ARAÚJO, E. P.; http://lattes.cnpq.br/5220721579488408; ARAÚJO, Elaine Patrícia.
Resumo:
The study with experimental cells of Municipal Solid Waste (MSW) allows evaluating the degradation of the different types of solid waste through the action of the microorganisms bacteria and total fungi in a short period of time, unlike what occurs in traditional landfills. Thus the objective of this research was to carry out the monitoring of experimental cells of MSW as the physical chemical and microbiological aspects, filled with waste from the city of Campina Grande-PB, in order to evaluate the efficiency of degradative processes. For this, realized the construction, the fill and monitoring of two (2) experimental cells located at the Federal University of Campina Grande. These cells were filled with RSU of the City of Campina Grande, collected in places and amo unts previously selected. Cells were instrumented with temperature gauges and repression along the deep, piezometer and gas drain, beyond 12 points of waste collection. The monitoring periods were: October 2009 to October 2011 in the experimental cell I and from September 2011 to September 2013 in the experimental cell II, where solid waste samples were taken from each layer (upper, middle and lower) for realization of the physicochemical analysis and
microbiological. Were realized soil granulometry analyzes to compose the layers of the base and cover, gravimetric composition, volumetric, pH, volatile solids, moisture content, chlorides, alkalinity, volatile acids, precipitation and evaporation, the count of aerobic bacteria and total fungi of agreement with standards and adapted methodologies in order to observe the degradation process in the different experimental cells. According to the results obtained it was found that the gravimetric and volumetric compositions realized, in the differents time periods, were typical of cities in developing, with high contents of organic matter and that the development of the parameters pH, alkalinity, moisture content, concentrations of volatile acids, volatile solids and chlorides favored the growth of the microorganisms aerobic bacteria and total fungi, in both studied cells providing similar behavior of microorganisms, during the monitoring time. It was observed that the pH levels in the two experimental cells monitored were favorable in the growth of this group of bacteria and that municipal solid waste are at an advanced stage of degradation. The reduction of volatile solids in all depth levels of the experimental cells indicated the degradation of organic matter. It can be concluded that the degradation stages in the experimental cells I and II occurred more rapidly when compared to landfills due to the area/surface be greater than the volume of waste, facilitating the interaction of the environment with enzymatic activity of different groups of bacteria and total fungi present in the different layers of the experimental cells.