SILVA, E. M.; http://lattes.cnpq.br/2037233470235827; SILVA, Eduardo de Mello.
Resumo:
The present work deals with the manufactur and characterization of flat films of LLDPE/bentonite with and without the incorporation of a compatibilizing agent (PE-g-MA). The films were obtained by flat die extrusion and its mechanical, permeability and thermal properties were evaluated in function of clay content (0 to 5% by mass) and clay identity. Two clays were used: a) a local bentonite (from Paraiba) and b) an imported commercial organoclay. The local clay was purified and organophilized before being incorporated into the polymer matrix. The clays were characterized by cation exchange capacity (CEC), x-ray diffraction (XRD), spectroscopy Fourier transform infrared (FTIR), analysis, chemical composition by dispersive energy (EDX), particle size analysis and by thermogravimetric analysis (TG). Nanocomposites obtained as flat films were characterized by XRD, scanning electron microscopy (SEM), water vapor, O2 and CO2 gas permeability, mechanical properties, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The nanocomposite films with compatibilizer showed an intercalated/partially exfoliated morphology while the morphology of the films without compatibilizer was compatible with that of intercalated nanocomposites/microcomposites. The mechanical properties of the films prepared with the compatibilizer agent were higher than those of the neat matrix and the other systems prepared. Compatibilizing agent addition significantly reduced water vapor and O2 gas permeability in films, but the films without the presence of the compatibilizer showed an increase of this property when compared to pure LLDPE film. The influence of compatibilizer addition on CO2 permeability was small. Thermal analyzes showed a slight increase of thermal stability for the films of nanocomposites prepared with the compatibilizing agent.