to understand

this dissertation, like test cases, oracles in DBC context, an approach to tests generation, and

a test technique – conformance testing.

2.3.1 Test Cases

A test case is composed by a set of inputs, execution conditions, and expected results chosen

to test a behavior of the system under test [8]. Each test case has basically two information:

inputs – conditions that must be satisfied before test execution (preconditions to methods or

objects under test), and the data chosen to test the system; outputs – postconditions that must

be satisfied before the test execution, and the output produced by the system.

In the context of this work, a test case is a set of instantiations and modifications (method

calls with their parameters) in an object under test. The expected results are given by the

contracts present in the code. Source Code 2.4 presents an example of test case, in line 1

there is an object instantiation, lines 2 to 4 present modifications (method calls).

2.3.2 Oracles in DBC Context

A test oracle determines if the result of a program p1 using a test case tc1 is correct [69].

There are several methods of oracle creation, including manually specifying expected outputs

2.3 Software Testing 22

for each test, monitoring user-defined assertions during test execution, and verifying if the

outputs match those produced by some reference implementation.

According to the Design by Contract methodology [48], contracts (class invariants and

pre- and postconditions) express elements of the specification from the software being deve-

loped. If they are executable, they can be monitored at runtime and any contract violation

signals a fault into the program. In DBC the oracles are highly dependent from the quality

and coverage of the contracts, if the programs have few contracts, their oracles can assert

few properties about these systems.

In this work we are considering the contracts present into the code as oracles. Those

contracts are used to conformance checking between source code and specification. For

example, to updateCount method (Source Code 2.3) we show in Source Code 2.6 the

oracle generated for this method (using a JML compiler – jmlc in this case). We omitted

some details to simplify understanding. The assertions were transformed in try-catch, and

if-control structures – assertion checkers in runtime. First there is a check for invariant

violations (line 4 – once that an invariant must be hold before and after every method call),

then there is a precondition checking (line 7), if the precondition is respected, the method is

executed (line 11) and after method execution there is a postcondition checking (line 13); if

there are some contract violation, lines 16 to 23 try to catch, if no contract violation occurs,

the invariant is checked again (line 29).

2.3.3 Tests Generation

Considering the approach to test generation there are basically two fundamental approaches:

white box testing and black box testing [39]. White box testing (such as Control Flow Tes-

ting, Branch Testing, and Loop Testing [41]) is a kind of test where the implementation of the

system under test is considered. On the other hand, black box testing (such as Equivalence

Class Partitioning, Decision Tables, State Transition Diagrams, and Use Case Testing [6]) is

a kind of test performed to verify whether, for a given input, the system produces the correct

output; correct based on the specification of the system – the system oracle. There is yet,

a hybrid approach that mixes features from black and white box approaches; the Gray-box

testing. In this work we are considering a gray box testing approach.

Furthermore, the test generation can be performed in two ways: manually – when the

2.3 Software Testing 23

Código Fonte 2.6: Oracle generated to updateCount method

1 p u b l i c vo id upda t e Coun t (boolean a rg0) { { . . . }

2 t r y {

3 / / c h e c k s i n v a r i a n t b e f o r e method e x e c u t i o n

4 i f (JMLChecker . i s A c t i v e (JMLChecker . INVARIANT)) {

5 t r y {

6 / / c h e c k s p r e c o n d i t i o n

7 i f (JMLChecker . i s A c t i v e (JMLChecker . PRECONDITION)) {

8 boolean r a c $o k = t rue ;

9 boolean r a c $ i n v = t rue ;

10 t r y {

11 i n t e r n a l $ u p d a t e C o u n t (boolean) ;

12 / / c h e c k s normal p o s t c o n d i t i o n

13 i f (JMLChecker . i s A c t i v e (JMLChecker . POSTCONDITION) && r a c $ d e n t e d

()) { . . . }

14 } } } }

15 }

16 catch (J M L I n v a r i a n t E r r o r r a c $ e) { . . . }

17 catch (J M L E n t r y P r e c o n d i t i o n E r r o r r a c $ e) { . . . }

18 catch (J M L I n t e r n a l P r e c o n d i t i o n E r r o r r a c $ e) { . . . }

19 catch (J M L I n t e r n a l N o r m a l P o s t c o n d i t i o n E r r o r r a c $ e) { . . . }

20 catch (J M L A s s e r t i o n E r r o r r a c $ e) { . . . }

21 catch (j a v a . l a n g . Throwable r a c $ e) { r a c $ i n v = f a l s e ;

22 t r y {

23 / / c h e c k s e x c e p t i o n a l p o s t c o n d i t i o n

24 i f (JMLChecker . i s A c t i v e (JMLChecker . POSTCONDITION) && r a c $ d e n t e d ())

{ . . . }

25 } ca tch (J M L A s s e r t i o n E r r o r r a c $ e r) { . . . }

26 }

27 f i n a l l y { i f (r a c $o k && r a c $ i n v) {

28 / / c h e c k s i n v a r i a n t

29 i f (JMLChecker . i s A c t i v e (JMLChecker . INVARIANT) && r a c $ d e n t e d ()) { . . . } }

}

30 { . . . }

31 }

2.3 Software Testing 24

tests are written by a tester; or automatically – when generated by a tool. In this work we are

considering tests generated automatically, in a Randomly-Generated Tests (RGT) approach

by means of Randoop [55]. Randoop is a feedback-directed random test generation tool for

Java programs, the tool randomly generates tests for a set of methods given a time limit.

The tool generates tests in JUnit5 format. Figure 2.1 presents the process that Randoop

uses to tests generation. Source Code 2.7 presents a test case generated by Randoop for the

motivating example (Section 1.1.1).

Figura 2.1: The Randoop test generation process. The process starts when are given the

following inputs: a list of classes under test, a time limit, and optionally a set of properties to

check. Then sequences of method calls are generated, executed and examined; the feedback

from the execution feeds back the process until the time limit be reached.

2.3.4 Conformance Testing

Conformance testing is an approach used to verify whether the implementation of a system

is in conformance with its specification (its contract), in other words, if the code satisfies its

specification. This kind of test uses as oracle the specifications in the source code and the

conformance is determined by the adequacy of the test results with the contracts. There are

basically two ways to automatically check conformance: dynamically and statically. Dyna-

mic checking of conformance between code and specification is done by runtime assertion

checking, that is, simply running the code and testing for violations of assertions from the

5JUnit is a programmer-oriented testing framework for Java, available online http://junit.org/.

2.3 Software Testing 25

Código Fonte 2.7: Test case generated by Randoop

1 p u b l i c vo id t e s t 1 () throws Throwable {

2 i f (debug) { System . o u t . p r i n t ("RandoopTest0.test1") ; }

3 MapMemory va r 0 = new MapMemory () ;

4 va r0 . updateMap (f a l s e) ;

5 va r0 . updateMap (t rue) ;

6 va r0 . updateMap (t rue) ;

7 va r0 . updateMap (f a l s e) ;

8 va r0 . updateMap (f a l s e) ;

9 va r0 . updateMap (t rue) ;

10 va r0 . updateMap (t rue) ;

11 va r0 . updateMap (t rue) ;

12 va r0 . updateMap (f a l s e) ;

13 }

specification. Tools like JMLUnit [18], JMLUnitNG [74], JET [16], and JMLOK 2.0 com-

bine runtime assertion checking with unit testing for dynamic checking of JML programs.

Another way is verifying that the code satisfies its specification statically. This can give

more assurance in the correctness of the code as it establishes the correctness for all possible

execution paths, whereas dynamically only exercises the execution paths according to the

test suite being used. Nevertheless, correctness of a program with respect to a given specifi-

cation is not decidable in general. Tools like ESC/Java [29], ESC/Java2 [23], and LOOP [7]

performs static checking for JML programs. Any verification tool (static or dynamic) must

trade off the level of automation it offers and the complexity of the properties and code that

it can handle [12].

In a formal point of view, conformance testing relates a specification and an implementa-

tion under test (IUT) by the relation conforms–to ⊆ IMPS x SPECS, where IMPS represents

the implementations and SPECS represents specifications. Therefore, IUT conforms–to s if

and only if IUT is a correct implementation of specification s [70].

The conforms–to relation is harder to be checked by tests than by static analysis; so

in this work we are considering an informal definition of conformance testing: to us, con-

formance is when the code satisfies its specification; the code does what the specification

2.3 Software Testing 26

declares. The ideas of satisfies relation arose from Hoare’s triple [38]. A code satisfies its

specification if the code results are expected by its specification. In our work, we use a dy-

namic approach to conformance checking, tests are used to compare code execution results

with oracles generated by the specification.

Capítulo 3

Uma abordagem para Detecção e

Categorização de Não-conformidades em

Programas Baseados em Contratos

Em programas baseados em contratos, a prévia detecção de não-conformidades é desejá-

vel, para que os desenvolvedores estejam mais confiantes na corretude e robustez do sistema

de software sendo escrito [48]. As não-conformidades detectadas em programas baseados

em contratos devem ser corrigidas para garantir a qualidade do software. Neste capítulo

apresentamos uma abordagem dinâmica para verificação de conformidade em programas

baseados em contratos e uma abordagem baseada em heurísticas para categorizar as não-

conformidades detectadas nestes tipos de programas. Primeiro, apresentamos a abordagem

de verificação de conformidade (Seção 3.1), então apresentamos a abordagem de categori-

zação de não-conformidades (Seção 3.2). Por fim, na Seção 3.3 descrevemos uma imple-

mentação dessas abordagens no contexto de programas Java/JML – por meio da ferramenta

JMLOK 2.0.

27

3.1 Randomly-Generated Tests Approach for Conformance Checking 28

3.1 Randomly-Generated Tests Approach for Confor-

mance Checking

In this section we present the Randomly-Generated Tests (RGT) approach for checking con-

formance in contract-based programs, implemented by our tool, JMLOK 2.0. The approach

benefits from automatic generation of test data and cases; it is promising to conformance

checking as it provides a considerable number of ready-to-run test cases that can be used

to detect contract assertion violations in compiled contract-based programs. Our approach

is an improvement of the approach presented by Oliveira [53]. While JMLOK was able to

generate tests and displays the test results between meaningless and relevant; JMLOK 2.0

is able to detect and categorize nonconformances and to display for the user only the distinct

nonconformances detected and categorized. Our detection does not present for the user false

positives; whereas JMLOK presents. Furthermore, the user interface was improved in the

new version of the tool, providing to the user more information about the nonconformance

that was detected.

The approach determines a straightforward process, which starts when a contract-based

program is given as input; then the following steps are performed: (1) generation of unit

tests (using a RGT engine, like Randoop [55]) composed of sequences of constructor and

method calls over a class under test, as originally yielded by a conventional compiler (e.g.

Java JDK); (2) generation of test oracles from contracts by a specific contract-aware com-

piler (e.g. jmlc [17]); (3) execution of the generated test suite, against the oracles, asserting

the equivalence between test output and the assertions generated by the oracles; (4) after

execution, a filter distinguishes passed tests over failed, and into the subset of failed tests,

the filter groups from all failures which are distinct nonconformances (faults); (5) finally

the list of nonconformances resultants is returned. Figure 3.1 presents this approach that is

implemented in JMLOK 2.0 tool.

3.1.1 Step 1 - Tests Generation

This step starts with the compilation of the contract-based program, using a compiler from

the source language (like Java compiler). After compilation, if no errors occurred, test cases

3.1 Randomly-Generated Tests Approach for Conformance Checking 29

Figura 3.1: The internal structure of the proposed RGT-based approach for nonconformances

detection. As inputs are given the contract-based program, a directory of external libs (opti-

onal) and the time to tests generation (also optional, default value = 10 seconds). 1- Tests are

generated into the RGT engine. 2- Oracles are produced from contracts. 3- Tests generated

in step 1 are run against oracles produced in step 2. 4- A filter distinguishes from all failures

which distinct nonconformances were detected. 5- The list of detected nonconformances is

returned.

and test data are generated using a RGT engine.

Depending on the stage of development from the system, we can have three kinds of

tests: unit tests, component tests, or system tests [68]. In our approach we can have any of

these types of test. The test generation is based only on the implementation, contract are

used as oracles (Section 3.1.2); otherwise the contract violations would expected by the test

in the oracle. The tests are composed by several calls to all public methods and constructors

from classes under test. Source Code 3.1 exemplifies a test generated in our approach for

test the updateMap from class MapMemory (Source Code 1.1).

Código Fonte 3.1: Test generated by our approach from motivating example

1 p u b l i c vo id t e s t 5 () throws Throwable {

2 i f (debug) { System . o u t . p r i n t l n () ; System . o u t . p r i n t ("RandoopTest0.test5

") ; }

3 MapMemory va r 0 = new MapMemory () ;

4 va r0 . updateMap (f a l s e) ;

5 va r0 . updateMap (t rue) ;

6 va r0 . updateMap (t rue) ;

7 va r0 . updateMap (f a l s e) ;

8 va r0 . updateMap (f a l s e) ;

9 va r0 . updateMap (f a l s e) ;

3.1 Randomly-Generated Tests Approach for Conformance Checking 30

10 va r0 . updateMap (t rue) ;

11 va r0 . updateMap (f a l s e) ;

12 va r0 . updateMap (t rue) ;

13 va r0 . updateMap (f a l s e) ;

14 / / The f o l l o w i n g e x c e p t i o n was thrown d u r i n g e x e c u t i o n .

15 / / T h i s b e h a v i o r w i l l r e c o r d e d f o r r e g r e s s i o n t e s t i n g .

16 t r y {

17 va r0 . updateMap (f a l s e) ;

18 f a i l ("Expected exception of type java.lang.

ArrayIndexOutOfBoundsException") ;

19 } catch (j a v a . l a n g . Ar ray IndexOutOfBoundsExcep t ion e) {

20 / / E x p e c t e d e x c e p t i o n .

21 }

22 }

In some cases, only several calls to the methods under test can reveals a nonconfor-

mance (for example, in our motivating example – Source Code 1.1 –, only after three calls

to updateMap with true as parameter reveals a nonconformance – lines 5, 6 and 10 from

Source Code 3.1). The automatic tests generation allows the creation of scenarios that per-

forms consecutive calls to a method under test, increasing the variety of the tests and hence

the possibility of nonconformances detection.

3.1.2 Step 2 - Oracle Generation

The second step is the oracle generation. This step consists in use a specific contract-aware

compiler to produce oracles. To us, the test oracles are assertions generated by the contract-

aware compiler from contracts present into the system.

Some contract-based languages like Eiffel [47], Spec# [3], and JML [43] have compilers

that generate oracles from contracts in runtime. An example of oracle generated by jmlc

compiler to updateCount method is presented in Source Code 2.6. We use the RGT

engine to generate tests in the bytecode without assertions because otherwise the contract

violations would expected by the test in the oracle. We use the bytecode with assertions only

in tests execution.

3.1 Randomly-Generated Tests Approach for Conformance Checking 31

3.1.3 Step 3 - Tests Execution

In this step, the tests generated in the first step are executed considering the oracles gene-

rated in the second step. After the comparison between test results and oracles these tests

are classified in failure and success; failure when there is a contract violation, and success

otherwise.

When a test is classified as failure, a new classification is performed. If the contract

violation is from precondition type, we check if the precondition problem occurs in the entry

of a method under test – directly into the test case; in affirmative case, the test is classified

as meaningless1 [19], otherwise the failure is relevant. This distinction occurs only with

violations of precondition, the others: postcondition, invariant, constraint, and evaluation

do not have this needed, all contract violations of these types are relevant.

3.1.4 Step 4 - Grouping distinct Nonconformances

In this step, all failures are grouped in distinct nonconformances. The grouping algorithm

consists on gathering all failures presented in the different test cases according to the de-

tected nonconformance. Thus, only the distinct nonconformances are returned. Therefore,

JMLOK 2.0 presents detected nonconformances in a meaningful way, whereas previous

version of JMLOK tool [53] presents the whole set of failures (possibly repeated) revealed

by the tests.

In our approach two failures are equal when they have the same type and location – they

were detected in the same part of the contract-based program, considering package, class,

and method; otherwise, they are distinct. We compare all failures revealed by the tests and

list only those that represent distinct nonconformances. Figure 3.2 shows a high-level of this

step.

3.1.5 Step 5 - Results from Detection Phase

This is the last step from conformance checking phase. In this step the list of distinct noncon-

formances is returned within test cases that reveals the nonconformances. The result of this
1meaningless are tests that violate preconditions in methods entry (preconditions violated directly by the

test case) because the test generator approach does not consider specifications in the process of test generation.

3.2 Heuristics-based Approach for Categorize Nonconformances 32

Figura 3.2: Grouping nonconformances – this process receives as input a list of several

failures (some possibly equal), then the failures are compared and the filter returns a set of

distinct nonconformances (distinct faults).

step is used as input for the automatic categorization approach, that automatically suggests

causes for nonconformances. So, the developers can analyse the test case and the likely cause

for each nonconformance, and uses this information as a starting point to nonconformances

correction.

3.2 Heuristics-based Approach for Categorize Nonconfor-

mances

In this section we present the approach for categorize nonconformances in contract-based

programs. First we present the categorization model for nonconformances (Section 3.2.1),

then the overview of this model is shown in Section 3.2.2. Finally, Section 3.2.3 describes in

details the heuristics proposed to categorize nonconformances.

3.2.1 Categorization Model

In order to categorize nonconformances, we propose a three-level model to categorization2:

each nonconformance has a category, a type, and a likely cause (see Table 3.1). An error that

apparently occurs in the contract is regarded as specification error; in contrast, apparent error

in the body of the problematic method(s) is a code error; it is undefined when it is not possible

2This model is an extension of the categorization model proposed in our previous work [50].

3.2 Heuristics-based Approach for Categorize Nonconformances 33

Tabela 3.1: Categorization model for nonconformances in contract-based programs.

Category Type Likely Cause

Specification error

precondition
Strong precondition

Weak postcondition

postcondition
Weak precondition

Strong postcondition

invariant
Weak precondition

Strong invariant

constraint
Weak precondition

Strong constraint

evaluation
Weak precondition

Strong postcondition

Code error – Code error

Undefined – Undefined

– considering a non-expert in the application domain – to determine whether the problem is

in the contract or in the source code (this category is used only for manual categorization

purposes). The type is given automatically by the assertion checker, and corresponds to the

part of JML that was violated – considering only visible behavior from the systems.

Each error may present several likely causes, which cannot be deterministically diag-

nosed – debugging can be aided, however, by specific heuristics. For example, regar-

ding an invariant error, we suggest a likely cause following the heuristics aforementioned:

first check whether there is the default precondition, or nothing, or whether there is at le-

ast one field modified on method body; in either case, the likely cause is determined as

Weak precondition; otherwise Strong invariant is the suggestion. Regarding the example

in Section 1.1.1, in which there is a nonconformance of invariant type, once the method

GenCounter.updateCount does not have an explicit precondition (the method recei-

ves the default true) and the likely cause suggested is Weak precondition. The complete set

of heuristics for each type is available in Section 3.2.3.

As an example for the category of Specification error, the class ArrayUtils (project

3.2 Heuristics-based Approach for Categorize Nonconformances 34

JAccounting [60]) has a method getMaxIntArrayIndex, with a postcondition vi-

olation that occurs after a creation of an array of integers and one call to the method. The

nonconformance occurs in the body of getMaxIntArrayIndex with an invalid access to

an empty array, causing an exception (ArrayIndexOutOfBoundsException). This

problem possibly occurs by reason of the precondition that does not check the array size.

Therefore, we have a nonconformance with type Postcondition, category Specification error

and likely cause weak precondition; these information may be used by the developer in the

process of nonconformances correction. Source Code 3.2 presents the test case that reveals

this nonconformance.

Código Fonte 3.2: Test case that reveals a nonconformance that we categorize as specifica-

tion error

1 p u b l i c vo id t e s t G e t M a x I n t A r r a y I n d e x () {

2 i n t [] va r0 = new i n t [] { } ;

3 i n t va r 1 = A r r a y U t i l s . g e t M a x I n t A r r a y I n d e x (va r0) ;

4 }

As an example of Code error, the class Personal_Impl (project HealthCard [62])

there is an invariant violation that occurs after the creation of an object from class. The non-

conformance occurs due to the default constructor does not initialize the field birthplace,

violating the default JML invariant, that requires all fields as non-null. This problem possibly

occurs by a code error – the lack of initialization of all fields of this class. Source Code 3.3

presents the test case that reveals this nonconformance.

Código Fonte 3.3: Test case that reveals a nonconformance that we categorize as code error

1 p u b l i c vo id t e s t P e r s o n a l _ I m p l () {

2 P e r s o n a l _ I m p l va r 0 = new P e r s o n a l _ I m p l () ;

3 }

Finally, as an example of Undefined, the class Common (project Bomber [60])

has a method div, with a precondition violation that occurs in the call to

distancePointToLine method. distancePointToLine calls the methods sqr,

sqrt and mul to construct parameters to call div. The nonconformance apparently occurs

for the reason that sqr, sqrt, and mul – called to create the parameters for the call to

div – perform a shift of several bits (in some cases 10); as in this test case the generated

3.2 Heuristics-based Approach for Categorize Nonconformances 35

values are a little bit small (usually amount of 10), the shift results in zero, violating the pre-

condition of div. Once the Bomber domain is mobile games, maybe the generated values

are large enough; therefore, we categorize this nonconformance as Undefined, because we

cannot say if the problem stays in the code or in the specification. Source Code 3.4 presents

the test case that reveals this nonconformance.

Código Fonte 3.4: Test case that reveals a nonconformance that we categorize as undefined

error

1 p u b l i c vo id testCommon () {

2 i n t va r 4 = Common . d i s t a n c e P o i n t T o L i n e (3 2 , (−4) , 10 , 1) ;

3 }

3.2.2 Categorization Overview

The approach for categorization determines a straightforward process, which starts when a

list of nonconformances and the source code are given as input; then, the following steps are

performed: (1) the process starts when the heuristics selector receives a set of nonconfor-

mances, then a subset of heuristics to each nonconformance is selected based on its type; (2)

next, each subset is used together the source code to choose a likely cause for the nonconfor-

mance; (3) finally the list of categorized nonconformances resultant is returned. Figure 3.3

presents this approach.

Figura 3.3: Internal structure of the approach for nonconformances categorization. As input

are given the list of nonconformances and the source code. 1- a subset of heuristics to each

nonconformance is selected based on its type. 2- Each subset is used together the source code

to choose a likely cause for the nonconformance. 3- The list of categorized nonconformances

is returned.

The categorization may help the programmer given an idea about the probable cause of

3.2 Heuristics-based Approach for Categorize Nonconformances 36

the problem and reducing the search scope, and it is a first step ahead of the completely

automated categorization of nonconformances.

3.2.3 Heuristics

In this section, we show our set of heuristics to categorize each one type of nonconformances

that we are considering (precondition, postcondition, invariant, constraint, and evaluation).

For a nonconformance from precondition type, we proposed to check whether there is at

least one parameter on precondition. In positive case, the likely cause is suggested as Strong

precondition; otherwise Weak postcondition is the suggestion. If there is a parameter or field

in the precondition, the method can become a little restrictive – indicating a possible strong

precondition; otherwise, the postcondition of one method used in the call to the method with

precondition problem can be weak and allows return values that violates the precondition of

the called method. Figure 3.4 shows the heuristic for nonconformances of precondition.

Figura 3.4: Heuristic for nonconformances from precondition type.

For a nonconformance from postcondition or evaluation types, whether there is the de-

fault precondition, or nothing, or whether there is at least one field modified on method body;

in either case, the likely cause suggested is Weak precondition; otherwise Strong postcondi-

tion is the suggestion. If a method has the default precondition, it means that all clients are

allowed and this fact can cause problems in the method exit – the method’s body can be una-

ble to produce the desired result; so, weak precondition is proposed; furthermore, if there is a

field modified on method body, and the precondition does not check anything about the field,

weak precondition is also suggested. Finally, if neither of these cases occurs, the suggestion

is strong postcondition – a postcondition so strong that possibly cannot be satisfied by the

method’s body. Figure 3.5 shows the heuristics for nonconformances of postcondition and

evaluation.

3.2 Heuristics-based Approach for Categorize Nonconformances 37

Figura 3.5: Heuristics for nonconformances from postcondition and evaluation types.

For a nonconformance from invariant type, whether there are some field from the class

that is not initialized into the constructor, the likely cause proposed is Code error; otherwise,

whether there is the default precondition, or nothing, or whether there is at least one field

modified on method body; in either case, the likely cause suggested is Weak precondition;

otherwise Strong invariant is the suggestion. If a class has some field not initialized, the

default JML invariant is violated (invariant that determines all fields must be non-null); so,

in this case we suggest as likely cause Code error (null-related) due to the fact that the code

does not initialize all field from the class. Case all field are non-null and the method has the

default precondition or nothing, it means that all clients are allowed and this fact can cause

problems in the method exit (violating an invariant, for example) – the method’s body can

be unable to produce the desired result; so, weak precondition is proposed; furthermore, if

there is a field modified on method body, and the precondition does not check anything about

the field, weak precondition is also suggested. Finally, if neither of these cases occurs, the

suggestion is strong invariant – an invariant so strong that possibly cannot be satisfied by the

method’s body. Figure 3.6 shows the heuristics for nonconformances of invariant.

Finally, for a nonconformance from constraint type, whether there are some field from

the class that is not initialized into the constructor, the likely cause suggested is Code error;

otherwise, whether there is the default precondition, or nothing, or whether there is at least

one field modified on method body; in either case, the likely cause suggested is Weak precon-

dition; otherwise Strong constraint is the suggestion. If a class has some field not initialized

can be that a field manipulated into a constraint had null value, so, the likely cause propo-

sed is Code error (null-related); due to the code does not initialize all fields from the class.

3.3 JMLOK 2.0 38

Figura 3.6: Heuristics for nonconformances from invariant type.

Case all field are non-null and the method has the default precondition or nothing, it means

that all clients are allowed and this fact can cause problems in the method exit (violating a

constraint, for example) – the method’s body can be unable to produce the desired result; so,

the suggested likely cause is weak precondition; furthermore, whether there is at least one

field modified on method body, and the precondition does not check anything about the field,

weak precondition is also suggested. Finally, if neither of these cases occurs, the suggestion

is strong constraint – a constraint so strong that possibly cannot be satisfied by the method’s

body. Figure 3.7 shows the heuristics for nonconformances of constraint.

These set of heuristics were implemented into a module for nonconformances categori-

zation in JMLOK 2.0 tool (Section 3.3.4).

3.3 JMLOK 2.0

JMLOK 2.0 is our implementation for the RGT-based and heuristics-based approaches, and

is an improvement of Oliveira [53] work. Figure 3.8 shows its architecture. The tool is com-

posed by four modules: UI, Controller, Detector (internal structure of this module is shown

in Figure 3.1) and Categorizer (internal structure of this module is shown in Figure 3.3).

Execution steps are indicated as follows: (1) the contract-based program, some external li-

brary needed to the program, and the time limit for test generation (the time to stop the test

3.3 JMLOK 2.0 39

Figura 3.7: Heuristics for nonconformances from constraint type.

generation) are given as input; (2) the Controller module forwards the data to Detector and

Categorizer modules; (3) the Detector module runs and returns a list of nonconformances to

Categorizer module; (4) the Categorizer module runs and returns to Controller module a list

of categorized nonconformances, which are presented on the UI.

Figura 3.8: The architecture of JMLOK 2.0 tool. There are 4 modules in this tool: UI,

Controller, Detector, and Categorizer.

In Sections 3.3.1 to 3.3.4, we present the details about the implementation of the JM-

LOK 2.0. Section 3.3.5 shows some details about the tool architecture. Finally, Section 3.3.6

describes some limitations of this approach.

3.3 JMLOK 2.0 40

3.3.1 Step 1 - User interaction

The first step performed in the tool is the user interaction: the contract-based program, some

external library needed to the contract-based program, and the time limit for test generation

(the time to stop the test generation) are given as input by the user and the button Run is

pressed. Figure 3.9 shows the initial user interaction screen from JMLOK 2.0. In this

screen the user can give the contract-based program, the folder to external libraries (needed

in the contract-based program), and the time to tests generation. Only the contract-based

program is mandatory; by default the tool uses its libraries and the time limit of 10 seconds

to tests generation. The time limit depends on the contract-based programs being checked.

We recommend starts with a low value (e.g. 2 seconds) for the time limit and increases the

value within resources for conformance checking of the project. Soares et al. [67] present

some experiences with the use of time limit for Randoop.

Figura 3.9: The initial screen of the tool. In this screen the user can give the inputs needed

to use the tool. If no input is given, a message dialog warns the user about the needed of at

least the contract-based program to be given as input.

3.3.2 Step 2 - The Controller module

The Controller module receives the data from UI and sends to Detector and Categorizer. Af-

ter this, the module wait until receive data from Categorizer or until receive some information

about problems in tool execution. When the Controller receives the results from Categorizer,

the module sends to UI these results, to UI presents the results to the user.

3.3.3 Step 3 - The Detector module

This module was improved from the previous approach [53]. In the previous version, there

were not modularization neither generalization. We improved some parts, first updating the

3.3 JMLOK 2.0 41

versions of Randoop [55] and JUnit3, Randoop version 1.3.4 and JUnit version 4.0. Another

improvement that we performed, was to allow the user chooses the JML compiler that he

wants to use (the current jmlc [17] or OpenJML [22]). Furthermore, we added a filter that

allows to return only the distinct detected nonconformances and we developed an approach

for automatically categorize nonconformances (Section 3.3.4).

Tests Generation

The tests generation starts when the Controller sends the data for Detector. Then, the

contract-based program is compiled using the Java compiler and the bytecode is past to

Randoop [55] tool, to tests generation. We chose Randoop as RGT engine because this tool

generates many sequences of calls to the object under test in a given time limit. The time

limit is used to bound the test generation process. So, we suggest starts with a low value

for the time limit and increases, like performed in Soares et al. [67]. For tests generation,

Randoop uses as input public methods or constructors (operations under test) for testing. It

generates sequences of invocations, and uses the sequences to create tests and test data for

further invocations. As a consequence, the number of generated test cases depends both on

the number of available operations and the behavior of the experimental unit, which provides

feedback to Randoop.

We investigate the Korat [11] tool. Korat is a tool based on the JML-JUnit approach,

which allows exhaustive testing of a method for all objects of a bounded size. The tool

automatically constructs all non isomorphic test cases and execute the method on each test

case. However, test cases constructed by Korat only consist of one object construction and

one method call on this object. Furthermore, Korat requires an imperative predicate that

specifies the desired structural constraints and a finitization that bounds the desired test input

size. So, we prefer continue to use Randoop as RGT engine. An example of test case

generated by Randoop is presented in Source Code 3.1.

Oracle Generation

Once jmlc [17] compiler is a deprecated project and does not support some new features of

Java language – like generics and other features from Java 5+; the JML community is trying

3http://junit.org/

3.3 JMLOK 2.0 42

to update tools to support the new compiler, OpenJML [22]. For that reason, aiming improve

our tool and use OpenJML, we created some test scenarios to investigate the change feasibi-

lity. As a result of our tests with the OpenJML compiler, we found that its infrastructure is

still incipient to use in tools to conformance checking. This compiler could lead us to report

false positives; once OpenJML does not thrown exceptions, only warnings are thrown. We

contacted the compiler’s developer but, unfortunately, the solution proposed to this problem

was costly4; so, we prefer continue to use the old compiler (jmlc).

So, in this step, we continue to use jmlc as the JML compiler. The procedure to confor-

mance checking consists in check the assertions generated by jmlc; if an assertion is violated,

an specific exception is thrown. This compiler has some limitations (the lack of support to

some new Java features, like Java generics and features from Java 5+), but the new JML

compiler (OpenJML [22]) is still in development and does not have the same features of

jmlc. We are using jmlc version 5.6_rc4. We do not use the Randoop oracles because they

are created without consider the JML contracts.

Although JMLOK 2.0 does not use OpenJML yet, we implemented this tool to work

with this compiler as soon as a more stable version becomes available.

Tests Execution

In this step, the tool runs the test suite against the oracles. JUnit is the tool used to run the

tests, once Randoop generates tests in JUnit format. After the comparison between tests

results and oracles, those tests are classified in failure and success; failure when there is a

contract violation, success otherwise.

When a test is classified as failure, a new classification is performed. If the contract

violation is from precondition type, we check if the precondition problem occurs in the entry

of a method under test – directly into the test case; in affirmative case, the test is classified

as meaningless5 [19], otherwise the failure is relevant. This distinction occurs only with

violations of precondition, the others: postcondition, invariant, constraint, and evaluation

4The solution proposed was set a runtime property (to say for the compiler throws exceptions) in each place

that a call to a method on a class under test. Once our approach generate several test methods and each test

method has some method calls to the object under test, this would be very costly for our detection phase.
5meaningless are tests that violate preconditions in methods entry (preconditions violated directly by the

test case) because the test generator approach does not consider specifications in the process of test generation.

3.3 JMLOK 2.0 43

do not have this needed, all contract violations of these types are relevant.

Grouping Distinct Nonconformances

In this step, all failures are grouped in distinct nonconformances. The grouping algorithm

consist on gathering all failures presented in the different test cases according to the de-

tected nonconformance. Thus, only the distinct nonconformances are returned. Therefore,

JMLOK 2.0 presents detected nonconformances in a meaningful way, whereas previous

version of JMLOK tool [53] presents the whole set of failures (possibly repeated) revealed

by the tests.

In our approach two failures are equal when they have the same type and location – they

were detected in the same part of the contract-based program, considering package, class,

and method; otherwise, they are distinct. We compare all failures revealed by the tests and

list only those that represent distinct nonconformances.

Results from Detection Phase

As result of Detection step, a list of distinct nonconformances is returned. Each element of

the list contains information about type of nonconformance, and its location. This list will

be used in the process of categorization performed by the Categorizer.

Figure 3.10 presents the intermediate screen that shows to user that Detection phase has

finished.

3.3.4 Step 4 - The Categorizer module

In this step, the categorization of the detected nonconformances is performed. After performs

the categorization, this module returns to Controller module a list of categorized nonconfor-

mances. Then the nonconformances are sent by Controller to the UI, and the UI presents the

results of the tool to the user.

This module executes the steps presented in Figure 3.3. First, the list of discovered

nonconformances is given as parameter to the heuristics selector (Section 3.3.4). Then, a

set of heuristics, the set of discovered nonconformances, and the source code is past to the

categorizer (Section 3.3.4). Finally, the list of categorized nonconformances is returned, and

3.3 JMLOK 2.0 44

Figura 3.10: The screen resultant of Detection phase. In order to get the results of the

categorization, the user have to press the button Nonconformances.

the programmer can analyze the source code and contract to correct the nonconformances

detected and categorized by the tool.

Heuristics selector

The first step of the categorization module is the selection of a subset of heuristics for a

nonconformance. Each type of nonconformance has a set of heuristics, that were presented

in Section 3.2.3. So, in this step a switch directs each type for its set of heuristics. As a result

of this first step, a list of set of heuristics is past to the categorizer step. For example, to the

nonconformance presented in our motivating example (see Source Code 1.2), the heuristics

used to categorize the nonconformance is presented in Figure 3.6 – heuristics for invariant.

3.3 JMLOK 2.0 45

Categorizer

The second step is the categorization of the nonconformance, based on its set of heuristics

and the contract-based program corresponding. Each heuristic of the set of heuristics is chec-

ked with the program; and a resultant likely cause is returned. Finally, a list of categorized

nonconformances is returned.

Figure 3.11 shows the result of the categorization process in JMLOK 2.0 tool, for the

contract-based program presented in Source Code 1.1.1.

Figura 3.11: Categorization screen presenting the results of JMLOK 2.0 tool. For each

nonconformance are presented: the type, the complete location (including information of

package, class, and method), the suggested likely cause, and the test case with highlight in

the line that reveals the nonconformance.

3.3.5 JMLOK 2.0 Architecture

In our improvement of JMLOK tool, we use an adaptation of the Model-View-Controller

(MVC) pattern [13]. In this adaptation, the controller mediates communication between the

model and the view. The view is responsible by the interaction with the user; and the model is

3.3 JMLOK 2.0 46

responsible by the conformance checking and the categorization of the detected nonconfor-

mances. The MVC architecture of JMLOK 2.0 tool is the follows: the View is represented

by UI module; the Model is represented by Detector and Categorizer (Detector is responsible

by the conformance checking; and Categorizer is responsible by the categorization of detec-

ted nonconformances); and the Controller is represented by Controller module – this module

mediates the communication between model and view. Figure 3.8 shows the architecture of

JMLOK 2.0 tool.

As an improvement in relation to the previous version, in JMLOK 2.0, all features were

modularized allowing that internal changes do not affect other modules. Furthermore, now

the tool has a module that treats with categorization of nonconformances; and the detec-

tion performed includes a filter to differentiate between several test results which represent

distinct nonconformances.

Although our approach has some limitations (see Section 3.3.6), we have a tool that can

be used to detect and categorize contract violations; furthermore, the tool results may help

the programmer in the process of nonconformances correction.

3.3.6 Limitations

Our conformance checking approach is based on tests, so we cannot argue about its com-

pleteness in finding all nonconformances that could be found in a given experimental unit.

Furthermore, we can have a set of test cases that are unable to reveal nonconformances in a

given project. Therefore, any generalization about the types of nonconformances, categories

and likely causes should be disregarded.

Once our tool uses the jmlc as JML compiler, our tool cannot be used to check confor-

mance in programs with new features of Java language (like generics and other features from

Java 1.5+). Moreover, in our approach we are considering only the publicly visible behavior

of methods, so we cannot check the internal behavior of the methods.

Our approach is limited to dynamic checking of the code and contract so, sometimes,

we cannot suggest the same likely cause that the manual categorization. Nevertheless, our

automatic results may help the developer as a start point to the nonconformance correction.

Additionally, our approach does not consider the domain of each contract-based program

being checked, which sometimes is important for the suggestion of likely cause from the

3.3 JMLOK 2.0 47

nonconformance. For example, in Source Code 3.4 our automatic categorization approach

suggests as likely cause for the precondition problem Strong precondition, whereas a manual

categorization can suggests a Code error in the body of distancePointToLine or in the

body of the methods called by distancePointToLine before the call to div method.

Or yet, domain knowledge can indicate that the problem occurs in the test data generated by

the test case, because in the real use of this class, values given to distancePointToLine

will be much greater than zero and the precondition of div method will be respected.

Although our categorization module cannot determine the real cause of the nonconfor-

mance, the results can help the programmer giving an idea about the probable cause of the

problem and bounding the search scope. Moreover, the categorization approach is a first step

ahead of the completely automated categorization of nonconformances.

Capítulo 4

Avaliação da Geração Aleatória de Testes

para Detecção de Não-Conformidades em

Programas Baseados em Contratos

Neste capítulo apresentamos dois estudos experimentais [5]: primeiro avaliamos nossa abor-

dagem RGT (JMLOK 2.0) com respeito a detecção de não-conformidades; então, compa-

ramos duas abordagens RGT (JMLOK 2.0 e JET [16]) para verificação de conformidade

em programas JML. Primeiro, apresentamos as questões de pesquisa utilizadas (Seção 4.1),

então os resultados e as discussões dos estudos experimentais (Seções 4.2 e 4.3). Na Se-

ção 4.4 descreve algumas ameaças à validade. Por fim, na Seção 4.5 são respondidas as

nossas questões de pesquisa.

4.1 Research Questions

The goal of the first study is to analyze our RGT approach (JMLOK 2.0) with respect to

conformance checking and manual categorization of nonconformances from the point of

view of the developer in the context of contract-based programs. This study addresses the

following research questions:

Q1. Is JMLOK 2.0 able to detect nonconformances in contract-based programs?

We measure the number of detected nonconformances in original sample and open-

source contract-based programs.

48

4.1 Research Questions 49

Q2. What are the most common types of nonconformances, and their likely causes?

We analyze the types of nonconformances, investigating their likely causes.

Q3. What is the context, within the execution, in which we found nonconformances?

We measure and summarize metrics B and D (Equations 4.1 and 4.2, respectively). For

each nonconformance (nc) we manually collected two metrics: breadth (B) and depth (D).

The first measures the number of top calls within the test method until the failure occurs.

This metric is defined in Equation 4.1; the calls(tm) returns the sequence of method calls

into the test method (tm). The second is the call depth (Equation 4.2) needed to find a given

nonconformance – the internal calls performed until the contract is violated. For the method

call that corresponds to the position on which the nonconformance was revealed, if the latter

is in the body of this method, D receives 1, otherwise, its value is recursively increased until

the method that reveals the nonconformance is called. For the example of Section 1.1.1 the

metric values are: B = 4 – there are four calls until the failure occurs (see Source Code 1.2))

–, and D = 2 – the nonconformance is into GenCounter.updateCount method that is

called into MapMemory.updateMap method.

B(nc, tm) = position(nc, calls(tm)) (4.1)

D(nc, tm) =

let p = position(nc, calls(tm))

let m = method(calls(tm)[p])

if (nc ∈ body(m)) then result = 1

else result = 1 +D(nc,m)

(4.2)

The goal of the second study is compare two RGT approaches: JMLOK 2.0 and JET, for

the purpose of evaluation with respect to their effectiveness in detecting nonconformances

from the point of view of the developer in the context of contract-based programs. We chose

JET for this comparison because to the best of our knowledge is the only tool for JML

that does not require user inputs (as test data or implementation of functions). This study

addresses the following research question:

4.2 First study - RGT in Isolation 50

Q4. Does the RGT-based approach perform better than the JET tool?

With this question, we intend to analyze the results from the two approaches in detec-

ting nonconformances; the answer should provide a better view of their differences, helping

developers in establishing the best scenario for each method.

4.2 First study - RGT in Isolation

In this section we present the first study, which provides evidences for the first three research

questions (Q1, Q2 and Q3).

4.2.1 Setup

The experimental units consist of sample programs available in the JML web site1 and pro-

grams collected from several open-source JML projects; the experimental units totalize more

than 29 KLOC and more than 9 K lines of JML specification (that we will refer as KLJML

henceforth). The experimental unit named Samples is composed by 11 example programs

for training purposes2, because 2 other programs (prelimdesign and jmlrefman)

could not be compiled. The Samples programs were written by specialists in the JML

language. Furthermore, we gathered 6 open-source JML programs. While Bomber [60] is

a mobile game, HealthCard [62] is an application that manages medical appointments

into smart cards. JAccounting and JSpider are 2 case studies from the ajml compiler

project [60], implementing, respectively, an accounting system and a Web Spider Engine.

Mondex [65] is a system whose translation from original Z specification was developed in

the Verified Software Repository3 context. Finally, TransactedMemory [57] is a specific

feature of the Javacard API. These experimental units are characterized in Table 4.1.

The study was performed in a PC with CPU Intel Core i7 2.20 GHz, RAM 8 GB, OS

Windows 8 and Java 7 update 51. Once Randoop requires a time limit to generate tests

– the time after which the generation process stops –, we used 10 seconds as basis, as in

1http://www.eecs.ucf.edu/~leavens/JML/examples.shtml
2dbc, digraph, dirobserver, jmlkluwer, jmltutorial, list, misc, reader, sets,

stacks, table, and an adaptation of the subpackage stacks – BoundedStack
3http://vsr.sourceforge.net/mondex.htm

4.2 First study - RGT in Isolation 51

Tabela 4.1: Programs characterization in terms of Lines of Code (LOC) and Lines of JML

specification (LJML).

Experimental Unit LOC LJML

Samples 3,400 5,200

Bomber 6,400 255

HealthCard 1,700 2,400

JAccounting 6,500 331

JSpider 8,800 386

Mondex 1,000 361

TransactedMemory 1,800 335

Total 29,600 9,268

previous work with JMLOK [71] and a simple bootstrap execution4 – we suggest starts

with a low value for the time limit and increases, like performed in Soares et al. [67]. For

collecting data about test coverage we used EclEmma 2.3.0 (Eclipse plugin)5 to collect Java

instruction coverage, and manually collect the JML coverage – aided by EclEmma, counting

the number of contracts (pre- and postconditions, invariants and constraints) covered by the

tests. The categorization model from Section 3.2.1 was manually applied to each detected

nonconformance. Furthermore, metrics breadth and depth were manually collected.

4.2.2 Results

Table 4.2 presents the results of running JMLOK 2.0 for sample and open-source JML

programs, including the number of generated test cases (considering the time limit of 10

seconds for tests generation), the test coverage, the number of detected nonconformances

and their types. Further down, the detected nonconformances for each unit are listed.

For sample programs, 18 nonconformances were detected – 15 were categorized as post-

4In our bootstrap, we variate the time limit from 10 to 120 seconds. Once the nonconformances detected

and the instruction coverage were the same for all executions (considering our experimental units), we used 10

seconds as time limit.
5http://www.eclemma.org

4.2 First study - RGT in Isolation 52

Tabela 4.2: For each experimental unit we present the number of generated test cases, test

coverage, and all nonconformances detected, grouped by their types.

Samples Bomber
Health

Card
JAccounting JSpider Mondex

Transacted

Memory
Number of Genera-

ted Tests
7,581 946 710 1,000 477 3,743 963

Java Coverage 93.44% 11.62% 87.51% 36.14% 32.93% 53.42% 70.30%

JML Coverage 96.33% 11.62% 87.51% 62.63% 32.93% 22.58% 55.93%

Type of Nonconfor-

mance
Total

Postcondition error 15 1 12 9 0 0 1 38

Invariant error 2 2 11 12 0 2 6 35

Constraint error 0 0 6 0 0 0 0 6

Evaluation error 1 0 0 2 0 0 0 3

Precondition error 0 1 1 0 0 0 0 2

Total 18 4 30 23 0 2 7 84

condition errors, other 2 as invariant, and 1 as evaluation. For open-source JML projects, 66

nonconformances were detected: Bomber (4), HealthCard (30), JAccounting (23),

Mondex (2), and TransactedMemory (7). In JSpider we did not discover noncon-

formances with the used setup (Section 4.2.1). The categorization was distributed in the

following manner: 33 invariant, 23 postcondition, 6 constraint, 2 evaluation, and 2 precon-

dition. The pie chart in Figure 4.1 shows the distribution of nonconformance types among

all experimental units.

Additionally, the likely causes of the detected nonconformances are shown in Table 4.3.

Most of the 84 detected nonconformances were categorized as weak precondition (38),

followed by Code error (23). Three experimental units (Bomber, JAccounting,

Mondex) presented Code error as the most frequent problem. Strong postcondition is the

main cause of nonconformances in the sample programs. The pie chart in Figure 4.2 shows

the distribution of causes among all experimental units.

Table 4.4 presents the mean of metrics breadth (B) and depth (D) for each experimental

unit and for all nonconformances in general. The mean of breadth metric vary from 1.50

(in Bomber and Mondex experimental units) to 5.43 (in TransactedMemory). The mean of

depth metric vary from 1.43 (in JAccounting) to 2.94 (in Samples).

4.2 First study - RGT in Isolation 53

Figura 4.1: Nonconformances distributed between their types, for all experimental units.

4.2.3 Discussion

Discussion Q1. The RGT-based approach – applied by means of JMLOK 2.0 – was able

to detect 84 nonconformances. The number of generated tests varied significantly for each

experimental unit, maybe due to the test generator’s approach. Randoop uses as input public

methods or constructors (operations under test) for testing. It generates sequences of invoca-

tions, and uses the sequences to create tests and test data for further invocations. As a con-

sequence, the number of generated test cases depends both on the number of available ope-

rations and the behavior of the experimental unit, which provides feedback to Randoop. For

instance, JSpider has the lowest number of generated tests, maybe due to its nature (Web

Engine), which requires some user interaction (same for Bomber); in contrast, Mondex

had, among open-source JML programs, the highest number of generated test cases, as user

interaction is not necessary. The generated sequences become a benefit of the approach, as

several nonconformances were only detected by running a particular sequence of constructor

and method calls. For instance, a postcondition error in AbstractTransactedMemory

(a class from TransactedMemory) is only revealed after 32 specific method calls. In

addition, test coverage results are also varying. While Bomber showed a very low value

(maybe due to the need of user interaction), Samples and HealthCard presented the

highest coverage rates.

4.2 First study - RGT in Isolation 54

Tabela 4.3: Likely Causes from detected nonconformances in the experimental units.

Nonconformance’s

Likely Cause
Samples Bomber

Health

Card
JAccounting JSpider Mondex

Transacted

Memory
Total

Weak precondition 6 0 15 11 0 0 6 38

Code error 0 3 5 12 0 2 1 23

Strong postcondition 8 0 8 0 0 0 0 16

Undefined 4 1 0 0 0 0 0 5

Strong precondition 0 0 1 0 0 0 0 1

Strong constraint 0 0 1 0 0 0 0 1

Strong invariant 0 0 0 0 0 0 0 0

Weak postcondition 0 0 0 0 0 0 0 0

Total 18 4 30 23 0 2 7 84

Tabela 4.4: Results of mean for breadth and depth metrics to each experimental unit and for

all nonconformances detected.

Experimental Unit breadth (B) depth (D)

Samples 2.22 2.94

Bomber 1.50 2.25

HealthCard 3.00 2.47

JAccounting 1.57 1.43

Mondex 1.50 1.50

TransactedMemory 5.43 2.14

Mean 2.54 2.23

The approach detected nonconformances to the set of example programs, written by spe-

cialists in the JML language. Despite their best efforts, subtle nonconformances remained

in the contract and/or programs; some of those were indeed hard to catch only with vi-

sual analysis or simple tests. For instance, we detected 8 nonconformances in methods that

invoke, in their contract, JMLDouble.approximatelyEqualTo; JMLDouble is im-

ported from the standard JML API, being only visible on the contract level; its method

approximatelyEqualTo performs precise comparison between two values. The tole-

rance value (constant related to error rate) can be inappropriately small (only 0.005); or, this

postcondition is too strong; or, the implementation of type JMLDouble is too restrictive.

All these possible reasons show how hard it is to detect those kinds of nonconformances.

4.2 First study - RGT in Isolation 55

Figura 4.2: Nonconformances distributed between their likely causes, for all experimental

units.

Concerning open-source JML programs, we contacted all authors to report the results.

From those, two authors (the author of Bomber, JAccounting and JSpider; and the

author of TransactedMemory) responded positively, confirming that the results were in-

deed previously-undetected nonconformances. Concerning Mondex, the authors reported

that the nonconformances detected were already known by developers; however, the version

with those nonconformances remained available. In HealthCard study, the author answe-

red to our contact informing that he had not worked with JML for some years, and did not

want to discuss the nonconformances.

Discussion Q2. From the 84 detected nonconformances, the most frequent type was the

postcondition – 38, followed by invariant violations – 35. These numbers indicate that most

violations occur at the exit of operations, even if the cause is not in the operation itself.

There are several possible explanations: specifiers expect certain behavior to which the code

fails to comply, or a chain of previous calls fails to avoid certain undesirable states. More

severe contract errors were not significantly frequent (only three were evaluation errors).

A few nonconformances were related to history constraints (six) in the only program that

actually uses those constraints (HealthCard). This result could indicate that using those

constraints is not trivial, with questionable usefulness – they often can be replaced by an

invariant.

4.2 First study - RGT in Isolation 56

Regarding likely causes, our manual classification found Weak precondition as the main

cause for the experimental units (with 38 instances). In this case, a method allows values

that should be denied for the correct execution of the method – as we could infer from the

information available in the program. For instance, the default precondition (requires true) is

often used in the experimental unit JAccounting. Maybe Weak precondition has been the

most common case of likely cause because it is complex to specify preconditions; once the

specifier does not previously know the clients of his system, an overly strong precondition

deny access to several clients; on the other hand, if the precondition is too weak, several

clients will not be able to get the expected result. So this represents an important trade-off

for contract-based programs. However, Code error is also very recurrent, with 23 instances.

This problem is probably related to different levels of abstraction between programming

language and contract language, in which the coder may not understand a contract written by

someone else, or even the contract may be too complex to be implemented; or there can be a

synchronization issue between code and contract evolution. For instance, in HealthCard

we observed that a change in the code concerning dates made a class invariant obsolete,

which resulted in a nonconformance.

Discussion Q3. The results presented in Table 4.4 suggest that breadth and depth are, in

average, higher than 1, for all experimental units. Those numbers suggest that tests have a

higher chance of success in detecting nonconformances when the test cases present higher

horizontal (call sequences) and vertical (internal calls) complexity. The method of test ge-

neration used in our approach favors that property. The highest values were obtained on

HealthCard. For instance, breadth = 32 for class AbstractTransactedMemory,

where several modifications into objects under test were performed until the nonconformance

emerged; and depth = 8 into the class GenGenbyte where several calls are made until the

invariant problem arises. This experimental unit also had the biggest mean for breadth (5.43),

whereas Samples presented the biggest mean for depth metric (2.94).

The smallest mean for breadth (1.5) and depth (1.43) metrics were obtained on Bomber,

Mondex and JAccounting; this result indicates that the nonconformances in these units

were simpler to detect. It seems reasonable to conclude that there is a relationship between

those metrics and the most frequent type of nonconformance present in those units – invari-

ant, which specifies that all fields of the class must be non-null (JML default behavior). A

4.3 Second Study - JMLOK 2.0 versus JET 57

single execution of a constructor that does not initialize all fields conflicts with the assertion

based on this invariant. The complete manual categorization performed is available in our

technical report [51].

4.3 Second Study - JMLOK 2.0 versus JET

In this section we present the second study, which provides evidences for the fourth research

question (Q4).

4.3.1 Setup

JET aims at applying dynamic testing to conformance checking in JML, by randomly ge-

nerating test cases using contracts as test oracles. Genetic algorithms are applied for auto-

matically building all test data that exercise runtime assertions. This choice is promisingly

effective, although it raises the risk of nondeterminism in generating test cases and data on

successive executions of the tool. We chose JET because was the only functional tool that

we have found for Java not requiring any additional inputs.

In this study, we evaluate one factor with two treatments (JMLOK 2.0 and JET). We

chose a paired comparison design for the study, that is, the experimental units were ap-

plied to all treatments. This comparison considered only a subset of the experimental units

from the first study, due to JET requirements [16] (no public fields can be assigned, and

object sharing is not allowed). The units were Samples, JAccounting, Mondex and

TransactedMemory, totalizing over 6 KLOC and 5 KLJML; from JAccounting, only

the main class of the system, Account, was considered, once this class does not have de-

pendencies, so can be used with JET tool. This study was performed in the same machine

setup of the first study (Section 4.2.1). We used the JMLOK 2.0 and JET tools with their

default configurations.

4.3.2 Results

Table 4.5 presents the results of the experimental study considering JMLOK 2.0 and JET.

The total number of nonconformances detected by JET was 9, against 30 nonconformances

4.3 Second Study - JMLOK 2.0 versus JET 58

detected by JMLOK 2.0. Only for the JAccounting experimental unit JET detected a

nonconformance that was not detected by JMLOK 2.0, the others 8 nonconformances were

also detected by JMLOK 2.0. In relation to test coverage, only for JAccounting JET

presented higher coverage for both Java and JML coverage.

Tabela 4.5: Comparison between JMLOK 2.0 and JET. For each experimental unit is pre-

sented the number of tests generated by each tool, test coverage (Java and JML), number and

types of nonconformances.

Samples JAccounting Mondex TransactedMemory

JET

Tests 8,306 1,787 700 1,958

Java Coverage 62.86% 100% 7.50% 21.53%

JML Coverage 63.70% 100% 11.60% 52.59%

NCs 4 4 0 1

Types
2 invariant

4 postcondition —– 1 invariant
2 postcondition

JMLOK 2.0

Tests 7,581 1,000 3,743 963

Java Coverage 93.44% 96.60% 53.42% 70.30%

JML Coverage 96.33% 95.83% 22.58% 55.93%

NCs 18 3 2 7

Types

15 postcondition 1 postcondition

2 invariant

6 invariant

2 invariant
2 evaluation 1 postcondition

1 evaluation

4.3.3 Discussion

With objective of perform a statistic comparison of the tools, to discover which is the more

effective (in relation to number of nonconformances detected and tests coverage) we analyze

the data profile to choose the more suitable test to be used.

Firstly, we performed an investigation about the possibility of use the Paired t-test [40]

because the test is the better parametric test to compare two samples; to use the Paired t-test

our data need have two features: Normality and Homoscedasticity. Thus, we performed a

normality test Shapiro-Wilk [66] and get the following results:

• To Java coverage data:

– With JMLOK 2.0 we obtained a p-value = 0.44, do not being possible reject the

null hypothesis of data Normality;

4.3 Second Study - JMLOK 2.0 versus JET 59

– With JET we obtained a p-value = 0.67, too do not being possible reject the null

hypothesis.

• To JML coverage data:

– With JMLOK 2.0 we obtained a p-value = 0.29, do not being possible reject the

null hypothesis of data Normality;

– With JET we obtained a p-value = 0.94, too do not being possible reject the null

hypothesis.

• To number of nonconformances data:

– With JMLOK 2.0 we obtained a p-value = 0.04, rejecting the null hypothesis of

data Normality;

– With JET we obtained a p-value = 0.16, do not being possible reject the null

hypothesis of data Normality.

Since only the number of nonconformances data of JMLOK 2.0 was not Normal, the use

of Paired test-t was discarded only for compare the number of nonconformances detected by

the tools. We used the Homoscedasticity test Bartlett and we obtained the following results:

• To Java coverage data we obtained a p-value = 0.27, do not rejecting the null hypothesis

of data Homoscedasticity;

• To JML coverage data we obtained a p-value = 0.97, do not rejecting the null hypothe-

sis of data Homoscedasticity;

• To number of nonconformances data we obtained a p-value = 0.01, rejecting the null

hypothesis of data Homoscedasticity.

Once data of coverage Java and JML are Normal, we use Paired test-t to compare the two

tools; and to compare the data of number of detected nonconformances, we use Wilcoxon

signed-rank. The analysis statistic revealed that JMLOK 2.0 is better than JET in relation to

number of nonconformances detected and the coverage (Java and JML) from tests generated

by the tools using Paired test-t and Wilcoxon signed-rank tests, obtain that the JMLOK 2.0

4.3 Second Study - JMLOK 2.0 versus JET 60

tool is more effective than JET tool with 95% of confidence level and with p-value = 0.94 to

the number of nonconformances; p-value = 0.96 to Java coverage; and p-value = 0.86 to JML

coverage (considering the null hypotheses that the number of nonconformances detected by

JMLOK 2.0 is greather than equal the number of nonconformances detected by JET and

that the coverage (Java and JML) of JMLOK 2.0 tests are greather than equal the JET tests

coverage (Java and JML) - because the null hypotheses that the values were equals were

rejected). Thus, the answer of question Q4. is: the JMLOK 2.0 tool is more effective than

JET tool with 95% of confidence level.

Discussion Q4. JET was able to reveal unseen nonconformances, specially for the Samples

and JAccounting experimental units. However, we observed an important drawback: the

tool is inconstant about the nonconformances discovered; for instance, on JAccounting,

different executions found different nonconformances: JET often detects four nonconfor-

mances for a given unit, then in the next execution finds no nonconformances; for the same

unit JMLOK 2.0 always finds three nonconformances. Furthermore, the nonconformances

detected by the tools are the same in the majority of the cases; but in the JAccounting,

there were two cases in which JET and JMLOK 2.0 differ in the type assigned to the non-

conformances: while JMLOK 2.0 assigned Evaluation, JET assigned Postcondition; maybe

this difference can be related to the compilers used by tools (jmlc, in JMLOK 2.0, and an

extension of jmlc in JET). The genetic algorithm in the backend makes JET differ between

repeated executions. This property was not observed in the RGT-based approach (JMLOK

2.0), despite its randomness.

Considering the test coverage, in general JMLOK 2.0 performed better than JET. The

only case in which JET showed better results was JAccounting. This result can be rela-

ted to JET constraints: no public fields can be assigned, and object sharing is not allowed;

the tests miss several parts from the programs that do not fulfill those requirements, which

does not occur with JMLOK 2.0. Considering the number of nonconformances detected,

the only case where JET performs better than JMLOK 2.0 was also JAccounting: four

against three. Therefore, considering number of nonconformances detected and tests cove-

rage, JMLOK 2.0 performs better than JET for our experimental units, with a confidence

level of 95% by means of Paired test-t and Wilcoxon signed-rank tests. In other units, these

results may vary, although JET limitations prevent tests with dependencies between classes

4.4 Threats to validity 61

and packages, and the use of external libraries. We believe that an approach that uses the

best features of both tools would be suitable for the purpose of nonconformance detection.

4.4 Threats to validity

In the context of external validity, the first threat is the number of JML programs analyzed:

six in the first study, and three in the second; however the total size of experimental units

(more of 29 KLOC and more of 9 KLJML to evaluate JMLOK 2.0 and over 6 KLOC and

more of 5 KLJML to evaluate JET and compare it with JMLOK 2.0) is higher than other

studies with JML tools [71] [16]. Other threat is the categorization model used to manually

classify the nonconformances discovered; to address this limitation, the nonconformances

discovered, its categories and likely causes were reported to experimental units authors, and

most authors agreed with our categorization model.

For conclusion validity, once the tools both use randomness, we used five runs for each

unit and collected the best result (as JET differs between executions in relation to the noncon-

formances detected); on the other hand this problem was not observed in JMLOK 2.0 (the

same setup detects the same nonconformances in several runs). Most importantly, JMLOK

2.0 (and also JET) is test-based. We thus cannot argue about its completeness in finding all

nonconformances that could be found in the experimental units. Therefore, any generaliza-

tion about the types of nonconformances, categories and likely causes is out of the question.

Still, we believe that the results show reasonable trends that could be the starting point for

similar studies involving contract-based programs.

4.5 Answers to the research questions

From our results, we made the following observations:

• Q1. Is JMLOK 2.0 able to detect nonconformances in contract-based programs?

Yes, the JMLOK 2.0 tool was able to detect 84 nonconformances. From those, 18

nonconformances were detected in sample programs and 66 in open-source JML pro-

grams.

4.5 Answers to the research questions 62

• Q2. What are the most common types of nonconformances, and their likely causes?

From the 84 detected nonconformances, the most frequent type was the postcondi-

tion – 38, followed by invariant violations – 35. Regarding likely causes, our manual

classification found Weak precondition as the main cause for the experimental units,

with 38 instances. Maybe Weak precondition has been the most common case of li-

kely cause because it is complex to specify preconditions; once the specifier does not

previously know the clients of his system, an overly strong precondition deny access

to several clients; on the other hand, if the precondition is too weak several clients will

not be able to get the expected result. So this represents an important trade-off for

contract-based programs.

• Q3. What is the context, within the execution, in which we found nonconformances?

The results presented in Table 4.4 suggest that breadth and depth are, in average, higher

than 1, for all experimental units. Those numbers suggest that tests have a higher

chance of success in detecting nonconformances when the test cases present higher

horizontal (call sequences) and vertical (internal calls) complexity. The method of test

generation used in our approach favors that property.

• Q4. Does the RGT-based approach perform better than the JET tool?

Yes, considering number of nonconformances detected and tests coverage, JMLOK

2.0 performs better than JET for our experimental units, with a confidence level of

95%. In other units, these results may vary, although JET limitations prevent tests

with dependencies between classes and packages, and the use of external libraries. We

believe that an approach that uses the best features of both tools would be suitable for

the purpose of nonconformance detection.

Capítulo 5

Avaliação da Categorização de

Não-Conformidades

Neste capítulo, também apresentamos dois estudos experimentais [5]: no primeiro avaliamos

a abordagem de categorização automática proposta (por meio da ferramenta JMLOK 2.0)

em comparação com a categorização manual feita para o estudo da Seção 4.2; no segundo,

comparamos a categorização automática com a categorização realizada por JML experts

voluntários. Na Seção 5.1 são apresentadas as questões de pesquisa, então nas Seções 5.2

e 5.3 são apresentados os resultados e discussões dos estudos experimentais. Na Seção 5.4

são descritas algumas ameaças à validade. Por fim, na Seção 5.5 são respondidas as nossas

questões de pesquisa.

5.1 Research Questions

The goal of the first study is to analyze our automatic categorization approach (by means of

JMLOK 2.0 tool) with respect to coincidences with our manual categorization (the baseline)

from the point of view of the developer in the context of contract-based programs.

This study addresses the following research questions:

Q1. How many answers from tool are coincident with our manual analysis performed previ-

ously?

63

5.1 Research Questions 64

We measure matches (Equation 5.1) and perform a hypothesis testing for the mean value.

matches(x) =
Total of Agreements(x)

Total of Categorized Nonconformances(x)
(5.1)

where x is an experimental unit; Total of Agreements is the total of coin-

cidences between automatic and manual categorization of nonconformances; and

Total of Categorized Nonconformances(x) is the total of categorized nonconformances

for both approaches – manual (baseline) and automatic.

Hypothesis null and alternative In order to answer this research question we formulate the

following hypothesis:

H0 : µ(matches) = 0 H1 : µ(matches) 6= 0 (5.2)

Regarding statistical tests, we use the Shapiro-Wilk test [66] to test data normality, if

the data are normal we use the One Sample t-test [40], otherwise the Wilcoxon signed-rank

test [40]; in either cases, with a confidence level of 95%. If we reject the null hypothesis, we

will use a two-tailed hypothesis test to verify whether the mean of matches is greater than

zero.

Q2. What is the relationship between matches and depth of test execution?

This complementary investigation aims at characterizing whether the coincidences

between manual and automatic categorization approaches are related to the deeply of the

nonconformance revelation. Therefore, we compare the values of matches and depth me-

trics.

The goal of the second study is compare our categorization approach with the results from

voluntary JML experts, from the point of view of the researcher in the context of contract-

based programs. This study addresses the following research question:

Q3. How many answers from tool are coincident with JML experts categorization?

We asked some voluntary JML experts1 to categorize 10 nonconformances randomly

selected. Then we compare their results with the automatic categorization.

1The JML experts have worked with JML and DBC for more than two years.

5.2 First Study - Comparison between Manual and Automatic Categorization 65

5.2 First Study - Comparison between Manual and Auto-

matic Categorization

In this section we present the first study, which provides evidences for the first two research

questions (Q1 and Q2).

5.2.1 Setup

The population considered in this comparison is the 84 nonconformances manually categori-

zed in Section 4.2. This study was performed using the same machine setup of Section 4.2.1.

In the automatic categorization, we use the JMLOK 2.0 with time limit of 10 seconds, con-

sidering the same experimental units from Section 4.2. We use the R2 statistical tool [10] to

perform hypothesis testing for Q1.

5.2.2 Results

Table 5.1 presents the results of matches for each experimental unit3. We used the Shapiro-

Wilk test to check if the data came from a normally distributed population. The p-value

resultant was 0.0031, indicating that our data did not come from a normally distributed po-

pulation. As the use of the One Sample t-test was discarded; we compare the median of

matches with zero by means of the Wilcoxon signed-rank test. The p-value resultant was

0.0071, rejecting our null hypothesis (Equation 5.2) that the mean of matches is equal to

zero, with a confidence level of 95%. Then, we reformulated our hypothesis (Equation 5.3)

and calculate the p-value, considering as alternative hypothesis that the mean of matches

metric is greater than 0:

H0 : µ(matches) = 0 H1 : µ(matches) > 0 (5.3)

With the two-tailed test, the resultant p-value was 0.0035, also rejecting the null hypo-

thesis, that mean of matches is equal to zero, with a confidence level of 95%.

2R is a free software environment for statistical computing and graphics. Available online at http://

www.r-project.org/
3once Samples is composed by 11 packages, we considered each package as an experimental unit

5.2 First Study - Comparison between Manual and Automatic Categorization 66

Tabela 5.1: matches results for each experimental unit and the mean of this metric. The

metric was obtained using the Equation 5.1.

Experimental Unit matches

Samples.BoundedStack 1.00

Samples.stacks 1.00

Samples.dbc 0.00

Samples.misc 1.00

Samples.list 0.20

Bomber 0.50

HealthCard 0.63

JAccounting 1.00

Mondex 1.00

TransactedMemory 1.00

Mean 0.73

Interested in investigate whether there is a relationship between metrics matches and

depth (number of internal calls until a nonconformance occurrence), we performed a cor-

relation test by means of Spearman’s rank correlation coefficient. This test was specially

designed for nonparametric distributions [40]. We obtained ρ = -0.77, allowing us assert at

95% of confidence level, that there is a strong negative relationship between these metrics.

So, when depth increases, matches tend to decreases, and vice versa; in other words, we

found that to our experimental units, when a nonconformance is more internal – considering

the AST of the language, the coincidence (matches) between our automatic approach and the

baseline (our manual categorization) is smaller. Table 5.2 shows matches and depth metrics

and the value of ρ.

The complete results of the manual categorization are available in Appendix A. And in

Appendix B we present the results of the automatic categorization.

5.2 First Study - Comparison between Manual and Automatic Categorization 67

Tabela 5.2: Metrics matches and depth for each experimental unit. For Samples we calcu-

late the metrics for each package used – BoundedStack, stacks, dbc, misc, and list. The

Spearman’s coefficient (last line of table) indicates a strong negative relation between these

metrics.

Experimental Unit matches depth

Samples.BoundedStack 1.00 2.00

Samples.stacks 1.00 2.00

Samples.dbc 0.00 3.25

Samples.misc 1.00 3.00

Samples.list 0.20 3.20

Bomber 0.50 2.25

HealthCard 0.63 2.47

JAccounting 1.00 1.43

Mondex 1.00 1.50

TransactedMemory 1.00 2.14

ρ -0.77

5.2.3 Discussion

Discussion Q1. The mean of matches metric – used to compare the results from manual and

automatic categorization – was 0.73. Nevertheless, there were two cases in which the metric

was very low. These cases occurred in Samples experimental units, in which there were

matches = 0.00 (dbc) and matches = 0.20 (list).

In the dbc package, this result occurred because the lack of a semantic analysis that

could give a more precise result. Using our set of heuristics, the automatic approach

assigned to all nonconformances as likely cause Weak precondition, because there are

no preconditions to the methods in which the nonconformances were detected. On the

other hand, the manual analysis assigned Strong postcondition, as a result of the low to-

lerance value used in the postcondition (0.005), to compare two decimal values using the

JMLDouble.approximatelyEqualTo4, that can be the responsible to these noncon-

4JMLDouble is imported from the standard JML API, being only visible on the contract level

5.2 First Study - Comparison between Manual and Automatic Categorization 68

formances.

In the list package, the low matches metric is due to the fact of manual categorization

assigned Undefined as likely cause, whereas the automatic categorization assigned Weak pre-

condition. This difference occurred because the manual analysis was not able to understand

whether the problem arises from a code or a specification problem; on the other hand, the

automatic categorization always returns a likely cause to the nonconformance.

On the other hand, there were six experimental units (BoundedStack, stacks,

misc, JAccounting, Mondex, and TransactedMemory) from which the highest

possible matches were obtained. Additionally, in the other two units (Bomber, and

HealthCard) matches = 0.50, and matches = 0.63, respectively. Those results show that,

although we are using a heuristics-based approach, our automatic categorization has good

results in comparison with the baseline (our manual categorization). In order to get a more

reliable result about our categorization approach, we perform an experimental study (Sec-

tion 5.3) to compare our results with the results from voluntary JML experts.

In contract-based methods with tricky postconditions; if the precondition is default, our

categorization resolves Weak precondition as the likely cause. This is a limitation of our

approach, but we believe that if a method has a complex postcondition, this method needs

some precondition to guarantee properties needed to satisfy the postcondition. Concerning

in differences related to Undefined problems, we believe that inserting our approach in deve-

lopment phase of a project this problem could be avoided, once that, possibly the developer

can find the real source of the nonconformance using our automatic categorization approach.

In this context, the developer can use the outcome from JMLOK 2.0 as a starting point to

the process of nonconformances correction.

Those results are important to discuss the limitations of our approach: once that con-

text knowledge may be important to understand the real source of the contract violations,

a heuristics-based approach hardly is able to find the real source of the contract violations.

Furthermore, our heuristics-based approach returns as likely cause the first match found;

and we observed that a more detailed analysis of the contract-based program may be neces-

sary. Nevertheless, our approach is a step ahead of contract violations correction aided by

automation.

Discussion Q2. The Spearman’s coefficient indicates, at 95% of confidence level, a strong

5.3 Second Study - Comparison between Automatic and JML Experts Categorization 69

negative relation between matches and depth metrics. So, when a metric increases the other

decreases, and vice versa. This result allows assert, at 95% of confidence level, that a gre-

ater number of internal calls until a nonconformance occurrence decreases the coincidence

between manual and automatic categorization, maybe this occurs because in those cases the

semantic knowledge affects directly on manual result.

Maybe this result is related to the fact that when the nonconformance is revealed directly

on method body, the manual categorization process is more similar to heuristics-based ap-

proach, basically analyzes the contract from current class and suggests a likely cause based

on this analysis; on the other hand, when the nonconformance is revealed in a deeper level,

the manual analysis can observe some properties not detectable by the heuristics-based ap-

proach, resulting in a difference between their results. We believe that this result may be

generalized for others projects, once that in projects from different domains we had a high

matches when depth was smaller.

5.3 Second Study - Comparison between Automatic and

JML Experts Categorization

In this section we present the second study, which provides evidences for the third research

question (Q3).

5.3.1 Setup

From the 84 nonconformances that we discovered in our experimental units (Section 4.2)

we randomly selected 10 (using the sample command from the R statistical tool (ver-

sion 3.0.1) [10]). These nonconformances are presented on Table 5.3. The detected

nonconformances were ordered in the following manner: first we ordered the detec-

ted in sample programs – starting with BoundedStack package, then stacks, dbc,

misc and finally list; then Bomber, HealthCard, JAccounting, Mondex and

TransactedMemory. In each experimental unit the nonconformances were ordered

alphabetically by the name of the methods where the nonconformances were detected. All

numbered nonconformances are available in Appendix C.

5.3 Second Study - Comparison between Automatic and JML Experts Categorization 70

Tabela 5.3: Randomly selected nonconformances released to JML experts categorize. The

nonconformance number corresponds to the position of the nonconformance considering our

84 nonconformances – the counting starts in sample programs (BoundedStack) and conti-

nues until the last nonconformance discovered in TransactedMemory unit. Experimental

Unit gives the name of the experimental unit. Class and Method columns give information

about location of the nonconformance into the experimental unit. Finally, column Type gives

the type of the nonconformance.

NC number Experimental Unit Class Method Type

1

Samples

BoundedStack.BoundedStack Constructor postcondition

4 stacks.BoundedStack Constructor invariant

10 dbc.Rectangular imaginaryPart postcondition

18 list.list3.TwoWayIterator next postcondition

26

HealthCard

allergies.Allergies_Impl setAllergyDesignation postcondition

47 treatments.Treatment_Impl setTreatmentID invariant

48 vaccines.Vaccine_Impl setDesignation precondition

49 vaccines.Vaccines_Impl getVaccineDesignation postcondition

57
JAccounting

com.spaceprogram.util.ArrayUtils getMaxIntArrayIndex postcondition

64 com.spaceprogram.util.CookieUtils getDeleteCookie postcondition

The form that we use to ask the JML experts is available in Appendix D. The form has

the following structure: first, we present the proposed three-level model for categorization

and an overview of this model; next, a methodology to performs the manual categorization

of nonconformances is suggested; then, for each nonconformance selected we present some

details about the nonconformance – information about location (experimental unit, package,

class, and method) and the nonconformance’s type –, a link for the contract-based program

corresponding, and a test case that reveals the nonconformance; finally, we ask to JML expert

give a categorization for the nonconformance, choosing a category for the nonconformance

– between Specification error, Code error or Undefined; and suggesting a likely cause.

5.3.2 Results

We had three voluntary JML experts (that we will refer as Subjects henceforth). Once that

was used as a text field for likely cause, we mapped the Subjects answers to our set of li-

kely causes. Comments like “the precondition should be stronger” were mapped to Weak

precondition; “not identified”, and “Couldn’t get hold of the cause” were mapped to Unde-

5.3 Second Study - Comparison between Automatic and JML Experts Categorization 71

fined; “code should set the position pointer correctly”, and “Code seems to not prepare the

argument to call method correctly” were mapped to Code error. Table 5.4 shows Subjects

answers and our automatic results.

Tabela 5.4: Column # NC displays the nonconformance number (the number is the same

presented on Table 5.3). Column Type shows the nonconformances type. For each Subject

we present the Category and Likely Cause for each categorized nonconformance. Finally,

Automatic results shows the results of our automatic categorization for each categorized non-

conformance. The line matches presents the matches metric for each Subject in comparison

with tool results. We use the following acronyms for type: pre for precondition, post for

postcondition, and inv for invariant; and for category: Spec for Specification error, Code for

Code error, and Undef for Undefined.

Subject 1 Subject 2 Subject 3 Automatic results

NC Type Category
Likely

Cause
Category

Likely

Cause
Category

Likely

Cause
Category

Likely

Cause

1 post Spec weak pre Spec weak pre Spec weak pre Spec weak pre

4 inv Spec weak pre Spec weak pre Code Code Spec weak pre

10 post Undef Undef Spec Undef Spec weak pre Spec weak pre

18 post Code Code Spec weak post Undef Undef Spec weak pre

26 post Undef Undef Undef Undef Code Code Spec weak pre

47 inv Spec weak pre Undef Undef Code Code Spec weak pre

48 pre Code Code Undef Undef Undef Undef Spec strong pre

49 post Undef Undef Spec weak pre Spec weak pre Spec weak pre

57 post Spec weak pre Spec weak post Code Code Spec weak pre

64 post Code Code Spec Undef Undef Undef Spec weak pre

matches 0.40 0.30 0.30

According to Table 5.4, there were four coincidences between our automatic categoriza-

tion approach and Subject 1, for both category and likely cause; that corresponds to a matches

= 0.40. Concerning the Subject 2, our automatic categorization had seven coincidences con-

sidering category, and three coincidences considering likely cause; corresponding a matches

= 0.30. Finally, with the Subject 3, our automatic categorization had three coincidences for

both category and likely cause; corresponding a matches = 0.30.

5.3 Second Study - Comparison between Automatic and JML Experts Categorization 72

5.3.3 Discussion

We had few respondents to our form because manual categorization of nonconformances is

time consuming (a people need much time to understand the code and the contract, and need

some time to suggest a likely cause for the nonconformance). Nevertheless, the answers

were important to highlight the difficulty of manually categorize nonconformances and the

usefulness of our automatic categorization approach, as a first step to help the developer in

the process of nonconformances correction.

Concerning the matches metric we found that our approach is a little bit similar to JML

experts categorization; furthermore, the most similar result occurred with Subject 1 – mat-

ches = 0.40; with Subject 2 and Subject 3 the matches (0.30) was the same.

Moreover, only for nonconformances numbers 26 (postcondition problem at the method

setAllergyDesignation from class Allergies_Impl – in HealthCard), and

48 (precondition problem at the method setDesignation from Vaccine_Impl – also

in HealthCard) we did not have any JML expert answer equal to our automatic categori-

zation. Maybe this had occurred because these nonconformances are complex to understand

(e.g. in the contract of setAllergyDesignation there are 10 JML clauses – for spe-

cify pre- and postconditions to normal and exceptional behaviors, to declare which field can

be assigned in the method and to specify which types of exceptions can be thrown. Further-

more, there is the use of a model method from Common interface that manipulates elements

from JML API (JMLValueSequence and JMLByte). Therefore, we believe that only

a manual analysis of this system could give a more precise categorization. Two Subjects

could not assign a likely cause for both nonconformances, assigning Undefined for cate-

gory and likely cause. Considering likely cause, there were four cases in which we did not

have any coincidence between the automatic approach and Subjects answers: for noncon-

formances 18 (postcondition problem at the method next from class TwoWayIterator

– in package list from Samples), 26, 48, and 64 (postcondition problem at the method

getDeleteCookie from class CookieUtils – in JAccounting).

These differences between the automatic categorization and the results from Subjects,

are justified by the fact that we have used a heuristics-based approach to categorize non-

conformances. Moreover, by the fact that our automatic approach does not have semantic

information about the systems and their contracts; so, in some cases we expected differences

5.4 Threats to Validity 73

between automatic and manual results (conforms to discussion from Section 5.2). Thus, we

believe that our approach may be used in the process of nonconformances correction, as a

first step to find the actual problem that occasioned the nonconformance.

5.4 Threats to Validity

In the context of external validity, our results are valid only for our experimental units and can

change considerably in others experimental units. Additionally, our categorization approach

consider only external behavior from the methods; but, we intend to improve our model to

consider internal behaviors as a future work.

In the context of conclusion validity, once the JML expert that proposes the manual cate-

gorization process was the developer of the automatic categorization approach, we perform

a validation with others JML experts to evaluate the heuristics used and the approach in ge-

neral. Unfortunately, we had only three answers to our form. We believe that we did not

have more answers because manually categorize nonconformances is time consuming and

the experts invited to answer the form possibly did not have enough time. Despite that,

the answers that we received were similar to the automatic categorization. Moreover, the

differences between the answers demonstrate that an automatic approach to categorize non-

conformances can be useful.

Furthermore, our categorization approach is heuristics-based, so not always the result

from automatic and manual categorization will be the same (as were shown in Sections 5.2

and 5.3). Nevertheless the approach had promising results and is a step ahead of help the

programmer in the nonconformances correction process; once that, using our approach the

programmer already will have an idea about the source of the problem.

5.5 Answers to the research questions

From our results, we made the following observations:

• Q1. How many answers from tool are coincident with our manual analysis performed

previously?

5.5 Answers to the research questions 74

The mean of matches metric – used to compare the results from manual and automatic

categorization – was 0.73.

• Q2. What is the relationship between matches and depth of test execution?

The Spearman’s coefficient indicates, at 95% of confidence level, a strong negative

relation between matches and depth metrics. So, when a metric increases the other

decreases, and vice versa. This result allows assert, at 95% of confidence level, that

a greater number of internal calls until a nonconformance occurrence decreases the

coincidence between manual and automatic categorization, maybe this occurs because

in those cases the semantic knowledge affects directly on manual result.

• Q3. How many answers from tool are coincident with JML experts categorization?

For Subject 1, we have a matches 0.40; for Subjects 2 and 3 the matches was 0.30.

Capítulo 6

Considerações Finais

Neste capítulo são apresentados os principais resultados deste trabalho, os trabalhos relacio-

nados e as sugestões para trabalhos futuros.

6.1 Conclusions

In this work, we present an approach for detect and categorize nonconformances in contract-

based programs, aiming help the programmer in the process of nonconformances correction.

We performed four experimental studies. In the first two studies we evaluated JMLOK

2.0 tool in relation to nonconformances detection and our manual categorization model for

nonconformances; and compared JMLOK 2.0 with JET concerning nonconformances de-

tection. In the last two studies we evaluated our categorization model by means of our

implementation as a module to JMLOK 2.0 tool, comparing the results of the tool with our

manual results (baseline); and also by comparing our results with the categorization perfor-

med by voluntary JML experts.

In the first study, the RGT-based approach – by means of the JMLOK 2.0 implemen-

tation – is applied to sample and open-source JML projects, in order to demonstrate the

applicability of the approach in detecting overlooked nonconformances in those programs.

Second, we compare the effectiveness of JMLOK 2.0 with the results of JET [16], the most

similar detection tool for JML.

The RGT-based approach presents promising results, as, in more of 29 KLOC and more

of 9 KLJML, 84 nonconformances were detected. We reported those nonconformances and

75

6.1 Conclusions 76

their classification to authors, and answers were mostly positive. Only HealthCard’s de-

veloper did not want to answer about our categorization model, because he has not worked

with JML for some years. Furthermore, we classified the nonconformances and established

likely causes – postcondition violations were the most frequent detected type, and most cau-

ses stay between Weak preconditions (mostly related to the absence of preconditions for

the methods) and Code errors (mostly related to null fields) in our experimental units. We

also found that, in the context of our experimental units, most nonconformances are hard

to detect without sequences of modifications into the object under test, with the results of

metrics breadth and depth; showing evidence for the need of a more complex test structure

in nonconformance detection than only one modification in the object under test.

When comparing JMLOK 2.0 with JET, the first detected 30 nonconformances with

Java instructions coverage of 78.44% and JML instructions coverage of 67.67%, while JET

detected 9 nonconformances by covering 47.97% of Java instructions and 56.97% of JML

instructions; for the same experimental units (a subset from the first study, totalizing appro-

ximately 6 KLOC and 5 KLJML). These numbers suggest that JMLOK 2.0 performs better

than JET considering the number of nonconformances detected and test coverage (block

instructions coverage), for the experimental units. In addition, we observed that the noncon-

formances detected by JET differ between repeated executions, maybe due to the nature of

its genetic algorithms – this property was not observed in the proposed approach. So we can

conclude that the proposed approach is more stable than JET, considering the same setup and

the same experimental unit, JMLOK 2.0 always found the same nonconformances.

Third, we compared the coincidences – matches – between the automatic categorization

(by means of JMLOK 2.0 tool) and our manual categorization (baseline), and we got a mean

matches of 0.73. Additionally, we verify that knowledge of the context may be important to

assign likely cause; so, this lack of knowledge can lead an automatic approach to differ of a

manual approach. Nevertheless, our approach is a step ahead of contract violations correction

aided by automation.

In the last study, we compared the categorization performed by voluntary JML experts

with the automatic categorization. The results showed that our heuristics-based approach is

a little bit similar to results from manual analysis of JML experts; the mean of matches was

0.33.

6.2 Related Work 77

The results are promising for applying specific test techniques in the context of contract-

based programs, fostering a more widespread adoption of such methodology by lowering the

costs of conformance checking. Furthermore, we believe that a heuristics-based approach

can be useful to suggest a categorization for nonconformances in contract-based programs.

6.2 Related Work

Our work is related to three types of research results: researches that investigate the confor-

mance checking between programs and their formal contracts; researches about some kind

of categorization for nonconformances, aiming help the programmer in the process of non-

conformances correction; and researches concerning to automatic tests generation.

6.2.1 Conformance Checking

Several efforts on verified software [54; 18; 16; 26; 49; 20] have been carried out in the con-

text of source code specification with contract-based languages [47; 43; 3], and the Design

by Contract (DBC) methodology [48]. Dynamic checking of contracts, despite its incom-

pleteness, gives immediate feedback for programmers, even if they write partial contracts.

Detecting nonconformances is, in this case, strictly dependent on the quality of the test cases

that exercise the runtime assertions produced out of contracts. For DBC, a related appro-

ach proposes auto tests [49], where contracts are used as oracles to expected outputs, an the

test generation is performed automatically. The AutoTest tool is an implementation of con-

formance checking to the Eiffel language [47]. This tool is similar to our approach: both

aim at conformance checking, and use randomly-guided tests generation (ARTOO [20] for

AutoTest and Randoop [55] for JMLOK 2.0). However, AutoTest supports mixing manual

and automated test, while our approach focuses on complete automation. Our approach is

directed to JML, which is relatively simple to apply to existent Java programs; in addition,

our approach is also concerned with automatic categorization of nonconformances.

Concerning Spec# language, Boogie [2] is the Spec# static program verifier. This tool

generates logical verification conditions from a Spec# program. Internally, Boogie uses an

automatic theorem prover that analyzes the verification conditions to prove the correctness of

the program or find errors in it. This tool is similar to our approach: both aim at conformance

6.2 Related Work 78

checking; but differ in approaches used to do this: dynamic conformance checking – in

JMLOK 2.0 – and static checking – in Boogie.

There are a number of tools that apply dynamic checking for detecting nonconformances

between JML programs. JMLUnit [18] is a semi-automatic tool to check conformance, ge-

nerating test case skeletons by combining calls to the methods under test, lacking test. On the

other hand, JMLOK 2.0 is completely automatic and provides an automatic categorization

for nonconformances.

In order to handle some JMLUnit limitations, JMLUnitNG [74], an improved version

of JMLUnit, automatically generates test data for non-primitive types; however, it does not

exempt users from providing their test data in some situations. Whereas, JMLOK 2.0 is

completely automatic and provides an automatic categorization for nonconformances.

Korat [11] has the advantage over JMLUnit of being able to construct the objects which

invoke the method under test. However, test cases constructed by Korat only consist of one

object construction and one method invocation on this object; furthermore Korat requires the

implementation of an imperative predicate to specify the desired structural constraints, and

a bound to the desired test input size. Our approach, on the other hand, does not require

implementation of functions and generates more than one call for the methods under test;

furthermore, we present an automatic categorization for nonconformances.

Jartege [54] is a semi-automatic tool, inspired by JMLUnit, for generating test cases, by a

random approach with assigned weights to classes and methods under test; however, the user

might have to assign weights for methods under test and information about how to choose

the weights is not provided. Whilst, JMLOK 2.0 is completely automatic and provides an

automatic categorization for nonconformances.

JET [16] aims at applying dynamic testing to conformance checking in JML, by ran-

domly generating test cases using contracts as test oracles. Genetic algorithms are applied

for automatically building all test data that exercise runtime assertions. This choice is pro-

misingly effective, although it raises the risk of nondeterminism in generating test cases and

data on successive executions of the tool. Regarding purpose, the JET tool is closely related

to JMLOK 2.0, because to the best of our knowledge is the only tool for JML that does

not require user inputs (as test data or implementation of functions). However, JMLOK 2.0

presents an automatic categorization for nonconformances, not provided by JET.

6.2 Related Work 79

On the other hand, ESC/Java2 [23] performs static verification in JML programs, ap-

plying a logical-based technique that verifies statically if no violation of JML contracts will

happen at runtime. Nevertheless ESC/Java2 is neither sound nor complete, this tool presents

a high rate of false positives. Whereas, JMLOK 2.0 is sound, because all nonconformances

found are correct, but it is not complete, because it is not ensured that it found all noncon-

formances.

As a new point of view about contracts, the Option Contracts [28] idea arises as an

extension to DBC, introducing notions about transfer and exercise do give more freedom to

developers in the use of contracts. This methodology has the same purpose of our work: the

use of contracts since development phase to improve the systems developed and to reduce

the cost of faults correction.

Table 6.1 summarizes those approaches with respect to: (1) the kind of conformance

checking performed; (2) whether there are some categorization of the nonconformances; (3)

whether the approach is automatic; (4) the specification language used in the approach.

Tabela 6.1: Related Work about conformance checking.

Conformance Checking Categorization Automation level Specification Language

AutoTest dynamic – automatic Eiffel

Boogie static – automatic Spec#

JMLUnit dynamic – semi automatic JML

JMLUnitNG dynamic – semi automatic JML

Korat dynamic – semi automatic JML

Jartege dynamic – semi automatic JML

JET dynamic – automatic JML

ESC/Java2 static – automatic JML

JMLOK 2.0 dynamic automatic automatic JML

6.2.2 Categorization of Contract Violations

Regarding categorization, Rosenblum [63] presents an early study about the main assertions

that reveal contract violations into C programs and a classification system for those asserti-

ons. He used App – Annotation PreProcessor for C programs, like the jmlc compiler. His

work presents two levels at which a problem (a contract violation) may happen: Specifica-

tion of Function Interfaces, and Specification of Function Bodies, the first one is related with

6.2 Related Work 80

our work – considers the external behavior of methods, their pre- and postconditions, and in-

variants. To Specification of Function Interfaces level, the author presents eight main kinds

of assertion violations: Consistency Between Arguments (I1), Dependency of Return Value

on Arguments (I2), Effect on Global State (I3), Context in Which Function is Called (I4),

Frame Specifications (I5), Subrange Membership of Data (I6), Enumeration Membership of

Data (I7), and Non-Null Pointers (I8). Those kinds of assertions are related to our types: I1,

I3, and I7 are related to precondition type; I2, and I6 are related to postcondition type; and

I4, I5, and I8 are related to invariant.

More recently, Polikarpova et al. [56] present three categories to classify nonconfor-

mances: specification faults, inconsistency faults and real faults. In this work we present a

three-level model to classify nonconformances composed by a category, a type, and a likely

cause for each nonconformance – the latter is a distinctive feature of our model.

Table 6.2 summarizes those approaches with respect to: (1) the categorization scope –

whether the approach categorizes contract violations from external and internal behaviors of

the system under test; (2) whether the approach is automatic; (3) the specification language

for the categorization proposed.

Tabela 6.2: Related Work about categorization approaches for contract violations.

Categorization scope Automation level Language

Rosenblum external and internal behaviors manual C

Polikarpova et al. external and internal behaviors manual Eiffel

JMLOK 2.0 only external behavior automatic JML

6.2.3 Automatic Test Generation

Software testing, although cannot guarantee that the software is error free, is a widely-used

approach to get some confidence about the software behavior. In the scenario of contract-

based programs, tests generated automatically is commonly used to check conformance

between programs and their contracts, as verification by formal proofs is hard to scale and

static analysis is limited.

In this context, test cases with automatically-generated data are important due to their

low cost and high precision in detecting conformance problems that needs more than one

6.3 Future Work 81

modification into the object under test. In our work we use a random-directed tests generation

approach, by means of Randoop [55]. In Randoop, the feedback from execution of sequence

being constructed is used as pruning function – only valid constructions are considered in the

next sequence generations. This approach is similar to Adaptive Random Testing (ART) [15]

approach. In ART, the test cases generation is based on the idea of tests more distant are

more probable to detect problems than test separated by smaller distances; ART uses the

Euclidean distance to calculate the distance between test cases. An extension of ART ideas

are presented in ARTOO [20], the adaptive random testing for object-oriented programs;

in ARTOO there is a modification of distance calculation to consider properties related to

object-oriented systems.

Other approach similar to the used in our work is presented on JET [16], where genetic

algorithms are used in test generation process. Genetic algorithms are based on feedback

to creation of new generations, similarly that occurs in the feedback-directed approach of

Randoop. An another approach to automatic test generation is EvoSuite [31]. This tool uses

an evolutionary search approach that evolves whole test suites with respect to an entire cove-

rage criterion at the same time. EvoSuite approach, similar to ours, uses a guided approach

to tests generation, in that case a search based approach.

Table 6.3 summarizes those approaches with respect to test generation approach.

Tabela 6.3: Related Work about automatic test generation.

Test generation approach

ART Based on distance between test cases

ARTOO Based on distance – considering properties from object-oriented programs

JET Based on the feedback – from genetic algorithms

EvoSuite Based on evolutionary search

Randoop Based on feedback from execution of sequence being constructed

6.3 Future Work

As future work, we intend to improve the test generation of JMLOK 2.0, considering other

techniques to test generation (e.g. advanced Monte Carlo techniques - like n-factor, appro-

aches to symbolic/concolic execution - like in Symbolic Pathfinder [58] or KLEE-like to-

6.3 Future Work 82

ols [14], incremental SAT-solving - like in FAJITA [1], and evolutionary algorithms - like in

EvoSuite [31]), and perform new experimental studies to evaluate those approaches. Further-

more, we plan to investigate again the feasibility of the OpenJML compiler [22] use, once

it is the new JML compiler and jmlc [17] is a deprecated project. We also expect to extend

our approach to consider problems in the client side [59]. Additionally, we aim investigating

other metrics for contracts, in order to further analyze the relationship between nonconfor-

mances and program properties; and to perform an evaluation of contract-based programs

without nonconformances and to inject systematically nonconformances to evaluate more

precisely the quality of our approach: JMLOK 2.0.

Concerning to conformance testing, we intend to investigate a formal definition of con-

formance for each type of conformance problem that we are considering.

Regarding categorization of nonconformances, we intend to extend our categorization

model to treat with nonconformances in specifications inside of method bodies (nonconfor-

mances from IntraconditionalErrors, such as assertion, loop variant, loop invariant). Mo-

reover, we plan to investigate the possibility of return a list of likely causes for a noncon-

formance, based in the correspondences found in the contract-based program. Furthermore,

to the best of our knowledge, there are no automatic categorization approaches for Eiffel

neither Spec#; so, we plan to examine the feasibility of extend our categorization approach

for these languages.

We have identified that there are no automated tools that consider refactoring [30] in the

context of conformance checking; and the preservation of behavior become a property hard

to verify [45]. There are formal approaches, such as presented by Freitas [32], but these

approaches have a high cost; so we intend to develop an automatic approach to consider the

conformance problem in the context of refactoring, contributing to use of Design by Contract

methodology and to construction of reliable programs.

Bibliografia

[1] P. Abad, N. Aguirre, V. Bengolea, D. Ciolek, M. F. Frias, J. Galeotti, T. Maibaum,

M. Moscato, N. Rosner, and I. Vissani. Improving Test Generation under Rich Con-

tracts by Tight Bounds and Incremental SAT Solving. In Proceedings of 2013 IEEE

Sixth International Conference on Software Testing, Verification and Validation, pages

21–30. IEEE, 2013.

[2] M. Barnett, B. Chang, R. DeLine, B. Jacobs, and R. Leino. Boogie: A Modular Reu-

sable Verifier for Object-Oriented Programs. In Formal Methods for Components and

Objects, volume 4111, pages 364–387. Springer Berlin Heidelberg, 2006.

[3] M. Barnett, M. Fähndrich, R. Leino, P. Müller, W. Schulte, and H. Venter. Specification

and verification: The Spec# Experience. Communications of the ACM, 54(6):81–91,

2011.

[4] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J. Lanet, M. Pavlova, and

A. Requet. JACK – A Tool for Validation of Security and Behaviour of Java Appli-

cations. In Proceedings of the 5th International Conference on Formal Methods for

Components and Objects, pages 152–174. Springer-Verlag, 2007.

[5] V. R. Basili, R. W. Selby, and D. H. Hutchens. Experimentation in Software Enginee-

ring. IEEE Transactions on Software Engineering, 12(7):733 – 743, 1986.

[6] B. Beizer. Black-box Testing: Techniques for Functional Testing of Software and Sys-

tems. John Wiley & Sons, Inc., 1995.

[7] J. Berg and B. Jacobs. The LOOP Compiler for Java and JML. In Proceedings of

the 7th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 299–312. Springer-Verlag, 2001.

83

BIBLIOGRAFIA 84

[8] R. V. Binder. Testing Object-oriented Systems: Models, Patterns, and Tools. Addison-

Wesley Longman Publishing Co., Inc., 1999.

[9] D. Bjørner and C.B. Jones. The Vienna Development Method: The Meta-Language.

Springer-Verlag, 1978.

[10] V. A. Bloomfield. Using R for Numerical Analysis in Science and Engineering. Chap-

man & Hall/CRC, 2014.

[11] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated Testing Based on Java

Predicates. In Proceedings of the 2002 ACM SIGSOFT International Symposium on

Software Testing and Analysis, pages 123–133. ACM, 2002.

[12] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. Leavens, K. R. M. Leino, and

E. Poll. An overview of JML tools and applications. International Journal on Software

Tools for Technology Transfer, 7(3):212–232, 2005.

[13] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented

Software Architecture, Volume 1: A System of Patterns. Wiley, 1996.

[14] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation

of High-coverage Tests for Complex Systems Programs. In Proceedings of the 8th

USENIX Conference on Operating Systems Design and Implementation, pages 209–

224. USENIX Association, 2008.

[15] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive Random Testing. In Advances in

Computer Science - ASIAN 2004. Higher-Level Decision Making, volume 3321, pages

320–329. Springer Berlin Heidelberg, 2005.

[16] Y. Cheon. Automated Random Testing to Detect Specification-Code Inconsistencies.

Technical report, In Proceedings of The 2007 International Conference on Software

Engineering Theory and Practice, 2007.

[17] Y. Cheon and G. Leavens. A Runtime Assertion Checker for the Java Modeling Lan-

guage (JML). In Proceedings of The International Conference on Software Engineering

Research and Practice, pages 322–328. CSREA Press, 2002.

BIBLIOGRAFIA 85

[18] Y. Cheon and G. Leavens. A Simple and Practical Approach to Unit Testing: The JML

and JUnit Way. In Proceedings of the 16th European Conference on Object-Oriented

Programming, pages 231–255. Springer-Verlag, 2002.

[19] Y. Cheon and C. Medrano. Random Test Data Generation for Java Classes Annota-

ted with JML Specifications. In International Conference on Software Engineering

Research and Practice, pages 385–392, 2007.

[20] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOO: Adaptive Random Testing

for Object-oriented Software. In Proceedings of the 30th International Conference on

Software Engineering, pages 71–80. ACM, 2008.

[21] E. M. Clarke and J. M. Wing. Formal Methods: State of the Art and Future Directions.

ACM Computing Surveys, 28(4):626–643, 1996.

[22] D. Cok. OpenJML: JML for Java 7 by extending OpenJDK. In Proceedings of the 3rd

International Conference on NASA Formal methods, pages 472–479. Springer-Verlag,

2011.

[23] D. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML – Progress and issues

in building and using ESC/Java2. In Proceedings of the 2004 International Conference

on Construction and Analysis of Safe, Secure, and Interoperable Smart Devices, pages

108–128. Springer-Verlag, 2004.

[24] IEEE Computer Society. Standards Coordinating Committee, Institute of Electrical,

Electronics Engineers, and IEEE Standards Board. IEEE Standard Glossary of

Software Engineering Terminology. IEEE Std. The Institute, 1990.

[25] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming. Academic

Press Ltd., 1972.

[26] A. Darvas and P. Müller. Faithful mapping of model classes to mathematical structures.

IET Software, pages 477–499, 2008.

[27] E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, 1997.

BIBLIOGRAFIA 86

[28] C. Dimoulas, R. B. Findler, and M. Felleisen. Option Contracts. In Proceedings of

the 2013 ACM SIGPLAN International Conference on Object Oriented Programming

Systems Languages & Applications, pages 475–494. ACM, 2013.

[29] C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended

Static Checking for Java. In Proceedings of the ACM SIGPLAN 2002 Conference on

Programming Language Design and Implementation, pages 234–245. ACM, 2002.

[30] M. Fowler and K. Beck. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, 1999.

[31] G. Fraser and A. Arcuri. EvoSuite: Automatic Test Suite Generation for Object-

oriented Software. In Proceedings of the 19th ACM SIGSOFT Symposium and the

13th European Conference on Foundations of Software Engineering, pages 416–419.

ACM, 2011.

[32] G. R. F. Freitas. Refactoring Annotated Java Programs: A Rule-Based Approach. Mas-

ter’s thesis, Universidade de Pernambuco, 2009.

[33] P. F. Gibbins. What Are Formal Methods? Information and Software Technology,

30(3):131–137, 1988.

[34] J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal Specification.

Springer-Verlag New York, Inc., 1993.

[35] J. V. Guttag, J. J. Horning, and J. M. Wing. The Larch Family of Specification Langua-

ges. IEEE Software, 2(5):24–36, 1985.

[36] A. Hall. Seven Myths of Formal Methods. IEEE Software, 7(5):11–19, 1990.

[37] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J. Dick, M. Ghe-

orghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen, A. J. H. Simons, S. Vilkomir,

M. R. Woodward, and H. Zedan. Using formal specifications to support testing. ACM

Computing Surveys, 41(2):9:1–9:76, 2009.

[38] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of

the ACM, 12(10):576–580, 1969.

BIBLIOGRAFIA 87

[39] P. C. Jorgensen. Software Testing: A Craftsman’s Approach. Auerbach Publications,

2013.

[40] G. K Kanji. 100 Statistical Tests. Sage, 2006.

[41] M. E. Khan. Different Approaches to White Box Testing Technique for Finding Errors.

International Journal of Software Engineering and Its Applications, 5(3):1–13, 2011.

[42] G. Leavens. Larch/C++ Reference Manual. Version 5.1. Technical report, Iowa State

University, 1995.

[43] G. Leavens, A. L. Baker, and C. Ruby. Preliminary Design of JML: A Behavioral Inter-

face Specification Language for Java. SIGSOFT Software Engineering Notes, 31(3):1–

38, 2006.

[44] G. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry, P. Cha-

lin, D. M. Zimmerman, and W. Dietl. JML Reference Manual, 2013.

[45] T. Mens and T. Tourwé. A Survey of Software Refactoring. IEEE Transactions on

Software Engineering, 30(2):126–139, 2004.

[46] B. Meyer. Design by Contract. In Advances in Object-Oriented Software Engineering,

pages 1–50. Prentice Hall, 1991.

[47] B. Meyer. Eiffel: the language. Prentice-Hall, Inc., 1992.

[48] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[49] B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, and E. Stapf. Programs That Test

Themselves. IEEE Computer, 42(9):46–55, 2009.

[50] A. Milanez, T. Massoni, and R. Gheyi. Categorizing Nonconformances Between Pro-

grams and Their Specifications. In Proceedings of the 7th Brazilian Workshop on Sys-

tematic and Automated Software Testing, 2013.

[51] A. F. Milanez. Case Study on Categorizing Nonconformances. Technical report,

Software Practices Laboratory, Federal University of Campina Grande, 2014.

BIBLIOGRAFIA 88

[52] A. Müller. VDM - The Vienna Development Method. Technical report, Research

Institute for Symbolic Computation (RISC), Johannes Kepler University Linz, Austria,

2009.

[53] C. V. S. Oliveira. Uma Abordagem para Verificar Não-conformidades em Programas

Especificados com Contratos. Master’s thesis, Federal University of Campina Grande,

2013.

[54] C. Oriat. Jartege: A Tool for Random Generation of Unit Tests for Java Classes. In

Proceedings of the First International Conference on Quality of Software Architectu-

res and Software Quality, and Proceedings of the Second International Conference on

Software Quality, pages 242–256. Springer-Verlag Berlin Heidelberg, 2005.

[55] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-Directed Random Test

Generation. In Proceeedings of the 29th International Conference on Software Engine-

ering, pages 75–84. IEEE Computer Society, 2007.

[56] N. Polikarpova, C. A. Furia, Y. Pei, Y. Wei, and B. Meyer. What Good Are Strong

Specifications? In Proceedings of the 2013 International Conference on Software

Engineering, pages 262–271. IEEE Press, 2013.

[57] E. Poll, P. Hartel, and E. Jong. A Java Reference Model of Transacted Memory for

Smart Cards. In In Smart Card Research and Advanced Application Conference, pages

75–86. USENIX Association, 2002.

[58] C. S. Păsăreanu and N. Rungta. Symbolic PathFinder: Symbolic Execution of Java

Bytecode. In Proceedings of the IEEE/ACM International Conference on Automated

Software Engineering, pages 179–180. ACM, 2010.

[59] H. Rebêlo, G. Leavens, and R. Lima. Client-aware Checking and Information Hiding

in Interface Specifications with JML/Ajmlc. In Proceedings of the 2013 Companion

Publication for Conference on Systems, Programming, & Applications: Software for

Humanity, pages 11–12. ACM, 2013.

[60] H. Rebêlo, R. Lima, M. L. Cornélio, G. Leavens, A. C. Mota, and C. Oliveira. Op-

timizing JML Features Compilation in ajmlc Using Aspect-Oriented Refactorings. In

BIBLIOGRAFIA 89

Proceedings of the 13th Brazilian Symposium on Programming Languages, pages 117–

130, 2009.

[61] H. Rebêlo, S. Soares, R. Lima, L. Ferreira, and M. Cornélio. Implementing Java Mo-

deling Language Contracts with AspectJ. In Proceedings of the 2008 ACM Symposium

on Applied Computing, pages 228–233. ACM, 2008.

[62] R. M. S. Rodrigues. JML-Based Formal Development of a Java Card Application for

Managing Medical Appointments. Master’s thesis, Universidade da Madeira, 2009.

[63] D. S. Rosenblum. Towards a Method of Programming with Assertions. In Proceedings

of the 14th International Conference on Software Engineering, pages 92–104. ACM,

1992.

[64] A. Sarcar and Y. Cheon. A New Eclipse-Based JML Compiler Built Using AST Mer-

ging. 2010 Second World Congress on Software Engineering, 2:287–292, 2010.

[65] P. H. Schmitt and I. Tonin. Verifying the Mondex Case Study. In Proceedings of Fifth

IEEE International Conference on Software Engineering and Formal Methods, pages

47–58, 2007.

[66] S. S. Shapiro and M. B. Wilk. An Analysis of Variance Test for Normality (Complete

Samples). Biometrika, 3/4(52):591–611, 1965.

[67] G. Soares, R. Gheyi, E. R. Murphy-Hill, and B. Johnson. Comparing Approaches

to Analyze Refactoring Activity on Software Repositories. Journal of Systems and

Software, 86(4):1006–1022, 2013.

[68] I. Sommerville. Software Engineering. Pearson, 2010.

[69] M. Staats, M. W. Whalen, and M. P. E. Heimdahl. Programs, Tests, and Oracles: The

Foundations of Testing Revisited. In Proceedings of the 33rd International Conference

on Software Engineering, pages 391–400. ACM, 2011.

[70] J. Tretmans. Testing Concurrent Systems: A Formal Approach. In Proceedings of the

10th International Conference on Concurrency Theory, pages 46–65. Springer-Verlag,

1999.

BIBLIOGRAFIA 90

[71] C. Varjão, R. Gheyi, T. Massoni, and G. Soares. JMLOK: Uma Ferramenta para Ve-

rificar Conformidade em Programas Java/JML. In Proceedings of the 2nd Brazilian

Conference on Software: Theory and Practice (Tools session), 2011.

[72] J. Woodcock and J. Davies. Using Z: specification, refinement, and proof. Prentice-

Hall, Inc., 1996.

[73] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal Methods: Practice

and Experience. ACM Computing Surveys, 41(4):19:1–19:36, 2009.

[74] D. Zimmerman and R. Nagmoti. JMLUnit: The Next Generation. In Proceedings of

the 2010 International Conference on Formal Verification of Object-oriented Software,

pages 183–197. Springer-Verlag, 2010.

Apêndice A

Manual Categorization Results on

Contract-based Programs

Table A.1 shows the results of the manual categorization of nonconformances on sample

contract-based programs.

Tabela A.1: Results of the manual categorization process on Sample Programs. Column

Experimental Unit shows the name of the experimental unit. Columns Class and Method

display the names of the class and the method, respectively, where a nonconformance was

detected. Column Category presents the category manually assigned to the discovered non-

conformance. Column Type exhibits the nonconformance’s type. Finally, column Likely

Cause reveals the likely cause manually assigned.

Table A.2 shows the results of the manual categorization of nonconformances on open-

source contract-based programs.

91

92

Tabela A.2: Results of the manual categorization process on Open-source Programs. Column

Experimental Unit shows the name of the experimental unit. Columns Class and Method

display the names of the class and the method, respectively, where a nonconformance was

detected. Column Category presents the category manually assigned to the discovered non-

conformance. Column Type exhibits the nonconformance’s type. Finally, column Likely

Cause reveals the likely cause manually assigned.

Apêndice B

Automatic Categorization Results on

Contract-based Programs

Table B.1 shows the results of the automatic categorization of nonconformances on sample

contract-based programs.

Tabela B.1: Results of the automatic categorization process on Sample Programs. Column

Experimental Unit shows the name of the experimental unit. Columns Class and Method

display the names of the class and the method, respectively, where a nonconformance was

detected. Column Category presents the category manually assigned to the discovered non-

conformance. Column Type exhibits the nonconformance’s type. Finally, column Likely

Cause reveals the likely cause automatically assigned.

Table B.2 shows the results of the automatic categorization of nonconformances on open-

source contract-based programs.

93

94

Tabela B.2: Results of the automatic categorization process on Open-source Programs. Co-

lumn Experimental Unit shows the name of the experimental unit. Columns Class and

Method display the names of the class and the method, respectively, where a nonconfor-

mance was detected. Column Category presents the category manually assigned to the disco-

vered nonconformance. Column Type exhibits the nonconformance’s type. Finally, column

Likely Cause reveals the likely cause automatically assigned.

Apêndice C

Numbered Nonconformances

Table C.1 lists all detected nonconformances numbered for sample contract-based pro-

grams. The detected nonconformances were numbered in the following manner: starting

with BoundedStack package, then stacks, dbc, misc and finally list. In each pac-

kage, the nonconformances were ordered alphabetically by name of methods where the non-

conformances were detected.

Tabela C.1: Numbered nonconformances for Sample Programs.

Table C.2 lists all detected nonconformances numbered for open-source contract-

based programs. We continue the numbering starting with Bomber, then HealthCard,

JAccounting, Mondex and finally TransactedMemory. In each experimental unit,

the nonconformances were ordered alphabetically by the name of the methods where the

nonconformances were detected.

95

96

Tabela C.2: Numbered nonconformances for Open-source Programs.

Apêndice D

Form to Evaluation of the Categorization

Model

Below we present the form that we used in the evaluation of our categorization model by JML

experts. In this form are available the nonconformances that were selected, the link to the

contract-based program, a test case that reveals the nonconformance, and some information

about the nonconformance location.

97

Form to evaluation of categorization model
This form was created to evaluate the categorization model developed by Alysson Milanez, Master
Student of Computer Science, under the supervision of Tiago Massoni and Rohit Gheyi.

The evaluation will be based on answers to this form in comparison with our results.

This form will be available until Sunday: 13/04/14.

*Obrigatório

The categorization model proposed
In our study we proposed and implemented a categorization model to nonconformances between
code and specification. The model is composed by three-levels: category, type and likely cause.

Concerning about categories, an error that apparently occurs in the contract is regarded as
specification error; in contrast, apparent error in the body of the problematic method(s) is a code
error; it is undefined when it is not possible - considering a non-expert in the application domain - to
determine whether the problem is in the contract or in the source code.

The type is given automatically by the assertion checker, and corresponds to the part of JML that
was violated - considering only visible behavior from the systems.

Each error may present several likely causes, which cannot be deterministically diagnosed -
debugging can be aided, however, by specific heuristics.

In Figure 1 we present an overview of our categorization model.

Figure 1. Categorization model - overview

98

Evaluation
Now we present a list of 10 nonconformances randomly selected from the nonconformances that we
detect using JMLOK tool into a set of JML programs. The nonconformances were selected using the
sample command from R language (version 3.0.1).

The set of JML programs is composed by sample programs available at:
http://www.eecs.ucf.edu/~leavens/JML/examples.shtml and six Open-source JML programs: Bomber,
HealthCard, JAccounting, JSpider, Mondex and TransactedMemory.

While Bomber is a mobile game, HealthCard is an application that manages medical appointments
into smart cards. JAccounting and JSpider are two case studies from the ajml compiler project,
implementing, respectively, an accounting system and a Web Spider Engine. Mondex is a system
whose translation from original Z specification was developed in the Verified Software Repository
context. Finally, TransactedMemory is a specific feature of the Javacard API.

First we present the methodology to be used to categorize nonconformances. Then we present some
details about each nonconformance, like location and type. Next we show a test case that reveals
the nonconformance. Finally, we present the source code and specification related to the
nonconformance.

Methodology to categorize
1. Examining the project domain where the nonconformance was detected.
2. Examining test case that reveals the nonconformance.
 a. Understanding the modifications into the object under test until the nonconformance be
revealed.
3. Examining source code and specification.
4. Choosing a category between: code, specification, or undefined.
5. Suggesting a likely cause for the nonconformance.

Experimental Unit - Samples
Source code is available at: https://www.dropbox.com/sh/v85up3xec4zwg21/ndI0PTWF64

Nonconformance details
Source code: https://www.dropbox.com/sh/0bv6vu7z74anobw/vy4lIZY-MV

Package: BoundedStack

Class: BoundedStack

Method: Constructor - BoundedStack

Type: postcondition

Test case that reveals this nonconformance:

99

Category *
Chooses the most suited category to this nonconformance.

 Specification error

 Code error
 Undefined

Likely cause *
Suggests a likely cause for this nonconformance.

Nonconformance details
Source code: https://www.dropbox.com/sh/srg8y8fgy0037no/GmCdQ8mUWi

Package: stacks

Class: BoundedStack

Method: Constructor - BoundedStack

Type: invariant

Category *
Chooses the most suited category to this nonconformance.

 Specification error
 Code error

 Undefined

Likely cause *
Suggests a likely cause for this nonconformance.

Test case that reveals this nonconformance:

100

Nonconformance details
Source code: https://www.dropbox.com/sh/z4l0yd3g9tdu9iw/Xs0L29FYDY

Package: dbc

Class: Rectangular

Method: imaginaryPart

Type: postcondition

Category *
Chooses the most suited category to this nonconformance.

 Specification error

 Code error
 Undefined

Likely cause *
Suggests a likely cause for this nonconformance.

Nonconformance details
Source code: https://www.dropbox.com/sh/h7ulctxpzhkxjkk/ITYh5NImNv

Package: list

Test case that reveals the nonconformance:

101

Subpackage: list3

Class: TwoWayIterator

Method: next

Type: postcondition

Category *
Chooses the most suited category to this nonconformance.

 Specification error
 Code error

 Undefined

Likely cause *
Suggests a likely cause for this nonconformance.

Experimental Unit - HealthCard
Source code is available at: https://www.dropbox.com/sh/2wgh7bptrowkbim/EtO0PmO3da

Nonconformance details
Source code: https://www.dropbox.com/sh/9ljqnakvx35x93u/PlGyTp_vk9

Package: allergies

Class: Allergies_Impl

Method: setAllergyDesignation

Type: postcondition

Test case that reveals this nonconformance

102

Category *
Chooses the most suited category to this nonconformance.

 Specification error

 Code error
 Undefined

Likely cause *
Suggests a likely cause for this nonconformance.

Nonconformance details
Source code: https://www.dropbox.com/sh/rwma5927f1qfkmp/rrQV6oWrdl

Package: treatments

Class: Treatment_Impl

Method: setTreatmentID

Type: invariant

Category *
Chooses the most suited category to this nonconformance.

Test case that reveals this nonconformance

Test case that reveals this nonconformance:

103

 Specification error

 Code error
 Undefined

Likely cause *
Suggests a likely cause for this nonconformance.

Nonconformance details
Source code: https://www.dropbox.com/sh/g4fgnapwtdhdip6/aQwWNmqBQ7

Package: vaccines

Class: Vaccine_Impl

Method: setDesignation

Type: precondition

Category *
Chooses the most suited category to this nonconformance.

 Specification error
 Code error

 Undefined

Likely cause *
Suggests a likely cause for this nonconformance.

Test case that reveals this nonconformance:

104

Nonconformance details
Source code: https://www.dropbox.com/sh/g4fgnapwtdhdip6/aQwWNmqBQ7

Package: vaccines

Class: Vaccines_Impl

Method: getVaccineDesignation

Type: postcondition

Category *
Chooses the most suited category to this nonconformance.

 Specification error

 Code error
 Undefined

Likely cause *
Suggests a likely cause for this nonconformance.

Experimental Unit - JAccounting
Source code is available at: https://www.dropbox.com/sh/0nnomrkz7q63obc/38NBV07WOS

Test case that reveals this nonconformance:

105

Nonconformance details
Source code: https://www.dropbox.com/sh/879pkt9pwedkh49/g83IEk-3d_

Package: com.spaceprogram

Subpackage: util

Class: ArrayUtils

Method: getMaxIntArrayIndex

Type: postcondition

Category *
Chooses the most suited category to this nonconformance.

 Specification error

 Code error
 Undefined

Likely cause *
Suggests a likely cause for this nonconformance.

Nonconformance details
Source code: https://www.dropbox.com/sh/879pkt9pwedkh49/g83IEk-3d_

Package: com.spaceprogram

Subpackage: util

Class: CookieUtils

Method: getDeleteCookie

Type: postcondition

Test case that reveals this nonconformance:

106

Pow ered by

Category *
Chooses the most suited category to this nonconformance.

 Specification error

 Code error
 Undefined

Likely cause *
Suggests a likely cause for this nonconformance.

Este conteúdo não foi criado nem aprovado pelo Google.

Denunciar abuso - Termos de Serviço - Termos Adicionais

Test case that reveals this nonconformance:

Enviar
Nunca envie senhas em Formulários Google.

107

	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model
	Introdução
	Problem
	Motivating Example
	Relevance

	Solution
	Evaluation
	Summary of Contributions
	Outline of the Dissertation

	Fundamentação Teórica
	Formal Methods
	Formal Methods – Practice

	Design by Contract
	DBC – Concept
	Eiffel
	Spec#
	JML
	Conformance

	Software Testing
	Test Cases
	Oracles in DBC Context
	Tests Generation
	Conformance Testing

	Uma abordagem para Detecção e Categorização de Não-conformidades em Programas Baseados em Contratos
	Randomly-Generated Tests Approach for Conformance Checking
	Step 1 - Tests Generation
	Step 2 - Oracle Generation
	Step 3 - Tests Execution
	Step 4 - Grouping distinct Nonconformances
	Step 5 - Results from Detection Phase

	Heuristics-based Approach for Categorize Nonconformances
	Categorization Model
	Categorization Overview
	Heuristics

	JMLOK 2.0
	Step 1 - User interaction
	Step 2 - The Controller module
	Step 3 - The Detector module
	Step 4 - The Categorizer module
	JMLOK 2.0 Architecture
	Limitations

	Avaliação da Geração Aleatória de Testes para Detecção de Não-Conformidades em Programas Baseados em Contratos
	Research Questions
	First study - RGT in Isolation
	Setup
	Results
	Discussion

	Second Study - JMLOK 2.0 versus JET
	Setup
	Results
	Discussion

	Threats to validity
	Answers to the research questions

	Avaliação da Categorização de Não-Conformidades
	Research Questions
	First Study - Comparison between Manual and Automatic Categorization
	Setup
	Results
	Discussion

	Second Study - Comparison between Automatic and JML Experts Categorization
	Setup
	Results
	Discussion

	Threats to Validity
	Answers to the research questions

	Considerações Finais
	Conclusions
	Related Work
	Conformance Checking
	Categorization of Contract Violations
	Automatic Test Generation

	Future Work

	Manual Categorization Results on Contract-based Programs
	Automatic Categorization Results on Contract-based Programs
	Numbered Nonconformances
	Form to Evaluation of the Categorization Model

