
Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

An Approach for Traceability Recovery between

Bug Reports and Test Cases

Guilherme Monteiro Gadelha

Dissertação submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina Grande -

Campus I como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Computer Science

Linha de Pesquisa: Software Engineering

Franklin Ramalho and Tiago Massoni

(Supervisors)

Campina Grande, Paraíba, Brasil

c©Guilherme Monteiro Gadelha, 23/07/2019

G124a

Gadelha, Guilherme Monteiro.

 An approach for traceability recovery between bug reports and test
cases / Guilherme Monteiro Gadelha. – Campina Grande, 2019.
 119 f. : il. color.

 Dissertação (Mestrado em Ciência da Computação) – Universidade

Federal de Campina Grande, Centro de Engenharia Elétrica e
Informática, 2019.

 "Orientação: Prof. Dr. Franklin de Souza Ramalho, Prof. Dr. Tiago
Lima Massoni”.

 Referências.

 1. Software Engineering. 2. Bug Reports. 3. System Features. 4. Test

Cases. 5. Requirements Traceability. 6. Information Retrieval.
I. Ramalho, Franklin de Souza. II. Massoni, Tiago Lima. III. Título.

 CDU 004.41(043)

 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA SEVERINA SUELI DA SILVA OLIVEIRA CRB-15/225

“AN APPROACH FOR TRACEABILITY RECOVERY BETWEEN BUG REPORTS AND
TEST CASES”

GUILHERME MONTEIRO GADELHA

DISSERTAÇÃO APROVADA EM 23/07/2019

FRANKLIN DE SOUZA RAMALHO, Dr., UFCG
Orientador(a)

TIAGO LIMA MASSONI, Dr., UFCG
Orientador(a)

EVERTON LEANDRO GALDINO ALVES, Dr., UFCG
Examinador(a)

NATASHA CORREIA QUEIROZ LINO, Dra., UFPB
Examinador(a)

CAMPINA GRANDE – PB

Resumo

Recuperação de links de rastreabilidade automaticamente entre artefatos de software poten-

cialmente melhora o processo de desenvolvimento de software, ajudando a detectar proble-

mas mais cedo durante o ciclo de vida do software. Abordagens que aplicam técnicas de Re-

cuparação da Informação ou Aprendizam de Máquina em dados textuais têm sido propostas,

contudo estas técnicas diferem consideravelmente em termos de parâmetros de entrada e

resultados obtidos.

É difícil distinguir os benefícios e as falhas das técnicas quando essas são aplicadas

isoladamente, usualmente em projetos pequenos ou de tamanho médio. Além disso, um

visão mais abrangente poderia ser feita se uma técnica de Aprendizagem Profunda fosse

aplicada em comparação com as técnicas tradicionais de Recuperação da Informação.

Nós propomos uma abordagem para recuperar links de rastreabilidade entre artefatos tex-

tuais de software, especificamente relatórios de falhas e casos de teste, que são relacionados

através de técnicas de Recuperação da Informação e Aprendizagem Profunda. Para avaliar a

efetivadade de cada técnica, nós usamos um conjunto de dados históricos do Mozilla Firefox

usados pelos times de controle de qualidade.

As seguintes técnicas de Recuperação da Informação foram estudadas: Latent Semantic

Indexing, Latent Dirichlet Allocation e Best Match 25. Adicionalmente, nós também apli-

camos uma técnica de Aprendizagem Profunda chamada Word Vector. Uma vez que não

possuímos uma matriz de rastreabilidade que ligue diretamente relatórios de falhas e casos

de teste, nós usamos system features como artefatos intermediários.

No contexto de rastreabilidade entre relatórios de falhas e casos de teste, nós identifi-

camos uma performance pobre de três entre as quatro técnicas estudadas. Apenas a técnica

Latent Semantic Indexing apresenta resultados satisfatórios, mesmo que comparando com

a técnica estado-da-arte Best Match 25. Ao passo que a técnica Word Vector apresentou a

efetividade mais baixa dentre todas as técnicas.

Os resultados obtidos mostram que a aplicação da técnica Latent Semantic Indexing –

em conjunto com uma combinação de limiares que definem se um link candidato é posi-

tivo ou não – é viável para projetos grandes e reais usando um processo de recuperação de

1

links de rastreabilidade semi-automático, onde os analistas humanos são auxiliados por uma

ferramenta de software apropriada.

2

Abstract

Automatic traceability recovery between software artifacts potentially improves the process

of developing software, helping detect issues early during its life-cycle. Approaches applying

Information Retrieval (IR) or Machine Learning (ML) techniques in textual data have been

proposed, but those techniques differ considerably in terms of input parameters and results.

It is difficult to assess their benefits and drawbacks when those techniques are applied

in isolation, usually in small and medium-sized software projects. Also, an overview would

be more comprehensive if a promising Deep Learning (DL) based technique is applied, in

comparison with traditional IR techniques.

We propose an approach to recover traceability links between textual software artifacts,

in special bug reports and test cases, which can be instantiated with a set of IR and DL tech-

niques. For applying and evaluating our solution, we used historical data from the Mozilla

Firefox quality assurance (QA) team, for which we assessed the following IR techniques: La-

tent Semantic Index (LSI), Latent Dirichlet Allocation (LDA) and Best Match 25 (BM25).

We also applied the approach with a DL technique called Word Vector. Since there are no

traces matrices that straightly link bug reports and test cases, we used system features as

intermediate artifacts.

In the context of traceability from bug reports to test cases, we noticed poor performances

from three out of the four studied techniques. Only the LSI technique presented satisfactory

effectiveness, even standing out over the state-of-the-art BM25 technique. Whereas the Word

Vector technique presented the lowest effectiveness in our study.

The obtained results show that the application of the LSI technique – set up with an

appropriate combination of thresholds to define if a candidate trace is positive or not – is

feasible for real-world and large software projects using a semi-automatized traceability re-

covery process, where the human analysts are aided by an appropriated software tool.

3

Agradecimentos

Aos meus dedicados pais, Kalina Gadelha e Hermano Gadelha, por todo amor, suporte e

dedicação durante todos os momentos da minha vida. Ao meu irmão, Henrique Gadelha,

pelo companherismo e amizade durante toda a vida.

À minha namorada, Thássia Borges, pelos incentivos, apoio e carinho nessa jornada.

Aos meus sogros, pelos conselhos e acolhimento. Às minhas tias e tios, pelo exemplo de

corretude e caráter. Ao meu avô e avós, pelo exemplo de vida.

Aos meus orientadores, Franklin Ramalho e Tiago Massoni, pela confiança, incentivos

e ajuda durante o mestrado. Assim como pela dedicada orientação e solicitude sempre em

prol de um trabalho de qualidade.

Aos meus colegas, amigos e professores do SPLab e da UFCG, sem os quais esse trabalho

não seria possível. Um agradecimento especial ao professor e amigo Matheus Gaudencio,

pelos conselhos e boas conversas sobre a vida acadêmica. Agradeço também aos meus cole-

gas de mestrado, em especial, Marcos Nascimento, José Raul, Jaziel Moreira e Rafael

Pontes, pelas muitas ajudas e pelo altruísmo.

À todos os não citados aqui reconheço e agradeço a importância de vocês em cada vitória

conquistada.

4

Contents

1 Introduction 12

1.1 Problem . 13

1.1.1 Problem Relevance . 15

1.2 Scope . 15

1.3 Objectives . 16

1.4 Research Questions . 17

1.5 Dissertation Structure . 18

2 Background 19

2.1 Bug Reports . 19

2.2 System Features . 20

2.3 Test Cases . 21

2.4 IR and DL Techniques for Traceability Recovery 23

2.4.1 Latent Semantic Indexing . 24

2.4.2 Latent Dirichlet Allocation . 27

2.4.3 Best Match 25 . 29

2.4.4 Word Vector . 31

3 Approach 34

4 Building an Oracle Matrix 38

4.1 Context . 38

4.2 Participants . 39

4.3 Used Data . 40

4.4 Procedure . 42

5

CONTENTS 6

4.5 Results . 44

5 Empirical Study - Bug Reports to Test Cases Traceability 47

5.1 Study Definition and Context . 47

5.2 Objects . 47

5.3 Study Procedure . 48

5.3.1 BR-TC Traces Builder Evaluation 49

5.4 Research Method . 50

5.4.1 Metrics . 50

5.4.2 Recovery Effort Index – REI . 51

5.4.3 Goodness . 52

5.4.4 ZeroR Predictor . 52

5.5 Results and Discussion . 53

5.5.1 Oracle Generation . 53

5.5.2 General Evaluation . 55

5.5.3 Scenario I – Similarity Threshold 0.0 59

5.5.4 Scenario II – Similarity Threshold 0.9 68

5.5.5 Best Similarity Threshold Value 74

5.5.6 Goodness Scale . 76

5.5.7 Recovery Effort Index – REI . 76

5.5.8 Lessons Learned . 77

6 Threats to Validity 80

7 Related Work 82

8 Conclusions 85

8.1 Limitations . 87

8.2 Contributions . 87

8.3 Future Work . 88

A Extra Empirical Study A 94

A.1 Study Context and Definition . 94

CONTENTS 7

A.2 Study Procedure . 94

A.2.1 BR-Feat Traces Builder Evaluation 95

A.3 Research Method . 96

A.4 Results and Discussion . 96

A.4.1 General Evaluation . 96

A.4.2 Scenario I – Similarity Threshold 0.0 100

A.4.3 Scenario II – Similarity Threshold 0.9 105

A.4.4 Best Similarity Threshold Value 115

A.4.5 Goodness Scale . 117

A.4.6 Recovery Effort Index – REI . 118

A.4.7 Lessons Learned . 118

List of Figures

1.1 Bug report and test case that should be linked 14

2.1 Example of Bug Report from Mozilla Firefox 20

2.2 Example of System Feature from Mozilla Firefox 21

2.3 Example of Test Case from Mozilla Firefox 22

2.4 Similarity Matrix Example . 23

2.5 Test Cases 13 and 60 used in our example 26

2.6 LSI Example . 26

2.7 LDA Example . 28

2.8 LDA Topics . 29

2.9 BM25 Example . 30

2.10 Word Vector Example . 32

3.1 Bug Reports, System Features and Test Cases Relationships 34

3.2 BR-TC Traces Builder Module . 35

3.3 Traces Builder Submodules . 36

3.4 Traces Recovering Process Example . 37

4.1 Mozilla Firefox Development Model: Rapid Release (RR) 39

4.2 Scheme of First Empirical Study – Oracle Creation 42

4.3 Volunteers’s application in PyBossa platform 44

4.4 Amount of features by bug report . 45

4.5 Amount of bug reports per system feature 46

5.1 Scheme of Second Empirical Study . 48

5.2 ZeroR Classifier Predictions . 53

8

LIST OF FIGURES 9

5.3 Number of test cases by bug report . 54

5.4 BR-TC Traceability Recovery Results . 55

5.5 PR-Curves of All Techniques – BR-TC Context 56

5.6 Performance of techniques aggregated by Top Value 57

5.7 LDA Topics . 58

5.8 Traceability Recovery Results for Scenario I – Study II 62

5.9 Comparison of exclusive true positives . 62

5.10 Comparison of false positives – Scenario 1 – Study II 63

5.11 Comparison of number of false positives – Top Value 10 64

5.12 Comparison of number of false positives – Top Value 40 64

5.13 Number of False negatives – Scenario I – Study II 65

5.14 Comparison of exclusive false negatives – Top 10 (left) and Top 40 (right) . 66

5.15 Poorly described bug report . 68

5.16 Well described bug report . 68

5.17 Traceability Recovery Results for Scenario II – Study II 70

5.18 Number of true positives by technique . 71

5.19 Comparison of exclusive true positives – Top 10 (left) and Top 40 (right) . . 72

5.20 Comparison of exclusive false positives – Top 40 – Scenario II – Study II . 73

5.21 LSI and LDA Similarity Threshold Variation 74

5.22 BM25 and Word Vector Similarity Threshold Variation 75

5.23 Goodness Scale for each Technique – Study II 76

A.1 Scheme of Extra Empirical Study . 95

A.2 BR-Feat Traceability Recovery Results . 97

A.3 PR-Curves of each technique – BR-Feat Context 99

A.4 Performance of techniques aggregated by Top Value 100

A.5 Traceability Recovery Results for Scenario I – Extra Study 102

A.6 Number of true positives exclusively identified 103

A.7 Comparison of False Positives . 104

A.8 Highlighted LDA’s Similarity Matrix . 106

A.9 False Negatives Comparison . 106

LIST OF FIGURES 10

A.10 Traceability Recovery Results for Scenario II – Extra Study 109

A.11 BM25 Similarity Matrix Subset . 110

A.12 Number of true positives exclusively identified 111

A.13 BM25 (left) vs Word Vector (right) Similarity Matrices – Top 5 in Red and

True Traces in Yellow – Similarity Threshold 0.9 112

A.14 Comparison of false positives . 113

A.15 Comparison of false negatives . 114

A.16 LSI and LDA Similarity Threshold Variation – Extra Study 116

A.17 BM25 and Word Vector Similarity Threshold Variation – Extra Study . . . 116

A.18 Goodness scale by each technique – Extra Study 1 117

List of Tables

4.1 Firefox Features . 41

5.1 Goodness Level . 52

5.2 Number of traces in intersection oracle grouped by system feature 55

5.3 Captured and Not Captured Traces – All Techniques – Scenario I – Study II 59

5.4 Captured and No Captured Traces – All Techniques – Scenario II – Study II 69

5.5 REI values . 77

7.1 Summary of related works . 84

A.1 Captured and Not Captured Traces – All Techniques – Scenario I – Study I 100

A.2 Captured and Not Captured Traces – All Techniques – Scenario II – Study I 106

A.3 Distribution of Bug Reports by Feature . 107

A.4 Number of exclusive false positives . 113

A.5 Number of exclusive false negatives . 114

A.6 REI values . 118

11

Chapter 1

Introduction

Software development and testing processes produce many textual artifacts, such as bug re-

ports, test cases, requirements documents, besides source code itself. The produced artifacts

do have interrelations whose tracking benefits software teams. This is especially impor-

tant for requirements, from which several artifacts at many levels of abstraction are closely

related. Requirements Traceability is "the ability to describe and follow the life of a require-

ment, in both a forward and backward direction" [18];

The process of recovering traceability links is split in four steps: (i) parsing of the doc-

uments being traced, with the extraction of most relevant words; (ii) the extracted words

form a term-by-document matrix which supports the traceability recovery made by a com-

putational technique; (iii) it recovers the traceability links between two groups of textual

artifacts, for example, mapping bug reports to test cases; the computational technique then

ranks the most similar target documents based on a query (source document); (iv) in the end,

the rankings are compared with an oracle (ground truth) to evaluate the created links.

Scalable traceability requires automation; if manually maintained, it becomes an error-

prone and expensive task [23; 13]. Traceability tools and techniques emerged in response to

that demand, allowing traceability links between any textual artifacts to be fastly recovered

and analyzed, even in highly dynamic and distributed environments. Although, the tool’s

effectiveness for application in real projects is an open challenge yet. Information Retrieval

(IR) techniques are the basis of most of the proposed techniques for traceability recovery.

Antoniol et al. were pioneers in using IR techniques for traceability between source code

and documentation artifacts in a seminal paper [2].

12

1.1 Problem 13

Following the seminal paper, which used the Vector Space Model (VMS) technique,

many other works were developed using other techniques, such as Latent Semantic Indexing

(LSI), Latent Dirichlet Allocation (LDA), and Best Match 25 (BM25). Borg et al. [5] verified

in a systematic literature review the most common techniques are LSI and VSM, although

the BM25 is the state-of-the-art technique in the field.

1.1 Problem

IR techniques differ considerably in terms of input parameters and results. Solutions pro-

posed by previous research [23; 7; 34; 28] for traceability recovering between software arti-

facts explore a specific technique, such as Latent Semantic Indexing (LSI) or Latent Dirichlet

Allocation (LDA), gain from its benefits, but are exposed to its limitations. It is then hard

to judge what are the most efficient IR techniques for establishing a useful basis for re-

quirements traceability, which is even harder as the most cited studies focus on small and

medium-sized software projects (see discussion regarding related work in Chapter 7). Fur-

thermore, studies using Machine Learning (ML) and Deep Learning (DL) techniques/models

for requirements traceability have been carried out, focusing on either requirements identi-

fication [12], number of remaining traceability links estimation [15], or traceability links

prediction [19]. However, they should be compared with IR techniques for assessing their

effectiveness.

An example of link between two artifacts we would like the techniques make automati-

cally is depicted in Figure 1.1. These two artifacts should be linked considering we have a

large number of test cases made during the Mozilla Firefox web browser development cycle

and a large number of bugs reported. In the left-hand side of Figure 1.1, we observe a bug

report and at the right-hand side we observe a test case that we expect a IR/DL technique

would be able to recover. The most relevant words the technique can consider are highlighted

in red, both artifacts are related with a system feature from the Mozilla Firefox responsible

for the smooth scrolling of web pages. The bug report describes problems in scrolling a web

page in small-size windows of the Mozilla Firefox, while the manual test case describes how

to test the scrolling of a long web page.

Previous studies address traceability recovery between many types of software artifacts,

1.1 Problem 14

Figure 1.1: Bug report and test case that should be linked

but we have noticed only a few studies tracing bug reports to test cases [5]. Although test

cases very often are the most up-to-date documentation of the system and the only available

source of system requirements, especially in agile development teams. One previous related

study works with traceability between requirements and bug reports [42]; Hemmati et al.

[24] investigate IR techniques for predicting manual test case failure; Merten et al. [31]

analyzed variations of five IR techniques for traceability recovery between bug reports; while

only one study deals with traceability between test cases and bug reports [25]. See Chapter

7 for more details on these two last studies.

In summary, to the best of our knowledge, we have no clear indications about the best

technique to use for traceability recovery between bug reports and test cases. Also, we did

not find studies providing satisfactory results for large and real-world projects to adopt a

traceability recovery process between these two kinds of artifacts. So far, the few works

found tracing bug reports and test cases have limitations on the variety of techniques stud-

ied and on the depth of the evaluation made, many times not estimating the impact of the

traceability recovery chosen technique over the software development and maintenance pro-

cesses. Our study proposes an approach to fill that gap and help to link appropriately these

two important software artifacts.

1.2 Scope 15

1.1.1 Problem Relevance

An effective traceability recovery process promotes reliable software development and test-

ing, as it has a significant repercussion over activities such as change impact estimation, test

selection, and prioritization, and budget prediction [19]. In such a scenario, bugs reported

by developers, testers, final users, and stakeholders can be selected and prioritized for bug

fixing and testing processes automatically using IR or DL techniques. Also, the impact of

changes suggested by stakeholders may be more precisely estimated if information about the

affected artifacts is available for decision makers, reducing the involved risks for the project.

The same information can be used for budget prediction, once more data are available for

estimating the teams’ sizes and the number of hours required for bug fixing for example. Yet

another contribution of such process is the identification of the reason of the faults, once the

correct linking between the bug reports and test cases improve the developers’ capabilities

of identifying software non-conformances and faults.

Another benefit is the reduction in the learning curve required from new members of

development or testing teams. Usually, the projects do not have up-to-date documentation

of all software artifacts and new team members must learn in practice the localization of

artifacts and the architecture of the software, such learning takes time and effort from all

the involved team members. The use of traceability recovery tools may reduce this learning

process and speed up the integration of these new members for more critical activities into

the project.

1.2 Scope

The scope of our research is limited to the field of Requirements Engineering, specifically

the sub-field of Requirements Traceability. Despite the fact "Requirements" be related to

a specific kind of software artifact (requirements documents), considering the community’s

vocabulary, we understand it as any type of software textual artifact.

1.3 Objectives 16

1.3 Objectives

In this dissertation, we propose an approach (Chapter 3) that applies a set of IR and DL

techniques to recover traceability links between bug reports and test cases. How we do not

have a traceability matrix which maps directly bug reports and test cases, we used system

features as intermediate artifacts. The system features allowed us to group the test cases and

helped us in the generation of an oracle – which means the ground thruth –, so we could

evaluate each IR and DL technique. The selected techniques are Latent Semantic Indexing

(LSI), Latent Dirichlet Allocation (LDA), Best Match 25 (BM25), and Word Vector.

For evaluating our solution, we used historical data from the Mozilla Firefox develop-

ment team1. We have designed and set up and performed one empirical study; The study is

split in two phases, the first phase (Chapter 4) is to generate a traceability matrix (oracle)

between features and bug reports. The second phase (Chapter 5) uses this traceability matrix

to generate a traceability matrix between bug reports and test cases, and finally evaluates the

IR and DL techniques for those artifacts. The main goal of this study is to compare available

IR and DL techniques in one specific context of traceability recovery: bug reports to test

cases, in terms of well-known metrics: Precision, Recall, and F2-Score.

The main objective of this work is the analysis and discussion about the effectiveness of

a varied group of IR and DL techniques through the reporting of different metrics should

grant the community a deeper understanding of the studied techniques when using them for

traceability recovery of the kind of used artifacts in real and open source projects such as the

Mozilla Firefox.

The study has the following secondary objectives:

1. Organization of a data set of bug reports, test cases, and system features based on

Mozilla Firefox available artifacts for using in other traceability recovery studies and

support the creation of new benchmarks of traceability recovery techniques;

2. Creation of an approach for traceability recovery between bug reports and test cases

using system features;
1https://www.mozilla.org/

1.4 Research Questions 17

1.4 Research Questions

For this research work, we defined the following research questions. We consider all re-

search questions in the context of traceability between bug reports and test cases and more

information on the metrics used can be found in Chapter 5:

RQ1 Which technique presents the best effectiveness?

Where the technique’s effectiveness is understood in terms of Precision, Recall, and

F2-Score.

RQ2 How does the effectiveness of each technique compare with a baseline predictor ef-

fectiveness?

We used as baseline predictor of a ZeroR Classifier/Predictor implementation, which

only predicts the majority class.

RQ3 How does the effectiveness of each technique vary based on variable cuts?

This third research question explores the impact of a variety of determined combinations

of Similarity Thresholds and Top Values over the effectiveness of the techniques. Similarity

Thresholds and Top Values are defined so the number of documents returned from a query

can be limited.

RQ4 Which technique presents the best Goodness?

The well-known Goodness scale allows us to understand the feasibility of a technique for

application into a traceability recovery process.

RQ5 Which technique presents the lowest REI coefficient?

This last research question should allow us to compare the techniques between them-

selves in terms of effort saving in a traceability recovery process from a human analyst. The

REI abbreviation stands for Recovery Effort Index.

1.5 Dissertation Structure 18

1.5 Dissertation Structure

This dissertation is organized as follows: Chapter 2 exposes basic concepts needed to un-

derstand our proposal; Chapter 3 details and schematizes our proposal; whereas Chapter 4

presents the first empirical study, relative to the bug reports to system features oracle cre-

ation, and discusses its results. Continuing the analysis, Chapter 5 discusses the bug reports

to test cases oracle creation, and evaluates the application of the IR and DL techniques. The

threats to the validity of the conclusions of the study are reported by Chapter 6. The Chapter

7 presents some related works, discussing similarities and differences with our study; and,

for last, Chapter 8 exposes our conclusions and future works we intend to develop. Appendix

A presents an additional study on traceability between bug reports and features similar to the

one exposed at Chapter 5.

Chapter 2

Background

In this chapter, we introduce the concepts related to bug reports, test cases and system fea-

tures, which are the software artifacts used in our approach. Also, we define the IR and DL

techniques selected for our study.

2.1 Bug Reports

A bug report describes any system failure identified by a user or automatically reported by

the system (in the case of crashing bugs) [16]. The main objective of a bug report is to offer

details about a failure identified and then help the developers investigate the causes and fix

the issue if its presence is confirmed [27]. Bugs occur due to either implementation faults

or specification nonconformances that will be detected by end users during the system’s

operation. Several fields may be added to the reports, including title, reproduction steps,

stack traces, failing test cases, expected behavior, among other data [8]. Figure 2.1 shows an

example of a bug report from the Mozilla Firefox repository1.

A bug report defined appropriately is decisive for debugging and bug fixing. It should

contain a clear and detailed problem description; the procedure taken to reproduce the bug

has to be accurate and include precise information about inputs and outputs. Complete infor-

mation about observed and expected behavior is associated with bug acceptance by develop-

ers and its successful resolution [43].

In Figure 2.1, we identify attributes which qualify a bug report and contribute to its

1https://bugzilla.mozilla.org

19

2.2 System Features 20

Figure 2.1: Example of Bug Report from Mozilla Firefox

acceptance by the Mozilla’s development team: (i) it has a unique ID number; (ii) the steps

to reproduce – STR – are clearly described; (iii) the expected results are detailed; and (iv)

the problem is summarized and very specific, as we observe in the Title field.

2.2 System Features

A system feature is defined as a set of requirements highly bonded to each other [26]. System

features improve the communication efficacy between all the stakeholders by virtue of the

common vocabulary created and the simpler cognitive effort needed for understanding them

in comparison to individual requirements [35]; requirements itself are well understood by

those that define them and those which implement them. The definition of system features

creates a common ground so that every person involved in the project can quickly understand

the system operations.

A feature is commonly described by its Name and Description, but others fields such as

Software Version, which favors the features traceability, can also be used depending on the

model of representation adopted by the system’s managers. An example of system feature

2.3 Test Cases 21

Figure 2.2: Example of System Feature from Mozilla Firefox

can be observed in Figure 2.22.

The Figure 2.2 shows the APZ – Async Pan/Zoom – system feature from Mozilla Firefox.

This feature is related to the bug report exemplified in the previous section. The APZ feature

is responsible for the performance improvement in the panning and zooming actions within

the Firefox browser, separated from the main javascript thread.

The Firefox features are organized following the presented template in the Figure 2.2, but

every project has a particular way of organizing the documentation of their features, when

this is made. In our proposed template, we characterize a system feature using the following

arguments: ID, Short Name, Firefox Version, Firefox Feature (Feature Name), and Feature

Description.

2.3 Test Cases

A manual test case defines a textual sequence of steps, each of which including the expected

results, allowing a tester to determine if a software is following the stakeholder’s require-

ments [39]. Figure 2.3 shows an example of test case from the Mozilla Firefox, which is

related with the previously presented Bug Report (Section 2.1) and System Feature (Sec-

2https://wiki.mozilla.org/Platform/GFX/APZ

2.3 Test Cases 22

tion 2.2). Besides the test case Title, Steps to Reproduce and Expected Results, the related

TestDay, TC Number, Generic Title, Preconditions, and Crt Nr (Control Number?) are also

detailed.

Figure 2.3: Example of Test Case from Mozilla Firefox

The test case’s Title is a short description of the test purpose, which should be executed

after the Preconditions be attended and following the Steps to Reproduce, then for each step

an Expected Result is defined and the agreement with it must be checked by the tester. If the

expected results match with the program outputs, then the test passes, otherwise, it fails.

The TC Number is a unique ID for the test case, so it can be identified between all test

cases. Especially in the case of Mozilla Firefox, a test case is always associated with a system

feature (Generic Title) and with at least one TestDay, which is the day the test was executed.

We have not identified the semantic of the Crt Nr field, we estimate it is a unique identifier

for the test in the TestDay.

Test Cases have fundamental importance for the software development, evolution, and

maintenance, once allow the detection of bugs before the software be released to the final

users or ahead of prejudices for any stakeholder. Also, the test cases are easy to automate and

2.4 IR and DL Techniques for Traceability Recovery 23

facilitate the tests and bugs reproducibility. Besides that, test cases are the most up-to-date

documentation of many systems in the industry.

2.4 IR and DL Techniques for Traceability Recovery

The purpose of Information Retrieval (IR) [6] techniques is to recover and rank a set of

documents from a corpus of documents when a query is submitted to it. The output of an

applied IR technique in the context of traceability recovery is a similarity matrix [2] which

does the mapping between each pair (document, query). The content of the similarity matrix

is the similarity scores between the documents and the queries, and such scores are calculated

in many different ways accordingly to the techniques core algorithms.

Figure 2.4: Similarity Matrix Example

In our work, the bug reports are used as queries, whereas the test cases are used as

the documents. An example of a similarity matrix between bug reports and test cases is

2.4 IR and DL Techniques for Traceability Recovery 24

shown in Figure 2.4. The dark green cells show higher levels of similarity. For example, the

similarity score between the bug report 1248268 and the test case 5 is 0.4417. In general

is used the cosine function to calculate the similarity – as we later explain –, however other

functions could be also used, such as Edit Distance, Jaccard Similarity, Dice Similarity,

etc. [5]. We decided to use the cosine following previous works methodologies [22; 23; 9;

10].

In order to improve the IR algorithms performance, before the submission to the tech-

nique’s core algorithms – later explained in this Chapter –, the corpus documents and the set

of queries pass through a preprocessing phase. The first step is the process of tokenization

of each document, where blank spaces and punctuation characters are removed. In the sec-

ond step, the set of tokens is submitted to the removal of stop words to discard terms like

articles, adverbs, and prepositions. In the third step is performed a morphological analysis

applying stemming in each token which removes words suffixes, so words like information,

informatics, and informatization are treated as one; and lemmatization, where words in the

third person are changed to first person and verbs in past and future tenses are changed into

the present tense.

Deep Learning techniques also can be used for calculating the similarity between a given

pair of documents. Based on recent works [12; 19], we also used a Deep Learning technique

as a traceability recovery technique. The technique details are explained in Section 2.4.4.

In the sequel, we detail each technique used in this work. We chose them based on the

analysis of a systematic literature review [5] and previous works [4; 34; 38; 12; 19].

2.4.1 Latent Semantic Indexing

Latent Semantic Indexing (LSI) [11] is a very common IR technique based on a vector space

model [5; 9; 13]. The technique requires the vectorization of each document in the corpus

and each query in the queries set. In order to do this vectorization, a weighting scheme is

selected so the most relevant words of each document and query can have the appropriate

weight in the searching and ranking process. One of the most common weighting schemes

used in the LSI is called tf-idf which stands for term frequency-inverse document frequency.

The tf-idf formula is detailed in Equation 2.1.

2.4 IR and DL Techniques for Traceability Recovery 25

tf -idf(t, d,D) = tf(t, d).idf(t,D) (2.1)

The first part of the formula – tf(t,d) – calculates the frequency of the term t in a document

d, so how much more the term appears in the document, higher the tf value. The second part

calculates the number of documents the term t appears in the entire corpus of documents D,

so how much more rare the term is, the higher the idf(t,D) value.

idf(t,D) = ln(
N

1 + nt

) (2.2)

The Equation 2.2 details the smoothed idf formula, where N is the number of documents

in the corpus, and nt is the number of documents where the term t appears. How the nt value

can be zero, resulting in a division by zero, the equation is smoothed by summing 1 in the

denominator.

Using the matrix of term-by-document whose content is tf -idf values as input, a mathe-

matical dimensionality reduction technique known as SVD (Singular Value Decomposition)

[11] is applied and we have as output new vectors representing documents and queries. This

mathematical technique is needed to optimize the LSI’s effectiveness and to make the search-

ing process faster. The similarity score between each pair (document, query) is calculated by

the cosine of the angle between a document vector and a query vector.

In order to improve the understanding of the LSI technique, we present a concrete exam-

ple with one bug report and three test cases. The bug report used is the same presented in

Section 2.1, such as the test case which was presented in Section 2.3. Two other test cases

used in our example are displayed in Figure 2.5.

We refer to the bug report and test cases used through their unique identifiers, so the bug

report becomes BR_1267501_SRC and the test cases become TC_13_TRG, TC_37_TRG,

and TC_60_TRG. The abbreviations SRC and TRG stand for source and target, meaning the

direction of the traceability recovery, from the bug report (source) to the test cases (targets).

We started the recovering process by executing the preprocessing phase described at the

beginning of the section, applying tokenization, stemming, stop words removal, etc. in the

test cases and in the bug report. Also, the tokens were sorted alphabetically and converted to

lowercase. The LSI’s application for traceability recovering is presented in Figure 2.6.

2.4 IR and DL Techniques for Traceability Recovery 26

Figure 2.5: Test Cases 13 and 60 used in our example

Figure 2.6: LSI Example

The matrix depicted on the left side of Figure 2.6 is called Term-by-Document Matrix

and is created with the terms presented in the test cases. The most important terms in each

document are highlighted in dark green, the weights of the terms are calculated using the

tf -idf scheme. Similarly, the query vector – created based on the existing terms in the Term-

by-Document Matrix and also presented in the bug report – is depicted in the right side of

Figure 2.6.

2.4 IR and DL Techniques for Traceability Recovery 27

The tf -idf weights are calculated such as in the following example. Consider the bug

report presented in Section 2.1 containing 200 words wherein the word "apz" appears 5

times. The term frequency (i.e., tf) for "apz" is then 5

200
= 0.025. Now, assume we have 300

test cases and the word "apz" appears in 35 of these. Then, the inverse document frequency

(i.e., idf) is calculated as ln(300
35
) = 8.57. Thus, the tf -idf weight is the product of these

quantities: 0.025 ∗ 8.57 = 0.2142 [1].

Following the Term-by-Document Matrix creation, the SVD mathematical technique is

applied over it, generating a SVD Matrix of smaller dimensions (3x3), and over the Query

Vector, generating a reduced vector with dimensions (1x3). Then, the cosine similarity is

calculated between each test case (line in the SVD matrix) and the bug report (reduced query

vector), resulting in the vector depicted at the center in the Figure 2.6.

We see, after the Cosine Similarity Calculation, the LSI was able to correctly recover

the test case 37 from the analysis of the bug report 1267501 with a high similarity score of

0.9483 (dark green), and a low similarity scores with the other two test cases, which are in

fact not related with bug report (lighter green).

2.4.2 Latent Dirichlet Allocation

The LDA technique [4] is a generative statistical model 3 where each collection of discrete

data as a textual document is modeled as a set of topics and each topic, in turn, is modeled

as a mixture of probabilities. Once the topic probabilities provide a representation of a

document, the LDA is called a topic model. The referred probabilities are relative to the

following question: What is the probability of a query q be entered to retrieve a document

d?. A topic model estimates which topics – created based on the content of the documents

– are the most representative for a given document and attributes a specific distribution of

topics for each one of them. The same way, the topics of a given query are calculated, and

then the similarity scores between the query and the documents can be estimated.

Many different metrics can be used to calculate the similarity scores. One of them is to

use the cosine of the angle between the vectors of each pair (document, query) as is made in

the LSI technique. The difference is that the vectors here are vectors of probabilities [13]. A

3Given an observable variable X and a target variable Y, a generative model is a statistical model of the joint

probability distribution on X × Y , P(X, Y) [41]

2.4 IR and DL Techniques for Traceability Recovery 28

Figure 2.7: LDA Example

concrete example with the application of the LDA technique using the same test cases and

bug report cited in the LSI explanation is shown in Figure 2.7.

In the left side of figure, we show the tokens of each test case after tf -idf application, the

result is a Term-by-Document Matrix (subset depicted in Figure 2.7). Next, the LDA’s topic

word distributions are created (step 1), in our case we set up the LDA to have three topics –

other values can be chosen, which impacts the technique’s effectiveness –, considering the

technique will be capable of distinguishing the test cases origins – each test case is related to

three different system features from Mozilla Firefox. Observe we are mapping bug reports to

test cases, although the technique is able to recognize the different system features associated

with the test cases.

In fact, we recognize, through the analysis of the topics distributions, the technique suc-

cessfully identifies the test cases associated system features: the first topic (Topic #0) is

referring to the browser customization feature, whereas the second topic (Topic #1) is point-

ing out to scrolling characteristic of APZ system feature, and the third topic (Topic #2) is

related with the New Awesome Bar feature. The ten most relevant words for each topic are

detailed in Figure 2.8 and important words are highlighted in red.

After the topic word distribution calculation, a dimensionality reduction operation is ap-

plied and a Corpus Matrix with dimensions 3x3 is generated (step 2). Identically, a di-

2.4 IR and DL Techniques for Traceability Recovery 29

Figure 2.8: LDA Topics

mensionality reduction operation is applied over the bug report (query) vector, generating a

reduced query vector with dimensions 3x1 (step 3). Then, the cosine similarity is determined

for each line of the Corpus Matrix (test case) and the reduced query vector (bug report) (step

4). We observe the technique was able to correctly recover the related test case (37), with

a high similarity score 0.9953 (darker green cell), while attributed a low similarity score to

the other test cases (lighter green cells). Observe the Figure 2.7 shows only subsets of the

Term-by-Document Matrix, the Topic Word Distribution Matrix, and the Query Vector.

2.4.3 Best Match 25

Also known as BM25, the Best Match 25 is a probabilistic model which is based on the

Okapi-BM25 scoring function for ranking the retrieved documents [38]. Probabilistic mod-

els in the context of information retrieval try to answer the question What is the probability

of a given document be relevant to a given query? to answer this question, scoring functions

are used to give a score to each document and rank the entire set of documents concerning

each query. The scoring function of the BM25 model can be generally described by the

Equations 2.3 and 2.4 [7].

Sd(q) =
∑

t∈q

W (t) (2.3)

W (t) =
TFt(k1 + 1)

k1((1− b) + b. DL
AV GDL

)
log(

N

NDt

) (2.4)

The final score of a document d in relation to a query q is calculated by Equation 2.3,

where t is each term in the query q and W(t) is the weight of a specific term t for the doc-

ument d. In the Equation 2.4, TFt is the term frequency in the document d, DL is the

document length, AV GDL is the average document length, N is the corpus size, and NDt

is the amount of documents in the corpus that have the term t. The variables k1 and b are

2.4 IR and DL Techniques for Traceability Recovery 30

tunneable parameters, where the first one calibrates the effect of term frequency, and second

one calibrates the effect of document length.

Similarly we did for the LSI and LDA techniques, we illustrate the BM25 technique

application with an example, with the same test cases and bug report. Figure 2.9 shows the

technique application. Higher values of similarity are depicted in dark green.

Figure 2.9: BM25 Example

For each document in the corpus (set of test cases) we apply the preprocessing phase and

extract its tokens, as we see in the Terms Matrix Subset at the left side of the figure. The same

process is applied in the query (bug report), whose result we observe on the right side of the

figure. Then, the BM25-Okapi similarity score is calculated for each combination of a test

case and bug report, resulting in a vector of similarity scores greater than zero. In order to

compare the BM25’s similarity scores with other techniques, we apply the normalization of

the obtained scores for the scale [0,1], so the smallest score becomes 0, the higher becomes

1 and other values are calculated in relation to these two reference values in the scale [0,1].

Note the BM25 technique was able to recover the correct trace of the bug report with the

test case 37, at the same time it attributed low values of similarity for the other test cases,

which in fact are not related with the referred bug report.

2.4 IR and DL Techniques for Traceability Recovery 31

2.4.4 Word Vector

Deep Learning (DL) is a family of methods among the Machine Learning methods based

on Artificial Neural Networks [17]. These networks characterize themselves for having a

high number of hidden layers and being very deep so that they are able of capturing many

different patterns present in images data sets, text corpora, and audio records data sets for

example when presented to large amounts of these data. Once the deep neural network is

trained, it is able to recognize objects in images, translate texts between languages, and do

speech recognition between many other applications.

Word Vector is a Deep Learning [17] technique used in this work for traceability recovery,

inspired by recently developed studies in the field [12; 19]. The use of word embeddings has

become successful with the advancements of Deep Learning, combined with the availability

of large amounts of data for training models and increasing computing capabilities to give

support to these advancements. The releasing and dissemination of open-source libraries

such as Google’s word2vec4 [32] facilitated their use as pre-trained models – trained on very

large available data sets – or even the training of new word embeddings.

The word2vec library receives as input a large amount of text, such as the Common Crawl

Dataset5, which is a corpus of collected news, comments, and blogs in the web, and produces

as output a vector space model, commonly with hundreds of dimensions. Each unique word

(token) is represented by a vector in this space with the same amount of dimensions, and each

dimension of this vector is learned during the training of a Convolutional Neural Network

(CNN) [17] or another kind of Deep Neural Network. In the context of traceability recovery,

the trained neural network is available at the end of the process and can be retrained with the

source and target artifacts, so nuances from the domain of these textual documents can be

captured by the model and appropriately represented in the vector space model. For example,

the context of the word "bug" used to appear in software engineering texts is different from

the used in biology texts, and this impacts the representation of the word into the word

embedding. Word Embeddings can capture the syntactic and semantic relations between

words in the text, differently from the previously presented IR techniques. Therefore, the

trained model is capable of making some semantic inferences. For example, presenting the

4https://github.com/svn2github/word2vec
5https://commoncrawl.org/

2.4 IR and DL Techniques for Traceability Recovery 32

relationship (Man,Woman) for the model, and asking to the corresponding relationship for

the word King (King,?), the model is capable of correctly answer (King,Queen).

Figure 2.10: Word Vector Example

For traceability recovery, word vectors can be used to measure the similarity between

single words as exemplified above, and also between documents and queries the same way

is made with IR techniques. The technique produces the document and query vectors, and

the cosine similarity measure can be applied similarly to LSI and LDA.

A concrete example is used for illustrating the technique application, as we see in Figure

2.10. The same bug report and test cases from the previously explained techniques were

reused. Our example is divided into five steps. In the first step (1), a word embedding with

300 dimensions and more than 1 million unique words was trained based on the Common

Crawl Dataset – created based on texts from blogs, comments, and news in the web. In

the next step (2), the tokens of each document (test case and bug report) were extracted –

note we did not preprocess them –, and in the third step (3) the tokens of each document

were grouped in a matrix of word vectors representing each document, the referred vectors

in the matrix are a subset of the ones presented in the word embedding – for example, the

test case 60 (TC_60_TRG) has the words each, theme, and installation and each one of

them is represented by its 300-dimension vector. Next, in the fourth step (4) the average of

the grouped vectors was calculated for each document (test case or bug report) and smaller

2.4 IR and DL Techniques for Traceability Recovery 33

matrices were created, each line of the matrix represents a document. In the last step (5), the

cosine similarity was calculated for each pair of a test case and bug report.

Observe that the Word Vector technique correctly ranked the test cases in our example,

identifying the test case 37 as the most relevant (see darker green cell) for our query (bug

report), although the difference of the attribute similarity scores between each pair of doc-

uments is not so precise, considering that our scale (cosine similarity) is between -1 and 1.

This may difficult the identification of correct and incorrect traces by the technique.

Chapter 3

Approach

The proposed approach uses IR and DL techniques as an external/pluggable component, in

order to recover traceability links between bug reports, which are used as source artifacts,

and test cases, used as target artifacts. During the analysis of an open-source project – the

Mozilla Firefox –, we have observed the opportunity of using system features as intermediate

artifacts, since they make the communication between the test and development teams easier,

enforcing a common vocabulary.

Figure 3.1: Bug Reports, System Features and Test Cases Relationships

Also, we have identified that most traceability links between bug reports and test cases

cannot be recovered using only the information provided directly by the testers, once they do

not create the links between the test cases and the bug reports as required during the testing

period by the Mozilla’s leading teams.

Analyzing the software artifacts organization into the project, we noticed if a bug report

could be related to one specific feature, then it would be linked to the test cases of this feature.

Figure 3.1 shows how these artifacts are related to each other, BR_X are bug reports, Feat_Y

34

35

are system features, and TC_YW are test cases.

In our approach, as we see in Figure 3.2, the module BR-TC Traces Builder is respon-

sible for recovering the trace links between bug reports and test cases using the selected

techniques. The module receives a set of bug reports and maps them to a subset of the pro-

vided test cases by applying each IR and DL technique. As a result, we have a Recovered

BR-TC Trace Links Matrix for each executed technique. The output of the module BR-TC

Traces Builder is a binary matrix called Recovered BR-TC Trace Links Matrix, where each

cell holds a value 1 – indicating the presence of a link between the test case (line) and bug

report (column) – or a 0 – indicating the abscence of it. The BR-TC Traces Builder module

is further detailed in the sequel.

Figure 3.2: BR-TC Traces Builder Module

Figure 3.3 schematizes the Traces Builder in detail. As can be seen, it is composed of

other two modules named Traceability Engine and Trace Links Generator. The Traceability

Engine creates a similarity matrix from the input, where each column corresponds to a source

artifact (bug report) and each line to a target artifact (test case). As explained in Chapter 2, the

documents (test cases and bug reports) are vectorized and a representational matrix is built

with the created vectors of each target document (test case) and then the source document

(bug report) vector is compared with each test case vector through the cosine similarity score.

At the end, we are able to create a similarity matrix for each pair of documents (bug report,

test case) for each applied technique and rank the test cases based on a input bug report

document.

In the created matrix, each cell holds a similarity score, calculated according to the

applied technique (LSI, LDA, BM25 or Word Vector (WV)). The LSI similarity score

sim(dj, q), for example, can be calculated with a document vector dj = (w1, w2, ..., wN)

36

Figure 3.3: Traces Builder Submodules

and a query vector q = (q1, q2, ..., qN) as presented by Equation 3.1 [42; 6].

sim(dj, q) = cos(dj, q) =

∑N
i=1

wi.qi
√

∑N
i=1

w2
i .

∑N
i=1

q2i

(3.1)

Where wi(qi) = fi ∗ idfi, fi is the frequency of a term ki in a document or query and idfi

is the inverse document frequency of ki.

To the submodule Trace Links Generator is given three inputs: the set of similarity matri-

ces generated by the Traceability Engine, a set of Top Values, and a set of Similarity Thresh-

olds. The function combining the values of these two sets limits the number of documents

returned to a query, in order to control the behavior of each technique when multiple sets of

documents are recovered for each query, so the ranking capabilities of each technique can

be evaluated [2; 9; 13; 19]. Top Values define absolute values of documents to be recovered;

its possible values like TOP-1 – only the highest similarity score – and TOP-3 which returns

the first three documents with the highest similarity scores.

Similarity thresholds designate a minimum similarity score between a document and a

query that must be reached by a given technique. For example, (TOP-3, 0.85) states that

only three documents (the three documents with the highest similarity values) must be re-

covered, with a similarity value higher than or equals to 0.85. This value defines a minimum

similarity score, so each similarity matrix cell will be set as a positive trace link (1) or not

(0). Therefore, as we see in Figure 3.3, for each combination of Top Value and Similarity

Threshold an output matrix called Recovered Trace Links Matrix is created.

Figure 3.4 shows an example of the recovering of trace links from the LSI’s similarity

37

matrix for Top-3 and Similarity Threshold 0.0. Observe for each bug report (column) is

returned a set of three test cases (line), corresponding to the highest similarity scores. In the

matrix in the right side of the figure, the positive (returned) traces are depicted as a one (1)

and highlighted in dark green, while the negative (0) traces are colored in light-green.

Figure 3.4: Traces Recovering Process Example

Chapter 4

Building an Oracle Matrix

In this chapter, we explain the process of manually creating the oracle matrix. This matrix

maps bug reports to system features of the Mozilla Firefox, such as was explained in the

previous Chapter 3 with the help of a crowdsourcing application to gather the answers from

volunteers and a researcher through a survey. The built oracle is need for the execution of

the empirical study (case study) described at Chapter 5.

4.1 Context

The Mozilla Firefox internet browser 1 is a real, extensive and active open-source project

developed by the Mozilla Corporation. The Mozilla’s development team uses the Rapid

Release (RR) development model [29], in which they select a set of features for testing

during a TestDay at the end of each sprint (Each Firefox release has two or three testdays).

After all test cases for the features under test are executed, the set of bug reports is recorded.

Figure 4.1 details the RR development model with three released versions of Mozilla Firefox,

highlighting the TestDays (TDX), the features tested in each TestDay (Feat_Y) and the test

cases of each feature (TC_W).

Core members of the Mozilla’s QA team organize TestDay data into an open-access

Etherpad2 online document, containing the specification of features to test, test cases associ-

ated with each feature, and the set of bug reports fixed by developers during the sprint and

1https://www.mozilla.org
2https://public.etherpad-mozilla.org/

38

4.2 Participants 39

Figure 4.1: Mozilla Firefox Development Model: Rapid Release (RR)

need to be checked in that TestDay. By the end of a TestDay, each test case in the document

is specified with keywords PASS or FAIL. When a test case fails, the tester is advised to

create a bug report in Bugzilla3 and create a link in the etherpad document as the result of

the failed test case for later traceability.

However, testers often either do not create the links as required or do not create the

bug report at all, then several test cases marked as failed have no associated bug reports.

Most traceability links between bug reports and test cases cannot be recovered using the

information provided directly by the testers. Seeking to solve this problem, we saw the

possibility of using system features as an intermediate artifact to link bug reports and test

cases. If a bug report is related to one specific feature, then it links to the test case of this

feature.

4.2 Participants

We recruited volunteers to, based on the reading of the Mozilla’s documentation, point out

which Firefox features they think a given bug report is related. As a result, they produced a

matrix of traceability links (oracle) between features and bug reports, as a first step to relate

bug reports to test cases. This step was needed for scalability since there are much more

test cases (195) than features (19) and relate bug reports directly with the test cases would

require a large amount of manual work, time and resources which were not available.

A total of nine volunteers participated in the study, who were recruited by e-mail invita-

3http://bugzilla.mozilla.org

4.3 Used Data 40

tion. All volunteers have a Bachelor degree in Computer Science; while one holds a Ph.D.,

another one is a full-time software developer, and seven are master students. They all have

professional experience in software development, including knowledge about key concepts

involved in software development and testing (such as system features, test cases, and bug

reports). Previously to the volunteers‘ participation, the researcher (also named expert) –

who had previous knowledge of the Firefox features, test cases, bug reports, and the trace-

ability process – also responded to the same tasks of the volunteers and another matrix of

traceability links (oracle) was generated from his answers.

4.3 Used Data

The used data set of test cases and system features was extracted from Firefox TestDays from

2016/06/03 to 2017/01/06. Test cases were frozen in this period, which is appropriate for

our analysis, once the test cases do not evolve in this time interval. A total of 195 test cases

were manually collected from this period – 12 TestDays. We identified a set of 19 different

Firefox features tested during this period. Each test case is associated with one specific

Firefox feature and is explicitly indicated by the Mozilla’s QA Team in the TestDay available

documents. Table 4.1 shows the Firefox Features used, the particular Firefox versions as well

as the number of test cases associated with each feature. The features are used to aggregate

the test cases of a TestDay, so each test case executed in a TestDay is related to one of the

tested features.

Furthermore, we employed the following criteria to select a total of 93 bug reports from

a set of +35000 bugs collected from Bugzilla updated between 2016/06/01 and 2018/12/31:

• Firefox version must be between 48 to 51;

• Status must be RESOLVED or VERIFIED;

• Priority must be P1, P2 or P3, the highest priority levels;

• Resolution field must be FIXED, which means the bug was already fixed when col-

lected for our study;

4.3 Used Data 41

Table 4.1: Firefox Features

Feature Name Firefox Version TCs Amount

New Awesome Bar 48 and 50 13

Windows Child Mode 48 11

APZ - Async Scrolling 48 22

Browser Customization 49 6

PDF Viewer 49 8

Context Menu 49 31

Windows 10 Compatibility 49 6

Text to Speech on Desktop 49 2

Text to Speech in Reader Mode 49 8

WebGL Compatibility 49 3

Video and Canvas Renderization 49 2

Pointer Lock API 50 11

WebM EME support for Widevine 50 6

Zoom Indicator 51 21

Downloads Dropmaker 51 18

WebGL2 51 3

FLAC support 51 6

Indicator for device permissions 51 16

Flash support 51 2

• Severity must be "major," "normal," "blocker," or "critical," ruling out "enhance-

ments";

The Status4 field indicates the current state of a bug. The states can change accordingly to

a predefined state machine. Only specific status transitions are allowed. The Resolution field

indicates what happened to this bug if it was fixed or not. These filters reduced the number

of bugs to be analyzed by the volunteers in the study. Also, these filters allow selecting a

subset of bug reports that are the most relevant in the entire dataset, following these criteria

4Bug Fields: https://bugs.documentfoundation.org/page.cgi?id=fields.html

4.4 Procedure 42

stated by the community, and that is related to the test cases we examined.

4.4 Procedure

The study was executed following the process depicted in Figure 4.2.

Figure 4.2: Scheme of First Empirical Study – Oracle Creation

As the input of the scheme, two datasets of System Features and Bug Reports feed the

PyBossa Platform5, which hosts the web applications to support the participation of volun-

teers and the expert. The hosted applications collect the answers to a set of tasks proposed to

the participants. At the end of the process, after processing these answers, we have a manu-

ally generated oracle (Participant’s Trace Links Matrix). Further details on this process are

provided in the rest of this section.

As already explained, we used the PyBossa crowdsourcing platform to coordinate the

participation of each volunteer and aggregate his/her contributions; in this environment, is

defined an application or project which hosts a set of tasks. Each one of these tasks is

very specific, for example, define if a reported issue in a Bug Tracking System is a bug

report or a change request, tagging it as belonging to one of two classes: BUG_REPORT

or CHANGE_REQUEST. This kind of task is relatively simple for a human analyst to ac-

complish, but it is very hard for a machine. Once finished the resolution of many tasks by

humans, the data set of tagged issues can be used for the training of machine learning models

in order to recognize issues as bug reports or change requests automatically, for example.

5PyBossa Platform: https://pybossa.com/

4.4 Procedure 43

In our study, we created a set of 93 tasks, one for each one of the 93 bug reports and two

identical versions of these tasks were deployed to the volunteer’s and the expert’s applica-

tions, so the answers could be collected. The workspace included the complete bug report

information, including the first comment made by the bug reporter, generally detailing the

steps for reproduction, along with a checklist with the 19 features targeted. We decided to

consider only the first comment, once the presence of noisy text – from the discussions be-

tween the many involved people in the Bugzilla – can difficult the technique’s effectiveness

into doing the traceability later.

The task of the participants consisted in reading the bug report and the features descrip-

tions, and thus decide which ones, if any, were related to that specific bug report. Addition-

ally, we provided a tutorial made for the application as well as links to the original description

of the bug report in the Bugzilla and additional information about the features6, in the case

the participants had doubts about the system features. Figure 4.3 shows a screenshot of the

volunteers’ application in the PyBossa platform.

All volunteers watched a 10 minutes presentation about the targeted Firefox features

and the PyBossa workspace. They had access to the training material during the execution

of the tasks. The study was carried out with each volunteer individually, during a scheduled

session of 20 minutes, when each volunteer contributed with around ten tasks. We considered

a feature to be related or associated with a given bug report if at least one of the following

conditions is satisfied:

• the bug report summary (title) or the bug report first comment (steps to reproduce)

cites the feature(s) directly;

• the bug report directly impacts any of the listed features.

If a participant detected any of the two cases above, he/she should indicate the existing

(positive) relationship in the application’s task submission. The positive relationship indi-

6https://support.mozilla.org

https://wiki.mozilla.org/QA/

https://www.paessler.com/manuals

https://addons.mozilla.org

https://developer.mozilla.org

4.5 Results 44

Figure 4.3: Volunteers’s application in PyBossa platform

cates an existing trace link between two artifacts, in this case between a bug report and a

system feature.

4.5 Results

The oracle generated based on the volunteers’ answers and the one generated based on the

expert’s answers were surprisingly different. The volunteer’s oracle indicated the existence

of 93 positives links between bug reports and system features, while the expert’s oracle

indicated only 58. This considerable difference leads us to investigate different options of

oracle we could use and which one would be more reliable:

1. the oracle generated by the expert (Expert-Only);

2. the oracle generated by the volunteers (Volunteers-Only);

3. the intersection of expert’s and volunteers’ oracles (Exp-Vol-Intersection);

4.5 Results 45

4. the union of expert’s and volunteers’ oracles (Exp-Vol-Union).

Figure 4.4 shows the distribution of the number of system features (y-axis) by bug reports

(x-axis) for different strategies.

Figure 4.4: Amount of features by bug report

We can see the mean amount of features (µ) by bug report in the Expert-Only strategy

(µExp = 0.64) is smaller than in the Volunteers-Only (µV ol = 1.0) strategy. For the Exp-Vol-

Union strategy, 1.3 features are attributed in mean for each bug report (µUnion = 1.3), while

in the Exp-Vol-Intersection strategy this amount is 0.37 (µInter = 0.37).

We see the volunteers tended to point out traceability links when they had doubts about

its existence. An example of this, is the bug report 1432915, whose title is Do not write the

kMDItemWhereFroms xattr metadata for files downloaded in Private Browsing mode. The

expert pointed out the bug report as related only with the Downloads Dropmaker feature,

while the volunteers pointed out as related with the Download Dropmaker and New Awesome

Bar features.

The value of Cohen’s Kappa coefficient (κ) for inter-rater agreement between the vol-

unteers and the expert is κ = 0.426 with is considered a weak inter-rater agreement level

(0.40 ≤ κ ≤ 0.59) [30]. This result indicates that the expert and volunteers do not agree

about the existence of many traces.

Continuing the analysis, we checked the intersection between volunteers’ and the expert’s

oracles had only 34 traces. We focused in the intersection, once we have two disjoint sets

of answers from the volunteers and the expert: the one they agree (34 traces) and another

one they do not agree (59 traces). Investigating the traces they do not agree, we observed the

existence of wrong traces indicated by the volunteers. One example of that is the bug report

4.5 Results 46

1287687, that is relative to user’s data synchronization with Firefox’s cloud system, and the

volunteers incorrectly indicated as linked with the system feature APZ Async Scrolling. We

attribute this error to the lack of experience of the volunteers and consequential failure in

identifying the type of synchronization that is made in the APZ system feature.

Figure 4.5: Amount of bug reports per system feature

One second example of mistake is the bug report 1290424 which is relative to the New

Awesome Bar but was indicated by the volunteers as relative to Indicator for Device Permis-

sion. Again, the lack of understanding about the features may be the cause of the mistakes.

The fact the volunteers did not belong to Mozilla’s development or testing teams may be

the main cause of these mistakes. The amount of bug reports per system feature is detailed

in Figure 4.5. Note that only seven features had bug reports linked to them, the remaining

features had none.

Due to the presence of these errors made by the volunteers and how we can not adopt

only the expert’s answers (this would bias this work), we decided to use the intersection of

expert’s and volunteers’ oracles as our reference oracle for judging the effectiveness of the

techniques, so we have an agreement between the two raters (expert and volunteers) and a

more reliable oracle for evaluating the techniques.

Chapter 5

Empirical Study - Bug Reports to Test

Cases Traceability

This study focuses on the traceability between the bug reports and the test cases, that uses

the oracle that was produced as explained in the previous chapter. This study was conducted

as a Case Study based on the Mozilla Firefox available bug reports, test cases, and system

features.

5.1 Study Definition and Context

We aim to evaluate the BR-TC Traces Builder’s trace links matrices generated in relation to

an oracle (from bug reports to test cases) derived from the volunteers’ and expert’s participa-

tion in the first study creating the first oracle (from features to bug reports). This study aims

at discussing answers to the following research question: RQ1: Which technique presents

the best effectiveness in the context of traceability between bug reports and test cases? in

terms of Precision, Recall, and F2-Score.

5.2 Objects

We used the same bug reports and features from the first empirical study and the same test

cases from where the features were extracted. We used LSI, LDA, and BM25 as IR tech-

niques, and Word Vector as the DL technique. The values of Similarity Thresholds were the

47

5.3 Study Procedure 48

range [0.0, 0.1, ..., 0.9], so we could address the techniques effectiveness variation consid-

ering each cut value based on the achieved similarity between the bug report and test case.

We have used the values 10, 20 and 40 as Top Values, once the average number of test cases

linked with bug reports is not larger than 40, and we could also address the techniques effec-

tiveness variation considering each of these fixed cuts. We expect some combinations of Top

Values and Similarity Thresholds may have better effectiveness than others, boosting each

technique performance in terms of the studied metrics.

5.3 Study Procedure

The Figure 5.1 shows a schematization of this second study in detail.

Figure 5.1: Scheme of Second Empirical Study

As the input of the scheme, we see three data sets of System Features, Test Cases, and

Bug Reports entering the BR-TC Traces Builder and the PyBossa Platform. The first, as

explained in Chapter 3, produces binary matrices for each combination of Top Value and

Similarity Threshold for each technique. On the other hand, the second provides the oracle

generated through the volunteers’ and expert’s participation (see Chapter 4). Then, the mod-

ule Recovery Traceability Evaluation receives both outputs and evaluate the effectiveness of

the techniques.

Observe the presence of the component Participants Trace Links Matrix Transformer, it

is responsible for transforming the oracle, which maps bug reports to features – obtained in

the first study –, into an oracle that maps bug reports to test cases.

5.3 Study Procedure 49

5.3.1 BR-TC Traces Builder Evaluation

The oracle between bug reports and test cases is used as input to the next phase, the eval-

uation of the techniques. The BR-TC Traces Builder received as input bug reports and test

cases from the Mozilla’s Firefox original documentation. Since the BR-TC Traces Builder

is responsible for producing recovered trace links matrices between the bug reports and test

cases used, each line of the produced matrix represents a test case, whereas each column

represents a bug report.

Next, the set of trace links matrices recovered by the BR-TC Traces Builder is passed to a

module (Recovery Traceability Evaluator) that evaluates the effectiveness of each technique

applied in comparison to the Trace Links Matrix (Oracle) built by the participants. For each

used IR and DL technique, the values of each technique’s parameter are defined according to

the literature’s recommendations and to the parameter’s combinations that best perform for

the data set of bug reports and test cases.

The BR-TC Traces Builder’s Traceability Engine processes the input artifacts in two

phases: preprocessing and execution. For Preprocessing, we used Python’s NLTK1 (Natural

Language Toolkit), a well-established platform for natural language processing (NLP) ap-

plications. It was applied for tokenization, stop-word removal and stemming/lemmatization,

required by the IR techniques.

Regarding execution of the IR and DL techniques, we applied open-source implementa-

tions of the chosen IR and DL techniques – Scikit-Learn Data Analysis Toolkit2 (LSI, LDA),

the Gensim Library3 (BM25), and the SpaCy Library4 (Word Vector). The scripts are avail-

able online5.

SciKit Learn’s LSI and LDA techniques require a vectorizer which is responsible among

other things for tokenizing the documents. We have used the TfidfVectorizer imple-

mentation provided by the own framework and the NLTK’s English stopwords. Besides that,

the LSI requires the number of components for making the dimensionality reduction and the

LDA requires the number of topics. A parameter search performed showed which parame-

1https://www.nltk.org
2SciKit: https://scikit-learn.org/stable/
3Gensim: https://radimrehurek.com/gensim/
4SpaCy: https://spacy.io/
5https://doi.org/10.5281/zenodo.2643447

5.4 Research Method 50

ters best fit the data set: we tested the techniques with smaller and greater parameter values

(5,10,20,40,100), but coincidentally 20 was the best value for both LSI and LDA techniques.

BM25’s implementation was executed with the recommended values for English texts

[38; 7]; k1 (the effect of term frequency over) is 1.2, whereas b (the effect of the document

length) is 0.75. The BM25 scoring function’s output values are outside the scale [0,1] and

need to be normalized, so we used the SciKit Learn’s MinMaxScaler to fit the similarity

values in the scale [0,1] and then we could evaluate the techniques using the variable sim-

ilarity threshold in the scale [0,1]. Finally, for the Word Vector implementation, we used a

pre-trained neural network (word embedding) called GloVe (Global Vectors for Word Rep-

resentation)6 [36], resulting in a model of 631 MB, based on a vector space representation

of +1 million tokens with 300 dimensions7 extracted from blogs, news, and comments in the

web in general.

Following the preprocessing phase the techniques are executed with the tokenized bug

reports and test cases, similarity matrices (see Chapter 2) were then generated, and different

BR-TC Recovered Trace Links Matrices were created according to multiple combinations

of Top Values and Similarity Thresholds. For Top Values, we used 10, 20, and 40 – so a

technique could recover all test cases linked with a bug report –, and a range of similarity

threshold values between 0.0 and 0.9 (included) with a step size of 0.1 (0.0, 0.1, ..., 0.9),

which is compatible with the range of the values into the similarity matrices that interest

us (the ones with similarity greater than zero, meaning closest similarity between the docu-

ments). Finally, the Recovered Traceability Evaluator assessed each technique using selected

metrics and the participant’s trace links matrices (oracles).

5.4 Research Method

5.4.1 Metrics

Precision, Recall and F2-Score are very common metrics used in the field of traceability

recovery [22] and are defined as follows:

6https://nlp.stanford.edu/projects/glove/
7https://spacy.io/models/en

5.4 Research Method 51

Precision =
TP

TP + FP
(5.1)

Recall =
TP

TP + FN
(5.2)

Fβ-Score = (1 + β2).
P recision ∗Recall

(β2 ∗ Precision) +Recall
(5.3)

Where TP is the number of True Positives, FP is the number of False Positives and FN

is the number of False Negatives. The Fβ-Score is a general version of the F -Score, and

the F2-Score (β = 2) is an unbalanced version of F1-Score. The latter (F1-Score) attributes

equal importance to Precision and Recall scores, while the first (F2-Score) attributes the

double of the importance to the Recall score over the Precision score [3].

Remembering Figure 4.2, the Recovery Traceability Evaluator takes each BR-TC Re-

covered Trace Links Matrix (RTMi) from the set of recovered matrices (RTM) and

compares with the BR-TC Volunteers Trace Links Matrix (Oracle) – derived from the

volunteers’ answers – producing a triple with the Precision, Recall, and F2-Score

(PRTMi
, RRTMi

, FRTMi
) measures for each one of them. For each different technique, it

is calculated the mean value of each metric.

5.4.2 Recovery Effort Index – REI

The metric Recovery Effort Index was proposed by Antoniol et al.[2] in order to estimate the

amount of effort required to manually analyze the results of a traceability recovery technique,

discarding the false positives, when comparing to completely manual analysis. Inspired by

their work, we used a free adaptation of their metric focusing on the multiple combinations

of Top Values and Similarity Threshold presented in our study; in our version, we calculated

REI for each combination of Top Value and Similarity Threshold for each technique and

compared the obtained Precision for that case with the Precision obtained by the oracle

created only by the volunteers in relation to an oracle created by an Expert (see Chapter 3).

The REI value associated with a technique is the mean of all calculated REI’s. The Equation

5.4 shows the REI formula.

5.4 Research Method 52

REIT =

∑

i,j
OrcV olPrec
Ti,jPrec

|Si,j|
(5.4)

Where REIT is the REI of a technique T , OrcV olPrec is volunteer’s oracle Precision,

Ti,jPrec is the Precision of a technique with Top Value i and Similarity Threshold j, and

|Si,j| is the cardinality of the set of combinations of Top Values and Similarity Thresholds.

5.4.3 Goodness

Additionally, we discuss the obtained results of Precision and Recall based on a scale

of Goodness of traceability recovery defined by Hayes et al. [21], which establish some

boundaries for these metrics to classify the level of traceability recovery as Acceptable, Good

or Excellent. Table 5.1 details these boundaries. Additionally, we used the reference values

in the scale to estimate the level of Goodness in relation to the F2-Score metric, identically

to what was made by Merten et al. [31].

Table 5.1: Goodness Level

Measure Acceptable Good Excellent

Recall >60% >70% >80%

Precision >20% >30% >50%

F2-Score >42.85% >55.26% >66.66%

5.4.4 ZeroR Predictor

In order to have a baseline of comparison, we implemented a ZeroR Predictor/Classifier [40]

to classify a candidate trace between a bug report and test case as existent (1) or not existent

(0). A ZeroR Classifier simply predicts the majority class, an example of the generated

predictions are depicted in Figure 5.2.

On the left side of the figure, we see the counting of each test case (TC ID), which are

our target artifacts, and that the test cases with the greatest number of bug reports (num_BRs)

related to it (from the oracle) have 20 bug reports each. In this case, we have more than one

majority class and the classifier predicts all of them as one major class. We can observe the

5.5 Results and Discussion 53

Figure 5.2: ZeroR Classifier Predictions

results of the predictions in the Recovered Trace Links Matrix on the right side of the figure.

Note how the classifier attributed 1 to the test cases with 20 bug reports, and 0 to the other

test cases.

5.5 Results and Discussion

5.5.1 Oracle Generation

Before starting the analysis of the effectiveness of the techniques, we evaluated the generated

oracles based on different strategies, the same way we did previously (see Chapter 4). The

referred strategies are:

• oracle generated only from the volunteers’ oracle (bug reports to features) (Vol-Only);

• oracle generated only from the expert’s oracle (bug reports to features) (Exp-Only);

• intersection between the Vol-Only oracle and Exp-Only oracle (Exp-Vol-Intersection);

• union between the Vol-Only oracle and Exp-Only oracle (Exp-Vol-Union).

5.5 Results and Discussion 54

Figure 5.3: Number of test cases by bug report

Figure 5.3 shows the distribution of the number of test cases by bug report for each

studied strategy. Analyzing the presented distributions, we see the Exp-Only strategy has a

mean number of test cases per bug report (µ) smaller than the Vol-Only strategy (µExp = 4.5

and µV ol = 6.2 respectively). As expected, the Exp-Vol-Union strategy has the highest mean

(µUnion = 8.0) and the Exp-Vol-Intersection strategy the lowest (µInter = 2.6).

When we compare Cohen’s kappa coefficients considering the Exp-Only and Vol-Only

strategies, we observe that κ = 0.4638. This value indicates a weak inter-rater agreement

level (0.40 ≤ κ ≤ 0.59) [30], and we can conclude the expert and volunteers do not agree

about the existence of many traces.

In reason of the low level of agreement between the expert and the volunteers, we decided

to analyze the effectiveness of the techniques using the intersection of the volunteers’ and

expert’s oracles. As in the first study, we chose the intersection strategy, because it produces

a more reliable oracle – built from the agreement between the answers of the volunteers and

the expert.

The volunteers indicated the existence of 1205 positive links (traces) between bug reports

and test cases, whereas the expert indicated 874. The intersection of the answers had 514

traces. Through the exploration of the remaining 691 traces recovered by the volunteers,

we discovered similar mistakes as in the previous chapter. One example of that is the bug

report 1306639 which is relative to the system feature New Awesome Bar and its telemetry

recordings but was indicated by the volunteers as related to test cases from Context Menu

system feature.

The intersection oracle traces are distributed as indicated in Table 5.2. Note that only

seven features do appear in it, this is due to the first oracle which only had these seven fea-

5.5 Results and Discussion 55

Table 5.2: Number of traces in intersection oracle grouped by system feature

System Feature num_BRs num_TCs num_Traces

New Awesome Bar 20 13 260

Browser Customization 2 6 12

PDF Viewer 1 8 8

Context Menu 3 31 93

Zoom Indicator 1 21 21

Downloads Dropmaker 4 18 72

Indicator for Device Permissions 3 16 48

tures presenting positive traces after the intersection operation between volunteers’ answers

and the expert’s answers. The column num_TCs refers to the number of test cases that one

system feature has in the Mozilla’s documentation, the num_BRs refers to the number of

bug reports related to that specific system feature, and the num_Traces to the number of

traces (num_BRs * num_TCs).

5.5.2 General Evaluation

Figure 5.4 presents a bar chart with the obtained results for each applied IR or DL technique.

Figure 5.4: BR-TC Traceability Recovery Results

RQ1 – Which technique presents the best effectiveness?

5.5 Results and Discussion 56

In general, all selected IR and DL techniques presented poor results for all the metrics

used. Analyzing the bar plot, we see LSI presented the best effectiveness in relation to

the evaluated metrics (Precision, Recall, and F2-Score). Surprisingly, LDA technique

performed better than BM25 in terms of Recall (34.9% for LDA and 29.4% for BM25)

and F2-Score (23.4% for LDA and 20.8% for BM25). We expected the state-of-the-art IR

technique (BM25) would achieve a better performance than the LDA. On the other hand,

the Word Vector technique presented the poorest effectiveness in relation to all metrics with

Precision of only 3.5%, Recall of 13.5% and F2-Score of 7.9%.

RQ2 – How does the effectiveness of each technique compare with a baseline predictor

effectiveness?

Predicting only the majority class, our baseline predictor already has a Precision

of 22.0%. Also, we observe that only the LSI Precision is bigger than the baseline’s

Precision, but for all the other techniques and metrics, the results are below the baseline’s

ones. Our baseline predictor was able to achieve a Precision of 22.0% and a Recall of

50.6% by indicating only positive links for the relationships between a bug report and the

test cases with IDs 13,14,...,25 – corresponding to the New Awesome Bar system feature

ones. In order to understand such poor results returned by all techniques, further investiga-

tions were carried out.

Figure 5.5: PR-Curves of All Techniques – BR-TC Context

Figure 5.5 details the PR-Curves of all techniques and the reference value of the ZeroR

5.5 Results and Discussion 57

Classifier’s (in red) Precision and Recall. The LSI’s superior effectiveness in relation to

the other technique is very clear: the values of Precision and Recall for every combination

of Top Value and Similarity Threshold are always the highest for LSI and are always above

the ZeroR scores.

The LSI’s effectiveness is confirmed if we look at the values aggregated by Top Value

(10,20,40), as is shown in Figure 5.6. The darker green cells concentrate around the LSI tech-

nique for every Top Value and metric considered (Precision percentage – perc_precision,

Recall percentage – perc_recall, and F2-Score percentage – perc_fscore), note the tech-

nique obtained higher Precision and Recall values for bigger Top Values, when compared

with the ZeroR predictor – this indicates the fixed cut is influencing the techniques effec-

tiveness. Although, we observed that for Top 40, the LSI obtained an Acceptable level of

Goodness (Precision > 20% and Recall > 60%), what indicates its feasibility for traceabil-

ity recovery tasks using such cut value in projects such as the Mozilla Firefox. Note the

Precision and Recall highlighted in red at Figure 5.6.

Figure 5.6: Performance of techniques aggregated by Top Value

In the context of traceability of bug reports to test cases, the LDA technique was able to

reproduce with much more trustworthiness the topics as system features, so the technique

5.5 Results and Discussion 58

could split the test cases into groups which were very close to the features. Although, the

technique was not able to achieve better results of Precision and Recall because low values

of similarity that characterize some of these groups, and also due to some system features

keywords that end up into the same topics. For example, the bug report 1357458, refer-

ent to the New Awesome Bar feature, was correctly related to the New Awesome Bar test

cases, but also to the Text to Speech in Reader Mode test cases, because the tokens awesom,

reader, speech, and bar all belong to the same topic in the technique’s internal data structure.

Observe the highlighted tokens in red for the 20 LDA topics in Figure 5.7.

Figure 5.7: LDA Topics

The results of the Word Vector technique for that context of traceability were the lowest.

Once again, the technique attributed high values of similarity for any pair of a test case and

bug report, which a mean value of 0.91 and a standard deviation of 0.035. The implementa-

tion of the technique was not able to capture the nuances between documents and attribute

different weights for the most relevant words in the test cases and the bug reports, so distin-

guishing relevant from not relevant test cases for a determined bug report. New strategies

still need to be elaborated for this kind of technique.

In future work, we intend to explore variations of weighting schemes for specific targeted

words in the vocabulary or make use of enhancement strategies [5] which better characterize

the system features, so higher scoring values could be attributed to them. Also, strategies of

preprocessing such as the applied by Merten et al. [31] could be replicated into our context

5.5 Results and Discussion 59

of traceability (see Chapter 7).

In the next three sections, we extend our analysis and evaluate the results for two different

scenarios and considering the range of Similarity Thresholds and Top Values, so we can

answers the RQ3 – How does the effectiveness of each technique vary based on variable

cuts?. Due to the high number of combinations of Top Values and Similarity Thresholds,

we selected two scenarios: (i) in the first scenario (Scenario I), the Similarity Threshold is

0.0, so the Recall is favored over the Precision. (ii) in the second scenario (Scenario II),

we evaluated the techniques using a Similarity Threshold of 0.9, such value leverages the

Precision over Recall metric.

5.5.3 Scenario I – Similarity Threshold 0.0

The results for this first scenario (similarity threshold 0.0) are shown in Table 5.3 for each

Top Value. Also, are depicted the number of traces captured by all techniques and the number

of no captured traces.

Traces Missed by All Techniques We had a set of 36 no captured traces (7.0%), even

when using the largest cut (Top Value 40). The missed traces for Top 40 are related to three

system features: Context Menu, Downloads Dropmaker, and New Awesome Bar, where the

majority is relative to the last one (28 bug reports). This phenomenon is also verified in

the other Top Values, where the no captured traces are related with the New Awesome Bar

feature in nearly 50% of the cases for Top 10 and 60% of the cases for Top 20. These results

are coherent with the number of traces related to these features in the oracle, as detailed

previously in Table 5.2, where more than half of the traces (260 out of 514) are linked to the

New Awesome Bar, 93 to the Context Menu, and 72 to the Downloads Dropmaker.

Table 5.3: Captured and Not Captured Traces – All Techniques – Scenario I – Study II

Top No Captured Traces Traces Captured by All

10 203

514
= 39.49% 6

514
= 1.16%

20 108

514
= 21.01% 27

514
= 5.25%

40 36

514
= 7.00% 70

514
= 13.62%

5.5 Results and Discussion 60

We estimate the larger number of no captured traces is mainly due to the fixed cuts (Top

Value) used: the number of no captured traces drops significantly with the increasing of the

Top Value: no captured traces are only 7% in Top 40.

In order to better understand the missed traces, we analyzed the seven bug reports related

to these missed traces:

• BR_1276720 (New Awesome Bar): there are no relevant keywords in the bug report

content. The reporter used technical words or that do not belong to the test cases

vocabulary, such as "searchbar" and "urlbar", which difficult the techniques task;

• BR_1279143 (New Awesome Bar): the description contains the word "awesomebar"

written incorrectly. The presence of incorrect words requires the use of complemen-

tary techniques to detect and correct these mistakes before the query (bug report) be

submitted to the technique, so a relevant result may be returned;

• BR_1296366 (New Awesome Bar): the bug description is very brief and the title con-

tains the word "awesomebar", also written incorrectly, such as in the previous bug;

• BR_1293308 (New Awesome Bar): the bug reporter provided a technical description

and used technical words, such as "urlbar", and a synonym "location bar", both not

used in the test cases descriptions;

• BR_1270983 (Context Menu): this bug was probably reported automatically as result

of automatic test failure. Despite the presence of the word "contextmenu" in the title,

the technique was not able to link it with the test cases of this system feature. This

may happen due to the writing, again "incorrect" into the bug description.

• BR_1299458 (Context Menu): this bug report is very well written, in fact citing the

keyword "context menu" twice. We estimate the reason for not recovering the trace

involving it is the slightly smaller size of the corresponding test case;

• BR_1432915 (Downloads Dropmaker): this bug report lacks important fields, such

as the steps to reproduce and expected results. The reporter provided a very short

description of a technical issue while downloading files. Despite the presence of the

keyword "downloading", the techniques were not able to link this bug report with the

test cases that have a shorter description and are relative to this system feature.

5.5 Results and Discussion 61

Traces Captured by All Techniques A small percentage of traces were recovered by all

techniques for all Top Values, less than 15% were captured by all techniques, even for the

largest cut (Top Value 40). However, some results can be highlighted: 27

93
= 29.03% of the

traces linked with the features Context Menu, 12

48
= 25% of Indicator for Device Permissions,

and 13

72
= 18.05% of Downloads Dropmaker were captured in Top 40.

The test cases related to these system features, in general, are longer than the mean in

terms of the number of words, which improves the similarity with truly related bug reports.

Besides that, the test cases contain particular keywords that may highlight them to the trace-

ability techniques. These words do not appear in other test cases because they are very linked

to the context of these test cases – so there are less ambiguous usage of them into the studied

context –, and also are often cited in the bug reports, so the developer can understand the

context of the bug report before fixing it. Examples of such keywords are "context menu"

for the homonym system feature; "audio", "video", and "microphone" for the system feature

Indicator for device permissions; and "download" for the Downloads Dropmaker feature.

Techniques Evaluation

In this section, we evaluate each technique and explore some of the obtained results for

each Top Value (10, 20, and 40), and the fixed Similarity Threshold 0.0. We detail the

True Positives (TP), False Positives (FP), and False Negatives (FN) that characterize each

technique. Figure 5.8 details the obtained results; note the increasing in the recall (Recall)

values in parallel to the Top Values for all the techniques, while we have the decreasing

of the precision (Precision) simultaneously. Whereas, if we consider the fscore metric

(F2-Score), we do not have a consensus about the best Top Value for all techniques.

True Positives (TP) The number of true positives of the LSI technique is considerably

higher than the other techniques. In Top 40, the technique was able to recover nearly 88% of

the relevant links (Recall = 88.33%). Comparatively, the LSI correctly indicated 83 exclu-

sive traces (traces that only it hit), while the LDA hit just 5, the BM25 hit 6, and the Word

Vector hit only 3. The detailed results for each Top Value are shown in Figure 5.9.

Through a qualitative analysis, we noticed the LSI technique was able to surpass common

difficulties, such as the differences in the vocabulary used in test cases and bug reports, i.e

5.5 Results and Discussion 62

Figure 5.8: Traceability Recovery Results for Scenario I – Study II

the term "location bar" was used in some bug reports, but is not present in the test cases

description, although the technique correctly linked the artifacts. Another difficulty is the

presence of incorrect words, such as "awesomebar", which is referred to as "awesome bar"

in the test cases.

Figure 5.9: Comparison of exclusive true positives

On the other hand, the other techniques hit a small number of exclusive true positive

traces. However, they were able to hit some hard-to-trace links, for example, the LDA cor-

rectly identified a link between the bug report 1276120, which has two "incorrect" words

("urlbar" and "searchbar") and no other indication of the related system feature (New Awe-

some Bar).

False Positives (FP) In terms of false positives, the LSI technique is the best one for all

Top Values, once it presented the smallest number. While the Word Vector had the largest

5.5 Results and Discussion 63

number of FP also for all Top Values, such we can see in Figure 5.10. Although the behavior

of all techniques is very similar numerically – the number of FP grows identically with the

increasing of the Top Value –, we observed that the techniques incorrectly indicated traces

relative to distinct system features. This suggests each technique has distinct preferences

relative to the system features, although these are not directly used for doing the traceability –

their text is not used by the techniques –, just the oracle used for the effectiveness evaluation.

Figure 5.10: Comparison of false positives – Scenario 1 – Study II

The difference between the techniques’ mistakes can be visualized looking at the

heatmaps shown by Figures 5.11 and 5.12. Note that in the first heatmap (Figure 5.11)

referent to Top Value 10, for example, the BM25 technique presented more FP related to the

system feature Download Dropmaker, whereas the Word Vector presented more FP relative

to Context Menu and Pointer Lock API.

An even more prominent behaviour is checked for higher Top Values, as we see in the

second heatmap 5.12. In this case, the LDA makes more mistakes relative to the system

features Zoom Indicator, Text to Speech in Reader Mode, PDF Viewer, and Context Menu.

While the BM25 incorrectly indicated the presence of traces relative to Downloads Drop-

maker, and the Word Vector to the Context Menu, Pointer Lock API, and Windows Child

Mode. The most efficient technique identified (LSI) prefers the New Awesome Bar feature,

which has the largest number of true traces associated to it (260 out of 514, see Table 5.2).

Next, we explore two examples of errors committed by the LSI at Top Value 40. The

5.5 Results and Discussion 64

Figure 5.11: Comparison of number of false positives – Top Value 10

Figure 5.12: Comparison of number of false positives – Top Value 40

5.5 Results and Discussion 65

first one is related to the bug report 1269348, whose title is "Show last sync date tooltip

on Synced Tabs sidebar device names", the bug is not related to the Indicator for device

permissions, however, the technique pointed out it as a positive link with nearly every test

case from this system feature. Probably the technique was misguided by the presence of the

word "device", understood differently in the test cases and bug report contexts. The second

example is related to the bug report 1430603, which describes a technical issue involving

source code implementation. In general, the description is very brief and technical, missing

the recommended fields (steps to reproduce, expected results, etc.), we estimate the LSI

indicated it as linked with test cases from eight different system features due to the large size

of the cut (Top Value 40), otherwise these false positive traces would not exist.

False Negatives (FN) The Figure 5.13 shows the number of false negatives for each tech-

nique grouped by Top Value.

Figure 5.13: Number of False negatives – Scenario I – Study II

Although the numbers are elevated, we observed huge intersections between the sets of

false negative traces, so that the LSI and BM25 techniques had no exclusive false negatives

in Top 10. The details about these numbers are shown in Figure 5.14. How in the previously

explained section about false positives, we have mostly disjoint sets of traces, in this case,

traces not recovered by the techniques (false negatives). Observe the darker cells of each

technique in Figure 5.14 and how they are distributed differently between the system features

listed in the y-axis.

Investigating the exclusive false negative traces, we checked, in Top 40, the LDA made 13

out of 26 of its mistakes involving a single bug report, and eight out of 26 involving a single

test case. The referred bug report (1299458), whose title is "Telemetry data from Search

bar is not properly collected when searching in new tab from context menu", originates all

false negative traces related to the Context Menu feature (see Figure 5.14). An explanation

5.5 Results and Discussion 66

for this may be the fact the bug report is also related to the New Awesome Bar feature – the

issue mainly relates problems in recording the search bar telemetry data –, which may have

misguided the LDA technique in recovering the traces.

Besides that, the technique presented difficulties into tracing links to the test case 14,

whose title is "Search State - Drop down" and that belongs to the New Awesome Bar fea-

ture. We estimate the topics attributed to this test case were not enough to grant a minimum

similarity score between each of the eight bug reports and this test case, so the links could

be traced into the Top 40 cut. A probable cause for that may be the presence of more words

in this test case description, it is longer than the other test cases associated with this system

feature.

On the other hand, the Word Vector technique exclusively missed traces in relation to all

the seven relevant system features (see Figure 5.14). However, the majority of missed traces

is split between two features: Downloads Dropmaker (41) and New Awesome Bar (57). In

the first case, just four bug reports are the source artifacts; whereas in the second case, are

12 bug reports. Some of these bug reports may be considered easy to trace, for example, the

bug 1335992 ("Search with default search engine stops working") which is correctly traced

by the other techniques.

Figure 5.14: Comparison of exclusive false negatives – Top 10 (left) and Top 40 (right)

The Word Vector technique seems not to be able to distinguish the relevant and irrelevant

artifacts, even for major cut values, such as Top 40. The algorithm adopted to calculate the

similarity between two documents is very naive – once the mean of the vectors of the words

in each document is calculated to then estimate the similarity between two documents (see

Chapter 2) – and ignores the distinct weights the words may present. This may have caused

the low performance of the Word Vector technique.

5.5 Results and Discussion 67

Whereas the BM25 – which uses a weighting scheme (tf -idf) for estimating the weight

of each word considering the document it belongs and the entire set of documents in the

corpus – achieved a better performance in terms of Recall and had just four exclusive false

negative traces in Top 40. All these traces were related to the Context Menu system feature

and originated from only two bug reports.

One of them is the same bug report (1299458) identified as the source artifact which gen-

erated all the exclusively missed traces of the LDA technique related to the Context Menu

feature, however, related to another test case (92) in this case. This suggests this bug report

may be especially hard to track. We estimate one reason for this difficulty is the fact it is

related to two different system features simultaneously, although its focus in the New Awe-

some Bar feature. The same motive can be attributed for the second bug report (1248267),

which originated the other three exclusive false negative traces, and also is related to the

same system features.

When a bug report references more than one system feature, apparently is more diffi-

cult for the techniques to recover all the links. This problem is probably the cause the LSI

was not able to recover one of the two traces (exclusive false negatives) it did not recover.

The referred bug report (1357458) is related to Browser Customization and New Awesome

Bar features, and its title is "After Customization - typed text in the Awesome bar doesn’t

correspond with the text from One-Off-Searches bar". We noticed the words referencing the

second feature are more often than the ones referencing the first feature, which may explain

this behavior from the LSI technique. The other not recovered trace is relative to a poorly

described bug report (1432915 – "Do not write the kMDItemWhereFroms xattr metadata for

files downloaded in Private Browsing mode") and the test case (162) from the system feature

Downloads Dropmaker. Figure 5.15 shows bug report the 1432915 in detail – a poorly-

described bug report –. Note how short is the description and how is hard to understand the

reported issue. Whereas Figure 5.16 shows a well-described bug report. In this case, note

the presence of the steps to reproduce, expected results, the actual results fields, and a title

summarizing the bug report.

5.5 Results and Discussion 68

Figure 5.15: Poorly described bug report

Figure 5.16: Well described bug report

5.5.4 Scenario II – Similarity Threshold 0.9

The same way we did in the first scenario, where we applied a similarity threshold of 0.0

(see the previous section), we evaluate each technique results in terms of True Positives (TP),

False Positives (FP) and False Negatives (FN), so a detailed view of the obtained results is

achieved. The considered Top Values were the same (10, 20, 40), but the fixed Similarity

Threshold was 0.9. This threshold forces that a bug report and a test case have a high level of

similarity to be traced a link between them. So, the Recall scores are expected to be lower

and the Precision scores to be higher than in the first scenario.

5.5 Results and Discussion 69

Traces Missed by All Techniques A dropping in the Recall values in practice mean there

was an increase in the number of missed traces by the techniques. This is verified in Table

5.4, which presents the number of traces missed by all techniques and the number of traces

captured by all techniques simultaneously considering the different Top Values.

Table 5.4: Captured and No Captured Traces – All Techniques – Scenario II – Study II

Top No Captured Traces Traces Captured by All

10 413

514
= 80.35% 0

514
= 0.0%

20 382

514
= 74.32% 0

514
= 0.0%

40 344

514
= 66.93% 0

514
= 0.0%

Through the analysis of the presented results, we see a larger number of no captured

traces in this scenario and these numbers represents more than the double of the first scenario

in Top 10 (39.49%), more than three times in Top 20 (21.01%), and more than nine times

in Top 40 (7.00%). These results may be explained by the high similarity threshold (0.9)

demanded to trace a link. Also, the fact the test cases have in general a small size, which

means a small number of words, and these words were not enough to grant high levels of

similarity between them and the bug reports.

A primary conclusion we can make, considering these results, is that such value of

Threshold Similarity is not feasible for the traceability recovery task between bug reports

and test cases using the selected techniques. The majority of relevant links are not being

recovered by any of the techniques.

Traces Captured by All Techniques Complementing the previous section, when we ana-

lyze the sets of traces captured by all techniques simultaneously, we observe that for any of

the Top Values all the sets are empty, as we see in Table 5.4. Despite the fact only a small

number of traces was captured by some technique (less than 35% in the best case – Top 40),

this fact was a surprise.

Noting the difference between the results obtained in the first scenario and the second

scenario, we raise the hypothesis we need variable similarity thresholds for the traceability

recovery tasks between bug reports and test cases and they need to be adjusted for each

5.5 Results and Discussion 70

technique individually. This hypothesis was already verified and experimented by other

authors with works in the field [2; 9; 10], and our study corroborates their conclusions,

despite the difference in the type of tracked artifacts. We analyze this hypothesis with more

details in section 5.5.5.

Techniques Evaluation

In this section, we present and discuss the techniques true positives, false positives, and false

negatives, which compose the Precision, Recall and F2-Score metrics, such as in the first

scenario. The traceability recovery results are detailed in Figure 5.17 with the highlighted

Top Values. The number of true positives (num_TP), false negatives (num_FN), and false

positives (num_FP) are detailed. How was expected the Precision of the techniques was

favored over the Recall with this scenario, however, the Recall values dropped significantly.

Figure 5.17: Traceability Recovery Results for Scenario II – Study II

All techniques presented very low Recall scores, mostly below 10%, and these scores

decay with the increasing of the Top Value. This is a critical issue, first because a high Recall

is a primary requirement for the usage of the techniques, so the majority of true traces are

recovered and presented to the analyst/engineer – a high Recall is more important then a

high Precision; and second because it shows the techniques were not able to recover more

traces, even if we double the Top Value at each cut (from 10 to 20, and from 20 to 40).

5.5 Results and Discussion 71

Whether we analyze the obtained values in relation to the Goodness scale, we see none

of the techniques presented satisfactory effectiveness in any of the evaluated Top Values.

Also, the F2-Scores are below the acceptable minimum under this scale (Precision = 20%

and Recall = 60%, so F2-Score = 42.85%), all results are lower than 11%.

True Positives (TP) When we analyze the number of True Positives in Figure 5.17, we

see the LSI technique had the lowest number of true positives, while the BM25 and Word

Vector had the largest number. In order to better understand these results and highlight the

differences between the techniques, we calculated the number of exclusive traces identified

by each one of them. The results are depicted in Figure 5.19.

After analyzing it, we see that for Top 10 the techniques BM25, LDA and Word Vector

have a close number of true positives, but the Word Vector was able to improve its perfor-

mance with the increase in the Top Value, while the other techniques did not. We can see

this phenomenon in Figure 5.18. The explanation for this phenomenon is the high similarity

scores the technique attributed to nearly all the pairs of bug reports and test cases. How we

mentioned at the beginning of the chapter, the mean value of the similarity scores is 0.907

and the standard deviation is very low (0.03), so is expected with the increasing of the Top

Value that the number of true positives also increase.

Figure 5.18: Number of true positives by technique

As long as the Word Vector and LDA recover more trace links with the increasing of

the Top Values, the number of exclusive traces recovered correctly by the other techniques

decreases, such as we observe in Figure 5.19, where we split the traces by system feature

(y-axis) and model (x-axis). Check how the LSI and BM25 "lose" traces for the LDA and

Word Vector techniques. Note the darker cells, indicating a higher number of traces.

Also, we can check distinct system features being related to the recovered traces by each

technique, indicating the existence of "preferences" between the techniques. For example,

5.5 Results and Discussion 72

Figure 5.19: Comparison of exclusive true positives – Top 10 (left) and Top 40 (right)

in Top 10, the BM25 had nine exclusive traces related to the system feature Downloads

Dropmaker, while the LDA had the majority (19) of traces linked to New Awesome Bar, and

nearly half of the Word Vector traces are linked to the Context Menu feature.

These results enable us to see a possible complementarity between the techniques. We

intend to explore this hypothesis in future works through the creation of a hybrid technique

from the results obtained with these original four techniques. This hybrid technique in such

scenario and with a Top Value of 10 would hit 78 traces out of the 514 possible.

False Positives (FP) Despite the LSI had the lowest number of true positives for all Top

Values, it has the highest Precision scores if compared with the other techniques. This is

due to the low number of false positives presented by it, but not by the others. The number

of false positives grows for every technique, except the LSI, which maintained the same 26

recovered traces, independent of Top Value, as we recognize in Figure 5.17. Observe that in

the equation of the Precision, where the number of false positives is inversely proportional

to the Precision score (see Section 5.4.1).

The Word Vector technique is especially problematic due to its tendency to attribute high

values of similarity between the test cases and bug reports even if they are not related. This

tendency leads to the technique’s high number of false positives, how larger the Top Value,

larger the number of false positives. Remember the mean similarity value of Word Vector is

around 0.907. Whereas the LDA and BM25 techniques did not suffer from the same problem

and were able to limit the increment in their number of false positives.

An example of the referred Word Vector issue is the bug report 1248267, whose title is

"Right click on bookmark item of ’Recently Bookmarked’ should show regular places context

5.5 Results and Discussion 73

Figure 5.20: Comparison of exclusive false positives – Top 40 – Scenario II – Study II

menu" and is related with the New Awesome Bar and Context Menu system features, but the

technique attributed high similarity scores (above 0.91) when comparing with test cases from

these features and also with test cases from the Windows Child Mode. As already explained,

this is mainly due to the lack of a weighting scheme for the words into the technique’s

algorithm.

Continuing our analysis of the false positives, we noticed differently from the false pos-

itives in the first scenario, the techniques did not distinguish themselves about the system

features their traces are related to in this case. We can visualize this in Figure 5.20, which

details the exclusive false positives of each technique (x-axis) and their respective system

features (y-axis). Note the darker cells, indicating a large concentration of false positives

traces, and how the larger values belong to the Word Vector technique.

False Negatives (FN) In what concerns the false negatives, which means the traces that

were not recovered by the techniques but should, all of them had very poor results in this

scenario. The Recall values were below ten percent, except for the Word Vector in Top 20

and 40, such as we detect in Figure 5.17. Also, except for four exclusive false negative traces

5.5 Results and Discussion 74

of LDA (in all Top Values), all of them had no exclusive false negative traces for any Top

Value.

These results indicate the similarity threshold of 0.9 is not adequate for every technique,

and an appropriate one must be determined for each one of them or a range of similarity

thresholds must be used, as we did so that the effectiveness can be fairly calculated for each

technique.

5.5.5 Best Similarity Threshold Value

In order to evaluate the hypothesis of existence of a best similarity threshold and to estimate it

into the range of thresholds considered in this work, we conducted an analysis whose results

are shown in Figures 5.21 and 5.22. The Figure 5.21 depicts the effects of the variation of

the similarity threshold in the LSI and LDA techniques, while the Figure 5.22 shows the

effects over the BM25 and Word Vector. We can visualize in each plot the Precision (in

blue), Recall (in green), F2-Score (in brown), and the reference value for F2-Score (in red),

so we can determine the level of Goodness (see Section 5.4.3). F2-Score values below this

reference can not be considered Acceptable; the other levels of Goodness were omitted once

none of the techniques achieved them and to not pollute the charts with excess of information.

Figure 5.21: LSI and LDA Similarity Threshold Variation

RQ3 – How does the effectiveness of each technique vary based on variable cuts?

5.5 Results and Discussion 75

Analyzing both figures, we can visualize a clear difference between the behavior of

Precision and Recall scores in the evaluated IR techniques and in the DL technique. In

the first ones, the Recall scores tend to fall below the Precision scores beyond some sim-

ilarity threshold independent of Top Value. For example, observe the turning point of the

LDA technique for Top 10 near 20% for Precision and Recall and the similarity threshold

of 0.8. Whereas the Word Vector technique practically suffer no influence from the similar-

ity threshold, but from the Top Values and presented distinct, although constant, values of

Precision and Recall for each Top Value (10,20,40) – note the straight lines in the Word

Vector plots.

Figure 5.22: BM25 and Word Vector Similarity Threshold Variation

When we look at the F2-Score values, we see as expected the most of them is below the

minimum value of reference (red line). This value split Acceptable techniques from the not

satisfactory ones. The F2-Scores of LDA, BM25, and Word Vector techniques are always

below the reference value for every similarity threshold. However, the LSI technique pre-

sented some values which can be considered Acceptable: in Top 20, the similarity thresholds

0.0 to 0.5; and in Top 40, the similarity thresholds 0.4 to 0.6. In all these cut values the

technique is Acceptable, which the highest level of acceptance for the combination Top 40

and Similarity Threshold 0.5 – this combination has a Recall around 70% and Precision

near 23%.

5.5 Results and Discussion 76

5.5.6 Goodness Scale

Adopting the Goodness scale, we calculated the levels of acceptance of the Precision and

Recall values for each technique and the results are shown in Figure 5.23. None of the stud-

ied techniques presented a satisfactory level of Goodness when we consider only the mean

of Precision and Recall scores. Although, as explained in section 5.5.5, some combina-

tions of Top Values and Similarity Thresholds grant an Acceptable level of Goodness for the

LSI technique and one of them is identified as the most adequate one: Top Value 40 and

Similarity Threshold 0.5.

Figure 5.23: Goodness Scale for each Technique – Study II

RQ4 – Which technique presents the best Goodness?

Such results indicate that LSI – using the identified best combination – is suitable for

application in real and large projects as the Mozilla Firefox. The human analysts or engineers

are able to recognize the correct and incorrect traces between a pair of a bug report and test

case, as also to recover a considerable part of the trace links between these kinds of software

artifacts when using a traceability recovery tool in their daily tasks.

5.5.7 Recovery Effort Index – REI

In this section, we report and analyze the REI values obtained for each technique considering

all Top Values (10,20,40) and all Similarity Thresholds ([0.0, 0.1, ..., 0.9]). The Precision

score of the volunteers’ oracle (produced only by the volunteers) in relation to the expert’s

oracle is 42.66%. This score is used to calculate the REI values (see Section 5.4.2).

RQ5 – Which technique presents the lowest REI coefficient?

We summarize the obtained REI values in Table 5.5. Since the REI coefficient is based

on the Precision scores and the LSI had the largest Precision scores in this study, we

expected it had the lowest REI, which in fact happened. The obtained results suggest the LSI

5.5 Results and Discussion 77

Table 5.5: REI values

Model REI

BM25 2.06

LSI 0.90

LDA 2.19

Word Vector 11.51

is the less time-consuming technique – in relation to the time of analysis required from an

analyst or engineer in using it for traceability recovery tasks – when compared with other

techniques. The LDA and BM25 require nearly the double of LSI’s required time, whereas

the Word Vector nearly eleven times.

An important observation must be highlighted: we make a free association of REI values

with the time required for analysis, such as did the authors of the original coefficient, but

this association still needs deeper study and we cannot attribute statistical significance to it

without further study.

5.5.8 Lessons Learned

We can highlight some conclusions from the developed study. First, the Recall levels from

three out of four techniques were below 40% – when we considered the average of the com-

binations of Top Values and Similarity Thresholds for each technique –, while Precision

levels remained below 30% for all techniques. In summary, when looking at the average

values for the studied metrics, none of the techniques seems to have satisfactory levels.

One of the main reasons for that may be the terms used by bug reporters, which did

not seem to match the terms used by Mozilla’s QA team in test cases. This problem may

be because most of the bug reporters do not participate from the Mozilla’s testers teams,

so the vocabulary used by the testers may not be present in most of the bug reports. The

difference in vocabulary is a challenging problem that must be addressed and analyzed for

the specific context of traceability between bug reports and test cases, especially in the case

of real-world artifacts as the ones we work with. Specially in this problem, the use of system

features would help the creation of a common vocabulary.

5.5 Results and Discussion 78

We also observed the quality of writing of the artifacts has a significant impact on the

results achieved by the techniques. If a bug report, for example, is too short and do not

describe precisely the problem, both human analyst and the technique will have difficulties

in to recover the linked test cases. The establishment of guidelines to write a satisfactory

bug report could be highly beneficial to the techniques effectiveness and to the engineers

analyzing them.

Exceptionally in the Mozilla Firefox, the writing quality of test cases is high and the

manual test cases are well-maintained by the QA team. For projects that do not count with

high quality manual test cases, we suggest the adoption of approaches such as MBT (Model-

Based Testing) [37], in which the test cases are generated automatically from a prefabricated

model. The quality of the test cases generated is high and the maintenance of them is fa-

cilitated. Yet another suggestion is establishing guidelines for the manual production of test

cases, where the fields required and the qualities of a satisfactory test case are highlighted.

Returning to the analysis of results achieved by the techniques, when we observe sepa-

rately the different combinations of Top Values and Similarity Thresholds, we see the tech-

nique LSI presented a degree of Goodness for some of these combinations. The best-obtained

result was for the combination Top Value 40 and Similarity Threshold 0.5, where the Recall

was nearly 70% and the Precision nearly 23%.

The other three techniques had very poor effectiveness in this study, even looking at

each combination of Top Value and Similarity Threshold separately. Although, we observed

a possible complementarity between the techniques true positives, which suggests better

effectiveness in using a hybrid technique that may be created based on the results presented

by the studied techniques. We intend to explore that in future works.

Also, we observed there is still a considerable gap in the traceability recovery task for

this type of traced artifacts. The results still not achieve a high level of Goodness (Excel-

lent level) in relation to Precision, Recall, and F2-Score, so that the recovery effort to

recover the traces is the smallest possible from the involved people. The current level of

Goodness grant an effective using of the LSI technique into a semi-automatized traceability

recovery process, where we have the presence of human analysts or engineers working with

the provided software tools for traceability recovery between bug reports and test cases, so

that missing links can be traced and wrong links recovered by the tool can be filtered by the

5.5 Results and Discussion 79

analyst.

The benchmark created in this work may help other authors in their studies in the trace-

ability recovery field. The data set of bug reports, test cases, and system features, and the

respective oracle matrix is the only available online to the best of our knowledge. The quality

of the artifacts is preserved by the Mozilla’s QA Team in the production of the test cases and

system features, while the bug reports trustworthiness is attested by the applied filters in the

proposed approach. Tangent to the oracle’s building, we conducted a survey using a rigorous

scientific methodology based on previous works. Other benchmarks were identified during

the literature review phase of this work, although they do not use the same number or variety

of traceability techniques, neither evaluate them through similar diversity of metrics. Also,

it is important to highlight the very low number of studies found using bug reports and test

cases, respectively as source and target artifacts, into the traceability recovery field.

We estimate the effort required from the analyst using the LSI is the smallest comparing

with the other techniques and represents nearly half of the effort required when using the

second best (BM25). However, this still needs further studies.

In terms of computational effort, we estimate the amount of resources required for using

the Deep Learning techniques is bigger than the ones required by the Information Retrieval

techniques. A significant amount of time was necessary to run the Word Vector techniques,

when comparing with the Information Retrieval ones. We did not measure explicitly the

respective times of execution of each technique, so further studies must be conducted to

confirm or reject that hypothesis, this goes beyond the scope of this dissertation.

It is essential to highlight the importance of the task of traceability recovery between

these two types of artifacts, especially in agile software development environments, where

test cases are the most up-to-date documentation of the software, being fundamental for the

software maintenance and evolution. Therefore, efforts should be continuous in order to

reach the automatic and precise linking with the bug reports, thus increasing the robustness

of software process and quality.

Chapter 6

Threats to Validity

In this chapter, we describe some threats to the validity of our study’s conclusions.

One external threat is that the volunteers of the empirical studies do not participate from

the Mozilla’s testing and development teams so that they may classify some trace links incor-

rectly. However, this threat must be considered for deeper studies in the field, once errors in

the creation of the oracle traceability matrix can exist even when it is created by developers

and testers from the software project itself.

Similarly to the volunteers, the expert also had no participation in Mozilla’s development

and testing teams. Although, he had previous knowledge of information retrieval and deep

learning techniques, and this could have caused some bias in his answers in the first empirical

study. In order to eliminate this bias, we used the intersection of the volunteers’ answers and

the expert’s ones, which implies in the need of agreement to accept an answer as right.

Another threat to our study is that we use only the Firefox artifacts to draw our conclu-

sions. The single source of software artifacts limits the generalization of our conclusions

which may be different when using other software systems. We intend in future works to ex-

tend the approach to other systems so that we can claim more generality for our conclusions.

Errors of implementation not detected in the script used in the empirical study for data

processing and analysis is a threat to internal validity. However, we addressed this threat

by double checking the produced software and eliminating existing programming errors pre-

viously to the analysis phase. Additionally, we open-sourced our code which is available

online.

Due to recording failures in the application used for the empirical study, two out of the

80

81

93 tasks needed to be discarded. Therefore, two bug reports were also discarded. We believe

this represents a minor threat to our conclusions and does not impose a significant risk to it

given the amount of remaining tasks/bug reports with correct answers.

Chapter 7

Related Work

Comparisons between techniques in the traceability recovery context were carried out in

previous studies. Falessi et al. [14] characterize and compare different IR techniques, with

distinct parameters, for equivalent/redundant requirements identification. The focus is on

requirements documents for an industrial system, in which five evaluation metrics (Precision,

Recall, ROC area, Lag, and Credibility) were employed. They analyze algebraic models and

vary term extraction strategies, weighting schemes, and similarity metrics (Cosine, Dice,

and Jansen-Shannon); by testing many combinations of these variables, they propose the

most efficient for the metrics they selected. Our proposal evaluates a larger amount of IR

and DL techniques, not only algebraic techniques comparing their effectiveness in terms

of Precision, Recall and F2-Score, providing a broader perspective over the technique’s

differences.

Similarly, Mills [33] applies a set of popular machine learning models/techniques – ex-

cept Neural Networks, different from our study – for classifying possible trace links as pos-

itive (1) or negative (0), for a pair of textual software artifacts, which did not include bug

reports to test cases. An extensive set of variables, extracted from historical data about the

traced artifacts, was used for the training of the models/techniques, and a comparison be-

tween them is drawn in terms of Recall and False Positive Rate (FPR). The author uses

several artifacts such as use cases, test cases, and source code, but not bug reports.

Regarding bug reports and test cases, Kaushik et al. [25] study traceability recovery for

a private industrial system using Precision, Recall, and F1-Score metrics. However, they

select LSI and LDA as IR techniques – they did not use BM25 and DL techniques – and set

82

83

up a constant similarity threshold of 0.7 for trace links, and a range of top values (2,5,10) –

our study was performed in more diversified settings and with a larger amount of bug reports.

In their study, they have access to a tester who created the oracle, while ours was built with

the aid of volunteers, as a superset of all answers. This difference grants them greater oracle

reliability when compared to our approach, although it is not necessarily better, once relies

only upon one person’s answers. Also, they discuss two scenarios for linking test cases to

bug reports: one considering the test case’s folder name (as we did with system features) and

another considering only the direct match between the recovered traces and the oracle traces.

In their results, LSI performs better than LDA, corroborating with our results. Concluding

their work, the authors observed the better effectiveness of LSI over the LDA as we did,

especially for the first scenario (using folder’s names). We can not directly compare our

results with theirs, once their conclusions were expressed only in terms of F1-Score, while

ours do not calculate this metric, but F2-Score.

Merten et al. [31] analyze a set of five IR techniques for recovering of traceability links

from bug reports to bug reports in four different opensource projects. The selected techniques

were VSM, LSI, BM25, BM25+ and BM25L with and without the application of prepro-

cessing steps (stop words removal, stemming, etc.), and also evaluating different weighting

values attributed for distinct parts of the bug report, for example, title, source code, stack

trace, comments, etc.. The authors pursued similar metrics to ours: Precision, Recall, and

the Goodness scale. Besides these metrics, they also compared two versions of F -Score: a

balanced version (F1-Score) and an unbalanced version (F2-Score), which gives more im-

portance to Recall over Precision. The baseline for comparison between the techniques

adopted by them was the BM25 technique, while we decided to use a ZeroR classifier.

The conducted study by Merten et al. verifies the superior effectiveness of the LSI tech-

nique over the BM25 when involving bug reports textual analysis, however, all techniques

perform poorly just as in our study. Although we make traceability between different types

of artifacts, we may observe similar results, given the similar nature of the query artifacts

(bug reports).

Merten et al. also highlights the difficulties into track bug reports, such as the presence

of noise in the bug report text, such as hyperlinks, source code, stack traces, and repetitive

information. The presence of such noise affects the effectiveness of the techniques and must

84

be addressed as we also have identified in our study.

Table 7.1 shows a summary of the related works, the used techniques, the artifacts

mapped and the similarity metrics used.

Table 7.1: Summary of related works

Work Technique Artifacts Sim. Metric

[14] LSI,VSM RDa Cosine,Dice,Jansen-Shannon

[33] J48,KNN,NBb,RFc UCd,SCe,RDf,TCg,IDh –

[25] LSI,LDA TC,BRi Cosine

[31] LSI,BM25 BR BM25,Cosine

This work LSI,LDA,BM25,WVj BR,TC Cosine

aRD: Requirement documents
bNB: Naive Bayes;
cRF: Random Forest
dUC: Use Cases
eSC: Source Code;
fRD: Requirement Documents;
gTC: Test Cases;
hID: Interaction Diagrams;
iBR: Bug Reports
jWV: Word Vector

Chapter 8

Conclusions

In this dissertation, we propose an approach to recover traceability links between bug reports

and test cases, through the use of system features to bridge the gap between those two types

of artifacts. Several IR and DL techniques may be used as instantiations of the approach.

We compared the effectiveness of these techniques and stated the better effectiveness of

a traditional technique (LSI) in terms of well-known metrics in the context of traceability

from bug reports to test cases over the other studied techniques. In special, we have also

addressed the applicability of one DL technique – in this case, Word Vector – for traceability

recovery, which presented the poorest results.

The comparative analysis made in this work, involving such number of distinct traceabil-

ity techniques from different families and recovering traceability links between test cases

and bug reports using system features as intermediate artifacts states the originality of this

work. Through the use of well-known metrics and adapted ones a broader overview of the

techniques effectiveness was drawn when comparing with previous studies in the field. Also,

the case study conducted with Mozilla Firefox real artifacts strengthen the achieved results

when replicating the approach in other large and open-source projects.

Although the results may suggest the using of the available IR and DL techniques for

automatic traceability recovery, we checked that, in real and large software projects such

the Mozilla Firefox, it is still unfeasible for complete automation. Our proposal and studies

reveal the strengths and weaknesses of each applied technique and identified the feasibility

of the LSI technique using some combinations of Similarity Thresholds and Top Values.

Once we set up the LSI technique with these combinations – preferably the best one –,

85

86

into an appropriate tool, then it may aid human analysts and engineers in semi-automatized

traceability recovery tasks.

Even with the stated feasibility of one of the techniques, we checked that the presence

of a common vocabulary and the proposal of a guide for writing the bug reports and the test

cases can greatly benefit the process of traceability recovery involving these two kinds of

artifacts. Besides that, we have identified the possibility of using the system features as a

link between bug reports and test cases, which per se is a contribution of this research, and

whose adoption for describing bug reports and test cases potentially improves the traceability

effectiveness of the traceability recovery techniques.

The results achieved in this work can be replicated using the script and data available

online. Also, the data set of extracted bug reports, test cases, system features, and the created

oracle may serve as a benchmark for other studies in the traceability recovery field. During

the literature review phase of this work, we noticed the existence of other benchmarks which

are also available online, although they do not map bug reports to test cases. Therefore, the

one created is the first of this kind from the best of our knowledge. Also, the quality of

data used is improved by the fact the bug reports are confirmed and fixed, the test cases were

produced directly by the qualified QA team of Mozilla, the system features descriptions were

collected from trusted sources, and the oracle creation process follows an well-described

scientific methodology.

The proposed approach has the potential to be adopted in various scenarios in a software

development process. For instance, it could be used to aid human analysts to evaluate the

impact of changes and to help testers to select and prioritize manual test cases related to a

determined bug report. Currently, the only requirements for using our approach is to provide

manual test cases, bug reports and system features in a textual format, and that the bug reports

and manual test cases be grouped by system features.

We emphasize the test cases we use in the proposed approach are manual, not automa-

tized. In the case of automatized test cases, such as unitary tests and integration tests, which

are defined through the use of programming languages, we estimate the results would be

even worse, once the technique would have more difficulties into finding the most relevant

terms and, therefore, recovering the correct test cases linked with a given bug report.

8.1 Limitations 87

8.1 Limitations

The presented work has some limitations that should be highlighted. In specific, the main

constraints regard the oracle production, the technique’s parameters selected, and the statis-

tical significance of the results.

Concerning the oracle production, we tried to minimize the errors of generation by taking

the intersection between the answers of volunteers and an expert, but a more robust gener-

ation process could have been designed, so that a bigger amount of traces could be used to

create the oracle, and less information (traces) would be discarded during this process of

creation. Remember we only used the traces presented in the intersection of the volunteers’

and the expert’s answers.

Additionally, a deeper parameter searching process could have been made, so the tech-

niques used would adopt the most adequate parameters for the software artifacts in our data

set. This process was carried out without further indications that the chosen parameters were

really the best ones.

Besides that, the statistical significance would give more robustness to the choice of the

parameters, and also to the studies results, which would leverage the effectiveness compari-

son between the various techniques. However, statistical tests were not used for consolidat-

ing the results obtained, so we have no indication of the difference between the techniques

from a statistical standpoint. The use of confidence intervals, for example, could have sug-

gested a higher similarity between the effectiveness of the techniques.

8.2 Contributions

In short, the contributions of this work are:

1. Organization of a data set of bug reports, test cases, and system features from Mozilla

Firefox for using in traceability recovery studies and support the creation of new

benchmarks of traceability techniques;

2. Execution of a comparative study of the IR and DL techniques used in terms of effec-

tiveness;

8.3 Future Work 88

3. An approach for traceability recovery between bug reports and test cases using system

features;

4. An extra study was conducted (see Appendix A) for evaluating the effectiveness of

each IR and DL technique between bug reports and system features.

8.3 Future Work

As future work, we have some paths we can follow. One is to similarly compare with other

techniques, in particular, DL techniques using neural networks trained with software en-

gineering domain data sets, extending the analysis for systems from both the open-source

community and private sector.

Another path is the application of "enhancements" strategies with the LSI technique,

such as building a thesaurus to deal with synonym, clustering of documents/terms, phrasing,

query expansion techniques, and vary the attributed term weight considering the localization

of them, for example, when a term appear in the title, it gains a higher weight than if it

appeared in the comments of the bug report.

Yet another possible path is to evaluate the effectiveness of a hybrid technique created

from the answers (returned traces) of the studied techniques. Hopefully, the number of mis-

takes (false positives and false negatives) may be diminished if compared with the individual

effectiveness of each technique.

How we checked during our study, the techniques tend to hit and miss different sets of

traces, so that we suppose a combined version of them – in the form of a hybrid technique

– can compensate the failures of each technique individually, and also boost the number of

correct traces recovered.

Bibliography

[1] Tf-idf: A single-page tutorial - information retrieval and text mining. Retrieved May

30, 2019 from http://www.tfidf.com/.

[2] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Ettore

Merlo. Recovering traceability links between code and documentation. IEEE Transac-

tions on Software Engineering, 28(10):970–983, 2002.

[3] Daniel M. Berry. Evaluation of tools for hairy requirements and software engineering

tasks. Proceedings - 2017 IEEE 25th International Requirements Engineering Confer-

ence Workshops, REW 2017, pages 284–291, 2017.

[4] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation.

Journal of Machine Learning Research, (3):993–1022, 2003.

[5] Markus Borg, Per Runeson, and Anders Ardö. Recovering from a decade: a system-

atic mapping of information retrieval approaches to software traceability. Empirical

Software Engineering, 19(6):1565–1616, 2014.

[6] Stefan Buttcher, Charles L. A. Clarke, and Gordon V. Cormack. Information Retrieval

- Implementing and Evaluating Search Engines. MIT Press, 2010.

[7] Gerardo Canfora and Luigi Cerulo. Fine Grained Indexing of Software Repositories to

Support Impact Analysis. Advanced Materials Research, sep 2006.

[8] Steven Davies and Marc Roper. What’s in a bug report? Proceedings of the 8th

ACM/IEEE International Symposium on Empirical Software Engineering and Mea-

surement - ESEM ’14, pages 1–10, 2014.

89

BIBLIOGRAPHY 90

[9] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Can informa-

tion retrieval techniques effectively support traceability link recovery? IEEE Interna-

tional Conference on Program Comprehension, 2006:307–316, 2006.

[10] Andrea De Lucia, Rocco Oliveto, and Genoveffa Tortora. Assessing IR-based trace-

ability recovery tools through controlled experiments. Empirical Software Engineering,

14(1):57–92, 2009.

[11] Scott Deerwester, George W Furnas, Thomas K Landauer, and Richard Harshman.

Indexing by Latent Semantic Analysis. J. Am. Soc. Information Science, 41(6):391–

407, 1990.

[12] Alex Dekhtyar and Vivian Fong. RE Data Challenge: Requirements Identification with

Word2Vec and TensorFlow. Proceedings - 2017 IEEE 25th International Requirements

Engineering Conference, RE 2017, pages 484–489, 2017.

[13] Alex Dekhtyar, Jane Huffman Hayes, Senthil Sundaram, Ashlee Holbrook, and Olga

Dekhtyar. Technique integration for requirements assessment. Proceedings - 15th IEEE

International Requirements Engineering Conference, RE 2007, pages 141–152, 2007.

[14] Davide Falessi, Giovanni Cantone, and Gerardo Canfora. A comprehensive charac-

terization of NLP techniques for identifying equivalent requirements. Proceedings of

the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and

Measurement - ESEM ’10, page 1, 2010.

[15] Davide Falessi, Massimiliano Di Penta, Gerardo Canfora, and Giovanni Cantone. Es-

timating the number of remaining links in traceability recovery. Empirical Software

Engineering, 22(3):996–1027, 2017.

[16] Mattia Fazzini, Martin Prammer, Marcelo D’Amorim, and Alessandro Orso. Automat-

ically translating bug reports into test cases for mobile apps. Proceedings of the 27th

ACM SIGSOFT International Symposium on Software Testing and Analysis - ISSTA

2018, pages 141–152, 2018.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. 2016.

BIBLIOGRAPHY 91

[18] Orlena C Z Gotel and Anthony C W Finkelstein. An Analysis of the Requirements

Traceability Problem. 1st International Conference on Requirements Engineering (RE

1994), pages 94–101, 1994.

[19] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. Semantically Enhanced Software

Traceability Using Deep Learning Techniques. Proceedings - 2017 IEEE/ACM 39th

International Conference on Software Engineering, ICSE 2017, pages 3–14, 2017.

[20] Jane Huffman Hayes and Alex Dekhtyar. Humans in the traceability loop: can’t live

with’em, can’t live without’em. 3rd international workshop on Traceability, 2005.

[21] Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan Sundaram. Tracing and

Mapping : Supporting Software Quality Predictions. 2005.

[22] Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan Sundaram. Advanc-

ing candidate link generation for requirements tracing: The study of methods. IEEE

Transactions on Software Engineering, 32(1):4–19, 2006.

[23] Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan Sundaram, E. Ashlee Hol-

brook, Sravanthi Vadlamudi, and Alain April. REquirements TRacing On target

(RETRO): Improving software maintenance through traceability recovery. Innovations

in Systems and Software Engineering, 3(3):193–202, 2007.

[24] Hadi Hemmati and Fatemeh Sharifi. Investigating NLP-Based Approaches for Predict-

ing Manual Test Case Failure. Proceedings - 2018 IEEE 11th International Conference

on Software Testing, Verification and Validation, ICST 2018, pages 309–319, 2018.

[25] Nilam Kaushik, Ladan Tahvildari, and Mark Moore. Reconstructing traceability be-

tween bugs and test cases: An experimental study. Proceedings - Working Conference

on Reverse Engineering, WCRE, pages 411–414, 2011.

[26] Kun Chen, Wei Zhang, Haiyan Zhao, and Hong Mei. An approach to constructing

feature models based on requirements clustering. pages 31–40, 2005.

[27] Dennis Lee. How to write a bug report that will make your engineers love you, 2016.

Retrieved May 30, 2019 from https://testlio.com/blog/the-ideal-bug-report.

BIBLIOGRAPHY 92

[28] Marco Lormans and Arie Van Deursen. Can LSI help reconstructing requirements

traceability in design and test? Proceedings of the European Conference on Software

Maintenance and Reengineering, CSMR, pages 47–56, 2006.

[29] Mika V. Mäntylä, Foutse Khomh, Bram Adams, Emelie Engström, and Kai Petersen.

On rapid releases and software testing. IEEE International Conference on Software

Maintenance, ICSM, pages 20–29, 2013.

[30] Mary L McHugh. Interrater reliability: the kappa statistic. Biochemia medica,

22(3):276–82, 2012.

[31] Thorsten Merten, Daniel Krämer, Bastian Mager, Paul Schell, Simone Bürsner, and

Barbara Paech. Do Information Retrieval Algorithms for Automated Traceability Per-

form Effectively on Issue Tracking System Data? In Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), volume 9619, pages 45–62. 2016.

[32] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of

Word Representations in Vector Space. CrossRef Listing of Deleted DOIs, 1:1–12, jan

2013.

[33] Chris Mills. Automating traceability link recovery through classification. In Proceed-

ings of the 2017 11th Joint Meeting on Foundations of Software Engineering - ES-

EC/FSE 2017, pages 1068–1070, New York, New York, USA, 2017. ACM Press.

[34] Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, Andrea De Lucia, and Andrea De

Lucia. On the equivalence of information retrieval methods for automated traceability

link recovery. IEEE International Conference on Program Comprehension, pages 68–

71, 2010.

[35] Leonardo Passos, Krzysztof Czarnecki, Sven Apel, Andrzej Wa̧sowski, Christian Käst-

ner, and Jianmei Guo. Feature-oriented software evolution. page 1, 2013.

[36] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global Vectors

for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods

BIBLIOGRAPHY 93

in Natural Language Processing (EMNLP), pages 1532–1543, Stroudsburg, PA, USA,

apr 2014. Association for Computational Linguistics.

[37] Alexander Pretschner. Model-Based Testing in Practice. International Conference on

Software Engineering, 1999. Proceedings., pages 537–541, 1999.

[38] Stephen Robertson and Hugo Zaragoza. The Probabilistic Relevance Framework:

BM25 and Beyond, volume 3. 2009.

[39] Ian Sommerville. Software Engineering. Addison-Wesley, 9 edition, 2010.

[40] Ian Witten, Eibe Frank, and Mark Hall. Data Mining - Practical Machine Learning

Tools and Techniques, volume 54. 2011.

[41] Andrew Y. Ng and Michael Jordan. On Discriminative vs. Generative Classifiers: A

comparison of logistic regression and naive Bayes. Adv. Neural Inf. Process. Sys, 2,

2002.

[42] Suresh Yadla, Jane Huffman Hayes, and Alex Dekhtyar. Tracing requirements to defect

reports: An application of information retrieval techniques. Innovations in Systems and

Software Engineering, 1(2):116–124, 2005.

[43] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian

Schroter, Cathrin Weiss, Adrian Schröter, and Cathrin Weiss. What makes a good

bug report? IEEE Transactions on Software Engineering, 36(5):618–643, sep 2010.

Appendix A

Extra Empirical Study A

In this Appendix, we present an extra study conducted by us in order to analyze the tech-

niques in the context of traceability between bug reports and system features.

A.1 Study Context and Definition

The objective of this study is to analyze the traceability recovery capabilities of the IR and

DL techniques used in this work with the created oracle between bug reports and features

of the Mozilla Firefox (see Chapter 4). We aim to answer the following research question:

RQ-1A: Which technique presents the best effectiveness in the context of traceability between

bug reports and system features?. We define effectiveness in terms of common metrics used

in the field: Precision, Recall, and F2-Score [22; 3].

A.2 Study Procedure

The execution procedure of this study is identical to the one presented in the Second Em-

pirical Study (see Chapter 5) regarding the execution of techniques and trace links matrices

recovery. The only difference is the targeted artifacts since we evaluate in this study the

mapping between system features and bug reports, so the oracle transformation is not neces-

sary, we have access to the oracle between bug reports and system features provided by the

participants in the First Empirical Study (see Chapter 4). Figure A.1 shows a schematization

of this study in detail.

94

A.2 Study Procedure 95

Figure A.1: Scheme of Extra Empirical Study

As the input of the scheme, we see two data sets of System Features and Bug Reports

entering the BR-Feat Traces Builder and the PyBossa Platform. The first, as explained

in Chapter 3, produces binary matrices for each combination of Top Value and Similarity

Threshold for each technique. Whereas the second provides the oracle generated through

the volunteers’ and expert’s participation, as was already explained. Then, the module Re-

covery Traceability Evaluation receives both outputs and evaluate the effectiveness of the

techniques.

A.2.1 BR-Feat Traces Builder Evaluation

The evaluation of the BR-Feat Traces Builder occurs identically to the described in Chapter

5 for the BR-TC Traces Builder. The Traceability Engine also processes the input artifacts

in two phases: preprocessing and execution. The preprocessing steps and parameters set up

are exactly the same, such as the libraries and frameworks.

In order to find the best parameters values for the LSI (number of dimensions) and the

LDA (number of topics), a parameter search was performed. We tested the implemented

techniques with smaller and greater parameter values (5,10,20,40,100), but coincidentally 20

was the best value for both LSI and LDA techniques. Whereas the BM25 and Word Vector

implementation and parameters were identical to the ones used in the Second Empirical

Study.

Following the preprocessing phase the techniques were executed with the tokenized bug

reports and features, similarity matrices (see Chapter 2) were then generated, and different

BR-Feat Recovered Trace Links Matrices were created according to multiple combinations

of Top Values and Similarity Thresholds. For Top Values, we used 1, 3, and 5 – which is

A.3 Research Method 96

compatible with the average number of features to be recovered by bug report, and a range

of similarity threshold values between 0.0 and 0.9 (included) with a step size of 0.1 (0.0, 0.1,

..., 0.9) – which is compatible with the range of the values into the similarity matrices that

interest us (the ones with similarity greater than zero, meaning closest similarity between the

documents). Finally, the Recovered Traceability Evaluator assessed each technique using

selected metrics and the participant’s trace links matrices (oracles).

A.3 Research Method

The same evaluation procedure adopted for the BR-TC Traces Builder is applied for the BR-

Feat Traces Builder, but the Oracle used by the Recovery Traceability Evaluator. We also

used the same effectiveness metrics as in the first study: Precision, Recall, and F2-Score,

the REI coefficient, and the Goodness scale.

A.4 Results and Discussion

A.4.1 General Evaluation

In this section, we report and discuss the results for the context of traceability between bug

reports and features, which are summarized by the bar chart in Figure A.2.

RQ-1A: Which technique presents the best effectiveness in the context of traceabil-

ity between bug reports and system features?

We have observed that, in the context of Mozilla Firefox artifacts, the LSI technique is

the most effective, with the highest F2-Score (49.1%) in average, despite the existing ten-

dency of replacement by the BM25 technique in existing search engines, such as the Apache

Lucene1. LSI presented the second best Recall (76.3%), and its Precision (28.3%) is the

best one nearly ten percent ahead of BM25’s (17.5%), which is the second best. Even with

a higher Recall, the BM25 did not achieved a better performance than the LSI in terms of

F2-Score, which evaluates Precision and Recall jointly and with an appropriate balanc-

ing between the two metrics for traceability recovery purposes, giving more importance to

1https://lucene.apache.org

A.4 Results and Discussion 97

Figure A.2: BR-Feat Traceability Recovery Results

higher Recall scores than to higher Precision scores.

LDA presented the lowest F2-Score (16.0%). Confirming previous studies conclusions,

the overall effectiveness of LDA is lower than LSI’s [34; 25], in terms of Recall and

Precision. In the final result, LDA presented Recall of 39.9% and Precision of 5.1%.

Analyzing the created topics, we checked that the LDA technique was not able to represent

most of the system features as we wished, and it presented an odd tendency to classify al-

most every bug report as related to three system features: New Awesome Bar, Windows 10

Compatibility, and WebGL Compatibility (similarity score above 0.8). The description field

of these system features influenced this technique behavior: common words from the bug

reports content appear with a considerable frequency into these features descriptions, such

as "Firefox," "page," "address," "bar," "web," and "URL.", so the technique attributed sim-

ilar topics to them, what generated a high similarity score. LSI and BM25 techniques were

able to better deal with such common words, which leveraged their results in comparison to

LDA’s.

On the other hand, although the Word Vector technique is promising for Natural Lan-

guage Processing (and IR in general), its effectiveness is limited to the context of the train-

ing corpora from where it extracts the tokens. The training data used for creating the vector

space model representation in our study is very different from general software engineering

textual data: the corpora is created based on texts collected from comments, blogs and news

on the web. This mismatch may negatively impact its prediction power and, in turn, its ef-

A.4 Results and Discussion 98

fectiveness in the traceability activity. Still, despite this drawback, the Word Vector model

presented reasonable effectiveness in terms of Recall (56.9%), but not in terms of Precision

(9.3%) and F2-Score (25.2%), if compared to the others techniques. Also, we have noticed

that the mean similarity value considering every pair (feature, bug report) in the Word Vec-

tor similarity matrix is 0.86 and standard deviation 0.058, which means that the technique

attributes high values of similarity between the majority of pairs (feature, bug report), that

behavior and its consequences are more explored in following sections.

When we look at the effectiveness achieved by the baseline classifier (ZeroR), we see a

significative performance, earned only predicting the majority class as explained in Section

5.4.4. By indicating only positive links for the relationships between a bug report and the

New Awesome Bar system feature (major class), the ZeroR classifier had a Precision of

22.0%.

The ZeroR Precision turns the obtained Precision of three out of four studied tech-

niques unacceptably low – only the LSI technique had a Precision above the baseline, which

defines a minimum reference value to evaluate the techniques. Although we did not discard

the other techniques because of that, once the Precision is not the most important metric

in our context and other metrics such as Recall and F2-Score have more relevance in our

analysis.

Continuing our explanation, we observed an identical phenomenon for the F2-Score

metric, only the LSI reached a greater F2-Score if compared with the baseline. The BM25

F2-Score may be considered identical to the baseline one. However, when we look at the

Recall scores, the LSI and BM25 techniques achieved bigger Recall scores than the baseline

predictor, and were able to return the vast majority of relevant links between the bug reports

and system features.

Surprisingly, the ZeroR baseline classifier achieved an Acceptable level of Goodness.

The ZeroR F2-Score was 44%, therefore higher than the minimum value of 42.85% to be

considered Acceptable. Analyzing the Goodness scale through the F2-Scores obtained, we

can see the LSI (49.1%) and BM25 (43.8%) also achieved an Acceptable level of Goodness,

considering the mean of the combinations of Top Values and Similarity Values, as demon-

strated in the bar plots of Figure A.2.

Deepening our analysis, we plotted PR-Curves with the Precision and Recall values

A.4 Results and Discussion 99

Figure A.3: PR-Curves of each technique – BR-Feat Context

obtained by each technique which are shown in Figure A.3. A PR-Curve in our context gives

an instantaneous view of the effectiveness of all IR and DL techniques when compared with

each other: the technique with a larger area under the curve is the best one [6]. In our study,

the LSI technique is the best in this scenario and the state-of-the-art BM25 technique is the

second best. We can observe that LSI obtains higher Precision and Recall values than

BM25 in most of the cases. While LDA and Word Vector presented the lowest effectiveness,

with the Word Vector slightly better than LDA.

When we aggregate the metrics by Top Value (1,3,5), as is shown in Figure A.4, we are

able to compare the effect of the Top Value over the techniques performance – the darker

green cells represent higher scores. We see only the LSI technique maintains a Precision

above the baseline (ZeroR classifier) independently of the Top Value and metric considered

(Precision percentage – perc_precision, Recall percentage – perc_recall, and F2-Score

percentage – perc_fscore). Note the BM25 technique only obtained scores (Precision and

Recall) above the baseline for the Top 1, and LDA and Word Vector techniques just in some

cases and not for both metrics.

Next, we extend our analysis and evaluate the results for two different scenarios, so we

better understand the effects of different Top Values and Similarity Thresholds over the tech-

nique effectiveness: (i) in the first scenario (Scenario I), we selected the case where the Sim-

ilarity Threshold is 0.0, so the number of returned documents is maximized and the Recall

A.4 Results and Discussion 100

Figure A.4: Performance of techniques aggregated by Top Value

is favored over the Precision. (ii) in the second scenario (Scenario II), we evaluated the

techniques using a Similarity Threshold of 0.9, such value tends to leverage the Precision

over Recall metric.

A.4.2 Scenario I – Similarity Threshold 0.0

We start the analysis of this scenario by evaluating the traces that were captured by all tech-

niques – characterizing the easiest ones – and, in the other hand, the no captured traces (not

captured by any technique) – characterizing the hardest ones. Table A.1 summarizes these

results.

Top Not Captured Traces Traces Captured by All

1 7

34
= 20.59% 0

34
= 0.00%

3 0

34
= 0.00% 18

34
= 52.94%

5 0

34
= 0.00% 23

34
= 67.65%

Table A.1: Captured and Not Captured Traces – All Techniques – Scenario I – Study I

A.4 Results and Discussion 101

Traces Missed by All Techniques Considering Top Value 1 we have that seven out 34

traces were not captured by any of the techniques, this represents 20.58% of the oracle’s

traces. The number of missed traces are mainly due to reasons: (i) the bug reports are related

with more than one feature, so the Top 1 cut forces the exclusion of many of them, and (ii)

the keywords characterizing the bug reports did not lead to a sufficient similarity score to

bond them to the correct Mozilla’s system features.

The first case occurs with the bug report 1357458 ("After Customization - typed text in

the Awesome bar doesn’t correspond with the text from One-Off-Searches bar"), which is

linked with the system features New Awesome Bar and Browser Customization, but the Top

1 forces the recovery of only one of the traces – the one with the first feature.

Whereas the second case happened with the other six bug reports. In these cases, we

detected that some bug reports have a description that misguided the techniques due to the

presence of some keywords, such as "windows", that are more used to describe features,

such as Windows 10 Compatibility, comparing with the similarity score attributed to the

correct features. For example, the LSI technique attributed a similarity between the bug

report 1318903 ("[Windows 7 and below] Fullscreen window controls not shown with dark

themes, close button has broken "red square" hover state") and Windows 10 Compatibility of

0.6470, while it attributed 0.4889 to the Browser Customization which is the correct system

feature to be linked with this bug report.

Traces Captured by All Techniques Analyzing in the other extreme, we see that, for Top

1, zero percent of the traces were captured by all techniques. This demonstrates a relative

difference between the techniques which belong to different families [5] – each one repre-

sented here by one technique – and that have distinct similarity scoring functions and core

algorithms. When we observe the same scenario for Top 3 and 5, we have that 52.94% and

67.65%, respectively, of the traces are captured by all the techniques, these are considerable

results and suggest the set of techniques is capable of recover the entire set of true traces,

although such hypothesis needs further studies.

A.4 Results and Discussion 102

Techniques Evaluation

In this section, we evaluate each technique and explore some of the obtained results of trace-

ability recovery extending the analysis considering each one of the Top Values (1,3,5) and

the Similarity Threshold (0.0) in relation to the True Positives (TP), False Positives (FP)

and False Negatives (FN) that characterize each technique. Figure A.5 details the obtained

results.

Figure A.5: Traceability Recovery Results for Scenario I – Extra Study

True Positives (TP) The technique with more exclusive identified true positives – traces

correctly identified by only it – is LSI and the second best is BM25, although the difference

is not expressive it is enough to grant some advantage to the first technique. Figure A.6

details the number of true positives exclusively identified by each technique for all top values

considered. The LSI technique was able to recover the most of true positive traces with a

Recall of 97.06% at Top 3 and 5 – missed only 1 out of 34 traces. Also, the BM25 obtained

significant results, very close to the LSI’s, achieving 94.12% of Recall at Top 5. However,

the LSI’s Precision is equal or greater than BM25’s in all Top Values.

In terms of Goodness analyzed using the F2-Score reference values (see Section 5.4.3

at Chapter 5), we see the LSI and BM25 techniques only obtained an Acceptable level of

Goodness in Top 1, where the F2-Score of both is 52.86% in average.

A.4 Results and Discussion 103

Figure A.6: Number of true positives exclusively identified

The LDA technique results were surprisingly poor at Top 1, where it did not recover any

true trace, so that its Precision, Recall, and F2-Score were zero for this case. The main

reason for that is the preference of the technique for the system feature WebGL Compatibility.

The technique attributed the highest value of similarity that it has calculated between all

system features to this feature specifically for almost every bug report. However, how this

system feature was not linked with any of the selected bug reports in the oracle, then the

technique was not able to recover none relevant traces. We were not able to explain this

particular behavior of the technique, although we have identified that the three preferred

system features are all strongly related to a single topic into the technique’s internal structure.

Considering the Word Vector technique, we noticed a reasonable performance, although

not sufficient to classify its level of Goodness as Acceptable in any Top Value, the tech-

nique only recover a maximum of 70.59% of relevant traces at Top 5 – its best performance.

The technique presented a similar behavior to the identified in the Second Empirical Study

(Chapter 5), where it attributed high similarity scores to nearly all pair of a bug report and

system feature, in this case. This is problematic once demonstrates the technique was not

able to distinguish the textual differences between the documents being analyzed. We rec-

ommend – as we did in the previous study – to use a weighting scheme into the techniques

algorithms, so these differences may be better detected, such as happens in techniques how

LSI and BM25.

False Positives (FP) Confirming the poor effectiveness of the LDA technique in terms of

Precision, this technique had the highest number of false positives between all techniques.

How was described in Section A.4.1, the LDA technique had the odd behaviour of relating

almost every bug report to the features New Awesome Bar, Windows 10 Compatibility, and

WebGL Compatibility. This behavior was responsible for the high number of false positives,

A.4 Results and Discussion 104

as we can verify in the Venn diagrams in Figure A.7.

Figure A.7: Comparison of False Positives

Whereas the BM25 and LSI techniques have a large number of common false positives

traces – 32 for Top 1 and 131 for Top 5 – what indicates some proximity between the tech-

nique’s behavior when considering only a fixed cut (Top Value) if compared with the other

two techniques (LDA and Word Vector). Additionally, the diagrams reveal a considerable

number of false positives that are common for all techniques, even larger than the intersec-

tion between LSI’s and BM25’s false positives, which suggests all of them are making the

same mistakes and probably a variable cut (Similarity Threshold) may be beneficial for the

Precision’s improvement of each technique.

The presence of a variable Similarity Threshold may be a requirement for using the

Word Vector technique successfully, considering the problem described in Section A.4.1

– the technique tends to attribute high values of similarity to almost every pair (bug re-

port, system feature) –, once the variable cut can help the technique to better distin-

guish the pair of documents. However, the adequate values of cut should be calculated

separately for each technique, so it can be adapted to the scale of similarity values of

each technique. Some studies proposed and experienced with identical hypothesis [2; 9;

A.4 Results and Discussion 105

10] identifying the correctness of it, corroborating our discoveries into the context of trace-

ability studied by us.

False Negatives (FN) When we look at the false negatives, in average, the poorest results

were again produced by the LDA technique, which had the highest number of false negatives

(34 out of 34) in Top 1 (0.0% Recall), and second lowest (9 out of 34) for Top 5 (73.53%

Recall). In the first case, the technique presented 11 exclusive false negatives. Eight out

of these 11 false negatives were related to the system feature New Awesome Bar and the

remaining three to the Context Menu feature.

Despite the tendency of the technique to relate almost every bug report to three system

features and between these is the New Awesome Bar, we checked that in these eight cases, the

negative traces were due to lack similarity of the respective eight bug reports, which were not

able to reach enough similarity scores with New Awesome Bar feature when compared with

the other two technique’s preferred system features (WebGL Compatibility – webgl_comp

and Windows 10 Compatibility – w10_comp). Figure A.8 shows a subset of LDA’s similarity

matrix with these eight bug reports and highlighted similarity values: darker the cell, higher

the similarity value. Observe the clear tendency of the technique relate all bug reports with

the three preferred system features (w10_comp, webgl_comp, and textbfnew_awesome_bar),

but in prejudice of the New Awesome Bar feature when we make a Top 1 cut.

The LSI, BM25 and Word Vector techniques had no exclusive false negatives for Top 1.

However, Word Vector (WV) presented a single exclusive false negative in Top 5. Checking

the Venn diagrams in Figure A.9, we observed the Word Vector (WV) and LDA have most

of the false negatives in common.

A.4.3 Scenario II – Similarity Threshold 0.9

Alike in the first scenario in this section, we evaluate each technique obtained traceability

results in relation to True Positives (TP), False Positives (FP) and False Negatives (FN). The

considered Top Values are the same as in the first scenario (1,3,5), but the fixed Similarity

Threshold is 0.9. We expected the Precision scores improve and the Recall may decrease

with this set up.

A.4 Results and Discussion 106

Figure A.8: Highlighted LDA’s Similarity Matrix

Figure A.9: False Negatives Comparison

Top Not Captured Traces Traces Captured by All

1 10

34
= 29.41% 0

34
= 0.00%

3 6

34
= 17.65% 5

34
= 14.71%

5 5

34
= 14.71% 5

34
= 14.71%

Table A.2: Captured and Not Captured Traces – All Techniques – Scenario II – Study I

Traces Missed by All Techniques Once in this second scenario we had a more restrictive

similarity threshold than in the first scenario, the number of traces which were not captured

A.4 Results and Discussion 107

by any of the techniques is larger than in the first scenario. One of the reasons is that in

the first we had only a fixed cut (Top Value) as limiting factor for the number of returned

documents (features) for each query (bug report), but for this second scenario, besides it, we

had a high similarity threshold too.

Table A.2 details the number and proportion of captured and not captured traces. In

Top 1 nearly 30% of the traces were not recovered by any technique. Analyzing the 10

not captured traces, we see the following distribution: 2 traces should be linked with the

Browser Customization feature, another 2 with the Downloads Dropmaker, four with the

New Awesome Bar, one with the PDF Viewer, and one with the Zoom Indicator. Whereas

we have the distribution of traces/number of bug reports by feature as stated by Table A.3.

Feature Num_BRs

New Awesome Bar 20

Downloads Dropmaker 4

Indicator for Dev. Permissions 3

Context Menu 3

Browser Customization 2

PDF Viewer 1

Zoom Indicator 1

Table A.3: Distribution of Bug Reports by Feature

In this second scenario, we have the problems identified in the first scenario with practi-

cally the same bug reports as source artifacts and the new problem that is the high similarity

threshold of 0.9. Bug reports linked with more than one system feature were not linked to all

their system features due to the Top 1 cut, which selects only the feature with higher simi-

larity. An example of that is the bug report 1305195 ("In private browsing mode, zoom level

indicator is unreadable when dark developer edition theme is in use"), which is linked with

the Browser Customization and Zoom Indicator features, but is not linked with both at Top

1, and the techniques, such as Word Vector, that attributes high levels of similarity between

documents are not able to recover this link until Top 5, characterizing its low Precision

scores.

The main difference between the results obtained at Top 1 to the ones obtained at Top 3

A.4 Results and Discussion 108

and 5 is the set of traces associated with the New Awesome Bar, which were all captured by

the BM25 or the Word Vector techniques at Top 3 and 5. The first may be favored by the

normalization applied to the similarity scores – which leveraged the similarity score relative

to the New Awesome Bar feature to values above 0.9 –, while the second was favored by its

high similarity scores, which in this case returned the correct features.

Other problems identified were (i) the trace relative to PDF Viewer was not recovered,

and (ii) both traces associated with Downloads Dropmaker were not recovered. We esti-

mate the reason for the first case was the PDF Viewer short description, which hampers the

tracking by techniques. On the other hand, the reason for the second was the short bug de-

scription. At this point, becomes clear that in a traceability recovery process between bug

reports and features would greatly benefit from a common vocabulary and a guide for writing

both artifacts.

Traces Captured by All Techniques We also observed the lower number of traces cap-

tured by all techniques simultaneously when comparing with the first scenario. For Top 1,

0.0% of the traces were recovered by all techniques at the same time, while for Top 3 and

5, the same five traces were recovered, which represents 14.71%. The lower number is ex-

pected once the high similarity threshold (0.9) imposes bigger restrictions to relate a given

bug report with some system feature. Added to this, we have that each technique belongs

to a different family into the set of IR and DL techniques, so they use different similarity

functions and then attribute high similarity scores in distinct manners, which decreases the

intersection between the sets of recovered traces.

Techniques Evaluation

In this section, we analyze the effectiveness of the different techniques considering each of

the Top Values studied separately. Figure A.10 shows the number of true positives (num_TP),

number of false positives (num_FP), number of false negatives (num_FN), the Precision,

the Recall, and the F2-Score obtained.

In this second scenario was expected the Precision scores would improve in general,

while the Recall scores would diminish in comparison to the first studied scenario. Except

for the Word Vector, this phenomenon was observed in all techniques. However, we noticed

A.4 Results and Discussion 109

Figure A.10: Traceability Recovery Results for Scenario II – Extra Study

two similar values of Precision and Recall when comparing the two scenarios for two

techniques: LDA had Precision and Recall of 0.00% in both scenarios for Top 1; and

BM25 had Precision of 26.37% and Recall of 70.59% in both scenarios for Top 1.

The LDA’s behavior is explained by the same reason identified in the first scenario –

the technique has a preference for tracing almost every bug report for three system features,

which are not correct ones. The technique’s similarity values are mostly smaller than 0.9,

even for the preferred three system features. This lead to the repetition of the poor results of

the first scenario, especially for Top 1.

While the BM25’s identical results are explained by the normalization of its similarity

scores, where for Top 1 just the feature with a similarity score normalized to the value "1" is

returned and which happens to be the same independent of the similarity threshold applied.

Figure A.11 shows a subset of the BM25 highlighted similarity matrix. Observe the presence

of the darker green cells with a 1 indicating the trace with the highest similarity score after

normalization.

Whereas the Word Vector technique, as was already explained, tends to attribute high

values of similarity scores for the evaluated pairs (bug report, system feature), but even the

highest value of similarity threshold used in our study (0.9) was not enough for increasing

the technique’s Precision, which on the contrary diminished in Top 1 and 3 in comparison

A.4 Results and Discussion 110

Figure A.11: BM25 Similarity Matrix Subset

to the first scenario. A variable similarity threshold adapted for the technique’s similarity

score scale could be applied for improving the results, as explained in Section A.4.2, this

solution may be the most appropriate for this technique so its effectiveness improves.

True Positives (TP) Comparatively to the other techniques, the BM25 retrieved the largest

number of exclusive true positives, as shows the Figure A.12. Gaining from the other tech-

niques by a large margin, considering that are only 34 true traces, it is able to recover exclu-

sively eight traces (23.52%) that the other techniques are not able for Top 1. However, if the

similarity threshold applied would be 0.8 instead of 0.9, the LSI technique would have hit

the seven out of these eight traces.

Whereas for Top 3 and 5, all BM25’s exclusive traces would be also recovered by the

LSI. The proximity between the techniques can be verified here, but the application of nor-

malization of the BM25’s similarity scores again played an essential rule for this favorable

result over the LSI. In terms of Recall, the BM25 technique had the highest scores for all the

A.4 Results and Discussion 111

Top values studied (all cases above 70%). On the other hand, we cannot claim the same for

the LSI, whose Recall scores did not surpass 40%. Again this results from the normalization

of the BM25’s similarity scores.

Figure A.12: Number of true positives exclusively identified

The Word Vector technique had the second best Recall scores and the second largest

number of true positives for Top 3 and 5, cases in which it had, respectively, two and three

exclusive true positive traces recovered. The technique was able to maintain a reasonable

level of Recall (47.06% and 50.0%, respectively) due to the high values of similarity pre-

sented in its similarity matrix, but the same reason is responsible for the lower values of

Precision, as explained at the beginning of this section.

Comparing BM25 and Word Vector effectiveness, the best ones in terms of the number

of TP, we are able to highlight some points. We noticed the presence of ambiguous words

in the bug reports that may have misguided the BM25 technique. One example of that is

the bug report 1305195 ("In private browsing mode, zoom level indicator is unreadable

when dark developer edition theme is in use"), which refers to "private browsing mode" and

should be linked with the features Browser Customization and Zoom Indicator. However,

the reporter used the word "mode" three times, which made the technique to relate this bug

report with the feature Text to Speech in Reader Mode. The ambiguity of the words is one

of the main problems faced by natural language processing techniques in general, and this

includes Information Retrieval techniques as BM25. This problem is addressed by Deep

Learning techniques, such as Word Vector, where the context is considered in the Vector

Space Model creation, so the technique is able to face ambiguity issues with some success.

Figure A.13 shows the highlighted similarity matrices of BM25 and Word Vector tech-

niques with the Top 5 returned traces highlighted. In the left we see the BM25 similarity

matrix, the true traces are highlighted in yellow, while the remaining traces are in red. In

the right with have the correspondent Word Vector similarity matrix with the same bug re-

A.4 Results and Discussion 112

Figure A.13: BM25 (left) vs Word Vector (right) Similarity Matrices – Top 5 in Red and

True Traces in Yellow – Similarity Threshold 0.9

ports. Observe the smaller number of returned traces by the BM25 technique due to the high

similarity threshold of 0.9.

False Positives (FP) The Venn diagrams in Figure A.14 provides details about the number

of false positives traces associated with each technique. Through the analysis of the dia-

grams, we see the techniques with the largest numbers of false positives are BM25 and Word

Vector in both Top 1 and 5. However, if the increasing trajectory of the BM25 number of

false positives is much smaller than Word Vector’s, whose number of false positives is nearly

multiplied by a factor of five when comparing Top 1 (62) and Top 5 (298).

Another interesting fact about the false positives is that in all studied cases of Top Val-

ues all the LSI’s false positives are included into BM25’s false positives, and we visualize

the considerable difference between the two most precise techniques in the Venn diagrams,

A.4 Results and Discussion 113

Figure A.14: Comparison of false positives

where the LSI set appears into the BM25 ones.

Top BM25 LSI LDA Word Vector

1 37 0 30 40

3 35 0 58 139

5 28 0 51 233

Table A.4: Number of exclusive false positives

The number of exclusive false positives is detailed in Table A.4. Observe how the number

of false positives from the Word Vector technique becomes much bigger in comparison to the

other ones with the increase in the Top Value. It is worth noting also how the LDA technique

prefers the WebGL Compatibility feature, corresponding to 28 exclusive positive traces from

LDA in Top 1 and 5. We were not able to identify the reason for this technique behavior.

False Negatives (FN) A general view of the false negatives associated with each technique

is shown by Figure A.15. The Venn diagrams allow us to clearly see the poor effectiveness

of the LDA technique if compared with the others. Note how it is the bigger set of false

negative traces in all cases comparatively the other techniques.

A.4 Results and Discussion 114

Figure A.15: Comparison of false negatives

In the context of the exclusive false negatives, we have the results summarized in Table

A.5. The LDA technique is the one with the largest number of exclusive false negatives be-

tween all techniques. In this case, the preference of the technique by three system features,

how was already explained, combined with the similarity threshold of 0.9 were responsible

for the technique’s poor effectiveness. We can observe that six out of seven (85.7%) of ex-

clusive false negative traces for Top 1 were associated with the system feature New Awesome

Bar, and the technique would be able to correctly return them if the similarity threshold

would be 0.8 or the fixed cut (Top Value) would be bigger than 1. This is confirmed when we

look at the cases of Top 3 and 5 which have a smaller number of exclusive false negatives.

Top BM25 LSI LDA Word Vector

1 0 0 7 0

3 0 3 4 1

5 0 3 4 1

Table A.5: Number of exclusive false negatives

Whereas the BM25 technique, how we see in Figure A.15, had no exclusive false negative

A.4 Results and Discussion 115

traces for any of the Top values – all BM25’s false negatives were also erroneously indicated

by other techniques. While the Word Vector had only one exclusive false negative trace for

Top Values 3 and 5, which was relative to New Awesome Bar, but the technique traced with

no system feature due the similarity threshold value of 0.9 – the calculated similarity value

between the bug report 1335992 and the New Awesome Bar feature was 0.8910, which did

not allow the linking between the bug report and the system feature.

In the same way, the LSI technique was not able to correctly trace the three exclusive

false negatives indicated in Table A.5. The calculated similarity values for the respective

three bug reports and the correct system feature (New Awesome Bar) were around 0.7, i.e

below the threshold of 0.9, not recovering the traces.

A.4.4 Best Similarity Threshold Value

In this section we evaluate the hypothesis of existence of a best similarity threshold value

into the range of values studied, identically we made in Chapter 5 (Section 5.5.5). Figures

A.16 and A.17 show the obtained results of Precision, Recall, and F2-Score considering

the variation of the similarity threshold and for each Top Value (1,3,5). The Figure A.16

depicts the effects of similarity threshold variation over the LSI and LDA techniques, while

the Figure A.17 shows the effects over the BM25 and Word Vector techniques.

We can visualize in each plot the Precision (in blue), the Recall (in green), the F2-Score

(in brown), and the three reference values for F2-Score (in red), so we can determine the

Goodness level of each technique. The bottom line is relative to the Acceptable level, the

middle line to the Good level, and the top line to the Excellent level of Goodness.

Through the analysis of Figures A.16 and A.17, we see two of the techniques presented

satisfactory levels of Goodness: the LSI and the BM25. The first one obtained a Good level

for similarity thresholds 0.6, 0.7, and 0.8 in all Top Values – observe the F2-Score passing

the reference value relative to Good (55.26%) with the best similarity threshold being 0.7.

While the BM25 achieved an Acceptable level of Goodness for all similarity thresholds at

Top 1, and maintained this level for similarity thresholds 0.6 to 0.9 in Top 3 and 0.7 to 0.9 in

Top 5.

Both techniques could be used for traceability recovery between bug reports and sys-

tem features in a semi-automatized process, where an analyst or engineer is involved in the

A.4 Results and Discussion 116

Figure A.16: LSI and LDA Similarity Threshold Variation – Extra Study

process of recovering and checking the traces recovered by an appropriate software tool. Al-

though, as we have seen, the LSI presented better results and is recommended for these kinds

of artifacts used.

Figure A.17: BM25 and Word Vector Similarity Threshold Variation – Extra Study

Continuing the analysis of the Figures A.16 and A.17, we checked the LDA had very

poor performance for every combination of similarity threshold and Top Value, especially

at Top 1, where it obtained zero in every considered metric. In the other Top Values (3 and

A.4 Results and Discussion 117

5), the technique obtained reasonable Recall scores, although the Precision was very low.

The same can be said about the Word Vector in these Top Values, the techniques have a

small difference in their general effectiveness, but in Top 1 the Word Vector achieved greater

effectiveness than LDA’s.

A.4.5 Goodness Scale

Hayes et al. [20] developed the referred Goodness Scale from their work with different types

of software artifacts to evaluate the general effectiveness of multiple traceability techniques

and estimate the level of work required from the analyst to analyze the returned traces. The

scale is based on Precision and Recall values, and we adopted the metric as defined by the

authors, just extending the reference metrics to include the F2-Score (see Section 5.4.3 in

Chapter 5).

Figure A.18: Goodness scale by each technique – Extra Study 1

Figure A.18 shows the obtained results in average Precision, Recall, and F2-Score

values for each technique. We checked the LSI again stands out over the other techniques

with an Acceptable Goodness level. Despite the high Recall results of the BM25 technique,

it did not achieve a minimum Precision (20%) to be considered Acceptable, when we look

only at the average values. Whereas the other techniques did not present satisfactory results.

These results allow us to conclude that only the LSI technique is feasible for use in the

context of a real project, as the Mozilla Firefox, and for the task of traceability recovery be-

tween bug reports and features when considering the average results of the many Top Values

and Similarity Thresholds. However, as was demonstrated in the previous section A.4.4, the

BM25 also is an Acceptable technique for some combinations of Top Value and Similarity

Thresholds. So, ultimately, both LSI and BM25 are eligible for use in traceability recovery

tasks aiding human analysts in tracing links between bug reports and system features.

A.4 Results and Discussion 118

A.4.6 Recovery Effort Index – REI

In this section, we report and analyze the REI values obtained for each technique considering

all Top Values (1,3,5) and all Similarity Thresholds ([0.0, 0.1, ..., 0.9]). The Precision value

of the oracle produced with the answers exclusively from the volunteers (see Chapter 3 and

Section 5.4.2), in relation to the oracle produced only with the expert’s answers, is 36.53%.

Model REI

BM25 1.57

LSI 0.67

LDA 1.99

Word Vector 4.69

Table A.6: REI values

Table A.6 summarizes the obtained REI values. Once the basis of REI calculation stands

over the Precision values of each technique and LSI had the highest average Precision

value between all techniques, we see the consequences of this reflected on the REI values.

The LSI has the lowest recovery effort index, which means the analyst or engineer saves

more time analyzing the traceability results – including the time of discard false positives –

using this technique than any other in the set of studied techniques. The closest technique to

LSI is BM25, but yet the saved time is nearly double if compared with LSI’s.

It is important to notice that we make a free association of REI values with the time re-

quired from the analysis, but this association still needs deeper study and we cannot attribute

statistical significance to it without further study.

A.4.7 Lessons Learned

In this extra study – focusing on traceability between bug reports and system features – the

techniques with the best effectiveness were LSI and BM25 in that order. These techniques

presented a degree of feasibility for industrial application in projects such as the Mozilla

Firefox, adopting a reference scale of Goodness, focusing in the analysis of Precision,

Recall, and F2-Score; and using determined combinations of Top Values and Similarity

Thresholds. A factor of success of these techniques is their weighting schemes and scoring

A.4 Results and Discussion 119

functions, which were able to capture the important keywords presented in the bug reports

and system features and correctly link them. However, we have indications that the effort

required from the analyst in using the LSI technique is lower than the BM25’s required effort.

In the other hand, the LDA and Word Vector presented the poorest effectiveness. The

first – based on the creation of topics – was not able to correctly characterize the bug reports

topics, so they could be related to the right system features. Whereas the second was not

capable of capturing the nuances between the bug reports and system features, attributing

high values of similarity for almost every pair of a bug report and system feature, probably

to the lack of a weighting scheme into the technique. This behavior granted a considerable

technique’s Recall, but a low Precision.

We estimate the Word Vector would achieve better results if trained exclusively with

textual data originated from the software engineering context as bug reports, test cases, and

use cases. The final model would be able to capture semantic and syntactical relationships

between the words that are particular for this specific context and the vector space built would

be more representative of this specific context. A current limitation for doing this is the lack

of available data, such training requires a massive amount of data.

